
Chapter 14

Curvature in Riemannian Manifolds

14.1 The Curvature Tensor

If M is a Riemannian manifold and if r is a connection
on M , the Riemannian curvature R(X, Y )Z measures
the extent to which the operator (X, Y ) 7! rXrY Z is
symmetric (for any fixed Z).

The Riemannian curvature also measures the defect of
symmetry of the operator r2

X,Y Z given by

r2
X,Y Z = rX(rY Z) � rrXY Z,

and called the second covariant derivative of Z with
respect to X and Y .
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In fact, we will show that if r is the Levi-Civita connec-
tion,

R(X, Y )Z = r2
Y,XZ � r2

X,Y Z.

If (M, h�, �i) is a Riemannian manifold of dimension
n, and if the connection r on M is the flat connection,
which means that

rX

✓
@

@xi

◆
= 0, i = 1, . . . , n,

it is easy to check that the above implies that

rXrY Z � rY rXZ = r[X,Y ]Z,

for all X, Y, Z 2 X(M).
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Consequently, it is natural to define the deviation of a
connection from the flat connection by the quantity

R(X, Y )Z = rXrY Z � rY rXZ � r[X,Y ]Z.

Proposition 14.1. Let M be a manifold with any
connection r. The function

R : X(M) ⇥ X(M) ⇥ X(M) �! X(M)

given by

R(X, Y )Z = rXrY Z � rY rXZ � r[X,Y ]Z

is C1(M)-linear in X, Y, Z, and skew-symmetric in
X and Y . As a consequence, for any p 2 M ,
(R(X, Y )Z)p depends only on X(p), Y (p), Z(p).
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It follows that R defines for every p 2 M a trilinear map

Rp : TpM ⇥ TpM ⇥ TpM �! TpM.

Experience shows that it is useful to consider the family
of quadrilinear forms (unfortunately!) also denoted R,
given by

Rp(x, y, z, w) = hRp(x, y)z, wip,

as well as the expression R(x, y, y, x), which, for an or-
thonormal pair of vectors (x, y), is known as the sectional
curvature K(x, y).

This last expression brings up a dilemma regarding the
choice for the sign of R.
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With our present choice, the sectional curvature K(x, y)
is given by K(x, y) = R(x, y, y, x), but many authors
define K as K(x, y) = R(x, y, x, y).

Since R(x, y) is skew-symmetric in x, y, the latter choice
corresponds to using �R(x, y) instead of R(x, y), that is,
to define R(X, Y )Z by

R(X, Y )Z = r[X,Y ]Z + rY rXZ � rXrY Z.

As pointed out by Milnor [28] (Chapter II, Section 9), the
latter choice for the sign of R has the advantage that, in
coordinates, the quantity hR(@/@xh, @/@xi)@/@xj, @/@xki
coincides with the classical Ricci notation, Rhijk. Gallot,
Hulin and Lafontaine [18] (Chapter 3, Section A.1) give
other reasons supporting this choice of sign.
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Clearly, the choice for the sign of R is mostly a matter
of taste and we apologize to those readers who prefer the
first choice but we will adopt the second choice advocated
by Milnor and others.

Therefore, we make the following formal definition:

Definition 14.1. Let (M, h�, �i) be a Riemannian man-
ifold equipped with the Levi-Civita connection. The cur-
vature tensor is the family of trilinear functions
Rp : TpM ⇥ TpM ⇥ TpM ! TpM defined by

Rp(x, y)z = r[X,Y ]Z + rY rXZ � rXrY Z,

for every p 2 M and for any vector fields X, Y, Z 2
X(M) such that x = X(p), y = Y (p), and z = Z(p).
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The family of quadrilinear forms associated with R, also
denoted R, is given by

Rp(x, y, z, w) = h(Rp(x, y)z, wi,

for all p 2 M and all x, y, z, w 2 TpM .

Locally in a chart, we write

R

✓
@

@xh
,

@

@xi

◆
@

@xj
=
X

l

Rl
jhi

@

@xl

and

Rhijk =

⌧
R

✓
@

@xh
,

@

@xi

◆
@

@xj
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@
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�
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X

l

glkR
l
jhi.
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The coe�cients Rl
jhi can be expressed in terms of the

Christo↵el symbols �k
ij, by a rather unfriendly formula

(see Gallot, Hulin and Lafontaine [18] (Chapter 3, Section
3.A.3) or O’Neill [35] (Chapter III, Lemma 38). Since we
have adopted O’Neill’s conventions for the order of the
subscripts in Rl

jhi, here is the formula from O’Neill:

Rl
jhi = @i�

l
hj � @h�

l
ij +

X

m

�l
im�

m
hj �

X

m

�l
hm�

m
ij .

There is another way of defining the curvature tensor
which is useful for comparing second covariant derivatives
of one-forms.

For any fixed vector field Z, the map Y 7! rY Z from
X(M) to X (M) is a C1(M)-linear map that we will
denote r�Z (this is a (1, 1) tensor).
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The covariant derivative rXr�Z of r�Z is defined by

(rX(r�Z))(Y ) = rX(rY Z) � (rrXY )Z.

Usually, (rX(r�Z))(Y ) is denoted by r2
X,Y Z, and

r2
X,Y Z = rX(rY Z) � rrXY Z

is called the second covariant derivative of Z with re-
spect to X and Y .

Then, we have

r2
Y,XZ � r2

X,Y Z = R(X, Y )Z.

We already know that the curvature tensor has some sym-
metry properties, for exampleR(y, x)z = �R(x, y)z, but
when it is induced by the Levi-Civita connection, it has
more remarkable properties stated in the next proposi-
tion.
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Proposition 14.2. For a Riemannian manifold
(M, h�, �i) equipped with the Levi-Civita connection,
the curvature tensor satisfies the following properties:

(1) R(x, y)z = �R(y, x)z

(2) (First Bianchi Identity)
R(x, y)z + R(y, z)x + R(z, x)y = 0

(3) R(x, y, z, w) = �R(x, y, w, z)

(4) R(x, y, z, w) = R(z, w, x, y).

