
Chapter 13

Geodesics on Riemannian Manifolds

13.1 Geodesics, Local Existence and Uniqueness

If (M, g) is a Riemannian manifold, then the concept of
length makes sense for any piecewise smooth (in fact, C1)
curve on M .

Then, it possible to define the structure of a metric space
on M , where d(p, q) is the greatest lower bound of the
length of all curves joining p and q.

Curves on M which locally yield the shortest distance
between two points are of great interest. These curves
called geodesics play an important role and the goal of
this chapter is to study some of their properties.
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Given any p 2 M , for every v 2 TpM , the (Riemannian)
norm of v, denoted kvk, is defined by

kvk =
q

gp(v, v).

The Riemannian inner product, gp(u, v), of two tangent
vectors, u, v 2 TpM , will also be denoted by hu, vip, or
simply hu, vi.

Definition 13.1. Given any Riemannian manifold, M ,
a smooth parametric curve (for short, curve) on M is
a map, � : I ! M , where I is some open interval of R.
For a closed interval, [a, b] ✓ R, a map � : [a, b] ! M
is a smooth curve from p = �(a) to q = �(b) i↵ � can
be extended to a smooth curve e� : (a � ✏, b + ✏) ! M ,
for some ✏ > 0. Given any two points, p, q 2 M , a
continuous map, � : [a, b] ! M , is a piecewise smooth
curve from p to q i↵
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(1) There is a sequence a = t0 < t1 < · · · < tk�1

< tk = b of numbers, ti 2 R, so that each map,
�i = � � [ti, ti+1], called a curve segment is a smooth
curve, for i = 0, . . . , k � 1.

(2) �(a) = p and �(b) = q.

The set of all piecewise smooth curves from p to q is
denoted by ⌦(M ; p, q) or briefly by ⌦(p, q) (or even by
⌦, when p and q are understood).

The set ⌦(M ; p, q) is an important object sometimes
called the path space of M (from p to q).

Unfortunately it is an infinite-dimensional manifold, which
makes it hard to investigate its properties.



630 CHAPTER 13. GEODESICS ON RIEMANNIAN MANIFOLDS

Observe that at any junction point, �i�1(ti) = �i(ti),
there may be a jump in the velocity vector of �.

We let �0((ti)+) = �0
i(ti) and �0((ti)�) = �0

i�1
(ti).

Given any curve, � 2 ⌦(M ; p, q), the length , L(�), of �
is defined by

L(�) =
k�1X

i=0

Z ti+1

ti

k�0(t)k dt

=
k�1X

i=0

Z ti+1

ti

p
g(�0(t), �0(t)) dt.

It is easy to see that L(�) is unchanged by a monotone
reparametrization (that is, a map h : [a, b] ! [c, d], whose
derivative, h0, has a constant sign).

Now let M be any smooth manifold equipped with an
arbitrary connection r.

For every curve � on M , recall that D
dt is the associated

covariant derivative along �, also denoted r�0.
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Definition 13.2. Let (M, g) be a Riemannian manifold.
A curve, � : I ! M , (where I ✓ R is any interval) is a
geodesic i↵ �0(t) is parallel along �, that is, i↵

D�0

dt
= r�0�0 = 0.

Observe that the notion of geodesic only requires a con-
nection on a manifold, and that geodesics can be defined
in manifolds that are not endowed with a Riemannian
metric.

However, most useful properties of geodesics involve met-
ric notions, and their proofs use the fact that the connec-
tion on the manifold is compatible with the metric and
torsion-free.

Therefore, from now on, we assume unless otherwise
specified that our Riemannian manifold (M, g) is equipped
with the Levi-Civita connection .
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If M was embedded in Rd, a geodesic would be a curve,
�, such that the acceleration vector, �00 = D�0

dt , is normal
to T�(t)M .

Since our connection is compatible with the metric, Propo-
sition 12.11 implies that for a geodesic �,

k�0(t)k =
p

g(�0(t), �0(t))

is constant, say k�0(t)k = c.

If we define the arc-length function, s(t), relative to a,
where a is any chosen point in I , by

s(t) =

Z t

a

p
g(�0(t), �0(t)) dt = c(t � a), t 2 I,

we conclude that for a geodesic, �(t), the parameter, t, is
an a�ne function of the arc-length.

The geodesics in Rn are the straight lines parametrized
by constant velocity.
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The geodesics of the 2-sphere are the great circles,
parametrized by arc-length.

The geodesics of the Poincaré half-plane are the lines
x = a and the half-circles centered on the x-axis.

The geodesics of an ellipsoid are quite fascinating. They
can be completely characterized and they are parametrized
by elliptic functions (see Hilbert and Cohn-Vossen [22],
Chapter 4, Section and Berger and Gostiaux [6], Section
10.4.9.5).
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In a local chart, (U, '), since a geodesic is characterized
by the fact that its velocity vector field, �0(t), along �
is parallel, by Proposition 12.5, it is the solution of the
following system of second-order ODE’s in the unknowns,
uk:

d2uk

dt2
+
X

ij

�k
ij

dui

dt

duj

dt
= 0, k = 1, . . . , n, (⇤)

with ui = pri � ' � � (n = dim(M)).

