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2.4 Topological Groups

Since Lie groups are topological groups (and manifolds),
it is useful to gather a few basic facts about topological
groups.

Definition 2.11. A set, G, is a topological group i↵

(a) G is a Hausdor↵ topological space;

(b) G is a group (with identity 1);

(c) Multiplication, · : G ⇥ G ! G, and the inverse op-
eration, G �! G : g 7! g�1, are continuous, where
G ⇥ G has the product topology.

It is easy to see that the two requirements of condition
(c) are equivalent to

(c0) The map G⇥G �! G : (g, h) 7! gh�1 is continuous.
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Given a topological group G, for every a 2 G we de-
fine left translation as the map, La : G ! G, such that
La(b) = ab, for all b 2 G, and right translation as the
map, Ra : G ! G, such that Ra(b) = ba, for all b 2 G.

Observe that La�1

is the inverse of La and similarly, Ra�1

is the inverse of Ra. As multiplication is continuous, we
see that La and Ra are continuous.

Moreover, since they have a continuous inverse, they are
homeomorphisms.

As a consequence, if U is an open subset of G, then so is
gU = Lg(U) (resp. Ug = RgU), for all g 2 G.

Therefore, the topology of a topological group (i.e., its
family of open sets) is determined by the knowledge of
the open subsets containing the identity, 1.
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Given any subset, S ✓ G, let S�1 = {s�1 | s 2 S}; let
S0 = {1} and Sn+1 = SnS, for all n � 0.

Property (c) of Definition 2.11 has the following useful
consequences:

Proposition 2.11. If G is a topological group and U
is any open subset containing 1, then there is some
open subset, V ✓ U , with 1 2 V , so that V = V �1

and V 2 ✓ U . Furthermore, V ✓ U .

A subset, U , containing 1 such that U = U�1, is called
symmetric.

Using Proposition 2.11, we can give a very convenient
characterization of the Hausdor↵ separation property in
a topological group.
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Proposition 2.12. If G is a topological group, then
the following properties are equivalent:

(1) G is Hausdor↵;

(2) The set {1} is closed;

(3) The set {g} is closed, for every g 2 G.

If H is a subgroup of G (not necessarily normal), we
can form the set of left cosets, G/H and we have the
projection, p : G ! G/H , where p(g) = gH = g.

If G is a topological group, then G/H can be given the
quotient topology , where a subset U ✓ G/H is open i↵
p�1(U) is open in G.

With this topology, p is continuous.

The trouble is that G/H is not necessarily Hausdor↵.
However, we can neatly characterize when this happens.
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Proposition 2.13. If G is a topological group and H
is a subgroup of G then the following properties hold:

(1) The map p : G ! G/H is an open map, which
means that p(V ) is open in G/H whenever V is
open in G.

(2) The space G/H is Hausdor↵ i↵ H is closed in G.

(3) If H is open, then H is closed and G/H has the
discrete topology (every subset is open).

(4) The subgroup H is open i↵ 1 2
�
H (i.e., there is

some open subset, U , so that
1 2 U ✓ H).

Proposition 2.14. If G is a connected topological
group, then G is generated by any symmetric neigh-
borhood, V , of 1. In fact,

G =
[

n�1

V n.
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A subgroup, H , of a topological group G is discrete i↵ the
induced topology on H is discrete, i.e., for every h 2 H ,
there is some open subset, U , of G so that U \H = {h}.

Proposition 2.15. If G is a topological group and H
is discrete subgroup of G, then H is closed.

Proposition 2.16. If G is a topological group and H
is any subgroup of G, then the closure, H, of H is a
subgroup of G.

Proposition 2.17. Let G be a topological group and
H be any subgroup of G. If H and G/H are con-
nected, then G is connected.
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Proposition 2.18. Let G be a topological group and
let V be any connected symmetric open subset con-
taining 1. Then, if G

0

is the connected component of
the identity, we have

G
0

=
[

n�1

V n

and G
0

is a normal subgroup of G. Moreover, the
group G/G

0

is discrete.

A topological space, X is locally compact i↵ for every
point p 2 X , there is a compact neighborhood, C of p,
i.e., there is a compact, C, and an open, U , with
p 2 U ✓ C.

For example, manifolds are locally compact.
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Proposition 2.19. Let G be a topological group and
assume that G is connected and locally compact. Then,
G is countable at infinity, which means that G is the
union of a countable family of compact subsets. In
fact, if V is any symmetric compact neighborhood of
1, then

G =
[

n�1

V n.

If a topological group, G acts on a topological space, X ,
and the action · : G ⇥ X ! X is continous, we say that
G acts continuously on X .

The following theorem gives su�cient conditions for the
quotient space, G/Gx, to be homeomorphic to X .



2.4. TOPOLOGICAL GROUPS 233

Theorem 2.20. Let G be a topological group which is
locally compact and countable at infinity, X a locally
compact Hausdor↵ topological space and assume that
G acts transitively and continuously on X. Then, for
any x 2 X, the map ' : G/Gx ! X is a homeomor-
phism.

Proof. A proof can be found in Mneimné and Testard [17]
(Chapter 2).

Remark: If a topological group acts continuously and
transitively on a Hausdor↵ topological space, then for ev-
ery x 2 X , the stabilizer, Gx, is a closed subgroup of
G.

This is because, as the action is continuous, the projection
⇡ : G �! X : g 7! g · x is continuous, and
Gx = ⇡�1({x}), with {x} closed.
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As an application of Theorem 2.20 and Proposition 2.17,
we show that the Lorentz group SO

0

(n, 1) is connected.

Firstly, it is easy to check that SO
0

(n, 1) and H+

n (1) sat-
isfy the assumptions of Theorem 2.20 because they are
both manifolds.

Also, we saw at the end of Section 2.3 that the action
· : SO

0

(n, 1)⇥H+

n (1) �! H+

n (1) of SO0

(n, 1) on H+

n (1)
is transitive, so that, as topological spaces

SO
0

(n, 1)/SO(n) ⇠= H+

n (1).

Now, we already showed that H+

n (1) is connected so, by
Proposition 2.17, the connectivity of SO

0

(n, 1) follows
from the connectivity of SO(n) for n � 1.
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The connectivity of SO(n) is a consequence of the sur-
jectivity of the exponential map (see Theorem 1.11) but
we can also give a quick proof using Proposition 2.17.

Indeed, SO(n + 1) and Sn are both manifolds and we
saw in Section 2.2 that

SO(n + 1)/SO(n) ⇠= Sn.

Now, Sn is connected for n � 1 and SO(1) ⇠= S1 is
connected. We finish the proof by induction on n.

Corollary 2.21. The Lorentz group SO
0

(n, 1) is con-
nected; it is the component of the identity in O(n, 1).
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