Chapter 3

The Hirzebruch-Riemann-Roch
Theorem

3.1 Line Bundles, Vector Bundles, Divisors
From now on, X will be a complex, irreducible, algebraic variety (not necessarily smooth). We have

(I) X with the Zariski topology and Ox = germs of algebraic functions. We will write X or Xza,.

(IT) X with the complex topology and Ox = germs of algebraic functions. We will write X¢ for this.
(ITII) X with the complex topology and Ox = germs of holomorphic functions. We will write X" for this.

(IV) X with the complex topology and Ox = germs of C*°-functions. We will write X¢oo or Xgmootn inn this
case.

Vector bundles come in four types: Locally trivial in the Z-topology (I); Locally trivial in the C-topology
(I1, 111, V).

Recall that a rank r vector bundle over X is a space, E, together with a surjective map, p: E — X, so
that the following properties hold:

(1) There is some open covering, {U, — X}, of X and isomorphisms
o1 r L.
Ya: D (Us) — U, H(C (local triviality)
We also denote p~1(Uy,) by E | U,.

(2) For every «, the following diagram commutes:

pil(Ua) ‘e Ua HCT
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(3) Consider the diagram

pil(Ua) ‘e UsJIC"

p (UaNUs) —2% (U, NUs)[IC

94

p N UsNUs) —2 (UsNU,)[ICT

©
P~ (Up) ———= U IIC
where g7 = pg o ! | p71(Uy NUgs). Then,
¢?1U,NUz =id and ¢° | C" € GL,.(T(U, N Uz, Ox))

and the functions g2 in the glueing give type II, III, IV.

On triple overlaps, we have

B _

gyogl =g and g§=(g2)"".

This means that the {g?} form a 1-cocycle in Z'({U, — X},GL,). Here, we denote by GL,.(X), or simply
GL,, the sheaf defined such that, for every open, U C X,

I'U,GL, (X)) = GL,(T'(U, Ox)),

the group of invertible linear maps of the free module I'(U, Ox )" = I'(U, O% ). When r = 1, we also denote
the sheaf GL;(X) by G,,,, or O%.

Say {1} is another trivialization. We may assume (by refining the covers) that {¢,} and {1} use the
same cover. Then, we have an isomorphism, o,: U, [JC" — U, []C":

U.TIC

U, []C

We see that {0} is a O-cochain in C°({U, — X},GL,). Let {h2} be the glueing data from {1, }. Then,

we have

s = g2ogpa
s = hiota
wa = O0q % Pq-

From this, we deduce that o5 0 ¢g = 15 = h 0 5, 0 P4, and then

v = (O'B_l ohPo00oy)0 v,
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SO
Jé] —1

9o = 0g ohgoaa.
This gives an equivalence relation, ~, on Z1({U, — X},GL,). Set
H'{Uy, — X},GL,) =Z') ~ .

This is a pointed set. If we pass to the right limit over covers by refinement and call the pointed set from
the limit H'(X,GL,), we get

Theorem 3.1 If X is an algebraic variety of one of the types T' = I, II, 111, 1V, then the set of isomorphism
classes of rank r vector bundles, Vectr .(X), is in one-to-one correspondence with H*(X,GL,.).

Remarks:

(1) If F is some “object” and Aut(F) = is the group of automorphisms of F' (in some catgeory), then an
X-torsor for F' is just an “object, E, over X", locally (on X) of the form U[]F and glued by the
pairs (id, g), where g € Maps(U NV, Aut(F)) on U NV. The theorem says: H'(X,Aut(F)) classifies
the X-torsors for F.

Say F' =P, we'll show that in the types I, I, ITI, Aut(F) = PGL,, where

0— G,, — GL,;; — PGL, — 0 is exact.

(2) Say 1 — G’ — G — G” — 1 is an exact sequence of sheaves of (not necessarily commutative)
groups. Check that
1 G'(X) G(X) G"(X)
do >

<—>H1(X,Gl) HHI(X,G) HHl(X’G//)

is an exact sequence of pointed sets. To compute dy(c) where o € G”(X), proceed as follows: Cover
X by suitable U, and pick s, € G(U,) mapping to o [ U, in G"(U,). Set

do(o) = sasgl on U, NUg/ ~.

We find that do(c) € H'(X,G’). When G’ C Z(G), we get the exact sequence

| @' (X) G(x) a"(X)
do >

<—>H1(X,Gl) HHI(X,G) H'Hl(X,GH)

g1
L H?*(X,G")

(3) Apply the above to the sequence

0— Gm — G]Lr+1 I ]P)G]Lr — 1.
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If X is a projective variety, we get
0 — T'(X,0%) — GL,1(I'(X, Ox)) — PGL,(I'(X, Ox)) — 0,
because I'(X, 0% ) = C* and I'(X, Ox) = C. Consequently, we also have
0 — HY(X,0%) — HY(X,GL,41) — H'(X,PGL,) — H*(X,0%) = Br(X),

where the last group, Br(X), is the cohomological Brauer group of X of type T. By our theorem,
HY(X,0%) :VPiC(X) classifies type T line bundles, H'(X,GL,, 1) classifies type T rank 7 + 1 vector
bundles and H'(X,PGL,) classifies type T fibre bundles with fibre P& (all on X).

Let X and Y be two topological spaces and let 7: Y — X be a surjective continuous map. Say we have
sheaves of rings Ox on X and Oy on Y; we have a homomorphism of sheaves of rings, Ox — m.Oy. Then,
each Oy-module (or Oy-algebra), F, gives us the Ox-module (or algebra), 7. on X (and more generally,
Rim,F) as follows: For any open subset, U C X,

LU, m.F) =T(x (U), F).
So, (7~ Y(U), Oy) acts on T'(7~1(U),F) and commutes to restriction to smaller opens. Consequently, ., F
is a m,Oy-module (or algebra) and then Ox acts on it via Ox — m,Oy. Recall also, that Ri7.F is the
sheaf on X generated by the presheaf
(U, Rin,F) = H(x "1 (U), F).

If F is an algebra (not commutative), then only , and R'm, are so-far defined.

Let’s look at F and I'(Y, F) = I'(m~}(X), F) = I'(X, m.F). Observe that
T(Y,~) = [(X,~) om..

So, if 7, maps an injective resolution to an exact sequence, then the usual homological algebra gives the
spectral sequence of composed functors (Leray spectral sequence)

EY? = HY(X,Rim,F) = H*(Y,F).
We get the exact sequence of terms of low degree (also called edge sequence)

1 4>H1(X,7T*.7:) 4>H1(Y7‘7:) 4>HO(X7R17T*.7:)
do >

<—> H*(X,mF) ——= H*(Y,F) —————
In the non-commutative case, we get only

1 — HY(X, 7, F) — H'(Y,F) — H(X, R'x F).

Application: Let X be an algebraic variety with the Zariski topology, let Ox be the sheaf of germs of
algebraic functions and let Y = X¢ also with Oy = the sheaf of germs of algebraic functions. The map
m:Y — X is just the identity, which is continuous since the Zariski topology is coarser than the C-topology.
Take F = (possibly noncommutative) GL,..

Claim: R'id,GL, = (0), for all r > 1.
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Proof . Tt suffices to prove that the stalks are zero. But these are the stalks of the corresponding presheaf

. 1
lim H(U,GL,)
Usz

where U runs over Z-opens and H! is taken in the C-topology. Pick z € X and some ¢ € HL(U,GL,) for
some Z-open, U > z. So, ¢ consists of a vector bundle on U, locally trivial in the C-topology. There is some
open in the C-topology, call it Uy, with x € Uy and Uy C U where £ | Uy is trivial iff there exists some
sections, o1,...,0., of £ over Uy, and oy,...,0, are linearly independent everywhere on Uy. The o; are
algebraic functions on Uy to C". Moreover, they are Li. on Uy iff o1 A - -+ A 0, is everywhere nonzero on Uy.
But, o1 A -+ Ao, is an algebraic function and its zero set is a Z-closed subset in X. So, its complement, V,
is Z-open and z € Uy C V NU. It follows that £ [ V N U is trivial (since the o; are Li. everywhere); so, &
indeed becomes trivial on a Z-open, as required. []

Apply our exact sequence and get
Theorem 3.2 (Comparison Theorem) If X is an algebraic variety, then the canonical map
Vecty, (X) = H'(Xzar,GL,) — H'(X¢,GL,) = Vectf:(X)

is an isomorphism for all v > 1 (i.e., a bijection of pointed sets).

Thus, to give a rank r algebraic vector bundle in the C-topology is the same as giving a rank r algebraic
vector bundle in the Zariski topology.

@ If we use Ox = holomorphic (analytic) functions, then for many X, we get only an injection
Vecty,, (X) — Vectr(X).

Connection with the geometry inside X:

First, assume X is smooth and irreducible (thus, connected). Let V be an irreducible subvariety of
codimension 1. We know from Chapter 1 that locally on some open, U, there is some f € I'(U,Ox) = Oy
such that f = 0 cuts out V in U. Furthermore, f is analytic if V' is, algebraic if V' is. Form the free abelian
group on the V’s (we can also look at “locally finite” Z-combinations in the analytic case); call these objects
Weil divisors (W-divisors), and denote the corresponding group, WDiv(X).

A divisor D € WDiv(X) is effective if D = )" aqVe, with aq > 0 for all o. This gives a cone inside
WDiv(X) and partially orders WDiv(X).

Say ¢ is a holomorphic (or algebraic) function near z. If V' passes through z, in Ox ,~which is a UFD
(by Zariski) we can write

g = fag’ where (ga f) =1
(The equation f = 0 defines V near z so f is a prime of Ox ,.) Notice that if p = (f) in IT'(U,Ox) = Oy,
then g = fog iff g € p® and g & p** iff g € p*(Ov)p and g & p*™(Op)p. The ring (Op), is a local ring
of dimension 1 and is regular as X is a manifold (can be regular even if X is singular). Therefore, a is
independent of x. The number a is by definition the order of vanishing of g along V', denoted ordy (g). If ¢
is a meromorphic function near x, we write g = g1/g2 locally in (Oy),, with (g1,92) = 1 and set

ordy (g) = ordy (¢g1) — ordy (g2).

We say that g has a zero of order a along V iff ordy (¢g) = @ > 0 and a pole of order a iff ordy (g) = —a < 0.
If g € I'(X, Mer(X)*), set
= 3 odv(g)V,

VEWDiv(X)

Claim. The above sum is finite, under suitable conditions:
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(a) We use algebraic functions.

(b) We use holomorphic functions and restrict X (DX).

Look at g, then 1/g vanishes on a Z-closed, Wy. Look at X — Wy. Now, X — W, is Z-open so it is a
variety and g | X — Wy is holomorphic. Look at V' C X and ordy(g) = a # 0, i.e., VNU # (. Thus,
(9) = p* in (O )y, which yields (g) € p and then V N (X —Wy) =V (p) C V((g9)). But, V(g) is a union of
irreducible components (algebraic case) and V' is codimension 1, so V' is equal to one of these components.
Therefore, there are only finitely many V’s arising from X — W.

The function 1/g vanishes on Wy, so write Wy as a union of irreducible components. Again, there are only
finitely many V' arising from W;. So, altogether, there are only finitely many Vs associated with g where g
has a zero or a pole. We call (¢) € WDiv(X) a principal divisor. Given any two divisors D, E € WDiv(X),
we define linear (or rational) equivalence by

D~FE iff (3g€ Mer(X))(D—E=/(g)).
The equivalence classes of divisors modulo ~ is the Weil class group, WC1(X).

Remark: All goes through for any X (of our sort) for which, for all primes, p, of height 1, the ring (Oy), is
a regular local ring (of dimension 1, i.e., a P.I.D.) This is, in general, hard to check (but, OK if X is normal).

Cartier had the idea to use a general X but consider only the V’s given locally as f = 0. For every open,
U C X, consider Ay =T'(U,Ox). Let Sy be the set of all non-zero divisors of Ay, a multiplicative set. We
get a presheaf of rings, U +— S’EIAU7 and the corresponding sheaf, Mer(X), is the total fraction sheaf of
Ox. We have an embedding Ox — Mer(X) and we let Mer(X)* be the sheaf of invertible elements of
Mer(X). Then, we have the exact sequence

0— 0% — Mer(X)" — Dx — 0,

where Dx is the sheaf cokernel.

We claim that if we define Dx = Coker (0% — Mer(X)*) in the C-topology, then it is also the kernel
in the Z-topology.

Take o € T'(U, Dx) and replace X by U, so that we may assume that U = X. Then, as o is liftable locally

in the C-topology, there exist a C-open cover, U, and some o, € I'(U, Mer(X)*) so that o, — o | U,.

Make the U, small enough so that o, = fo/ga, where f,, g are holomorphic. It follows that o, is defined

on a Z-open, ﬁa D U,. Look at U'a N (75 D U, NUg. We know o,/0p is invertible holomorphic on U, NUg
and so,

Oa 08

1 on U, NUg.
0p Oq

It follows that o, /0s is invertible on Uy N (75 and then, restricting slightly further we get a Z-open cover
and o,’s on it lifting o. [

Definition 3.1 A Cartier divisor (for short, C-divisor) on X is a global section of Dx. Two Cartier divisors,
o, T are rationally equivalent, denoted o ~ 7, iff /7 € T'(X, Mer(X)*). Of course, this means there is a C or
Z-open cover, Uy, of X and some 04,7y € I'(Uy, Mer(X)*) with 0, /7, invertible holomorphic on U, N Ug.
The group of Cartier divisors is denoted by CDiv(X) and the corresponding group of equivalence classes
modulo rational equivalence by C1(X) (the class group).