The next proposition will be needed in the proof of the
second variation formula.

If ↵ : U ! M is a parametrized surface, where U is some
open subset of R2, we say that a vector field V 2 X(M)
is a vector field along ↵ i↵ V (x, y) 2 T↵(x,y)M , for all
(x, y) 2 U .
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For any smooth vector field V along ↵, we also define the
covariant derivatives DV/@x and DV/@y as follows:

For each fixed y0, if we restrict V to the curve

x 7! ↵(x, y0)

we obtain a vector field Vy0 along this curve, and we set

DX

@x
(x, y0) =

DVy0

dx
.

Then, we let y0 vary so that (x, y0) 2 U , and this yields
DV/@x. We define DV/@y is a similar manner, using a
fixed x0.



680 CHAPTER 14. CURVATURE IN RIEMANNIAN MANIFOLDS

Proposition 14.3. For a Riemannian manifold
(M, h�, �i) equipped with the Levi-Civita connection,
for every parametrized surface ↵ : R2 ! M , for every
vector field V 2 X(M) along ↵, we have

D

@y

D

@x
V � D

@x

D

@y
V = R

✓
@↵

@x
,
@↵

@y

◆
V.

Remark: Since the Levi-Civita connection is torsion-
free, it is easy to check that

D

@x

@↵

@y
=

D

@y

@↵

@x
.

The curvature tensor is a rather complicated object.

Thus, it is quite natural to seek simpler notions of curva-
ture.

The sectional curvature is indeed a simpler object, and
it turns out that the curvature tensor can be recovered
from it.
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14.2 Sectional Curvature

Basically, the sectional curvature is the curvature of two-
dimensional sections of our manifold.

Given any two vectors u, v 2 TpM , recall by Cauchy-
Schwarz that

hu, vi2
p  hu, uiphv, vip,

with equality i↵ u and v are linearly dependent.

Consequently, if u and v are linearly independent, we
have

hu, uiphv, vip � hu, vi2
p 6= 0.

In this case, we claim that the ratio

K(u, v) =
Rp(u, v, u, v)

hu, uiphv, vip � hu, vi2
p

is independent of the plane ⇧ spanned by u and v.
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Definition 14.2. Let (M, h�, �i) be any Riemannian
manifold equipped with the Levi-Civita connection. For
every p 2 TpM , for every 2-plane ⇧ ✓ TpM , the sec-
tional curvature K(⇧) of ⇧ is given by

K(⇧) = K(x, y) =
Rp(x, y, x, y)

hx, xiphy, yip � hx, yi2
p

,

for any basis (x, y) of ⇧.

Observe that if (x, y) is an orthonormal basis, then the
denominator is equal to 1.

The expression Rp(x, y, x, y) is often denoted p(x, y).

Remarkably, p determines Rp. We denote the function
p 7! p by .
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Proposition 14.4. Let (M, h�, �i) be any Rieman-
nian manifold equipped with the Levi-Civita connec-
tion. The function  determines the curvature tensor
R. Thus, the knowledge of all the sectional curvatures
determines the curvature tensor. Moreover, we have

6hR(x, y)z, wi = (x + w, y + z) � (x, y + z)

�(w, y + z) � (y + w, x + z)

+(y, x + z) + (w, x + z)

� (x + w, y) + (x, y) + (w, y)

� (x + w, z) + (x, z) + (w, z)

+ (y + w, x) � (y, x) � (w, x)

+ (y + w, z) � (y, z) � (w, z).

For a proof of this formidable equation, see Kuhnel [23]
(Chapter 6, Theorem 6.5).

A di↵erent proof of the above proposition (without an
explicit formula) is also given in O’Neill [35] (Chapter
III, Corollary 42).
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Let
R1(x, y)z = hx, ziy � hy, zix.

Observe that

hR1(x, y)x, yi = hx, xihy, yi � hx, yi2.

As a corollary of Proposition 14.4, we get:

Proposition 14.5. Let (M, h�, �i) be any Rieman-
nian manifold equipped with the Levi-Civita connec-
tion. If the sectional curvature K(⇧) does not depend
on the plane ⇧ but only on p 2 M , in the sense that
K is a scalar function K : M ! R, then

R = KR1.

In particular, in dimension n = 2, the assumption of
Proposition 14.5 holds and K is the well-knownGaussian
curvature for surfaces.
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Definition 14.3. A Riemannian manifold (M, h�, �i)
is said to have constant (resp. negative, resp. pos-
itive) curvature i↵ its sectional curvature is constant
(resp. negative, resp. positive).

In dimension n � 3, we have the following somewhat
surprising theorem due to F. Schur:

Proposition 14.6. (F. Schur, 1886) Let (M, h�, �i)
be a connected Riemannian manifold. If dim(M) � 3
and if the sectional curvature K(⇧) does not depend
on the plane ⇧ ✓ TpM but only on the point p 2 M ,
then K is constant (i.e., does not depend on p).

The proof, which is quite beautiful, can be found in Kuh-
nel [23] (Chapter 6, Theorem 6.7).
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If we replace the metric g = h�, �i by the metric eg =
�h�, �i where � > 0 is a constant, some simple calcu-
lations show that the Christo↵el symbols and the Levi-
Civita connection are unchanged, as well as the curvature
tensor, but the sectional curvature is changed, with

eK = ��1K.

As a consequence, if M is a Riemannian manifold of con-
stant curvature, by rescaling the metric, we may assume
that either K = �1, or K = 0, or K = +1.

Here are standard examples of spaces with constant cur-
vature.

(1) The sphere Sn ✓ Rn+1 with the metric induced by
Rn+1, where

Sn = {(x1, . . . , xn+1) 2 Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}.

The sphere Sn has constant sectional curvature K =
+1.
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(2) Euclidean space Rn+1 with its natural Euclidean met-
ric. Of course, K = 0.

