
Mathematics 622

Assignment 1 (Shatz)

Due Thursday, October 2, 2003

1 Part A (Easier problems—not for discussion)

AI. If V,W are affine varieties, we have defined a morphism from V to W (here, the sheaves of functions
OV , OW are being suppressed in the notation) in terms of a pair: a continuous map of topological spaces,
ϕ : V −→ W , and a local morphism, OW −→ ϕ∗OV . Suppose V,W are contained respectively in CN and
CM . Prove that a morphism ϕ : V −→ W is just a set-theoretic map, V −→ W , so that for every ξ ∈ V ,
there is some open, Uξ, of V with ξ ∈ Uξ and there exist f1, . . . , fM ; g1, . . . , gM ∈ A(W ) in such a manner
that

(i)
∏M
j=1 gj is never zero on Uξ and

(ii) For every x ∈ Uξ ⊆ V , we have

ϕ(x) =
(
f1(x)
g1(x)

, . . . ,
f1(x)
g1(x)

)
.

Here, A(W ) is the ring C[T1, . . . , TM ]/
√

(P1, . . . , Pr), where P1 = 0, . . . , Pr = 0 define W ⊆ CM . Prove the
converse.

AII. Consider the open, U , of Cn given by

(Z1 6= 0) ∩ (Z2 6= 0) ∩ · · · ∩ (Zn 6= 0).

We give this the structure of affine variety by noticing that the LRS (U,OCn |U) is isomorphic to the standard
affine of C2n whose equations are

Z1W1 = · · · = ZnWn = 1.

There is a notation for this U as affine variety: Gn
m.

(a) Compute Hom(Gn
m,Gm) (where Hom(−,−) = morphisms of varieties.)

(b) Prove that Aut(Gn
m) is a group extension of GL(n,Z) by (C∗)n.

AIII. Suppose X,Y are varieties. The closed subvarieties of a variety have all the properties of closed sets
in a crude topology—this is the Zariski topology (much weaker and cruder than the usual topology—yet
useful to describe where properties hold or don’t hold). We’ll write Z-closed, Z-open, Z-dense, etc. for these
concepts in the Zariski top. If f : X → Y , we call f a dominating morphism provided the image of f is
Z-dense in Y .

(a) Now suppose f : X → Y is a dominating morphism of affine varieties, let r = dimX − dimY ; we
assume X and Y are irreducible. Show that there is a dominating morphism ψ : X → Cr

∏
Y so that the

diagram

X
ψ //

f ��?
??

??
??

? Cr
∏
Y

pr2
{{ww

ww
ww

ww
w

Y

commutes.

(b) Under the hypotheses of (a), suppose there is a Z-dense subset, T , of Y for which f−1(t) is discrete
for all t ∈ T . Prove that r = 0.
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2 Part B (Problems to be discussed at our evening session)

BI. Look at Cn as a variety and pick t ≥ 1 points, P1, . . . , Pt ∈ Cn. There is a condition on the integer n
which is necessary and sufficient that the set Cn − {P1, . . . , Pt}, always a variety, be an affine variety. Find
this condition and prove the theorem.

NB . This is meant to be done with your bare hands, so if you use someting we’ve not yet done be prepared
to prove it from scratch as part of your proof. If you are sophisticated and know a proof by cohomology,
forget it and find a simpler proof.

BII. The notion of product (notation,
∏

) in a category should be known to you. Affine varieties are
a category, this category possesses products (supply proof). Now, affine varieties are a subcategory of
all varieties, show that the product you constructed before is still a product in the larger category of all
varieties. Lastly, use these two facts and the fact that every variety is locally affine to prove that the category
of varieties possesses products.

BIII. (a) Consider the varieties Pn,Pm. There is a canonical map (the Segre morphism)

Pn
∏

Pm −→ P(n+1)(m+1)−1,

we simply send 〈(X0, . . . , Xn), (Y0, . . . , Ym)〉 to the tuple consisting of all pairwise products 〈· · · , XiYj , · · ·〉
(in some order). Show that the image is actually a subvariety of P(n+1)(m+1)−1; i.e., find (homogeneous)
equations describing it. After doing this prove that the latter variety is isomorphic to Pn

∏
Pm where the

product is a variety via Problem BII. You should be able to write your description of the image of the Segre
morphism as the locus of points of P(n+1)(m+1)−1 where a certain matrix has rank one. What is the matrix?
and write the equations in matrix form.

