
Chapter 18

Metrics, Connections, and Curvature
on Lie Groups

18.1 Left (resp. Right) Invariant Metrics

Since a Lie group G is a smooth manifold, we can endow
G with a Riemannian metric.

Among all the Riemannian metrics on a Lie groups, those
for which the left translations (or the right translations)
are isometries are of particular interest because they take
the group structure of G into account.

This chapter makes extensive use of results from a beau-
tiful paper of Milnor [34].
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Definition 18.1. A metric h�, �i on a Lie group G is
called left-invariant (resp. right-invariant) i↵

hu, vib = h(dLa)bu, (dLa)bviab

(resp. hu, vib = h(dRa)bu, (dRa)bviba),

for all a, b 2 G and all u, v 2 TbG.

A Riemannian metric that is both left and right-invariant
is called a bi-invariant metric.

In the sequel, the identity element of the Lie group, G,
will be denoted by e or 1.
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Proposition 18.1.There is a bijective correspondence
between left-invariant (resp. right invariant) metrics
on a Lie group G, and inner products on the Lie al-
gebra g of G.

Let h�, �i be an inner product on g, and set

hu, vig = h(dLg�1)gu, (dLg�1)gvi,

for all u, v 2 TgG and all g 2 G. It is fairly easy to check
that the above induces a left-invariant metric on G.

If G has a left-invariant (resp. right-invariant) metric,
since left-invariant (resp. right-invariant) translations are
isometries and act transitively on G, the space G is called
a homogeneous Riemannian manifold .

Proposition 18.2. Every Lie group G equipped with
a left-invariant (resp. right-invariant) metric is com-
plete.
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18.2 Bi-Invariant Metrics

Recall that the adjoint representation Ad: G ! GL(g) of
the Lie group G is the map defined such that Ada : g ! g
is the linear isomorphism given by

Ada = d(AdA)e = d(Ra�1 � La)e, for every a 2 G.

Clearly,

Ada = (dRa�1)a � (dLa)e.

Here is the first of four criteria for the existence of a bi-
invariant metric on a Lie group.
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Proposition 18.3.There is a bijective correspondence
between bi-invariant metrics on a Lie group G and
Ad-invariant inner products on the Lie algebra g of
G, namely inner products h�, �i on g such that Ada

is an isometry of g for all a 2 G; more explicitly, Ad-
invariant inner inner products satisfy the condition

hAdau,Adavi = hu, vi,

for all a 2 G and all u, v 2 g.

Proposition 18.3 shows that if a Lie group G possesses
a bi-invariant metric, then every linear map Ada is an
orthogonal transformation of g.

It follows that Ad(G) is a subgroup of the orthogonal
group of g, and so its closure Ad(G) is compact.

It turns out that this condition is also su�cient!
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To prove the above fact, we make use of an “averaging
trick” used in representation theory.

Recall that a representation of a Lie groupG is a (smooth)
homomorphism ⇢ : G ! GL(V ), where V is some finite-
dimensional vector space.

For any g 2 G and any u 2 V , we often write g · u for
⇢(g)(u).

We say that an inner-product h�, �i on V is invariant
under ⇢ (or G-invariant) i↵

h⇢(g)(u), ⇢(g)(v)i = hu, vi, for all g 2 G

and all u, v 2 V .

If G is compact, then the “averaging trick,” also called
“Weyl’s unitarian trick,” yields the following important
result:
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Theorem 18.4. If G is a compact Lie group, then
for every representation ⇢ : G ! GL(V ), there is a
G-invariant inner product on V .

Using Theorem 18.4, we can prove the following result
giving a criterion for the existence of a G-invariant in-
ner product for any representation of a Lie group G (see
Sternberg [45], Chapter 5, Theorem 5.2).

Theorem 18.5. Let ⇢ : G ! GL(V ) be a (finite-dim.)
representation of a Lie group G. There is a G-invariant
inner product on V i↵ ⇢(G) is compact. In particu-
lar, if G is compact, then there is a G-invariant inner
product on V .
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Applying Theorem 18.5 to the adjoint representation
Ad: G ! GL(g), we get our second criterion for the
existence of a bi-invariant metric on a Lie group.