The standard existence and uniqueness results for ODE’s
can be used to prove the following proposition:
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Proposition 13.1. Let (M, g) be a Riemannian man-
ifold. For every point, p 2 M , and every tangent vec-
tor, v 2 TpM , there is some interval, (�⌘, ⌘), and a
unique geodesic,

�v : (�⌘, ⌘) ! M,

satisfying the conditions

�v(0) = p, �0
v(0) = v.

From a practical point of view, Proposition 13.1 is useless.

In general, for an arbitrary manifold M , it is impossible
to solve explicitly the second-order equations (⇤); even
for familiar manifolds it is very hard to solve explicitly
the second-order equations (⇤).

Riemannian covering maps and Riemannian submersions
are notions that can be used for finding geodesics; see
Chapter 15.
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In the case of a Lie group with a bi-invariant metric,
geodesics can be described explicitly; see Chapter 18.

Geodesics can also be described explicitly for certain classes
of reductive homogeneous manifolds; see Chapter 20.

The following proposition is used to prove that every
geodesic is contained in a unique maximal geodesic (i.e ,
with largest possible domain):

Proposition 13.2. For any two geodesics,
�1 : I1 ! M and �2 : I2 ! M , if �1(a) = �2(a) and
�0

1
(a) = �0

2
(a), for some a 2 I1 \ I2, then �1 = �2 on

I1 \ I2.
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Propositions 13.1 and 13.2 imply the following definition:

Definition 13.3. LetM be a smooth manifold equipped
with an arbitrary connection. For every p 2 M and every
v 2 TpM , there is a unique geodesic, denoted �v, such
that �(0) = p, �0(0) = v, and the domain of � is the
largest possible, that is, cannot be extended. We call �v

a maximal geodesic (with initial conditions �v(0) = p
and �0

v(0) = v).

Observe that the system of di↵erential equations satisfied
by geodesics has the following homogeneity property: If
t 7! �(t) is a solution of the above system, then for every
constant, c, the curve t 7! �(ct) is also a solution of the
system.
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We can use this fact together with standard existence
and uniqueness results for ODE’s to prove the proposition
below.

Proposition 13.3. Let (M, g) be a Riemannian man-
ifold. For every point, p0 2 M , there is an open sub-
set, U ✓ M , with p0 2 U , and some ✏ > 0, so that:
For every p 2 U and every tangent vector, v 2 TpM ,
with kvk < ✏, there is a unique geodesic,

�v : (�2, 2) ! M,

satisfying the conditions

�v(0) = p, �0
v(0) = v.
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A major di↵erence between Proposition 13.1 and Propo-
sition 13.3 is that Proposition 13.1 yields for any p 2 M
and any v 2 TpM a single geodesic �v : (�⌘, ⌘) ! M
such that �v(0) = p and �0

p(0) = v, but Proposition 13.3
yields a family of geodesics �v : (�2, 2) ! M such that
�v(0) = p and �0

p(0) = v, with the same domain , for ev-
ery p in some small enough open subset U , and for small
enough v 2 TpM .

Remark: Proposition 13.3 holds for a Riemannian man-
ifold equipped with an arbitrary connection.
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13.2 The Exponential Map

The idea behind the exponential map is to parametrize
a Riemannian manifold, M , locally near any p 2 M
in terms of a map from the tangent space TpM to the
manifold, this map being defined in terms of geodesics.

Definition 13.4. Let (M, g) be a Riemannian manifold.
For every p 2 M , let D(p) (or simply, D) be the open
subset of TpM given by

D(p) = {v 2 TpM | �v(1) is defined},

where �v is the unique maximal geodesic with initial con-
ditions �v(0) = p and �0

v(0) = v. The exponential map
is the map, expp : D(p) ! M , given by

expp(v) = �v(1).
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It is easy to see that D(p) is star-shaped , which means
that if w 2 D(p), then the line segment {tw | 0  t  1}
is contained in D(p). See Figure 13.1.

p

p

D D(p) (p)

Figure 13.1: The left figure is a star-shaped region in R2
(with respect to p), while the right

figure is a star-shaped region in R3
(with respect to p). Both regions contain line segments

radiating from p.
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In view of the fact that if �v : (�⌘, ⌘) ! M is a geodesic
through p with initial velocity v, then for any c 6= 0,

�v(ct) = �cv(t), ct 2 (�⌘, ⌘),

we have

expp(tv) = �tv(1) = �v(t), tv 2 D(p),

so the curve

t 7! expp(tv), tv 2 D(p),

is the geodesic �v through p such that �0
v(0) = v.

Such geodesics are called radial geodesics .
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In a Riemannian manifold with the Levi-Civita connec-
tion, the point expp(tv) is obtained by running along the
geodesic �v an arc length equal to t kvk, starting from p.

If the tangent vector tv at p is a flexible wire, the ex-
ponential map wraps the wire along the geodesic curve
without stretching its length. See Figure 13.2.

p

M

T  Mp

0

v

p

v γ (1)vγv

exp (v)p

D (p)

Figure 13.2: The image of v under expp.
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In general, D(p) is a proper subset of TpM .

Definition 13.5. A Riemannian manifold, (M, g), is
geodesically complete i↵ D(p) = TpM , for all p 2 M ,
that is, i↵ the exponential, expp(v), is defined for all p 2
M and for all v 2 TpM .

Equivalently, (M, g) is geodesically complete i↵ every
geodesic can be extended indefinitely.

Geodesically complete Riemannian manifolds (with the
Levi-Civita connection) have nice properties, some of which
will be investigated later.

