
Chapter 12

Connections on Manifolds

12.1 Connections on Manifolds

Given a manifold, M , in general, for any two points,
p, q 2 M , there is no “natural” isomorphism between
the tangent spaces TpM and TqM .

Given a curve, c : [0, 1] ! M , on M as c(t) moves on
M , how does the tangent space, Tc(t)M change as c(t)
moves?

If M = Rn, then the spaces, Tc(t)Rn, are canonically
isomorphic to Rn and any vector, v 2 Tc(0)Rn ⇠= Rn, is
simply moved along c by parallel transport , that is, at
c(t), the tangent vector, v, also belongs to Tc(t)Rn.
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However, if M is curved, for example, a sphere, then it is
not obvious how to “parallel transport” a tangent vector
at c(0) along a curve c.

A way to achieve this is to define the notion of parallel
vector field along a curve and this, in turn, can be defined
in terms of the notion of covariant derivative of a vector
field.

Assume for simplicity that M is a surface in R3. Given
any two vector fields, X and Y defined on some open sub-
set, U ✓ R3, for every p 2 U , the directional derivative,
DXY (p), of Y with respect to X is defined by

DXY (p) = lim
t!0

Y (p + tX(p)) � Y (p)

t
.

See Figure 12.1.
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Figure 12.1: The directional derivative of the blue vector field Y (p) in the direction of X.

Observe that the above is the directional derivative of the
function p 7! Y (p) as given in Definition 2.1, except that
the direction vector X(p) varies with p.
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If f : U ! R is a di↵erentiable function on U , for every
p 2 U , the directional derivative, X [f ](p) (or X(f )(p)),
of f with respect to X is defined by

X [f ](p) = lim
t!0

f (p + tX(p)) � f (p)

t
.

We know that X [f ](p) = dfp(X(p)).

It is easily shown that DXY (p) is R-bilinear in X and Y ,
is C1(U)-linear in X and satisfies the Leibniz derivation
rule with respect to Y , that is:

Proposition 12.1. The directional derivative of vec-
tor fields satisfies the following properties:

DX1+X2
Y (p) = DX1

Y (p) + DX2
Y (p)

DfXY (p) = fDXY (p)

DX(Y1 + Y2)(p) = DXY1(p) + DXY2(p)

DX(fY )(p) = X [f ](p)Y (p) + f (p)DXY (p),

for all X, X1, X2, Y, Y1, Y2 2 X(U) and all f 2 C1(U).
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Now, if p 2 U where U ✓ M is an open subset of M , for
any vector field, Y , defined on U (Y (p) 2 TpM , for all
p 2 U), for every X 2 TpM , the directional derivative,
DXY (p), makes sense and it has an orthogonal decom-
position,

DXY (p) = rXY (p) + (Dn)XY (p),

where its horizontal (or tangential) component is
rXY (p) 2 TpM and its normal component is (Dn)XY (p).
See Figure 12.2.
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Figure 12.2: The orthogonal decomposition of DXY (p) for the peach surface M .
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The component, rXY (p), is the covariant derivative of
Y with respect to X 2 TpM and it allows us to define
the covariant derivative of a vector field, Y 2 X(U), with
respect to a vector field, X 2 X(M), on M .

We easily check that rXY satisfies the four equations of
Proposition 12.1.

In particular, Y , may be a vector field associated with a
curve, c : [0, 1] ! M .

A vector field along a curve, c, is a vector field, Y , such
that Y (c(t)) 2 Tc(t)M , for all t 2 [0, 1]. We also write
Y (t) for Y (c(t)).

Then, we say that Y is parallel along c i↵ rc0(t)Y = 0
along c.
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The notion of parallel transport on a surface can be de-
fined using parallel vector fields along curves. Let p, q be
any two points on the surface M and assume there is a
curve, c : [0, 1] ! M , joining p = c(0) to q = c(1).