Proposition 18.6. Given any Lie group G, an inner
product h�, �i on g induces a bi-invariant metric on
G i↵ Ad(G) is compact. In particular, every compact
Lie group has a bi-invariant metric.

Proposition 18.6 can be used to prove that certain Lie
groups do not have a bi-invariant metric.

For example, Arsigny, Pennec and Ayache use Proposi-
tion 18.6 to give a short and elegant proof of the fact
that SE(n) does not have any bi-invariant metric for all
n � 2.
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Recall the adjoint representation of the Lie algebra g,

ad : g ! gl(g),

given by ad = dAd1. Here is our third criterion for the ex-
istence of a bi-invariant metric on a connected Lie group.

Proposition 18.7. If G is a connected Lie group, an
inner product h�, �i on g induces a bi-invariant met-
ric on G i↵ the linear map ad(u) : g ! g is skew-
adjoint for all u 2 g, which means that

had(u)(v), wi = �hv, ad(u)(w)i, for all u, v, w 2 g,

or equivalently that

h[x, y], zi = hx, [y, z]i, for all x, y, z 2 g.
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It will be convenient to say that an inner product on g is
bi-invariant i↵ every ad(u) is skew-adjoint.

The following variant of Proposition 18.7 will also be
needed. This is a special case of Lemma 3 in O’Neill
[38] (Chapter 11).

Proposition 18.8. If G is Lie group equipped with an
inner product h�, �i on g that induces a bi-invariant
metric on G, then ad(X) : gL ! gL is skew-adjoint for
all left-invariant vector fields X 2 gL, which means
that

had(X)(Y ), Zi = �hY, ad(X)(Z)i,
for all X, Y, Z 2 gL,

or equivalently that

h[Y, X ], Zi = hY, [X, Z]i, for all X, Y, Z 2 gL.
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If G is a connected Lie group, then the existence of a
bi-invariant metric on G places a heavy restriction on its
group structure, as shown by the following result from
Milnor’s paper [34] (Lemma 7.5):

Theorem 18.9.A connected Lie group G admits a bi-
invariant metric i↵ it is isomorphic to the cartesian
product of a compact group and a vector space (Rm,
for some m � 0).

A proof of Theorem 18.9 can be found in Milnor [34]
(Lemma 7.4 and Lemma 7.5).

The proof uses the universal covering group and it is a
bit involved.
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One of the steps uses the following proposition.

Proposition 18.10. Let g be a Lie algebra with an
inner product such that the linear map ad(u) is skew-
adjoint for every u 2 g. Then the orthogonal comple-
ment a? of any ideal a is itself an ideal. Consequently,
g can be expressed as an orthogonal direct sum

g = g1 � · · · � gk,

where each gi is either a simple ideal or a
one-dimensional abelian ideal (gi

⇠= R).

We now investigate connections and curvature on Lie
groups with a left-invariant metric.
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18.3 Connections and Curvature of Left-Invariant
Metrics on Lie Groups

If G is a Lie group equipped with a left-invariant metric,
then it is possible to express the Levi-Civita connection
and the sectional curvature in terms of quantities defined
over the Lie algebra of G, at least for left-invariant vector
fields.

When the metric is bi-invariant, much nicer formulae can
be obtained.

If h�, �i is a left-invariant metric on G, then for any two
left-invariant vector fields X, Y , we can show that the
function g 7! hX, Y ig is constant.

Therefore, for any vector field Z,

Z(hX, Y i) = 0.

If we go back to the Koszul formula (Proposition 12.8)
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2hrXY, Zi = X(hY, Zi) + Y (hX, Zi) � Z(hX, Y i)
� hY, [X, Z]i � hX, [Y, Z]i � hZ, [Y, X ]i,

we deduce that for all left-invariant vector fields X, Y, Z,
we have

2hrXY, Zi = �hY, [X, Z]i � hX, [Y, Z]i � hZ, [Y, X ]i,

which can be rewritten as

2hrXY, Zi = h[X, Y ], Zi � h[Y, Z], Xi + h[Z, X ], Y i.
(†)

The above yields the formula

rXY =
1

2
([X, Y ] � ad(X)⇤Y � ad(Y )⇤X) , X, Y 2 gL,

where ad(X)⇤ denotes the adjoint of ad(X), where adX
is defined just after Proposition 16.11.
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Remark: Given any two vector u, v 2 g, it is common
practice (even though this is quite confusing) to denote
by ruv the result of evaluating the vector field ruLvL at
e (so, ruv = (ruLvL)(e)).