The idea is that if {(Uy,,04)}a defines a C-divisor, then we look on U, at

1
Y — 0% = (locus o, = 0) — (locus — = 0).
Oa

ag
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When we have the situation where WDiv(X) exists, then the map
{Ua,00)}a — {Ug —oa'}
takes C-divisors to Weil divisors. Say o, and o/, are both liftings of the same o, then on U, we have
0!, = 0aga where g, € T'(X,O%).

Therefore,
0 00 0 00

Oq = 0q =04 04y

and the Weil divisors are the same (provided they make sense). If o, 7 € CDiv(X) and o ~ 7, then there is
a global meromorphic function, f, with ¢ = fr. Consequently

08— 02 = (N0~ ()* +73 -7,
which shows that the corresponding Weil divisors are linearly equivalent. We get

Proposition 3.3 If X is an algebraic variety, the sheaf Dx is the same in either the Zariski or C-topology
and if X allows Weil divisors (non-singular in codimension 1), then the map CDiv(X) — WDiv(X) given

by 0+ 00 — 02 is well-defined and we get a commutative diagram with injective rows

CDiv(X) “—— WDiv(X)

| l

Cl(X) &—— WCI(X).
If X is a manifold then our rows are isomorphisms.

Proof. We only need to prove the last statement. Pick D = Za na Ve, a Weil divisor, where each V,, is
irreducible of codimension 1. As X is manifold, each V,, is given by f, = 0 on a small enough open, U; take
for o [ U, the product [[,, fi~ and this gives our C-divisor.

We can use the following in some computations.

Proposition 3.4 Assume X is an algebraic variety and Y — X is a subvariety. Write U = X =Y, then
the maps
o € CDiv(X) — o | U € CDiv(U),

resp.

> naVa € WDIv(X) = Y nq(Va NU) € WDiv(U)
[0} (03

are surjections from CDiv(X) or WDiv(X) to the corresponding object in U. If codimx (Y) > 2, then our
maps are isomorphisms. If codimx (Y) =1 and Y is irreducible and locally principal, then the sequences

7Z — CDiv(X) — CDiv(U) — 0 and Z — WDiv(X) — WDiv(U) — 0
are exact (where the left hand map is n — nY ).

Proof. The maps clearly exist. Given an object in U, take its closure in X, then restriction to U gives back
the object. For Y of codimension at least 2, all procedures are insensitive to such Y, so we don’t change
anything by removing Y. A divisor £ € CDiv(X) (or WDiv(X)) goes to zero iff its “support” is contained
in Y. But, YV is irreducible and so are the components of £. Therefore, £ = nY, for some n. []
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Recall that line bundles on X are in one-to-one correspondence with invertible sheaves, that is, rank 1,
locally free Ox-modules. If L is a line bundle, we associate to it, Ox (L), the sheaf of sections (algebraic,
holomorphic, C*°) of L.

In the other direction, if £ is a rank 1 locally free Ox-module, first make £P and the Ox-algebra,

Symg (LP), where
Syme, (£7) = [T(£")®"/(a@b—bea).
n>0
On a small enough open, U,
Syme, (LP) [ U = OylT],

so we form Spec(Symey  (£P) | U) = UJ]C', and glue using the data for £”. We get the line bundle,
Spec(Symg  (LP)).

Given a Cartier divisor, D = {(Uy, fa)}, we make the submodule, Ox (D), of Mer(X) given on U, by

1
Ox(D) Uy = f—OX [ Uy C Mer(X) | Uy.
If {(Uqa,9a)} also defines D (we may assume the covers are the same by refining the covers if necessary),
then there exist hy € I'(Uy, Mer(X)*), with
Jfoha = ga-
1

Then, the map £ — }%E takes fi to gi; s0, 7~ and gi generate the same submodule of Mer(X) | U,. On
U, NUg, we have

& eT'(Uy,NUs, O%),
fs
and as
Jo 1 _ 1
fs fa f5
we get

1 1
—Op, U, NUg = —
o I3

Consequently, our modules agree on the overlaps and so, Ox (D) is a rank 1, locally free subsheaf of Mer(X).

OU[j [Us N Ug.

Say D and FE are Cartier divisors and D ~ E. So, there is a global meromorphic function,
feTl(X, Mer(X)*) and on U,,
Jof = ga-

Then, the map £ — %f is an Ox-isomorphism
Ox(D) = Ox(E)

Therefore, we get a map from Cl(X) to the invertible submodules of Mer(X).

Given an invertible submodule, £, of Mer(X), locally, on U, we have £ | U = f%; Oy C Mer(X) | U.
Thus, {(U, fu)} gives a C-divisor describing £. Suppose £ and M are two invertible submodules of Mer(X)
and £ = M; say p: L — M is an Ox-isomorphism. Locally (possibly after refining covers), on U, we have

1 1
L1Ua Oy, and M|Us2 -0,

So, p: L[ Uy, — M [ Uy, is given by some 7, such that

@(fia) :Tagia.
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Consequently, ¢ [ U, is multiplication by 7, and ¢g [ Ug is multiplication by 75. Yet ¢, [ Uy and g [ Ug
agree on U, NUg, so 7, = 73 on U, N Ug. This shows that the 7, patch and define a global 7 such that

=) i 71052

on overlaps. Therefore, we can define a global ® via
1
o= gago(f—> € Mer(X),

and we find £ — %f gives the desired isomorphism.

Theorem 3.5 If X is an algebraic variety (or holomorphic or C*° wvariety) then there is a canonical map,
CDiv(X) — rank 1, locally free submodules of Mer(X). It is surjective. Two Cartier divisors D and E are
rationally equivalent iff the corresponding invertible sheaves Ox (D) and Ox(E) are (abstractly) isomorphic.
Hence, there is an injection of the class group, C1(X) into the group of rank 1, locally free Ox -submodules
of Mer(X) modulo isomorphism. If X is an algebraic variety and we use algebraic functions and if X is
irreducible, then every rank 1, locally free Ox-module is an Ox (D). The map D — Ox (D) is just the
connecting homomorphism in the cohomology sequence,

H(X,Dx) - HY(X,0%).
Proof. Only the last statement needs proof. We have the exact sequence
0 — 0% — Mer(X)" — Dx — 0.
Apply cohomology (we may use the Z-topology, by the comparison theorem): We get
I'(X, Mer(X)*) — CDiv(X) — Pic(X) — H' (X, Mer(X)*).

But, X is irreducible and in the Z-topology Mer(X) is a constant sheaf. As constant sheaves are flasque,
Mer(X) is flasque, which implies that H' (X, Mer(X)*) = (0). Note that this shows that there is a surjection
CDiv(X) — Pic(X).

How is § defined? Given D € H(X,Dx) = CDiv(X), if {(Ua, fa)} is a local lifting of D, the map §
associates the cohomology class [f3/fa], where f3/fs is viewed as a 1-cocycle on O%. On the other hand,
when we go through the construction of Ox (D), we have the isomorphisms

1

Ox(D) [ Uy = f: OUQ = OUQ D OUQ n OU[, (mult. by fa)
and 1
Ox(D) [ Ug = fig Oy, = Oy, 2 Oy, N Oy, (mult. by f3)

and we see that the transition function, ¢, on Oy N Oy, is nonother that multiplication by fz/fs. But
then, both Ox (D) and §(D) are line bundles defined by the same transition functions (multiplication by

fo/fa) and 6(D) = Ox (D). 0

Say D = {(Ua, fa)} is a Cartier divisor on X. Then, the intuition is that the geometric object associated
to D is
(zeros of f, —poles of f,) on U,.

This leads to saying that the Cartier divisor D is an effective divisor iff each f, is holomorphic on U,. In this
case, f, =0 gives on U, a locally principal, codimension 1 subvariety and conversely. Now each subvariety,
V', has a corresponding sheaf of ideals, Jy. If V is locally principal, given by the f,’s, then Jy [ U, =
faOx [ Uy. But, foOx | Uy, is exactly Ox(—D) on U, if D = {(U,, fo)}. Hence, Ix = Ox(—D). We get
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Proposition 3.6 If X is an algebraic variety, then the effective Cartier divisors on X are in one-to-one
correspondence with the locally principal codimension 1 subvarieties of X. If V is one of the latter and if D
corresponds to V, then the ideal cutting out V is exactly Ox(—D). Hence

0— Ox(-D) — Ox — Oy — 0 is exact.

What are the global sections of Ox (D)?

Such sections are holomorphic maps o: X — Ox (D) such that m oo = id (where 7: Ox (D) — X is the
canonical projection associated with the bundle Ox (D)). If D is given by {(Ua, fa)}, the diagram

Ox(D) | Uy =——— foOx | Uy —L2 5 05 1 U,
Ox(D) T U, NU;g Ox | Us NUg
Ox(D) [ UsN U, Ox [UsN Uy

f,
Ox(D) [ Us =——— f30x | Us —2 = Ox | Us

implies that
0q = fao: Uy — Ox U, and 05=f502U5—>0X [Ug.

However, we need
a3 = ggaa,

which means that a global section, o, is a family of local holomorphic functions, o4, so that o3 = g3o, . But,
as g5 = fa/fo: we get

On op

— =— onU,NUg.

fa fﬁ “ 7
Therefore, the meromorphic functions, o,/ fa, patch and give a global meromorphic function, F,,. We have

fa(FU f Ua) =0Oq
a holomorphic function. Therefore, (f, [ Us) + (Fy [ Us) > 0, for all a and as the pieces patch, we get
D+ (F,) > 0.

Conversely, say F' € T'(X, Mer(X)) and D+ (F) > 0. Locally on U,, we have D = {(U,, fo)} and (fo F) > 0.
If we set 0, = foF', we get a holomorphic function on U,. But,

f
ggga = ]TﬁfaF = fpF =03,

so the o, ’s give a global section of Ox (D).
Proposition 3.7 If X is an algebraic variety, then
HO(X,0x (D)) = {0} U {F € D(X, Mex(X)) | (F) + D > 0},

in particular,
|ID| =P(H*(X,0x(D)))={E|E>0 and FE ~ D},

the complete linear system of D, is naturally a projective space and H°(X,Ox (D)) # (0) iff there is some
Cartier divisor, E >0, and E ~ D.
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Recall that an Ox-module, F, is a Z-QC (resp. C-QC, here QC = quasi-coherent) iff everywhere locally,
i.e., for small (Z, resp. C) open, U, there exist sets I(U) and J(U) and some exact sequence

(Ox 1 U)I®) 2% (0x 1 U)WV — F1U — 0.

Since Ox is coherent (usual fact that the rings I'(U,,Ox) = A,, for U, open affine, are noetherian) or
Oka’s theorem in the analytic case, a sheaf, F, is coherent iff it is QC and finitely generated iff it is finitely
presented, i.e., everywhere locally,

(Ox U5 (Ox |U) — F U — 0 is exact. )

(Here, p, g are functions of U and finite).

In the case of the Zariski topology, F is QC iff for every affine open, U, the sheaf 7 [ U has the form M ,
for some I'(U, Ox)-module, M. The sheaf M is defined so that, for every open W C U,

(1) (&) € M
(W, M)=S0: W — [ J M (2) (V& € W)(3V (open) C W, 3f € M,3g € T'(V,0x))(g #0 on V)
cew (3) (VyeV) (U(y) = image (5) in My) .

Proposition 3.8 Say X is an algebraic variety and F is an Ox-module. Then, F is Z-coherent iff F is
C-coherent.

Proof. Say F is Z-coherent, then locally Z, the sheaf F satisfies (). But, every Z-open is also C-open, so F
is C-coherent.

Now, assume F is C-coherent, then locally C, we have (}), where U is C-open. The map ¢r is given by
a p X ¢ matrix of holomorphic functions on U. Each is algebraically defined on a Z-open containing U. The
intersection of these finitely many Z-opens is a Z-open, U and U O U. So, we get a sheaf

F U = Coker (Ox [ U)? — (Ox [ U)P).
The sheaves F [ U patch (easy—DX) and we get a shealf, F. On U, the sheaf Fis equal to F, so F="F. [l
We have the continuous map X¢ d, Xzar and we get (see Homework)

Theorem 3.9 (Comparison Theorem for cohomology of coherent sheaves) If X is an algebraic variety and
F is a coherent Ox-module, then the canonical map

HY(Xzar, F) — HY(Xc, F)

is an isomorphism for all ¢ > 0.

Say V is a closed subvariety of X = P¢. Then, V is given by a coherent sheaf of ideals of Ox, say Jy
and we have the exact sequence
0—Jy — Ox — Oy — 0,

where Oy is the sheaf of germs of holomorphic functions on V' and has support on V. If V' is a hypersurface,
then V' is given by f = 0, where f is a form of degree d. If D is a Cartier divisor of f, then Jy = Ox(—D).
Similarly another hypersurface, W, is given by ¢ = 0 and if deg(f) = deg(g), then f/g is a global meromorphic
function on P™. Therefore, (f/g) = V — W, which implies V ~ W. In particular, g = (linear form)? and
so, V ~ dH, where H is a hyperplane. Therefore the set of effective Cartier disisors of P™ is in one-to-one
correspondence with forms of varying degrees d > 0 and

CI(P") = Z,



170 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

namely, V — deg(V) = (V) (our old notation) = (deg(f)) - H € H*(P",Z). We deduce,

Pic’(P") = (0) and Pic(P") = CI(P") = Z.

Say V is a closed subvariety of P¢, then we have the exact sequence
0— Jy — Opn — Oy — 0.

Twist with Opax (d), i.e., tensor with Opn(d) (Recall that by definition, Opn(d) = Opn(dH), where H is a
hyperplane). We get the exact sequence

0— Jv(d) — Opn(d) — Oy (d) — 0
(with Ty (d) = Ty ® Opn(d) and Oy (d) = Oy ® Opn(d)) and we can apply cohomology, to get
0 — HO(P™, 3y (d)) — H°(P", Opn(d)) — H°(V,0v(d)) is exact,
as Oy (d) has support V. Now,
HO(P", Opn(d)) = {0} U{E >0, E ~ dH}.