(3) The hyperbolic space H+
n (1) from Definition 4.1. Re-

call that this space is defined in terms of the Lorentz
innner product h�, �i1 on Rn+1, given by

h(x1, . . . , xn+1), (y1, . . . , yn+1)i1 = �x1y1 +
n+1X

i=2

xiyi.

By definition, H+
n (1), written simply Hn, is given by

Hn = {x = (x1, . . . , xn+1) 2 Rn+1

| hx, xi1 = �1, x1 > 0}.

It can be shown that the restriction of h�, �i1 to Hn

is positive, definite, which means that it is a metric
on TpHn.
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The space Hn equipped with this metric gH is called
hyperbolic space and it has constant curvature K =
�1.

There are other isometric models of Hn that are perhaps
intuitively easier to grasp but for which the metric is more
complicated.

For example, there is a map PD: Bn ! Hn where Bn =
{x 2 Rn | kxk < 1} is the open unit ball in Rn, given by

PD(x) =

 
1 + kxk2

1 � kxk2 ,
2x

1 � kxk2

!
.

It is easy to check that hPD(x),PD(x)i1 = �1 and that
PD is bijective and an isometry.
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One also checks that the pull-back metric gPD = PD⇤gH

on Bn is given by

gPD =
4

(1 � kxk2)2
(dx2

1 + · · · + dx2
n).

The metric gPD is called the conformal disc metric, and
the Riemannian manifold (Bn, gPD) is called the Poincaré
disc model or conformal disc model .

The metric gPD is proportional to the Euclidean metric,
and thus angles are preserved under the map PD.

Another model is the Poincaré half-plane model {x 2
Rn | x1 > 0}, with the metric

gPH =
1

x2
1

(dx2
1 + · · · + dx2

n).

We already encountered this space for n = 2.
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14.3 Ricci Curvature

The Ricci tensor is another important notion of curvature.

It is mathematically simpler than the sectional curvature
(since it is symmetric) but it plays an important role in
the theory of gravitation as it occurs in the Einstein field
equations.

Recall that if f : E ! E is a linear map from a finite-
dimensional Euclidean vector space to itself, given any
orthonormal basis (e1, . . . , en), we have

tr(f ) =
nX

i=1

hf (ei), eii.
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Definition 14.4. Let (M, h�, �i) be a Riemannian man-
ifold (equipped with the Levi-Civita connection). The
Ricci curvature Ric of M is defined as follows: For ev-
ery p 2 M , for all x, y 2 TpM , set Ricp(x, y) to be the
trace of the endomorphism v 7! Rp(x, v)y. With respect
to any orthonormal basis (e1, . . . , en) of TpM , we have

Ricp(x, y) =
nX

j=1

hRp(x, ej)y, ejip =
nX

j=1

Rp(x, ej, y, ej).

The scalar curvature S of M is the trace of the Ricci
curvature; that is, for every p 2 M ,

S(p) =
X

i 6=j

R(ei, ej, ei, ej) =
X

i 6=j

K(ei, ej),

where K(ei, ej) denotes the sectional curvature of the
plane spanned by ei, ej.

In view of Proposition 14.2 (4), the Ricci curvature is
symmetric.



692 CHAPTER 14. CURVATURE IN RIEMANNIAN MANIFOLDS

Observe that in dimension n = 2, we get S(p) = 2K(p).
Therefore, in dimension 2, the scalar curvature deter-
mines the curvature tensor.

In dimension n = 3, it turns out that the Ricci tensor
completely determines the curvature tensor, although this
is not obvious.

Since Ric(x, y) is symmetric, Ric(x, x) determines Ric(x, y)
completely.

Observe that for any orthonormal frame (e1, . . . , en) of
TpM , using the definition of the sectional curvature K,
we have

Ric(e1, e1) =
nX

i=1

h(R(e1, ei)e1, eii =
nX

i=2

K(e1, ei).

Thus, Ric(e1, e1) is the sum of the sectional curvatures
of any n � 1 orthogonal planes orthogonal to e1 (a unit
vector).
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For a Riemannian manifold with constant sectional cur-
vature, we have

Ric(x, x) = (n � 1)Kg(x, x), S = n(n � 1)K,

where g = h�, �i is the metric on M .

Spaces for which the Ricci tensor is proportional to the
metric are called Einstein spaces.

Definition 14.5.ARiemannian manifold (M, g) is called
an Einstein space i↵ the Ricci curvature is proportional
to the metric g; that is:

Ric(x, y) = �g(x, y),

for some function � : M ! R.

If M is an Einstein space, observe that S = n�.
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Remark: For any Riemanian manifold (M, g), the quan-
tity

G = Ric � S

2
g

is called the Einstein tensor (or Einstein gravitation
tensor for space-times spaces).

The Einstein tensor plays an important role in the theory
of general relativity. For more on this topic, see Kuhnel
[23] (Chapters 6 and 8) O’Neill [35] (Chapter 12).
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14.4 The Second Variation Formula and the
Index Form

In Section 13.4, we discovered that the geodesics are ex-
actly the critical paths of the energy functional (Theorem
13.20).

For this, we derived the First Variation Formula (Theo-
rem 13.19).

It is not too surprising that a deeper understanding is
achieved by investigating the second derivative of the en-
ergy functional at a critical path (a geodesic).

By analogy with the Hessian of a real-valued function on
Rn, it is possible to define a bilinear functional

I� : T�⌦(p, q) ⇥ T�⌦(p, q) ! R

when � is a critical point of the energy function E (that
is, � is a geodesic).
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This bilinear form is usually called the index form .

Note that Milnor denotes I� by E⇤⇤ and refers to it as the
Hessian of E, but this is a bit confusing since I� is only
defined for critical points, whereas the Hessian is defined
for all points, critical or not.