Then, using the uniqueness and existence theorem for
ordinary di↵erential equations, it can be shown that for
any initial tangent vector, Y0 2 TpM , there is a unique
parallel vector field, Y , along c, with Y (0) = Y0.

If we set Y1 = Y (1), we obtain a linear map, Y0 7! Y1,
from TpM to TqM which is also an isometry.

As a summary, given a surface, M , if we can define a no-
tion of covariant derivative, r : X(M)⇥X(M) ! X(M),
satisfying the properties of Proposition 12.1, then we can
define the notion of parallel vector field along a curve and
the notion of parallel transport, which yields a natural
way of relating two tangent spaces, TpM and TqM , using
curves joining p and q.
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This can be generalized to manifolds using the notion of
connection. We will see that the notion of connection
induces the notion of curvature. Moreover, if M has a
Riemannian metric, we will see that this metric induces
a unique connection with two extra properties (the Levi-
Civita connection).

Definition 12.1. Let M be a smooth manifold.
A connection on M is a R-bilinear map,

r : X(M) ⇥ X(M) ! X(M),

where we write rXY for r(X, Y ), such that the follow-
ing two conditions hold:

rfXY = frXY

rX(fY ) = X [f ]Y + frXY,

for all X, Y 2 X(M) and all f 2 C1(M). The vector
field, rXY , is called the covariant derivative of Y with
respect to X .

A connection on M is also known as an a�ne connection
on M .
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A basic property of r is that it is a local operator .

Proposition 12.2. Let M be a smooth manifold and
let r be a connection on M . For every open subset,
U ✓ M , for every vector field, Y 2 X(M), if
Y ⌘ 0 on U , then rXY ⌘ 0 on U for all X 2 X(M),
that is, r is a local operator.

Proposition 12.2 implies that a connection, r, on M ,
restricts to a connection, r � U , on every open subset,
U ✓ M .

It can also be shown that (rXY )(p) only depends on
X(p), that is, for any two vector fields, X, Y 2 X(M), if
X(p) = Y (p) for some p 2 M , then

(rXZ)(p) = (rY Z)(p) for every Z 2 X(M).

Consequently, for any p 2 M , the covariant derivative,
(ruY )(p), is well defined for any tangent vector,
u 2 TpM , and any vector field, Y , defined on some open
subset, U ✓ M , with p 2 U .
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Observe that on U , the n-tuple of vector fields,⇣
@

@x1
, . . . , @

@xn

⌘
, is a local frame.

We can write

r @
@xi

✓
@

@xj

◆
=

nX

k=1

�k
ij

@

@xk
,

for some unique smooth functions, �k
ij, defined on U ,

called the Christo↵el symbols .

We say that a connection, r, is flat on U i↵

rX

✓
@

@xi

◆
= 0, for all X 2 X(U), 1  i  n.
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Proposition 12.3. Every smooth manifold, M , pos-
sesses a connection.

Proof. We can find a family of charts, (U↵, '↵), such that
{U↵}↵ is a locally finite open cover of M . If (f↵) is a
partition of unity subordinate to the cover {U↵}↵ and if
r↵ is the flat connection on U↵, then it is immediately
verified that

r =
X

↵

f↵r↵

is a connection on M .

Remark: A connection on TM can be viewed as a lin-
ear map,

r : X(M) �! HomC1(M)(X(M),X(M)),

such that, for any fixed Y 2 X(M), the map,
rY : X 7! rXY , is C1(M)-linear, which implies that
rY is a (1, 1) tensor.
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12.2 Parallel Transport

The notion of connection yields the notion of parallel
transport. First, we need to define the covariant deriva-
tive of a vector field along a curve.

Definition 12.2. Let M be a smooth manifold and let
� : [a, b] ! M be a smooth curve in M . A smooth vector
field along the curve � is a smooth map,
X : [a, b] ! TM , such that ⇡(X(t)) = �(t), for all
t 2 [a, b] (X(t) 2 T�(t)M). See Figure 12.3.

