Chapter 5

Riemannian Manifolds and Connections

5.1 Riemannian Metrics

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can, to a great extent, be lifted to various bundles associated with a manifold.

The notion of local (and global) frame plays an important technical role.

Definition 5.1. Let M be an n-dimensional smooth manifold. For any open subset, $U \subseteq M$, an n-tuple of vector fields, $\left(X_{1}, \ldots, X_{n}\right)$, over U is called a frame over U iff $\left(X_{1}(p), \ldots, X_{n}(p)\right)$ is a basis of the tangent space, $T_{p} M$, for every $p \in U$. If $U=M$, then the X_{i} are global sections and $\left(X_{1}, \ldots, X_{n}\right)$ is called a frame (of M).

The notion of a frame is due to Élie Cartan who (after Darboux) made extensive use of them under the name of moving frame (and the moving frame method).

Cartan's terminology is intuitively clear: As a point, p, moves in U, the frame, $\left(X_{1}(p), \ldots, X_{n}(p)\right)$, moves from fibre to fibre. Physicists refer to a frame as a choice of local gauge.

If $\operatorname{dim}(M)=n$, then for every chart, (U, φ), since $d \varphi_{\varphi(p)}^{-1}: \mathbb{R}^{n} \rightarrow T_{p} M$ is a bijection for every $p \in U$, the n-tuple of vector fields, $\left(X_{1}, \ldots, X_{n}\right)$, with $X_{i}(p)=d \varphi_{\varphi(p)}^{-1}\left(e_{i}\right)$, is a frame of $T M$ over U, where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbb{R}^{n}.

The following proposition tells us when the tangent bundle is trivial (that is, isomorphic to the product, $M \times \mathbb{R}^{n}$):

Proposition 5.1. The tangent bundle, TM, of a smooth n-dimensional manifold, M, is trivial iff it possesses a frame of global sections (vector fields defined on M).

As an illustration of Proposition 5.1 we can prove that the tangent bundle, $T S^{1}$, of the circle, is trivial.

Indeed, we can find a section that is everywhere nonzero, i.e. a non-vanishing vector field, namely

$$
X(\cos \theta, \sin \theta)=(-\sin \theta, \cos \theta)
$$

The reader should try proving that $T S^{3}$ is also trivial (use the quaternions).

However, $T S^{2}$ is nontrivial, although this not so easy to prove.

More generally, it can be shown that $T S^{n}$ is nontrivial for all even $n \geq 2$. It can even be shown that S^{1}, S^{3} and S^{7} are the only spheres whose tangent bundle is trivial. This is a rather deep theorem and its proof is hard.

Remark: A manifold, M, such that its tangent bundle, $T M$, is trivial is called parallelizable.

We now define Riemannian metrics and Riemannian manifolds.

Definition 5.2. Given a smooth n-dimensional manifold, M, a Riemannian metric on M (or TM) is a family, $\left(\langle-,-\rangle_{p}\right)_{p \in M}$, of inner products on each tangent space, $T_{p} M$, such that $\langle-,-\rangle_{p}$ depends smoothly on p, which means that for every chart, $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$, for every frame, $\left(X_{1}, \ldots, X_{n}\right)$, on U_{α}, the maps

$$
p \mapsto\left\langle X_{i}(p), X_{j}(p)\right\rangle_{p}, \quad p \in U_{\alpha}, \quad 1 \leq i, j \leq n
$$

are smooth. A smooth manifold, M, with a Riemannian metric is called a Riemannian manifold.

If $\operatorname{dim}(M)=n$, then for every chart, (U, φ), we have the frame, $\left(X_{1}, \ldots, X_{n}\right)$, over U, with $X_{i}(p)=d \varphi_{\varphi(p)}^{-1}\left(e_{i}\right)$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbb{R}^{n}. Since every vector field over U is a linear combination, $\sum_{i=1}^{n} f_{i} X_{i}$, for some smooth functions, $f_{i}: U \rightarrow \mathbb{R}$, the condition of Definition 5.2 is equivalent to the fact that the maps,

$$
p \mapsto\left\langle d \varphi_{\varphi(p)}^{-1}\left(e_{i}\right), d \varphi_{\varphi(p)}^{-1}\left(e_{j}\right)\right\rangle_{p}, \quad p \in U, 1 \leq i, j \leq n
$$

are smooth. If we let $x=\varphi(p)$, the above condition says that the maps,
$x \mapsto\left\langle d \varphi_{x}^{-1}\left(e_{i}\right), d \varphi_{x}^{-1}\left(e_{j}\right)\right\rangle_{\varphi^{-1}(x)}, \quad x \in \varphi(U), 1 \leq i, j \leq n$, are smooth.