Now, if f : M ! R is a real-valued function on a finite-
dimensional manifold M and if p is a critical point of f ,
which means that dfp = 0, it is not hard to prove that
there is a symmetric bilinear map I : TpM ⇥ TpM ! R
such that

I(X(p), Y (p)) = Xp(Y f ) = Yp(Xf ),

for all vector fields X, Y 2 X(M).



14.4. THE SECOND VARIATION FORMULA AND THE INDEX FORM 697

Furthermore, I(u, v) can be computed as follows: for any
u, v 2 TpM , for any smooth map ↵ : R2 ! R such that

↵(0, 0) = p,
@↵

@x
(0, 0) = u,

@↵

@y
(0, 0) = v,

we have

I(u, v) =
@2(f � ↵)(x, y)

@x@y

����
(0,0)

.
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The above suggests that in order to define

I� : T�⌦(p, q) ⇥ T�⌦(p, q) ! R,

that is to define I�(W1, W2), where W1, W2 2 T�⌦(p, q)
are vector fields along � (with W1(0) = W2(0) = 0 and
W1(1) = W2(1) = 0), we consider 2-parameter varia-
tions

↵ : U ⇥ [0, 1] ! M,

where U is an open subset of R2 with (0, 0) 2 U , such
that

↵(0, 0, t) = �(t),
@↵

@u1
(0, 0, t) = W1(t),

@↵

@u2
(0, 0, t) = W2(t).
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Then, we set

I�(W1, W2) =
@2(E � e↵)(u1, u2)

@u1@u2

����
(0,0)

,

where e↵ 2 ⌦(p, q) is the path given by

e↵(u1, u2)(t) = ↵(u1, u2, t).

For simplicity of notation, the above derivative if often
written as @2E

@u1@u2
(0, 0).

To prove that I�(W1, W2) is actually well-defined, we
need the following result:



700 CHAPTER 14. CURVATURE IN RIEMANNIAN MANIFOLDS

Theorem 14.7. (Second Variation Formula) Let
↵ : U ⇥ [0, 1] ! M be a 2-parameter variation of a
geodesic � 2 ⌦(p, q), with variation vector fields
W1, W2 2 T�⌦(p, q) given by

W1(t) =
@↵

@u1
(0, 0, t), W2(t) =

@↵

@u2
(0, 0, t).

Then, we have the formula

1

2

@2(E � e↵)(u1, u2)

@u1@u2

����
(0,0)

= �
X

t

⌧
W2(t),�t

dW1

dt

�

�
Z 1

0

⌧
W2,

D2W1

dt2
+ R(V, W1)V

�
dt,

where V (t) = �0(t) is the velocity field,

�t
dW1

dt
=

dW1

dt
(t+) � dW1

dt
(t�)

is the jump in dW1
dt at one of its finitely many points

of discontinuity in (0, 1), and E is the energy function
on ⌦(p, q).
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Theorem 14.7 shows that the expression

@2(E � e↵)(u1, u2)

@u1@u2

����
(0,0)

only depends on the variation fields W1 and W2, and thus
I�(W1, W2) is actually well-defined. If no confusion arises,
we write I(W1, W2) for I�(W1, W2).

Proposition 14.8. Given any geodesic � 2 ⌦(p, q),
the map I : T�⌦(p, q) ⇥ T�⌦(p, q) ! R defined so that
for all W1, W2 2 T�⌦(p, q),

I(W1, W2) =
@2(E � e↵)(u1, u2)

@u1@u2

����
(0,0)

,

only depends on W1 and W2 and is bilinear and sym-
metric, where ↵ : U ⇥ [0, 1] ! M is any 2-parameter
variation, with

↵(0, 0, t) = �(t),
@↵

@u1
(0, 0, t) = W1(t),

@↵

@u2
(0, 0, t) = W2(t).
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On the diagonal, I(W, W ) can be described in terms of
a 1-parameter variation of �. In fact,

I(W, W ) =
d2E(e↵)

du2
(0),

where e↵ : (�✏, ✏) ! ⌦(p, q) denotes any variation of �
with variation vector field de↵

du (0) equal to W .

Proposition 14.9. If � 2 ⌦(p, q) is a minimal geodesic,
then the bilinear index form I is positive semi-definite,
which means that I(W, W ) � 0 for all W 2 T�⌦(p, q).

If we define the index of

I : T�⌦(p, q) ⇥ T�⌦(p, q) ! R

as the maximum dimension of a subspace of T�⌦(p, q) on
which I is negative definite, then Proposition 14.9 says
that the index of I is zero (for the minimal geodesic �).

It turns out that the index of I is finite for any geodesic,
� (this is a consequence of the Morse Index Theorem).
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14.5 Jacobi Fields and Conjugate Points

Jacobi fields arise naturally when considering the expres-
sion involved under the integral sign in the Second Varia-
tion Formula and also when considering the derivative of
the exponential.

If B : E ⇥ E ! R is a symmetric bilinear form defined
on some vector space E (possibly infinite dimentional),
recall that the nullspace of B is the subset null(B) of E
given by

null(B) = {u 2 E | B(u, v) = 0, for all v 2 E}.

The nullity ⌫ of B is the dimension of its nullspace.

The bilinear form B is nondegenerate i↵ null(B) = (0)
i↵ ⌫ = 0.
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If U is a subset of E, we say that B is positive definite
(resp. negative definite) on U i↵ B(u, u) > 0 (resp.
B(u, u) < 0) for all u 2 U , with u 6= 0.

The index of B is the maximum dimension of a subspace
of E on which B is negative definite.

We will determine the nullspace of the symmetric bilinear
form

I : T�⌦(p, q) ⇥ T�⌦(p, q) ! R,

where � is a geodesic from p to q in some Riemannian
manifold M .
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Now, if W is a vector field in T�⌦(p, q) and W satisfies
the equation

D2W

dt2
+ R(V, W )V = 0, (⇤)

where V (t) = �0(t) is the velocity field of the geodesic �,
since W is smooth along �, it is obvious from the Second
Variation Formula that

I(W, W2) = 0, for all W2 2 T�⌦(p, q).

