Mathematics 622 Assignment 2 (Shatz) Due Thursday, October 23, 2003

1 Part A

AI. Continue the problem from the last HW about removing points from \mathbb{C}^n . Consider a subvariety, V, of \mathbb{C}^n , not necessarily irred., and form the Z-open set $\mathbb{C}^n - V$. Show if $\operatorname{codim} V \ge 2$, then $\mathbb{C}^n - V$ is never an affine variety. Is it true that if $\operatorname{codim} V = 1$, then $\mathbb{C}^n - V$ is always affine?

AII. Let z_1, \ldots, z_n be coords in \mathbb{C}^n and let Φ denote the morphism $\mathbb{C}^n \to \mathbb{C}^n$ given by

$$\Phi(z_1, \dots, z_n) = (z_1, z_1 z_2, z_1 z_2 z_3, \dots, z_1 \cdots z_n)$$

- a) Describe the image of Φ . In particular, is it Z-open, Z-closed, neither, Z-dense, all of \mathbb{C}^n ?
- b) Examine the map

$$\delta: \mathbb{C} \xrightarrow{\Delta} \mathbb{C}^n \xrightarrow{\Phi} \mathbb{C}^n ,$$

where $\Delta =$ diagonal map. Show that the image is a Z-closed curve in \mathbb{C}^n . We have $\mathbb{C}^n \subset \mathbb{P}^n$; so, Φ gives a morphism $\mathbb{C}^n \to \mathbb{P}^n$. Does this extend to a morphism $\mathbb{P}^n \to \mathbb{P}^n$? If not, how far beyond \mathbb{C}^n does it extend? Answer the same question for δ and its domain \mathbb{C}^1 and any extensions $\mathbb{P}^1 \to \mathbb{P}^n$?

c) Show that the image of δ (and any extension you can make) does NOT lie in any hyperplane of \mathbb{C}^n (resp. \mathbb{P}^n). Such an object is *non-degenerate* in \mathbb{C}^n (resp. \mathbb{P}^n).

AIII. In \mathbb{P}^2 , with coords (X : Y : Z), look at the curve, E(A, B), given by

$$Y^2 Z = X^3 + A X Z^2 + B Z^2.$$

Prove that E(A, B) is irreducible. Cover E(A, B) by affines (in the standard way)—call these E_X, E_Y, E_Z (each an irred. plane curve) and let $\mathbb{C}[E_X]$, etc., denote their coordinate rings. By irreducibility, each ring $\mathbb{C}[E_X]$, etc., is a domain. Prove that

Frac
$$\mathbb{C}[E_X] = \operatorname{Frac} \mathbb{C}[E_Y] = \operatorname{Frac} \mathbb{C}[E_Z]$$

The common value of these fraction fields is called the field of meromorphic functions on E(A, B); denote it by $\mathcal{M}er(E(A, B))$. Prove that

$$(\exists T \in \mathcal{M}er(E(A, B)))(\mathcal{M}er(E(A, B)) = \mathbb{C}(T))$$
 iff

the polynomial $X^3 + AX + B$ has a multiple root.

AIV. A rational map $V \to W$ is just a morphism defined (perhaps only) on a Z-open, Z-dense subset, U, of W. As an example, the map

$$c(Z_0, Z_1, Z_2) = (Z_0 Z_1, Z_0 Z_2, Z_1 Z_2)$$

is a rational map of \mathbb{P}^2 to itself.

a) Find the maximal open $U \subset \mathbb{P}^2$ where c is defined.

b) Show that c is its own inverse and therefore there exists an open $\widetilde{V} \subset \mathbb{P}^2$ so that, $c \colon U \longrightarrow \widetilde{V}$. Find \widetilde{V} . Such a map is called a *birational map*, it is an isomorphism of a Z-open, Z-dense open of V to a corresponding Z-dense, Z-open of W. c) Examine the fundamental triangle

and explain what happens to it under the rational map c.

- d) Let Q be a quadric, (i.e. $\deg Q = 2$) curve passing through the vertices of our triangle. What is c(Q)?
- e) Prove that there exists a variety, X, and morphisms $\pi_1: X \to \mathbb{P}^2, \pi_2: X \to \mathbb{P}^2$, so that

(i)

commutes and

(ii) π_1, π_2 are birational morphisms (inverses are just rational maps).

Revisit d) in light of e).

2 Part B

BI. Consider the map Φ of problem AII) above as a rational map, $\mathbb{P}^n \longrightarrow \mathbb{P}^n$.

a) Look at the cases n = 2, n = 3, a prove there exists a variety X as in part e) of prob. AIV) with a commutative diagram

in which π_1, π_2 are *morphisms* and are birational. Identify the domains of the inverses of π_1 and π_2 precisely.

b) Let n be general, do part a) and find as well as you can the domains of the rational maps inverting the π_i , i = 1, 2.