IfE = ZQ ag@, where dim(Q) = n — 1 and ag > 0, we set deg(E) = ZQ agdeg(Q). If E > 0, then
deg(FE) > 0, from which we deduce

{(0) ifd <0

HO(P", Opn (d)) = n
(B, Oend) = | ¢("39) i.e., all forms of degree d in Xy, ..., Xy, if d > 0.

We deduce,
H°(P", 3y (d)) = {all forms of degree d vanishing on V'} U {0},
that is, all hypersurfaces, Z C P, with V C Z (and 0).

Consequently, to give ¢ € H(P", 3y, (d)) is to give a hypersurface of P* containing V. Therefore,
H°(P™, 3y (d)) = (0) iff no hypersurface of degree d contains V.

(In particular, V is nondegenerate iff H(P", Jy(d)) = (0).)

We now compute the groups H9(P"™, Opn(d)), for all n,q,d. First, consider d > 0 and use induction on
n. For P°, we have

HY(P°, Opo(d)) = {((CO) i Z i 8_

Next, P'. The sequence
0— Op:1(—1) — Opr — Opo — 0 s exact.

By tensoring with Op:(d), we get
0— Opi(d—1) — Op1(d) — Opo(d) — 0 is exact

by taking cohomology, we get

0 —> HO(PY, Op (d — 1)) —2—> HO(PL, Ops (d)) —2> HO(P, Opo (d)) j

<—> H'(P', Opi (d — 1)) —= HY (P!, Op: (d))

0
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since H(P%, Opo (d)) = (0), by hypothesis. Now, if we pick coordinates, the embedding P < P! corresponds
to zg = 0. Consequently, the map « is multiplication by z¢ and the map 3 is x¢ — 0. Therefore,

HY(P', Opi (d — 1)) = HY(P', Op1(d)), for all d > 0,

and we deduce
HY(P', Opi(d)) = H'(P', Op1) = C? = (0),

and H(P!, Opi(—1)) = (0), too. We know that
HO(P', Op1 (d)) = C¥Y; d>0;

and we just proved that
H'(P', Opi(d)) = (0); d>—1.

In order to understand the induction pattern, let us do the case of P2. We have the exact sequence
0 — Opz(d —1) -2 Op2(d) -2 Opi (d) — 0

and by taking cohomology, we get

0 — HO(P?, Opa (d — 1)) ~2— HO(P?, O (d)) —2> HO(P', Op: (d)) T

(—> HY (P, Opa (d — 1)) — H'(P?, Op2(d)) —> H' (P, Ops (d)) ﬁ

<—>H2(P2,Opz(d—1))—>H2(P2,Opz(d)) 0

By the induction hypothesis, H!(P*, Op:(d)) = (0) if d > —1, so

H'(P? Op2(d — 1)) = H'(P?, Op2(d)), for all d > —1.

Therefore,
HY(P?, Op2(d)) = H*(P?, Op2), for all d > —2.

But, the dimension of the right hand side is h%! = 0 (the irregularity, k%!, of P? is zero). We conclude that
HY(P? Op2(d)) = (0) for all d > —2.
A similar reasoning applied to H? shows
H?(P?, Op2(d)) = H*(P?,Op2), for all d > —2.
The dimension of the right hand side group is H%? = pg(IP’Q) =0, so we deduce
H?*(P? Op2(d)) = (0) for all d > —2.

By induction, we get

n ) ita>o
HOP", O (@) = { (0) if d <0

and
HY(P", Opn(d)) = (0) if d > —n, for all ¢ > 0.
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For the rest of the cases, we use Serre duality and the Euler sequence. Serre duality says
HYP™, Opn(d))? = H"9(P", Opn (—d) @ Q).

From the Euler sequence
0— Opn — H Opn (1) — T" — 0,

n+1 times

by taking the highest wedge, we get

n+1 n

A (H Opnu)) ~ N T © Opn,

n+1
from which we conclude "
(@2)7 = A\ (T] 0 (1) = Opn (0 + 1),
n+1

Therefore
wpr = Qpn = Opn(—(n+ 1)) = Opn (Kpn),

where Kpn is the canonical divisor on P™, by definition. Therefore, we have
HYP", Opn(d)) = H" (P, Opn(—d —n — 1))7.

If1<q¢g<n-—1andd> —n, then we know that the left hand side is zero. As 1 <n — g < n — 1, it follows
that
HYP",Opn(—d —n—1)) = (0) when d> —n.

Therefore,
HY(P", Opn(d)) = (0) for all d and all ¢ with 1 < ¢ <n—1.

We also have
H™(P", Opn (d))P = HO(P", Opn(—d — n — 1)),

and the right hand side is (0) if —d — (n + 1) < 0, i.e., d > —n. Thus, if d < —(n + 1), then we have
d=—-d—(n+1)>0,so

n+6)

H™(P™, Opn (d)) = HO(P", O34 (5))2 = C("5"),  where § = —(d+n + 1).
The pairing is given by

bl

1 f / dxg N\ --- Ndxy,
_ NN - - @
f Ty Tp n T Tp

where deg(f) = —d, with d < —n — 1. Summarizing all this, we get
Theorem 3.10 The cohomology of line bundles on P™ satisfies
HY(P", Opn(d)) = (0) foralln,d and all g with 1 < g <n—1.

Furthermore,
n+d
HO®", Opn(d)) =4, ifd >0, else (0),

and ws0)

H"(P", Opn(d)) = c("s , where d =—(d+n+1) andd < —n—1, else (0).

We also proved that
wpn = O[pm(—(’n + 1)) = Opn (K]pm)
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3.2 Chern Classes and Segre Classes

The most important spaces (for us) are the Kiahler manifolds and unless we explicitly mention otherwise, X
will be Kéhler. But, we can make Chern classes if X is worse.

Remark: The material in this Section is also covered in Hirzebruch [8] and under other forms in Chern [4],
Milnor and Stasheff [11], Bott and Tu [3], Madsen and Tornehave [9] and Griffith and Harris [6].

Let X be admissible iff
(1) X is o-compact, i.e.,

(a) X is locally compact and

(b) X is a countable union of compacts.

(2) The combinatorial dimension of X is finite.

Note that (1) implies that X is paracompact. Consequently, everthing we did on sheaves goes through.

Say X is an algebraic variety and F is a QC Ox-module. Then, H°(X,F) encodes the most important
geometric information contained in F. For example, F = a line bundle or a vector bundle, then

HY(X,F) = space of global sections of given type.
If 7 =3y (d), where V C P, then
HO(X, F) = hypersurfaces containing V.
This leads to the Riemann-Roch (RR) problem.
Given X and a QC Ox-module, F,
(a) Determine when H°(X,F) has finite dimension and

(b) If so, compute the dimension, dim¢ HY(X, F).

Some answers:

(a) Finiteness Theorem: If X is a compact, complex, analytic manifold and F is a coherent Ox-module,
then H?(X,F) has finite dimension for every ¢ > 0.

(b) It was noticed in the fifties (Kodaira and Spencer) that if {X;}:cg is a reasonable family of compact
algebraic varieties (C-analytic manifolds), (S is just a R-differentiable smooth manifold and the X; are
a proper flat family), then

dim X

X(X,0x,) = Y (=1)'dim(H'(X;, Ox,))
=0

was independent of ¢.

The Riemann-Roch problem goes back to Riemann and the finiteness theorem goes back to Oka, Cartan-
Serre, Serre, Grauert, Grothendieck, ... .

Examples. (1) Riemann (1850’s): If X is a compact Riemann surface, then

X(X,0x)=1-g
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where ¢ is the number of holes of X (as a real surface).

(2) Max Noether (1880s): If X is a compact, complex surface, then
1
X(X,0x) = E(Kg( + top Euler char.(X)).

(Here, K% = Ox(Kx)UOx(Kx) in the cohomology ring, an element of H*(X,Z).)
(3) Severi, Eger-Todd (1920, 1937) conjectured:

X(X,Ox) = some polynomial in the Euler-Todd class of X,

for X a general compact algebraic, complex manifold.

(4) In the fourties and fifties (3) was reformulated as a statement about Chern classes—no proof before
Hirzebruch.

(5) September 29, 1952: Serre (letter to Kodaira and Spencer) conjectured: If F is a rank r vector bundle
over the compact, complex algebraic manifold, X, then

X(X, F) = polynomial in the Chern classes of X and those of F.

Serre’s conjecture (5) was proved by Hirzebruch a few months later.

To see this makes sense, we’ll prove

Theorem 3.11 (Riemann-Roch for a compact Riemann Surface and for a line bundle) If X is a compact
Riemann surface and if L is a complex analytic line bundle on X, then there is an integer, deg(L), it is
deg(D) where L = Ox (D), where D is a Cartier divisor on X, and

dime H°(X, £) — dime H*(X,wx ® L) = deg(L) +1 —¢
where g = dim HY(X,wx) = dim H' (X, Ox) is the genus of X.

Proof. First, we know X is an algebraic variety (a curve), by Riemann’s theorem (see Homework). From
another Homework (from Fall 2003), X is embeddable in PY, for some N, and by GAGA (yet to come!), £
is an algebraic line bundle. It follows that £L = Ox (D), for some Cartier divisor, D. Now, if f € Mer(X),
we showed (again, see Homework) that f: X — P& = S? is a branched covering map and this implies that

#(fH(00)) = #(f71(0)) = degree of the map,

so deg(f) = #(f~1(0)) — #(f~'(00)) = 0. As a consequence, if E ~ D, then deg(E) = deg(D) and the first
statement is proved. Serre duality says

H(X,wx ® L) = H (X, £)P.

Thus, the left hand side of the Riemann-Roch formula is just x (X, Ox (D)), where £ = Ox (D). Observe that
X(X,0x (D)) is an Euler function in the bundle sense (this is always true of Euler-Poincaré characteristics).
Look at any point , P, on X, we have the exact sequence

0— Ox(—P) — Ox — kp — 0,

where kp is the skyscraper sheaf at P, i.e.,

0) ifax#P
(RP)I:{(E:) if:ﬂiP.
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If we tensor with Ox (D), we get the exact sequence
0— Ox(D—-P)— Ox(D) — kp @ 0Ox(D) — 0.
When we apply cohomology, we get
X(X,kp ® Ox (D)) + x(X,0x(D — P)) = x(X, Ox(D)).

There are three cases.
(a) D = 0. The Riemann-Roch formula is a tautology, by definition of g and the fact that H°(X,Ox) = C.

(b) D > 0. Pick any P appearing in D. Then, deg(D — P) = deg(D) — 1 and we can use induction. The
base case holds, by (a). Using the induction hypothesis, we get

1+deg(D — P)+1—g=x(X,0x(D)),

which says
X(X,0x(D)) = deg(D) + 1 —g,

proving the induction step when D > 0.
(c) D is arbitrary. In this case, write D = DT — D™, with D™, D~ > 0; then
0—O0Ox — Ox(D7) — kp- — 0 is exact

and
deg(kp-) = deg(D™) = x(X,Ox(D7)).

If we tensor the above exact sequence with Ox (D), we get
0— Ox(D) — Ox(D+ D7) — kp- — 0 is exact.
When we apply cohomology, we get
X(X,0x(D)) +deg(D™) = x(X,0x(D + D7) = x(X, Ox (D™)).
However, by (b), we have x(X,Ox(D")) =deg(D") + 1 — g, so we deduce
V(X,0x(D)) = deg(D*) — deg(D™) + 1 — g = deg(D) + 1 g,
which finishes the proof. ]
We will show:
(a) L possesses a class, ¢1(£) € H*(X,Z).

(b) If X is a Riemann surface and [X| € Ho(X,Z) = Z is its fundamental class, then deg(L) = ¢(£)[X] € Z.
Then, the Riemann-Roch formula becomes

X(X.L) = all)X]+1-g
= a0+ 52 -29)|1x]

Ser (T3] ).

= [C1(L') + 5

This is Hirzebruch’s form of the Riemann-Roch theorem for Riemann surfaces and line bundles.

What about vector bundles?
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Theorem 3.12 (Atiyah-Serre on vector bundles) Let X be either a compact, complex C*°-manifold or an
algebraic variety. If E is a rank r vector bundle on X, of class C* in case X 1is just C°°, algebraic if X is
algebraic, in the latter case assume E is generated by its global sections (that is, the map, T'as(X, Ox(E)) —
E., given by o — o(x), is surjective for all x), then, there is a trivial bundle of rank r—d (where d = dim¢ X )
denoted 1", and a bundle exact sequence

0—I"%——E—FE"—0
and the rank of the bundle E" is at most d.

Proof. Observe that if » < d, there is nothing to prove and rk(E"”) = rk(E) and also if r = d take (0) for
the left hand side. So, we may assume r > d. In the C'*°-case, we always have E generated by its global
C°-sections (partition of unity argument).

Pick z, note dim E, = r, so there is a finite dimensional subspace of I'(X, Ox (F)) surjecting onto E,.
By continuity (or algebraicity), this holds C-near (resp. Z-near) x. Cover by these opens and so

(a) In the C*°-case, finitely many of these opens cover X (recall, X is compact).

(b) In the algebraic case, again, finitely many of these opens cover X, as X is quasi-compact in the
Z-topology.

Therefore, there exists a finite dimensional space, W C T'(X, Ox (F)), and the map W — E, given by
o — o(x) is surjective for all x € X. Let

ker(z) = Ker (W — Ej).

Consider the projective space P(ker(z)) — P = P(WW). Observe that dimker(z) = dim W —r is independent
of 2. Now, look at |, y P(ker(z)) and let Z be its Z-closure. We have

dmZ =dimX +dimW —r -1 =dimW +d—r — 1,
so, codim(Z < P) = r —d. Thus, there is some projective subspace, T', of P with dim 7T = r —d — 1, so that
TNnZ=090.