Following Milnor, if we pick an orthonormal basis (e1, . . .,
en) w.r.t. our inner product on g, and if we define the
constants ↵ijk by

↵ijk = h[ei, ej], eki,

we see that

(reiej)(1) =
1

2

X

k

(↵ijk � ↵jki + ↵kij)ek. (⇤)

Now, for orthonormal vectors u, v, the sectional curvature
is given by

K(u, v) = hR(u, v)u, vi,

with

R(u, v) = r[u,v] � rurv + rvru.
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If we plug the expressions from equation (⇤) into the def-
initions we obtain the following proposition from Milnor
[34] (Lemma 1.1):

Proposition 18.11. Given a Lie group G equipped
with a left-invariant metric, for any orthonormal ba-
sis (e1, . . . , en) of g, and with the structure constants
↵ijk = h[ei, ej], eki, the sectional curvature K(e1, e2) is
given by

K(e1, e2) =
X

k

1

2
(↵12k(�↵12k + ↵2k1 + ↵k12)

� 1

4
(↵12k � ↵2k1 + ↵k12)(↵12k + ↵2k1 � ↵k12)

� ↵k11↵k22).

Although the above formula is not too useful in general,
in some cases of interest, a great deal of cancellation takes
place so that a more useful formula can be obtained.

An example of this situation is provided by the next
proposition (Milnor [34], Lemma 1.2).
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Proposition 18.12. Given a Lie group G equipped
with a left-invariant metric, for any u 2 g, if the
linear map ad(u) is self-adjoint, then

K(u, v) � 0 for all v 2 g,

where equality holds i↵ u is orthogonal to
[v, g] = {[v, x] | x 2 g}.

For the next proposition we need the following definition.

Definition 18.2. The center Z(g) of a Lie algebra g is
the set of all elements u 2 g such that [u, v] = 0 for all
v 2 g, or equivalently, such that ad(u) = 0.

Proposition 18.13. Given a Lie group G equipped
with a left-invariant metric, for any u in the center
Z(g) of g,

K(u, v) � 0 for all v 2 g.
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Recall that the Ricci curvature Ric(u, v) is the trace of
the linear map y 7! R(u, y)v.

With respect to any orthonormal basis (e1, . . . , en) of g,
we have

Ric(u, v) =
nX

j=1

hR(u, ej)v, eji =
nX

j=1

R(u, ej, v, ej).

The Ricci curvature is a symmetric form, so it is com-
pletely determined by the quadratic form

r(u) = Ric(u, u) =
nX

j=1

R(u, ej, u, ej).
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Definition 18.3. If u is a unit vector, r(u) = Ric(u, u)
is called the Ricci curvature in the direction u. If we
pick an orthonormal basis such that e1 = u, then

r(e1) =
nX

i=2

K(e1, ei).

For computational purposes it may be more convenient
to introduce the Ricci transformation Ric#, defined by

Ric#(x) =
nX

i=1

R(ei, x)ei.

Proposition 18.14.The Ricci transformation defined
by

Ric#(x) =
nX

i=1

R(ei, x)ei

is self-adjoint, and it is also the unique map so that

r(x) = Ric(x, x) = hRic#(x), xi, for all x 2 g.
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Definition 18.4. The eigenvalues of Ric# are called the
principal Ricci curvatures .

Proposition 18.15. Given a Lie group G equipped
with a left-invariant metric, if the linear map ad(u) is
skew-adjoint, then r(u) � 0, where equality holds i↵ u
is orthogonal to the commutator ideal [g, g].

In particular, if u is in the center of g, then r(u) � 0.

As a corollary of Proposition 18.15, we have the following
result which is used in the proof of Theorem 18.9:

Proposition 18.16. If G is a connected Lie group
equipped with a bi-invariant metric and if the Lie al-
gebra of G is simple, then there is a constant c > 0
so that r(u) � c for all unit vector u 2 TgG and for
all g 2 G.
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By Myers’ Theorem (Theorem 14.27), the Lie group G is
compact and has a finite fundamental group.