Therefore, any vector field in the nullspace of I must
satisfy equation (⇤). Such vector fields are called Jacobi
fields .
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Definition 14.6.Given a geodesic � 2 ⌦(p, q), a vector
field J along � is a Jacobi field i↵ it satisfies the Jacobi
di↵erential equation

D2J

dt2
+ R(�0, J)�0 = 0.

The equation of Definition 14.6 is a linear second-order
di↵erential equation that can be transformed into a more
familiar form by picking some orthonormal parallel vector
fields X1, . . . , Xn along �.

To do this, pick any orthonormal basis (e1, . . . , en) in
TpM , with e1 = �0(0)/ k�0(0)k, and use parallel transport
along � to get X1, . . . , Xn.
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Then, we can write J =
Pn

i=1 yiXi, for some smooth
functions yi, and the Jacobi equation becomes the system
of second-order linear ODE’s

d2yi

dt2
+

nX

j=1

R(�0, Ej, �
0, Ei)yj = 0, 1  i  n.

By the existence and uniqueness theorem for ODE’s, for
every pair of vectors u, v 2 TpM , there is a unique Jacobi
fields J so that J(0) = u and DJ

dt (0) = v.

Since TpM has dimension n, it follows that the dimension
of the space of Jacobi fields along � is 2n.



708 CHAPTER 14. CURVATURE IN RIEMANNIAN MANIFOLDS

Proposition 14.10. If � 2 ⌦(p, q) is a geodesic in
a Riemannian manifold of dimension n, then the fol-
lowing properties hold:

(1) For all u, v 2 TpM , there is a unique Jacobi fields
J so that J(0) = u and DJ

dt (0) = v. Consequently,
the vector space of Jacobi fields has dimension n.

(2) The subspace of Jacobi fields orthogonal to � has
dimension 2n � 2. The vector fields �0 and t 7!
t�0(t) are Jacobi fields that form a basis of the sub-
space of Jacobi fields parallel to � (that is, such
that J(t) is collinear with �0(t), for all t 2 [0, 1].)

(3) If J is a Jacobi field, then J is orthogonal to � i↵
there exist a, b 2 [0, 1], with a 6= b, so that J(a) and
J(b) are both orthogonal to � i↵ there is some a 2
[0, 1] so that J(a) and DJ

dt (a) are both orthogonal to
�.

(4) For any two Jacobi fields X, Y along �, the expres-
sion hr�0X, Y i�hr�0Y, Xi is a constant, and if X
and Y vanish at some point on �, then hr�0X, Y i�
hr�0Y, Xi = 0.
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Following Milnor, we will show that the Jacobi fields in
T�⌦(p, q) are exactly the vector fields in the nullspace of
the index form I .

First, we define the important notion of conjugate points.

Definition 14.7. Let � 2 ⌦(p, q) be a geodesic. Two
distinct parameter values a, b 2 [0, 1] with a < b are
conjugate along � i↵ there is some Jacobi field J , not
identically zero, such that J(a) = J(b) = 0.

The dimension k of the space Ja,b consisting of all such
Jacobi fields is called the multiplicity (or order of con-
jugacy) of a and b as conjugate parameters. We also say
that the points p1 = �(a) and p2 = �(b) are conjugate
along �.
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Remark: As remarked by Milnor and others, as � may
have self-intersections, the above definition is ambiguous
if we replace a and b by p1 = �(a) and p2 = �(b), even
though many authors make this slight abuse.

Although it makes sense to say that the points p1 and p2

are conjugate, the space of Jacobi fields vanishing at p1

and p2 is not well defined.

Indeed, if p1 = �(a) for distinct values of a (or p2 = �(b)
for distinct values of b), then we don’t know which of the
spaces, Ja,b, to pick.

We will say that some points p1 and p2 on � are conjugate
i↵ there are parameter values, a < b, such that p1 = �(a),
p2 = �(b), and a and b are conjugate along �.
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However, for the endpoints p and q of the geodesic seg-
ment �, we may assume that p = �(0) and q = �(1), so
that when we say that p and q are conjugate we consider
the space of Jacobi fields vanishing for t = 0 and t = 1.

In view of Proposition 14.10 (3), the Jacobi fields involved
in the definition of conjugate points are orthogonal to �.

The dimension of the space of Jacobi fields such that
J(a) = 0 is obviously n, since the only remaining pa-
rameter determining J is dJ

dt (a).

Furthermore, the Jacobi field t 7! (t�a)�0(t) vanishes at
a but not at b, so the multiplicity of conjugate parameters
(points) is at most n � 1.
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For example, if M is a flat manifold, that is if its curva-
ture tensor is identically zero, then the Jacobi equation
becomes

D2J

dt2
= 0.

It follows that J ⌘ 0, and thus, there are no conjugate
points. More generally, the Jacobi equation can be solved
explicitly for spaces of constant curvature.

Theorem 14.11. Let � 2 ⌦(p, q) be a geodesic. A
vector field W 2 T�⌦(p, q) belongs to the nullspace of
the index form I i↵ W is a Jacobi field. Hence, I is
degenerate if p and q are conjugate. The nullity of I
is equal to the multiplicity of p and q.
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Theorem 14.11 implies that the nullity of I is finite, since
the vector space of Jacobi fields vanishing at 0 and 1 has
dimension at most n.

Corollary 14.12.The nullity ⌫ of I satisfies 0  ⌫ 
n � 1, where n = dim(M).

Jacobi fields turn out to be induced by certain kinds of
variations called geodesic variations .

Definition 14.8.Given a geodesic � 2 ⌦(p, q), a geodesic
variation of � is a smooth map

↵ : (�✏, ✏) ⇥ [0, 1] ! M,

such that

(1) ↵(0, t) = �(t), for all t 2 [0, 1].