(b) In PN , consisting as it does of either lines through 0 in AN+1 or hyperplanes (through 0) of AN+1,
the linear group

PGL(N,C) = GL(N + 1,C)/C∗,

where C∗ is embedded as diagonal matrices, acts as automorphisms of PN . (In fact, these are all the
automorphisms of PN .) Let’s agree to call two subvarieties V,W of PN conjugate iff there is some
σ ∈ PGL(N,C) with σ(V ) = W . We have the image of Pn

∏
Pm in PN (here, N = (n+ 1)(m+ 1)− 1, and

we call any conjugate of this image a Segre variety , Σ(n,m), of PN . Pick three disjoint lines X,Y, Z of P3

and consider S(X,Y, Z) the union of all lines in P3 which meet all three of X,Y, Z. Show that S(X,Y, Z) is
a Σ(1, 1), and in fact is the unique Σ(1, 1) which contains X,Y, Z.

(c) Continue (b) by investigating Pt−1
∏

P1 in P2t−1. Show that if X,Y, Z are three pairwise disjoint
(t−1)-planes in P2t−1, the union of all lines meeting X,Y, Z is a Σ(t−1, 1) and in fact the unique Σ(t−1, 1)
containing X,Y, Z. What is the situation for the general case Pt−1

∏
Ps−1? Formulate and prove.

By the way, the Segre morphism has a coordinate-free description. If A,B are C-vector spaces, we make
P(A), P(B) (the spaces of lines or hyperplanes through 0 in A or B). Then the Segre morphism is just

P(A)
∏

P(B) 7→ P(A⊗B),

via 〈[v], [w]〉 7→ [v ⊗ w].

BIV. (a) In class we asked to classify the k-planes in Cn. The cases k = 0, n − 1, n were discussed. Say Z
is a k-plane in Cn, pick a basis z1, . . . , zk of Z. Then, z1 ∧ · · · ∧ zk is a vector in

∧k Cn; show that up to
multiplication by non-zero constants, this vector depends on Z alone. Therefore, z1 ∧ · · · ∧ zk defines a point
[z1 ∧ · · · ∧ zk] of P

(∧k Cn
)

= P(n
k)−1 space and we consider the map

Pl : Z 7→ [z1 ∧ · · · ∧ zk] ∈ P(n
k)−1.
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Show that Pl is a 1–1 map, continuous, of G(k, n) to P(n
k)−1. Show further that the image of Pl is closed

as follows: Pick ξ ∈ P(n
k)−1, represent it by a vector ξ0 of C(n

k). We have a map, Cn −→
∧k+1 Cn, namely

v 7→ v ∧ ξ0. Prove ξ ∈ Im Pl iff rk(v 7→ v ∧ ξ0) ≤ n− k. Show that the entires of the matrix of (v 7→ v ∧ ξ0)
are the homogeneous coordinates on P(n

k)−1; now finish up using the (n− k+ 1)× (n− k+ 1) minors of our
matrix. We give G(k, n) the structure of variety it inherits from Im Pl—therefore it is a projective variety.

(b) The equations we got in (a) defining G(k, n) in P(n
k)−1 are not the best we can do. Show in fact there

are quadratic equations defining G(k, n) in P(n
k)−1; these are the Plücker relations.

(c) Look at the Segre variety Σ(1, k) ⊆ P2k+1. As Σ(1, k) ⊆ P1
∏

Pk, we have two projections,
pr1 : Σ(1, k) → P1 and pr2 : Σ(1, k) → Pk. If p ∈ P1 look at pr−1

1 (p). Prove that pr−1
1 (p) is a k-plane

in P2k+1. This gives a map p 7→ pr−1
1 (p) from P1 to G(k + 1, 2k + 2), since C2k+2 − {0} // // P2k+1 .

Usually, the k-planes in Pl are denoted G(k, l) (of course, G(k, l) is G(k + 1, l + 1)), so we get

P1 −→ G(k, 2k + 1).

Prove that this is a morphism, the image is a curve and prove that this image lies in a (k + 1)-plane of
P(2k+2

k+1 )−1. Can the image curve lie in a smaller dimensional plane of P(2k+2
k+1 )−1?
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