Then, T = P(S), for some subspace, S, of W (dim S = r — d). Look at

XHS:XH(C“d:HT*d.

Send I"~? to E via (x,s) — s(z) € E. As TNZ = (), the value s(x) is never zero. Therefore, for any z € X,
Im(I"~% «— E) has full rank; set E” = E/Im((I"~? < E) = a vector bundle of rank d, then

0—I?—F—FE'"—0 isexact

as a bundle sequence. []

Remarks:

(a) f 0 — E' — E — E” — 0 is bundle exact, then

Cl(E) = Cl(El) + Cl(EH).

(b) If E is the trivial bundle, I", then ¢;(E) =0, for j =1,...,r.
(c) If rk(E) = r, then ¢;(E) = c1 (A" E).
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In view of (a)—(c), Atiyah-Serre can be reformulated as

rk E rk EB"
a(E) = cl(/\ E) =c(E") = Cl( /\ E”),
We now use the Atiyah-Serre theorem to prove a version of Riemann-Roch first shown by Weil.

Theorem 3.13 (Riemann-Roch on a Riemann surface for a vector bundle) If X is a compact Riemann
surface and E is a complex analytic rank r vector bundle on X, then

dimcH(X, Ox (E)) — dimcH' (X, wx ® Ox(E)P) = x(X,0x) = c1(E) + tk(E)(1 - g).

Proof. The first equality is just Serre Duality. As before, by Riemann’s theorem X is projective algebraic
and by GAGA, FE is an algebraic vector bundle. Now, as X < PV it turns out (Serre) that for § >> 0, the
“twisted bundle”, F® Ox(0) (= E® O?}‘s) is generated by its global holomorphic sections. We can apply
Atiyah-Serre to F ® Ox (). We get

0—T""1' - E®0x() — E’" — 0 is exact,
where tk(E") = 1. If we twist with Ox (—9), we get the exact sequence

0— H Ox (=) — E — E"(-4) — 0.
r—1

(Here, E"(—9) = E” @ Ox(—6).) Now, use induction on 7. The case r = 1 is ordinary Riemann-Roch for
line bundles. Assume the induction hypothesis for » — 1. As x is an Euler function, we have

XX, Ox (B)) = (X, B"(=9)) + x([] 0x(~9)).

The first term on the right hand side is
ci(E"(=0)) +1—g,

by ordinary Riemann-Roch and the second term on the right hand side is
([T ox(=9) + (= D1 - g).
r—1
by the induction hypothesis. We deduce that

X(X, 0x(E)) = a1 (B"(~)) + o1 (][] Ox(~8)) +7(1 - 9).

But, we know that

a(B) = 1 (E"(=0) + e ([[ 0x(-9).

so we conclude that
X(X,0x(E)) = c1(E) +r(1 - g),

establishing the induction hypothesis and the theorem. []

Remark: We can write the above as

rk(E)

1,0
9 1 (TX )s

X(X, Ox(E)) = ca1(E) +
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which is Hirzebruch’s form of Riemann-Roch.

We will need later some properties of x(X,Ox) and py(X). Recall that py(X) = dimc H"(X,0x) =
dime HO(X, Q% ), where Qf = A T)l(’o. (The vector spaces HY(X, Q) were what the Italian geometers (in
fact, all geometers) of the nineteenth century understood.)

Proposition 3.14 The functions x(X,Ox) and py(X) are multiplicative on compact, Kdihler manifolds,
i.e.,

W(X[[v:0xm1v) = X(X,0x)x(Y.0y)
po(XTIY) = pape(v).

Proof. Remember that
dime H'(X, Ox) = dime H°(X, Q%) = h% = pb0,

Then,

n n

X(X,0x) =Y (~1)dim¢ HO(X, %) = > (1)1,

§=0 §=0
Also recall the Kiinneth formula
[T #ox.0%) @ He (X, 9%) = B (X[ V. 9% 1y ).

p+p'=a

q+q'=b
Set b =0, then ¢ = ¢’ = 0 and we get

> woom o) = w0 (x TIv).
ptp'=a

Then,

X(X7 OX)X(Ya OY)

(Z(—n"hw(m) (Z(—w%w(m)

m—+n

_ Z (_1)r+shT,O(X)hs,O(Y)
r,5=0

m—+n

_ Z Z h70 héOy)
k=0 r+s=k

m—+n
= Sy IY) = X(XHY, OXHY>.
k=0
The second statement is obvious from Kiinneth. []

Next, we introduce Hirzebruch’s axiomatic approach.

Let E be a complex vector bundle on X, where X is one of our spaces (admissible). It will turn out that
E is a unitary bundle (a U(g)-bundle, where ¢ = rk(E)).

Chern classes are cohomology classes, ¢;(E), satisfying the following axioms:
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Axiom (I). (Existence and Chern polynomial). If F is a rank ¢ unitary bundle over X and X is
admissible, then there exist cohomology classes, ¢;(E) € H*(X,Z), the Chern classes of E and we set

c(B)(t) =Y a(B)t € H*(X,Z)[[t],

1=0
with ¢o(E) = 1.

As dime X =d < oo, we get ¢;(E) =0 for I > d, so C(FE)(t) is in fact a polynomial in H*(X,Z)[t] called
the Chern polynomial of E where deg(t) = 2.

Say m: Y — X and FE is a U(g)-bundle over X, then we have two maps
H*(X,Z) ™ H*(Y,Z) and H'(X,U(q)) == H'(Y,U(q)).

Axiom (II). (Naturality). For every E, a U(q)-bundle on X and map, 7: ¥ — X, (with X, Y admissible),
we have

c(mE)(t) = 7 (c(E))(1),
as elements of H*(Y, Z)[[t]].
Axiom (IIT). (Whitney coproduct axiom). If E, a U(g)-bundle is a coproduct (in the C or C*°-sense),

rk(E)

E= ]_[ E;
j=1

of U(1)-bundles, then

j=1

Axiom (IV). (Normalization). If X = P¢ and Ox (1) is the U(1)-bundle corresponding to the hyperplane
divisor, H, on P¢, then
(Ox ()(t) = 1+ H,

where H is considered in H?(X,Z).
Remark: If i: IP’(’CL_l — Pg, then

1*Opn (1) = Opn-1(1)
and i*(H) in H>(PE 1, 7Z) is Hpn-1. By Axiom (II) and Axiom (IV)

i*(l + Hpgt) = Z*(C(Opn)(t)) = C(i*(Opn,)(t)) =1+ HP€71.
Therefore, we can use any n to normalize.

Some Remarks on bundles. First, on P" = Pg: Geometric models of Opn (£1).

Consider the map
crtt — {0} — P

If we blow up 0 in C*"*1, we get By(C"*1) as follows: In C* ! []P", look at the subvariety given by

{((2); () [ 25 = 2, 0 <dj <.
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By definition, this is Bo(C"*1), an algebraic variety over C. We have the two projections

BO (Cn+1)

crtl P".

Look at the fibre, pr;*((z)) over z € C**!. There are two cases:
(a) (z) =0, in which case, pr; *((z)) = P™.
(b) (z) # 0, so, there is some j with z; #= 0. We get & = j—;fj, for all ¢, which implies:

(o) & #0.
(B) All & are determined by &;.

) E-2

& %

This implies
& &1 &n z0 21 Zn
(OSSO0
© (5;’ & é}-) (Zj 2 Zj)

Therefore, pri ' ({z)) = ((2); (2)), a single point.

Let us now look ar pry '(¢), for (£) € P™. Since (£) € P", there is some j such that & # 0. A point
({z); (€)) above (&) is given by all (zp: z1: -+ : z,) so that

2= T Zj-.
J

Let z; = t, then the fibre above ¢ is the complex line

. EO §1 gn L

20 7t721:7ta"'7Zj:ta"'aZn:7'
&

3 &
We get a line family over P*. Thus, pro: Bo(C™*1) — P" is a line family.
(A) What kinds of maps, o: P* — By (C"*1), exist with o holomorphic and pry o o = id?

If o exists, then pr; o o: P* — C™*! is holomorphic; this implies that pr; o o is a constant map. But,
o (&) belongs to a line through (§) = (§y: ---: &), for all (£), yet pry o 0 = const, so this point must lie on
all line. This can only happen if () = 0 in the line through &.

(B) I claim By(C"*!) is locally trivial, i.e., a line bundle. If so, (A) says Bo(C"*!) has no global
holomorphic sections and we will know that By(C"*1) = Opn(—¢q), for some g > 0.

To show that Bo(C"*!) is locally trivial over P", consider the usual cover, Uy, ...,U,, of P (recall,
Uj ={(&) e P" | & #0}). If v € Bo(C™T) | Uy, then v = ((2); (z)), with &; # 0. Define ¢; as the map

vie (€)i2) e U [[ ©

and the backwards map

((f);t>EUJ»I_[(Cl—%(z);(ﬁ))7 where zi:—'_t, i=0,...,n.
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The reader should check that the point of C"*! []P" so constructed is in Bo(C"*1) and that the maps are
inverses of one another.

We can make a section, o, of Bo(C"*1) | U;, via

(@) = (2o N1 £ )50

and we see that ¢(o((€))) = (((§);1) € U, [1C, which shows that ¢ is a holomorphic section which is never
zero. The transition function, g}, renders the diagram

By | U —~ Uis]]IC

By [ U; NU; g

Pi

By | U; U;11C

commutative. It follows that
0i(v) = gl (i) = g/ ({(&); 2:)) = ((£); %)

and we conclude that g7 (z;) = z;, which means that g/ is multiplication by z;/z; = &, /&;.

We now make another bundle on P", which will turn out to be Opn(1). Embed P" in P"*! by viewing
P" as the hyperplane defined by z,.1 =0 and let P = (0: ---: : 1) € P**1. Clearly, P ¢ P". We have the
projection, w: (P"*! — {P}) — P", from P onto P", where

m(zo: <+t Znt Zng1) = (200 <00t Zp).

We get a line family over P, where the fibre over Q € P is just the line Ipg (since P ¢ P", this line is
always well defined). The parametric equations of this line are

(u: t) — (uzg: -+ uzy: t),

where (u:t) € P and Q = (20: -+ : 2,). When t = 0, we get @ and hen u = 0, we get P. Next, we prove
that P"™! — { P} is locally trivial. Make a section, o}, of 7 over U; C P" by setting

a;((€)) = (&: &)-

This points corresponds to the point (1: ;) on Ipg and & # 0, so it is well-defined. As @ is the point of
Ipg for which ¢t = 0, we have 0;((£)) # Q. We make an isomorphism, v;: (P"™! — {P}) | U; — U; [ C, via

. . C o . . . ., . Fndd
(ZO-"'-Zj—l-Zj-Zj-i-l-"'-Zn-l-l)'_) ZoznT .
J

Observe that
5i((6)) =5 00;((€)) = ¥(&: &) = (&: D e U [ €.

For any (z9: «++: zp41) € (P*F —{P}) [ U; N Uj;, we have z; # 0 and z; # 0; moreover

pi(zo: ~ ot Zpy1) = (zor R Z"+1> and  ¥;(z0: -+t Zpy1) = (zoz Ceet Zpt Z"+l).

Zi
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This means that the transition function, hg , on U; NUj, is multiplication by z;/z;. These are the inverses of
the transition functions of our previous bundle, Bo(C"*!), which means that the bundle P**! — { P} is the
dual bundle of By(C"*1). We will use geometry to show that the bundle P*™* — {P} is in fact Opn(1).

Look at the hyperplanes, H, of P**1. They are given by linear forms,

n+1
H: > a;Z;=0.
§=0

The hyperplanes through P form a P, since P € H iff a,11 = 0. The rest of the hyperplanes are in the
affine space, C"*t! = P"*! — P, Indeed such hyperplanes, H (), are given by

H(a): Zaij+Zn+1 =0, (040,...7(1”) e Ccrtt,
§=0
Given any hyperplane, H ) (with o € Cn*+1), find the intersection, (o) (@), of the line Ipg with H(,). Note
that o(,) is a global section of P+l — {P}. The affine line obtained from lpg by deleting P is given by

T (200 0t 2 T),

where Q = (z0: -+ : z,). This lines cuts H(q) iff

n
g a;zj +7 =0,
=0

so we deduce 7 = — 377 ajz; and

o@)(z0: < zn) = (Z()Z ez —Zajzj),
=0

which means that o(,) is a holomorphic section. Now, consider a holomorphic section, o: P* — (Pt —
{P}) — Pl of m: (P"*! — {P}) — P". As o is an algebraic map and P" is proper, o(P") is Z-closed,
irreducible and has dimension n in P"*1. Therefore, o(P") is a hypersurface. But, our map factors through
Pt — {P}, so o(P") C P**! — {P}. This hypersurface has some degree, d, but all the lines Ipg cut o(P™)
in a single point, which implies that d = 1, i.e., o(P") is a hyperplane not through P. Putting all these facts
together, we have shown that space of global sections I'(P", P"*! —{ P}) is in one-to-one correspondence with
the hyperplanes H(y), i.e., the linear forms Y 7 ; a;z; (a C"*+1). Therefore, we conclude that P! — { P} is
Opn (1). Since By(C™*1) is the dual of P — { P}, we also conclude that Bo(C""1) = Opn(—1).

In order to prove that Chern classes exist, we need to know more about bundles. The reader may wish to

consult Atiyah [2], Milnor and Stasheff [11], Hirsh [7], May [10] or Morita [12] for a more detailed treatment
of bundles.

Recall that if G is a group, then H'(X, Q) classifies the G-torsors over X, e.g., (in our case) the fibre
bundles, fibre F', over X (your favorite topology) with Aut(F') = G. When F' = G and G acts by left transla-
tion to make it Aut(F'), the fibre bundle is called a principal bundle. Look at ¢: G’ — G, a homomorphism
of groups. Now, we know that we get a map

HY(X,G") — HYX,G).

