
Chapter 4

The Lorentz Groups ~

4.1 The Lorentz Groups O(n, 1), SO(n, 1) and SO
0

(n, 1)

The Lorentz group SO(3, 1) shows up in an interesting
way in computer vision.

Denote the p⇥ p-identity matrix by Ip, for p, q, � 1, and
define

Ip,q =

✓
Ip 0
0 �Iq

◆
.

If n = p + q, the matrix Ip,q is associated with the non-
degenerate symmetric bilinear form

'p,q((x1

, . . . , xn), (y1

, . . . , yn)) =
pX

i=1

xiyi �
nX

j=p+1

xjyj
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with associated quadratic form

�p,q((x1

, . . . , xn)) =
pX

i=1

x2

i �
nX

j=p+1

x2

j .

In particular, when p = 1 and q = 3, we have the Lorentz
metric

x2

1

� x2

2

� x2

3

� x2

4

.

In physics, x
1

is interpreted as time and written t and
x

2

, x
3

, x
4

as coordinates in R3 and written x, y, z. Thus,
the Lozentz metric is usually written a

t2 � x2 � y2 � z2.

The spaceR4 with the Lorentz metric is calledMinkowski
space . It plays an important role in Einstein’s theory of
special relativity.

The group O(p, q) is the set of all n ⇥ n-matrices

O(p, q) = {A 2 GL(n,R) | A>Ip,qA = Ip,q}.
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This is the group of all invertible linear maps of Rn that
preserve the quadratic form, �p,q, i.e., the group of isome-
tries of �p,q.

Clearly, I2

p,q = I , so the condition A>Ip,qA = Ip,q implies
that

A�1 = Ip,qA
>Ip,q.

Thus, AIp,qA> = Ip,q also holds, which shows thatO(p, q)
is closed under transposition (i.e., if A 2 O(p, q), then
A> 2 O(p, q)).

We have the subgroup

SO(p, q) = {A 2 O(p, q) | det(A) = 1}
consisting of the isometries of (Rn,�p,q) with determinant
+1.

It is clear that SO(p, q) is also closed under transposition.
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The condition A>Ip,qA = Ip,q has an interpretation in
terms of the inner product 'p,q and the columns (and
rows) of A.

Indeed, if we denote the jth column of A by Aj, then

A>Ip,qA = ('p,q(Ai, Aj)),

so A 2 O(p, q) i↵ the columns of A form an “orthonormal
basis” w.r.t. 'p,q, i.e.,

'p,q(Ai, Aj) =

⇢
�ij if 1  i, j  p;
��ij if p + 1  i, j  p + q.

The di↵erence with the usual orthogonal matrices is that
'p,q(Ai, Ai) = �1, if p + 1  i  p + q. As O(p, q)
is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. 'p,q.



4.1. THE LORENTZ GROUPS O(N, 1), SO(N, 1) AND SO0(N, 1) 275

It turns out that SO(p, q) has two connected components
and the component containing the identity is a subgroup
of SO(p, q) denoted SO

0

(p, q).

The group SO
0

(p, q) turns out to be homeomorphic to
SO(p) ⇥ SO(q) ⇥ Rpq, but this is not easy to prove.
(One way to prove it is to use results on pseudo-algebraic
subgroups of GL(n,C), see Knapp [20] or Gallier’s notes
on Cli↵ord algebras (on the web)).

We will now determine the polar decomposition and the
SVD decomposition of matrices in the Lorentz groups
O(n, 1) and SO(n, 1).
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Write J = In,1 and, given any A 2 O(n, 1), write

A =

✓
B u
v> c

◆
,

where B is an n ⇥ n matrix, u, v are (column) vectors in
Rn and c 2 R.