(2) For every u 2 (�✏, ✏), the curve e↵(u) is a geodesic,
where

e↵(u)(t) = ↵(u, t), t 2 [0, 1].
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Note that the geodesics e↵(u) do not necessarily begin at
p and end at q, and so a geodesic variation is not a “fixed
endpoints” variation.

Proposition 14.13. If ↵ : (�✏, ✏) ⇥ [0, 1] ! M is a
geodesic variation of � 2 ⌦(p, q), then the vector field
W (t) = @↵

@u(0, t) is a Jacobi field along �.

For example, on the sphere Sn, for any two antipodal
points p and q, rotating the sphere keeping p and q fixed,
the variation field along a geodesic � through p and q (a
great circle) is a Jacobi field vanishing at p and q.

Rotating in n � 1 di↵erent directions one obtains n � 1
linearly independent Jacobi fields and thus, p and q are
conjugate along � with multiplicity n � 1.

Interestingly, the converse of Proposition 14.13 holds.
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Proposition 14.14. For every Jacobi field W (t) along
a geodesic � 2 ⌦(p, q), there is some geodesic varia-
tion ↵ : (�✏, ✏) ⇥ [0, 1] ! M of � such that W (t) =
@↵
@u(0, t). Furthermore, for every point �(a), there is
an open subset U containing �(a) such that the Ja-
cobi fields along a geodesic segment in U are uniquely
determined by their values at the endpoints of the
geodesic.

Remark: The proof of Proposition 14.14 also shows that
there is some open interval (��, �) such that if t 2 (��, �),
then �(t) is not conjugate to �(0) along �.

In fact, the Morse Index Theorem implies that for any
geodesic segment, � : [0, 1] ! M , there are only finitely
many points which are conjugate to �(0) along � (see
Milnor [28], Part III, Corollary 15.2).
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There is also an intimate connection between Jacobi fields
and the di↵erential of the exponential map, and between
conjugate points and critical points of the exponential
map.

Recall that if f : M ! N is a smooth map between
manifolds, a point p 2 M is a critical point of f i↵ the
tangent map at p

dfp : TpM ! Tf(p)N

is not surjective.

If M and N have the same dimension, which will be the
case in the sequel, dfp is not surjective i↵ it is not injective,
so p is a critical point of f i↵ there is some nonzero vector
u 2 TpM such that dfp(u) = 0.
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If expp : TpM ! M is the exponential map, for any v 2
TpM where expp(v) is defined, we have the derivative of
expp at v:

(d expp)v : Tv(TpM) ! TpM.

Since TpM is a finite-dimensional vector space, Tv(TpM)
is isomorphic to TpM , so we identify Tv(TpM) with TpM .

Proposition 14.15. Let � 2 ⌦(p, q) be a geodesic.
The point r = �(t), with t 2 (0, 1], is conjugate to
p along � i↵ v = t�0(0) is a critical point of expp.
Furthermore, the multiplicity of p and r as conju-
gate points is equal to the dimension of the kernel of
(d expp)v.
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Using Proposition 14.14 it is easy to characterize conju-
gate points in terms of geodesic variations.

Proposition 14.16. If � 2 ⌦(p, q) is a geodesic, then
q is conjugate to p i↵ there is a geodesic variation ↵
of � such that every geodesic e↵(u) starts from p, the
Jacobi field J(t) = @↵

@u(0, t) does not vanish identically,
and J(1) = 0.

Jacobi fields can also be used to compute the derivative
of the exponential (see Gallot, Hulin and Lafontaine [18],
Chapter 3, Corollary 3.46).

Proposition 14.17.Given any point p 2 M , for any
vectors u, v 2 TpM , if expp v is defined, then

J(t) = (d expp)tv(tu), 0  t  1,

is a Jacobi field such that DJ
dt (0) = u.
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Remark: If u, v 2 TpM are orthogonal unit vectors,
then R(u, v, u, v) = K(u, v), the sectional curvature of
the plane spanned by u and v in TpM , and for t small
enough, we have

kJ(t)k = t � 1

6
K(u, v)t3 + o(t3).

(Here, o(t3) stands for an expression of the form t4R(t),
such that limt 7!0 R(t) = 0.)

Intuitively, this formula tells us how fast the geodesics
that start from p and are tangent to the plane spanned
by u and v spread apart.

Locally, for K(u, v) > 0 the radial geodesics spread apart
less than the rays in TpM , and for K(u, v) < 0 they
spread apart more than the rays in TpM .
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There is also another version of “Gauss lemma” (see Gal-
lot, Hulin and Lafontaine [18], Chapter 3, Lemma 3.70):

Proposition 14.18. (Gauss Lemma) Given any point
p 2 M , for any vectors u, v 2 TpM , if expp v is de-
fined, then

hd(expp)tv(u), d(expp)tv(v)i = hu, vi, 0  t  1.

As our (connected) Riemannian manifold M is a metric
space, the path space ⌦(p, q) is also a metric space if we
use the metric d⇤ given by

d⇤(!1, !2) = max
t
(d(!1(t), !2(t))),

where d is the metric on M induced by the Riemannian
metric.
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Remark: The topology induced by d⇤ turns out to be
the compact open topology on ⌦(p, q).

Theorem 14.19. Let � 2 ⌦(p, q) be a geodesic. Then,
the following properties hold:

(1) If there are no conjugate points to p along �, then
there is some open subset V of ⌦(p, q), with � 2 V,
such that

L(!) � L(�) and E(!) � E(�), for all ! 2 V ,

with strict inequality when !([0, 1]) 6= �([0, 1]). We
say that � is a local minimum.

(2) If there is some t 2 (0, 1) such that p and �(t) are
conjugate along �, then there is a fixed endpoints
variation ↵, such that

L(e↵(u)) < L(�) and

E(e↵(u)) < E(�), for u small enough.
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14.6 Convexity, Convexity Radius

Proposition 13.5 shows that if (M, g) is a Riemannian
manifold, then for every point p 2 M , there is an open
subset W ✓ M with p 2 W and a number ✏ > 0, so
that any two points q1, q2 of W are joined by a unique
geodesic of length < ✏.