Proposition 13.4. Let M be a Riemannian manifold.
For any p 2 M we have d(expp)0 = idTpM .

It follows from the inverse function theorem that expp is
a di↵eomorphism from some open ball in TpM centered
at 0 to M .
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By using the curve t 7! (t + 1)v passing through v in
TpM and with initial velocity v 2 Tv(TpM) ⇡ TpM , we
get

d(expp)v(v) =
d

dt
(�v(t + 1))|t=0 = �0

v(1).

The following stronger proposition plays a crucial role
in the proof of the Hopf-Rinow Theorem; see Theorem
13.15.
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Proposition 13.5. Let (M, g) be a Riemannian man-
ifold. For every point, p 2 M , there is an open subset,
W ✓ M , with p 2 W and a number ✏ > 0, so that

(1) Any two points q1, q2 of W are joined by a unique
geodesic of length < ✏.

(2) This geodesic depends smoothly upon q1 and q2,
that is, if t 7! expq1

(tv) is the geodesic joining
q1 and q2 (0  t  1), then v 2 Tq1

M depends
smoothly on (q1, q2).

(3) For every q 2 W , the map expq is a di↵eomor-
phism from the open ball, B(0, ✏) ✓ TqM , to its
image, Uq = expq(B(0, ✏)) ✓ M , with W ✓ Uq and
Uq open.

Definition 13.6. Let (M, g) be a Riemannian mani-
fold. For any q 2 M , an open neighborhood of q of the
form Uq = expq(B(0, ✏)) where expq is a di↵eomorphism
from the open ball B(0, ✏) onto Uq, is called a normal
neighborhood .
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Remark: The proof of the previous proposition can be
sharpened to prove that for any p 2 M , there is some
� > 0 such that any two points q1, q2 2 exp(B(0, �)),
there is a unique geodesic from q1 to q2 that stays within
exp(B(0, �)); see Do Carmo [13] (Chapter 3, Proposition
4.2).

We say that exp(B(0, �)) is strongly convex . The least
upper bound of these � is called the convexity radius at
p.

Definition 13.7. Let (M, g) be a Riemannian manifold.
For every point, p 2 M , the injectivity radius of M at
p, denoted i(p), is the least upper bound of the numbers,
r > 0, such that expp is a di↵eomorphism on the open
ball B(0, r) ✓ TpM . The injectivity radius, i(M), of
M is the greatest lower bound of the numbers, i(p), where
p 2 M .
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Definition 13.8. Let (M, g) be a Riemannian manifold.
For every p 2 M , we get a chart (Up, '), where Up =
expp(B(0, i(p))) and ' = exp�1, called a normal chart .
If we pick any orthonormal basis (e1, . . . , en) of TpM ,
then the xi’s, with xi = pri�exp�1 and pri the projection
onto Rei, are called normal coordinates at p (here, n =
dim(M)).

Normal coordinates are defined up to an isometry of TpM .

The following proposition shows that Riemannian metrics
do not admit any local invariants of order one:

Proposition 13.6. Let (M, g) be a Riemannian man-
ifold. For every point, p 2 M , in normal coordinates
at p,

g

✓
@

@xi
,

@

@xj

◆

p

= �ij and �k
ij(p) = 0.
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The need to consider vector fields along a surface and the
partial derivatives of such vector fields arises in several
proofs to be presented shortly.

Definition 13.9. If ↵ : U ! M is a parametrized sur-
face, where M is a smooth manifold and U is some open
subset of R2, we say that a vector field V 2 X(M) is
a vector field along ↵ i↵ V (x, y) 2 T↵(x,y)M , for all
(x, y) 2 U .

For any smooth vector field V along ↵, we also define the
covariant derivatives DV/@x and DV/@y as follows.

For each fixed y0, if we restrict V to the curve

x 7! ↵(x, y0)

we obtain a vector field Vy0
along this curve, and we set

DV

@x
(x, y0) =

DVy0

dx
.

Then we let y0 vary so that (x, y0) 2 U , and this yields
DV/@x. We define DV/@y is a similar manner, using a
fixed x0.
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The following technical result will be used several times.

Proposition 13.7. For any surface ↵ : U ! M , for
any torsion-free connection on M , we have

D

@y

@↵

@x
=

D

@x

@↵

@y
.

For the next proposition, known as Gauss Lemma, we
need to define polar coordinates on TpM .

If n = dim(M), observe that the map,
(0, 1) ⇥ Sn�1 �! TpM � {0}, given by

(r, v) 7! rv, r > 0, v 2 Sn�1

is a di↵eomorphism, where Sn�1 is the sphere of radius
r = 1 in TpM .

Then, the map, (0, i(p)) ⇥ Sn�1 �! Up � {p} given by

(r, v) 7! expp(rv), 0 < r < i(p), v 2 Sn�1

is also a di↵eomorphism.
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Proposition 13.8. (Gauss Lemma) Let (M, g) be a
Riemannian manifold. For every point, p 2 M , the
images, expp(S(0, r)), of the spheres, S(0, r) ✓ TpM ,
centered at 0 by the exponential map, expp, are or-
thogonal to the radial geodesics r 7! expp(rv) through
p for all r < i(p), with v 2 Sn�1. This means that for
any di↵erentiable curve t 7! v(t) on the unit sphere
Sn�1, the corresponding curve on M

t 7! expp(rv(t)) with r fixed,

is orthogonal to the radial geodesic

r 7! expp(rv(t)) with t fixed (0 < r < i(p)).