If M is a Riemannian manifold, the metric on $T M$ is often denoted $g=\left(g_{p}\right)_{p \in M}$. In a chart, using local coordinates, we often use the notation $g=\sum_{i j} g_{i j} d x_{i} \otimes d x_{j}$ or simply $g=\sum_{i j} g_{i j} d x_{i} d x_{j}$, where

$$
g_{i j}(p)=\left\langle\left(\frac{\partial}{\partial x_{i}}\right)_{p},\left(\frac{\partial}{\partial x_{j}}\right)_{p}\right\rangle_{p}
$$

For every $p \in U$, the matrix, $\left(g_{i j}(p)\right)$, is symmetric, positive definite.

The standard Euclidean metric on \mathbb{R}^{n}, namely,

$$
g=d x_{1}^{2}+\cdots+d x_{n}^{2}
$$

makes \mathbb{R}^{n} into a Riemannian manifold.

Then, every submanifold, M, of \mathbb{R}^{n} inherits a metric by restricting the Euclidean metric to M.

For example, the sphere, S^{n-1}, inherits a metric that makes S^{n-1} into a Riemannian manifold. It is a good exercise to find the local expression of this metric for S^{2} in polar coordinates.

A nontrivial example of a Riemannian manifold is the Poincaré upper half-space, namely, the set $H=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ equipped with the metric

$$
g=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

A way to obtain a metric on a manifold, N, is to pullback the metric, g, on another manifold, M, along a local diffeomorphism, $\varphi: N \rightarrow M$.

Recall that φ is a local diffeomorphism iff

$$
d \varphi_{p}: T_{p} N \rightarrow T_{\varphi(p)} M
$$

is a bijective linear map for every $p \in N$.

Given any metric g on M, if φ is a local diffeomorphism, we define the pull-back metric, $\varphi^{*} g$, on N induced by g as follows: For all $p \in N$, for all $u, v \in T_{p} N$,

$$
\left(\varphi^{*} g\right)_{p}(u, v)=g_{\varphi(p)}\left(d \varphi_{p}(u), d \varphi_{p}(v)\right)
$$

We need to check that $\left(\varphi^{*} g\right)_{p}$ is an inner product, which is very easy since $d \varphi_{p}$ is a linear isomorphism.

Our map, φ, between the two Riemannian manifolds $\left(N, \varphi^{*} g\right)$ and (M, g) is a local isometry, as defined below.

Definition 5.3. Given two Riemannian manifolds, (M_{1}, g_{1}) and (M_{2}, g_{2}), a local isometry is a smooth map, $\varphi: M_{1} \rightarrow M_{2}$, such that $d \varphi_{p}: T_{p} M_{1} \rightarrow T_{\varphi(p)} M_{2}$ is an isometry between the Euclidean spaces $\left(T_{p} M_{1},\left(g_{1}\right)_{p}\right)$ and $\left(T_{\varphi(p)} M_{2},\left(g_{2}\right)_{\varphi(p)}\right)$, for every $p \in M_{1}$, that is,

$$
\left(g_{1}\right)_{p}(u, v)=\left(g_{2}\right)_{\varphi(p)}\left(d \varphi_{p}(u), d \varphi_{p}(v)\right),
$$

for all $u, v \in T_{p} M_{1}$ or, equivalently, $\varphi^{*} g_{2}=g_{1}$. Moreover, φ is an isometry iff it is a local isometry and a diffeomorphism.

The isometries of a Riemannian manifold, (M, g), form a group, $\operatorname{Isom}(M, g)$, called the isometry group of (M, g).

An important theorem of Myers and Steenrod asserts that the isometry group, $\operatorname{Isom}(M, g)$, is a Lie group.

Given a map, $\varphi: M_{1} \rightarrow M_{2}$, and a metric g_{1} on M_{1}, in general, φ does not induce any metric on M_{2}.

However, if φ has some extra properties, it does induce a metric on M_{2}. This is the case when M_{2} arises from M_{1} as a quotient induced by some group of isometries of M_{1}. For more on this, see Gallot, Hulin and Lafontaine [17], Chapter 2, Section 2.A.

