
Chapter 3

The Hirzebruch-Riemann-Roch
Theorem

3.1 Line Bundles, Vector Bundles, Divisors

From now on, X will be a complex, irreducible, algebraic variety (not necessarily smooth). We have

(I) X with the Zariski topology and OX = germs of algebraic functions. We will write X or XZar.

(II) X with the complex topology and OX = germs of algebraic functions. We will write XC for this.

(III) X with the complex topology and OX = germs of holomorphic functions. We will write Xan for this.

(IV) X with the complex topology and OX = germs of C∞-functions. We will write XC∞ or Xsmooth in this
case.

Vector bundles come in four types: Locally trivial in the Z-topology (I); Locally trivial in the C-topology
(II, III, IV).

Recall that a rank r vector bundle over X is a space, E, together with a surjective map, p : E → X, so
that the following properties hold:

(1) There is some open covering, {Uα −→ X}, of X and isomorphisms

ϕα : p−1(Uα) → Uα
∏

Cr (local triviality)

We also denote p−1(Uα) by E � Uα.

(2) For every α, the following diagram commutes:

p−1(Uα)
ϕα ��

p
����

��
��

��
�

Uα
∏

Cr

pr1
�����������

Uα
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(3) Consider the diagram

p−1(Uα)
ϕα �� Uα

∏
Cr

p−1(Uα ∩ Uβ)
��

��

ϕα �� (Uα ∩ Uβ)
∏

Cr
��

��

gβ
α

��
p−1(Uβ ∩ Uα)� �

��

ϕβ �� (Uβ ∩ Uα)
∏

Cr� �

��
p−1(Uβ)

ϕβ �� Uβ
∏

Cr

where gβα = ϕβ ◦ ϕ−1
α � p−1(Uα ∩ Uβ). Then,

gβα � Uα ∩ Uβ = id and gβα � Cr ∈ GLr(Γ(Uα ∩ Uβ ,OX))

and the functions gβα in the glueing give type II, III, IV.

On triple overlaps, we have
gγβ ◦ gβα = gγα and gαβ = (gβα)−1.

This means that the {gβα} form a 1-cocycle in Z1({Uα −→ X},GLr). Here, we denote by GLr(X), or simply
GLr, the sheaf defined such that, for every open, U ⊆ X,

Γ(U,GLr(X)) = GLr(Γ(U,OX)),

the group of invertible linear maps of the free module Γ(U,OX)r ∼= Γ(U,Or
X). When r = 1, we also denote

the sheaf GL1(X) by Gm, or O∗
X .

Say {ψα} is another trivialization. We may assume (by refining the covers) that {ϕα} and {ψα} use the
same cover. Then, we have an isomorphism, σα : Uα

∏
Cr → Uα

∏
Cr:

Uα
∏

Cr

σα

��

p−1(Uα)

ϕα

������������

ψα ������������

Uα
∏

Cr

We see that {σα} is a 0-cochain in C0({Uα −→ X},GLr). Let {hβα} be the glueing data from {ψα}. Then,
we have

ϕβ = gβα ◦ ϕα
ψβ = hβα ◦ ψα
ψα = σα ◦ ϕα.

From this, we deduce that σβ ◦ ϕβ = ψβ = hβα ◦ σα ◦ ϕα, and then

ϕβ = (σ−1
β ◦ hβα ◦ σα) ◦ ϕα,
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so
gβα = σ−1

β ◦ hβα ◦ σα.

This gives an equivalence relation, ∼, on Z1({Uα −→ X},GLr). Set

H1({Uα −→ X},GLr) = Z1/ ∼ .

This is a pointed set. If we pass to the right limit over covers by refinement and call the pointed set from
the limit Ȟ1(X,GLr), we get

Theorem 3.1 If X is an algebraic variety of one of the types T = I, II, III, IV, then the set of isomorphism
classes of rank r vector bundles, VectT,r(X), is in one-to-one correspondence with Ȟ1(X,GLr).

Remarks:

(1) If F is some “object” and Aut(F ) = is the group of automorphisms of F (in some catgeory), then an
X-torsor for F is just an “object, E, over X”, locally (on X) of the form U

∏
F and glued by the

pairs (id, g), where g ∈ Maps(U ∩ V,Aut(F )) on U ∩ V . The theorem says: Ȟ1(X,Aut(F )) classifies
the X-torsors for F .

Say F = Pr
C
, we’ll show that in the types I, II, III, Aut(F ) = PGLr, where

0 −→ Gm −→ GLr+1 −→ PGLr −→ 0 is exact.

(2) Say 1 −→ G′ −→ G −→ G′′ −→ 1 is an exact sequence of sheaves of (not necessarily commutative)
groups. Check that

1 �� G′(X) �� G(X) �� G′′(X) ����
��

δ0

��
�� Ȟ1(X,G′) �� Ȟ1(X,G) �� Ȟ1(X,G′′)

is an exact sequence of pointed sets. To compute δ0(σ) where σ ∈ G′′(X), proceed as follows: Cover
X by suitable Uα and pick sα ∈ G(Uα) mapping to σ � Uα in G′′(Uα). Set

δ0(σ) = sαs
−1
β on Uα ∩ Uβ/ ∼.

We find that δ0(σ) ∈ Ȟ1(X,G′). When G′ ⊆ Z(G), we get the exact sequence

1 �� G′(X) �� G(X) �� G′′(X) ����
��

δ0

��
�� Ȟ1(X,G′) �� Ȟ1(X,G) �� Ȟ1(X,G′′) ����

��
δ1

��
�� Ȟ2(X,G′)

(3) Apply the above to the sequence

0 −→ Gm −→ GLr+1 −→ PGLr −→ 1.
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If X is a projective variety, we get

0 −→ Γ(X,O∗
X) −→ GLr+1(Γ(X,OX)) −→ PGLr(Γ(X,OX)) −→ 0,

because Γ(X,O∗
X) = C∗ and Γ(X,OX) = C. Consequently, we also have

0 −→ Ȟ1(X,O∗
X) −→ Ȟ1(X,GLr+1) −→ Ȟ1(X,PGLr) −→ Ȟ2(X,O∗

X) = Br(X),

where the last group, Br(X), is the cohomological Brauer group of X of type T . By our theorem,
Ȟ1(X,O∗

X) = Pic(X) classifies type T line bundles, Ȟ1(X,GLr+1) classifies type T rank r + 1 vector
bundles and Ȟ1(X,PGLr) classifies type T fibre bundles with fibre Pr

C
(all on X).

Let X and Y be two topological spaces and let π : Y → X be a surjective continuous map. Say we have
sheaves of rings OX on X and OY on Y ; we have a homomorphism of sheaves of rings, OX −→ π∗OY . Then,
each OY -module (or OY -algebra), F , gives us the OX -module (or algebra), π∗F on X (and more generally,
Rqπ∗F) as follows: For any open subset, U ⊆ X,

Γ(U, π∗F) = Γ(π−1(U),F).

So, Γ(π−1(U),OY ) acts on Γ(π−1(U),F) and commutes to restriction to smaller opens. Consequently, π∗F
is a π∗OY -module (or algebra) and then OX acts on it via OX −→ π∗OY . Recall also, that Rqπ∗F is the
sheaf on X generated by the presheaf

Γ(U,Rqπ∗F) = Hq(π−1(U),F).

If F is an algebra (not commutative), then only π∗ and R1π∗ are so-far defined.

Let’s look at F and Γ(Y,F) = Γ(π−1(X),F) = Γ(X,π∗F). Observe that

Γ(Y,−) = Γ(X,−) ◦ π∗.

So, if π∗ maps an injective resolution to an exact sequence, then the usual homological algebra gives the
spectral sequence of composed functors (Leray spectral sequence)

Ep,q2 = Hp(X,Rqπ∗F) =⇒ H•(Y,F).

We get the exact sequence of terms of low degree (also called edge sequence)

1 �� H1(X,π∗F) �� H1(Y,F) �� H0(X,R1π∗F) ����
��

δ0

��
�� H2(X,π∗F) �� H2(Y,F) ��

In the non-commutative case, we get only

1 �� H1(X,π∗F) �� H1(Y,F) �� H0(X,R1π∗F).

Application: Let X be an algebraic variety with the Zariski topology, let OX be the sheaf of germs of
algebraic functions and let Y = XC also with OY = the sheaf of germs of algebraic functions. The map
π : Y → X is just the identity, which is continuous since the Zariski topology is coarser than the C-topology.
Take F = (possibly noncommutative) GLr.

Claim: R1id∗GLr = (0), for all r ≥ 1.
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Proof . It suffices to prove that the stalks are zero. But these are the stalks of the corresponding presheaf

lim−→
U�x

H1
C(U,GLr)

where U runs over Z-opens and H1 is taken in the C-topology. Pick x ∈ X and some ξ ∈ H1
C
(U,GLr) for

some Z-open, U 	 x. So, ξ consists of a vector bundle on U , locally trivial in the C-topology. There is some
open in the C-topology, call it U0, with x ∈ U0 and U0 ⊆ U where ξ � U0 is trivial iff there exists some
sections, σ1, . . . , σr, of ξ over U0, and σ1, . . . , σr are linearly independent everywhere on U0. The σj are
algebraic functions on U0 to Cr. Moreover, they are l.i. on U0 iff σ1 ∧ · · · ∧ σr is everywhere nonzero on U0.
But, σ1 ∧ · · · ∧ σr is an algebraic function and its zero set is a Z-closed subset in X. So, its complement, V ,
is Z-open and x ∈ U0 ⊆ V ∩ U . It follows that ξ � V ∩ U is trivial (since the σj are l.i. everywhere); so, ξ
indeed becomes trivial on a Z-open, as required.

Apply our exact sequence and get

Theorem 3.2 (Comparison Theorem) If X is an algebraic variety, then the canonical map

VectrZar(X) ∼= Ȟ1(XZar,GLr) −→ Ȟ1(XC,GLr) ∼= VectrC(X)

is an isomorphism for all r ≥ 1 (i.e., a bijection of pointed sets).

Thus, to give a rank r algebraic vector bundle in the C-topology is the same as giving a rank r algebraic
vector bundle in the Zariski topology.

� If we use OX = holomorphic (analytic) functions, then for many X, we get only an injection
VectrZar(X) ↪→ VectrC(X).

Connection with the geometry inside X:

First, assume X is smooth and irreducible (thus, connected). Let V be an irreducible subvariety of
codimension 1. We know from Chapter 1 that locally on some open, U , there is some f ∈ Γ(U,OX) = OU

such that f = 0 cuts out V in U . Furthermore, f is analytic if V is, algebraic if V is. Form the free abelian
group on the V ’s (we can also look at “locally finite” Z-combinations in the analytic case); call these objects
Weil divisors (W -divisors), and denote the corresponding group, WDiv(X).

A divisor D ∈ WDiv(X) is effective if D =
∑
α aαVα, with aα ≥ 0 for all α. This gives a cone inside

WDiv(X) and partially orders WDiv(X).

Say g is a holomorphic (or algebraic) function near x. If V passes through x, in OX,x–which is a UFD
(by Zariski) we can write

g = fag̃, where (g̃, f) = 1.

(The equation f = 0 defines V near x so f is a prime of OX,x.) Notice that if p = (f) in Γ(U,OX) = OU ,
then g = fag̃ iff g ∈ pa and g /∈ pa+1 iff g ∈ pa(OU )p and g /∈ pa+1(OU )p. The ring (OU )p is a local ring
of dimension 1 and is regular as X is a manifold (can be regular even if X is singular). Therefore, a is
independent of x. The number a is by definition the order of vanishing of g along V , denoted ordV (g). If g
is a meromorphic function near x, we write g = g1/g2 locally in (OU )p, with (g1, g2) = 1 and set

ordV (g) = ordV (g1) − ordV (g2).

We say that g has a zero of order a along V iff ordV (g) = a > 0 and a pole of order a iff ordV (g) = −a < 0.
If g ∈ Γ(X,Mer(X)∗), set

(g) =
∑

V ∈WDiv(X)

ordV (g) · V.

Claim. The above sum is finite, under suitable conditions:
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(a) We use algebraic functions.

(b) We use holomorphic functions and restrict X (DX).

Look at g, then 1/g vanishes on a Z-closed, W0. Look at X −W0. Now, X −W0 is Z-open so it is a
variety and g � X −W0 is holomorphic. Look at V ⊆ X and ordV (g) = a �= 0, i.e., V ∩ U �= ∅. Thus,
(g) = pa in (OU )p, which yields (g) ⊆ p and then V ∩ (X −W0) = V (p) ⊆ V ((g)). But, V (g) is a union of
irreducible components (algebraic case) and V is codimension 1, so V is equal to one of these components.
Therefore, there are only finitely many V ’s arising from X −W0.

The function 1/g vanishes on W0, so write W0 as a union of irreducible components. Again, there are only
finitely many V arising from W0. So, altogether, there are only finitely many V ’s associated with g where g
has a zero or a pole. We call (g) ∈ WDiv(X) a principal divisor . Given any two divisors D,E ∈ WDiv(X),
we define linear (or rational) equivalence by

D ∼ E iff (∃g ∈ Mer(X))(D − E = (g)).

The equivalence classes of divisors modulo ∼ is the Weil class group, WCl(X).

Remark: All goes through for any X (of our sort) for which, for all primes, p, of height 1, the ring (OU )p is
a regular local ring (of dimension 1, i.e., a P.I.D.) This is, in general, hard to check (but, OK if X is normal).

Cartier had the idea to use a general X but consider only the V ’s given locally as f = 0. For every open,
U ⊆ X, consider AU = Γ(U,OX). Let SU be the set of all non-zero divisors of AU , a multiplicative set. We
get a presheaf of rings, U �→ S−1

U AU , and the corresponding sheaf, Mer(X), is the total fraction sheaf of
OX . We have an embedding OX −→ Mer(X) and we let Mer(X)∗ be the sheaf of invertible elements of
Mer(X). Then, we have the exact sequence

0 −→ O∗
X −→ Mer(X)∗ −→ DX −→ 0,

where DX is the sheaf cokernel.

We claim that if we define DX = Coker (O∗
X −→ Mer(X)∗) in the C-topology, then it is also the kernel

in the Z-topology.

Take σ ∈ Γ(U,DX) and replace X by U , so that we may assume that U = X. Then, as σ is liftable locally
in the C-topology, there exist a C-open cover, Uα and some σα ∈ Γ(U,Mer(X)∗) so that σα �→ σ � Uα.
Make the Uα small enough so that σα = fα/gα, where fα, gα are holomorphic. It follows that σα is defined
on a Z-open, Ũα ⊇ Uα. Look at Ũα ∩ Ũβ ⊇ Uα ∩ Uβ . We know σα/σβ is invertible holomorphic on Uα ∩ Uβ
and so,

σα
σβ

· σβ
σα

≡ 1 on Uα ∩ Uβ .

It follows that σα/σβ is invertible on Ũα ∩ Ũβ and then, restricting slightly further we get a Z-open cover
and σα’s on it lifting σ.

Definition 3.1 A Cartier divisor (for short, C-divisor) onX is a global section of DX . Two Cartier divisors,
σ, τ are rationally equivalent , denoted σ ∼ τ , iff σ/τ ∈ Γ(X,Mer(X)∗). Of course, this means there is a C or
Z-open cover, Uα, of X and some σα, τα ∈ Γ(Uα,Mer(X)∗) with σα/τα invertible holomorphic on Uα ∩ Uβ .
The group of Cartier divisors is denoted by CDiv(X) and the corresponding group of equivalence classes
modulo rational equivalence by Cl(X) (the class group).

The idea is that if {(Uα, σα)}α defines a C-divisor, then we look on Uα at

σ0
α − σ∞

α = (locus σα = 0) − (locus
1
σα

= 0).
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When we have the situation where WDiv(X) exists, then the map

{(Uα, σα)}α �→ {σ0
α − σ∞

α }

takes C-divisors to Weil divisors. Say σα and σ′
α are both liftings of the same σ, then on Uα we have

σ′
α = σαgα where gα ∈ Γ(X,O∗

X).

