Mathematics 622 Assignment 4 (Shatz) Due Thursday, November 20, 2003

1 Part A

AI. Consider 3 non-collinear points in \mathbb{P}^2 . They form a reducible complex variety, call it X. Show $\mathcal{I}(X)$ cannot be generated by two polynomials. Nevertheless, show there exists an ideal, \mathfrak{A} , so that $X = V(\mathfrak{A})$ and \mathfrak{A} can be generated by two polys. In fact, prove more: If X is any finite set $\subset \mathbb{P}^2$, there exists an ideal, \mathfrak{A} , with $X = V(\mathfrak{A})$ and \mathfrak{A} can be generated by two polynomials. (Of course, $\mathcal{I}(X)$ may need more polys to generate it.) An old open question is: If C is an irred. curve in \mathbb{P}^3 , does there exist an ideal, \mathfrak{A} , with $V(\mathfrak{A}) = C$ and C generated by 2 polys? (Of course, $\mathcal{I}(C)$ cannot be expected to work—try the twisted cubic as a counter-example.)

AII. Let X now be an affine curve over \mathbb{C} , say $X \subset \mathbb{C}^n$. Write $A = \Gamma(X, \mathcal{O}_X) = \operatorname{ring}$ of global holomorphic functions on X. If X is irred., then $A = \operatorname{domain}$, and $\operatorname{Mer}(X)$ (the mero fcns on X) is just $\operatorname{Frac}(A)$. Assume X is irred., let $\widetilde{A} = \operatorname{integral}$ closure of A in $\operatorname{Mer}(X)$. Show there exists a cx affine variety $\widetilde{X} \subset \mathbb{C}^N$, so that $\widetilde{A} = \Gamma(\widetilde{X}, \mathcal{O}_{\widetilde{X}})$ and that there exists a finite morphism $\widetilde{X} \longrightarrow X$. Show this morphism is surjective, 1–1 on a Z-dense open set (in \widetilde{X} and X) and \widetilde{X} is a non-singular curve. The curve \widetilde{X} is the normalization of X.

AIII. a) Carry out the scheme and results from AII for any dim'l affine variety, X. Here, \widetilde{X} is not nonsingular, it is merely normal $(\mathcal{O}_{\widetilde{X}})_{\widetilde{x}}$ is integrally closed in $\mathcal{M}er(X)$.)

b) Do a), this time for an arbitrary irred. cx. variety—not necessarily affine. Get \widetilde{X} , the normalisation.

AIV. a) Prove the

Theorem Every nonsingular cx. curve, proper over \mathbb{C} , admits a closed embedding into \mathbb{P}^d , some d.

(Hints: A Chow's lemma kind of argument will work. Cover X, your curve, by affines, X_{α} . Each $X_{\alpha} \subset \mathbb{C}^{n_{\alpha}} \subset \mathbb{P}^{n_{\alpha}}$; show the locally closed immersion, $\varphi_{\alpha} \colon X_{\alpha} \longrightarrow \mathbb{P}^{n_{\alpha}}$, extends to a morphism, call it Φ_{α} , taking X to $\mathbb{P}^{n_{\alpha}}$. Say $Y_{\alpha} = \text{image } \Phi_{\alpha}(X)$ so Y_{α} is closed $\subset \mathbb{P}^{n_{\alpha}}$. Consider the diagonal map and Segre:

$$X \xrightarrow{\Delta} \prod_{\alpha} Y_{\alpha} \xrightarrow{\longrightarrow} \prod_{\alpha} \mathbb{P}^{n_{\alpha}} \xrightarrow{\subset}_{Segre} \mathbb{P}^{M}$$

Prove this is the desired embedding.)

- b) Is a) true even if X is singular?
- c) What goes wrong if dim $X \ge 2$, even in the nonsingular case?

2 Part B

BI. a) Say, $f: X \longrightarrow Y$ is a morphism and is a birational isomorphism. Pick $y \in Y$, assume y is a nonsingular pt. of Y, and further assume f^{-1} is not defined at y. Show there exists a subvariety, Z, of X, so that for $x \in X$ with f(x) = y:

(i) Z is a divisor of X (this means $\operatorname{codim}(Z) = 1$ in X) and Z passes through x (you may allow Z to depend on x).

(ii) f(Z) has codimension ≥ 2 in Y.

Deduce that if X, Y are smooth projective surfaces and f^{-1} is not defined on y (where f(x) = y), then there exists a curve, C, in X, with f(C) = y.

The latter result is a main step in the proof of *Zariski's Factorization Theorem*: Every birational isomorphism of projective surfaces factors as a finite product of blowing-ups of pts and their inverses.

(At some point or points of your argument, you may need to assume X is normal. Do not hesitate to do so.)

- b) Use Zariski's Factorisation Theorem to factor explicitly the following two maps:
- (i) $X = \text{smooth quadric} \subset \mathbb{P}^3$, $Y = \mathbb{P}^2$, $\xi = \text{pt. of } X$ and f is projection from $\mathbb{P}^3 \xi$ to \mathbb{P}^2 restricted to X.
- (ii) In \mathbb{P}^2 , take an affine patch and let x, y be (inhomogeneous) coordinates there. Write $f(x, y) = (x, y+x^2)$. Then f extends to a birational automorphism of \mathbb{P}^2 —factor it.