Please, use bare hands-no machinery we haven't done yet, no fancy theorems you quote.

BII. (The degree of a curve). Suppose $C \subset \mathbb{P}^n$ is an *irreducible* curve. If H is any hyperplane of \mathbb{P}^n with $C \not\subseteq H$, consider $C \cap H$. Write $\#(C \cap H)$ for the number of points of $C \cap H$ (just counting, no multiplicities, no fanciness). Note: $C \cap H$ is Z-closed in $C \Rightarrow C \cap H$ has dim = 0 (explain why) and so is finite.

a) Prove:

 $(\exists d > 0)(\forall H, \text{ hyperplane of } \mathbb{P}^n)(C \nsubseteq H \Rightarrow \#(C \cap H) \le d).$

b) Choose the min positive integer, d, from a) which works for a); call this min integer the *degree* of C. Now the hyperplanes of \mathbb{P}^n form another \mathbb{P}^n (the *dual* of \mathbb{P}^n), namely, we associate to H the homogeneous coords $(a_0 : \cdots : a_n)$ where the linear form $\sum_{i=0}^n a_i Z_i$ cuts out H from \mathbb{P}^n . Prove:

$$\{H \mid \#(H \cap C) < \deg C \quad \text{or} \quad C \subset H\}$$

is a Z-closed set in \mathbb{P}^n (dual). What is its dimension?

c) Now suppose given a curve of degree d in \mathbb{P}^n , our curve being irred. and we assume d < n. Show C is degenerate (cf. Prob AII part c)); in fact, show there exists a $\mathbb{P}^d \subset \mathbb{P}^n$ and $C \subset \mathbb{P}^d$. (Hint: Try d = 2, n = 3 and use the example of skew-lines to show we cannot omit the irreducibility of C as hypothesis.)

d) Suppose now C is an irreducible, non-degenerate curve in \mathbb{P}^n , so, by part a), deg $C \geq n$. Let P_1, \ldots, P_{n-1} be n-1 points of $C \cap H$, then prove: the linear span of the $P_j(1 \leq j \leq n-1)$ forms a hyperplane of H (i.e., a \mathbb{P}^{n-2}). Prove further, no other point of C is on this linear span. These statements are the "tri-secant lemma"—explain the name.

BIII. (Rational Varieties) Say V is an irreducible cx. variety, show by a variant of the argument of problem AIII) that the field of meromorphic functions $\mathcal{M}er(V)$ is well-defined. When $\mathcal{M}er(V)$ is a pure transcendental extension of transcendence degree = dim V over \mathbb{C} , the variety V is called *rational*. This is an old concept, historically important as it arose naturally in the cases dim V = 1, 2 (first 75 years of algebraic geometry after 1850). It is, however, not a good concept if dim $V \geq 3$; be this as it may, consider the surface in \mathbb{C}^3 defined by

$$X^2 + Y^3 + Z^5 = 0.$$

This surface, Σ , is irred. (very easy) but singular exactly at one point (0,0,0).

- a) Show that Σ is a normal surface.
- b) Prove that Σ is a rational surface.
- c) Suppose C is a curve and there exists a rational map (NOT necessarily birational)

 $\mathbb{P}^1 \dashrightarrow C$

which is dominating (AIII of HW I). Show that C is a rational curve. (If you use an algebra theorem to prove this—be prepared to prove that.) This result is also true for surfaces, but the proof is *much* harder. It is false in every dimension 3 and above.

d) Here we consider the Fermat cubic hypersurface in \mathbb{P}^3 : $X^3 + Y^3 + Z^3 + W^3 = 0$; call it F. Now F contains at least two lines:

 l_1 given by X + Y = Z + W = 0

 l_2 given by $X + \zeta Y = Z + \zeta W = 0$, ζ —a non-trivial root of 1.

By varying this prescription, how many curves can you find in F?

e) Continue d): Prove F is a manifold (Sing $F = \emptyset$) and that $l_1 \cap l_2 = \emptyset$. Pick a plane, Π , in \mathbb{P}^3 not containing either l_1 or l_2 and choose any $P \in F$ not on either l_1 or l_2 . Show there exists one line, l_P , with

- (i) $P \in l_P$
- (ii) $l_1 \cap l_p \neq \emptyset$.