The following interesting theorem is proved in Milnor
(Milnor [34], Theorem 2.2):

Theorem 18.17. A connected Lie group G admits a
left-invariant metric with r(u) > 0 for all unit vectors
u 2 g (all Ricci curvatures are strictly positive) i↵ G
is compact and has a finite fundamental group.
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The following criterion for obtaining a direction of nega-
tive curvature is also proved in Milnor (Milnor [34], Lemma
2.3):

Proposition 18.18. Given a Lie group G equipped
with a left-invariant metric, if u is orthogonal to the
commutator ideal [g, g], then r(u)  0, where equality
holds i↵ ad(u) is self-adjoint.
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18.4 Connections and Curvature of Bi-Invariant
Metrics on Lie Groups

When G possesses a bi-invariant metric, much nicer for-
mulae are obtained.

First of all, since by Proposition 18.8,

h[Y, Z], Xi = hY, [Z, X ]i,

the last two terms in equation (†), namely

2hrXY, Zi = h[X, Y ], Zi � h[Y, Z], Xi + h[Z, X ], Y i,

cancel out, and we get

rXY =
1

2
[X, Y ], for all X, Y 2 gL.
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Proposition 18.19. For any Lie group G equipped
with a bi-invariant metric, the following properties
hold:

(a) The connection rXY is given by

rXY =
1

2
[X, Y ], for all X, Y 2 gL.

(b) The curvature tensor R(u, v) is given by

R(u, v) =
1

4
ad[u, v], for all u, v 2 g,

or equivalently,

R(u, v)w =
1

4
[[u, v], w], for all u, v, w 2 g.

(c) The sectional curvature K(u, v) is given by

K(u, v) =
1

4
h[u, v], [u, v]i,

for all pairs of orthonormal vectors u, v 2 g.
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(d) The Ricci curvature Ric(u, v) is given by

Ric(u, v) = �1

4
B(u, v), for all u, v 2 g,

where B is the Killing form, with

B(u, v) = tr(ad(u) � ad(v)), for all u, v 2 g.

Consequently, K(u, v) � 0, with equality i↵ [u, v] = 0
and r(u) � 0, with equality i↵ u belongs to the center
of g.

Remark: Proposition 18.19 shows that if a Lie group
admits a bi-invariant metric, then its Killing form is neg-
ative semi-definite.

What are the geodesics in a Lie group equipped with a
bi-invariant metric?
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The answer is simple: they are the integral curves of left-
invariant vector fields.

Proposition 18.20. For any Lie group G equipped
with a bi-invariant metric, we have:

(1) The inversion map ◆ : g 7! g�1 is an isometry.

(2) For every a 2 G, if Ia denotes the map given by

Ia(b) = ab�1a, for all a, b 2 G,

then Ia is an isometry fixing a which reverses
geodesics; that is, for every geodesic � through a,
we have

Ia(�)(t) = �(�t).

(3) The geodesics through e are the integral curves t 7!
exp(tu), where u 2 g; that is, the one-parameter
groups. Consequently, the Lie group exponential
map exp : g ! G coincides with the Riemannian
exponential map (at e) from TeG to G, where G is
viewed as a Riemannian manifold.
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Remarks:

(1) As Rg = ◆ � Lg�1 � ◆, we deduce that if G has a
left-invariant metric, then this metric is also right-
invariant i↵ ◆ is an isometry.

(2) Property (2) of Proposition 18.20 says that a Lie group
with a bi-invariant metric is a symmetric space , an
important class of Riemannian spaces invented and
studied extensively by Elie Cartan. Symmetric spaces
are briefly discussed in Section 20.8.

(3) The proof of 18.20 (3) given in O’Neill [38] (Chap-
ter 11, equivalence of (5) and (6) in Proposition 9)
appears to be missing the “hard direction,” namely,
that a geodesic is a one-parameter group.
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Many more interesting results about left-invariant metrics
on Lie groups can be found in Milnor’s paper [34].

We conclude this section by stating the following propo-
sition (Milnor [34], Lemma 7.6):

Proposition 18.21. If G is any compact, simple, Lie
group, then the bi-invariant metric is unique up to
a constant. Such a metric necessarily has constant
Ricci curvature.
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18.5 Simple and Semisimple Lie Algebras and
Lie Groups

In this section, we introduce semisimple Lie algebras.