M

Figure 12.3: A smooth vector field along the orange curve �.
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Recall that the curve, � : [a, b] ! M , is smooth i↵ � is
the restriction to [a, b] of a smooth curve on some open
interval containing [a, b].

Since a vector X field along a curve � does not neces-
sarily extend to an open subset of M (for example, if
the image of � is dense in M), the covariant derivative
(r�0(t0) X)�(t0) may not be defined, so we need a propo-
sition showing that the covariant derivative of a vector
field along a curve makes sense.
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Proposition 12.4. Let M be a smooth manifold, let
r be a connection on M and � : [a, b] ! M be a
smooth curve in M . There is a unique R-linear map,
D/dt, defined on the vector space of smooth vector
fields, X, along �, which satisfies the following con-
ditions:

(1) For any smooth function, f : [a, b] ! R,

D(fX)

dt
=

df

dt
X + f

DX

dt

(2) If X is induced by a vector field, Z 2 X(M),
that is, X(t0) = Z(�(t0)) for all t0 2 [a, b], then
DX

dt
(t0) = (r�0(t0) Z)�(t0).
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Proof. Since �([a, b]) is compact, it can be covered by a
finite number of open subsets, U↵, such that (U↵, '↵) is a
chart. Thus, we may assume that � : [a, b] ! U for some
chart, (U, '). As ' � � : [a, b] ! Rn, we can write

' � �(t) = (u1(t), . . . , un(t)),

where each ui = pri � ' � � is smooth. Now, it is easy to
see that

�0(t0) =
nX

i=1

dui

dt

✓
@

@xi

◆

�(t0)

.

If (s1, . . . , sn) is a frame over U , we can write

X(t) =
nX

i=1

Xi(t)si(�(t)),

for some smooth functions, Xi.
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If D/d exists, then, conditions (1) and (2) imply that

DX

dt
=

nX

j=1

✓
dXj

dt
sj(�(t)) + Xj(t)r�0(t)(sj(�(t)))

◆

and since

�0(t) =
nX

i=1

dui

dt

✓
@

@xi

◆

�(t)

,

there exist some smooth functions, �k
ij, so that

r�0(t)(sj(�(t))) =
nX

i=1

dui

dt
r @

@xi

(sj(�(t)))

=
X

i,k

dui

dt
�k

ijsk(�(t)).

It follows that

DX

dt
=

nX

k=1

0

@dXk

dt
+
X

ij

�k
ij

dui

dt
Xj

1

A sk(�(t)),

which proves uniqueness.

Conversely, the above expression defines a linear operator,
D/dt, and it is easy to check that it satisfies (1) and
(2).
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The operator, D/dt is often called covariant derivative
along � and it is also denoted by r�0(t) or simply r�0.

Definition 12.3. Let M be a smooth manifold and let
r be a connection onM . For every curve, � : [a, b] ! M ,
in M , a vector field, X , along � is parallel (along �) i↵

DX

dt
(s) = 0 for all s 2 [a, b].

If M was embedded in Rd, for some d, then to say that
X is parallel along � would mean that the directional
derivative, (D�0X)(�(t)), is normal to T�(t)M . See Figure
12.4.
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DΥ ‘( X ) (Υ ( t ) )

X
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Υ ( t )

Figure 12.4: The real vector field X is parallel to the curve � since (D�0X)(�(t)) is perpen-

dicular to the tangent plane T�(t)M .

The following proposition can be shown using the exis-
tence and uniqueness of solutions of ODE’s (in our case,
linear ODE’s) and its proof is omitted:
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Proposition 12.5. Let M be a smooth manifold and
let r be a connection on M . For every C1 curve,
� : [a, b] ! M , in M , for every t 2 [a, b] and every
v 2 T�(t)M , there is a unique parallel vector field, X,
along � such that X(t) = v.