Now, because a manifold is paracompact (see Section 3.6), a Riemannian metric always exists on M. This is a consequence of the existence of partitions of unity (see Theorem 3.32).

Theorem 5.2. Every smooth manifold admits a Riemannian metric.

5.2 Connections on Manifolds

Given a manifold, M, in general, for any two points, $p, q \in M$, there is no "natural" isomorphism between the tangent spaces $T_{p} M$ and $T_{q} M$.

Given a curve, $c:[0,1] \rightarrow M$, on M as $c(t)$ moves on M, how does the tangent space, $T_{c(t)} M$ change as $c(t)$ moves?

If $M=\mathbb{R}^{n}$, then the spaces, $T_{c(t)} \mathbb{R}^{n}$, are canonically isomorphic to \mathbb{R}^{n} and any vector, $v \in T_{c(0)} \mathbb{R}^{n} \cong \mathbb{R}^{n}$, is simply moved along c by parallel transport, that is, at $c(t)$, the tangent vector, v, also belongs to $T_{c(t)} \mathbb{R}^{n}$.

However, if M is curved, for example, a sphere, then it is not obvious how to "parallel transport" a tangent vector at $c(0)$ along a curve c.

A way to achieve this is to define the notion of parallel vector field along a curve and this, in turn, can be defined in terms of the notion of covariant derivative of a vector field.

Assume for simplicity that M is a surface in \mathbb{R}^{3}. Given any two vector fields, X and Y defined on some open subset, $U \subseteq \mathbb{R}^{3}$, for every $p \in U$, the directional derivative, $D_{X} Y(p)$, of Y with respect to X is defined by

$$
D_{X} Y(p)=\lim _{t \rightarrow 0} \frac{Y(p+t X(p))-Y(p)}{t}
$$

If $f: U \rightarrow \mathbb{R}$ is a differentiable function on U, for every $p \in U$, the directional derivative, $X[f](p)($ or $X(f)(p))$, of f with respect to X is defined by

$$
X[f](p)=\lim _{t \rightarrow 0} \frac{f(p+t X(p))-f(p)}{t}
$$

We know that $X[f](p)=d f_{p}(X(p))$.

It is easily shown that $D_{X} Y(p)$ is \mathbb{R}-bilinear in X and Y, is $C^{\infty}(U)$-linear in X and satisfies the Leibniz derivation rule with respect to Y, that is:

Proposition 5.3. The directional derivative of vector fields satisfies the following properties:

$$
\begin{aligned}
& D_{X_{1}+X_{2}} Y(p)=D_{X_{1}} Y(p)+D_{X_{2}} Y(p) \\
& D_{f X} Y(p)=f D_{X} Y(p) \\
& D_{X}\left(Y_{1}+Y_{2}\right)(p)=D_{X} Y_{1}(p)+D_{X} Y_{2}(p) \\
& D_{X}(f Y)(p)=X[f](p) Y(p)+f(p) D_{X} Y(p) \\
& \text { for all } X, X_{1}, X_{2}, Y, Y_{1}, Y_{2} \in \mathfrak{X}(U) \text { and all } f \in C^{\infty}(U) .
\end{aligned}
$$

Now, if $p \in U$ where $U \subseteq M$ is an open subset of M, for any vector field, Y, defined on $U\left(Y(p) \in T_{p} M\right.$, for all $p \in U)$, for every $X \in T_{p} M$, the directional derivative, $D_{X} Y(p)$, makes sense and it has an orthogonal decomposition,

$$
D_{X} Y(p)=\nabla_{X} Y(p)+\left(D_{n}\right)_{X} Y(p)
$$

where its horizontal (or tangential) component is $\nabla_{X} Y(p) \in T_{p} M$ and its normal component is $\left(D_{n}\right)_{X} Y(p)$.

The component, $\nabla_{X} Y(p)$, is the covariant derivative of Y with respect to $X \in T_{p} M$ and it allows us to define the covariant derivative of a vector field, $Y \in \mathfrak{X}(U)$, with respect to a vector field, $X \in \mathfrak{X}(M)$, on M.

We easily check that $\nabla_{X} Y$ satisfies the four equations of Proposition 5.3.

In particular, Y, may be a vector field associated with a curve, $c:[0,1] \rightarrow M$.

A vector field along a curve, c, is a vector field, Y, such that $Y(c(t)) \in T_{c(t)} M$, for all $t \in[0,1]$. We also write $Y(t)$ for $Y(c(t))$.