They play a major role in the structure theory of Lie
groups, but we only scratch the surface.

Definition 18.5. A subset h of a Lie algebra g is a Lie
subalgebra i↵ it is a subspace of g (as a vector space) and
if it is closed under the bracket operation on g.

A subalgebra h of g is abelian i↵ [x, y] = 0 for all x, y 2 h.

An ideal in g is a Lie subalgebra h such that

[h, g] 2 h, for all h 2 h and all g 2 g.
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The center Z(g) of a Lie algebra g is the set of all el-
ements u 2 g such that [u, v] = 0 for all v 2 g, or
equivalently, such that ad(u) = 0.

Definition 18.6. A Lie algebra g is simple i↵ it is non-
abelian and if it has no ideal other than (0) and g. A
Lie algebra g is semisimple i↵ it has no abelian ideal
other than (0). A Lie group is simple (resp. semisim-
ple) i↵ its Lie algebra is simple (resp. semisimple).

Note that by definition, simple and semisimple Lie alge-
bras are nonabelian , and a simple algebra is a semisimple
algebra.

Clearly, the trivial subalgebras (0) and g itself are ideals,
and the center of a Lie algebra is an abelian ideal.

It follows that the center Z(g) of a semisimple Lie algebra
must be the trivial ideal (0).
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Definition 18.7. Given two subsets a and b of a Lie
algebra g, we let [a, b] be the subspace of g consisting of
all linear combinations [a, b], with a 2 a and b 2 b.

If a and b are ideals in g, then a + b, a \ b, and [a, b],
are also ideals (for [a, b], use the Jacobi identity).

The last fact allows us to make the following definition.

Definition 18.8. Let g be a Lie algebra. The ideal [g, g]
is called the commutator ideal of g. The commutator
ideal [g, g] is also denoted by D1g (or Dg).

If g is a simple Lie agebra, then [g, g] = g (because [g, g] is
an ideal, so the simplicity of g implies that either [g, g] =
(0) or [g, g] = g. However, if [g, g] = (0), then g is
abelian, a contradiction).
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Definition 18.9. The derived series (or commutator
series) (Dkg) of a Lie algebra (or ideal) g is defined as
follows:

D0g = g

Dk+1g = [Dkg, Dkg], k � 0.

We have a decreasing sequence

g = D0g ◆ D1g ◆ D2g ◆ · · · .

If g is an ideal, by induction we see that each Dkg is an
ideal.

Definition 18.10.We say that a Lie algebra g is solv-
able i↵ Dkg = (0) for some k � 0.

If g is abelian, then [g, g] = 0, so g is solvable.

Observe that a nonzero solvable Lie algebra has a nonzero
abelian ideal, namely, the last nonzero Djg.
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As a consequence, a Lie algebra is semisimple i↵ it has
no nonzero solvable ideal.

It can be shown that every Lie algebra g has a largest
solvable ideal r, called the radical of g.

Definition 18.11. The radical of a Lie algebra g is its
largest solvable ideal, and it is denoted rad g.

Then a Lie algebra is semisimple i↵ rad g = (0).

It can also be shown that for every (finite-dimensional)
Lie algebra g, there is some semisimple Lie algebra s such
that g is a semidirect product

g = rad g �⌧ s.

The above is called a Levi decomposition ; see Knapp [25]
(Appendix B), Serre [44] (Chapter VI, Theorem 4.1 and
Corollary 1), and Fulton and Harris [17] (Appendix E).
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The Levi decomposition shows the importance of semisim-
ple and solvable Lie algebras: the structure of these alge-
bras determines the structure of arbitrary Lie algebras.

Definition 18.12. The lower central series (Ckg) of
a Lie algebra (or ideal) g is defined as follows:

C0g = g

Ck+1g = [g, Ckg], k � 0.

We have a decreasing sequence

g = C0g ◆ C1g ◆ C2g ◆ · · · .

Definition 18.13.We say that an ideal g is nilpotent
i↵ Ckg = (0) for some k � 0.
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By induction, it is easy to show that

Dkg ✓ Ckg k � 0.

Consequently, we have:

Proposition 18.22. Every nilpotent Lie algebra is
solvable.

