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2.4 Topological Groups

Since Lie groups are topological groups (and manifolds),
it is useful to gather a few basic facts about topological
aroups.

Definition 2.11. A set, GG, is a topological group ift
(a) G is a Hausdorff topological space;
(b) G is a group (with identity 1);

(¢) Multiplication, -: G X G — G, and the inverse op-
eration, G — G: g — ¢!, are continuous, where
G x G has the product topology.

[t is easy to see that the two requirements of condition
(¢) are equivalent to

(¢/) The map G xG — G (g, h) — gh~!is continuous.
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Given a topological group G, for every a € G we de-
fine left translation as the map, L,: G — G, such that
L,(b) = ab, for all b € G, and right translation as the
map, R,: G — G, such that R,(b) = ba, for all b € G.

Observe that L, -1 is the inverse of L, and similarly, R, -1
is the inverse of R,. As multiplication is continuous, we
see that L, and R, are continuous.

Moreover, since they have a continuous inverse, they are
homeomorphisms.

As a consequence, if U is an open subset of GG, then so is
gU = L,(U) (resp. Ug = R,U), for all g € G.

Therefore, the topology of a topological group (i.e., its
family of open sets) is determined by the knowledge of
the open subsets containing the identity, 1.
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Given any subset, S C G, let S7! = {571 | s € S}; let
SV = {1} and 5" = S"S, for all n > 0.

Property (c) of Definition 2.11 has the following useful
consequences:

Proposition 2.11. If G is a topological group and U
1s any open subset containing 1, then there is some
open subset, V. C U, with 1 € V, so that V = V!
and V2 C U. Furthermore, V C U.

A subset, U, containing 1 such that U = U™, is called
symmetric.

Using Proposition 2.11, we can give a very convenient
characterization of the Hausdorft separation property in
a topological group.
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Proposition 2.12. If G is a topological group, then
the following properties are equivalent:

(1) G is Hausdorff;
(2) The set {1} is closed;
(3) The set {g} is closed, for every g € G.

If H is a subgroup of G (not necessarily normal), we
can form the set of left cosets, G/H and we have the
projection, p: G — G/H, where p(g) = gH = 7.

If G is a topological group, then G/H can be given the
quotient topology, where a subset U C GG/ H is open iff
p~}(U) is open in G.

With this topology, p is continuous.

The trouble is that G/H is not necessarily Hausdorff.
However, we can neatly characterize when this happens.
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Proposition 2.13. If G is a topological group and H
15 a subgroup of G then the following properties hold:

(1) The map p: G — G/H is an open map, which
means that p(V') is open in G/H whenever V is
open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(3) If H is open, then H is closed and G/H has the
discrete topology (every subset is open).

(4) The subgroup H is open iff 1 € ﬁ] (i.e., there is
some open subset, U, so that
leUCH).

Proposition 2.14. If G is a connected topological
group, then G 1s generated by any symmetric neigh-

borhood, V', of 1. In fact,

G=|Jv"

n>1
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A subgroup, H, of a topological group G is discrete ift the
induced topology on H is discrete, i.e., for every h € H,
there is some open subset, U, of G so that UNH = {h}.

Proposition 2.15. If G is a topological group and H
15 discrete subgroup of G, then H is closed.

Proposition 2.16. If G is a topological group and H
15 any subgroup of G, then the closure, H, of H is a
subgroup of G.

Proposition 2.17. Let G be a topological group and
H be any subgroup of G. If H and G/H are con-
nected, then G is connected.
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Proposition 2.18. Let G be a topological group and
let V' be any connected symmetric open subset con-
taining 1. Then, if Gy is the connected component of
the identity, we have

Go=|JV"
n>1

and Go s a normal subgroup of G. Moreover, the
group G /Gy is discrete.

A topological space, X 1is locally compact iff for every
point p € X, there is a compact neighborhood, C' of p,
i.e., there is a compact, C', and an open, U, with

pelU CC.

For example, manifolds are locally compact.



232 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

Proposition 2.19. Let G be a topological group and
assume that G is connected and locally compact. Then,
G is countable at infinity, which means that G is the
union of a countable family of compact subsets. In
fact, if V' 1is any symmetric compact neighborhood of

1, then
G=|Jv"

n>1

If a topological group, GG acts on a topological space, X,
and the action -: G x X — X is continous, we say that
G acts continuously on X.

The following theorem gives sufficient conditions for the
quotient space, G /G, to be homeomorphic to X.
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Theorem 2.20. Let G be a topological group which 1s
locally compact and countable at infinity, X a locally
compact Hausdorff topological space and assume that
G acts transitively and continuously on X. Then, for
any x € X, the map ¢p: G/G, — X is a homeomor-
phism.

Proof. A proof can be found in Mneimné and Testard [17]
(Chapter 2). o

Remark: If a topological group acts continuously and
transitively on a Hausdorff topological space, then for ev-
ery x € X, the stabilizer, G, is a closed subgroup of

G.

This is because, as the action is continuous, the projection

m: G — X: g+ g-xis continuous, and
G, = m({z}), with {x} closed.
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As an application of Theorem 2.20 and Proposition 2.17,
we show that the Lorentz group SOg(n, 1) is connected.

Firstly, it is easy to check that SOg(n, 1) and H.7(1) sat-
isfy the assumptions of Theorem 2.20 because they are
both manifolds.

Also, we saw at the end of Section 2.3 that the action
-2 SO¢(n, 1) x Hi(1) — H (1) of SOg(n, 1) on H,H(1)

is transitive, so that, as topological spaces
SOy(n,1)/SO(n) = H (1)

Now, we already showed that #H(1) is connected so, by
Proposition 2.17, the connectivity of SOq(n, 1) follows
from the connectivity of SO(n) for n > 1.
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The connectivity of SO(n) is a consequence of the sur-
jectivity of the exponential map (see Theorem 1.11) but
we can also give a quick proof using Proposition 2.17.

Indeed, SO(n + 1) and S™ are both manifolds and we
saw in Section 2.2 that

SO(n +1)/S0(n) = S™.

Now, S™ is connected for n > 1 and SO(1) = S is
connected. We finish the proof by induction on n.

Corollary 2.21. The Lorentz group SOq(n, 1) is con-
nected; it is the component of the identity in O(n, 1).
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