Then, we say that Y is parallel along c iff $\nabla_{c^{\prime}(t)} Y=0$ along c.

The notion of parallel transport on a surface can be defined using parallel vector fields along curves. Let p, q be any two points on the surface M and assume there is a curve, $c:[0,1] \rightarrow M$, joining $p=c(0)$ to $q=c(1)$.

Then, using the uniqueness and existence theorem for ordinary differential equations, it can be shown that for any initial tangent vector, $Y_{0} \in T_{p} M$, there is a unique parallel vector field, Y, along c, with $Y(0)=Y_{0}$.

If we set $Y_{1}=Y(1)$, we obtain a linear map, $Y_{0} \mapsto Y_{1}$, from $T_{p} M$ to $T_{q} M$ which is also an isometry.

As a summary, given a surface, M, if we can define a notion of covariant derivative, $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$, satisfying the properties of Proposition 5.3, then we can define the notion of parallel vector field along a curve and the notion of parallel transport, which yields a natural way of relating two tangent spaces, $T_{p} M$ and $T_{q} M$, using curves joining p and q.

This can be generalized to manifolds using the notion of connection. We will see that the notion of connection induces the notion of curvature. Moreover, if M has a Riemannian metric, we will see that this metric induces a unique connection with two extra properties (the LeviCivita connection).

Definition 5.4. Let M be a smooth manifold.
A connection on M is a \mathbb{R}-bilinear map,

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

where we write $\nabla_{X} Y$ for $\nabla(X, Y)$, such that the following two conditions hold:

$$
\begin{aligned}
\nabla_{f X} Y & =f \nabla_{X} Y \\
\nabla_{X}(f Y) & =X[f] Y+f \nabla_{X} Y
\end{aligned}
$$

for all $X, Y \in \mathfrak{X}(M)$ and all $f \in C^{\infty}(M)$. The vector field, $\nabla_{X} Y$, is called the covariant derivative of Y with respect to X.

A connection on M is also known as an affine connection on M.

A basic property of ∇ is that it is a local operator.

Proposition 5.4. Let M be a smooth manifold and let ∇ be a connection on M. For every open subset, $U \subseteq M$, for every vector field, $Y \in \mathfrak{X}(M)$, if
$Y \equiv 0$ on U, then $\nabla_{X} Y \equiv 0$ on U for all $X \in \mathfrak{X}(M)$, that is, ∇ is a local operator.

Proposition 5.4 implies that a connection, ∇, on M, restricts to a connection, $\nabla \upharpoonright U$, on every open subset, $U \subseteq M$.

It can also be shown that $\left(\nabla_{X} Y\right)(p)$ only depends on $X(p)$, that is, for any two vector fields, $X, Y \in \mathfrak{X}(M)$, if $X(p)=Y(p)$ for some $p \in M$, then

$$
\left(\nabla_{X} Z\right)(p)=\left(\nabla_{Y} Z\right)(p) \quad \text { for every } Z \in \mathfrak{X}(M)
$$

Consequently, for any $p \in M$, the covariant derivative, $\left(\nabla_{u} Y\right)(p)$, is well defined for any tangent vector, $u \in T_{p} M$, and any vector field, Y, defined on some open subset, $U \subseteq M$, with $p \in U$.

Observe that on U, the n-tuple of vector fields, $\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$, is a local frame.

We can write

$$
\nabla_{\frac{\partial}{\partial x_{i}}}\left(\frac{\partial}{\partial x_{j}}\right)=\sum_{k=1}^{n} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}
$$

for some unique smooth functions, $\Gamma_{i j}^{k}$, defined on U, called the Christoffel symbols.

We say that a connection, ∇, is flat on U iff

$$
\nabla_{X}\left(\frac{\partial}{\partial x_{i}}\right)=0, \quad \text { for all } \quad X \in \mathfrak{X}(U), 1 \leq i \leq n
$$

Proposition 5.5. Every smooth manifold, M, possesses a connection.

Proof. We can find a family of charts, $\left(U_{\alpha}, \varphi_{\alpha}\right)$, such that $\left\{U_{\alpha}\right\}_{\alpha}$ is a locally finite open cover of M. If $\left(f_{\alpha}\right)$ is a partition of unity subordinate to the cover $\left\{U_{\alpha}\right\}_{\alpha}$ and if ∇^{α} is the flat connection on U_{α}, then it is immediately verified that

$$
\nabla=\sum_{\alpha} f_{\alpha} \nabla^{\alpha}
$$

is a connection on M.