See Figure 13.3. Furthermore, in polar coordinates,
the pull-back metric, exp⇤ g, induced on TpM is of the
form

exp⇤g = dr2 + gr,

where gr is a metric on the unit sphere, Sn�1, with the
property that gr/r2 converges to the standard metric
on Sn�1 (induced by Rn) when r goes to zero (here,
n = dim(M)).
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O
v

p

v

T  Mp

M

exp (v)p

γv

Figure 13.3: An illustration of the Gauss lemma for a two-dimensional manifold.
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The next three results use the fact that the connection is
compatible with the metric and torsion-free.

Consider any piecewise smooth curve

! : [a, b] ! Up � {p}.

We can write each point !(t) uniquely as

!(t) = expp(r(t)v(t)),

with 0 < r(t) < i(p), v(t) 2 TpM and kv(t)k = 1.

Proposition 13.9. Let (M, g) be a Riemannian man-
ifold. We have

Z b

a
k!0(t)k dt � |r(b) � r(a)|,

where equality holds only if the function r is monotone
and the function v is constant. Thus, the shortest path
joining two concentric spherical shells, expp(S(0, r(a)))
and expp(S(0, r(b))), is a radial geodesic.
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We now get the following important result from Proposi-
tion 13.8 and Proposition 13.9:

Theorem 13.10. Let (M, g) be a Riemannian man-
ifold. Let W and ✏ be as in Proposition 13.5 and
let � : [0, 1] ! M be the geodesic of length < ✏ join-
ing two points q1, q2 of W . For any other piecewise
smooth path, !, joining q1 and q2, we have

Z
1

0

k�0(t)k dt 
Z

1

0

k!0(t)k dt

where equality holds only if the images !([0, 1]) and
�([0, 1]) coincide. Thus, � is the shortest path from q1

to q2.

Here is an important consequence of Theorem 13.10.
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Corollary 13.11. Let (M, g) be a Riemannian man-
ifold. If ! : [0, b] ! M is any curve parametrized by
arc-length and ! has length less than or equal to the
length of any other curve from !(0) to !(b), then ! is
a geodesic.

Corollary 13.11 together with the fact that isometries pre-
serve geodesics can be used to determine the geodesics in
various spaces, for example in the Poincaré half-plane.

Definition 13.10. Let (M, g) be a Riemannian man-
ifold. A geodesic, � : [a, b] ! M , is minimal i↵ its
length is less than or equal to the length of any other
piecewise smooth curve joining its endpoints.

Theorem 13.10 asserts that any su�ciently small segment
of a geodesic is minimal.

On the other hand, a long geodesic may not be minimal.
For example, a great circle arc on the unit sphere is a
geodesic. If such an arc has length greater than ⇡, then
it is not minimal. This is illustrated by the magenta
equatorial geodesic connecting points a and b of Figure
13.4 (i.).
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(i.)

a
b

a

b

(ii.)

Figure 13.4: Examples of geodesics, i.e. arcs of great circles, on S2
.

Minimal geodesics are generally not unique. For example,
any two antipodal points on a sphere are joined by an
infinite number of minimal geodesics. Figure 13.4 (ii.)
illustrates five geodesics connecting the antipodal points
a and b.
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A broken geodesic is a piecewise smooth curve as in Def-
inition 13.1, where each curve segment is a geodesic.

Proposition 13.12.A Riemannian manifold, (M, g),
is connected i↵ any two points of M can be joined by
a broken geodesic.

In general, if M is connected, then it is not true that any
two points are joined by a geodesic. However, this will be
the case if M is geodesically complete, as we will see in
the next section.

Next, we will see that a Riemannian metric induces a
distance on the manifold whose induced topology agrees
with the original metric.
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13.3 Complete Riemannian Manifolds,
the Hopf-Rinow Theorem and the Cut Locus

Every connected Riemannian manifold, (M, g), is a met-
ric space in a natural way.

Furthermore, M is a complete metric space i↵M is geodesi-
cally complete.

In this section, we explore briefly some properties of com-
plete Riemannian manifolds equipped with the Levi-Civita
connection.

Proposition 13.13. Let (M, g) be a connected Rie-
mannian manifold. For any two points, p, q 2 M , let
d(p, q) be the greatest lower bound of the lengths of all
piecewise smooth curves joining p to q. Then, d is
a metric on M and the topology of the metric space,
(M, d), coincides with the original topology of M .
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The distance, d, is often called the Riemannian distance
on M . For any p 2 M and any ✏ > 0, the metric ball of
center p and radius ✏ is the subset, B✏(p) ✓ M , given
by

B✏(p) = {q 2 M | d(p, q) < ✏}.

The next proposition follows easily from Proposition 13.5:

Proposition 13.14. Let (M, g) be a connected Rie-
mannian manifold. For any compact subset, K ✓ M ,
there is a number � > 0 so that any two points,
p, q 2 K, with distance d(p, q) < � are joined by a
unique geodesic of length less than �. Furthermore,
this geodesic is minimal and depends smoothly on its
endpoints.