It turns out that a Lie algebra g is semisimple i↵ it can
be expressed as a direct sum of ideals gi, with each gi

a simple algebra (see Knapp [25], Chapter I, Theorem
1.54).

As a conseqence, if g is semisimple, then we also have
[g, g] = g.
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If we drop the requirement that a simple Lie algebra be
non-abelian, thereby allowing one dimensional Lie alge-
bras to be simple, we run into the trouble that a simple
Lie algebra is no longer semisimple, and the above theo-
rem fails for this stupid reason.

Thus, it seems technically advantageous to require that
simple Lie algebras be non-abelian.

Nevertheless, in certain situations, it is desirable to drop
the requirement that a simple Lie algebra be non-abelian
and this is what Milnor does in his paper because it is
more convenient for one of his proofs. This is a minor
point but it could be confusing for uninitiated readers.
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18.6 The Killing Form

The Killing form showed the tip of its nose in Proposition
18.19.

It is an important concept and, in this section, we estab-
lish some of its main properties.

Definition 18.14. For any Lie algebra g over the field
K (where K = R or K = C), the Killing form B of g
is the symmetric K-bilinear form B : g ⇥ g ! C given
by

B(u, v) = tr(ad(u) � ad(v)), for all u, v 2 g.

If g is the Lie algebra of a Lie group G, we also refer to
B as the Killing form of G.
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Remark: According to the experts (see Knapp [25], page
754) theKilling form as above, was not defined by Killing,
and is closer to a variant due to Elie Cartan.

On the other hand, the notion of “Cartan matrix” is due
to Wilhelm Killing!

For example, consider the group SU(2). Its Lie algebra
su(2) is the three-dimensional Lie algebra consisting of
all skew-Hermitian 2 ⇥ 2 matrices with zero trace; that
is, matrices of the form

✓
ai b + ic

�b + ic �ai

◆
, a, b, c 2 R.

By picking a suitable basis of su(2), it can be shown that

B(X, Y ) = 4tr(XY ).
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Now, if we consider the group U(2), its Lie algebra u(2)
is the four-dimensional Lie algebra consisting of all skew-
Hermitian 2 ⇥ 2 matrices; that is, matrices of the form

✓
ai b + ic

�b + ic id

◆
, a, b, c, d 2 R,

This time, it can be shown that

B(X, Y ) = 4tr(XY ) � 2tr(X)tr(Y ).

For SO(3), we know that so(3) = su(2), and we get

B(X, Y ) = tr(XY ).
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Actually, the following proposition can be shown.

Proposition 18.23. The following identities hold:

GL(n,R),U(n) : B(X, Y ) = 2ntr(XY ) � 2tr(X)tr(Y )

SL(n,R),SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n � 2)tr(XY ).

To prove Proposition 18.23, it su�ces to compute the
quadratic form B(X, X), because B(X, Y ) is symmet-
ric bilinear so it can be recovered using the polarization
identity

B(X, Y ) =
1

2
(B(X +Y, X +Y )�B(X, X)�B(Y, Y )).
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Furthermore, if g is the Lie algebra of a matrix group,
since adX = LX � RX and LX and RX commute, for all
X, Z 2 g, we have

(adX � adX)(Z) = (L2

X � 2LX � RX + R2

X)(Z)

= X2Z � 2XZX + ZX2.

Therefore, to compute B(X, X) = tr(adX �adX), we can
pick a convenient basis of g and compute the diagonal
entries of the matrix representing the linear map

Z 7! X2Z � 2XZX + ZX2.

Unfortunately, this is usually quite laborious.
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Recall that a homomorphism of Lie algebras ' : g ! h is
a linear map that preserves brackets; that is,

'([u, v]) = ['(u), '(v)].

Proposition 18.24. The Killing form B of a Lie al-
gebra g has the following properties:

(1) It is a symmetric bilinear form invariant under all
automorphisms of g. In particular, if g is the Lie
algebra of a Lie group G, then B is Adg-invariant,
for all g 2 G.

(2) The linear map ad(u) is skew-adjoint w.r.t B for
all u 2 g; that is,

B(ad(u)(v), w) = �B(v, ad(u)(w)),

for all u, v, w 2 g,

or equivalently,

B([u, v], w) = B(u, [v, w]), for all u, v, w 2 g.
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Remarkably, the Killing form yields a simple criterion
due to Elie Cartan for testing whether a Lie algebra is
semisimple.