Remark: A connection on $T M$ can be viewed as a linear map,

$$
\nabla: \mathfrak{X}(M) \longrightarrow \operatorname{Hom}_{C^{\infty}(M)}(\mathfrak{X}(M),(\mathfrak{X}(M)),
$$

such that, for any fixed $Y \in \mathcal{X}(M)$, the map, $\nabla Y: X \mapsto \nabla_{X} Y$, is $C^{\infty}(M)$-linear, which implies that ∇Y is a $(1,1)$ tensor.

5.3 Parallel Transport

The notion of connection yields the notion of parallel transport. First, we need to define the covariant derivative of a vector field along a curve.

Definition 5.5. Let M be a smooth manifold and let $\gamma:[a, b] \rightarrow M$ be a smooth curve in M. A smooth vector field along the curve γ is a smooth map, $X:[a, b] \rightarrow T M$, such that $\pi(X(t))=\gamma(t)$, for all $t \in[a, b]\left(X(t) \in T_{\gamma(t)} M\right)$.

Recall that the curve, $\gamma:[a, b] \rightarrow M$, is smooth iff γ is the restriction to $[a, b]$ of a smooth curve on some open interval containing $[a, b]$.

Since a vector X field along a curve γ does not necessarily extend to an open subset of M (for example, if the image of γ is dense in M), the covariant derivative $\left(\nabla_{\gamma^{\prime}\left(t_{0}\right)} X\right)_{\gamma\left(t_{0}\right)}$ may not be defined, so we need a proposition showing that the covariant derivative of a vector field along a curve makes sense.

Proposition 5.6. Let M be a smooth manifold, let ∇ be a connection on M and $\gamma:[a, b] \rightarrow M$ be a smooth curve in M. There is a \mathbb{R}-linear map, $D / d t$, defined on the vector space of smooth vector fields, X, along γ, which satisfies the following conditions:
(1) For any smooth function, $f:[a, b] \rightarrow \mathbb{R}$,

$$
\frac{D(f X)}{d t}=\frac{d f}{d t} X+f \frac{D X}{d t}
$$

(2) If X is induced by a vector field, $Z \in \mathfrak{X}(M)$, that is, $X\left(t_{0}\right)=Z\left(\gamma\left(t_{0}\right)\right)$ for all $t_{0} \in[a, b]$, then $\frac{D X}{d t}\left(t_{0}\right)=\left(\nabla_{\gamma^{\prime}\left(t_{0}\right)} Z\right)_{\gamma\left(t_{0}\right)}$.

Proof. Since $\gamma([a, b])$ is compact, it can be covered by a finite number of open subsets, U_{α}, such that $\left(U_{\alpha}, \varphi_{\alpha}\right)$ is a chart. Thus, we may assume that $\gamma:[a, b] \rightarrow U$ for some chart, (U, φ). As $\varphi \circ \gamma:[a, b] \rightarrow \mathbb{R}^{n}$, we can write

$$
\varphi \circ \gamma(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right)
$$

where each $u_{i}=p r_{i} \circ \varphi \circ \gamma$ is smooth. Now, it is easy to see that

$$
\gamma^{\prime}\left(t_{0}\right)=\sum_{i=1}^{n} \frac{d u_{i}}{d t}\left(\frac{\partial}{\partial x_{i}}\right)_{\gamma\left(t_{0}\right)}
$$

If $\left(s_{1}, \ldots, s_{n}\right)$ is a frame over U, we can write

$$
X(t)=\sum_{i=1}^{n} X_{i}(t) s_{i}(\gamma(t))
$$

for some smooth functions, X_{i}.