We would like to see this geometrically and we may take as representations principal bundles. Say
E' € HY(X,G") a principal bundle with fibre G’ and group G’. Consider G [] E’ and make an equivalence
relation ~ via: For all 0 € G'; all g € G, all ¢/ € E’

(gp(0),€') ~ (g,€'a™").
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Set Bl = 0u(E') = G E'/ ~.

Let us check that the fibre over € X is G. Since E’ is locally trivial, we have E' [ U 2 U[[ &, for
some small enough open, U. The action of G’ is such that: For o € G’ and (u,7) €e U][ &,

o(u,7) = (u,07).

Over U, we have (G[[E') | U = GI[U[]G’, so our ¢, (E’) is still locally trivial and the action is on the
left on G, its fibre. It follows that
E' v . (E)

is our map HY(X,G") — H'(X,G).

Next, say 0: Y — X is a map (of spaces), then we get a map
HY(X,G) 25 HY(Y,G).

Given E € HY(X, @), we have the commutative diagram

E1;[Y4>E

| L b

y — X,

so we get a space, 0*(E) = FE [][ Y, over Y. Over a “small” open, U, of X, we have E' [ U 2 G[]U and
X

0*(E) 1607 ()= G]]6' (),

and this gives
HY(x,q) 5 7Y, G).

Say G is a (Lie) group and we have a linear representation, ¢: G — GL(r,C). By the above, we get a
map
E— Eq__.qLirc) = ¢x(E)
from principal G-bundles over X to principal GL(r, C)-bundles over X. But if V is a fixed vector space of
dimension r, the construction above gives a rank r vector bundle GL(r,C) [[V/ ~. If V is a rank r vector
bundle over C, then look at the sheaf, Zsom(I", V), whose fibre at x is the space Isom(C",V,). This sheaf
defines a GL(r, C)-bundle.

Say G’ C G is a closed subgroup of the topological group, G.

@ If G is a real Lie group and G’ is a closed subgroup, then G’ is also a real Lie group (E. Cartan). But,
if G is a complex Lie group and G’ is a closed subgroup, then G’ need not be a complex Lie group. For
example, look at G = C* = GL(1,C) and G’ =U(1) = {2 € C| |z] = 1}.

Convention: If G is a complex Lie group, when we say G’ is a closed subgroup we mean a complex Lie
group, closed in G.

Say G is a topological group and G’ is a closed subgroup of G. Look at the space G/G’ and at the
continuous map, 7: G — G/G'. We say 7w has a local section iff there is some some V' C G/G’ with
lg -G’ € V and a continuous map

s: V — G, such that mos=idy.

When we untwist this definition we find that it means s(v) € v, where v is viewed as a coset. Generally, one
must assume the existence of a local section—this is not true in general.
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Theorem 3.15 If G and G’ are topological groups and G’ is a closed subgroup of G, assume a local section
exists. Then

(1) The map G — G /G’ makes G a continuous principal bundle with fibre and group G’ and base G/G'.

(2) If G is a real Lie group and G’ is a closed subgroup, then a local smooth section always exists and G
is a smooth principal bundle over G/G', with fibre (and group) G'.

(3) If G is a complex Lie group and G’ is a closed complex Lie subgroup, then a complex analytic local
section always exists and makes G is a complex holomorphic principal bundle over G/G’, with fibre
(and group) G'.

Proof. The proof of (1) is deferred to the next theorem.

(2) & (3). Use local coordinates, choosing coordinates trasnverse to G’ after choosing coordinates in G’
near lgs. The rest is (DX)— because we get a local section and we repeat the proof for (1) to prove the
bundle assertion. []

Now, say F is a fibre bundle, with group G over X (and fibre F') and say G’ is a closed subgroup of G.
Then, we have a new bundle, F/G’. The bundle E/G’ is obtrained from E by identifying in each fibre the
elements x and zo, where o € G’. Then, the group of E/G’ is still G and the fibre is F//G’. In particular,
if E is principal, then the group of E/G’ is G and its fibre is G/G’. We have a map E — E/G’ and a
diagram

E—— > E/¢
7
X

Theorem 3.16 If G — G /G’ possesses a local section, then for a principal G-bundle E over X
(1) E/G" is a fibre bundle over X, with fibre G/G’.

(2) E— E/G is in a natural way a principal bundle (over E/G') with group and fibre G'. If
¢ € HY(X,G) represents E, write £gi for the element of HY(E/G',G") whose bundle is just
E— E/G.

(3) From the diagram of bundles

E— R

A Ac,«/
X

we get the commutative diagram

HY(X, G H'(X,G) > ¢

7T*E/G’l \Lﬂ'*E/G/

T

¢er € HY(E/G',G') —— HYE/G",G)

(Here i: G' — G is the inclusion map) and i.(§qr) = T (&), that is, when E is pulled back to the
new base E/G', it arises from a bundle whose structure group is G'.
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Figure 3.1: The fibre bundle E over E/G’

Proof. (1) is already proved (there is no need for our hypothesis on local sections).

(2) Pick a cover {U,}, of C where E | U, is trivial so that
ElUs=U.]]G

Now, consider G — G/G’ and the local section s: V(C G/G") — G (with 1g/¢ € V). We know s(v) € v
(as a coset) and look at 7= 1(V). If z € m=1(V), set

0(z) = (z~"'s(n(2)),7(x)) € G’ ] V-

This gives an isomorphism (in the appropriate category), 7=1(V) = G’ [[ V. If we translate V around G/G’,
we get G as a fibre bundle over G/G’ and group G’ giving (1) of the previous theorem. But, U, [[V and
the U, [](translate of V') give a cover of E/G’ and we have

ElU.2U[[="' V) =2t [[V]]E

giving E as fibre bundle over E/G’ with group and fibre G’. Here, the diagrams are obvious and the picture
of Figure 3.1 finishes the proof. Both sides of the last formula are “push into the board” (by definition for
ix and by elementary computation in 7%/ ). O

Definition 3.2 If FE is a bundle over X with group G and if G’ is a closed subgroup of G so that the
cohomology representative of G, say £ actually arises as i.(n) for some n € H*(X,G"), then E can have its
structure group reduced to G'.

If we restate (3) of the previous theorem in this language, we get

Corollary 3.17 Every bundle E over X with group G when pulled back to E/G’ has its structure group
reduced to G'.

Theorem 3.18 Let E be a bundle over X, with group G and let G' be a closed subgroup of G. Then, E as
a bundle over X can have its structure group reduced to G' iff the bundle E/G' admits a global section over
X. In this case if s: X — E/G' is the global section of E/G', then s*(E) where E is considered as bundle
over E/G' with group G’ is the element n € H*(X,G') which gives the structure group reduction. In terms
of cocycles, E admits a reduction to group G' iff there exists an open cover {Uy} of X so that the transition
functions

U, NU;z -G

map U, NUg into the subgroup G'. The section of E/G’ is given in the cover by maps sqo: Uy — Uy [[G/G,
where sq(u) = (u,1g/qr). The cocycle g& represents s*(E) when its values are considered to be in G' and
represents E when its values are considered to be in G.

Proof. Consider the picture of Figure 3.1 above. Suppose E can have structure group reduced to G’, then
there is a principal bundle, F', for G’ and its transition functions give E too. This F' can be embedded in
E, the fibres are G'. Apply g, g/ to F', we get get a space over X whose points lie in the bundle £/G’,
one point for each point of X. Thus, the map s: X — point of 75,/ (F) over z, is our section of E/G’
over X.

Conversely, given a section, s: X — E/G’, we have E as principal bundle over E/G’, with fibre and group
G'. So, s*(F) gives a bundle, F, principal for G’, lying over X. Note, F' is the bundle given by s*(£a/),
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where ¢ represents E. This shows the F' constructed reduces to the group G’. The rest (with cocycles) is
standard. [

Look at C? and GL(g, C). Write C{ for the span of ey, ..., e, (the first 7 canonical basis vectors) = Ker 7.,
where 7, is projection on the last ¢ — r basis vectors, e,41,...,e4. Let Grass(r,q;C) denote the complex
Grassmannian of r-dimensional linear subspaces in C?. There is a natural action of GL(gq, C) on Grass(r, ¢; C)
and it is clearly transitive. Let us look for the stabilizer of CZ. It is the subgroup, GL(r,¢—r; C), of GL(g, C),
consisting of all matrices of the form

A B
(6 2)

where A is r x r. It follows that, as a homogeneous space,
GL(q,C)/GL(r,q — r;C) = Grass(r, q; C).

If we restrict the action to U(g), the above matrices must be of the form
A 0
0 C

U(q)/U(r) [J Ug = r) = Grass(r, ¢; C).

where A € U(r) and C € U(qg — ), so

Remark: Note, in the real case we obtain
GL(g,R)/GL(r,q — r;R) = O(q)/O(r) [ [ Olg — 7) = Grass(r, ¢; R).
If one looks at oriented planes, then this becomes
GL*(¢,R)/GL* (r,q - r;R) = SO(g)/SO(r) [[SO(q — r) = Grass™ (r.¢; R).

Theorem 3.19 (Theorem A) If X is paracompact, f and g are two maps X — Y and E is a bundle over
Y, then when f is homotopic to g and not for holomorphic bundles, we have f*E = g*E.

Theorem 3.20 (Theorem B) Suppose X is paracompact and E is a bundle over X whose fibre is a cell. If
Z is any closed subset of X (even empty) then any section (continuous, smooth, but not holomorphic) of E
over Z admits an extension to a global section (continuous or smooth) of E. That is, the sheaf Ox(E) is a
soft sheaf. (Note this holds when E is a vector bundle and it is Tietze’s Extension Theorem).

Theorem 3.21 (Theorem C) Say G’ is a closed subgroup of G and X is paracompact. If G/G' is a cell,
then the natural map

Hl

top

(X,G") — H.

top

(X,G) or Hgg(X,G") — Hgia(X,G)

is a bijection. That is, every principal G-bundle can have its structure group reduced to G' and comes from
a unique principal G'-bundle.

Proof. Suppose E is a principal G-bundle and look at E/G’ over X. The fibre of E/G’ over X is G/G’, a
cell. Over a small closed set, say Z, the bundle E/G’ has a section; so, by Theorem B our section extends
to a global section (G/G’ is a cell). Then, by Theorem 3.18, the bundle E comes from H'(X,G’) and
surjectivity is proved.
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Now, say E and F are principal G’-bundles and that they become isomorphic as G-bundles. Take
a common covering {U,}, where E and F are trivialized. Then ¢?(E), g2(F), their transition functions
become cohomologous in the G-bundle theory. This means that there exist maps, h,: U, — G so that

ga(F) =hg'ga(E)hg".
Consider X [[I where I = [0,1] and cover X [[ by the opens
Ul =Us[]I0,1) and U} =U,]](0,1].
Make a principal bundle on X [] I using the following transition functions:
ggg: Uln Ug — G
via g3g(z,t) = g5 (E)(@);
95} Ul N Uﬁl — G

via ggi(ﬂc,t) =gl (F)(x);

«

ggé: UgﬁUﬁl—>G

via ggé(az, t) = hg(x)g? (F)(x) = ¢?(E)(x)ho(x). Call this new bundle (E, F) and let

Z=X[[{opux[[{1} = X1

a closed subset. Note that (E, F) over Z is a G'-bundle. Thus, Theorem 3.18 says (F, F)/G’ has a global
section over Z. But, its fibre is G/G’, a cell. Therefore, by Theorem B, the bundle (E, F')/G’ has a global

—~

section over all of X. By Theorem 3.18, again, the bundle (E, F') comes from a G’-bundle, (E, F'). Write
fo: X — X ][I for the function given by

fo(z) = (,0)
and f1: X — X ][I for the function given by

fi(z) = (z,1).
If (/E—,\_l*:) I XTI{0} = (/E—,\_F/')O7 then fg((i@'—,\_l*:)o) = FE, ie., fi(F,F) = FE and similarly, fl*(E,\_F/') = F; and
fo is homotopic to f1. By Theorem A, we get £ = F as G'-bundles. []

There is a theorem of Steenrod stating: If X is a differentiable manifold and E is a fibre bundle over X,
then every continuous section of F may be approximated (with arbitrary €) on compact subsets of X by a
smooth section. When F is a vector bundle, this is easy to prove by an argument involving a partition of
unity and approximation techniques using convolution. This proves

Theorem 3.22 (Theorem D) If X is a differentiable manifold and G is a Lie group, then the map

H&iﬁ”(X7 G) - Hl

cont

(X,6)

is a bijection.

We get the
Corollary 3.23 If X is a differentiable manifold, then in the diagram below, for the following pairs (G', G)
() G' =TU(q), G = GL(q,C).
(B) G =U(r)[]U(g—r), G=GL(r,¢g —r;C) or G = GL(r,C) [ GL(¢ — r, C).
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(v) G' = T? = St x ... x St (the real q-torus), G = A(q,C) or G = G, [+ [[Gm = C*[[---[IC*
(= GL(1,C)[]---TIGL(1,C)) (the complex q-torus)

all the maps are bijective

Hl

cont (Xa G/) - Hclont (Xv G)

T T

Hc}iff(Xv G/) - H&iff(Xv G)

Here,

the upper triangular matrices.

Proof. Observe that G/G" is a cell in all cases and that A(q,C) NU(q) = TY. [
Suppose £ corresponds to a GL(g)-bundle which has group reduced to GL(r, g — r; C). Then, the maps

A B A B
M:(O C>|—>A and M:(O C)|—>C

give surjections GL(r,q — r;C) — GL(r,C) and GL(r,q — r;C) — GL(¢ — r,C), so £ comes from §~ and
€ gives rise to ¢ and ¢ which are GL(r,C) and GL(g — r,C)-bundles, respectively. In this case one says:
the GL(g, C)-bundle £ admits a reduction to a (rank r) subbundle & and a (rank q — r) quotient bundle .
When we use A(g,C) and GL(g,C) then we get ¢ maps, ¢;: A(g, C) — C*, namely

a; * * *
0 ao * *

e | o ma
0 0 - ag—1 *
o 0 --- 0 aq

So, if {Nis our A(g, C)-bundle, we get ¢ line bundles &1, ..., &, from gand one says & has &1,...,&, as diagonal
line bundles.

