
Mathematics 622

Assignment 2 (Shatz)

Due Thursday, October 23, 2003

1 Part A

AI. Continue the problem from the last HW about removing points from C
n. Consider a subvariety, V , of

C
n, not necessarily irred., and form the Z-open set Cn − V . Show if codimV ≥ 2, then Cn − V is never an

affine variety. Is it true that if codimV = 1, then Cn − V is always affine?

AII. Let z1, . . . , zn be coords in Cn and let Φ denote the morphism C
n → C

n given by

Φ(z1, . . . , zn) = (z1, z1z2, z1z2z3, . . . , z1 · · · zn)

a) Describe the image of Φ. In particular, is it Z-open, Z-closed, neither, Z-dense, all of Cn?

b) Examine the map
δ : C

∆
//
C
n

Φ
//
C
n ,

where ∆ = diagonal map. Show that the image is a Z-closed curve in Cn. We have Cn ⊂ Pn; so, Φ gives a
morphism C

n → P
n. Does this extend to a morphism P

n → P
n? If not, how far beyond Cn does it extend?

Answer the same question for δ and its domain C1 and any extensions P1 → P
n?

c) Show that the image of δ (and any extension you can make) does NOT lie in any hyperplane of Cn

(resp. Pn). Such an object is non-degenerate in Cn (resp. Pn).

AIII. In P2, with coords (X : Y : Z), look at the curve, E(A,B), given by

Y 2Z = X3 +AXZ2 +BZ2.

Prove that E(A,B) is irreducible. Cover E(A,B) by affines (in the standard way)—call these EX , EY , EZ
(each an irred. plane curve) and let C[EX ], etc., denote their coordinate rings. By irreducibility, each ring
C[EX ], etc., is a domain. Prove that

Frac C[EX ] = Frac C[EY ] = Frac C[EZ ].

The common value of these fraction fields is called the field of meromorphic functions on E(A,B); denote it
by Mer(E(A,B)). Prove that

(∃T ∈Mer(E(A,B)))(Mer(E(A,B)) = C(T )) iff

the polynomial X3 +AX +B has a multiple root.

AIV. A rational map V →W is just a morphism defined (perhaps only) on a Z-open, Z-dense subset, U , of
W . As an example, the map

c(Z0, Z1, Z2) = (Z0Z1, Z0Z2, Z1Z2)

is a rational map of P2 to itself.

a) Find the maximal open U ⊂ P2 where c is defined.

b) Show that c is its own inverse and therefore there exists an open Ṽ ⊂ P2 so that, c : U −̃→ Ṽ . Find Ṽ .
Such a map is called a birational map, it is an isomorphism of a Z-open, Z-dense open of V to a corresponding
Z-dense, Z-open of W .

1



c) Examine the fundamental triangle

��
��
�
��
�
��
��HHHH
HHH

HHHH
HZ1 = 0

Z0
= 0 Z

2 = 0

and explain what happens to it under the rational map c.

d) Let Q be a quadric, (i.e. degQ = 2) curve passing through the vertices of our triangle. What is c(Q)?

e) Prove that there exists a variety, X, and morphisms π1 : X → P
2, π2 : X → P

2, so that

(i)
X

π1

��

π2

  AAAAAAAA

P
2 //

P
2

commutes and

(ii) π1, π2 are birational morphisms (inverses are just rational maps).

Revisit d) in light of e).

2 Part B

BI. Consider the map Φ of problem AII) above as a rational map, Pn // Pn .

a) Look at the cases n = 2, n = 3, a prove there exists a variety X as in part e) of prob. AIV) with a
commutative diagram

X

π1

��

π2

!!CCCCCCCC

P
n //

P
n

in which π1, π2 are morphisms and are birational. Identify the domains of the inverses of π1 and π2 precisely.

b) Let n be general, do part a) and find as well as you can the domains of the rational maps inverting
the πi, i = 1, 2.
Please, use bare hands–no machinery we haven’t done yet, no fancy theorems you quote.