Then, conditions (1) and (2) imply that

$$
\frac{D X}{d t}=\sum_{j=1}^{n}\left(\frac{d X_{j}}{d t} s_{j}(\gamma(t))+X_{j}(t) \nabla_{\gamma^{\prime}(t)}\left(s_{j}(\gamma(t))\right)\right)
$$

and since

$$
\gamma^{\prime}(t)=\sum_{i=1}^{n} \frac{d u_{i}}{d t}\left(\frac{\partial}{\partial x_{i}}\right)_{\gamma(t)}
$$

there exist some smooth functions, $\Gamma_{i j}^{k}$, so that

$$
\begin{aligned}
\nabla_{\gamma^{\prime}(t)}\left(s_{j}(\gamma(t))\right) & =\sum_{i=1}^{n} \frac{d u_{i}}{d t} \nabla_{\frac{\partial}{\partial x_{i}}}\left(s_{j}(\gamma(t))\right) \\
& =\sum_{i, k} \frac{d u_{i}}{d t} \Gamma_{i j}^{k} s_{k}(\gamma(t))
\end{aligned}
$$

It follows that

$$
\frac{D X}{d t}=\sum_{k=1}^{n}\left(\frac{d X_{k}}{d t}+\sum_{i j} \Gamma_{i j}^{k} \frac{d u_{i}}{d t} X_{j}\right) s_{k}(\gamma(t))
$$

Conversely, the above expression defines a linear operator, $D / d t$, and it is easy to check that it satisfies (1) and (2).

The operator, $D / d t$ is often called covariant derivative along γ and it is also denoted by $\nabla_{\gamma^{\prime}(t)}$ or simply $\nabla_{\gamma^{\prime}}$.

Definition 5.6. Let M be a smooth manifold and let ∇ be a connection on M. For every curve, $\gamma:[a, b] \rightarrow M$, in M, a vector field, X, along γ is parallel (along γ) iff

$$
\frac{D X}{d t}(s)=0 \quad \text { for all } s \in[a, b]
$$

If M was embedded in \mathbb{R}^{d}, for some d, then to say that X is parallel along γ would mean that the directional derivative, $\left(D_{\gamma^{\prime}} X\right)(\gamma(t))$, is normal to $T_{\gamma(t)} M$.

The following proposition can be shown using the existence and uniqueness of solutions of ODE's (in our case, linear ODE's) and its proof is omitted:

Proposition 5.7. Let M be a smooth manifold and let ∇ be a connection on M. For every C^{1} curve, $\gamma:[a, b] \rightarrow M$, in M, for every $t \in[a, b]$ and every $v \in T_{\gamma(t)} M$, there is a unique parallel vector field, X, along γ such that $X(t)=v$.

For the proof of Proposition 5.7 it is sufficient to consider the portions of the curve γ contained in some chart. In such a chart, (U, φ), as in the proof of Proposition 5.6, using a local frame, $\left(s_{1}, \ldots, s_{n}\right)$, over U, we have

$$
\frac{D X}{d t}=\sum_{k=1}^{n}\left(\frac{d X_{k}}{d t}+\sum_{i j} \Gamma_{i j}^{k} \frac{d u_{i}}{d t} X_{j}\right) s_{k}(\gamma(t)),
$$

with $u_{i}=p r_{i} \circ \varphi \circ \gamma$. Consequently, X is parallel along our portion of γ iff the system of linear ODE's in the unknowns, X_{k},

$$
\frac{d X_{k}}{d t}+\sum_{i j} \Gamma_{i j}^{k} \frac{d u_{i}}{d t} X_{j}=0, \quad k=1, \ldots, n,
$$

is satisfied.

Remark: Proposition 5.7 can be extended to piecewise C^{1} curves.

Definition 5.7. Let M be a smooth manifold and let ∇ be a connection on M. For every curve, $\gamma:[a, b] \rightarrow M$, in M, for every $t \in[a, b]$, the parallel transport from $\gamma(a)$ to $\gamma(t)$ along γ is the linear map from $T_{\gamma(a)} M$ to $T_{\gamma(t)} M$, which associates to any $v \in T_{\gamma(a)} M$ the vector, $X_{v}(t) \in T_{\gamma(t)} M$, where X_{v} is the unique parallel vector field along γ with $X_{v}(a)=v$.

The following proposition is an immediate consequence of properties of linear ODE's:

Proposition 5.8. Let M be a smooth manifold and let ∇ be a connection on M. For every C^{1} curve, $\gamma:[a, b] \rightarrow M$, in M, the parallel transport along γ defines for every $t \in[a, b]$ a linear isomorphism, $P_{\gamma}: T_{\gamma(a)} M \rightarrow T_{\gamma(t)} M$, between the tangent spaces, $T_{\gamma(a)} M$ and $T_{\gamma(t)} M$.

