Chapter 11

Riemannian Metrics, Riemannian Manifolds

11.1 Frames

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can, to a great extent, be lifted to the tangent bundle of a manifold.

The idea is to equip the tangent space T_pM at p to the manifold M with an inner product $\langle -, -\rangle_p$, in such a way that these inner products vary smoothly as p varies on M.

It is then possible to define the length of a curve segment on a M and to define the distance between two points on M.

The notion of local (and global) frame plays an important technical role.

Definition 11.1. Let M be an n-dimensional smooth manifold. For any open subset, $U \subseteq M$, an n-tuple of vector fields, (X_1, \ldots, X_n) , over U is called a $frame\ over\ U$ iff $(X_1(p), \ldots, X_n(p))$ is a basis of the tangent space, T_pM , for every $p \in U$. If U = M, then the X_i are global sections and (X_1, \ldots, X_n) is called a $frame\ (of\ M)$.

The notion of a frame is due to Élie Cartan who (after Darboux) made extensive use of them under the name of moving frame (and the moving frame method).

Cartan's terminology is intuitively clear: As a point, p, moves in U, the frame, $(X_1(p), \ldots, X_n(p))$, moves from fibre to fibre. Physicists refer to a frame as a choice of local gauge.

11.1. FRAMES 583

If $\dim(M) = n$, then for every chart, (U, φ) , since $d\varphi_{\varphi(p)}^{-1} : \mathbb{R}^n \to T_pM$ is a bijection for every $p \in U$, the n-tuple of vector fields, (X_1, \ldots, X_n) , with $X_i(p) = d\varphi_{\varphi(p)}^{-1}(e_i)$, is a frame of TM over U, where (e_1, \ldots, e_n) is the canonical basis of \mathbb{R}^n .

The following proposition tells us when the tangent bundle is trivial (that is, isomorphic to the product, $M \times \mathbb{R}^n$):

Proposition 11.1. The tangent bundle, TM, of a smooth n-dimensional manifold, M, is trivial iff it possesses a frame of global sections (vector fields defined on M).

As an illustration of Proposition 11.1 we can prove that the tangent bundle, TS^1 , of the circle, is trivial.

Indeed, we can find a section that is everywhere nonzero, *i.e.* a non-vanishing vector field, namely

$$X(\cos\theta, \sin\theta) = (-\sin\theta, \cos\theta).$$

The reader should try proving that TS^3 is also trivial (use the quaternions).

However, TS^2 is nontrivial, although this not so easy to prove.

More generally, it can be shown that TS^n is nontrivial for all even $n \geq 2$. It can even be shown that S^1 , S^3 and S^7 are the only spheres whose tangent bundle is trivial. This is a rather deep theorem and its proof is hard.

Remark: A manifold, M, such that its tangent bundle, TM, is trivial is called parallelizable.

We now define Riemannian metrics and Riemannian manifolds.

11.2 Riemannian Metrics

Definition 11.2. Given a smooth n-dimensional manifold, M, a $Riemannian\ metric\ on\ M\ (or\ TM)$ is a family, $(\langle -, -\rangle_p)_{p\in M}$, of inner products on each tangent space, T_pM , such that $\langle -, -\rangle_p$ depends smoothly on p, which means that for every chart, $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$, for every frame, (X_1,\ldots,X_n) , on U_α , the maps

$$p \mapsto \langle X_i(p), X_j(p) \rangle_p, \qquad p \in U_\alpha, \ 1 \le i, j \le n$$

are smooth. A smooth manifold, M, with a Riemannian metric is called a $Riemannian\ manifold$.

If $\dim(M) = n$, then for every chart, (U, φ) , we have the frame, (X_1, \ldots, X_n) , over U, with $X_i(p) = d\varphi_{\varphi(p)}^{-1}(e_i)$, where (e_1, \ldots, e_n) is the canonical basis of \mathbb{R}^n . Since every vector field over U is a linear combination, $\sum_{i=1}^n f_i X_i$, for some smooth functions, $f_i \colon U \to \mathbb{R}$, the condition of Definition 11.2 is equivalent to the fact that the maps,

$$p \mapsto \langle d\varphi_{\varphi(p)}^{-1}(e_i), d\varphi_{\varphi(p)}^{-1}(e_j) \rangle_p, \qquad p \in U, \ 1 \le i, j \le n,$$
 are smooth.

If we let $x = \varphi(p)$, the above condition says that the maps,

 $x \mapsto \langle d\varphi_x^{-1}(e_i), d\varphi_x^{-1}(e_j) \rangle_{\varphi^{-1}(x)}, \quad x \in \varphi(U), 1 \le i, j \le n,$ are smooth.

If M is a Riemannian manifold, the metric on TM is often denoted $g = (g_p)_{p \in M}$. In a chart, using local coordinates, we often use the notation $g = \sum_{ij} g_{ij} dx_i \otimes dx_j$ or simply $g = \sum_{ij} g_{ij} dx_i dx_j$, where

$$g_{ij}(p) = \left\langle \left(\frac{\partial}{\partial x_i}\right)_p, \left(\frac{\partial}{\partial x_j}\right)_p \right\rangle_p.$$

For every $p \in U$, the matrix, $(g_{ij}(p))$, is symmetric, positive definite.

The standard Euclidean metric on \mathbb{R}^n , namely,

$$g = dx_1^2 + \dots + dx_n^2,$$

makes \mathbb{R}^n into a Riemannian manifold.

Then, every submanifold, M, of \mathbb{R}^n inherits a metric by restricting the Euclidean metric to M.

For example, the sphere, S^{n-1} , inherits a metric that makes S^{n-1} into a Riemannian manifold. It is a good exercise to find the local expression of this metric for S^2 in spherical coordinates.

