Problem list from Chapter 1:
1.II. 1. Exerase: Let V be the set of solutions to the ODE

$$
x^{(4)}-4 x^{(3)}+3 x^{(2)}+4 x^{(1)}-4 x=0
$$

Find a basis $f r r v$ and prove it is a basis; then compute its dual.
1.II.1 Exercise: Prove that the map $R:\left(V_{c}\right)^{*} \rightarrow\left(V_{\mathbb{R}}\right)^{*}$ given by $\langle R(t), v\rangle=\operatorname{Re}\langle t, v\rangle$ is \mathbb{R}-linear. Is it bijective? If so, what is its inverse?

1. II.2. Exercise: verify the formula for $A, B \geqslant 0$ and $\alpha, \beta \in[0,2 \pi)$

$$
\left.\begin{array}{l}
z=A(\cos \alpha+i \sin \beta) \\
\omega=B(\cos \alpha+i \sin \beta)
\end{array}\right\} \Rightarrow z \cdot \omega=A B(\cos (\alpha+\beta)+i \sin (\alpha+\beta))
$$

1.II.3. Exercise: consider the set $\Omega_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ for na pos. integer.
(a) Prove $\Omega_{n}=\left\{\left.\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n} \right\rvert\, k=0, \ldots, n-1\right\}$
(b) Provide a formula for all solution g of the equation $a z^{n}-b=0$ where $a, b \in \mathbb{C}$ are given complex numbers, $a \neq 0$.
(c) Define $\omega_{n}=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$

The number ω_{n} is called the fundamental n-th root of unity. Compute the sum of all roots of any equation of the form $a z^{n}-b=0, a \neq 0$. What is the geometric meaning of your answer?

1．V．1．Exercise：Verify that S^{0} and T^{0} are subspaces of V^{*} and V ， respectively Also，verify that $S^{00} \supseteq$ SpanS，$T^{00} \supseteq$ Span (T) ．
1．IV．2．Exercise：Prove that codim（ (W) is well－defined by proving $\operatorname{codm}(w)=\operatorname{diva}\left(W^{\circ}\right)_{0}$ then verify that $k K V$ has codimensionsk if W can be written as on intersection of the form

$$
W=\prod_{i=1}^{k} \operatorname{Ker}\left(f_{i}\right), \mathcal{f}_{i} \in V^{*}
$$

1．IV．3．Exercise：Let $V=\mathbb{F}^{n \times n}$ ，the space of $n \times n$ matrices，$A K A M_{n}$（开） when considered as a ring with respect to matrix multiplication．
（1）let $B \in V$ be fixed．Show that $f(x)=$ trace $\left(B^{\prime} x\right)$ is a
立ear functional on V ．
（2）Show that $f\left(X^{Y}\right)=f(Y X)$ for any $X, Y \in V$ and f as in（1）．
（3）Verify that the set W of all functionals of the 另rm defined in（1）is a vector subspace of V^{*} and give an upper bound on its dimension．
1．VV．4．Exercise：Let $V=0^{\infty}(\mathbb{R})$ le the space of all $\varrho^{\infty}-$ smooth real－valued functions on the real line，that is：$\& \in V$ if and ally if it hes continuous derivatives of all orders＇at every point $p \in \mathbb{R}$ ．
Let $D: T \rightarrow V$ denote the differentiation operator $D(f)=\frac{d f(t)}{d t}$ ， and let $\eta: V \rightarrow \mathbb{R}$ denote the linear functional $\eta(z)=f(0)$ 。
We define $\eta_{n}(f)=\left(\eta \cdot D^{n}\right)(f)$ ，for all now－negative integers n ，
and set

$$
z=\operatorname{Soan}\left(\eta_{n}\right)_{n \geq 0} \subseteq V^{*}
$$

1. IV. 4. (1) Prove that $\left(\eta_{n}\right)_{n \geqslant 0}$ is a basis for z; where have you seen it used? (contd.)
(2) Prove that z is a proper subspace of V^{*} by exhilaifing a non-zero element in z°.
(3) How large do you think z° really is? Can it possibly be o-dimensional?
(4) How much larger is $V^{* *}$ in comparison to V ? Try producing a lower bound in the form of an independent subset $S \subseteq V^{r}-\mathrm{ev}(\mathrm{V})$, with cardinality as high as possible.
(VV) Additional problems:
2. I. 1. $^{\text {Lagrange Interpolation: }} \frac{\text { Consider the } 5 x_{0} T=\mathbb{F}_{1}}{}[t]$ of polynomials of legree $\leq d$ with coefficients in the field $\mathbb{F} \in\left\{\mathbb{R}_{R}, \subset\right\}$.
(1) Let $a_{0}, 000, a_{d} \in \mathbb{F}$ be distinct scalars. Given any $b_{0}, \ldots, b_{d} \in \mathbb{F}$, find a polynomial $p(x) \in V$ satisfying $p\left(a_{i}\right)=b_{i}$ for all $i=0, \ldots, d$. Be sure to produce an explicit formula.
(2) With the same a_{0}, one, a_{d}, let us define $\beta=\left(v^{0}, \ldots, v^{d}\right)$ in V^{*} by setting

$$
v^{2}(p):=p\left(a_{i}\right)
$$

Find a basis α of V such that $\beta=\alpha^{*}$ (concluding that β is, in fact, a basis of V^{*}).
1.T.2. Let U,W be subspaces of V_{F}. Which of the following hold true, and under what conditions?
(1) $(u+w)^{0}=U^{0} \cap w^{0}$
(2) $(u \cap W)^{0}=U^{0}+W^{0}$

1. II.3. Let $P \subseteq \mathbb{R}^{2}$ be a finite subset and let V be the vector space of all vector fields $F: \mathbb{R}^{2}-P \rightarrow \mathbb{R}^{2}$ that are e^{1}-smooth and irrotational Let $W \subseteq V$ be the subspace of all fields $F \in V$ that are conservative.
(1) Prove that dim V is infinite by presenting an infinite independent subset of W^{*}
(2) Prove that $\operatorname{codim} W|=|P|$.
(PLEASE SEE REVIEW MATERIAL IN THE NOTES)