Theorem 18.25. (Cartan’s Criterion for Semisim-
plicity) A lie algebra g is semisimple i↵ its Killing
form B is non-degenerate.

As far as we know, all the known proofs of Cartan’s cri-
terion are quite involved.

A fairly easy going proof can be found in Knapp [25]
(Chapter 1, Theorem 1.45).

A more concise proof is given in Serre [44] (Chapter VI,
Theorem 2.1).
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Since a Lie group with trivial Lie algebra is discrete, this
implies that the center of a simple Lie group is discrete
(because the Lie algebra of the center of a Lie group is
the center of its Lie algebra. Prove it!).

We can also characterize which Lie groups have a Killing
form which is negative definite.

Theorem 18.26. A connected Lie group is compact
and semisimple i↵ its Killing form is negative definite.

Remark: A compact semisimple Lie group equipped
with �B as a metric is an Einstein manifold, since Ric is
proportional to the metric (see Definition 14.7).
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Using Theorem 18.26, since the Killing forms for U(n),
SU(n) and S)(n) are given by

GL(n,R),U(n) : B(X, Y ) = 2ntr(XY ) � 2tr(X)tr(Y )

SL(n,R),SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n � 2)tr(XY ),

we obtain the following result:

Proposition 18.27. The Lie group SU(n) is com-
pact and semisimple for n � 2, SO(n) is compact
and semisimple for n � 3, and SL(n,R) is noncom-
pact and semisimple for n � 2. However, U(n), even
though it is compact, is not semisimple.

Another way to determine whether a Lie algebra is semisim-
ple is to consider reductive Lie algebras.
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We give a quick exposition without proofs. Details can
be found in Knapp [25] (Chapter I, Sections, 7, 8).

Definition 18.15. A Lie algebra g is reductive i↵ for
every ideal a in g, there is some ideal b in g such that g
is the direct sum

g = a � b.

The following result is proved in Knapp [25] (Chapter I,
Corollary 1.56).

Proposition 18.28. If g is a reductive Lie algebra,
then

g = [g, g] � Z(g),

with [g, g] semisimple and Z(g) abelian.

Consequently, if g is reductive, then it is semisimple i↵
its center Z(g) is trivial.
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For Lie algebras of matrices, a simple condition implies
that a Lie algera is reductive.

The following result is proved in Knapp [25] (Chapter I,
Proposition 1.59).

Proposition 18.29. If g is a real Lie algebra of ma-
trices over R or C, and if g is closed under conjugate
transpose (that is, if A 2 g, then A⇤ 2 g), then g is
reductive.

The familiar Lie algebras gl(n,R), sl(n,R), gl(n,C),
sl(n,C), so(n), so(n,C), u(n), su(n), so(p, q), u(p, q),
su(p, q) are all closed under conjugate transpose.

Among those, by computing their center, we find that
sl(n,R) and sl(n,C) are semisimple for n � 2, so(n),
so(n,C) are semisimple for n � 3, su(n) is semisimple
for n � 2, so(p, q) is semisimple for p + q � 3, and
su(p, q) is semisimple for p + q � 2.
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Semisimple Lie algebras and semisimple Lie groups have
been investigated extensively, starting with the complete
classification of the complex semisimple Lie algebras by
Killing (1888) and corrected by Elie Cartan in his thesis
(1894).

One should read the Notes, especially on Chapter II, at
the end of Knapp’s book [25] for a fascinating account of
the history of the theory of semisimple Lie algebras.

The theories and the body of results that emerged from
these investigations play a very important role, not only
in mathematics, but also in physics, and constitute one
of the most beautiful chapters of mathematics.
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18.7 Left-Invariant Connections and Cartan
Connections

Unfortunately, if a Lie group G does not admit a bi-
invariant metric, under the Levi-Civita connection,
geodesics are generally not given by the exponential map
exp : g ! G.

If we are willing to consider connections not induced by
a metric, then it turns out that there is a fairly natural
connection for which the geodesics coincide with integral
curves of left-invariant vector fields.

These connections are called Cartan connections.