A nontrivial example of a Riemannian manifold is the Poincaré upper half-space, namely, the set $H = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ equipped with the metric

$$g = \frac{dx^2 + dy^2}{y^2}.$$

Consider the Lie group SO(n).

We know from Section 5.2 that its tangent space at the identity $T_I \mathbf{SO}(n)$ is the vector space $\mathfrak{so}(n)$ of $n \times n$ skew symmetric matrices, and that the tangent space $T_Q \mathbf{SO}(n)$ to $\mathbf{SO}(n)$ at Q is isomorphic to

$$Q\mathfrak{so}(n) = \{QB \mid B \in \mathfrak{so}(n)\}.$$

If we give $\mathfrak{so}(n)$ the inner product

$$\langle B_1, B_2 \rangle = \text{tr}(B_1^{\top} B_2) = -\text{tr}(B_1 B_2),$$

the inner product on T_Q **SO**(n) is given by

$$\langle QB_1, QB_2 \rangle = \operatorname{tr}((QB_1)^{\top}QB_2) = \operatorname{tr}(B_1^{\top}B_2).$$

We will see in Chapter 13 that the length $L(\gamma)$ of the curve segment γ from I to e^B given by $t \mapsto e^{tB}$ (with $B \in \mathfrak{so}(n)$) is given by

$$L(\gamma) = \left(\operatorname{tr}(-B^2)\right)^{\frac{1}{2}}.$$

More generally, given any Lie group G, any inner product $\langle -, - \rangle$ on its Lie algebra \mathfrak{g} induces by left translation an inner product $\langle -, - \rangle_g$ on T_gG for every $g \in G$, and this yields a Riemannian metric on G (which happens to be left-invariant; see Chapter ??).

Going back to the second example of Section 5.5, where we computed the differential df_R of the function $f: \mathbf{SO}(3) \to \mathbb{R}$ given by

$$f(R) = (u^{\top}Rv)^2,$$

we found that

$$df_R(X) = 2u^{\top} X v u^{\top} R v, \quad X \in R\mathfrak{so}(3).$$

Since each tangent space T_R **SO**(3) is a Euclidean space under the inner product defined above, by duality (see Proposition ?? applied to the pairing $\langle -, - \rangle$), there is a unique vector $Y \in T_R$ **SO**(3) defining the linear form df_R ; that is,

$$\langle Y, X \rangle = df_R(X)$$
, for all $X \in T_R$ **SO**(3).

By definition, the vector Y is the *gradient of* f *at* R, denoted $(\operatorname{grad}(f))_R$.

We leave it as an exercise to prove that the gradient of f at R is given by

$$(\operatorname{grad}(f))_R = u^{\top} R v R (R^{\top} u v^{\top} - v u^{\top} R).$$

More generally, if $(M, \langle -, - \rangle)$ is a smooth manifold with a Riemannian metric and if $f: M \to \mathbb{R}$ is a smooth function on M, the unique smooth vector field $\operatorname{grad}(f)$ defined such that

$$\langle (\operatorname{grad}(f))_p, u \rangle_p = df_p(u),$$
 for all $p \in M$ and all $u \in T_pM$

is called the *gradient of* f.

It is usually complicated to find the gradient of a function.

A way to obtain a metric on a manifold, N, is to pull-back the metric, g, on another manifold, M, along a local diffeomorphism, $\varphi \colon N \to M$.

Recall that φ is a local diffeomorphism iff

$$d\varphi_p \colon T_p N \to T_{\varphi(p)} M$$

is a bijective linear map for every $p \in N$.

Given any metric g on M, if φ is a local diffeomorphism, we define the $pull-back\ metric$, φ^*g , on N induced by g as follows: For all $p \in N$, for all $u, v \in T_pN$,

$$(\varphi^*g)_p(u,v) = g_{\varphi(p)}(d\varphi_p(u), d\varphi_p(v)).$$

We need to check that $(\varphi^*g)_p$ is an inner product, which is very easy since $d\varphi_p$ is a linear isomorphism.

Our map, φ , between the two Riemannian manifolds (N, φ^*g) and (M, g) is a local isometry, as defined below.

Definition 11.3. Given two Riemannian manifolds, (M_1, g_1) and (M_2, g_2) , a *local isometry* is a smooth map, $\varphi \colon M_1 \to M_2$, such that $d\varphi_p \colon T_p M_1 \to T_{\varphi(p)} M_2$ is an isometry between the Euclidean spaces $(T_p M_1, (g_1)_p)$ and $(T_{\varphi(p)} M_2, (g_2)_{\varphi(p)})$, for every $p \in M_1$, that is,

$$(g_1)_p(u,v) = (g_2)_{\varphi(p)}(d\varphi_p(u), d\varphi_p(v)),$$

for all $u, v \in T_pM_1$ or, equivalently, $\varphi^*g_2 = g_1$. Moreover, φ is an *isometry* iff it is a local isometry and a diffeomorphism.

The isometries of a Riemannian manifold, (M, g), form a group, Isom(M, g), called the *isometry group of* (M, g).

An important theorem of Myers and Steenrod asserts that the isometry group, Isom(M, g), is a Lie group.

Given a map, $\varphi \colon M_1 \to M_2$, and a metric g_1 on M_1 , in general, φ does not induce any metric on M_2 .

However, if φ has some extra properties, it does induce a metric on M_2 . This is the case when M_2 arises from M_1 as a quotient induced by some group of isometries of M_1 . For more on this, see Gallot, Hulin and Lafontaine [17], Chapter 2, Section 2.A.

Now, because a manifold is paracompact (see Section 7.1), a Riemannian metric always exists on M. This is a consequence of the existence of partitions of unity (see Theorem 7.4).

Theorem 11.2. Every smooth manifold admits a Riemannian metric.