Set
Fy = GL(¢;C)/A(g; C) = GL(g; C)/ (1) GL(r, ¢ — 15 C),
r=1

the flag manifold, i.e., the set of all flags
0CWViC1aC - CV, =V | dm(V}) = j.

Since F, = GL(¢; C)/N?_, GL(r,q — r; C), we see that F, is embedded in Hi:l Grass(r,q; C). Thus, as the
above is a closed immersion, F, is an algebraic variety, even a projective variety (by Segre). If V' is a rank ¢
vector bundle over X, say E(V) (= Isom(C?,V)) is the associated principal bundle, then write

[r]V = E(V)/GL(r,q — 15 C),
a bundle over X whose fibres are Grass(r, ¢; C) and
[A]V = E(V)/A(g; C)

a bundle over X whose fibres are the F(q)’s. We have maps p,: [r]V — X and pa: [A]V — X. Now we
apply our theorems to the pairs
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(a) G'=U(q), G = GL(¢,C).

(b) G"=U(r)[[U(¢ —r) and G = GL(r,q — r,C) or G = GL(r,C) [ GL(¢q — r, C).
(¢) @ =T?7and G=U(q) or G=C*[]---[]C* = (G,)".

(d) G =A(g,C) and G = GL(¢,C)

2

and then we get, (for example) every rank r vector bundle over X is “actually” a rank r unitary bundle over

X and we also have

Theorem 3.24 If X is paracompact or a differentiable manifold or a complex analytic manifold or an
algebraic variety and V' is a rank q vector bundle of the appropriate category on X, then

(1) V reduces to a rank r subbundle, V', and rank q — r quotient bundle, V"', over X iff [r]V possesses an
appropriate global section over X.

(2) V reduces to diagonal bundles over X iff [A]V possesses an appropriate global section over X.

(3) For the maps p, in case (1), resp. pa in case (2), the bundle piV reduces to a rank r subbundle and
rank q — r quotient bundle over [r|V (resp. reduces to diagonal bundles over [A]V ).

Remark: The sub, quotient, diagonal bundles are continuous, differentiable, analytic, algebraic, respec-
tively.

Say s: X — [r]V is a global section. For every z € X, we have sz € Grass(r,q;Vy); i.e., s(z) is an
r-plane in V,, and so, |J, y 5(z) gives an “honest” rank r subbundle or V. It is isomorphic to the subbundle,
V', of the reduction. Similarly, |J,cx Vz/s(x) is an “honest” rank ¢ — r quotient bundle of V; it is just V".

Hence, we get
Corollary 3.25 If the hypotheses of the previous theorem hold, then
(1) [r]V has a section iff there is an exact sequence
00—V —V-—V"—0
of vector bundles on X.
(2) [A]V] has a section iff there exist exact sequences
0— L —V—V'—0

0—>L2—>‘/1H—>‘/2N—>0

1" 1"
0— Ljp1 —Vy — Vi, —0

Ly=V,],

o
where the L;’s are line bundles, in fact, the diagonal bundles.

Theorem 3.26 In the continuous and differentiable categories, when V has an exact sequence as in (1) of
Corollary 3.25 or diagonal bundles as in (2) of Corollary 3.25, then

(1) V=V IV,
(2) VL - 1L,

The above is false if we need splitting analytically!
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All we need to prove is (1) as (2) follows by induction. We know V' comes from H'(X, GL(r,q—7;C). By
(b) above, V comes from H'(X,U(r) [] U(g—r)) and by (b) again, V comes from H' (X, GL(r) [[ GL(g—r)) =
HY(X,GL(r)) I H*(X,GL(q — 7)) and we get (1). [J

Corollary 3.27 (Splitting Principle) Given V', a continuous, differentiable, analytic, algebraic rank q vector
bundle over X, then ptV is in the continuous or differentiable category a coproduct V.=V'IIV" tk(V') =r,
tk(V')=q—r1)orpaVisV =L 1I--- 1 L,.

Note that [r]V and [A]V are fibre bundles over X; consequently, there is a relation between H7 (X, Z) and
HI([r]V,Z) (resp. H’([A]V,Z). This is the Borel spectral sequence. Under the condition that (E, X, F, G)
is a fibre space over X (admissible), group G, fibre F, total space F, there is a spectral sequence whose
E¥%-term is

HY(X,HY(F,Z))
and whose ending is gr(H*(F,Z)),
HY(X,HY(F,Z)) = H*(E,Z).
Borel proves that in our situation: The map
ot HY(X,Z) — H(1]V, Z)
(vesp. p*: H*(X,Z) — H*([A]V,Z)) is an injection. From the hand-out, we also get the following: Write

BU(q) = lim Grass(q, N;C).
N

Note,
_1s N—1 _ moo
BU(1) = 11_m>IP<c =P,
N

Theorem 3.28 If X is admissible (locally compact, o-compact, finite dimensional) then Vecty(X) (isomor-
phism classes of rank q vector bundles over X ) in the continuous or differentiable category is in one-to-one
correspondence with homotopy classes of maps X — BU(q). In fact, if X is compact and N > 2dim(X)
then already the homotopy classes of maps X — Grass(q, N;C) classify rank q vector bundles on X (dif-
ferentiably). Moreover, on BU(q), there exists a bundle, the “universal quotient”, W, it has rank q over
BU(q) (in fact, it is algebraic) so that the map is

felX — BU(g)] — f*W,.
We are now in the position where we can prove the uniqueness of Chern classes.

Uniqueness of Chern Classes:

Assume existence (Axiom (I)) and good behavior (Axioms (II)-(IV)). First, take a line bundle, L, on X.
By the classification theorem there is a map

f: X —BU®1)
so that f*(H) = L (here, H is the universal quotient line bundle). By Axiom (II),
fre(H)(8)) = e(f*(H))(t) = e(L)(t)

and the left hand side is f*(1 + Ht), by Axiom (IV) (viewing H as a cohomology class). It follows that the
left hand side is 1 + f*(H)t and so,

ci(L)=f"(H), and c¢j(L)=0, foral j>2.
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This is independent of f as homotopic maps agree cohomologically.

Now, let V' be a rank ¢ vector bundle on X and make the bundle [A]V whose fibre is F(q). Take p*(V),
where p: [A]V — X. We know

q
j=1

where the L;’s are line bundes and by Axiom (II),

c(p*(V))(t) = [T+ ea(Ly)(2)).

Jj=1

Now, the left hand side is p*(¢(V)(t)), by Axiom (II); then, p* being an injection implies ¢(V)(t) is uniquely
determined.

Remark: Look at U(q) 2 U(1) [[U(¢ — 1) D T9. Then,
U() [JUlg = 1)/T? = U(q)/T* =F(q)

and the left hand side is U(q — 1)/T9"! = F(q — 1). So, we have an injection F(q — 1) < F(q) over the base
U(q)/U(1)T]U(g — 1), which is just P4=1. Thus, we can view F(q) as a fibre bundle over P¢~! and the fibre
is F(g—1).

Take a principal U(g)-bundle, E, over X and make E/T?, a fibre space whose fibre is F(q). Let E; be
E/U(1)[TU(q — 1), a fibre space whose fibre is P?~!. Then, we have a map

B/T? — E,
where the fibre is U(1) [[U(q — 1)/T9 =F(q — 1). We get
E/T? =[A|E
fibre F(¢ — 1) i
£y

fibre P41

DR

If we repeat this process, we get the tower
E/T?=[AlE
fibre P* l
By
fibre P2 i

Eq,Q P

—

|

|

Y

FE

fibre P91 J{
X.



192 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

So, to show p* is injective, all we need to show is the same fact when the fibre i P and the P"-bundle comes
from a vector bundle.

Suggestion: Look in Hartshorne in Chapter III, Section ? on projective fibre bundles and Exercise 77
about
P (Op(r) (1) = S'(Ox (E)).
Sup up to tangent bundles and wedges and use Hodge:
top
H*(X,C) = in term of the holomorphic cohomology of /\ T.
We get that p* is injective on H*(X,C), not H*(X,Z).

Existence of Chern Classes:

Start with L, a line bundle over X. Then, there is a map (continuous, diff.), f: X — P¥, for N >> 0
and L = f*(H). Then, set ¢1(L) = f*(H), where H is the cohomology class of the hyperplane bundle in
H?*(PN,Z) and ¢;(L) = 0 if j > 2. If another map, g, is used, then f*(H) = L = h*(L) implies that f and
g are homotopic, so f* and g* agree on cohomology and ¢y (L) is independent of f. It is also independent of
N, we we already proved. Clearly, Axiom (II) and Axiom (IV) are built in.

Now, let V' be a rank ¢ vector bundle over X. Make [A]V and let p be the map p: [A]V — X. Look at
p*V. We know that
q
p*V = H Lj,
j=1

where the L;’s are line bundles. By the above,
Cj(Lj)(t) =1+ Cl(Lj)t =1+ ’th.

Look at the polynomial
q

[T +5t) € B (AW, Z)[2).

j=1
If we show this polynomial (whose coefficients are the symmetric functions oy(y1,...,7,)) is in the image of
p*: H*(X,Z)[t] — H*([A]V,Z)]t], then there is a unique polynomial ¢(V)(¢) so that

p*e(V)(t)) = H(l + 5t).

(Then, ¢;(V) = 01(71,--.,7q).) Look at the normalizer of T? in U(g). Some a belongs to this normalizer iff
aT%a~1 = T9. As the new diagonal matrix, afa~! (where a € TY has the same characteristic polynomial as
9, it follows that afa~' is just 6, but with its diagonal entries permuted. This gives a map

NU(q) (Tq) I 6q.

What is the kernel of this map? We have a € Ker iff afa=! = 6, i.e., af = fa, for all # € T9. This means
(see the 2 x 2 case) a € T? and thus, we have an injection

NU(q)(Tq)/Tq — Gq.
The left hand side, by definition, is the Weyl group, W, of U(g). In fact (easy DX), W = &,,.
Look at [A]V and write a covering of X trivializing [A]V, call it {U,}. We have

[AlV [ Us = Us [[ Ulg) /T
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Make the element a act on the latter via
a(u,§T7) = (u,£T% ") = (u,&a” ' TY).

These patch as the transition functions are left translations. This gives an automorphism of [A]V call it @,
determined by each a € W. We get a map

@*: H*([A]V, =) — H*([A]V, -).

Now, as a € W acts on T? by permuting the diagonal elements it acts on H'([A]V,T9) by permuting the
diagonal bundles, say L;, call this action a?. Moreover, p*V comes from a unique element of H*([A]V,TY),
which implies that @ acts on p*V by permuting its cofactors. But, a* also acts on H'([A]V,T?) and one
should check (by a Cech cohomology argument) that

o =a”.

Now associate to the L;’s their Chern classes, v;, and a*(7;) goes over to a¥(v;), i.e., permute the
|gamma;s’s. Thus, W acts on the L; and 7; by permuting them. Our polynomial

H(l +5t)

goes to itself via the action of W. But, Borel’s Theorem is that an element of H*([A]V,Z) lies in the image
of p*: H*(X,Z) — H*([A]V,Z) iff W fixes it. So, by the above, our elementary symmetric functions lie in
Im p*; so, Chern classes exist. Furthermore, it is clear that they satisfy Axioms (I), (II), (IV).

Finally, consider Axiom (III). Suppose V splits over X as
v=]]L
j=1

We need to show that ¢(V)(t) = Hjl.:l(l + c1(Lj)t).

As V splits over X, the fibre bundle p: [A]V — X has a section; call it s. So, s*p* = id and

c(V)(t) = s7p" (e(V)(1)) = 5™ (" (c(V)(1)))-

By Axiom (II), s*(p*(c(V)(t))) = s*(c(p*(V))(t)). Since p* = ;1-:1 p"L; and we know that if we set
v = C1(p*<LJ‘)), then

But then,

The above plus (f) yields
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as required. []

Eine kleine Vektorraumbiindel Theorie:

Say V (rank ¢) and W (rank ¢’) have diagonal bundles L1,..., L, and M, ..., My over X. Then, the
following hold:

(1) VP has LP, ... LP as diagonal line bundles;

(2) VOW has Ly,...,Lq, Mi,..., My as diagonal line bundles;

(3) V@ W has L; ® M, (all 7, j) as diagonal line bundles;

(4) A"V has L;; ®---® L;,_, where 1 < iy < --- < i, < ¢, as diagonal line bundles;

(4) 8"V has LT @ --- ® Lg'?, where m; > 0 and my + - - - +m, = r, as diagonal line bundles.

Application to the Chern Classes.

(0) (Splitting Principle) Given a rank ¢ vector bundle, V', make believe V splits as V' = H?Zl L; (for some
line bundles, L;), write v; = ¢1(L;), the ; are the Chern roots of V. Then,

c(V)(t) = [J+0).
j=1
(1) c(VP)(#) =TT, (1 — v;¢t) when c(V)(t) = [19_,(1 + v;t). That is, ¢;(VP) = (=1)%c¢; (V).

j=1 j=1

(2) 00—V —V — V" — 0is exact, then ¢(V)(t) = c¢(V")(t)c(V")(2).