In particular, if γ is a closed curve, that is, if
$\gamma(a)=\gamma(b)=p$, we obtain a linear isomorphism, P_{γ}, of the tangent space, $T_{p} M$, called the holonomy of γ. The holonomy group of ∇ based at p, denoted $\operatorname{Hol}_{p}(\nabla)$, is the subgroup of $\mathrm{GL}(n, \mathbb{R})$ (where n is the dimension of the manifold M) given by

$$
\begin{aligned}
\operatorname{Hol}_{p}(\nabla)=\{ & P_{\gamma} \in \operatorname{GL}(n, \mathbb{R}) \mid \\
& \gamma \text { is a closed curve based at } p\} .
\end{aligned}
$$

If M is connected, then $\operatorname{Hol}_{p}(\nabla)$ depends on the basepoint $p \in M$ up to conjugation and so $\operatorname{Hol}_{p}(\nabla)$ and $\operatorname{Hol}_{q}(\nabla)$ are isomorphic for all $p, q \in M$. In this case, it makes sense to talk about the holonomy group of ∇. By abuse of language, we call $\operatorname{Hol}_{p}(\nabla)$ the holonomy group of M.

5.4 Connections Compatible with a Metric; Levi-Civita Connections

If a Riemannian manifold, M, has a metric, then it is natural to define when a connection, ∇, on M is compatible with the metric.

Given any two vector fields, $Y, Z \in \mathfrak{X}(M)$, the smooth function $\langle Y, Z\rangle$ is defined by

$$
\langle Y, Z\rangle(p)=\left\langle Y_{p}, Z_{p}\right\rangle_{p},
$$

for all $p \in M$.

Definition 5.8. Given any metric, $\langle-,-\rangle$, on a smooth manifold, M, a connection, ∇, on M is compatible with the metric, for short, a metric connection iff

$$
X(\langle Y, Z\rangle)=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle
$$

for all vector fields, $X, Y, Z \in \mathfrak{X}(M)$.

Proposition 5.9. Let M be a Riemannian manifold with a metric, $\langle-,-\rangle$. Then, M, possesses metric connections.

Proof. For every chart, $\left(U_{\alpha}, \varphi_{\alpha}\right)$, we use the Gram-Schmidt procedure to obtain an orthonormal frame over U_{α} and we let ∇^{α} be the trivial connection over U_{α}. By construction, ∇^{α} is compatible with the metric. We finish the argumemt by using a partition of unity, leaving the details to the reader.

We know from Proposition 5.9 that metric connections on $T M$ exist. However, there are many metric connections on $T M$ and none of them seems more relevant than the others.

It is remarkable that if we require a certain kind of symmetry on a metric connection, then it is uniquely determined.

Such a connection is known as the Levi-Civita connection. The Levi-Civita connection can be characterized in several equivalent ways, a rather simple way involving the notion of torsion of a connection.

There are two error terms associated with a connection. The first one is the curvature,

$$
R(X, Y)=\nabla_{[X, Y]}+\nabla_{Y} \nabla_{X}-\nabla_{X} \nabla_{Y}
$$

The second natural error term is the torsion, $T(X, Y)$, of the connection, ∇, given by

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

which measures the failure of the connection to behave like the Lie bracket.

Proposition 5.10. (Levi-Civita, Version 1) Let M be any Riemannian manifold. There is a unique, metric, torsion-free connection, ∇, on M, that is, a connection satisfying the conditions

$$
\begin{aligned}
X(\langle Y, Z\rangle) & =\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle \\
\nabla_{X} Y-\nabla_{Y} X & =[X, Y],
\end{aligned}
$$

for all vector fields, $X, Y, Z \in \mathfrak{X}(M)$. This connection is called the Levi-Civita connection (or canonical connection) on M. Furthermore, this connection is determined by the Koszul formula

$$
\begin{aligned}
2\left\langle\nabla_{X} Y, Z\right\rangle= & X(\langle Y, Z\rangle)+Y(\langle X, Z\rangle)-Z(\langle X, Y\rangle) \\
& -\langle Y,[X, Z]\rangle-\langle X,[Y, Z]\rangle-\langle Z,[Y, X]\rangle .
\end{aligned}
$$