Therefore,
σ

′0
α − σ

′∞
α = σ0

α − σ∞
α

and the Weil divisors are the same (provided they make sense). If σ, τ ∈ CDiv(X) and σ ∼ τ , then there is
a global meromorphic function, f , with σ = fτ . Consequently

σ0
α − σ∞

α = (f)0 − (f)∞ + τ0
α − τ∞α ,

which shows that the corresponding Weil divisors are linearly equivalent. We get

Proposition 3.3 If X is an algebraic variety, the sheaf DX is the same in either the Zariski or C-topology
and if X allows Weil divisors (non-singular in codimension 1), then the map CDiv(X) −→ WDiv(X) given
by σ �→ σ0

α − σ∞
α is well-defined and we get a commutative diagram with injective rows

CDiv(X) � � ��

��

WDiv(X)

��
Cl(X) � � �� WCl(X).

If X is a manifold then our rows are isomorphisms.

Proof . We only need to prove the last statement. Pick D =
∑
α nαVα, a Weil divisor, where each Vα is

irreducible of codimension 1. As X is manifold, each Vα is given by fα = 0 on a small enough open, U ; take
for σ � U , the product

∏
α f

nα
α and this gives our C-divisor.

We can use the following in some computations.

Proposition 3.4 Assume X is an algebraic variety and Y ↪→ X is a subvariety. Write U = X − Y , then
the maps

σ ∈ CDiv(X) �→ σ � U ∈ CDiv(U),

resp. ∑
α

nαVα ∈ WDiv(X) �→
∑
α

nα(Vα ∩ U) ∈ WDiv(U)

are surjections from CDiv(X) or WDiv(X) to the corresponding object in U . If codimX(Y ) ≥ 2, then our
maps are isomorphisms. If codimX(Y ) = 1 and Y is irreducible and locally principal, then the sequences

Z −→ CDiv(X) −→ CDiv(U) −→ 0 and Z −→ WDiv(X) −→ WDiv(U) −→ 0

are exact (where the left hand map is n �→ nY ).

Proof . The maps clearly exist. Given an object in U , take its closure in X, then restriction to U gives back
the object. For Y of codimension at least 2, all procedures are insensitive to such Y , so we don’t change
anything by removing Y . A divisor ξ ∈ CDiv(X) (or WDiv(X)) goes to zero iff its “support” is contained
in Y . But, Y is irreducible and so are the components of ξ. Therefore, ξ = nY , for some n.
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Recall that line bundles on X are in one-to-one correspondence with invertible sheaves, that is, rank 1,
locally free OX -modules. If L is a line bundle, we associate to it, OX(L), the sheaf of sections (algebraic,
holomorphic, C∞) of L.

In the other direction, if L is a rank 1 locally free OX -module, first make LD and the OX -algebra,
SymOX

(LD), where
SymOX

(LD) =
∐
n≥0

(LD)⊗n/(a⊗ b− b⊗ a).

On a small enough open, U ,
SymOX

(LD) � U = OU [T ],

so we form Spec(SymOX
(LD) � U) ∼= U

∏
C1, and glue using the data for LD. We get the line bundle,

Spec(SymOX
(LD)).

Given a Cartier divisor, D = {(Uα, fα)}, we make the submodule, OX(D), of Mer(X) given on Uα by

OX(D) � Uα =
1
fα

OX � Uα ⊆ Mer(X) � Uα.

If {(Uα, gα)} also defines D (we may assume the covers are the same by refining the covers if necessary),
then there exist hα ∈ Γ(Uα,Mer(X)∗), with

fαhα = gα.

Then, the map ξ �→ 1
hα
ξ takes 1

fα
to 1

gα
; so, 1

fα
and 1

gα
generate the same submodule of Mer(X) � Uα. On

Uα ∩ Uβ , we have
fα
fβ

∈ Γ(Uα ∩ Uβ ,O∗
X),

and as
fα
fβ

· 1
fα

=
1
fβ
,

we get
1
fα

OUα
� Uα ∩ Uβ =

1
fβ

OUβ
� Uα ∩ Uβ .

Consequently, our modules agree on the overlaps and so, OX(D) is a rank 1, locally free subsheaf of Mer(X).

Say D and E are Cartier divisors and D ∼ E. So, there is a global meromorphic function,
f ∈ Γ(X,Mer(X)∗) and on Uα,

fαf = gα.

Then, the map ξ �→ 1
f ξ is an OX -isomorphism

OX(D) ∼= OX(E).

Therefore, we get a map from Cl(X) to the invertible submodules of Mer(X).

Given an invertible submodule, L, of Mer(X), locally, on U , we have L � U = 1
fU

OU ⊆ Mer(X) � U .
Thus, {(U, fU )} gives a C-divisor describing L. Suppose L and M are two invertible submodules of Mer(X)
and L ∼= M; say ϕ : L → M is an OX -isomorphism. Locally (possibly after refining covers), on Uα, we have

L � Uα ∼= 1
fα

OUα
and M � Uα ∼= 1

gα
OUα

.

So, ϕ : L � Uα → M � Uα is given by some τα such that

ϕ
( 1
fα

)
= τα

1
gα
.
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Consequently, ϕα � Uα is multiplication by τα and ϕβ � Uβ is multiplication by τβ . Yet ϕα � Uα and ϕβ � Uβ
agree on Uα ∩ Uβ , so τα = τβ on Uα ∩ Uβ . This shows that the τα patch and define a global τ such that

τ � Uα = τα = gαϕ
( 1
fα

)
and τ � Uβ = τβ = gβϕ

( 1
fβ

)
on overlaps. Therefore, we can define a global Φ via

Φ = gαϕ
( 1
fα

)
∈ Mer(X),

and we find ξ �→ 1
Φ ξ gives the desired isomorphism.

Theorem 3.5 If X is an algebraic variety (or holomorphic or C∞ variety) then there is a canonical map,
CDiv(X) −→ rank 1, locally free submodules of Mer(X). It is surjective. Two Cartier divisors D and E are
rationally equivalent iff the corresponding invertible sheaves OX(D) and OX(E) are (abstractly) isomorphic.
Hence, there is an injection of the class group, Cl(X) into the group of rank 1, locally free OX-submodules
of Mer(X) modulo isomorphism. If X is an algebraic variety and we use algebraic functions and if X is
irreducible, then every rank 1, locally free OX-module is an OX(D). The map D �→ OX(D) is just the
connecting homomorphism in the cohomology sequence,

H0(X,DX) δ−→ H1(X,O∗
X).

Proof . Only the last statement needs proof. We have the exact sequence

0 −→ O∗
X −→ Mer(X)∗ −→ DX −→ 0.

Apply cohomology (we may use the Z-topology, by the comparison theorem): We get

Γ(X,Mer(X)∗) −→ CDiv(X) −→ Pic(X) −→ H1(X,Mer(X)∗).

But, X is irreducible and in the Z-topology Mer(X) is a constant sheaf. As constant sheaves are flasque,
Mer(X) is flasque, which implies thatH1(X,Mer(X)∗) = (0). Note that this shows that there is a surjection
CDiv(X) −→ Pic(X).

How is δ defined? Given D ∈ H0(X,DX) = CDiv(X), if {(Uα, fα)} is a local lifting of D, the map δ
associates the cohomology class [fβ/fα], where fβ/fα is viewed as a 1-cocycle on O∗

X . On the other hand,
when we go through the construction of OX(D), we have the isomorphisms

OX(D) � Uα =
1
fα

OUα
∼= OUα

⊇ OUα
∩ OUβ

(mult. by fα)

and
OX(D) � Uβ =

1
fβ

OUβ
∼= OUβ

⊇ OUα
∩ OUβ

(mult. by fβ)

and we see that the transition function, gβα, on OUα
∩ OUβ

is nonother that multiplication by fβ/fα. But
then, both OX(D) and δ(D) are line bundles defined by the same transition functions (multiplication by
fβ/fα) and δ(D) = OX(D).

Say D = {(Uα, fα)} is a Cartier divisor on X. Then, the intuition is that the geometric object associated
to D is

(zeros of fα − poles of fα) on Uα.

This leads to saying that the Cartier divisor D is an effective divisor iff each fα is holomorphic on Uα. In this
case, fα = 0 gives on Uα a locally principal, codimension 1 subvariety and conversely. Now each subvariety,
V , has a corresponding sheaf of ideals, IV . If V is locally principal, given by the fα’s, then IV � Uα =
fαOX � Uα. But, fαOX � Uα is exactly OX(−D) on Uα if D = {(Uα, fα)}. Hence, IX = OX(−D). We get
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Proposition 3.6 If X is an algebraic variety, then the effective Cartier divisors on X are in one-to-one
correspondence with the locally principal codimension 1 subvarieties of X. If V is one of the latter and if D
corresponds to V , then the ideal cutting out V is exactly OX(−D). Hence

0 −→ OX(−D) −→ OX −→ OV −→ 0 is exact.

What are the global sections of OX(D)?

Such sections are holomorphic maps σ : X → OX(D) such that π ◦ σ = id (where π : OX(D) → X is the
canonical projection associated with the bundle OX(D)). If D is given by {(Uα, fα)}, the diagram

OX(D) � Uα fαOX � Uα
×fα �� OX � Uα

OX(D) � Uα ∩ Uβ
��

��

OX � Uα ∩ Uβ

gβ
α

��

��

��

OX(D) � Uβ ∩ Uα� �

��

OX � Uβ ∩ Uα� �

��
OX(D) � Uβ fβOX � Uβ

×fβ �� OX � Uβ

implies that
σα = fασ : Uα −→ OX � Uα and σβ = fβσ : Uβ −→ OX � Uβ .

However, we need
σβ = gβασα,

which means that a global section, σ, is a family of local holomorphic functions, σα, so that σβ = gβασα.But,
as gβα = fβ/fα, we get

σα
fα

=
σβ
fβ

on Uα ∩ Uβ .

Therefore, the meromorphic functions, σα/fα, patch and give a global meromorphic function, Fσ. We have

fα(Fσ � Uα) = σα

a holomorphic function. Therefore, (fα � Uα) + (Fσ � Uα) ≥ 0, for all α and as the pieces patch, we get

D + (Fσ) ≥ 0.

Conversely, say F ∈ Γ(X,Mer(X)) and D+(F ) ≥ 0. Locally on Uα, we have D = {(Uα, fα)} and (fαF ) ≥ 0.
If we set σα = fαF , we get a holomorphic function on Uα. But,

gβασα =
fβ
fα

fαF = fβF = σβ ,

so the σα’s give a global section of OX(D).

Proposition 3.7 If X is an algebraic variety, then

H0(X,OX(D)) = {0} ∪ {F ∈ Γ(X,Mer(X)) | (F ) +D ≥ 0}.

in particular,
|D| = P(H0(X,OX(D))) = {E | E ≥ 0 and E ∼ D},

the complete linear system of D, is naturally a projective space and H0(X,OX(D)) �= (0) iff there is some
Cartier divisor, E ≥ 0, and E ∼ D.
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Recall that an OX -module, F , is a Z-QC (resp. C-QC, here QC = quasi-coherent) iff everywhere locally,
i.e., for small (Z, resp. C) open, U , there exist sets I(U) and J(U) and some exact sequence

(OX � U)I(U) ϕU−→ (OX � U)J(U) −→ F � U −→ 0.

Since OX is coherent (usual fact that the rings Γ(Uα,OX) = Aα, for Uα open affine, are noetherian) or
Oka’s theorem in the analytic case, a sheaf, F , is coherent iff it is QC and finitely generated iff it is finitely
presented, i.e., everywhere locally,

(OX � U)q
ϕU−→ (OX � U)q −→ F � U −→ 0 is exact. (†)

(Here, p, q are functions of U and finite).

In the case of the Zariski topology, F is QC iff for every affine open, U , the sheaf F � U has the form M̃ ,
for some Γ(U,OX)-module, M . The sheaf M̃ is defined so that, for every open W ⊆ U ,

Γ(W, M̃) =

σ : W −→
⋃
ξ∈W

Mξ

∣∣∣∣∣∣∣
(1) σ(ξ) ∈Mξ

(2) (∀ξ ∈W )(∃V (open) ⊆W, ∃f ∈M,∃g ∈ Γ(V,OX))(g �= 0 on V )
(3) (∀y ∈ V )

(
σ(y) = image

(
f
g

)
inMy

)
.


Proposition 3.8 Say X is an algebraic variety and F is an OX-module. Then, F is Z-coherent iff F is
C-coherent.

Proof . Say F is Z-coherent, then locally Z, the sheaf F satisfies (†). But, every Z-open is also C-open, so F
is C-coherent.

Now, assume F is C-coherent, then locally C, we have (†), where U is C-open. The map ϕU is given by
a p× q matrix of holomorphic functions on U . Each is algebraically defined on a Z-open containing U . The
intersection of these finitely many Z-opens is a Z-open, Ũ and Ũ ⊇ U . So, we get a sheaf

F̃ � Ũ = Coker ((OX � Ũ)q −→ (OX � Ũ)p).

The sheaves F̃ � Ũ patch (easy–DX) and we get a sheaf, F̃ . On U , the sheaf F̃ is equal to F , so F̃ = F .

We have the continuous map XC

id−→ XZar and we get (see Homework)

Theorem 3.9 (Comparison Theorem for cohomology of coherent sheaves) If X is an algebraic variety and
F is a coherent OX-module, then the canonical map

Hq(XZar,F) −→ Hq(XC,F)

is an isomorphism for all q ≥ 0.

Say V is a closed subvariety of X = Pn
C
. Then, V is given by a coherent sheaf of ideals of OX , say IV

and we have the exact sequence
0 −→ IV −→ OX −→ OV −→ 0,

where OV is the sheaf of germs of holomorphic functions on V and has support on V . If V is a hypersurface,
then V is given by f = 0, where f is a form of degree d. If D is a Cartier divisor of f , then IV = OX(−D).
Similarly another hypersurface,W , is given by g = 0 and if deg(f) = deg(g), then f/g is a global meromorphic
function on Pn. Therefore, (f/g) = V −W , which implies V ∼ W . In particular, g = (linear form)d and
so, V ∼ dH, where H is a hyperplane. Therefore the set of effective Cartier disisors of Pn is in one-to-one
correspondence with forms of varying degrees d ≥ 0 and

Cl(Pn) ∼= Z,
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namely, V �→ deg(V ) = δ(V ) (our old notation) = (deg(f)) ·H ∈ H2(Pn,Z). We deduce,

Pic0(Pn) = (0) and Pic(Pn) = Cl(Pn) = Z.

Say V is a closed subvariety of Pn
C
, then we have the exact sequence

0 −→ IV −→ OPn −→ OV −→ 0.

Twist with OPn(d), i.e., tensor with OPn(d) (Recall that by definition, OPn(d) = OPn(dH), where H is a
hyperplane). We get the exact sequence

0 −→ IV (d) −→ OPn(d) −→ OV (d) −→ 0

(with IV (d) = IV ⊗OPn(d) and OV (d) = OV ⊗OPn(d)) and we can apply cohomology, to get

0 −→ H0(Pn,IV (d)) −→ H0(Pn,OPn(d)) −→ H0(V,OV (d)) is exact,

as OV (d) has support V . Now,

H0(Pn,OPn(d)) = {0} ∪ {E ≥ 0, E ∼ dH}.

If E =
∑
Q aQQ, where dim(Q) = n − 1 and aQ ≥ 0, we set deg(E) =

∑
Q aQdeg(Q). If E ≥ 0, then

deg(E) ≥ 0, from which we deduce

H0(Pn,OPn(d)) =
{

(0) if d < 0
C(n+d

d ) i.e., all forms of degree d in X0, . . . , Xn, if d ≥ 0.

