Mathematics 622 Assignment 3 (Shatz) Due Thursday, November 6, 2003

1 Part A

AI. Prove the assertion made in class: An integral morphism is a closed (Z-top) map. (Hint: Reduce to affines, use the Lying Over Theorem of Cohen-Seidenberg.)

AII. This looks like linear algebra, but it's really alg. geometry: Say $\theta: V \times W \longrightarrow Z$ is a bilinear map of \mathbb{C} -vector spaces (all non-zero). Assume θ is non-degenerate, i.e.,

$$(\forall \alpha \in V) (\forall \beta \in W) (\alpha \neq 0 \quad \text{and} \quad \beta \neq 0 \Longrightarrow \theta(\alpha, \beta) \neq 0).$$

Show that $\dim Z \ge \dim V + \dim W - 1$.

AIII. Look at \mathbb{P}^n and recall that a "k-plane" ("k-dimensional linear subspace") of \mathbb{P}^n is just a k + 1 dimensional linear subspace of the corresponding \mathbb{C}^{n+1} . The k-planes in \mathbb{P}^n are denoted $\mathbb{G}(k,n)$ and the latter is the projective variety G(k+1, n+1). So, dim $\mathbb{G}(k, n) = (k+1)(n-k)$. Compute the following dimensions:

- a) All 2-planes of \mathbb{P}^4 through a fixed point.
- b) All 2-planes of \mathbb{P}^4 containing a given line.
- c) All k-planes of \mathbb{P}^n through a fixed pt.
- d) All k-planes of \mathbb{P}^n containing a given l-plane, $0 \leq l \leq k$.
- e) If V is a non-singular non-degenerate d-dimensional subvariety of \mathbb{P}^n (say, d is sufficiently small), what is the dimension of all k-planes of \mathbb{P}^n somewhere *tangent* to V?

2 Part B

BI. (Rational maps)

a) Say, $\varphi: V \longrightarrow Z$ is a rational map of complex varieties. Assume V is a normal variety (i.e., all the local rings $\mathcal{O}_{V,v}$ are integrally closed integral domains) and Z is a quasi-projective variety (i.e., a possibly open subvariety of a projective variety). Prove that

 $\{v \in V \mid \varphi \text{ cannot be defined at } v\}$

has codimension ≥ 2 in V. (**Caution**: We don't know about "points of codimension 1" and their local rings—we just know about complex (= closed) points; so an argument about 1-dimensional local rings and normality, etc., won't work.)

b) An immediate corollary of a) is that a rational map between a non-singular curve and a quasi-projective curve is automatically a morphism. Hence, two non-singular projective curves are birationally equivalent iff they are isomorphic. It's only for surfaces and higher-dimentional varieties that birational isomorphism is coarser (so more useful) equivalence relation than isomorphism between normal varieties. Prove: If $\varphi: V \longrightarrow Z$ is a rational map, V is normal and Z is a quasi-affine variety, and if $\{v \mid \varphi \text{ not defined at } v\}$

has $\operatorname{codim} \geq 2$ in V, then φ is actually a morphism.

BII. (Fano Varieties and continuation of Prob BIV of last time)

a) Warm-up. Consider $\mathbb{G}(k,n)$ and in $\mathbb{G}(k,n) \prod \mathbb{P}^n$ the incidence variety, Γ :

$$\Gamma = \{ (\xi, x) \mid \xi \in \mathbb{G}(k, n), \, x \in \mathbb{P}^n, \, x \in \xi \}.$$

Show that Γ , (which is just the "universal k-plane" when considered over \mathbb{G} via pr_1) is actually a subvariety of the product $\mathbb{G} \prod \mathbb{P}^n$. Further, if Y is any subvariety of $\mathbb{G}(k, n)$, prove that

$$X = \{ x \mid x \in \mathbb{P}^n ; x \in \xi, \text{ some } \xi \in Y \}$$

is a subvariety of \mathbb{P}^n . Dually, if X is a subvariety of \mathbb{P}^n , write $I_k(X)$ for the collection of k-planes meeting X. Show $I_k(X)$ is a subvariety of $\mathbb{G}(k, n)$.

b) Let X be a subvariety of \mathbb{P}^n . The Fano Variety, $F_k(X)$, is the collection of all k-planes of \mathbb{P}^n which are contained in X;

$$F_k(X) = \{ \xi \in \mathbb{G}(k, n) \mid \xi \subset X \}.$$

Show that $F_k(X)$ is actually a cx subvariety of $\mathbb{G}(k, n)$ as follows:

i) Say first it is OK when X is a hypersurface given by f = 0 (some form f of degree d). Then prove $F_k(X) = \bigcup_{i=1}^t F_k(X_i)$, where X_i are hypersurfaces.

ii) Fix the degree, d, of the hypersurface X. For a k-plane, ξ , there is its ideal $\mathcal{I}(\xi)$ defining it as a subspace of \mathbb{P}^n . This ideal is the sum of its graded pieces $\mathcal{I}(\xi)_m$, which pieces are subspaces of the vector space S_m of all forms of degree m in the variables Z_0, \ldots, Z_n of \mathbb{P}^n . We send ξ to $\mathcal{I}(\xi)_m$ and get a map

$$\mathbb{G}(k,n) \xrightarrow{\theta} G(l,N)$$

where $l = \dim \mathcal{I}(\xi)_m$ (independent of ξ !) and $N = \dim S_m$. Show this is a morphism of cx. varieties.

iii) Now fix m = d, the degree of X, then $f \in S_d$, where f = 0 is the eqn of X. Show that the subspaces of S_d , containing the fixed point are a subvariety, T, of G(l, N). Relate $F_k(X)$ to T by θ .