(3) If c(V)(t) = [T°_, (1 +;t) and e(W)(t) = [T%_ (1 + 6;t), then e(V @ W)(t) = [T, (1 + (v + 6)t).

j=1

(4) If e(V)(t) = 12, (1 4+ 7;t), then

c(/r\V)(t)z H (14 (yiy + -+ 7)),

In particular, when r = g, there is just one factor in the polynomial, it has degree 1, it is
14+ (m+---+7)t By (2). we get

cl</q\V)(t):cl(V) and cl(/q\V)(t):O it 1> 2.

(5) If e(V)(t) = 1?2, (1 4+ 7;t), then

= j=1

SVt =[] O+ a4+ mgr)t).

mj ZO
mi+--Fmg=r

(6) If rk(V) < g, then deg(c(V)(t)) < ¢ (where deg(c(V')(t) is the degree of ¢(V')(t) as a polynomial in t).
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(7) Suppose we know ¢(V'), for some vector bundle, V', and L is a line bundle. Write ¢ = ¢;(L). Then, the
Chern classes of V ® L are

CI(V®L) - 01(71 +cy2 ey +C),
where 7 = rk(V') and the v; are the Chern roots of V. This is because the Chern polynomial of V' ® L

1S
T

(VL)) =]+ (+op).

i=1
Examples. (1) If rk(V) = 2, then
(Ve L)(t)=(1+(n+t) 1+ (2 +0)t) =1+ (v +72 +20)t + (172 + (11 +72) + )2,
S0

alVelL = «alV)+2c
(VoL = c(V)+e(V)et

(2) If 1k(V') = 3, then
(Ve L)) =0+ M+t + (2 +o)t)(1+ (s +0)t)
and so,

(VL)) = 14 (m+y2+7s+30)t
+ (02(71,72,73) + 201 (71,72, v3)c + 3c2)t?
+ (03(71,72,73) + 01(71,72,78) ¢ + 02(71, 72, v3) ¢ + )t
We deduce

Cl(V (9 L) = Cl(V) + 3cq (L)
62(V & L) = CQ(V) + 261(‘/)01 (L) + 3c1 (L)2
cs(VaL) = c3(V)+cea(V)er(L) +er(V)er(L)? + e (L)

In the case of P”, it is easy to compute the Chern classes. By definition,
n 1,0
c(P™)(t) = c(Tpa") ().
We can use the Euler sequence
0— Opn — [ Ovn(H) — T3 — 0
n+1

to deduce that
c(Opn ) (H)e(T) () = c(Opn (H)(t))" .
It follows that

(T (t) = (1 + HE)™ " (mod ") = 3 (” j+ 1> Hig
7=0

and so,

1 . .
ci(Tp)) = (”j )HJ € HY(P",Z).
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(Here H? = H -...- H, the cup-product in cohomology). In particular,
1 (TH0) = (n+ 1)H = c(/\ T];;P).
0,1D 1,0\?
Now, if wp» is the canonical bundle on P, i.e., wpn = \" Tp = = (/\n T ) , we get
c1(wpn) = —(n+1)H.

Say a variety X sits inside P¢ and assume X is a manifold. Let J be the ideal sheaf of X. By definition,

J is the kernel in the exact sequence
0—3J — Opn — Ox — 0.
If X is a hypersurface of degree d, we know
J = Opn(—d) = Opn(—dH).
We also have the exact sequence
0 —Tx — Tpn | X — Nxopr — 0,

where Nx.pn is a rank n — ¢ bundle on X, with ¢ = dim X (the normal bundle). If we write i: X — P",

we get
n—q

(/n\szm) [ X = /n\Tx ® /\ Nxpn,
and so,
(14 </"\ TJPn>t) =1+ (/"\ Tx)t)(l +c (n/\qNX;»PTL)t),

which yields
1+ Z*((TL + 1)H)t =1+ Cl(Tx)t + Cl(NX;»IP”)t

For the normal bundle, we can compute using J. Look at a small open, then we have the usual case of
C-algebras
C—A—B

where A corresponds to local functions on P™ restricted to X and B to local functions on X and we have
the exact sequence of relative Kéhler differentials

9114/0 ®a B — Q}B/C — Q}B/A — 0.
If A mapping onto B is given, then Q}B/A = (0), B = A/ (globally, Ox = Opn/TJ), and we get
0 — Ker — QY @4 A/A — Q}L\/QL — 0.
Now, J — QY ®4 A/, via £d€ — ®1 and in fact, T — 0. We conclude that
i*(3) =3/3% — i* () — Q% — 0.

Because X is a manifold, the arrow on the left is an injection. To see this we need only look locally at x.
We can take completions and then use either the C*-implicit function theorem or the holomorphic implicit
function theorem or the formal implicit function theorem and get the result (DX). If we dualize, from

0—3/3%=i"(0) — "L, — QL% —0
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we get
0— Tx — i"Tpn = Tpn | X — (3/3)P — 0
Therefore,
Nxepn = (3/3)P = ()P = (31 X)P.
Thus,
Cl(./\/'Xg,]pn) = —C1 (3/32),
and

(n+1)i*(H) + ¢1(3/3%) = e1(Tx).

We obtain a version of the adjunction formula:

ci(wx) = —(n+ 1)i*(H) — ¢1(3/73%).
When X is a hypersurface of degree d, then J = Opn (—dH) and

3/3% =i*(3) = Ox(—d-i*H).
We deduce that —c;(3/3%) = d(i* H) and
c1(wx)=(d—n—14)i"H,

Say n =2, and dim X = 1, a curve in P2. When X is smooth, we have

c1(wx) =(d—n—1)i"(H).

Facts soon to be proved:
(a) i*(H) = H - X, in the sense of intersection theory (that is, deg X points on X).

(b) ¢1(L) on a curve is equal to the degree of the divisor of L.

It follows from above that
deg(wx)=(d—2-1)d =d(d - 3).

However, from Riemann-Roch on a curve, we know deg(wx) = 2¢g — 2, so we conclude that for a smooth
algebraic curve, its genus, g, is given by

g=5(d-1)(d~2)

In particular, observe that g = 2 is missed.

We know from the theory that if we know all ¢;’s then we can determine all ¢,,’s for all n by the splitting
principle.

There are three general methods for determining c;;
(I) The exponential sequence.
(IT) Curvature.

(III) Degree of a divisor.
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Proposition 3.29 Say X is an admissible, or a differentiable manifold, or a complex analytic manifold or
an algebraic manifold. In each case, write Ox for the sheaf of germs of appropriate functions on X. Then,
from the exponential sequence

0—7Z— Ox — 0% — 0,

where e(f) = exp(2wif), we get in each case the connecting map
H'(X,0%) = H(X,2) (1)

and all obvious diagrams commute
** Steve, what are these obvious diagrams? **
and as the group H*(X,O%) classifies the line bundles of appropriate type, we get 5(L), a cohomology class
in H*(X,Z) and we have
(&1 (L) = (5(L)
In the continuous and differentiable case, 6 is an isomorphism. Therefore, a continuous or differentiable line
bundle is completely determined by its first Chern class.

Proof. That the diagrams commute is clear. For the isomorphism statement, we have the cohomology
sequence
HY(X,0x) — HY(X,0%) - HX(X,Z) — H*(X,0y).

But, in the continuous or C'*®-case, Ox is a fine sheaf, so H'(X,Ox) = H*(X,0Ox) = (0) and we get

HY(X,0%) = H*(X,Z).

First, we show that (1) can be reduced to the case X = P{ = S2.
** Steve, in this case, are we assuming that X is projective? **

Take a line bundle, L on X (continuous or C*), then, for N >> 0, there is a function, f: X — P, so
that f*H = L. Now, we have the diagram

H'(PY,0px) 2 H2(PY,Z)

| |

H'(X,0%) H?(X,7)

8

which commutes by cofunctoriality of cohomology. Consequently, the existence of (f) on the top line implies
the existence of (f) in general. Now, consider the inclusions

PLo B2 B
and H on PY pulls back at each stage to H and Chern classes have Axiom (II). Then, one sees that we are
reduced to P{.

Recall how simplicial cohomology is isomorphic (naturaly) to Cech cohomology: Take a triangulation of
X and v, a vertex of a simplex, A. Write

o]

UU:st(v):U{chEa}

the open star of the vertex v. The U, form an open cover and we have:

U if (vg,...,vp) is not a simplex;

Uy N--NU,, = { a connected nonempty set if (vg,...,v,) is a simplex.
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Given a Cech p-cochain, 7, then

(U (AU ) = 0 . %f (o, .-, Up) %s not. a simplex;
P some integer if (vg,...,v,) is a simplex.
Define
T(vo, .., vp) = T(Uyy N---NUy,).
Take a simplex, A = (v, ..., v,) and define linear functions (7) by

O(1)(vo, ..., vp) = T(vo, ..., vp) = T(Uy, N---NTy,)

and extend by linearity. We get a map,

H?(X,7) =~ HP,

simp

(X,7Z)

via T — 60(7), which is an isomorphism.

We are down to the case of IF’}C = 52 and we take H as the North pole. The Riemann sphere IP’%: has
coordinates (Zy: Z1), say Z1 = 0 is the north pole (Zy = 0 is the south pole) and let

Zy 4
7z YTz

z =

We have the standard opens, Vo = {(Zp: Z1) | Zo # 0} and Vi = {(Zy: Z1) | Z1 # 0}. The local equations
for H are fo =w =0 and f; = 1. The transitions functions g2 are fz/fa, i-e.,

Now, we triangulate S? using four triangles whose vertices are: 0 = z; z = 1; z =i and z = —1. Note that
H is represented by a point which is in the middle of a face of the simplex (1,4, —1) We have Uy, Uy, U;,U_1,
the four open stars and Uy C Vp; Uy C Vy; U; € Vy; U_1 C V. The U-cover refined the V-cover and on

it, g2 = 1 iff both r,s # 0. Also, g} = w, for all ¢ # 0. To lift back the exponential, Op: oxp(2mi=) Opy, we
form ﬁ log(g2), a one-cochain with values in Op:i. Since the intersections U, N Uy are all simply-connected,
on each, we can define a single-valued branch of the log. Consistently do this on these opens via: Start on
U; NU; and pick any single-valued branch of the log. Continue analytically to U; N U_;. Then, continue
analytically to U_; N Uy, we get 27i + log on U; N U;. Having defined the log g2, we take the Cech § of the
1-cochain, that is

1

Crst = 7[10g gé - loggﬁ + log g;] =

: log g¢ + log g + log g7 .
271

|
211
If none of r, s,t are 0, then ¢,.,; = 0. So, look at ¢y _11. We have
[logw — “log"w].

_ 1
Co—11= log go ' +log g, +loggl] = 5

1
21 v

As w = 1/z, the second log is —27i + log w, so we get
co-11 = +1.

For every even permutation o of (0, —1,1), we have ¢, (0),0(—1),0(1) = +1 and for every odd permutation o of
(0,—1,1), we have c4(0),0(—1),0(1) = —1. Yet, the orientation of the simplex (0,—1,1) is positive, so we get
0(H) = the class represented by the cocycle on one simplex (positively oriented) by 1, i.e, ¢;(H). [



200 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

Proposition 3.30 Say X is a complex manifold and L is a C* line bundle on il. Let V be an arbitrary
connection on X and write © for the curvature of A. Then, the 2-form 5-© 1is real and it represents in
H3x (X, R) the image of c1(L) under the map

H*(X,Z) — H*(X,R).

Proof. Pick a trivializing cover for L, say {U,}. Then, V | L on U, comes from its connection matrix, 6,
this is a 1 x 1 matrix (L is a line bundle). We know (gauge transformation)

0o = 9505(95) " + dg§(95) ",
where the g3 are the transition functions. But, we have scalars here, so
00 = 05+ dlog(g5).
that is
0p — 0o = —dlog(gs). (1)

By Cartan-Maurer, the curvature, O, (a 2-form) is given locally by

O=di—0N0=db, =dbs.
We get the de Rham isomorphism in the usual way by splicing exact sequences. We begin with

0—R— ™% coky — 0 (+)

and

1
0 — coky — /\ 4, cokyg — 0 ()

It follows that

e —— Y Y
\cok / \cok /

N, N

Apply cohomology to () and (xx) and get

1 1
HO(X, /\) 5 HO(X, cok) < H'(X, coky) — H'(X, \) = (0)
and
HY(X,C®) — H'(X,cok;) 2= H*(X,R) — H2(X,C*) = (0)
because \' and C* are fine. We get

1
H'(X,coky) = H*(X,R) and H°(X,coky)/dH"(X, /\) =~ H'(X,coky).



3.2. CHERN CLASSES AND SEGRE CLASSES 201

Therefore,
§ 08 HY(X,coky) — H?*(X,R) — 0.

We know from the previous proof that

1 «
Capy = 5—lloggs +log g} + log g5]

represents ¢ (L) via the § from the exponential sequence. So,

1
Capy = 5 [log g5 +log g] +log g1

and
§'[©] = cohomology class of © = class of cocycle (65 — 6,,).

Now, 5+ (03 — 0,4) can be lifted back to — 5= log g§ under §"” and we deduce that

1 1
5"y (271'2@) = class of — %[log g5 +log g2 + log gg] = —class of capy = —c1(L).

** There may be a problem with the sign! **

The next way of looking at ¢1(L) works when L comes from a divisor. Say X is a complex algebraic
manifold and L = Ox (D), where D is a divisor,

D = Z (lej
J
on X. Then, D gives a cycle in homology, so [D] € Ha,—2(X,Z) (here n = dim¢ X). By Poincaré duality,
our [D] is in H*(X,Z) and it is " a;[W;].
Theorem 3.31 If X is a compact, complex algebraic manifold and D is a divisor on X, then
c1(Ox(D)) = [D] in H*(X,Z),
that is, c1(Ox (D)) is carried by the (2n — 2)-cycle, D.