We deduce,
H0(Pn,IV (d)) = {all forms of degree d vanishing on V } ∪ {0},

that is, all hypersurfaces, Z ⊆ Pn, with V ⊆ Z (and 0).

Consequently, to give ξ ∈ H0(Pn,IV (d)) is to give a hypersurface of Pn containing V . Therefore,

H0(Pn,IV (d)) = (0) iff no hypersurface of degree d contains V .

(In particular, V is nondegenerate iff H0(Pn,IV (d)) = (0).)

We now compute the groups Hq(Pn,OPn(d)), for all n, q, d. First, consider d ≥ 0 and use induction on
n. For P0, we have

Hq(P0,OP0(d)) =
{

(0) if q > 0
C if q = 0.

Next, P1. The sequence
0 −→ OP1(−1) −→ OP1 −→ OP0 −→ 0 is exact.

By tensoring with OP1(d), we get

0 −→ OP1(d− 1) −→ OP1(d) −→ OP0(d) −→ 0 is exact

by taking cohomology, we get

0 �� H0(P1,OP1(d− 1)) α �� H0(P1,OP1(d))
β �� H0(P0,OP0(d)) ����

����
�� H1(P1,OP1(d− 1)) �� H1(P1,OP1(d)) �� 0
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since H1(P0,OP0(d)) = (0), by hypothesis. Now, if we pick coordinates, the embedding P0 ↪→ P1 corresponds
to x0 = 0. Consequently, the map α is multiplication by x0 and the map β is x0 �→ 0. Therefore,

H1(P1,OP1(d− 1)) ∼= H1(P1,OP1(d)), for all d ≥ 0,

and we deduce
H1(P1,OP1(d)) ∼= H1(P1,OP1) = Cg = (0),

and H1(P1,OP1(−1)) = (0), too. We know that

H0(P1,OP1(d)) = Cd+1; d ≥ 0;

and we just proved that
H1(P1,OP1(d)) = (0); d ≥ −1.

In order to understand the induction pattern, let us do the case of P2. We have the exact sequence

0 −→ OP2(d− 1) α−→ OP2(d)
β−→ OP1(d) −→ 0

and by taking cohomology, we get

0 �� H0(P2,OP2(d− 1)) α �� H0(P2,OP2(d))
β �� H0(P1,OP1(d)) ����

����
�� H1(P2,OP2(d− 1)) �� H1(P2,OP2(d)) �� H1(P1,OP1(d)) ����

����
�� H2(P2,OP2(d− 1)) �� H2(P2,OP2(d)) �� 0

By the induction hypothesis, H1(P1,OP1(d)) = (0) if d ≥ −1, so

H1(P2,OP2(d− 1)) ∼= H1(P2,OP2(d)), for all d ≥ −1.

Therefore,
H1(P2,OP2(d)) ∼= H1(P2,OP2), for all d ≥ −2.

But, the dimension of the right hand side is h0,1 = 0 (the irregularity, h0,1, of P2 is zero). We conclude that

H1(P2,OP2(d)) = (0) for all d ≥ −2.

A similar reasoning applied to H2 shows

H2(P2,OP2(d)) ∼= H2(P2,OP2), for all d ≥ −2.

The dimension of the right hand side group is H0,2 = pg(P2) = 0, so we deduce

H2(P2,OP2(d)) = (0) for all d ≥ −2.

By induction, we get

H0(Pn,OPn(d)) =
{

C(n+d
d ) if d ≥ 0

(0) if d < 0

and
Hq(Pn,OPn(d)) = (0) if d ≥ −n, for all q > 0.
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For the rest of the cases, we use Serre duality and the Euler sequence. Serre duality says

Hq(Pn,OPn(d))D ∼= Hn−q(Pn,OPn(−d) ⊗ ΩnPn).

From the Euler sequence
0 −→ OPn −→

∐
n+1 times

OPn(1) −→ T 1,0
Pn −→ 0,

by taking the highest wedge, we get

n+1∧(∐
n+1

OPn(1)
)
∼=

n∧
T 1,0

Pn ⊗OPn ,

from which we conclude

(ΩnPn)D ∼=
n+1∧(∐

n+1

OPn(1)
)
∼= OPn(n+ 1).

Therefore
ωPn = ΩnPn

∼= OPn(−(n+ 1)) = OPn(KPn),

where KPn is the canonical divisor on Pn, by definition. Therefore, we have

Hq(Pn,OPn(d)) ∼= Hn−q(Pn,OPn(−d− n− 1))D.

If 1 ≤ q ≤ n− 1 and d ≥ −n, then we know that the left hand side is zero. As 1 ≤ n− q ≤ n− 1, it follows
that

Hq(Pn,OPn(−d− n− 1)) = (0) when d ≥ −n.
Therefore,

Hq(Pn,OPn(d)) = (0) for all d and all q with 1 ≤ q ≤ n− 1.

We also have
Hn(Pn,OPn(d))D ∼= H0(Pn,OPn(−d− n− 1)),

and the right hand side is (0) if −d − (n + 1) < 0, i.e., d ≥ −n. Thus, if d ≤ −(n + 1), then we have
δ = −d− (n+ 1) ≥ 0, so

Hn(Pn,OPn(d)) ∼= H0(Pn,OPn(δ))D = C(n+δ
δ ), where δ = −(d+ n+ 1).

The pairing is given by
1
f
⊗ f

x0x1 · · ·xn
�→
∫

Pn

dx0 ∧ · · · ∧ dxn
x0 · · ·xn

,

where deg(f) = −d, with d ≤ −n− 1. Summarizing all this, we get

Theorem 3.10 The cohomology of line bundles on Pn satisfies

Hq(Pn,OPn(d)) = (0) for all n, d and all q with 1 ≤ q ≤ n− 1.

Furthermore,
H0(Pn,OPn(d)) = C(n+d

d ), if d ≥ 0, else (0),

and
Hn(Pn,OPn(d)) = C(n+δ

δ ), where δ = −(d+ n+ 1) and d ≤ −n− 1, else (0).

We also proved that
ωPn = OPn(−(n+ 1)) = OPn(KPn).
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3.2 Chern Classes and Segre Classes

The most important spaces (for us) are the Kähler manifolds and unless we explicitly mention otherwise, X
will be Kähler. But, we can make Chern classes if X is worse.

Remark: The material in this Section is also covered in Hirzebruch [8] and under other forms in Chern [4],
Milnor and Stasheff [11], Bott and Tu [3], Madsen and Tornehave [9] and Griffith and Harris [6].

Let X be admissible iff

(1) X is σ-compact , i.e.,

(a) X is locally compact and

(b) X is a countable union of compacts.

(2) The combinatorial dimension of X is finite.

Note that (1) implies that X is paracompact. Consequently, everthing we did on sheaves goes through.

Say X is an algebraic variety and F is a QC OX -module. Then, H0(X,F) encodes the most important
geometric information contained in F . For example, F = a line bundle or a vector bundle, then

H0(X,F) = space of global sections of given type.

If F = IV (d), where V ⊆ Pn, then

H0(X,F) = hypersurfaces containing V .

This leads to the Riemann-Roch (RR) problem.

Given X and a QC OX -module, F ,

(a) Determine when H0(X,F) has finite dimension and

(b) If so, compute the dimension, dimC H0(X,F).

Some answers:

(a) Finiteness Theorem: If X is a compact, complex, analytic manifold and F is a coherent OX -module,
then Hq(X,F) has finite dimension for every q ≥ 0.

(b) It was noticed in the fifties (Kodaira and Spencer) that if {Xt}t∈S is a reasonable family of compact
algebraic varieties (C-analytic manifolds), (S is just a R-differentiable smooth manifold and the Xt are
a proper flat family), then

χ(Xt,OXt
) =

dimXt∑
i=0

(−1)idim(Hi(Xt,OXt
))

was independent of t.

The Riemann-Roch problem goes back to Riemann and the finiteness theorem goes back to Oka, Cartan-
Serre, Serre, Grauert, Grothendieck, ... .

Examples. (1) Riemann (1850’s): If X is a compact Riemann surface, then

χ(X,OX) = 1 − g
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where g is the number of holes of X (as a real surface).

(2) Max Noether (1880’s): If X is a compact, complex surface, then

χ(X,OX) =
1
12

(K2
X + top Euler char.(X)).

(Here, K2
X = OX(KX) ∪ OX(KX) in the cohomology ring, an element of H4(X,Z).)

(3) Severi, Eger-Todd (1920, 1937) conjectured:

χ(X,OX) = some polynomial in the Euler-Todd class of X,

for X a general compact algebraic, complex manifold.

(4) In the fourties and fifties (3) was reformulated as a statement about Chern classes–no proof before
Hirzebruch.

(5) September 29, 1952: Serre (letter to Kodaira and Spencer) conjectured: If F is a rank r vector bundle
over the compact, complex algebraic manifold, X, then

χ(X,F) = polynomial in the Chern classes of X and those of F .

Serre’s conjecture (5) was proved by Hirzebruch a few months later.

To see this makes sense, we’ll prove

Theorem 3.11 (Riemann-Roch for a compact Riemann Surface and for a line bundle) If X is a compact
Riemann surface and if L is a complex analytic line bundle on X, then there is an integer, deg(L), it is
deg(D) where L ∼= OX(D), where D is a Cartier divisor on X, and

dimC H
0(X,L) − dimC H

0(X,ωX ⊗ LD) = deg(L) + 1 − g

where g = dimH0(X,ωX) = dimH1(X,OX) is the genus of X.

Proof . First, we know X is an algebraic variety (a curve), by Riemann’s theorem (see Homework). From
another Homework (from Fall 2003), X is embeddable in PN

C
, for some N , and by GAGA (yet to come!), L

is an algebraic line bundle. It follows that L = OX(D), for some Cartier divisor, D. Now, if f ∈ Mer(X),
we showed (again, see Homework) that f : X → P1

C
= S2 is a branched covering map and this implies that

#(f−1(∞)) = #(f−1(0)) = degree of the map,

so deg(f) = #(f−1(0))−#(f−1(∞)) = 0. As a consequence, if E ∼ D, then deg(E) = deg(D) and the first
statement is proved. Serre duality says

H0(X,ωX ⊗ LD) ∼= H1(X,L)D.

Thus, the left hand side of the Riemann-Roch formula is just χ(X,OX(D)), where L = OX(D). Observe that
χ(X,OX(D)) is an Euler function in the bundle sense (this is always true of Euler-Poincaré characteristics).
Look at any point , P , on X, we have the exact sequence

0 −→ OX(−P ) −→ OX −→ κP −→ 0,

where κP is the skyscraper sheaf at P , i.e.,

(κP )x =
{

(0) if x �= P
C if x = P .
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If we tensor with OX(D), we get the exact sequence

0 −→ OX(D − P ) −→ OX(D) −→ κP ⊗OX(D) −→ 0.

When we apply cohomology, we get

χ(X,κP ⊗OX(D)) + χ(X,OX(D − P )) = χ(X,OX(D)).

There are three cases.

(a)D = 0. The Riemann-Roch formula is a tautology, by definition of g and the fact thatH0(X,OX) = C.

(b) D > 0. Pick any P appearing in D. Then, deg(D−P ) = deg(D)− 1 and we can use induction. The
base case holds, by (a). Using the induction hypothesis, we get

1 + deg(D − P ) + 1 − g = χ(X,OX(D)),

which says
χ(X,OX(D)) = deg(D) + 1 − g,

proving the induction step when D > 0.

(c) D is arbitrary. In this case, write D = D+ −D−, with D+,D− ≥ 0; then

0 −→ OX −→ OX(D−) −→ κD− −→ 0 is exact

and
deg(κD−) = deg(D−) = χ(X,OX(D−)).

If we tensor the above exact sequence with OX(D), we get

0 −→ OX(D) −→ OX(D +D−) −→ κD− −→ 0 is exact.

When we apply cohomology, we get

χ(X,OX(D)) + deg(D−) = χ(X,OX(D +D−)) = χ(X,OX(D+)).

However, by (b), we have χ(X,OX(D+)) = deg(D+) + 1 − g, so we deduce

χ(X,OX(D)) = deg(D+) − deg(D−) + 1 − g = deg(D) + 1 − g,

which finishes the proof.

We will show:

(a) L possesses a class, c1(L) ∈ H2(X,Z).

(b) IfX is a Riemann surface and [X] ∈ H2(X,Z) = Z is its fundamental class, then deg(L) = c(L)[X] ∈ Z.
Then, the Riemann-Roch formula becomes

χ(X,L) = c1(L)[X] + 1 − g

=
[
c1(L) +

1
2
(2 − 2g)

]
[X]

=
[
c1(L) +

1
2
c1(T

1,0
X )

]
[X].

This is Hirzebruch’s form of the Riemann-Roch theorem for Riemann surfaces and line bundles.

What about vector bundles?
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Theorem 3.12 (Atiyah-Serre on vector bundles) Let X be either a compact, complex C∞-manifold or an
algebraic variety. If E is a rank r vector bundle on X, of class C∞ in case X is just C∞, algebraic if X is
algebraic, in the latter case assume E is generated by its global sections (that is, the map, Γalg(X,OX(E)) −→
Ex, given by σ �→ σ(x), is surjective for all x), then, there is a trivial bundle of rank r−d (where d = dimC X)
denoted Ir−d, and a bundle exact sequence

0 −→ Ir−d −→ E −→ E′′ −→ 0

and the rank of the bundle E′′ is at most d.

Proof . Observe that if r < d, there is nothing to prove and rk(E′′) = rk(E) and also if r = d take (0) for
the left hand side. So, we may assume r > d. In the C∞-case, we always have E generated by its global
C∞-sections (partition of unity argument).

Pick x, note dimEx = r, so there is a finite dimensional subspace of Γ(X,OX(E)) surjecting onto Ex.
By continuity (or algebraicity), this holds C-near (resp. Z-near) x. Cover by these opens and so

(a) In the C∞-case, finitely many of these opens cover X (recall, X is compact).

(b) In the algebraic case, again, finitely many of these opens cover X, as X is quasi-compact in the
Z-topology.

Therefore, there exists a finite dimensional space, W ⊆ Γ(X,OX(E)), and the map W −→ Ex given by
σ �→ σ(x) is surjective for all x ∈ X. Let

ker(x) = Ker (W −→ Ex).

Consider the projective space P(ker(x)) ↪→ P = P(W ). Observe that dim ker(x) = dimW − r is independent
of x. Now, look at

⋃
x∈X P(ker(x)) and let Z be its Z-closure. We have

dimZ = dimX + dimW − r − 1 = dimW + d− r − 1,

so, codim(Z ↪→ P) = r− d. Thus, there is some projective subspace, T , of P with dimT = r− d− 1, so that

T ∩ Z = ∅.

Then, T = P(S), for some subspace, S, of W (dimS = r − d). Look at

X
∏

S = X
∏

Cr−d = Ir−d.

Send Ir−d to E via (x, s) �→ s(x) ∈ E. As T ∩Z = ∅, the value s(x) is never zero. Therefore, for any x ∈ X,
Im(Ir−d ↪→ E) has full rank; set E′′ = E/Im((Ir−d ↪→ E) = a vector bundle of rank d, then

0 −→ Ir−d −→ E −→ E′′ −→ 0 is exact

as a bundle sequence.

Remarks:

(a) If 0 −→ E′ −→ E −→ E′′ −→ 0 is bundle exact, then

c1(E) = c1(E′) + c1(E′′).

(b) If E is the trivial bundle, Ir, then cj(E) = 0, for j = 1, . . . , r.

(c) If rk(E) = r, then c1(E) = c1(
∧r

E).
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In view of (a)–(c), Atiyah-Serre can be reformulated as

c1(E) = c1

(rkE∧
E
)

= c1(E′′) = c1

(rkE′′∧
E′′
)
.

We now use the Atiyah-Serre theorem to prove a version of Riemann-Roch first shown by Weil.