However, there is no guarantee that this unique geodesic
between q1 and q2 stays inside W .

Intuitively this says that W may not be convex.

The notion of convexity can be generalized to Riemannian
manifolds, but there are some subtleties.

In this short section we review various definition or con-
vexity found in the literature and state one basic result.
Following Sakai [40] (Chapter IV, Section 5), we make
the following definition:
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Definition 14.9. Let C ✓ M be a nonempty subset of
some Riemannian manifold M .

(1) The set C is called strongly convex i↵ for any two
points p, q 2 C, there exists a unique minimal geodesic
� from p to q in M and � is contained in C.

(2) If for every point p 2 C, there is some ✏(p) > 0 so
that C \B✏(p)(p) is strongly convex, then we say that
C is locally convex (where B✏(p)(p) is the metric ball
of center 0 and radius ✏(p)).

(3) The set C is called totally convex i↵ for any two
points p, q 2 C, all geodesics from p to q in M are
contained in C.

It is clear that if C is strongly convex or totally convex,
then C is locally convex.
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If M is complete and any two points are joined by a
unique geodesic, then the three conditions of Definition
14.9 are equivalent.

Definition 14.10. For any p 2 M , the convexity ra-
dius at p, denoted r(p), is the least upper bound of the
numbers r > 0 such that for any metric ball B✏(q), if
B✏(q) ✓ Br(p), then B✏(q) is strongly convex and every
geodesic contained in Br(p) is a minimal geodesic joining
its endpoints.

The convexity radius of M r(M) is the greatest lower
bound of the set {r(p) | p 2 M}.

Note that it is possible that r(p) = 0 if M is not compact.
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The following proposition is proved in Sakai [40] (Chapter
IV, Section 5, Theorem 5.3).

Proposition 14.20. If M is a Riemannian mani-
fold, then r(p) > 0 for every p 2 M , and the map
p 7! r(p) 2 R+ [ {1} is continuous. Furthermore,
if r(p) = 1 for some p 2 M , then r(q) = 1 for all
q 2 M .

That r(p) > 0 is also proved in Do Carmo [13] (Chapter
3, Section 4, Proposition 4.2). More can be said about
the structure of connected locally convex subsets of M ;
see Sakai [40] (Chapter IV, Section 5).
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Remark: The following facts are stated in Berger [3]
(Chapter 6):

(1) If M is compact, then the convexity radius r(M) is
strictly positive.

(2) r(M)  1
2i(M), where i(M) is the injectivity radius

of M .

Berger also points out that if M is compact, then the
existence of a finite cover by convex balls can used to
triangulate M .

This method was proposed by Hermann Karcher (see
Berger [3], Chapter 3, Note 3.4.5.3).
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14.7 Applications of Jacobi Fields and
Conjugate Points

Jacobi fields and conjugate points are basic tools that
can be used to prove many global results of Riemannian
geometry.

The flavor of these results is that certain constraints on
curvature (sectional, Ricci, sectional) have a significant
impact on the topology.

One may want consider the e↵ect of non-positive curva-
ture, constant curvature, curvature bounded from below
by a positive constant, etc.

This is a vast subject and we highly recommend Berger’s
Panorama of Riemannian Geometry [3] for a masterly
survey.

We will content ourselves with three results:
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(1) Hadamard and Cartan’s Theorem about complete man-
ifolds of non-positive sectional curvature.

(2) Myers’ Theorem about complete manifolds of Ricci
curvature bounded from below by a positive number.

(3) The Morse Index Theorem.

First, on the way to Hadamard and Cartan, we begin
with a proposition.

Proposition 14.21. Let M be a complete Rieman-
nian manifold with non-positive curvature K  0.
Then, for every geodesic � 2 ⌦(p, q), there are no
conjugate points to p along �. Consequently, the ex-
ponential map expp : TpM ! M is a local di↵eomor-
phism for all p 2 M .
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Theorem 14.22. (Hadamard–Cartan) Let M be a
complete Riemannian manifold. If M has non-positive
sectional curvature K  0, then the following hold:

(1) For every p 2 M , the map expp : TpM ! M is a
Riemannian covering.

(2) If M is simply connected then M is di↵eomor-
phic to Rn, where n = dim(M); more precisely,
expp : TpM ! M is a di↵eomorphism for all p 2
M . Furthermore, any two points on M are joined
by a unique minimal geodesic.

Remark: A version of Theorem 14.22 was first proved
by Hadamard and then extended by Cartan.

Theorem 14.22 was generalized by Kobayashi, see Kobayashi
and Nomizu [22] (Chapter VIII, Remark 2 after Corollary
8.2).



730 CHAPTER 14. CURVATURE IN RIEMANNIAN MANIFOLDS

Also, it is shown in Milnor [28] that if M is complete,
assuming non-positive sectional curvature, then all ho-
motopy groups ⇡i(M) vanish for i > 1, and that ⇡1(M)
has no element of finite order except the identity.

Finally, non-positive sectional curvature implies that the
exponential map does not decrease distance (Kobayashi
and Nomizu [22], Chapter VIII, Section 8, Lemma 3).

We now turn to manifolds with strictly positive curvature
bounded away from zero and to Myers’ Theorem.

The first version of such a theorem was first proved by
Bonnet for surfaces with positive sectional curvature
bounded away from zero.
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It was then generalized by Myers in 1941. For these
reasons, this theorem is sometimes called the Bonnet-
Myers’ Theorem. The proof of Myers Theorem involves
a beautiful “trick.”

Given any metric space X , recall that the diameter of
X is defined by

diam(X) = sup{d(p, q) | p, q 2 X}.

The diameter of X may be infinite.

Theorem 14.23. (Myers) Let M be a complete Rie-
mannian manifold of dimension n and assume that

Ric(u, u) � (n�1)/r2, for all unit vectors, u 2 TpM,

and for all p 2 M,

with r > 0. Then,

(1) The diameter of M is bounded by ⇡r and M is
compact.