Recall from Definition 13.5 that (M, g) is geodesically
complete i↵ the exponential map, v 7! expp(v), is defined
for all p 2 M and for all v 2 TpM .
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We now prove the following important theorem due to
Hopf and Rinow (1931):

Theorem 13.15. (Hopf-Rinow) Let (M, g) be a con-
nected Riemannian manifold. If there is a point,
p 2 M , such that expp is defined on the entire tangent
space, TpM , then any point, q 2 M , can be joined to
p by a minimal geodesic. As a consequence, if M is
geodesically complete, then any two points of M can
be joined by a minimal geodesic.

Proof. The most beautiful proof is Milnor’s proof in [33],
Chapter 10, Theorem 10.9.

Theorem 13.15 implies the following result (often known
as the Hopf-Rinow Theorem):
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Theorem 13.16. Let (M, g) be a connected, Rieman-
nian manifold. The following statements are equiva-
lent:

(1) The manifold (M, g) is geodesically complete, that
is, for every p 2 M , every geodesic through p can
be extended to a geodesic defined on all of R.

(2) For every point, p 2 M , the map expp is defined
on the entire tangent space, TpM .

(3) There is a point, p 2 M , such that expp is defined
on the entire tangent space, TpM .

(4) Any closed and bounded subset of the metric space,
(M, d), is compact.

(5) The metric space, (M, d), is complete (that is, ev-
ery Cauchy sequence converges).

In view of Theorem 13.16, a connected Riemannian man-
ifold, (M, g), is geodesically complete i↵ the metric space,
(M, d), is complete.
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We will refer simply to M as a complete Riemannian
manifold (it is understood that M is connected).

Also, by (4), every compact, Riemannian manifold is com-
plete.

If we remove any point, p, from a Riemannian manifold,
M , then M � {p} is not complete since every geodesic
that formerly went through p yields a geodesic that can’t
be extended.

Definition 13.11. Let (M, g) be a complete Rieman-
nian manifold. Given any point p 2 M , let Up ✓ TpM
be the subset consisting of all v 2 TpM such that the
geodesic

t 7! expp(tv)

is a minimal geodesic up to t = 1 + ✏, for some ✏ > 0.
The left-over part M �expp(Up) (if nonempty) is actually
equal to expp(@Up), and it is an important subset of M
called the cut locus of p.
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Remark: The subset Up is open and star-shaped and it
turns out that expp is a di↵eomorphism from Up onto its
image, expp(Up), in M .

Proposition 13.17. Let (M, g) be a complete Rie-
mannian manifold. For any geodesic,
� : [0, a] ! M , from p = �(0) to q = �(a), the follow-
ing properties hold:

(i) If there is no geodesic shorter than � between p
and q, then � is minimal on [0, a].

(ii) If there is another geodesic of the same length as
� between p and q, then � is no longer minimal on
any larger interval, [0, a + ✏].

(iii) If � is minimal on any interval, I, then � is also
minimal on any subinterval of I.
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Again, assume (M, g) is a complete Riemannian manifold
and let p 2 M be any point. For every v 2 TpM , let

Iv = {s 2 R [ {1} | the geodesic t 7! expp(tv)

is minimal on [0, s]}.

It is easy to see that Iv is a closed interval, so Iv = [0, ⇢(v)]
(with ⇢(v) possibly infinite).

It can be shown that if w = �v, then ⇢(v) = �⇢(w), so
we can restrict our attention to unit vectors, v.

It can also be shown that the map, ⇢ : Sn�1 ! R, is
continuous, where Sn�1 is the unit sphere of center 0
in TpM , and that ⇢(v) is bounded below by a strictly
positive number.

By using ⇢(v), we are able to restate Definition 13.11 as
follows:
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Definition 13.12. Let (M, g) be a complete Rieman-
nian manifold and let p 2 M be any point. Define Up

by

Up =

⇢
v 2 TpM

���� ⇢
✓

v

kvk

◆
> kvk

�

= {v 2 TpM | ⇢(v) > 1}

and the cut locus of p by

Cut(p) = expp(@Up) = {expp(⇢(v)v) | v 2 Sn�1}.

The set Up is open and star-shaped.

The boundary, @Up, of Up in TpM is sometimes called the

tangential cut locus of p and is denoted gCut(p).

Remark: The cut locus was first introduced for con-
vex surfaces by Poincaré (1905) under the name ligne de
partage .
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According to Do Carmo [13] (Chapter 13, Section 2), for
Riemannian manifolds, the cut locus was introduced by
J.H.C. Whitehead (1935).

But it was Klingenberg (1959) who revived the interest
in the cut locus and showed its usefuleness.

Proposition 13.18. Let (M, g) be a complete Rie-
mannian manifold. For any point, p 2 M , the sets
expp(Up) and Cut(p) are disjoint and

M = expp(Up) [ Cut(p).

We can now restate Definition 13.7 as follows:

Definition 13.13. Let (M, g) be a complete Rieman-
nian manifold and let p 2 M be any point. The injectiv-
ity radius i(p) of M at p is equal to the distance from
p to the cut locus of p:

i(p) = d(p,Cut(p)) = inf
q2Cut(p)

d(p, q).

Consequently, the injectivity radius i(M) of M is given
by

i(M) = inf
p2M

d(p,Cut(p)).
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If M is compact, it can be shown that i(M) > 0. It can
also be shown using Jacobi fields that expp is a di↵eomor-
phism from Up onto its image, expp(Up).