BII. (The degree of a curve). Suppose C ⊂ Pn is an irreducible curve. If H is any hyperplane of Pn with
C 6⊆ H, consider C ∩H. Write #(C ∩H) for the number of points of C ∩H (just counting, no multiplicities,
no fanciness). Note: C ∩H is Z-closed in C ⇒ C ∩H has dim = 0 (explain why) and so is finite.

a) Prove:
(∃d > 0)(∀H, hyperplane of P

n)(C * H ⇒ #(C ∩H) ≤ d).

b) Choose the min positive integer, d, from a) which works for a); call this min integer the degree of C.
Now the hyperplanes of Pn form another Pn (the dual of Pn), namely, we associate to H the homogeneous
coords (a0 : · · · : an) where the linear form

∑n
i=0 aiZi cuts out H from P

n. Prove:

{H | #(H ∩ C) < degC or C ⊂ H}
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is a Z-closed set in Pn(dual). What is its dimension?

c) Now suppose given a curve of degree d in Pn, our curve being irred. and we assume d < n. Show C is
degenerate (cf. Prob AII part c)); in fact, show there exists a Pd ⊂ Pn and C ⊂ Pd. (Hint: Try d = 2, n = 3
and use the example of skew-lines to show we cannot omit the irreducibility of C as hypothesis.)

d) Suppose now C is an irreducible, non-degenerate curve in P
n, so, by part a), degC ≥ n. Let

P1, . . . , Pn−1 be n − 1 points of C ∩ H, then prove: the linear span of the Pj(1 ≤ j ≤ n − 1) forms a
hyperplane of H (i.e., a Pn−2). Prove further, no other point of C is on this linear span. These statements
are the “tri-secant lemma”—explain the name.

BIII. (Rational Varieties) Say V is an irreducible cx. variety, show by a variant of the argument of problem
AIII) that the field of meromorphic functions Mer(V ) is well-defined. When Mer(V ) is a pure transcen-
dental extension of transcendence degree = dimV over C, the variety V is called rational . This is an old
concept, historically important as it arose naturally in the cases dimV = 1, 2 (first 75 years of algebraic
geometry after 1850). It is, however, not a good concept if dimV ≥ 3; be this as it may, consider the surface
in C3 defined by

X2 + Y 3 + Z5 = 0.

This surface, Σ, is irred. (very easy) but singular exactly at one point (0, 0, 0).

a) Show that Σ is a normal surface.

b) Prove that Σ is a rational surface.

c) Suppose C is a curve and there exists a rational map (NOT necessarily birational)

P
1 // C

which is dominating (AIII of HW I). Show that C is a rational curve. (If you use an algebra theorem to
prove this—be prepared to prove that.) This result is also true for surfaces, but the proof is much harder.
It is false in every dimension 3 and above.

d) Here we consider the Fermat cubic hypersurface in P3 : X3 + Y 3 + Z3 + W 3 = 0; call it F . Now F
contains at least two lines:
l1 given by X + Y = Z +W = 0
l2 given by X + ζY = Z + ζW = 0, ζ—a non-trivial root of 1.
By varying this prescription, how many curves can you find in F?

e) Continue d): Prove F is a manifold (SingF = ∅) and that l1 ∩ l2 = ∅. Pick a plane, Π, in P3 not
containing either l1 or l2 and choose any P ∈ F not on either l1 or l2. Show there exists one line, lP , with

(i) P ∈ lP

(ii) l1 ∩ lp 6= ∅.