(2) The fundamental group of M is finite.
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Remarks:

(1) The condition on the Ricci curvature cannot be weak-
ened to Ric(u, u) > 0 for all unit vectors.

Indeed, the paraboloid of revolution z = x2 + y2 sat-
isfies the above condition, yet it is not compact.

(2) Theorem 14.23 also holds under the stronger condition
that the sectional curvature K(u, v) satisfies

K(u, v) � (n � 1)/r2,

for all orthonormal vectors, u, v. In this form, it is
due to Bonnet (for surfaces).

It would be a pity not to include in this section a beautiful
theorem due to Morse.
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Theorem 14.24. (Morse Index Theorem) Given a
geodesic � 2 ⌦(p, q), the index � of the index form
I : T�⌦(p, q) ⇥ T�⌦(p, q) ! R is equal to the number
of points �(t), with 0  t  1, such that �(t) is con-
jugate to p = �(0) along �, each such conjugate point
counted with its multiplicity. The index � is always
finite.

As a corollary of Theorem 14.24, we see that there are
only finitely many points which are conjugate to p = �(0)
along �.

A proof of Theorem 14.24 can be found in Milnor [28]
(Part III, Section 15) and also in Do Carmo [13] (Chapter
11) or Kobayashi and Nomizu [22] (Chapter VIII, Section
6).

In the next section, we will use conjugate points to give
a more precise characterization of the cut locus.
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14.8 Cut Locus and Injectivity Radius:
Some Properties

We begin by reviewing the definition of the cut locus from
a slightly di↵erent point of view.

Let M be a complete Riemannian manifold of dimension
n. There is a bundle UM , called the unit tangent bun-
dle , such that the fibre at any p 2 M is the unit sphere
Sn�1 ✓ TpM (check the details).

As usual, we let ⇡ : UM ! M denote the projection map
which sends every point in the fibre over p to p.

Then, we have the function

⇢ : UM ! R,

defined so that for all p 2 M , for all v 2 Sn�1 ✓ TpM ,

⇢(v) = sup
t2R[{1}

d(⇡(v), expp(tv)) = t

= sup{t 2 R [ {1} |
the geodesic t 7! expp(tv) is minimal on [0, t]}.
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The number ⇢(v) is called the cut value of v.

It can be shown that ⇢ is continuous, and for every p 2
M , we let

gCut(p) = {⇢(v)v 2 TpM | v 2 UM\TpM, ⇢(v) is finite}

be the tangential cut locus of p, and

Cut(p) = expp(gCut(p))

be the cut locus of p.

The point expp(⇢(v)v) in M is called the cut point of the
geodesic t 7! expp(vt), and so the cut locus of p is the
set of cut points of all the geodesics emanating from p.
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Also recall from Definition 13.8 that

Up = {v 2 TpM | ⇢(v) > 1},

and that Up is open and star-shaped. It can be shown
that

gCut(p) = @Up,

and the following property holds:

Theorem 14.25. If M is a complete Riemannian
manifold, then for every p 2 M , the exponential map
expp is a di↵eomorphism between Up and its image
expp(Up) = M � Cut(p) in M .

Theorem 14.25 implies that the cut locus is closed.
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Remark: In fact, M �Cut(p) can be retracted homeo-
morphically onto a ball around p, and Cut(p) is a defor-
mation retract of M � {p}.

The following Proposition gives a rather nice characteri-
zation of the cut locus in terms of minimizing geodesics
and conjugate points:

Proposition 14.26. Let M be a complete Rieman-
nian manifold. For every pair of points p, q 2 M , the
point q belongs to the cut locus of p i↵ one of the two
(not mutually exclusive from each other) properties
hold:

(a) There exist two distinct minimizing geodesics from
p to q.

(b) There is a minimizing geodesic � from p to q, and
q is the first conjugate point to p along �.
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Observe that Proposition 14.26 implies the following sym-
metry property of the cut locus: q 2 Cut(p) i↵ p 2
Cut(q). Furthermore, if M is compact, we have

p =
\

q2Cut(p)

Cut(q).

Proposition 14.26 admits the following sharpening:

Proposition 14.27. Let M be a complete Rieman-
nian manifold. For all p, q 2 M , if
q 2 Cut(p), then:

(a) If among the minimizing geodesics from p to q,
there is one, say �, such that q is not conjugate
to p along �, then there is another minimizing
geodesic ! 6= � from p to q.
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(b) Suppose q 2 Cut(p) realizes the distance from p
to Cut(p) (i.e. d(p, q) = d(p,Cut(p))). If there
are no minimal geodesics from p to q such that q
is conjugate to p along this geodesic, then there
are exactly two minimizing geodesics �1 and �2

from p to q, with �0
2(1) = ��0

1(1). Moreover, if
d(p, q) = i(M) (the injectivity radius), then �1 and
�2 together form a closed geodesic.

We also have the following characterization of gCut(p):

Proposition 14.28. Let M be a complete Rieman-
nian manifold. For any p 2 M , the set of vectors
u 2 gCut(p) such that is some v 2 gCut(p) with v 6= u
and expp(u) = expp(v) is dense in gCut(p).
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We conclude this section by stating a classical theorem of
Klingenberg about the injectivity radius of a manifold of
bounded positive sectional curvature.

Theorem 14.29. (Klingenberg) Let M be a complete
Riemannian manifold and assume that there are some
positive constants Kmin, Kmax, such that the sectional
curvature of K satisfies

0 < Kmin  K  Kmax.

Then, M is compact, and either

(a) i(M) � ⇡/
p

Kmax, or

(b) There is a closed geodesic � of minimal length
among all closed geodesics in M and such that

i(M) =
1

2
L(�).

The proof of Theorem 14.29 is quite hard. A proof using
Rauch’s comparison Theorem can be found in Do Carmo
[13] (Chapter 13, Proposition 2.13).
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