Theorem 3.13 (Riemann-Roch on a Riemann surface for a vector bundle) If X is a compact Riemann
surface and E is a complex analytic rank r vector bundle on X, then

dimCH
0(X,OX(E)) − dimCH

1(X,ωX ⊗OX(E)D) = χ(X,OX) = c1(E) + rk(E)(1 − g).

Proof . The first equality is just Serre Duality. As before, by Riemann’s theorem X is projective algebraic
and by GAGA, E is an algebraic vector bundle. Now, as X ↪→ PN , it turns out (Serre) that for δ >> 0, the
“twisted bundle”, E ⊗ OX(δ) (= E ⊗ O⊗δ

X ) is generated by its global holomorphic sections. We can apply
Atiyah-Serre to E ⊗OX(δ). We get

0 −→ Ir−1 −→ E ⊗OX(δ) −→ E′′ −→ 0 is exact,

where rk(E′′) = 1. If we twist with OX(−δ), we get the exact sequence

0 −→
∐
r−1

OX(−δ) −→ E −→ E′′(−δ) −→ 0.

(Here, E′′(−δ) = E′′ ⊗ OX(−δ).) Now, use induction on r. The case r = 1 is ordinary Riemann-Roch for
line bundles. Assume the induction hypothesis for r − 1. As χ is an Euler function, we have

χ(X,OX(E)) = χ(X,E′′(−δ)) + χ
(∐
r−1

OX(−δ)
)
.

The first term on the right hand side is

c1(E′′(−δ)) + 1 − g,

by ordinary Riemann-Roch and the second term on the right hand side is

c1

(∐
r−1

OX(−δ)
)

+ (r − 1)(1 − g).

by the induction hypothesis. We deduce that

χ(X,OX(E)) = c1(E′′(−δ)) + c1

(∐
r−1

OX(−δ)
)

+ r(1 − g).

But, we know that
c1(E) = c1(E′′(−δ)) + c1

(∐
r−1

OX(−δ)
)
,

so we conclude that
χ(X,OX(E)) = c1(E) + r(1 − g),

establishing the induction hypothesis and the theorem.

Remark: We can write the above as

χ(X,OX(E)) = c1(E) +
rk(E)

2
c1(T

1,0
X ),
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which is Hirzebruch’s form of Riemann-Roch.

We will need later some properties of χ(X,OX) and pg(X). Recall that pg(X) = dimC H
n(X,OX) =

dimC H
0(X,ΩnX), where ΩlX =

∧l
T 1,0
X . (The vector spaces H0(X,ΩlX) were what the Italian geometers (in

fact, all geometers) of the nineteenth century understood.)

Proposition 3.14 The functions χ(X,OX) and pg(X) are multiplicative on compact, Kähler manifolds,
i.e.,

χ
(
X
∏

Y,OX
Q
Y

)
= χ(X,OX)χ(Y,OY )

pg

(
X
∏

Y
)

= pg(X)pg(Y ).

Proof . Remember that
dimC H

l(X,OX) = dimC H
0(X,ΩlX) = h0,l = hl,0.

Then,

χ(X,OX) =
n∑
j=0

(−1)jdimC H
0(X,ΩjX) =

n∑
j=0

(−1)jhj,0.

Also recall the Künneth formula∐
p+p′=a
q+q′=b

Hq(X,ΩpX) ⊗Hq′(X,Ωp
′
X) ∼= Hb

(
X
∏

Y,ΩaX Q
Y

)
.

Set b = 0, then q = q′ = 0 and we get∑
p+p′=a

hp,0(X)hp
′,0(Y ) = ha,0

(
X
∏

Y
)
.

Then,

χ(X,OX)χ(Y,OY ) =

(
m∑
r=0

(−1)rhr,0(X)

)(
n∑
s=0

(−1)shs,0(Y )

)

=
m+n∑
r,s=0

(−1)r+shr,0(X)hs,0(Y )

=
m+n∑
k=0

(−1)k
∑
r+s=k

hr,0(X)hs,0(Y )

=
m+n∑
k=0

(−1)khk(X
∏

Y ) = χ
(
X
∏

Y,OX
Q
Y

)
.

The second statement is obvious from Künneth.

Next, we introduce Hirzebruch’s axiomatic approach.

Let E be a complex vector bundle on X, where X is one of our spaces (admissible). It will turn out that
E is a unitary bundle (a U(q)-bundle, where q = rk(E)).

Chern classes are cohomology classes, cl(E), satisfying the following axioms:
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Axiom (I). (Existence and Chern polynomial). If E is a rank q unitary bundle over X and X is
admissible, then there exist cohomology classes, cl(E) ∈ H2l(X,Z), the Chern classes of E and we set

c(E)(t) =
∞∑
l=0

cl(E)tl ∈ H∗(X,Z)[[t]],

with c0(E) = 1.

As dimC X = d <∞, we get cl(E) = 0 for l > d, so C(E)(t) is in fact a polynomial in H∗(X,Z)[t] called
the Chern polynomial of E where deg(t) = 2.

Say π : Y → X and E is a U(q)-bundle over X, then we have two maps

H∗(X,Z) π∗
−→ H∗(Y,Z) and H1(X,U(q)) π∗

−→ H1(Y,U(q)).

Axiom (II). (Naturality). For everyE, a U(q)-bundle onX and map, π : Y → X, (withX,Y admissible),
we have

c(π∗E)(t) = π∗(c(E))(t),

as elements of H∗(Y,Z)[[t]].

Axiom (III). (Whitney coproduct axiom). If E, a U(q)-bundle is a coproduct (in the C or C∞-sense),

E =
rk(E)∐
j=1

Ej

of U(1)-bundles, then

c(E)(t) =
rk(E)∏
j=1

c(Ej)(t).

Axiom (IV). (Normalization). IfX = Pn
C

and OX(1) is the U(1)-bundle corresponding to the hyperplane
divisor, H, on Pn

C
, then

c(OX(1))(t) = 1 +Ht,

where H is considered in H2(X,Z).

Remark: If i : Pn−1
C

↪→ Pn
C
, then

i∗OPn(1) = OPn−1(1)

and i∗(H) in H2(Pn−1
C

,Z) is H
P

n−1
C

. By Axiom (II) and Axiom (IV)

i∗(1 +HPn
C
t) = i∗(c(OPn)(t)) = c(i∗(OPn)(t)) = 1 +H

P
n−1
C

.

Therefore, we can use any n to normalize.

Some Remarks on bundles. First, on Pn = Pn
C
: Geometric models of OPn(±1).

Consider the map
Cn+1 − {0} −→ Pn.

If we blow up 0 in Cn+1, we get B0(Cn+1) as follows: In Cn+1
∏

Pn, look at the subvariety given by

{〈〈z〉; (ξ)〉 | ziξj = zjξi, 0 ≤ i, j ≤ n}.
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By definition, this is B0(Cn+1), an algebraic variety over C. We have the two projections

B0(Cn+1)
pr1

������������
pr2

		���������

Cn+1 Pn.

Look at the fibre, pr−1
1 (〈z〉) over z ∈ Cn+1. There are two cases:

(a) 〈z〉 = 0, in which case, pr−1
1 (〈z〉) = Pn.

(b) 〈z〉 �= 0, so, there is some j with zj �== 0. We get ξi = zi

zj
ξj , for all i, which implies:

(α) ξj �= 0.

(β) All ξi are determined by ξj .

(γ)
ξi
ξj

=
zi
zj

.

This implies

(ξ) =
(
ξ0
ξj

:
ξ1
ξj

: · · · : 1 : · · · ξn
ξj

)
=
(
z0
zj

:
z1
zj

: · · · : 1 : · · · zn
zj

)
.

Therefore, pr−1
1 (〈z〉) = 〈〈z〉; (z)〉, a single point.

Let us now look ar pr−1
2 (ξ), for (ξ) ∈ Pn. Since (ξ) ∈ Pn, there is some j such that ξj �= 0. A point

〈〈z〉; (ξ)〉 above (ξ) is given by all 〈z0 : z1 : · · · : zn〉 so that

zi =
ξi
ξj
zj .

Let zj = t, then the fibre above ξ is the complex line

z0 =
ξ0
ξj
t, z1 =

ξ1
ξj
t, · · · , zj = t, · · · , zn =

ξn
ξj
t.

We get a line family over Pn. Thus, pr2 : B0(Cn+1) → Pn is a line family.

(A) What kinds of maps, σ : Pn → B0(Cn+1), exist with σ holomorphic and pr2 ◦ σ = id?

If σ exists, then pr1 ◦ σ : Pn → Cn+1 is holomorphic; this implies that pr1 ◦ σ is a constant map. But,
σ(ξ) belongs to a line through (ξ) = (ξ0 : · · · : ξn), for all (ξ), yet pr1 ◦ σ = const, so this point must lie on
all line. This can only happen if σ(ξ) = 0 in the line through ξ.

(B) I claim B0(Cn+1) is locally trivial, i.e., a line bundle. If so, (A) says B0(Cn+1) has no global
holomorphic sections and we will know that B0(Cn+1) = OPn(−q), for some q > 0.

To show that B0(Cn+1) is locally trivial over Pn, consider the usual cover, U0, . . . , Un, of Pn (recall,
Uj = {(ξ) ∈ Pn | ξj �= 0}). If v ∈ B0(Cn+1) � Uj , then v = 〈〈z〉; (x)〉, with ξj �= 0. Define ϕj as the map

v �→ 〈(ξ); zj〉 ∈ Uj
∏

C

and the backwards map

〈(ξ); t〉 ∈ Uj
∏

C �→ 〈〈z〉; (ξ)〉, where zi =
ξi
ξj
t, i = 0, . . . , n.
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The reader should check that the point of Cn+1
∏

Pn so constructed is in B0(Cn+1) and that the maps are
inverses of one another.

We can make a section, σj , of B0(Cn+1) � Uj , via

σ((ξ)) =
〈〈

ξ0
ξj
, . . . ,

ξj−1

ξj
, 1, . . . ,

ξn
ξj

〉
; (ξ)

〉
,

and we see that ϕ(σ((ξ))) = 〈((ξ); 1〉 ∈ Uj
∏

C, which shows that σ is a holomorphic section which is never
zero. The transition function, gji , renders the diagram

B0 � Ui
ϕi �� Ui

∏
C

gj
i

��

B0 � Ui ∩ Uj
��

��

� �

��
B0 � Uj

ϕj �� Uj
∏

C

commutative. It follows that

ϕj(v) = gji (ϕi(v) = gji (〈(ξ); zi〉) = 〈(ξ); zj〉

and we conclude that gji (zi) = zj , which means that gji is multiplication by zj/zi = ξj/ξi.

We now make another bundle on Pn, which will turn out to be OPn(1). Embed Pn in Pn+1 by viewing
Pn as the hyperplane defined by zn+1 = 0 and let P = (0: · · · : : 1) ∈ Pn+1. Clearly, P /∈ Pn. We have the
projection, π : (Pn+1 − {P}) → Pn, from P onto Pr, where

π(z0 : · · · : zn : zn+1) = (z0 : · · · : zn).

We get a line family over Pn, where the fibre over Q ∈ Pn is just the line lPQ (since P /∈ Pn, this line is
always well defined). The parametric equations of this line are

(u : t) �→ (uz0 : · · · : uzn : t),

where (u : t) ∈ P1 and Q = (z0 : · · · : zn). When t = 0, we get Q and hen u = 0, we get P . Next, we prove
that Pn+1 − {P} is locally trivial. Make a section, σj , of π over Uj ⊆ Pn by setting

σj((ξ)) = (ξ : ξj).

This points corresponds to the point (1 : ξj) on lPQ and ξj �= 0, so it is well-defined. As Q is the point of
lPQ for which t = 0, we have σj((ξ)) �= Q. We make an isomorphism, ψj : (Pn+1 − {P}) � Uj → Uj

∏
C, via

(z0 : · · · : zj−1 : zj : zj+1 : · · · : zn+1) �→
(
z0 : · · · : zn :

zn+1

zj

)
.

Observe that
sj((ξ)) = ψj ◦ σj((ξ)) = ψj(ξ : ξj) = (ξ : 1) ∈ Uj

∏
C.

For any (z0 : · · · : zn+1) ∈ (Pn+1 − {P}) � Ui ∩ Uj , we have zi �= 0 and zj �= 0; moreover

ψi(z0 : · · · : zn+1) =
(
z0 : · · · : zn :

zn+1

zi

)
and ψj(z0 : · · · : zn+1) =

(
z0 : · · · : zn :

zn+1

zj

)
.
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This means that the transition function, hji , on Ui ∩Uj , is multiplication by zi/zj . These are the inverses of
the transition functions of our previous bundle, B0(Cn+1), which means that the bundle Pn+1 − {P} is the
dual bundle of B0(Cn+1). We will use geometry to show that the bundle Pn+1 − {P} is in fact OPn(1).

Look at the hyperplanes, H, of Pn+1. They are given by linear forms,

H :
n+1∑
j=0

ajZj = 0.

The hyperplanes through P form a Pn, since P ∈ H iff an+1 = 0. The rest of the hyperplanes are in the
affine space, Cn+1 = Pn+1 − Pn. Indeed such hyperplanes, H(α), are given by

H(α) :
n∑
j=0

αjZj + Zn+1 = 0, (α0, . . . , an) ∈ Cn+1.

Given any hyperplane, H(α) (with α ∈ Cn+1), find the intersection, σ(α)(Q), of the line lPQ with H(α). Note
that σ(α) is a global section of Pn+1 − {P}. The affine line obtained from lPQ by deleting P is given by

τ �→ (z0 : · · · : zn : τ),

where Q = (z0 : · · · : zn). This lines cuts H(α) iff

n∑
j=0

αjzj + τ = 0,

so we deduce τ = −
∑n
j=0 αjzj and

σ(α)(z0 : · · · : zn) =
(
z0 : · · · : zn : −

n∑
j=0

αjzj

)
,

which means that σ(α) is a holomorphic section. Now, consider a holomorphic section, σ : Pn → (Pn+1 −
{P}) ↪→ Pn+1, of π : (Pn+1 − {P}) → Pn. As σ is an algebraic map and Pr is proper, σ(Pn) is Z-closed,
irreducible and has dimension n in Pn+1. Therefore, σ(Pn) is a hypersurface. But, our map factors through
Pn+1 − {P}, so σ(Pn) ⊆ Pn+1 − {P}. This hypersurface has some degree, d, but all the lines lPQ cut σ(Pn)
in a single point, which implies that d = 1, i.e., σ(Pn) is a hyperplane not through P . Putting all these facts
together, we have shown that space of global sections Γ(Pn,Pn+1−{P}) is in one-to-one correspondence with
the hyperplanes H(α), i.e., the linear forms

∑n
j=0 αjzj (a Cn+1). Therefore, we conclude that Pn+1 −{P} is

OPn(1). Since B0(Cn+1) is the dual of Pn+1 − {P}, we also conclude that B0(Cn+1) = OPn(−1).

In order to prove that Chern classes exist, we need to know more about bundles. The reader may wish to
consult Atiyah [2], Milnor and Stasheff [11], Hirsh [7], May [10] or Morita [12] for a more detailed treatment
of bundles.

Recall that if G is a group, then H1(X,G) classifies the G-torsors over X, e.g., (in our case) the fibre
bundles, fibre F , over X (your favorite topology) with Aut(F ) = G. When F = G and G acts by left transla-
tion to make it Aut(F ), the fibre bundle is called a principal bundle. Look at ϕ : G′ → G, a homomorphism
of groups. Now, we know that we get a map

H1(X,G′) −→ H1(X,G).

We would like to see this geometrically and we may take as representations principal bundles. Say
E′ ∈ H1(X,G′) a principal bundle with fibre G′ and group G′. Consider G

∏
E′ and make an equivalence

relation ∼ via: For all σ ∈ G′, all g ∈ G, all e′ ∈ E′

(gϕ(σ), e′) ∼ (g, e′σ−1).
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Set E′
G′−→G = ϕ∗(E′) = G

∏
E′/ ∼.