Such connections are torsion-free (symmetric), but the
price that we pay is that in general they are not com-
patible with the chosen metric.
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As a consequence, even though geodesics exist for all t 2
R, it is generally false that any two points can connected
by a geodesic.

This has to do with the failure of the exponential to be
surjective.

This section is heavily inspired by Postnikov [40] (Chap-
ter 6, Sections 3–6); see also Kobayashi and Nomizu [26]
(Chapter X, Section 2).

Recall that a vector field X on a Lie group G is left-
invariant if the following diagram commutes for all a 2 G:

TG
d(La)

// TG

G
La

//

X

OO

G

X

OO
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In this section, we use freely the fact that there is a bi-
jection between the Lie algebra g and the Lie algebra gL

of left-invariant vector fields on G.

For every X 2 g, we denote by XL 2 gL the unique
left-invariant vector field such that XL

1
= X .

Definition 18.16. A connection r on a Lie group G
is left-invariant if for any two left-invariant vector fields
XL, Y L with X, Y 2 g, the vector field rXLY L is also
left-invariant.

By analogy with left-invariant metrics, there is a version
of Proposition 18.1 stating that there is a one-to-one cor-
respondence between left-invariant connections and bilin-
ear forms ↵ : g ⇥ g ! g.
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Proposition 18.30.There is a one-to-one correspon-
dence between left-invariant connections on G and bi-
linear forms on g.

Given a left-invariant connection r on G, we get the map
↵ : g ⇥ g ! g given by

↵(X, Y ) = (rXLY L)1, X, Y 2 g.

We can also show that every bilinear map ↵ : g ⇥ g ! g
defines a unique left-invariant connection (we use a basis
of g).
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Every bilinear form ↵ can be written as the sum of a
symmetric bilinear form

↵H(X, Y ) =
↵(X, Y ) + ↵(Y, X)

2

and a skew-symmetric bilinear form

↵S(X, Y ) =
↵(X, Y ) � ↵(Y, X)

2
.

Proposition 18.31. The left-invariant connection r
induced by a bilinear map ↵ on g has the property
that, for every X 2 g, the curve t 7! expgr(tX) = etX

is a geodesic i↵ ↵ is skew-symmetric.

Definition 18.17.A left-invariant connection satisfying
the property that for every X 2 g, the curve t 7! etX is
a geodesic, is called a Cartan connection .

It is easy to find out when the Cartan connection r as-
sociated with a bilinear map ↵ on g is torsion-free (sym-
metric).
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Proposition 18.32. The Cartan connection r as-
sociated with a bilinear map ↵ on g is torsion-free
(symmetric) i↵

↵S(X, Y ) =
1

2
[X, Y ], for all X, Y 2 g,

This implies the following result.

Proposition 18.33.Given any Lie group G, there is
a unique (torsion-free) symmetric Cartan connection
r given by

rXLY L =
1

2
[X, Y ]L, for all X, Y 2 g.

Then, the same calculation that we used in the case of a
bi-invariant metric on a Lie group shows that the curva-
ture tensor is given by

R(X, Y )Z =
1

4
[[X, Y ], Z], for all X, Y, Z 2 g.
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Proposition 18.34. For any X 2 g and any point
a 2 G, the unique geodesic �a,X such that �a,X(0) = a
and �0

a,X(0) = X, is given by

�a,X(t) = etd(Ra�1)aXa;

that is,

�a,X = Ra � �d(Ra�1)aX,

where �d(Ra�1)aX(t) = etd(Ra�1)aX.

Remark: Observe that the bilinear forms given by

↵(X, Y ) = �[X, Y ] for some � 2 R

are skew-symmetric, and thus induce Cartan connections.



920 CHAPTER 18. METRICS, CONNECTIONS, AND CURVATURE ON LIE GROUPS

Easy computations show that the torsion is given by

T (X, Y ) = (2� � 1)[X, Y ],

and the curvature by

R(X, Y )Z = �(1 � �)[[X, Y ], Z].

It follows that for � = 0 and � = 1, we get connections
where the curvature vanishes.

However, these connections have torsion. Again, we see
that � = 1/2 is the only value for which the Cartan
connection is symmetric.

In the case of a bi-invariant metric, the Levi-Civita con-
nection coincides with the Cartan connection.