Thus, expp(Up) is di↵eomorphic to an open ball in Rn

(where n = dim(M)) and the cut locus is closed.

Hence, the manifold, M , is obtained by gluing together
an open n-ball onto the cut locus of a point. In some
sense the topology of M is “contained” in its cut locus.

Given any sphere, Sn�1, the cut locus of any point, p, is
its antipodal point, {�p}.

In general, the cut locus is very hard to compute. In fact,
even for an ellipsoid, the determination of the cut locus of
an arbitrary point was a matter of conjecture for a long
time. This conjecture was settled around 2011.
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13.4 Convexity, Convexity Radius

Proposition 13.5 shows that if (M, g) is a Riemannian
manifold, then for every point p 2 M , there is an open
subset W ✓ M with p 2 W and a number ✏ > 0, so
that any two points q1, q2 of W are joined by a unique
geodesic of length < ✏.

However, there is no guarantee that this unique geodesic
between q1 and q2 stays inside W . Intuitively this says
that W may not be convex.

The notion of convexity can be generalized to Riemannian
manifolds, but there are some subtleties.
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Definition 13.14. Let C ✓ M be a nonempty subset
of some Riemannian manifold M .

(1) The set C is called strongly convex i↵ for any two
points p, q 2 C, there exists a unique minimal geodesic
� from p to q in M and � is contained in C.

(2) If for every point p 2 C, there is some ✏(p) > 0 so
that C \B✏(p)(p) is strongly convex, then we say that
C is locally convex (where B✏(p)(p) is the metric ball
of center p and radius ✏(p)).

(3) The set C is called totally convex i↵ for any two
points p, q 2 C, all geodesics from p to q in M are
contained in C.

It is clear that if C is strongly convex or totally convex,
then C is locally convex. If M is complete and any two
points are joined by a unique geodesic, then the three
conditions of Definition 13.14 are equivalent.
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Definition 13.15. For any p 2 M , the convexity ra-
dius at p, denoted r(p), is the least upper bound of the
numbers r > 0 such that for any metric ball B✏(q), if
B✏(q) ✓ Br(p), then B✏(q) is strongly convex and every
geodesic contained in Br(p) is a minimal geodesic joining
its endpoints. The convexity radius of M , r(M), is the
greatest lower bound of the set {r(p) | p 2 M}.

Note that it is possible that r(M) = 0 if M is not com-
pact.

The following proposition proved in Sakai [43] (Chapter
IV, Section 5, Theorem 5.3) shows that a metric ball with
su�ciently small radius is strongly convex.

Proposition 13.19. If M is a Riemannian mani-
fold, then r(p) > 0 for every p 2 M , and the map
p 7! r(p) 2 R+ [ {1} is continuous. Furthermore,
if r(p) = 1 for some p 2 M , then r(q) = 1 for all
q 2 M .
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That r(p) > 0 is also proved in Do Carmo [13] (Chapter
3, Section 4, Proposition 4.2).

More can be said about the structure of connected locally
convex subsets of M ; see Sakai [43] (Chapter IV, Section
5).

Remark: The following facts are stated in Berger [5]
(Chapter 6):

(1) If M is compact, then the convexity radius r(M) is
strictly positive.

(2) r(M)  1

2
i(M), where i(M) is the injectivity radius

of M .

Berger also points out that if M is compact, then the
existence of a finite cover by convex balls can used to
triangulate M .
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13.5 Hessian of a Function on a Riemannian Manifold

Besides the notion of the gradient of a function, there is
also the notion of Hessian.

Now that we have geodesics at our disposal, we also have a
method to compute the Hessian, a task which is generally
quite complex.

Given a smooth function f : M ! R on a Riemannian
manifold M , recall that the gradient grad f of f is the
vector field uniquely defined by the condition

h(grad f )p, uip = dfp(u) = u(f ),

for all u 2 TpM and all p 2 M .
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Definition 13.16. The Hessian Hess(f ) (or r2(f )) of
a function f 2 C1(M) is defined by

Hess(f )(X, Y ) = X(Y (f )) � (rXY )(f )

= X(df (Y )) � df (rXY ),

for all vector fields X, Y 2 X(M).

Since r is torsion-free, we get

Hess(f )(X, Y ) = X(Y (f )) � (rXY )(f )

= Y (X(f )) � (rY X)(f )

= Hess(f )(Y, X),

which means that the Hessian is symmetric.
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Proposition 13.20.The Hessian is given by the equa-
tion

Hess(f )(X, Y ) = hrX(grad f ), Y i, X, Y 2 X(M).

Given any function f 2 C1(M), for any p 2 M and for
any u 2 TpM , the value of the Hessian Hessp(f )(u, u)
can be computed using geodesics.

Indeed, for any geodesic � : [0, ✏] ! M such that
�(0) = p and �0(0) = u, we have

Hessp(u, u) =
d2

dt2
f (�(t))

����
t=0

.

Since the Hessian is a symmetric bilinear form, we obtain
Hessp(u, v) by polarization; that is,

Hessp(u, v) =
1

2
(Hessp(u + v, u + v)

� Hessp(u, u) � Hessp(v, v)).
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Let us find the Hessian of the function f : SO(3) ! R
defined in the second example of Section 7.5, with

f (R) = (u>Rv)2.

We found that

dfR(X) = 2u>Xvu>Rv, X 2 Rso(3)

and that the gradient is given by

(grad(f ))R = u>RvR(R>uv> � vu>R).