c) Continue the investigation of Problem IV: Again Hyp(\mathbb{P}^n, d) = deg d hypersurfaces of \mathbb{P}^n , forming a \mathbb{P}^N , where $N = \binom{n+d}{d} - 1$. But, take $\mathbb{G}(k, n)$ now, and form the incidence variety, $\Gamma(d, n, k)$,

$$\Gamma(d, n, k) = \{ (H, \xi) \mid H \in \operatorname{Hyp}(\mathbb{P}^n, d), \xi \in \mathbb{G}(k, n), \xi \subset H \}.$$

Show that $\Gamma(d, n, k)$ is Z-closed in Hyp $(\mathbb{P}^n, n) \prod \mathbb{G}(k, n)$. Prove that $pr_2 \colon \Gamma(d, n, k) \longrightarrow \mathbb{G}(k, n)$ is surjective for all $k \leq n-1$. Examine the fibre pr_2^{-1} when k = 2. Is it linear, as it was when k = 1? Is it of constant dimension? Is $\Gamma(d, n, 2)$ irreducible?

d) Do as much of c) as you can for general k, with $k \le n-1$. When k = 2, examine the existence of a critical degree, d. Especially, make computations for n = 4, n = 5.

e) Now take the middle dimension $k = \left[\frac{n}{2}\right] = \text{largest integer} \le \frac{n}{2}$. For n = 4, 5 you have k = 2; look at n = 6, 7. Is there a critical degree; what is is? What about general n when $k = \left[\frac{n}{2}\right]$?

BIII. Consider a morphism $\varphi: Y \longrightarrow X$ of cx. alg. varieties. Choose $x \in X$, and take some affine open X_0 around x. Then for $y \in Y$ with $\varphi(y) = x$, there is an affine open $Y_0 \subset \varphi^{-1}(X_0)$, with $y \in Y_0$. So, $\varphi: Y_0 \longrightarrow X_0, y \in Y_0, x \in X_0$, and $\varphi(y) = x$. Write $A_0 = \text{coord ring of } X_0, B_0 = \text{coord ring of } Y_0$; so then we have a map $A_0 \longrightarrow B_0$ corresponding to φ and it makes B_0 an A_0 -algebra. Consider two properties of φ :

(a) Jacobian condition on φ : $\forall x, y$ with $\varphi(y) = x$, there exist X_0, Y_0 , as above, so that

$$B_0 = A_0[T_1, \dots, T_p]/(f_1, \dots, f_p)$$

and $J(f) = \det\left(\frac{\partial f_i}{\partial T_j}\right)(y) = \text{unit of } B_0.$

(b) Unique lifting condition on φ . Again B_0, A_0 as above but no explicit description of B_0 as A_0 -algebra and no J(f). Instead for all exact sequences of \mathbb{C} -algebras

$$0 \longrightarrow I \longrightarrow \widetilde{A} \longrightarrow \widetilde{B} \longrightarrow 0$$

where

- (i) $\widetilde{A}, \widetilde{B}$ are f.g. as vector spaces $/\mathbb{C}$ and are \mathbb{C} -algebras and are local rings,
- (ii) The ideal I has square = (0) we assume given a commutative diagram

$$\begin{array}{c} B_0 \xrightarrow{\psi'} \widetilde{B} \\ \uparrow & \searrow \\ \theta & \searrow \\ A_0 \xrightarrow{\psi'} \widetilde{A} \end{array}$$

$$\psi(\mathcal{O}_{X_0,x}) \subset \mathcal{M}_{\widetilde{A}} \text{ and } \psi'(\mathcal{O}_{Y_0,y}) \subset \mathcal{M}_{\widetilde{B}}.$$

Condition on φ : Given the above for x, y (i.e. X_0, Y_0 exist and when exact sequence with $\widetilde{A}, \widetilde{B}$ and commutative diagram given), there exists a unique lifting homomorphism $\theta: B_0 \longrightarrow \widetilde{A}$ (shown dotted above), rendering all subdiagrams commutative.

Prove. Given $x, y \in X, Y, \varphi(y) = x$, condition a) holds for $x, y \Leftrightarrow$ condition b) holds for $x, y \Leftrightarrow$ the completions $\widehat{\mathcal{O}}_{X,x_0}$ and $\widehat{\mathcal{O}}_{Y,y_0}$ are isomorphic via the map induced by $A_0 \longrightarrow B_0$. Is it true that these conditions are equivalent to the isomorphism of the subrings of $\widehat{\mathcal{O}}_{X,x_0}$ and $\widehat{\mathcal{O}}_{Y,y_0}$ consisting of convergent power series near x_0 , resp. y_0 ?

BIV. (Some singularities) Pick an integer $r \ge 2$ and integers $0 < i_1 < i_2 < \ldots < i_{n-1}$, make the cx curve

$$X(r; i_1, \ldots, i_{r-1}) \subset \mathbb{C}^n$$

whose parametric equations are:

$$Z_1 = t^r, Z_2 = t^{r+i_1}, \dots, Z_n = t^{r+i_{n-1}}.$$

a) Show this curve is singular. Compute its normalisation (as subvar of \mathbb{C}^N , some N >> 0, give equations for the normalisation, which is just the curve whose coordinate ring is the integral closure of the ring of $X(r; i_1, \ldots, i_{n-1})$.)

b) If \widetilde{X} is the normalisation of X, it lies in \mathbb{P}^N , so its closure is in \mathbb{P}^N . Is this closure non-singular? If so, Y (the closure of \widetilde{X}) may be actually embedded in \mathbb{P}^3 by the argument of class. Can $X(r; i_1, \ldots, i_{n-1})$ be embedded in $\mathbb{C}^{\text{small}}$? How small? For example, examine the case X(2; 1, 3, 5, 7, 11).