Let us check that the fibre over x ∈ X is G. Since E′ is locally trivial, we have E′ � U ∼= U
∏
G′, for

some small enough open, U . The action of G′ is such that: For σ ∈ G′ and (u, τ) ∈ U
∏
G′,

σ(u, τ) = (u, στ).

Over U , we have (G
∏
E′) � U = G

∏
U
∏
G′, so our ϕ∗(E′) is still locally trivial and the action is on the

left on G, its fibre. It follows that
E′ �→ ϕ∗(E′)

is our map H1(X,G′) −→ H1(X,G).

Next, say θ : Y → X is a map (of spaces), then we get a map

H1(X,G) θ∗−→ H1(Y,G).

Given E ∈ H1(X,G), we have the commutative diagram

E
∏
X

Y

��

�� E

πE

��
Y

θ �� X,

so we get a space, θ∗(E) = E
∏
X

Y , over Y . Over a “small” open, U , of X, we have E � U ∼= G
∏
U and

θ∗(E) � θ−1(U) ∼= G
∏

θ−1(U),

and this gives
H1(X,G) θ∗−→ H(Y,G).

Say G is a (Lie) group and we have a linear representation, ϕ : G → GL(r,C). By the above, we get a
map

E �→ EG−→GL(r,C) = ϕ∗(E)

from principal G-bundles over X to principal GL(r,C)-bundles over X. But if V is a fixed vector space of
dimension r, the construction above gives a rank r vector bundle GL(r,C)

∏
V/ ∼. If V is a rank r vector

bundle over C, then look at the sheaf, Isom(Ir,V), whose fibre at x is the space Isom(Cr,Vx). This sheaf
defines a GL(r,C)-bundle.

Say G′ ⊆ G is a closed subgroup of the topological group, G.

� If G is a real Lie group and G′ is a closed subgroup, then G′ is also a real Lie group (E. Cartan). But,
if G is a complex Lie group and G′ is a closed subgroup, then G′ need not be a complex Lie group. For

example, look at G = C∗ = GL(1,C) and G′ = U(1) = {z ∈ C | |z| = 1}.

Convention: If G is a complex Lie group, when we say G′ is a closed subgroup we mean a complex Lie
group, closed in G.

Say G is a topological group and G′ is a closed subgroup of G. Look at the space G/G′ and at the
continuous map, π : G → G/G′. We say π has a local section iff there is some some V ⊆ G/G′ with
1G ·G′ ∈ V and a continuous map

s : V → G, such that π ◦ s = idV .

When we untwist this definition we find that it means s(v) ∈ v, where v is viewed as a coset. Generally, one
must assume the existence of a local section–this is not true in general.



184 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

Theorem 3.15 If G and G′ are topological groups and G′ is a closed subgroup of G, assume a local section
exists. Then

(1) The map G −→ G/G′ makes G a continuous principal bundle with fibre and group G′ and base G/G′.

(2) If G is a real Lie group and G′ is a closed subgroup, then a local smooth section always exists and G
is a smooth principal bundle over G/G′, with fibre (and group) G′.

(3) If G is a complex Lie group and G′ is a closed complex Lie subgroup, then a complex analytic local
section always exists and makes G is a complex holomorphic principal bundle over G/G′, with fibre
(and group) G′.

Proof . The proof of (1) is deferred to the next theorem.

(2) & (3). Use local coordinates, choosing coordinates trasnverse to G′ after choosing coordinates in G′

near 1G′ . The rest is (DX)– because we get a local section and we repeat the proof for (1) to prove the
bundle assertion.

Now, say E is a fibre bundle, with group G over X (and fibre F ) and say G′ is a closed subgroup of G.
Then, we have a new bundle, E/G′. The bundle E/G′ is obtrained from E by identifying in each fibre the
elements x and xσ, where σ ∈ G′. Then, the group of E/G′ is still G and the fibre is F/G′. In particular,
if E is principal, then the group of E/G′ is G and its fibre is G/G′. We have a map E −→ E/G′ and a
diagram

E

πE


�

��
��

��
�

�� E/G′

����
��

��
��

X

Theorem 3.16 If G −→ G/G′ possesses a local section, then for a principal G-bundle E over X

(1) E/G′ is a fibre bundle over X, with fibre G/G′.

(2) E −→ E/G′ is in a natural way a principal bundle (over E/G′) with group and fibre G′. If
ξ ∈ H1(X,G) represents E, write ξG′ for the element of H1(E/G′, G′) whose bundle is just
E −→ E/G′.

(3) From the diagram of bundles

E

πE


�

��
��

��
�

πE→E/G′
�� E/G′

πE/G′
����

��
��

��

X

we get the commutative diagram

H1(X,G′)

π∗
E/G′

��

�� H1(X,G) 	 ξ

π∗
E/G′

��
ξG′ ∈ H1(E/G′, G′)

i∗ �� H1(E/G′, G)

(Here i : G′ ↪→ G is the inclusion map) and i∗(ξG′) = π∗
E/G′(ξ), that is, when E is pulled back to the

new base E/G′, it arises from a bundle whose structure group is G′.
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Figure 3.1: The fibre bundle E over E/G′

Proof . (1) is already proved (there is no need for our hypothesis on local sections).

(2) Pick a cover {Uα}, of C where E � Uα is trivial so that

E � Uα ∼= Uα
∏

G.

Now, consider G −→ G/G′ and the local section s : V (⊆ G/G′) −→ G (with 1G/G′ ∈ V ). We know s(v) ∈ v
(as a coset) and look at π−1(V ). If x ∈ π−1(V ), set

θ(x) = (x−1s(π(x)), π(x)) ∈ G′∏V.

This gives an isomorphism (in the appropriate category), π−1(V ) ∼= G′∏V . If we translate V around G/G′,
we get G as a fibre bundle over G/G′ and group G′ giving (1) of the previous theorem. But, Uα

∏
V and

the Uα
∏

(translate of V ) give a cover of E/G′ and we have

E � Uα ∼= Uα
∏

π−1(V ) ∼= Uα
∏

V
∏

G′,

giving E as fibre bundle over E/G′ with group and fibre G′. Here, the diagrams are obvious and the picture
of Figure 3.1 finishes the proof. Both sides of the last formula are “push into the board” (by definition for
i∗ and by elementary computation in π∗

E/G′(ξ)).

Definition 3.2 If E is a bundle over X with group G and if G′ is a closed subgroup of G so that the
cohomology representative of G, say ξ actually arises as i∗(η) for some η ∈ H1(X,G′), then E can have its
structure group reduced to G′.

If we restate (3) of the previous theorem in this language, we get

Corollary 3.17 Every bundle E over X with group G when pulled back to E/G′ has its structure group
reduced to G′.

Theorem 3.18 Let E be a bundle over X, with group G and let G′ be a closed subgroup of G. Then, E as
a bundle over X can have its structure group reduced to G′ iff the bundle E/G′ admits a global section over
X. In this case if s : X → E/G′ is the global section of E/G′, then s∗(E) where E is considered as bundle
over E/G′ with group G′ is the element η ∈ H1(X,G′) which gives the structure group reduction. In terms
of cocycles, E admits a reduction to group G′ iff there exists an open cover {Uα} of X so that the transition
functions

gβα : Uα ∩ Uβ → G

map Uα∩Uβ into the subgroup G′. The section of E/G′ is given in the cover by maps sα : Uα → Uα
∏
G/G′,

where sα(u) = (u, 1G/G′). The cocycle gβα represents s∗(E) when its values are considered to be in G′ and
represents E when its values are considered to be in G.

Proof . Consider the picture of Figure 3.1 above. Suppose E can have structure group reduced to G′, then
there is a principal bundle, F , for G′ and its transition functions give E too. This F can be embedded in
E, the fibres are G′. Apply πE−→E/G′ to F , we get get a space over X whose points lie in the bundle E/G′,
one point for each point of X. Thus, the map s : X −→ point of πE−→E/G′(F ) over x, is our section of E/G′

over X.

Conversely, given a section, s : X → E/G′, we have E as principal bundle over E/G′, with fibre and group
G′. So, s∗(E) gives a bundle, F , principal for G′, lying over X. Note, F is the bundle given by s∗(ξG′),
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where ξ represents E. This shows the F constructed reduces to the group G′. The rest (with cocycles) is
standard.

Look at Cq and GL(q,C). Write Cqr for the span of e1, . . . , er (the first r canonical basis vectors) = Ker πr,
where πr is projection on the last q − r basis vectors, er+1, . . . , eq. Let Grass(r, q; C) denote the complex
Grassmannian of r-dimensional linear subspaces in Cq. There is a natural action of GL(q,C) on Grass(r, q; C)
and it is clearly transitive. Let us look for the stabilizer of Cqr. It is the subgroup, GL(r, q−r; C), of GL(q,C),
consisting of all matrices of the form (

A B
0 C

)
where A is r × r. It follows that, as a homogeneous space,

GL(q,C)/GL(r, q − r; C) ∼= Grass(r, q; C).

If we restrict the action to U(q), the above matrices must be of the form(
A 0
0 C

)
where A ∈ U(r) and C ∈ U(q − r), so

U(q)/U(r)
∏

U(q − r) ∼= Grass(r, q; C).

Remark: Note, in the real case we obtain

GL(q,R)/GL(r, q − r; R) ∼= O(q)/O(r)
∏

O(q − r) ∼= Grass(r, q; R).

If one looks at oriented planes, then this becomes

GL+(q,R)/GL+(r, q − r; R) ∼= SO(q)/SO(r)
∏

SO(q − r) ∼= Grass+(r, q; R).

Theorem 3.19 (Theorem A) If X is paracompact, f and g are two maps X −→ Y and E is a bundle over
Y , then when f is homotopic to g and not for holomorphic bundles, we have f∗E ∼= g∗E.

Theorem 3.20 (Theorem B) Suppose X is paracompact and E is a bundle over X whose fibre is a cell. If
Z is any closed subset of X (even empty) then any section (continuous, smooth, but not holomorphic) of E
over Z admits an extension to a global section (continuous or smooth) of E. That is, the sheaf OX(E) is a
soft sheaf. (Note this holds when E is a vector bundle and it is Tietze’s Extension Theorem).

Theorem 3.21 (Theorem C) Say G′ is a closed subgroup of G and X is paracompact. If G/G′ is a cell,
then the natural map

H1
top(X,G′) −→ H1

top(X,G) or H1
diff(X,G′) −→ H1

diff(X,G)

is a bijection. That is, every principal G-bundle can have its structure group reduced to G′ and comes from
a unique principal G′-bundle.

Proof . Suppose E is a principal G-bundle and look at E/G′ over X. The fibre of E/G′ over X is G/G′, a
cell. Over a small closed set, say Z, the bundle E/G′ has a section; so, by Theorem B our section extends
to a global section (G/G′ is a cell). Then, by Theorem 3.18, the bundle E comes from H1(X,G′) and
surjectivity is proved.
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Now, say E and F are principal G′-bundles and that they become isomorphic as G-bundles. Take
a common covering {Uα}, where E and F are trivialized. Then gβα(E), gβα(F ), their transition functions
become cohomologous in the G-bundle theory. This means that there exist maps, hα : Uα → G so that

gβα(F ) = h−1
β gβα(E)h−1

α .

Consider X
∏
I where I = [0, 1] and cover X

∏
I by the opens

U0
α = Uα

∏
[0, 1) and U1

α = Uα
∏

(0, 1].

Make a principal bundle on X
∏
I using the following transition functions:

gβ 0
α 0 : U0

α ∩ U0
β −→ G

via gβ 0
α 0(x, t) = gβα(E)(x);

gβ 1
α 1 : U1

α ∩ U1
β −→ G

via gβ 1
α 1(x, t) = gβα(F )(x);

gβ 1
α 0 : U0

α ∩ U1
β −→ G

via gβ 1
α 0(x, t) = hβ(x)gβα(F )(x) = gβα(E)(x)hα(x). Call this new bundle (E,F ) and let

Z = X
∏

{0} ∪X
∏

{1} ↪→ X
∏

I

a closed subset. Note that (E,F ) over Z is a G′-bundle. Thus, Theorem 3.18 says (E,F )/G′ has a global
section over Z. But, its fibre is G/G′, a cell. Therefore, by Theorem B, the bundle (E,F )/G′ has a global

section over all of X. By Theorem 3.18, again, the bundle (E,F ) comes from a G′-bundle, (̃E,F ). Write
f0 : X → X

∏
I for the function given by

f0(x) = (x, 0)

and f1 : X → X
∏
I for the function given by

f1(x) = (x, 1).

If (̃E,F ) � X
∏
{0} = (̃E,F )0, then f∗0 ((̃E,F )0) = E, i.e., f∗0 (̃E,F ) = E and similarly, f∗1 (̃E,F ) = F ; and

f0 is homotopic to f1. By Theorem A, we get E ∼= F as G′-bundles.

There is a theorem of Steenrod stating: If X is a differentiable manifold and E is a fibre bundle over X,
then every continuous section of E may be approximated (with arbitrary ε) on compact subsets of X by a
smooth section. When E is a vector bundle, this is easy to prove by an argument involving a partition of
unity and approximation techniques using convolution. This proves

Theorem 3.22 (Theorem D) If X is a differentiable manifold and G is a Lie group, then the map

H1
diff(X,G) −→ H1

cont(X,G)

is a bijection.

We get the

Corollary 3.23 If X is a differentiable manifold, then in the diagram below, for the following pairs (G′, G)

(α) G′ = U(q), G = GL(q,C).

(β) G′ = U(r)
∏

U(q − r), G = GL(r, q − r; C) or G = GL(r,C)
∏

GL(q − r,C).
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(γ) G′ = Tq = S1 × · · · × S1 (the real q-torus), G = ∆(q,C) or G = Gm

∏
· · ·
∏

Gm = C∗∏ · · ·
∏

C∗

(= GL(1,C)
∏

· · ·
∏

GL(1,C)) (the complex q-torus)

all the maps are bijective
H1

cont(X,G
′) �� H1

cont(X,G)

H1
diff(X,G′)

��

�� H1
diff(X,G).

��

Here,

∆(q,C) =
q⋂
r=1

GL(r, q − r; C)

the upper triangular matrices.

Proof . Observe that G/G′ is a cell in all cases and that ∆(q,C) ∩ U(q) = Tq.

Suppose ξ corresponds to a GL(q)-bundle which has group reduced to GL(r, q − r; C). Then, the maps

M =
(
A B
0 C

)
�→ A and M =

(
A B
0 C

)
�→ C

give surjections GL(r, q − r; C) −→ GL(r,C) and GL(r, q − r; C) −→ GL(q − r,C), so ξ comes from ξ̃ and
ξ̃ gives rise to ξ′ and ξ′′ which are GL(r,C) and GL(q − r,C)-bundles, respectively. In this case one says:
the GL(q,C)-bundle ξ admits a reduction to a (rank r) subbundle ξ′ and a (rank q − r) quotient bundle ξ′′.
When we use ∆(q,C) and GL(q,C) then we get q maps, ϕl : ∆(q,C) → C∗, namely

ϕj :


a1 ∗ · · · ∗ ∗
0 a2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · aq−1 ∗
0 0 · · · 0 aq

 �→ al.

So, if ξ̃ is our ∆(q,C)-bundle, we get q line bundles ξ1, . . . , ξq from ξ̃ and one says ξ has ξ1, . . . , ξq as diagonal
line bundles.

Set

Fq = GL(q; C)/∆(q; C) = GL(q; C)/
q⋂
r=1

GL(r, q − r; C),

the flag manifold , i.e., the set of all flags

{0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vq = V | dim(Vj) = j}.