For the proof of Proposition 12.5 it is su�cient to consider
the portions of the curve � contained in some chart. In
such a chart, (U, '), as in the proof of Proposition 12.4,
using a local frame, (s1, . . . , sn), over U , we have

DX

dt
=

nX

k=1

0

@dXk

dt
+
X

ij

�k
ij

dui

dt
Xj

1

A sk(�(t)),

with ui = pri � ' � �. Consequently, X is parallel along
our portion of � i↵ the system of linear ODE’s in the
unknowns, Xk,

dXk

dt
+
X

ij

�k
ij

dui

dt
Xj = 0, k = 1, . . . , n,

is satisfied.
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Remark: Proposition 12.5 can be extended to piecewise
C1 curves.

Definition 12.4. Let M be a smooth manifold and let
r be a connection on M . For every curve,
� : [a, b] ! M , in M , for every t 2 [a, b], the paral-
lel transport from �(a) to �(t) along � is the linear
map from T�(a)M to T�(t)M , which associates to any
v 2 T�(a)M the vector, Xv(t) 2 T�(t)M , where Xv is
the unique parallel vector field along � with Xv(a) = v.
See Figure 12.5.
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Figure 12.5: The parallel transport of the red vector field around the spherical triangle ABC.

The following proposition is an immediate consequence
of properties of linear ODE’s:
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Proposition 12.6. Let M be a smooth manifold and
let r be a connection on M . For every C1 curve,
� : [a, b] ! M , in M , the parallel transport along �
defines for every t 2 [a, b] a linear isomorphism,
P� : T�(a)M ! T�(t)M , between the tangent spaces,
T�(a)M and T�(t)M .

In particular, if � is a closed curve, that is, if
�(a) = �(b) = p, we obtain a linear isomorphism, P�, of
the tangent space, TpM , called the holonomy of �.
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The holonomy group of r based at p, denoted Holp(r),
is the subgroup of GL(n,R) (where n is the dimension of
the manifold M) given by

Holp(r) = {P� 2 GL(n,R) |
� is a closed curve based at p}.

If M is connected, then Holp(r) depends on the base-
point p 2 M up to conjugation and so Holp(r) and
Holq(r) are isomorphic for all p, q 2 M . In this case, it
makes sense to talk about the holonomy group of r. By
abuse of language, we call Holp(r) the holonomy group
of M .
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12.3 Connections Compatible with a Metric;
Levi-Civita Connections

If a Riemannian manifold, M , has a metric, then it is nat-
ural to define when a connection, r, on M is compatible
with the metric.

Given any two vector fields, Y, Z 2 X(M), the smooth
function hY, Zi is defined by

hY, Zi(p) = hYp, Zpip,

for all p 2 M .

Definition 12.5.Given any metric, h�, �i, on a smooth
manifold, M , a connection, r, on M is compatible with
the metric, for short, a metric connection i↵

X(hY, Zi) = hrXY, Zi + hY, rXZi,

for all vector fields, X, Y, Z 2 X(M).
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Proposition 12.7. Let M be a Riemannian manifold
with a metric, h�, �i. Then, M , possesses metric
connections.

Proof. For every chart, (U↵, '↵), we use the Gram-Schmidt
procedure to obtain an orthonormal frame over U↵ and we
let r↵ be the flat connection over U↵. By construction,
r↵ is compatible with the metric. We finish the argu-
ment by using a partition of unity, leaving the details to
the reader.

We know from Proposition 12.7 that metric connections
on TM exist. However, there are many metric connec-
tions on TM and none of them seems more relevant than
the others.

It is remarkable that if we require a certain kind of sym-
metry on a metric connection, then it is uniquely deter-
mined.
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Such a connection is known as the Levi-Civita connec-
tion . The Levi-Civita connection can be characterized
in several equivalent ways, a rather simple way involving
the notion of torsion of a connection.

There are two error terms associated with a connection.
The first one is the curvature ,

R(X, Y ) = r[X,Y ] + rY rX � rXrY .