BII. Say X, Y are complex varieties, and $\pi: X \longrightarrow Y$ is a morphism. We call π an *étale* morphism \iff it has two further properties:

- (a) It is flat (i.e., $\mathcal{O}_{X,x}$ is a flat $\mathcal{O}_{Y,\pi(x)}$ -module, $\forall x \in X$).
- (b) $\Omega^1_{X/Y}$ -the sheaf of relative Kähler differentials-is (0).

The word *étale* comes from the phrase "*la mer étale*" which translates as "slack water" in the sailor's vernacular—however, "slack" is not used as a translation of étale. Rather, one says "flat and unramified" or just uses "étale". Prove the

Theorem Suppose $\pi : X \longrightarrow Y$ is a morphism of cx. varieties, with Y connected. Then the following are equivalent:

- (1) π is étale
- (2) The Jacobian condition of last assignment
- (3) The unique lifting condition of last assignment
- (4) $\widehat{\mathcal{O}}_{X,x} \xleftarrow{\sim} \widehat{\mathcal{O}}_{Y, \pi(x)}, all x \in X.$
- (5) X is a covering space, finite over Y in the sense of differential topology, i.e., all fibres are finite of the same cardinality and π is a local (smooth = C^{∞}) diffeomorphism.
- (6) $\mathcal{O}_{X^{\mathrm{an}},x} \xleftarrow{} \mathcal{O}_{Y^{\mathrm{an}},\pi(x)}.$

Remark. In the last time's assignment, $2 \iff 3 \iff 4$ were proved. Do NOT reprove here.

BIII. Investigate pairs of cx. algebraic varieties Z, X so that there exists a morphism $\pi: Z \longrightarrow X$ satisfying:

- (α) π is a finite morphism, X is irreducible and deg $\pi = 2$.
- (β) π is flat ($\mathcal{O}_{Z,z}$ is a flat $\mathcal{O}_{X,\pi(z)}$ module, all z.)

We refer to Z as a two-sided branched covering of X.

a) We can consider the sheaf \mathcal{O}_Z as an \mathcal{O}_X module. Prove there exists a line bundle, \mathcal{L} , on X, canonically determined by π , so that $\mathcal{O}_Z = \mathcal{O}_X \coprod \mathcal{L}$ as \mathcal{O}_X modules. Describe in terms of \mathcal{L} the data needed in order that the module $\mathcal{O}_X \coprod \mathcal{L}$ be the \mathcal{O}_X -algebra, \mathcal{O}_Z , of some twofold branched cover of X.

b) Examples are important. Take $X = \mathbb{P}^1$, any cx. curve, \mathbb{P}^2 , \mathbb{P}^n and make at least two distinct examples in each case. Make your examples so that Z is connected.

c) Answer the following. If the answer is "no", give an example, then further hypotheses so that it is "yes". If the answer is "yes", give a proof:

- (i) If X is affine, is Z affine? Same with "projective" replacing affine.
- (ii) If Z is affine (resp. projective) is X the same?
- (iii) If Z is singular, must X be singular? Same question interchanging Z and X.
- (iv) If X is smooth (= nonsingular) is it a rule or exception that Z is smooth?
- (v) Can non-isomorphic line bundles give isomorphic Z's? Is the isomorphism an isomorphism over X? Try for a classification in terms of being given X.

d) Let \mathcal{B} be the branch locus in X, i.e.,

$$\mathcal{B} = \{ x \in X \mid \pi^{-1}(x) = \text{ one pt.} \}$$

Then \mathcal{B} is Z-closed. Relate \mathcal{B} to Z. If Z is also irred., is \mathcal{B} irreducible? If not, can it have components of several dimensions? What is $\operatorname{codim}_X \mathcal{B} (= \dim X - \dim \mathcal{B})$?

e) What is the relation of some invariants of X and Z? E.g., $\dim(X) = \dim(Z)$; what about T_X (tangent bundle) and T_Z, Ω_X and $\Omega_Z^1, K_X(= \bigwedge^{\bullet} \Omega_X^1)$ and $K_Z(= \bigwedge^{\bullet} \Omega_Z^1)$ (here \bigwedge^{\bullet} being the highest wedge). Any connection between \mathcal{B} and the Jacobian of $\pi: Z \longrightarrow X$? If you know about Chern classes and Euler numbers, discuss these.

f) More examples: Take $X = \mathbb{P}^1 \prod \mathbb{P}^1$ or $X = C \prod \mathbb{P}^1$ with C a curve. Find several (connected) Z's. View Z as a parametrized family of coverings over one of the factors—discuss. If Z is ruled (birational to $C \prod \mathbb{P}^1$, C a curve) is X necessarily ruled?

g) Your turn to ask (and answer) some (hopefully) nontrivial questions.