Now define a map:
ψl1,l2 : F − l1 − l2 −→ Π = P

2

via ψl1,l2(P ) = point where lP cuts Π.
Prove that this is a morphism ψl1,l2 : F − l1 − l2 → P

2 and gives a birational equivalence F oo //
P

2 .
Therefore, F is a rational surface. Describe the image of ψl1,l2 in Π = P

2 and the opens where we have an
isomorphism. What happens to all the lines you found in part d) under ψl1,l2?

f) Consider G(k, n), the Grasmannian of k-planes in n-space. Pick a special L ∈ G(k, n); namely, if a
basis is given in Cn, let L be defined by ek+1 = · · · = em = 0. Write GL(k, n − k) for the subgroup of
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GL(n,C) stabilizing L, i.e., mapping L to itself. Show that, as sets, G(k, n) and the homogeneous space
GL(n,C)/GL(k, n− k) are the same. Explain how you deduce:

dimG(k, n) = k(n− k).

If V ∈ G(k, n) write W for Cn/V . In terms of V,W alone, compute TG(k,n),V . (Hint : GL(n,C)/GL(k, n−k)
is naturally a cx. anal. space, show it’s isomorphic to G(k, n)an, then all is easy.) You deduce G(k, n) is a
non-singular variety, then show that Z-near each pt of G(k, n) it is isomorphic to Ck(n−k) and this implies
that G(k, n) is an irreducible, nonsingular rat’l variety.

BIV. (Lines on hypersurfaces) The hypersurfaces of deg d in Pn are given as the zeros of single homogeneous
polynomials of degree d; F = 0. View the coeffs of F as homogenous coords, then the hypersurfaces of deg
d in Pn form a variety, Hyp(Pn, d) which is in fact PN(n,d), N(n, d) =

(
n+d
d

)
− 1.

a) Consider G(2, n+ 1) = G(1, n) = Grasmannian of lines in Pn and Hyp(Pn, d). Show that the sets

Z(l) = {H ∈ Hyp(Pn, d) | l ⊂ H}

and
Z(H) = {l ∈ G(1, n) | l ⊂ H}

are Z-closed in Hyp(Pn, d), resp. G(1, n). Write

Γ(d, n) = {(H, l) | 1)H ∈ Hyp(Pn, d); 2) l ∈ G(1, n); 3) l ⊂ H}

and show Γ(d, n) is Z-closed in Hyp(Pn, d)
∏
G(1, n).

b) Examine the fundamental diagram

Γ(d, n)

pr1

��

pr2

&&MMMMMMMMMM

Hyp(Pn, d) G(1, n)

Show pr2 is surjective. Pick a line l and choose coords of Pn so that l is given by Z0 = · · · = Zn−2 = 0.
Prove that pr−1

2 (l) = all H’s whose eqn: F = 0 has the form

F = Z0F0 + . . .+ Zn−2Fn−2,

each Fj has deg (d− 1). Show that all such H’s form a linear subspace of PN(n,d) and its dimension is just
a function of n and d (independent of l), say δ(n, d).

c) Prove Γ(d, n) is irreducible and compute its dimension γ(n, d) explicitly as a fcn of n and d. Explain
why the image of pr1 is Z-closed in Hyp(Pn, d) and compare γ(n, d) and N(n, d) to prove the

Theorem For every n ≥ 2, there is an integer D, so that

(i) If d > D, then for a Z-open subset of Hyp(Pn, d) no H in this Z-open contains any line.

(ii) If d < D, then every hypersurface of degree d contains infinitely many lines.

d) The integer, D, is called the critical degree. Find the crit. degree for n = 3 (surface ⊂ P3), n = 4
(3-folds ⊂ P4), n = 5 (4-folds in P5). Suppose for some H of degree = D, we can show there exist but
finitely many lines on H. Does it follow that pr1 is onto, i.e., that on each hypersurface of crit. degree
there is a line? Does this depend on n? If pr1 is onto, prove there exists a Z-open subset of the crit. degree
hypersurfaces on which there are but finitely many lines.

When n = 3 look at the Fermat surface (Prob BIII) or at the surface Z0Z1Z2 = Z3
3 . Try n = 4. (In fact,

the Z-open is the family of non-singular surfaces and by analysing the differential of pr1, one shows each
such has exactly 27 lines (case n = 3).)
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