Since Fq = GL(q; C)/
⋂q
r=1 GL(r, q − r; C), we see that Fq is embedded in

∏1
r=1 Grass(r, q; C). Thus, as the

above is a closed immersion, Fq is an algebraic variety, even a projective variety (by Segre). If V is a rank q
vector bundle over X, say E(V ) (∼= Isom(Cq, V )) is the associated principal bundle, then write

[r]V = E(V )/GL(r, q − r; C),

a bundle over X whose fibres are Grass(r, q; C) and

[∆]V = E(V )/∆(q; C)

a bundle over X whose fibres are the F(q)’s. We have maps ρr : [r]V → X and ρ∆ : [∆]V → X. Now we
apply our theorems to the pairs
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(a) G′ = U(q), G = GL(q,C).

(b) G′ = U(r)
∏

U(q − r) and G = GL(r, q − r,C) or G = GL(r,C)
∏

GL(q − r,C).

(c) G′ = Tq and G = U(q) or G = C∗∏ · · ·
∏

C∗ = (Gm)q.

(d) G′ = ∆(q,C) and G = GL(q,C)

and then we get, (for example) every rank r vector bundle over X is “actually” a rank r unitary bundle over
X and we also have

Theorem 3.24 If X is paracompact or a differentiable manifold or a complex analytic manifold or an
algebraic variety and V is a rank q vector bundle of the appropriate category on X, then

(1) V reduces to a rank r subbundle, V ′, and rank q− r quotient bundle, V ′′, over X iff [r]V possesses an
appropriate global section over X.

(2) V reduces to diagonal bundles over X iff [∆]V possesses an appropriate global section over X.

(3) For the maps ρr in case (1), resp. ρ∆ in case (2), the bundle ρ∗rV reduces to a rank r subbundle and
rank q − r quotient bundle over [r]V (resp. reduces to diagonal bundles over [∆]V ).

Remark: The sub, quotient, diagonal bundles are continuous, differentiable, analytic, algebraic, respec-
tively.

Say s : X → [r]V is a global section. For every x ∈ X, we have sx ∈ Grass(r, q;Vx); i.e., s(x) is an
r-plane in Vv and so,

⋃
x∈X s(x) gives an “honest” rank r subbundle or V . It is isomorphic to the subbundle,

V ′, of the reduction. Similarly,
⋃
x∈X Vx/s(x) is an “honest” rank q − r quotient bundle of V ; it is just V ′′.

Hence, we get

Corollary 3.25 If the hypotheses of the previous theorem hold, then

(1) [r]V has a section iff there is an exact sequence

0 −→ V ′ −→ V −→ V ′′ −→ 0

of vector bundles on X.

(2) [∆]V ] has a section iff there exist exact sequences

0 −→ L1 −→ V −→ V ′′
1 −→ 0

0 −→ L2 −→ V ′′
1 −→ V ′′

2 −→ 0
· · · · · · · · · · · · · · · · · ·
0 −→ Lj+1 −→ V ′′

j −→ V ′′
j+1 −→ 0

· · · · · · · · · · · · · · · · · ·
Lq ∼= V ′′

q−1

where the Lj’s are line bundles, in fact, the diagonal bundles.

Theorem 3.26 In the continuous and differentiable categories, when V has an exact sequence as in (1) of
Corollary 3.25 or diagonal bundles as in (2) of Corollary 3.25, then

(1) V ∼= V ′ � V ′′.

(2) V ∼= L1 � · · · � Lq.

� The above is false if we need splitting analytically!
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All we need to prove is (1) as (2) follows by induction. We know V comes from H1(X,GL(r, q−r; C). By
(b) above, V comes fromH1(X,U(r)

∏
U(q−r)) and by (b) again, V comes fromH1(X,GL(r)

∏
GL(q−r)) ∼=

H1(X,GL(r)) �H1(X,GL(q − r)) and we get (1).

Corollary 3.27 (Splitting Principle) Given V , a continuous, differentiable, analytic, algebraic rank q vector
bundle over X, then ρ∗rV is in the continuous or differentiable category a coproduct V = V ′�V ′′ (rk(V ′) = r,
rk(V ′′) = q − r) or ρ∗∆V is V = L1 � · · · � Lq.

Note that [r]V and [∆]V are fibre bundles over X; consequently, there is a relation between Hj(X,Z) and
Hj([r]V,Z) (resp. Hj([∆]V,Z). This is the Borel spectral sequence. Under the condition that (E,X,F,G)
is a fibre space over X (admissible), group G, fibre F , total space E, there is a spectral sequence whose
Ep,q2 -term is

Hp(X,Hq(F,Z))

and whose ending is gr(H•(E,Z)),

Hp(X,Hq(F,Z)) =⇒
p

H•(E,Z).

Borel proves that in our situation: The map

ρ∗ : H•(X,Z) → H•([r]V,Z)

(resp. ρ∗ : H•(X,Z) → H•([∆]V,Z)) is an injection. From the hand-out, we also get the following: Write

BU(q) = lim−→
N

Grass(q,N ; C).

Note,
BU(1) = lim−→

N

PN−1
C

= P∞
C .

Theorem 3.28 If X is admissible (locally compact, σ-compact, finite dimensional) then Vectq(X) (isomor-
phism classes of rank q vector bundles over X) in the continuous or differentiable category is in one-to-one
correspondence with homotopy classes of maps X −→ BU(q). In fact, if X is compact and N ≥ 2dim(X)
then already the homotopy classes of maps X −→ Grass(q,N ; C) classify rank q vector bundles on X (dif-
ferentiably). Moreover, on BU(q), there exists a bundle, the “universal quotient”, Wq, it has rank q over
BU(q) (in fact, it is algebraic) so that the map is

f ∈ [X −→ BU(q)] �→ f∗Wq.

We are now in the position where we can prove the uniqueness of Chern classes.

Uniqueness of Chern Classes:

Assume existence (Axiom (I)) and good behavior (Axioms (II)–(IV)). First, take a line bundle, L, on X.
By the classification theorem there is a map

f : X → BU(1)

so that f∗(H) = L (here, H is the universal quotient line bundle). By Axiom (II),

f∗(c(H)(t)) = c(f∗(H))(t) = c(L)(t)

and the left hand side is f∗(1 +Ht), by Axiom (IV) (viewing H as a cohomology class). It follows that the
left hand side is 1 + f∗(H)t and so,

c1(L) = f∗(H), and cj(L) = 0, for all j ≥ 2.
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This is independent of f as homotopic maps agree cohomologically.

Now, let V be a rank q vector bundle on X and make the bundle [∆]V whose fibre is F(q). Take ρ∗(V ),
where ρ : [∆]V → X. We know

ρ∗V =
q∐
j=1

Lj ,

where the Lj ’s are line bundes and by Axiom (II),

c(ρ∗(V ))(t) =
1∏
j=1

(1 + c1(Lj)(t)).

Now, the left hand side is ρ∗(c(V )(t)), by Axiom (II); then, ρ∗ being an injection implies c(V )(t) is uniquely
determined.

Remark: Look at U(q) ⊇ U(1)
∏

U(q − 1) ⊇ Tq. Then,

U(1)
∏

U(q − 1)/Tq ↪→ U(q)/Tq = F(q)

and the left hand side is U(q − 1)/Tq−1 = F(q − 1). So, we have an injection F(q − 1) ↪→ F(q) over the base
U(q)/U(1)

∏
U(q − 1), which is just Pq−1. Thus, we can view F(q) as a fibre bundle over Pq−1 and the fibre

is F(q − 1).

Take a principal U(q)-bundle, E, over X and make E/Tq, a fibre space whose fibre is F(q). Let E1 be
E/U(1)

∏
U(q − 1), a fibre space whose fibre is Pq−1. Then, we have a map

E/Tq −→ E1,

where the fibre is U(1)
∏

U(q − 1)/Tq = F(q − 1). We get

E/Tq = [∆]E

fibre F(q − 1)
��
E1

fibre Pq−1

��
X.

If we repeat this process, we get the tower

E/Tq = [∆]E

fibre P1

��

ρ

��

Eq−1

fibre P2

��
Eq−2

��	
	
	

E1

fibre Pq−1

��
X.
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So, to show ρ∗ is injective, all we need to show is the same fact when the fibre i Pn and the Pr-bundle comes
from a vector bundle.

Suggestion: Look in Hartshorne in Chapter III, Section ? on projective fibre bundles and Exercise ??
about

ρ∗(OP(E)(l)) = Sl(OX(E)).

Sup up to tangent bundles and wedges and use Hodge:

H•(X,C) = in term of the holomorphic cohomology of
top∧

T.

We get that ρ∗ is injective on H•(X,C), not H•(X,Z).

Existence of Chern Classes:

Start with L, a line bundle over X. Then, there is a map (continuous, diff.), f : X → PN
C

, for N >> 0
and L = f∗(H). Then, set c1(L) = f∗(H), where H is the cohomology class of the hyperplane bundle in
H2(PN ,Z) and cj(L) = 0 if j ≥ 2. If another map, g, is used, then f∗(H) = L = h∗(L) implies that f and
g are homotopic, so f∗ and g∗ agree on cohomology and c1(L) is independent of f . It is also independent of
N , we we already proved. Clearly, Axiom (II) and Axiom (IV) are built in.

Now, let V be a rank q vector bundle over X. Make [∆]V and let ρ be the map ρ : [∆]V → X. Look at
ρ∗V . We know that

ρ∗V =
q∐
j=1

Lj ,

where the Lj ’s are line bundles. By the above,

cj(Lj)(t) = 1 + c1(Lj)t = 1 + γjt.

Look at the polynomial
q∏
j=1

(1 + γjt) ∈ H•([∆]V,Z)[t].

If we show this polynomial (whose coefficients are the symmetric functions σl(γ1, . . . , γq)) is in the image of
ρ∗ : H•(X,Z)[t] −→ H•([∆]V,Z)[t], then there is a unique polynomial c(V )(t) so that

ρ∗(c(V )(t)) =
q∏
j=1

(1 + γjt).

(Then, cl(V ) = σl(γ1, . . . , γq).) Look at the normalizer of Tq in U(q). Some a belongs to this normalizer iff
aTqa−1 = Tq. As the new diagonal matrix, aθa−1 (where a ∈ Tq has the same characteristic polynomial as
θ, it follows that aθa−1 is just θ, but with its diagonal entries permuted. This gives a map

NU(q)(Tq) −→ Sq.

What is the kernel of this map? We have a ∈ Ker iff aθa−1 = θ, i.e., aθ = θa, for all θ ∈ Tq. This means
(see the 2 × 2 case) a ∈ Tq and thus, we have an injection

NU(q)(Tq)/Tq ↪→ Sq.

The left hand side, by definition, is the Weyl group, W , of U(q). In fact (easy DX), W ∼= Sq.

Look at [∆]V and write a covering of X trivializing [∆]V , call it {Uα}. We have

[∆]V � Uα ∼= Uα
∏

U(q)/Tq.
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Make the element a act on the latter via

a(u, ξTq) = (u, ξTqa−1) = (u, ξa−1Tq).

These patch as the transition functions are left translations. This gives an automorphism of [∆]V , call it ã,
determined by each a ∈W . We get a map

ã∗ : H•([∆]V,−) → H•([∆]V,−).

Now, as a ∈ W acts on Tq by permuting the diagonal elements it acts on H1([∆]V,Tq) by permuting the
diagonal bundles, say Lj , call this action a#. Moreover, ρ∗V comes from a unique element of H1([∆]V,Tq),
which implies that ã acts on ρ∗V by permuting its cofactors. But, ã∗ also acts on H1([∆]V,Tq) and one
should check (by a Čech cohomology argument) that

ã∗ = a#.

Now associate to the Lj ’s their Chern classes, γj , and ã∗(γj) goes over to a#(γj), i.e., permute the
|gammajs’s. Thus, W acts on the Lj and γj by permuting them. Our polynomial∏

j=1

(1 + γjt)

goes to itself via the action of W . But, Borel’s Theorem is that an element of H•([∆]V,Z) lies in the image
of ρ∗ : H•(X,Z) → H•([∆]V,Z) iff W fixes it. So, by the above, our elementary symmetric functions lie in
Im ρ∗; so, Chern classes exist. Furthermore, it is clear that they satisfy Axioms (I), (II), (IV).

Finally, consider Axiom (III). Suppose V splits over X as

V =
q∐
j=1

Lj .

We need to show that c(V )(t) =
∏1
j=1(1 + c1(Lj)t).

As V splits over X, the fibre bundle ρ : [∆]V −→ X has a section; call it s. So, s∗ρ∗ = id and

c(V )(t) = s∗ρ∗(c(V )(t)) = s∗(ρ∗(c(V )(t))).

By Axiom (II), s∗(ρ∗(c(V )(t))) = s∗(c(ρ∗(V ))(t)). Since ρ∗ =
∐q
j=1 ρ

∗Lj and we know that if we set
γj = c1(ρ∗(Lj)), then

ρ∗(c(V )(t)) = c(ρ∗(V )(t)) =
q∏
j=1

(1 + γjt).

But then,

c(V )(t) = s∗
q∏
j=1

(1 + γjt) =
q∏
j=1

(1 + s∗(γj)t). (†)

However, Lj = s∗(ρ∗(Lj)) implies

c1(Lj) = s∗(c1(ρ∗(Lj))) = s∗(γj).

The above plus (†) yields

c(V )(t) =
q∏
j=1

(1 + c1(Lj)t),



194 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

as required.

Eine kleine Vektorraumbündel Theorie:

Say V (rank q) and W (rank q′) have diagonal bundles L1, . . . , Lq and M1, . . . ,Mq′ over X. Then, the
following hold:

(1) V D has LD1 , . . . , L
D as diagonal line bundles;

(2) V �W has L1, . . . , Lq,M1, . . . ,Mq′ as diagonal line bundles;

(3) V ⊗W has Li ⊗Mj (all i, j) as diagonal line bundles;

(4)
∧r

V has Li1 ⊗ · · · ⊗ Lir , where 1 ≤ i1 < · · · < ir ≤ q, as diagonal line bundles;

(4) SrV has Lm1
1 ⊗ · · · ⊗ L

mq
q , where mi ≥ 0 and m1 + · · · +mq = r, as diagonal line bundles.

Application to the Chern Classes.

(0) (Splitting Principle) Given a rank q vector bundle, V , make believe V splits as V =
∐q
j=1 Lj (for some

line bundles, Lj), write γj = c1(Lj), the γj are the Chern roots of V . Then,

c(V )(t) =
q∏
j=1

(1 + γjt).

(1) c(V D)(t) =
∏q
j=1(1 − γjt) when c(V )(t) =

∏q
j=1(1 + γjt). That is, ci(V D) = (−1)ici(V ).

(2) If 0 −→ V ′ −→ V −→ V ′′ −→ 0 is exact, then c(V )(t) = c(V ′)(t)c(V ′′)(t).

(3) If c(V )(t) =
∏q
j=1(1 + γjt) and c(W )(t) =

∏q′

j=1(1 + δjt), then c(V ⊗W )(t) =
∏q,q′

j,k=1(1 + (γj + δk)t).

(4) If c(V )(t) =
∏q
j=1(1 + γjt), then

c
( r∧

V
)
(t) =

∏
1≤i1<···<ir≤q

(1 + (γi1 + · · · + γir )t).

In particular, when r = q, there is just one factor in the polynomial, it has degree 1, it is
1 + (γ1 + · · · + γq)t. By (2). we get

c1

( q∧
V
)
(t) = c1(V ) and cl

( q∧
V
)
(t) = 0 if l ≥ 2.

(5) If c(V )(t) =
∏q
j=1(1 + γjt), then

c(SrV )(t) =
∏
mj≥0

m1+···+mq=r

(1 + (m1γ1 + · · · +mqγq)t).