Proof. Recall that Poincaré duality is given by: For £ € H"(X,R) and n € H*(X,R) (where r + s = 2n),
then

cm=[ enn

The homology/cohomology duality is given by: For w € H*(X,R) and Z € Hy(X,R), then

(zw) = [

We know that the cocyle (= 2-form) representing ¢1(L) is [5=©], for any connection on X. We must show
that for every closed, real (2n — 2)-form, w,

L @/\w:/w.
2T X D

We compute O for a convenient connection, namely, the uniholo connection. Pick a local holomorphic frame,
e(z), for L, then if L has a section, s, we know s(z) = A(2)e(z), locally. For 6, the connection matrix in this
frame, we have
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(a) § =609 (holomorphic)
(b) d(|s|?) = (Vs,s) +(s,Vs) (unitary)

We have
Vs = Ve = (d\+ O)\)e.

Thus, the right hand side of (b) is

d(|s]*) = ((d\+0)\)e, Xe) + (e, (X + ON)e)
= AdA(e,e) + 0|\ (e, ) + AdX(e, €) + 0|\ (e, e).

Write h(z) = le(2)]* = (e,e) > 0; So, the right hand side of (b) is AhdX + AhdX + (6 + 0)|A|*h. Now,
|s|2 = A\h, so B o
d(|s|*) = Mdh + h(AdX + Ad)).
From (b), we deduce dh = (6 + 6)h, and so,
— dh

6+0= = d(log h) = d(log h) + d(log h).

Using (a) and the decomposition by type, we get
0 = O(log h) = dlog(le|?).

As© =di— 0 N0, we get B
O =df = (0 + 0)(dlog(le|*)),
i.e., B
O = d01log(le|?).
Now, recall _
c_ Y 5_
dc = yy (0—0),
so that . .
C_ _ e — L D) — _ii
dd® = —d°d 27r68 27T88,
and 2midd® = 0 0. Consequently,
O = midd® log(|e|?).

This holds for any local frame, e, and has nothing to do with the fact that L comes from a divisor.

Now, L = Ox(D) and assume that the local equations for D are f, = 0 (on U,, some open in the
trivializing cover for L on X). We know the transition functions are

Is.
fo
Therefore, the local vectors s, = fqe, form a global section, s, of Ox (D). The zero locus of this section is

exactly D. As the bundle L is unitary, g7 € U(1), which implies |f5| = |fa| and so, |fa€qa| is well defined.
Thus for small € > 0,

g5 =

D(e)={ze X ||s(2)]* < €}
is a tubular neighborhood of D.

Look at X — D(e), then Ox (D) | X — D(e) is trivial as the section s is never zero there. Therefore, s,
will also do as a local frame for Ox (D) on X — D(e).
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We need to compute [ + © Aw. By linearity, we may assume D is one of the W’s. Then, by definition,

/ O Aw = lim 2midd® log |s|* A w
X €l0 Jx—D(e)
If we apply Stokes, we find

/ O Aw=—1lim 2mid® log |s|* A w

X €l0 Jap(e)
that is,

2 | c 9
O ANw=—Ilim dlog|s|® A w. @)
X v €l0 Jap(e)

Now Vol(D(e)) — 0 as e | 0, as we can see by using the Zariski stratification to reduce to the case where
D is non-singular. Also,

|5 = lfal?leal® = fafah,
where h = |e,|? is positive bounded. We have
log |s|? = log fa + log f,, +logh
and as d° = =(9 — 9),
d®log|s|? = ﬁ[—@logfa + dlog f, + (0 — 0)log h).
It follows that

2 1 - = —
TWdClog\s\2 ANw= 5[—810gfa Aw+0dlog f, Aw+ (0 —90)logh Aw].

In the right hand side of (f), the third term is
1

— lim 0 —0)logh A w.
2 €lo 8D(e)( )

Now, (8 — 0)log h is bounded (X is compact) and Vol(9D(e)) — 0 as € | 0. So, this third term vanishes in
the limit. But, dlog f, = 0log f, and w = w, as w is real. Consequently,

Olog f, ANw = 0log fo A w.

From (1), we get

1 -
/@/\w = —lim —0log fo Nw + dlog fo Aw
X 2 €10 Jap(e)
1 I
= ——lim dlog fo ANw —0log fo ANw
2 €lo aD(e)
= —ilim%/ olog fo Nw.
el aD(e)

Now, f, = 0 is the local equation of D and we can compute the integral on the right hand side away
from the singularities of D as the latter have measure 0. The divisor D is compact, so we can cover it by
polydics centered at nonsingular points of D, say (y is a such a point. By the local complete intersection
then, there exist local coordinates for X near (y, of the form

lefom 225y B0,
—_———
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on ANU, (where A is a polydisc). Break up w as

w=g(z1,...,2n)dza A=+ NdZa A -+ +k,

rest

where £ is a form involving dz; and dz; in each summand. Also, as

= dfo, d
alnga = (8+8) Inga = legfa = i = ﬁa
jix 21
we get
d d dz
0log fo Nw = %g(zl,...,zn)dzg A---Ndzg A-+- + terms ys‘cuﬂ.
1 1
rest
Furthermore, dzy A dzy = 2idz A dy = 2irdr1df (in polar coordinates), so
dzy Ndz
LY — oldry [[d6y),
and when € | 0, this term goes to 0. Therefore
d — d —
lim ﬁg(zl, .o, zp)d(rest)d(rest) = lim/ ﬁg(zl, ...y Zp)d(rest)d(rest)
€l0 aD(e)NA 1 €l0 (|z1|=Ce) [T rest of polydisc <1
and by Cauchy’s integral formula, this is
lim 27ig(0, 29, . . ., zp )d(rest)d(rest) = 27Ti/ w.
€10 Jrest of polyndD(e) DnA

Adding up the contributions from the finite cover of polydics, we get

S lim alogfa/\w:%QWi/w:%r/ w,
€l0 Jap(e) D D
as w is real. But then,
—iS lim log fo ANw = —277@'/ w
€l0 Jap(e) X

from which we finally deduce [, © Aw = —2mi [, w, that is,
/ L@/\w =/ w,
x 27 D

Corollary 3.32 Suppose V' is a U(q)-bundle on our compact X (so that differentiably, V is generated by
its sections). Or, if V is a holomorphic bundle, assume it is generated by its holomorphic sections. Take a
generic section, s, of V. and say V' has rank r. Then, the set s = 0 has complex codimension r (in homology)
and is the carrier of ¢, (V).

as required. []

Proof. The case 7 = 1 is exactly the theorem above. Differentiably,

VZLlHLQH”'HLT’

for the diagonal line bundles of V. Holomorphically, this is also OK but over the space [A]V. So, the
transition matrix is a diagonal matrix

diag(g) o, ,97s) on Ua NUg
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and $o = (S1a5---55ra). S0,
di B — (B 8 —
iag(ga)Sa = (9105105197 aSra) = Sp
which shows that each s;, is a section of L;. Note that s = 0 iff all s; = 0. But, the locus s; = 0
carries ¢1(Lj), by the previous theorem. Therefore, s = 0 corresponds to the intersection in homology of the

carriers of ¢(L),...,c1(L,). But, intersection in homology is equivalent to product in cohomology, so the
cohomology class for s = 0 is

ci(Ly)ei(La) - cr(Ly) = ¢ (V)
as desired. []

General Principle for Computing ¢,(V), for a rank r vector bundle, V.
(1) Let L be an ample line bundle, then V @ L®™ is generated by its sections for m >> 0.

2) Pick r generic sections, si, ..., 5., of V@ L®™. Form s1 A« -+ A Sy_g41, a section of A"~ (V @ L&™).
a+
Then, the zero locus of s1 A -+ A s._q41 carries the Chern class, ¢,(V ® L®™), of V @ L®™.

[ When ¢ = 7, this is the corollary. When ¢ = 1, we have s; A --- A s,., a section of A"V @ L®™ and
it is generic (as the fibre dimension is 1). We get c¢; (A" V ® L®™) and we know that it is equal to
(V@ Le™).

(3) Use the relation from the Chern polynomial
oV & L27)(1) = [[(1+ (3 + mer (L))

to get the elementary symmetric functions of the v;’s, i.e., cq(V).

Remark: if 1 < g < r, our section s1 A --- A s._¢4+1 is not generic but it works.

Theorem 3.33 Say X is a complex analytic or algebraic, compact, smooth, manifold and j: W — X is a
smooth, complex, codimension q submanifold. Write N for the normal bundle of W in X; this is rank q
(U(q)) vector bundle on W. The subspace W corresponds to a cohomology class, &, in H?*4(X,Z) (in fact,
in H¥9(X,C)) and so we get j*¢ € H*4(W,Z). Then, we have

cqN) = j"W.

Proof. We begin with the case ¢ = 1. In this case, W is a divisor and we know N’ = Ox(W) | W. By
Corollary 3.32, the Chern class ¢; (N) is carried by the zero locus of a section, s,of N'. Now, W - W in X as
a cycle is just a moving of W by a small amount and then an ordinary intersection of W and the new moved
cycle. We see that W - W = ¢1(N) as cycle on W. But, j*W is just W - W as cycle (by Poincaré duality).
So, the result holds when ¢ = 1. If ¢ > 1 and if W is a complete intersection in X, then since c,(N') is
computed by repeated pullbacks and each pullback gives the correct formula (by the case ¢ = 1), we get the
result. In the general case, we have two classes j*W and cq(N). If there exists an open cover, {Ua}, of W
so that

JW Uy =cq(N) [ U, for all o,

then we are done. But, W is smooth so it is a local complete intersection (LCIT). Therefore, we get the
result by the previous case. []



206 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

Corollary 3.34 If X is a compact, complex analytic manifold and if Tx = holomorphic tangent bundle has
rank ¢ = dime X, then
2q

cq(Tx) = Xtop = Z(_l)ibi

=0
(Here, b; = dimgp H'(X,Z).)

Proof. (Essentially due to Lefschetz). Look at X [[ X and the diagonal embedding, A: X — X [[X. So,
X — X ][ X is a smooth codimension ¢ submanifold. An easy argument shows that

Tx 2 Nxoxnx =N
and the previous theorem implies
¢q(Tx) = cqN) =X - X
in X [[X. Now, look at the map f: X — X given by
pry o €0,
where ¢ is small and o is a section of A/. The fixed points of our map give the cocycle X - X. The Lefschetz
fixed point Theorem says the cycle of fixed points is given by

2q

> (=1)'tr f* on H'(X,Z).

i=0
But, for € small, the map f is homotopic to id, so f* =id". Now, tr id* = dimension of space = b;(X) if we
are on H'(X). So the right hand side of the Lefschetz formula is Xtop, @s claimed. []
Segre Classes.

Let V be a vector bundle on X, then we have classes s;(V'), and they are defined by

1+ JZI Sj(V)tj = C(V)(t)'

As ¢(V)(t) is nilpotent, we have

=1—(a(V)t+ca(V)2 4+ )+ (ea(V)t+ca(V)E2 4 )2 + -

c(V)(®)

and so,

Sl(V) —Cl(V)
52(V) = (V) —e(V),

etc.

Pontrjagin Classes.

Pontrjagin classes are defined for real O(g)-bundles over real manifolds. We have the commutative
diagrams

U(gq) —— 0(2q)

GL(q,C) “—— GL(2q,R)
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where ((z1,...,29) = (T1,Y1,...,2q,Yq), With z; = x; + iy; and

0(g) —— U(g)

GL(q,R) —— GL(q,C)

where 1(A) is the real matrix now viewed as a complex matrix. Given £, an O(g)-bundle, we have 1(q), a
U(q)-bundle. Define

The Pontrjagin classes, p;(§), are defined by
pi(€) = (=1)'e2i(¥(€)) € HY (X, Z).
The generalized Pontrjagin classes, P;(€) and the generalized Pontrjagin polynomial, P(€)(t), are defined by
PE)(t) = c((§)(®), and  P;(§) = ¢;(¥(xi)).

(Observe: Py (&) = (—=1)Ppi(€).)

Now, ¢ corresponds to map, X — BO(g). Then, for i even, P;/5(§) is the pullback of something in
H'(BO(q),Z). Tt is known that for i = 2(4), the cohomology ring H*(BO(q), Z) is 2-torsion, so 2P,qq(&) = 0.
So, with rational coefficients, we get

Poaa(§) =0 and  Peyen(§) = £ Pevens2(§)-
We have the following properties:
(0) P(&)(t) =1+ stuff.
(1) fPE)(t) = P(f)(t), so f*Pi(§) = Pi(f*E).
(2) Suppose &, 7 are bundle of rank ¢, ¢, respectively, then
P(¢n)(t) = P&)()P(n)(t)
and if we set p(£)(£) = X3 p; (€)1, then

p(EWn)(t) = p(&)(t)p(n)(t), mod elements of order 2 in H*(X,Z).

(3) Suppose c(9(§))(t) has Chern roots ;. Then, the polynomial Z;’;O(—l)jpj(f)t% has roots 72; in fact,

>0 = (3 e ) (Do (-0 em(©r™).
7=0 l m
Proposition 3.35 Say & is a U(q)-bundle and make ((§), an O(2q)-bundle. Then

> W@ = (e ) (T emte?n™)

j=0

.

Proof. Consider the maps U(q) < O(2¢) — U(2q). By linear algebra, if A € U(q), its image in U(2q) by

this map is
A 0
0 A
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after an automorphism of U(2¢), which automorphism is independent of A. By Skolem-Noether, the auto-
morphism is of the form

H™ (v¢(A)H,

for some H € GL(2¢,C). For an inner automorphism, the cohomology class of the vector bundle stays the
same. Thus, this cohomology class is the class of

A 0

0 A
Now, we know the transition matrix of £ is the transpose inverse of that for £&. But, A is unitary, so

Z _ (A—I)T _ AD

and we deduce that ¥((A) has as transition matrix

A 0

0 AP)-
Consequently, the right hand side of our equation is

(X es©f) (X em(eym).
l m

as required. []