To compute the Hessian, we use the curve �(t) = RetB,
where B 2 so(3).

Indeed, it can be shown (see Section 18.3, Proposition
18.20) that the metric induced by the inner product

hB1, B2i = tr(B>
1
B2) = �tr(B1B2)

on so(n) is bi-invariant, and so the curve � is a geodesic.
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First, we compute

(f (�(t)))0(t) = ((u>RetBv)2)0(t)

= 2u>RetBvu>RBetBv,

and then

HessR(RB, RB) = (f (�(t)))00(0)

= (2u>RetBvu>RBetBv)0(0)

= 2u>RBvu>RBv

+ 2u>Rvu>RBR>RBv.

By polarization, we obtain

HessR(X, Y ) = 2u>Xvu>Y v

+ u>Rvu>XR>Y v

+ u>Rvu>Y R>Xv,

with X, Y 2 Rso(3).
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13.6 The Calculus of Variations Applied to Geodesics;
The First Variation Formula

Given a Riemannian manifold, (M, g), the path space,
⌦(p, q), was introduced in Definition 13.1.

It is an “infinite dimensional” manifold. By analogy with
finite dimensional manifolds we define a kind of tangent
space to ⌦(p, q) at a point !.

In this section, it is convenient to assume that paths in
⌦(p, q) are parametrized over the interval [0, 1].

Definition 13.17. For every “point” ! 2 ⌦(p, q), we
define the “tangent space”, T!⌦(p, q), of ⌦(p, q) at !,
to be the space of all piecewise smooth vector fields, W ,
along !, for which W (0) = W (1) = 0 (we may assume
that our paths, !, are parametrized over [0, 1]). See Fig-
ure 13.5.
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p

q

M

ω

Figure 13.5: The point ! in ⌦(p, q) and its associated tangent vector, the blue vector field.

Each blue vector is contained in a tangent space for !(t).

Now, if F : ⌦(p, q) ! R is a real-valued function on
⌦(p, q), it is natural to ask what the induced “tangent
map”,

dF! : T!⌦(p, q) ! R,

should mean (here, we are identifying TF (!)R with R).
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Observe that ⌦(p, q) is not even a topological space so
the answer is far from obvious!

In the case where f : M ! R is a function on a mani-
fold, there are various equivalent ways to define df , one
of which involves curves.

For every v 2 TpM , if ↵ : (�✏, ✏) ! M is a curve such
that ↵(0) = p and ↵0(0) = v, then we know that

dfp(v) =
d(f (↵(t)))

dt

����
t=0

.
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We may think of ↵ as a small variation of p. Recall that
p is a critical point of f i↵ dfp(v) = 0, for all v 2 TpM .

Rather than attempting to define dF! (which requires
some conditions on F ), we will mimic what we did with
functions on manifolds and define what is a critical path
of a function, F : ⌦(p, q) ! R, using the notion of vari-
ation .

Now, geodesics from p to q are special paths in ⌦(p, q)
and they turn out to be the critical paths of the energy
function ,

Eb
a(!) =

Z b

a
k!0(t)k2 dt,

where ! 2 ⌦(p, q), and 0  a < b  1.
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Definition 13.18.Given any path, ! 2 ⌦(p, q), a vari-
ation of ! (keeping endpoints fixed) is a function,
e↵ : (�✏, ✏) ! ⌦(p, q), for some ✏ > 0, such that

(1) e↵(0) = !

(2) There is a subdivision, 0 = t0 < t1 < · · · < tk�1 <
tk = 1 of [0, 1] so that the map

↵ : (�✏, ✏) ⇥ [0, 1] ! M

defined by ↵(u, t) = e↵(u)(t) is smooth on each strip
(�✏, ✏) ⇥ [ti, ti+1], for i = 0, . . . , k � 1.

See Figure 13.6. If U is an open subset of Rn containing
the origin and if we replace (�✏, ✏) by U in the above, then
e↵ : U ! ⌦(p, q) is called an n-parameter variation of
!.

The function ↵ is also called a variation of !.

Since each e↵(u) belongs to ⌦(p, q), note that

↵(u, 0) = p, ↵(u, 1) = q, for all u 2 (�✏, ✏).
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p qω α (0)
~

α~

=

(-1)

α~ (-2)

α~ (1)

α~ (2) α t (u)

Figure 13.6: A variation of ! in R2
with transversal curve ↵t(u). The blue vector field is the

variational vector field Wt.

The function, e↵, may be considered as a “smooth path”
in ⌦(p, q), since for every u 2 (�✏, ✏), the map e↵(u) is
a curve in ⌦(p, q) called a curve in the variation (or
longitudinal curve of the variation).
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Definition 13.19. Let ! 2 ⌦(p, q), and let e↵ : (�✏, ✏) !
⌦(p, q) be a variation of ! as defined in Definition 13.18.
The “tangent vector” de↵

du(0) 2 T!⌦(p, q) is defined to be
the vector field W along ! given by

Wt =
@↵

@u
(u, t)

����
u=0

.

By definition,

de↵
du

(0)t = Wt, t 2 [0, 1].

Clearly, W 2 T!⌦(p, q). In particular,
W (0) = W (1) = 0.