Now define a map:

$$\psi_{l_1,l_2} \colon F - l_1 - l_2 \longrightarrow \Pi = \mathbb{P}^2$$

via $\psi_{l_1,l_2}(P) = \text{point where } l_P \text{ cuts } \Pi.$

Prove that this is a morphism $\psi_{l_1,l_2}: F - l_1 - l_2 \to \mathbb{P}^2$ and gives a birational equivalence $F \prec \mathbb{P}^2$. Therefore, F is a rational surface. Describe the image of ψ_{l_1,l_2} in $\Pi = \mathbb{P}^2$ and the opens where we have an isomorphism. What happens to all the lines you found in part d) under ψ_{l_1,l_2} ?

f) Consider G(k, n), the Grasmannian of k-planes in n-space. Pick a special $L \in G(k, n)$; namely, if a basis is given in \mathbb{C}^n , let L be defined by $e_{k+1} = \cdots = e_m = 0$. Write GL(k, n - k) for the subgroup of

 $\operatorname{GL}(n,\mathbb{C})$ stabilizing L, i.e., mapping L to itself. Show that, as sets, G(k,n) and the homogeneous space $\operatorname{GL}(n,\mathbb{C})/\operatorname{GL}(k,n-k)$ are the same. Explain how you deduce:

$$\dim G(k,n) = k(n-k).$$

If $V \in G(k, n)$ write W for \mathbb{C}^n/V . In terms of V, W alone, compute $T_{G(k,n),V}$. (Hint : $\mathrm{GL}(n, \mathbb{C})/\mathrm{GL}(k, n-k)$ is naturally a cx. anal. space, show it's isomorphic to $G(k, n)^{\mathrm{an}}$, then all is easy.) You deduce G(k, n) is a non-singular variety, then show that Z-near each pt of G(k, n) it is isomorphic to $\mathbb{C}^{k(n-k)}$ and this implies that G(k, n) is an irreducible, nonsingular rat'l variety.

BIV. (Lines on hypersurfaces) The hypersurfaces of deg d in \mathbb{P}^n are given as the zeros of single homogeneous polynomials of degree d; F = 0. View the coeffs of F as homogeneous coords, then the hypersurfaces of deg d in \mathbb{P}^n form a variety, $\operatorname{Hyp}(\mathbb{P}^n, d)$ which is in fact $\mathbb{P}^{N(n,d)}, N(n,d) = \binom{n+d}{d} - 1$.

a) Consider $G(2, n+1) = \mathbb{G}(1, n) = \text{Grasmannian of lines in } \mathbb{P}^n$ and $\text{Hyp}(\mathbb{P}^n, d)$. Show that the sets

 $Z(l) = \{ H \in \operatorname{Hyp}(\mathbb{P}^n, d) \mid l \subset H \}$

and

$$Z(H) = \{l \in \mathbb{G}(1,n) \mid l \subset H\}$$

are Z-closed in Hyp(\mathbb{P}^n, d), resp. $\mathbb{G}(1, n)$. Write

$$\Gamma(d, n) = \{ (H, l) \mid 1 \} H \in Hyp(\mathbb{P}^n, d); 2 \} l \in \mathbb{G}(1, n); 3 \} l \subset H \}$$

and show $\Gamma(d, n)$ is Z-closed in Hyp(\mathbb{P}^n, d) $\prod \mathbb{G}(1, n)$.

b) Examine the fundamental diagram

Show pr_2 is surjective. Pick a line l and choose coords of \mathbb{P}^n so that l is given by $Z_0 = \cdots = Z_{n-2} = 0$. Prove that $pr_2^{-1}(l) = all H$'s whose eqn: F = 0 has the form

$$F = Z_0 F_0 + \ldots + Z_{n-2} F_{n-2},$$

each F_j has deg (d-1). Show that all such *H*'s form a *linear* subspace of $\mathbb{P}^{N(n,d)}$ and its dimension is just a function of *n* and *d* (independent of *l*), say $\delta(n, d)$.

c) Prove $\Gamma(d, n)$ is irreducible and compute its dimension $\gamma(n, d)$ explicitly as a fcn of n and d. Explain why the image of pr_1 is Z-closed in Hyp(\mathbb{P}^n, d) and compare $\gamma(n, d)$ and N(n, d) to prove the

Theorem For every $n \geq 2$, there is an integer D, so that

- (i) If d > D, then for a Z-open subset of $Hyp(\mathbb{P}^n, d)$ no H in this Z-open contains any line.
- (ii) If d < D, then every hypersurface of degree d contains infinitely many lines.

d) The integer, D, is called the *critical degree*. Find the crit. degree for n = 3 (surface $\subset \mathbb{P}^3$), n = 4 (3-folds $\subset \mathbb{P}^4$), n = 5 (4-folds in \mathbb{P}^5). Suppose for some H of degree = D, we can show there exist but finitely many lines on H. Does it follow that pr_1 is onto, i.e., that on *each* hypersurface of crit. degree there is a line? Does this depend on n? If pr_1 is onto, prove there exists a Z-open subset of the crit. degree hypersurfaces on which there are but finitely many lines.

When n = 3 look at the Fermat surface (Prob BIII) or at the surface $Z_0Z_1Z_2 = Z_3^3$. Try n = 4. (In fact, the Z-open is the family of non-singular surfaces and by analysing the differential of pr_1 , one shows each such has exactly 27 lines (case n = 3).)