(6) If rk(V ) ≤ q, then deg(c(V )(t)) ≤ q (where deg(c(V )(t) is the degree of c(V )(t) as a polynomial in t).
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(7) Suppose we know c(V ), for some vector bundle, V , and L is a line bundle. Write c = c1(L). Then, the
Chern classes of V ⊗ L are

cl(V ⊗ L) = σl(γ1 + c, γ2 + c, · · · , γr + c),

where r = rk(V ) and the γj are the Chern roots of V . This is because the Chern polynomial of V ⊗L
is

c(V ⊗ L)(t) =
r∏
i=1

(1 + (γi + c)t).

Examples. (1) If rk(V ) = 2, then

c(V ⊗ L)(t) = (1 + (γ1 + c)t)(1 + (γ2 + c)t) = 1 + (γ1 + γ2 + 2c)t+ (γ1γ2 + c(γ1 + γ2) + c2)t2,

so

c1(V ⊗ L) = c1(V ) + 2c
c2(V ⊗ L) = c2(V ) + c1(V )c+ c2.

(2) If rk(V ) = 3, then

c(V ⊗ L)(t) = (1 + (γ1 + c)t)(1 + (γ2 + c)t)(1 + (γ3 + c)t)

and so,

c(V ⊗ L)(t) = 1 + (γ1 + γ2 + γ3 + 3c)t
+ (σ2(γ1, γ2, γ3) + 2σ1(γ1, γ2, γ3)c+ 3c2)t2

+ (σ3(γ1, γ2, γ3) + σ1(γ1, γ2, γ3)c2 + σ2(γ1, γ2, γ3)c+ c3)t3.

We deduce

c1(V ⊗ L) = c1(V ) + 3c1(L)
c2(V ⊗ L) = c2(V ) + 2c1(V )c1(L) + 3c1(L)2

c3(V ⊗ L) = c3(V ) + c2(V )c1(L) + c1(V )c1(L)2 + c1(L)3.

In the case of Pn, it is easy to compute the Chern classes. By definition,

c(Pn)(t) = c(T 1,0
Pn )(t).

We can use the Euler sequence

0 −→ OPn −→
∐
n+1

OPn(H) −→ T 1,0
Pn −→ 0

to deduce that
c(OPn)(t)c(T 1,0

Pn )(t) = c(OPn(H)(t))n+1.

It follows that

c(T 1,0
Pn )(t) = (1 +Ht)n+1 (mod tn+1) =

n∑
j=0

(
n+ 1
j

)
Hjtj

and so,

cj(T
1,0
Pn ) =

(
n+ 1
j

)
Hj ∈ H2j(Pn,Z).
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(Here Hj = H · . . . ·H, the cup-product in cohomology). In particular,

c1(T
1,0
Pn ) = (n+ 1)H = c

( n∧
T 1,0

Pn

)
.

Now, if ωPn is the canonical bundle on Pn, i.e., ωPn =
∧n

T 0,1D
Pn =

(∧n
T 1,0

Pn

)D
, we get

c1(ωPn) = −(n+ 1)H.

Say a variety X sits inside Pn
C

and assume X is a manifold. Let I be the ideal sheaf of X. By definition,
I is the kernel in the exact sequence

0 −→ I −→ OPn −→ OX −→ 0.

If X is a hypersurface of degree d, we know

I = OPn(−d) = OPn(−dH).

We also have the exact sequence

0 −→ TX −→ TPn � X −→ NX↪→Pn −→ 0,

where NX↪→Pn is a rank n − q bundle on X, with q = dimX (the normal bundle). If we write i : X → Pn,
we get ( n∧

TPn

)
� X =

n∧
TX ⊗

n−q∧
NX↪→Pn ,

and so,

i∗(1 + c1

( n∧
TPn

)
t) = (1 + c1

( n∧
TX

)
t)(1 + c1

(n−q∧
NX↪→Pn

)
t),

which yields
1 + i∗((n+ 1)H)t = 1 + c1(TX)t+ c1(NX↪→Pn)t.

For the normal bundle, we can compute using I. Look at a small open, then we have the usual case of
C-algebras

C ↪→ A −→ B

where A corresponds to local functions on Pn restricted to X and B to local functions on X and we have
the exact sequence of relative Kähler differentials

Ω1
A/C ⊗A B −→ Ω1

B/C −→ Ω1
B/A −→ 0.

If A mapping onto B is given, then Ω1
B/A = (0), B = A/A (globally, OX = OPn/I), and we get

0 −→ Ker −→ Ω1
A ⊗A A/A −→ Ω1

A/A −→ 0.

Now, I −→ Ω1
A ⊗A A/A, via ξdξ �→ ⊗1 and in fact, I −→ 0. We conclude that

i∗(I) = I/I2 −→ i∗(Ω1
Pn) −→ Ω1

X −→ 0.

Because X is a manifold, the arrow on the left is an injection. To see this we need only look locally at x.
We can take completions and then use either the C1-implicit function theorem or the holomorphic implicit
function theorem or the formal implicit function theorem and get the result (DX). If we dualize, from

0 −→ I/I2 = i∗(I) −→ i∗Ω1
Pn −→ Ω1

X −→ 0
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we get
0 −→ TX −→ i∗TPn = TPn � X −→ (I/I2)D −→ 0

Therefore,
NX↪→Pn = (I/I2)D = i∗(I)D = (I � X)D.

Thus,
c1(NX↪→Pn) = −c1(I/I2),

and
(n+ 1)i∗(H) + c1(I/I2) = c1(TX).

We obtain a version of the adjunction formula:

c1(ωX) = −(n+ 1)i∗(H) − c1(I/I2).

When X is a hypersurface of degree d, then I = OPn(−dH) and

I/I2 = i∗(I) = OX(−d · i∗H).

We deduce that −c1(I/I2) = d(i∗H) and

c1(ωX) = (d− n− i)i∗H,

Say n = 2, and dimX = 1, a curve in P2. When X is smooth, we have

c1(ωX) = (d− n− 1)i∗(H).

Facts soon to be proved:

(a) i∗(H) = H ·X, in the sense of intersection theory (that is, degX points on X).

(b) c1(L) on a curve is equal to the degree of the divisor of L.

It follows from above that
deg(ωX) = (d− 2 − 1)d = d(d− 3).

However, from Riemann-Roch on a curve, we know deg(ωX) = 2g − 2, so we conclude that for a smooth
algebraic curve, its genus, g, is given by

g =
1
2
(d− 1)(d− 2).

In particular, observe that g = 2 is missed.

We know from the theory that if we know all c1’s then we can determine all cn’s for all n by the splitting
principle.

There are three general methods for determining c1;

(I) The exponential sequence.

(II) Curvature.

(III) Degree of a divisor.
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Proposition 3.29 Say X is an admissible, or a differentiable manifold, or a complex analytic manifold or
an algebraic manifold. In each case, write OX for the sheaf of germs of appropriate functions on X. Then,
from the exponential sequence

0 −→ Z −→ OX
e−→ O∗

X −→ 0,

where e(f) = exp(2πif), we get in each case the connecting map

H1(X,O∗
X) δ−→ H2(X,Z) (†)

and all obvious diagrams commute
** Steve, what are these obvious diagrams? **

and as the group H1(X,O∗
X) classifies the line bundles of appropriate type, we get δ(L), a cohomology class

in H2(X,Z) and we have
c1(L) = δ(L).

In the continuous and differentiable case, δ is an isomorphism. Therefore, a continuous or differentiable line
bundle is completely determined by its first Chern class.

Proof . That the diagrams commute is clear. For the isomorphism statement, we have the cohomology
sequence

H1(X,OX) −→ H1(X,O∗
X) δ−→ H2(X,Z) −→ H2(X,OX).

But, in the continuous or C∞-case, OX is a fine sheaf, so H1(X,OX) = H2(X,OX) = (0) and we get

H1(X,O∗
X) ∼= H2(X,Z).

First, we show that (†) can be reduced to the case X = P1
C

= S2.
** Steve, in this case, are we assuming that X is projective? **

Take a line bundle, L on X (continuous or C∞), then, for N >> 0, there is a function, f : X → PN
C

, so
that f∗H = L. Now, we have the diagram

H1(PN
C
,O∗

PN )

��

δ �� H2(PN
C
,Z)

��
H1(X,O∗

X)
δ

�� H2(X,Z)

which commutes by cofunctoriality of cohomology. Consequently, the existence of (†) on the top line implies
the existence of (†) in general. Now, consider the inclusions

P1
C ↪→ P2

C ↪→ · · · ↪→ PNC ,

and H on PN
C

pulls back at each stage to H and Chern classes have Axiom (II). Then, one sees that we are
reduced to P1

C
.

Recall how simplicial cohomology is isomorphic (naturaly) to Čech cohomology: Take a triangulation of
X and v, a vertex of a simplex, ∆. Write

Uv = st(v) =
◦⋃

{σ | v ∈ σ}

the open star of the vertex v. The Uσ form an open cover and we have:

Uv0 ∩ · · · ∩ Uvp
=
{
∅ if (v0, . . . , vp) is not a simplex;
a connected nonempty set if (v0, . . . , vp) is a simplex.
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Given a Čech p-cochain, τ , then

τ(Uv0 ∩ · · · ∩ Uvp
) =

{
0 if (v0, . . . , vp) is not a simplex;
some integer if (v0, . . . , vp) is a simplex.

Define
τ(v0, . . . , vp) = τ(Uv0 ∩ · · · ∩ Uvp

).

Take a simplex, ∆ = (v0, . . . , vp) and define linear functions θ(τ) by

θ(τ)(v0, . . . , vp) = τ(v0, . . . , vp) = τ(Uv0 ∩ · · · ∩ Uvp
)

and extend by linearity. We get a map,

Ȟp(X,Z) ∼= Hp
simp(X,Z)

via τ �→ θ(τ), which is an isomorphism.

We are down to the case of P1
C

= S2 and we take H as the North pole. The Riemann sphere P1
C

has
coordinates (Z0 : Z1), say Z1 = 0 is the north pole (Z0 = 0 is the south pole) and let

z =
Z0

Z1
, w =

Z1

Z0
.

We have the standard opens, V0 = {(Z0 : Z1) | Z0 �= 0} and V1 = {(Z0 : Z1) | Z1 �= 0}. The local equations
for H are f0 = w = 0 and f1 = 1. The transitions functions gβα are fβ/fα, i.e.,

g1
0 =

f1
f0

= z and g0
1 =

f0
f1

= w.

Now, we triangulate S2 using four triangles whose vertices are: o = z; z = 1; z = i and z = −1. Note that
H is represented by a point which is in the middle of a face of the simplex (1, i,−1) We have U0, U1, Ui, U−1,
the four open stars and U0 ⊆ V1; U1 ⊆ V0; Ui ⊆ V0; U−1 ⊆ V0. The U -cover refined the V -cover and on

it, gsr ≡ 1 iff both r, s �= 0. Also, gt0 = w, for all t �= 0. To lift back the exponential, OP1
exp(2πi−)−→ O∗

P1 , we
form 1

2πi log(gsr), a one-cochain with values in OP1 . Since the intersections Ur ∩Us are all simply-connected,
on each, we can define a single-valued branch of the log. Consistently do this on these opens via: Start on
U1 ∩ Ui and pick any single-valued branch of the log. Continue analytically to Ui ∩ U−1. Then, continue
analytically to U−1 ∩ U1, we get 2πi+ log on U1 ∩ Ui. Having defined the log gsr , we take the Čech δ of the
1-cochain, that is

crst =
1

2πi
[log gts − log gtr + log gsr ] =

1
2πi

[log gsr + log gts + log grt ].

If none of r, s, t are 0, then crst = 0. So, look at c0−1 1. We have

c0−1 1 =
1

2πi
[log g−1

0 + log g1
−1 + log g0

1 ] =
1

2πi
[logw − “ log ′′w].

As w = 1/z, the second log is −2πi+ logw, so we get

c0−1 1 = +1.

For every even permutation σ of (0,−1, 1), we have cσ(0),σ(−1),σ(1) = +1 and for every odd permutation σ of
(0,−1, 1), we have cσ(0),σ(−1),σ(1) = −1. Yet, the orientation of the simplex (0,−1, 1) is positive, so we get
δ(H) = the class represented by the cocycle on one simplex (positively oriented) by 1, i.e, c1(H).
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Proposition 3.30 Say X is a complex manifold and L is a C∞ line bundle on it. Let ∇ be an arbitrary
connection on X and write Θ for the curvature of ∆. Then, the 2-form i

2πΘ is real and it represents in
H2

DR(X,R) the image of c1(L) under the map

H2(X,Z) −→ H2(X,R).

Proof . Pick a trivializing cover for L, say {Uα}. Then, ∇ � L on Uα comes from its connection matrix, θα,
this is a 1 × 1 matrix (L is a line bundle). We know (gauge transformation)

θα = gαβ θβ(g
α
β )−1 + dgαβ (gαβ )−1,

where the gαβ are the transition functions. But, we have scalars here, so

θα = θβ + d log(gαβ ),

that is

θβ − θα = −d log(gαβ ). (†)

By Cartan-Maurer, the curvature, Θ, (a 2-form) is given locally by

Θ = dθ − θ ∧ θ = dθα = dθβ .

We get the de Rham isomorphism in the usual way by splicing exact sequences. We begin with

0 −→ R −→ C∞ d−→ cok1 −→ 0 (∗)

and

0 −→ cok1 −→
1∧

d−→ cok2 −→ 0 (∗∗)

It follows that

0 �� R �� C∞



















d �� ∧1 d ��

















∧2 �� · · ·

cok1

����������

����
��

��
��

� cok2

����������

����
��

��
��

�

0 0

Apply cohomology to (∗) and (∗∗) and get

H0(X,
1∧

) d−→ H0(X, cok2)
δ′−→ H1(X, cok1) −→ H1(X,

1∧
) = (0)

and
H1(X, C∞) −→ H1(X, cok1)

δ′′−→ H2(X,R) −→ H2(X,C∞) = (0)

because
∧1 and C∞ are fine. We get

H1(X, cok1) ∼= H2(X,R) and H0(X, cok2)/dH0(X,
1∧

) ∼= H1(X, cok1).
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Therefore,
δ′ ◦ δ′ : H0(X, cok2) −→ H2(X,R) −→ 0.

We know from the previous proof that

cα,β,γ =
1

2πi
[log gβα + log gγβ + log gαγ ]

represents c1(L) via the δ from the exponential sequence. So,

cα,β,γ =
1

2πi
[log gαβ + log gγα + log gβγ ]

and
δ′[Θ] = cohomology class of Θ = class of cocycle (θβ − θα).

Now, 1
2πi (θβ − θα) can be lifted back to − 1

2πi log gαβ under δ′′ and we deduce that

δ′′δ′
(

1
2πi

Θ
)

= class of − 1
2πi

[log gαβ + log gγα + log gβγ ] = −class of cαβγ = −c1(L).

** There may be a problem with the sign! **

The next way of looking at c1(L) works when L comes from a divisor. Say X is a complex algebraic
manifold and L = OX(D), where D is a divisor,

D =
∑
j

ajWj

on X. Then, D gives a cycle in homology, so [D] ∈ H2n−2(X,Z) (here n = dimC X). By Poincaré duality,
our [D] is in H2(X,Z) and it is

∑
aj [Wj ].

Theorem 3.31 If X is a compact, complex algebraic manifold and D is a divisor on X, then

c1(OX(D)) = [D] in H2(X,Z),

that is, c1(OX(D)) is carried by the (2n− 2)-cycle, D.

Proof . Recall that Poincaré duality is given by: For ξ ∈ Hr(X,R) and η ∈ Hs(X,R) (where r + s = 2n),
then

(ξ, η) =
∫
X

ξ ∧ η.

The homology/cohomology duality is given by: For ω ∈ Hs(X,R) and Z ∈ Hs(X,R), then

(Z, ω) =
∫
Z

ω.

We know that the cocyle (= 2-form) representing c1(L) is
[
i

2πΘ
]
, for any connection on X. We must show

that for every closed, real (2n− 2)-form, ω,

i

2π

∫
X

Θ ∧ ω =
∫
D

ω.