The vector field, W , is also called the variation vector
field associated with the variation ↵. See Figure 13.6.
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Besides the curves in the variation, e↵(u) (with u 2 (�✏, ✏)),
for every t 2 [0, 1], we have a curve, ↵t : (�✏, ✏) ! M ,
called a transversal curve of the variation , defined by

↵t(u) = e↵(u)(t),

and Wt is equal to the velocity vector, ↵0
t(0), at the point

!(t) = ↵t(0).

For ✏ su�ciently small, the vector field, Wt, is an infinites-
imal model of the variation e↵.

Proposition 13.21. For any W 2 T!⌦(p, q), there
is a variation e↵ : (�✏, ✏) ! ⌦(p, q) which satisfies the
conditions

e↵(0) = !,
de↵
du

(0) = W.

As we said earlier, given a function, F : ⌦(p, q) ! R,
we do not attempt to define the di↵erential, dF!, but
instead, the notion of critical path.
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Definition 13.20. Given a function, F : ⌦(p, q) ! R,
we say that a path, ! 2 ⌦(p, q), is a critical path for F
i↵

dF (e↵(u))
du

����
u=0

= 0,

for every variation, e↵, of ! (which implies that the deriva-

tive dF (e↵(u))

du

���
u=0

is defined for every variation, e↵, of !).

For example, if F takes on its minimum on a path !0

and if the derivatives dF (e↵(u))

du are all defined, then !0 is a
critical path of F .

We will apply the above to two functions defined on
⌦(p, q):
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(1) The energy function (also called action integral):

Eb
a(!) =

Z b

a
k!0(t)k2 dt.

(We write E = E1

0
.)

(2) The arc-length function ,

Lb
a(!) =

Z b

a
k!0(t)k dt.

The quantities Eb
a(!) and Lb

a(!) can be compared as fol-
lows: if we apply the Cauchy-Schwarz’s inequality,
 Z b

a
f (t)g(t)dt

!2


 Z b

a
f 2(t)dt

! Z b

a
g2(t)dt

!

with f (t) ⌘ 1 and g(t) = k!0(t)k, we get

(Lb
a(!))

2  (b � a)Eb
a,

where equality holds i↵ g is constant; that is, i↵ the pa-
rameter t is proportional to arc-length.
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Now, suppose that there exists a minimal geodesic, �,
from p to q. Then,

E(�) = L(�)2  L(!)2  E(!),

where the equality L(�)2 = L(!)2 holds only if ! is also
a minimal geodesic, possibly reparametrized.

On the other hand, the equality L(!) = E(!)2 can hold
only if the parameter is proportional to arc-length along
!.

This proves that E(�) < E(!) unless ! is also a minimal
geodesic. We just proved:

Proposition 13.22. Let (M, g) be a complete Rie-
mannian manifold. For any two points, p, q 2 M , if
d(p, q) = �, then the energy function, E : ⌦(p, q) ! R,
takes on its minimum, �2, precisely on the set of min-
imal geodesics from p to q.
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Next, we are going to show that the critical paths of the
energy function are exactly the geodesics. For this, we
need the first variation formula .

Let e↵ : (�✏, ✏) ! ⌦(p, q) be a variation of ! and let

Wt =
@↵

@u
(u, t)

����
u=0

be its associated variation vector field.

Furthermore, let

Vt =
d!

dt
= !0(t),

the velocity vector of ! and

�tV = Vt+ � Vt�,

the discontinuity in the velocity vector at t, which is
nonzero only for t = ti, with 0 < ti < 1 (see the defini-
tion of �0((ti)+) and �0((ti)�) just after Definition 13.1).
See Figure 13.7.
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p = t0

q = t3

t t
1 2

α

α (-1)~

(1)~

∆
∆ t t

1
2
V

V
ω

Figure 13.7: The point ! in blue with Vt in red, Wt in green, and �tV in orange.

Theorem 13.23. (First Variation Formula) For any
path, ! 2 ⌦(p, q), we have

1

2

dE(e↵(u))
du

����
u=0

= �
X

i

hWt,�tV i�
Z

1

0

⌧
Wt,

D

dt
Vt

�
dt,

where e↵ : (�✏, ✏) ! ⌦(p, q) is any variation of !.
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Intuitively, the first term on the right-hand side shows
that varying the path ! in the direction of decreasing
“kink” tends to decrease E.

The second term shows that varying the curve in the
direction of its acceleration vector, D

dt !
0(t), also tends to

reduce E.

A geodesic, �, (parametrized over [0, 1]) is smooth on the
entire interval [0, 1] and its acceleration vector, D

dt �
0(t), is

identically zero along �. This gives us half of
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Theorem 13.24. Let (M, g) be a Riemanian mani-
fold. For any two points, p, q 2 M , a path, ! 2 ⌦(p, q)
(parametrized over [0, 1]), is critical for the energy
function, E, i↵ ! is a geodesic.

Remark: If ! 2 ⌦(p, q) is parametrized by arc-length,
it is easy to prove that

dL(e↵(u))
du

����
u=0

=
1

2

dE(e↵(u))
du

����
u=0

.

As a consequence, a path, ! 2 ⌦(p, q) is critical for the
arc-length function, L, i↵ it can be reparametrized so that
it is a geodesic

In order to go deeper into the study of geodesics we need
Jacobi fields and the “second variation formula”, both
involving a curvature term.

Therefore, we now proceed with a more thorough study
of curvature on Riemannian manifolds.
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