Proof. First, we prove uniqueness. Since our metric is a non-degenerate bilinear form, it suffices to prove the Koszul formula. As our connection is compatible with the metric, we have

$$
\begin{aligned}
X(\langle Y, Z\rangle) & =\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle \\
Y(\langle X, Z\rangle) & =\left\langle\nabla_{Y} X, Z\right\rangle+\left\langle X, \nabla_{Y} Z\right\rangle \\
-Z(\langle X, Y\rangle) & =-\left\langle\nabla_{Z} X, Y\right\rangle-\left\langle X, \nabla_{Z} Y\right\rangle
\end{aligned}
$$

and by adding up the above equations, we get

$$
\begin{aligned}
X(\langle Y, Z\rangle)+Y(\langle X, Z)\rangle- & Z(\langle X, Y\rangle)= \\
& \left\langle Y, \nabla_{X} Z-\nabla_{Z} X\right\rangle \\
& +\left\langle X, \nabla_{Y} Z-\nabla_{Z} Y\right\rangle \\
& +\left\langle Z, \nabla_{X} Y+\nabla_{Y} X\right\rangle
\end{aligned}
$$

Then, using the fact that the torsion is zero, we get

$$
\begin{aligned}
X(\langle Y, Z\rangle)+ & Y(\langle X, Z\rangle)-Z(\langle X, Y\rangle)= \\
& \langle Y,[X, Z]\rangle+\langle X,[Y, Z]\rangle \\
& +\langle Z,[Y, X]\rangle+2\left\langle Z, \nabla_{X} Y\right\rangle
\end{aligned}
$$

which yields the Koszul formula.

We will not prove existence here. The reader should consult the standard texts for a proof.

Remark: In a chart, (U, φ), if we set

$$
\partial_{k} g_{i j}=\frac{\partial}{\partial x_{k}}\left(g_{i j}\right)
$$

then it can be shown that the Christoffel symbols are given by

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{n} g^{k l}\left(\partial_{i} g_{j l}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right)
$$

where $\left(g^{k l}\right)$ is the inverse of the matrix $\left(g_{k l}\right)$.

It can be shown that a connection is torsion-free iff

$$
\Gamma_{i j}^{k}=\Gamma_{j i}^{k}, \quad \text { for all } i, j, k .
$$

We conclude this section with various useful facts about torsion-free or metric connections.

First, there is a nice characterization for the Levi-Civita connection induced by a Riemannian manifold over a submanifold.

Proposition 5.11. Let M be any Riemannian manifold and let N be any submanifold of M equipped with the induced metric. If ∇^{M} and ∇^{N} are the Levi-Civita connections on M and N, respectively, induced by the metric on M, then for any two vector fields, X and Y in $\mathfrak{X}(M)$ with $X(p), Y(p) \in T_{p} N$, for all $p \in N$, we have

$$
\nabla_{X}^{N} Y=\left(\nabla_{X}^{M} Y\right)^{\|},
$$

where $\left(\nabla_{X}^{M} Y\right)^{\|}(p)$ is the orthogonal projection of $\nabla_{X}^{M} Y(p)$ onto $T_{p} N$, for every $p \in N$.

In particular, if γ is a curve on a surface, $M \subseteq \mathbb{R}^{3}$, then a vector field, $X(t)$, along γ is parallel iff $X^{\prime}(t)$ is normal to the tangent plane, $T_{\gamma(t)} M$.

If ∇ is a metric connection, then we can say more about the parallel transport along a curve. Recall from Section 5.3, Definition 5.6, that a vector field, X, along a curve, γ, is parallel iff

$$
\frac{D X}{d t}=0 .
$$

Proposition 5.12. Given any Riemannian manifold, M, and any metric connection, ∇, on M, for every curve, $\gamma:[a, b] \rightarrow M$, on M, if X and Y are two vector fields along γ, then

$$
\frac{d}{d t}\langle X(t), Y(t)\rangle=\left\langle\frac{D X}{d t}, Y\right\rangle+\left\langle X, \frac{D Y}{d t}\right\rangle .
$$

Using Proposition 5.12 we get
Proposition 5.13. Given any Riemannian manifold, M, and any metric connection, ∇, on M, for every curve, $\gamma:[a, b] \rightarrow M$, on M, if X and Y are two vector fields along γ that are parallel, then

$$
\langle X, Y\rangle=C,
$$

for some constant, C. In particular, $\|X(t)\|$ is constant. Furthermore, the linear isomorphism,
$P_{\gamma}: T_{\gamma(a)} \rightarrow T_{\gamma(b)}$, is an isometry.
In particular, Proposition 5.13 shows that the holonomy group, $\operatorname{Hol}_{p}(\nabla)$, based at p, is a subgroup of $\mathbf{O}(n)$.