The second natural error term is the torsion , T (X, Y ),
of the connection, r, given by

T (X, Y ) = rXY � rY X � [X, Y ],

which measures the failure of the connection to behave
like the Lie bracket.
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Proposition 12.8. (Levi-Civita, Version 1) Let M be
any Riemannian manifold. There is a unique, metric,
torsion-free connection, r, on M , that is, a connec-
tion satisfying the conditions

X(hY, Zi) = hrXY, Zi + hY, rXZi
rXY � rY X = [X, Y ],

for all vector fields, X, Y, Z 2 X(M). This connec-
tion is called the Levi-Civita connection (or canoni-
cal connection) on M . Furthermore, this connection
is determined by the Koszul formula

2hrXY, Zi = X(hY, Zi) + Y (hX, Zi) � Z(hX, Y i)
� hY, [X, Z]i � hX, [Y, Z]i � hZ, [Y, X ]i.
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Proof. First, we prove uniqueness. Since our metric is
a non-degenerate bilinear form, it su�ces to prove the
Koszul formula. As our connection is compatible with
the metric, we have

X(hY, Zi) = hrXY, Zi + hY, rXZi
Y (hX, Zi) = hrY X, Zi + hX, rY Zi

�Z(hX, Y i) = �hrZX, Y i � hX, rZY i

and by adding up the above equations, we get

X(hY, Zi) + Y (hX, Zi) � Z(hX, Y i) =
hY, rXZ � rZXi
+ hX, rY Z � rZY i
+ hZ, rXY + rY Xi.

Then, using the fact that the torsion is zero, we get

X(hY, Zi) + Y (hX, Zi) � Z(hX, Y i) =
hY, [X, Z]i + hX, [Y, Z]i
+ hZ, [Y, X ]i + 2hZ, rXY i

which yields the Koszul formula.

We will not prove existence here. The reader should con-
sult the standard texts for a proof.
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Remark: In a chart, (U, '), if we set

@kgij =
@

@xk
(gij)

then it can be shown that the Christo↵el symbols are
given by

�k
ij =

1

2

nX

l=1

gkl(@igjl + @jgil � @lgij),

where (gkl) is the inverse of the matrix (gkl).

It can be shown that a connection is torsion-free i↵

�k
ij = �k

ji, for all i, j, k.

We conclude this section with various useful facts about
torsion-free or metric connections.

First, there is a nice characterization for the Levi-Civita
connection induced by a Riemannian manifold over a sub-
manifold.
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Proposition 12.9. Let M be any Riemannian mani-
fold and let N be any submanifold of M equipped with
the induced metric. If rM and rN are the Levi-Civita
connections on M and N , respectively, induced by the
metric on M , then for any two vector fields, X and
Y in X(M) with X(p), Y (p) 2 TpN , for all p 2 N , we
have

rN
XY = (rM

X Y )k,

where (rM
X Y )k(p) is the orthogonal projection of

rM
X Y (p) onto TpN , for every p 2 N .

In particular, if � is a curve on a surface, M ✓ R3, then
a vector field, X(t), along � is parallel i↵ X 0(t) is normal
to the tangent plane, T�(t)M .

If r is a metric connection, then we can say more about
the parallel transport along a curve. Recall from Section
12.2, Definition 12.3, that a vector field, X , along a curve,
�, is parallel i↵

DX

dt
= 0.
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Proposition 12.10. Given any Riemannian mani-
fold, M , and any metric connection, r, on M , for
every curve, � : [a, b] ! M , on M , if X and Y are
two vector fields along �, then

d

dt
hX(t), Y (t)i =

⌧
DX

dt
, Y

�
+

⌧
X,

DY

dt

�
.

Using Proposition 12.10 we get

Proposition 12.11. Given any Riemannian mani-
fold, M , and any metric connection, r, on M , for
every curve, � : [a, b] ! M , on M , if X and Y are
two vector fields along � that are parallel, then

hX, Y i = C,

for some constant, C. In particular, kX(t)k is con-
stant. Furthermore, the linear isomorphism,
P� : T�(a) ! T�(b), is an isometry.

In particular, Proposition 12.11 shows that the holonomy
group, Holp(r), based at p, is a subgroup of O(n).