Proposition 4.1. Every matrix A 2 O(n, 1) has a
polar decomposition of the form

A =

✓
Q 0
0 1

◆✓p
I + vv> v

v> c

◆

or

A =

✓
Q 0
0 �1

◆✓p
I + vv> v

v> c

◆
,

where Q 2 O(n) and c =
q

kvk2 + 1.
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Thus, we see that O(n, 1) has four components corre-
sponding to the cases:

(1) Q 2 O(n); det(Q) < 0; +1 as the lower right entry
of the orthogonal matrix;

(2) Q 2 SO(n); �1 as the lower right entry of the or-
thogonal matrix;

(3) Q 2 O(n); det(Q) < 0; �1 as the lower right entry
of the orthogonal matrix;

(4) Q 2 SO(n); +1 as the lower right entry of the or-
thogonal matrix.

Observe that det(A) = �1 in cases (1) and (2) and that
det(A) = +1 in cases (3) and (4).
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Thus, (3) and (4) correspond to the group SO(n, 1), in
which case the polar decomposition is of the form

A =

✓
Q 0
0 �1

◆✓p
I + vv> v

v> c

◆
,

whereQ 2 O(n), with det(Q) = �1 and c =
q

kvk2 + 1,
or

A =

✓
Q 0
0 1

◆✓p
I + vv> v

v> c

◆

where Q 2 SO(n) and c =
q

kvk2 + 1.

The components in (1) and (2) are not groups. We will
show later that all four components are connected and
that case (4) corresponds to a group (Proposition 4.6).

This last group is the connected component of the identity
and it is denoted SO

0

(n, 1) (see Corollary 4.9).
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For the time being, note that A 2 SO
0

(n, 1) i↵
A 2 SO(n, 1) and an+1 n+1

(= c) > 0 (here, A = (ai j).)

In fact, we proved above that if an+1 n+1

> 0, then
an+1 n+1

� 1.

Remark: If we let

⇤P =

✓
In�1,1 0
0 1

◆
and ⇤T = In,1,

where

In,1 =

✓
In 0
0 �1

◆
,

then we have the disjoint union

O(n, 1) = SO
0

(n, 1) [ ⇤PSO0

(n, 1)

[ ⇤TSO0

(n, 1) [ ⇤P⇤TSO0

(n, 1).
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The positive definite symmetric matrix

S =

✓p
I + vv> v

v> c

◆

involved in Proposition 4.1 is called a Lorentz boost . Ob-
serve that if v = 0, then c = 1 and S = In+1

.

Proposition 4.2. Assume v 6= 0. The eigenvalues of
the symmetric positive definite matrix

S =

✓p
I + vv> v

v> c

◆
,

where c =
q

kvk2 + 1, are 1 with multiplicity n � 1,

and e↵ and e�↵ each with multiplicity 1 (for some
↵ � 0). An orthonormal basis of eigenvectors of S
consists of vectors of the form

✓
u

1

0

◆
, . . . ,

✓
un�1

0

◆
,

✓ vp
2kvk
1p
2

◆
,

✓ vp
2kvk

� 1p
2

◆
,

where the ui 2 Rn are all orthogonal to v and pairwise
orthogonal.
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Corollary 4.3. The singular values of any matrix
A 2 O(n, 1) are 1 with multiplicity n � 1, e↵, and
e�↵, for some ↵ � 0.

Note that the case ↵ = 0 is possible, in which case, A is
an orthogonal matrix of the form

✓
Q 0
0 1

◆
or

✓
Q 0
0 �1

◆
,

with Q 2 O(n). The two singular values e↵ and e�↵ tell
us how much A deviates from being orthogonal.

We can now determine a convenient form for the SVD of
matrices in O(n, 1).
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Theorem 4.4. Every matrix A 2 O(n, 1) can be writ-
ten as

A =

✓
P 0
0 ✏

◆

0

BBBB@

1 · · · 0 0 0
... . . . ... ... ...
0 · · · 1 0 0
0 · · · 0 cosh↵ sinh↵
0 · · · 0 sinh↵ cosh↵

1

CCCCA

✓
Q> 0
0 1

◆

with ✏ = ±1, P 2 O(n) and Q 2 SO(n). When
A 2 SO(n, 1), we have det(P )✏ = +1, and when
A 2 SO

0

(n, 1), we have ✏ = +1 and P 2 SO(n), that
is,

A =

✓
P 0
0 1

◆

0

BBBB@

1 · · · 0 0 0
... . . . ... ... ...
0 · · · 1 0 0
0 · · · 0 cosh↵ sinh↵
0 · · · 0 sinh↵ cosh↵

1

CCCCA

✓
Q> 0
0 1

◆

with P 2 SO(n) and Q 2 SO(n).
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Remark: Wewarn our readers about Chapter 6 of Baker’s
book [1]. Indeed, this chapter is seriously flawed.

The main two Theorems (Theorem 6.9 and Theorem 6.10)
are false and as consequence, the proof of Theorem 6.11 is
wrong too. Theorem 6.11 states that the exponential map
exp : so(n, 1) ! SO

0

(n, 1) is surjective, which is correct,
but known proofs are nontrivial and quite lengthy (see
Section 9.6).

The proof of Theorem 6.12 is also false, although the
theorem itself is correct (this is our Theorem 9.24, see
Section 9.6).

For a thorough analysis of the eigenvalues of Lorentz
isometries (and much more), one should consult Riesz
[31] (Chapter III).
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Clearly, a result similar to Theorem 4.4 also holds for the
matrices in the groups O(1, n), SO(1, n) and SO

0

(1, n).

For example, every matrix A 2 SO
0

(1, n) can be written
as

A =

✓
1 0
0 P

◆

0

BBBB@

cosh↵ sinh↵ 0 · · · 0
sinh↵ cosh↵ 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1

1

CCCCA

✓
1 0
0 Q>

◆
,

where P, Q 2 SO(n).

In the case n = 3, we obtain the proper orthochronous
Lorentz group, SO

0

(1, 3), also denoted Lor(1, 3).

By the way, O(1, 3) is called the (full) Lorentz group
and SO(1, 3) is the special Lorentz group.
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Theorem 4.4 (really, the version for SO
0

(1, n)) shows that
the Lorentz group SO

0

(1, 3) is generated by the matrices
of the form ✓

1 0
0 P

◆
with P 2 SO(3)

and the matrices of the form0

BB@

cosh↵ sinh↵ 0 0
sinh↵ cosh↵ 0 0
0 0 1 0
0 0 0 1

1

CCA .

This fact will be useful when we prove that the homo-
morphism ' : SL(2,C) ! SO

0

(1, 3) is surjective.

Remark: Unfortunately, unlike orthogonal matrices which
can always be diagonalized over C, not every matrix in
SO(1, n) can be diagonalized for n � 2.

This has to do with the fact that the Lie algebra so(1, n)
has non-zero idempotents (see Section 9.6).
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It turns out that the group SO
0

(1, 3) admits another
interesting characterization involving the hypersurface

H = {(t, x, y, z) 2 R4 | t2 � x2 � y2 � z2 = 1}.

This surface has two sheets and it is not hard to show
that SO

0

(1, 3) is the subgroup of SO(1, 3) that preserves
these two sheets (does not swap them).

Actually, we will prove this fact for any n.

Let us switch back to SO(n, 1).

First, as a matter of notation, we write every u 2 Rn+1 as
u = (u, t), where u 2 Rn and t 2 R, so that the Lorentz
inner product can be expressed as

hu, vi = h(u, t), (v, s)i = u · v � ts,

where u · v is the standard Euclidean inner product (the
Euclidean norm of x is denoted kxk).
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Definition 4.1. A nonzero vector, u = (u, t) 2 Rn+1 is
called

(a) spacelike i↵ hu, ui > 0, i.e., i↵ kuk2 > t2;

(b) timelike i↵ hu, ui < 0, i.e., i↵ kuk2 < t2;

(c) lightlike or isotropic i↵ hu, ui = 0, i.e., i↵ kuk2 = t2.

A spacelike (resp. timelike, resp. lightlike) vector is said
to be positive i↵ t > 0 and negative i↵ t < 0.

The set of all isotropic vectors

Hn(0) = {u = (u, t) 2 Rn+1 | kuk2 = t2}
is called the light cone .

For every r > 0, let

Hn(r) = {u = (u, t) 2 Rn+1 | kuk2 � t2 = �r},

a hyperboloid of two sheets.
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The space Hn(r) has two connected components.:

H+

n (r) is the sheet containing (0, . . . , 0,
p

r)

H�
n (r) is the sheet containing (0, . . . , 0, �p

r).

Since every Lorentz isometry, A 2 SO(n, 1), preserves
the Lorentz inner product, we conclude that A globally
preserves every hyperboloid, Hn(r), for r > 0.

We claim that everyA 2 SO
0

(n, 1) preserves bothH+

n (r)
and H�

n (r).

Proposition 4.5. If an+1 n+1

> 0, then every isome-
try, A 2 SO(n, 1), preserves all positive (resp. nega-
tive) timelike vectors and all positive (resp. negative)
lightlike vectors. Moreover, if A 2 SO(n, 1) preserves
all positive timelike vectors, then an+1 n+1

> 0.
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Let O+(n, 1) denote the subset of O(n, 1) consisting of
all matrices, A = (ai j), such that an+1 n+1

> 0.

Recall that

SO
0

(n, 1) = {A 2 SO(n, 1) | an+1 n+1

> 0}.

Note that SO
0

(n, 1) = O+(n, 1) \ SO(n, 1).

Proposition 4.6. The set O+(n, 1) is a subgroup of
O(n, 1) and the set SO

0

(n, 1) is a subgroup of SO(n, 1).

Next, we wish to prove that the action
SO

0

(n, 1) ⇥ H+

n (1) �! H+

n (1) is transitive.

Proposition 4.7. Let u = (u, t) and v = (v, s) be
nonzero vectors in Rn+1 with hu, vi = 0. If u is time-
like, then v is spacelike (i.e., hv, vi > 0).
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Proposition 4.8. The action
SO

0

(n, 1) ⇥ H+

n (1) �! H+

n (1) is transitive.

Let us find the stabilizer of en+1

= (0, . . . , 0, 1).

We must have Aen+1

= en+1

, and the polar form implies
that

A =

✓
P 0
0 1

◆
, with P 2 SO(n).

Therefore, the stabilizer of en+1

is isomorphic to SO(n)
and we conclude that H+

n (1), as a homogeneous space, is

H+

n (1)
⇠= SO

0

(n, 1)/SO(n).
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As an application of Theorem 3.14 and Proposition 3.9,
we show that the Lorentz group SO

0

(n, 1) is connected.

Firstly, it is easy to check that SO
0

(n, 1) and H+

n (1) sat-
isfy the assumptions of Theorem 3.14 because they are
both manifolds.

Also, we saw at the end of Section 4.1 that the action
· : SO

0

(n, 1)⇥H+

n (1) �! H+

n (1) of SO0

(n, 1) on H+

n (1)
is transitive, so that, as topological spaces

SO
0

(n, 1)/SO(n) ⇠= H+

n (1).

Now, we already showed that H+

n (1) is connected so,
by Proposition 3.9, the connectivity of SO

0

(n, 1) follows
from the connectivity of SO(n) for n � 1.
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The connectivity of SO(n) is a consequence of the sur-
jectivity of the exponential map (see Theorem 1.11) but
we can also give a quick proof using Proposition 3.9.

Indeed, SO(n + 1) and Sn are both manifolds and we
saw in Section 3.2 that

SO(n + 1)/SO(n) ⇠= Sn.

Now, Sn is connected for n � 1 and SO(1) ⇠= S1 is
connected. We finish the proof by induction on n.

Corollary 4.9. The Lorentz group SO
0

(n, 1) is con-
nected; it is the component of the identity in O(n, 1).