We compute Θ for a convenient connection, namely, the uniholo connection. Pick a local holomorphic frame,
e(z), for L, then if L has a section, s, we know s(z) = λ(z)e(z), locally. For θ, the connection matrix in this
frame, we have



202 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

(a) θ = θ1,0 (holomorphic)

(b) d(|s|2) = (∇s, s) + (s,∇s) (unitary)

We have
∇s = ∇λe = (dλ+ θλ)e.

Thus, the right hand side of (b) is

d(|s|2) = ((dλ+ θλ)e, λe) + (λe, (dλ+ θλ)e)
= λdλ(e, e) + θ|λ|2(e, e) + λdλ(e, e) + θ|λ|2(e, e).

Write h(z) = |e(z)|2 = (e, e) > 0; So, the right hand side of (b) is λhdλ + λhdλ + (θ + θ)|λ|2h. Now,
|s|2 = λλh, so

d(|s|2) = λλdh+ h(λdλ+ λdλ).

From (b), we deduce dh = (θ + θ)h, and so,

θ + θ =
dh

h
= d(log h) = ∂(log h) + ∂(log h).

Using (a) and the decomposition by type, we get

θ = ∂(log h) = ∂ log(|e|2).

As Θ = dθ − θ ∧ θ, we get
Θ = dθ = (∂ + ∂)(∂ log(|e|2)),

i.e.,
Θ = ∂∂ log(|e|2).

Now, recall

dc =
i

4π
(∂ − ∂),

so that
ddc = −dcd =

i

2π
∂∂ = − i

2π
∂∂,

and 2πiddc = ∂ ∂. Consequently,
Θ = πiddc log(|e|2).

This holds for any local frame, e, and has nothing to do with the fact that L comes from a divisor.

Now, L = OX(D) and assume that the local equations for D are fα = 0 (on Uα, some open in the
trivializing cover for L on X). We know the transition functions are

gβα =
fβ
fα

;

Therefore, the local vectors sα = fαeα form a global section, s, of OX(D). The zero locus of this section is
exactly D. As the bundle L is unitary, gβα ∈ U(1), which implies |fβ | = |fα| and so, |fαeα| is well defined.
Thus for small ε > 0,

D(ε) = {z ∈ X | |s(z)|2 < ε}
is a tubular neighborhood of D.

Look at X −D(ε), then OX(D) � X −D(ε) is trivial as the section s is never zero there. Therefore, sα
will also do as a local frame for OX(D) on X −D(ε).
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We need to compute
∫
X

Θ ∧ ω. By linearity, we may assume D is one of the W ’s. Then, by definition,∫
X

Θ ∧ ω = lim
ε↓0

∫
X−D(ε)

2πiddc log |s|2 ∧ ω

If we apply Stokes, we find ∫
X

Θ ∧ ω = − lim
ε↓0

∫
∂D(ε)

2πidc log |s|2 ∧ ω

that is, ∫
X

Θ ∧ ω =
2π
i

lim
ε↓0

∫
∂D(ε)

dc log |s|2 ∧ ω. (†)

Now Vol(D(ε)) −→ 0 as ε ↓ 0, as we can see by using the Zariski stratification to reduce to the case where
D is non-singular. Also,

|s|2 = |fα|2|eα|2 = fαfαh,

where h = |eα|2 is positive bounded. We have

log |s|2 = log fα + log fα + log h

and as dc = i
4π (∂ − ∂),

dc log |s|2 =
i

4π
[−∂ log fα + ∂ log fα + (∂ − ∂) log h].

It follows that

2π
i
dc log |s|2 ∧ ω =

1
2
[−∂ log fα ∧ ω + ∂ log fα ∧ ω + (∂ − ∂) log h ∧ ω].

In the right hand side of (†), the third term is

1
2

lim
ε↓0

∫
∂D(ε)

(∂ − ∂) log h ∧ ω.

Now, (∂ − ∂) log h is bounded (X is compact) and Vol(∂D(ε)) −→ 0 as ε ↓ 0. So, this third term vanishes in
the limit. But, ∂ log fα = ∂ log fα and ω = ω, as ω is real. Consequently,

∂ log fα ∧ ω = ∂ log fα ∧ ω.

From (†), we get ∫
X

Θ ∧ ω =
1
2

lim
ε↓0

∫
∂D(ε)

−∂ log fα ∧ ω + ∂ log fα ∧ ω

= −1
2

lim
ε↓0

∫
∂D(ε)

∂ log fα ∧ ω − ∂ log fα ∧ ω

= −i lim
ε↓0

�
∫
∂D(ε)

∂ log fα ∧ ω.

Now, fα = 0 is the local equation of D and we can compute the integral on the right hand side away
from the singularities of D as the latter have measure 0. The divisor D is compact, so we can cover it by
polydics centered at nonsingular points of D, say ζ0 is a such a point. By the local complete intersection
then, there exist local coordinates for X near ζ0, of the form

z1 = fα, z2, . . . , zn︸ ︷︷ ︸
rest

,
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on ∆ ∩ Uα (where ∆ is a polydisc). Break up ω as

ω = g(z1, . . . , zn) dz2 ∧ · · · ∧ dz2 ∧ · · ·︸ ︷︷ ︸
rest

+κ,

where κ is a form involving dz1 and dz1 in each summand. Also, as

∂ log fα = (∂ + ∂) log fα = d log fα =
dfα
fα

=
dz1
z1
,

we get

∂ log fα ∧ ω =
dz1
z1
g(z1, . . . , zn) dz2 ∧ · · · ∧ dz2 ∧ · · ·︸ ︷︷ ︸

rest

+ terms
dz1 ∧ dz1

z1
stuff.

Furthermore, dz1 ∧ dz1 = 2idx ∧ dy = 2irdr1dθ (in polar coordinates), so∣∣∣∣dz1 ∧ dz1

z1

∣∣∣∣ = 2|dr1||dθ1|,

and when ε ↓ 0, this term goes to 0. Therefore

lim
ε↓0

∫
∂D(ε)∩∆

dz1
z1
g(z1, . . . , zn)d(rest)d(rest) = lim

ε↓0

∫
(|z1|=Cε)

Q
rest of polydisc

dz1
z1
g(z1, . . . , zn)d(rest)d(rest)

and by Cauchy’s integral formula, this is

lim
ε↓0

∫
rest of poly∩∂D(ε)

2πig(0, z2, . . . , zn)d(rest)d(rest) = 2πi
∫
D∩∆

ω.

Adding up the contributions from the finite cover of polydics, we get

� lim
ε↓0

∫
∂D(ε)

∂ log fα ∧ ω = � 2πi
∫
D

ω = 2π
∫
D

ω,

as ω is real. But then,

−i� lim
ε↓0

∫
∂D(ε)

log fα ∧ ω = −2πi
∫
X

ω

from which we finally deduce
∫
X

Θ ∧ ω = −2πi
∫
D
ω, that is,∫

X

i

2π
Θ ∧ ω =

∫
D

ω,

as required.

Corollary 3.32 Suppose V is a U(q)-bundle on our compact X (so that differentiably, V is generated by
its sections). Or, if V is a holomorphic bundle, assume it is generated by its holomorphic sections. Take a
generic section, s, of V and say V has rank r. Then, the set s = 0 has complex codimension r (in homology)
and is the carrier of cr(V ).

Proof . The case r = 1 is exactly the theorem above. Differentiably,

V = L1

∐
L2

∐
· · ·
∐

Lr,

for the diagonal line bundles of V . Holomorphically, this is also OK but over the space [∆]V . So, the
transition matrix is a diagonal matrix

diag(gβ1α, . . . , g
β
r α) on Uα ∩ Uβ
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and sα = (s1α, . . . , sr α). So,
diag(gβα)sα = (gβ1αs1α, . . . , g

β
r αsr α) = sβ

which shows that each sj α is a section of Lj . Note that s = 0 iff all sj = 0. But, the locus sj = 0
carries c1(Lj), by the previous theorem. Therefore, s = 0 corresponds to the intersection in homology of the
carriers of c1(L), . . . , c1(Lr). But, intersection in homology is equivalent to product in cohomology, so the
cohomology class for s = 0 is

c1(L1)c1(L2) · · · c1(Lr) = cr(V )

as desired.

General Principle for Computing cq(V ), for a rank r vector bundle, V .

(1) Let L be an ample line bundle, then V ⊗ L⊗m is generated by its sections for m >> 0.

(2) Pick r generic sections, s1, . . . , sr, of V ⊗L⊗m. Form s1 ∧ · · · ∧ sr−q+1, a section of
∧r−q+1(V ⊗L⊗m).

Then, the zero locus of s1 ∧ · · · ∧ sr−q+1 carries the Chern class, cq(V ⊗ L⊗m), of V ⊗ L⊗m.[
When q = r, this is the corollary. When q = 1, we have s1 ∧ · · · ∧ sr, a section of

∧r
V ⊗ L⊗m, and

it is generic (as the fibre dimension is 1). We get c1(
∧r

V ⊗ L⊗m) and we know that it is equal to
c1(V ⊗ L⊗m).

]
(3) Use the relation from the Chern polynomial

c(V ⊗ L⊗m)(t) =
∏

(1 + (γj +mc1(L))t)

to get the elementary symmetric functions of the γj ’s, i.e., cq(V ).

Remark: if 1 < q < r, our section s1 ∧ · · · ∧ sr−q+1 is not generic but it works.

Theorem 3.33 Say X is a complex analytic or algebraic, compact, smooth, manifold and j : W ↪→ X is a
smooth, complex, codimension q submanifold. Write N for the normal bundle of W in X; this is rank q
(U(q)) vector bundle on W . The subspace W corresponds to a cohomology class, ξ, in H2q(X,Z) (in fact,
in Hq,q(X,C)) and so we get j∗ξ ∈ H2q(W,Z). Then, we have

cq(N ) = j∗W.

Proof . We begin with the case q = 1. In this case, W is a divisor and we know N = OX(W ) � W . By
Corollary 3.32, the Chern class c1(N ) is carried by the zero locus of a section, s,of N . Now, W ·W in X as
a cycle is just a moving of W by a small amount and then an ordinary intersection of W and the new moved
cycle. We see that W ·W = c1(N ) as cycle on W . But, j∗W is just W ·W as cycle (by Poincaré duality).
So, the result holds when q = 1. If q > 1 and if W is a complete intersection in X, then since cq(N ) is
computed by repeated pullbacks and each pullback gives the correct formula (by the case q = 1), we get the
result. In the general case, we have two classes j∗W and cq(N ). If there exists an open cover, {Uα}, of W
so that

j∗W � Uα = cq(N ) � Uα for all α,

then we are done. But, W is smooth so it is a local complete intersection (LCIT). Therefore, we get the
result by the previous case.
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Corollary 3.34 If X is a compact, complex analytic manifold and if TX = holomorphic tangent bundle has
rank q = dimC X, then

cq(TX) = χtop =
2q∑
i=0

(−1)ibi

(Here, bi = dimR H
i(X,Z).)

Proof . (Essentially due to Lefschetz). Look at X
∏
X and the diagonal embedding, ∆: X → X

∏
X. So,

X ↪→ X
∏
X is a smooth codimension q submanifold. An easy argument shows that

TX ∼= NX↪→X
Q
X = N

and the previous theorem implies
cq(TX) = cq(N ) = X ·X

in X
∏
X. Now, look at the map f : X → X given by

pr2 ◦ εσ,

where ε is small and σ is a section of N . The fixed points of our map give the cocycle X ·X. The Lefschetz
fixed point Theorem says the cycle of fixed points is given by

2q∑
i=0

(−1)itr f∗ on Hi(X,Z).

But, for ε small, the map f is homotopic to id, so f∗ = id∗. Now, tr id∗ = dimension of space = bi(X) if we
are on Hi(X). So the right hand side of the Lefschetz formula is χtop, as claimed.

Segre Classes.

Let V be a vector bundle on X, then we have classes sj(V ), and they are defined by

1 +
∞∑
j=1

sj(V )tj =
1

c(V )(t)
.

As c(V )(t) is nilpotent, we have

1
c(V )(t)

= 1 − (c1(V )t+ c2(V )t2 + · · · ) + (c1(V )t+ c2(V )t2 + · · · )2 + · · ·

and so,

s1(V ) = −c1(V )
s2(V ) = c21(V ) − c2(V ),

etc.

Pontrjagin Classes.

Pontrjagin classes are defined for real O(q)-bundles over real manifolds. We have the commutative
diagrams

U(q) � � ζ ��
� �

��

O(2q)� �

��
GL(q,C) � � �� GL(2q,R)



3.2. CHERN CLASSES AND SEGRE CLASSES 207

where ζ(z1, . . . , zq) = (x1, y1, . . . , xq, yq), with zj = xj + iyj and

O(q) � � ψ ��
� �

��

U(q)� �

��
GL(q,R) � � �� GL(q,C)

where ψ(A) is the real matrix now viewed as a complex matrix. Given ξ, an O(q)-bundle, we have ψ(q), a
U(q)-bundle. Define

The Pontrjagin classes, pi(ξ), are defined by

pi(ξ) = (−1)ic2i(ψ(ξ)) ∈ H4i(X,Z).

The generalized Pontrjagin classes, Pi(ξ) and the generalized Pontrjagin polynomial, P (ξ)(t), are defined by

P (ξ)(t) = c(ψ(ξ))(t), and Pj(ξ) = cj(ψ(xi)).

(Observe: P2l(ξ) = (−1)ppl(ξ).)

Now, ξ corresponds to map, X −→ BO(q). Then, for i even, Pi/2(ξ) is the pullback of something in
Hi(BO(q),Z). It is known that for i ≡ 2(4), the cohomology ring Hi(BO(q),Z) is 2-torsion, so 2Podd(ξ) = 0.
So, with rational coefficients, we get

Podd(ξ) = 0 and Peven(ξ) = ±Peven/2(ξ).

We have the following properties:

(0) P (ξ)(t) = 1 + stuff.

(1) f∗P (ξ)(t) = P (f∗ξ)(t), so f∗Pi(ξ) = Pi(f∗ξ).

(2) Suppose ξ, η are bundle of rank q′, q′′, respectively, then

P (ξ � η)(t) = P (ξ)(t)P (η)(t)

and if we set p(ξ)(t) =
∑∞
j=0 pj(ξ)t

2j , then

p(ξ � η)(t) = p(ξ)(t)p(η)(t), mod elements of order 2 in H•(X,Z).

(3) Suppose c(ψ(ξ))(t) has Chern roots γi. Then, the polynomial
∑∞
j=0(−1)jpj(ξ)t2j has roots γ2

i ; in fact,

∞∑
j=0

(−1)jpj(ξ)t2j =
(∑

l

cj(ξ)tl
)(∑

m

(−1)mcm(ξ)tm
)
.

Proposition 3.35 Say ξ is a U(q)-bundle and make ζ(ξ), an O(2q)-bundle. Then

∞∑
j=0

(−1)jpj(ζ(ξ))t2j =
(∑

l

cj(ξ)tl
)(∑

m

cm(ξD)tm
)
.

Proof . Consider the maps U(q) ↪→ O(2q) ↪→ U(2q). By linear algebra, if A ∈ U(q), its image in U(2q) by
this map is (

A 0
0 A

)
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after an automorphism of U(2q), which automorphism is independent of A. By Skolem-Noether, the auto-
morphism is of the form

H−1(ψζ(A))H,

for some H ∈ GL(2q,C). For an inner automorphism, the cohomology class of the vector bundle stays the
same. Thus, this cohomology class is the class of(

A 0
0 A

)
.

Now, we know the transition matrix of ξD is the transpose inverse of that for ξ. But, A is unitary, so

A = (A−1)
 = AD

and we deduce that ψζ(A) has as transition matrix(
A 0
0 AD

)
.

Consequently, the right hand side of our equation is(∑
l

cj(ξ)tl
)(∑

m

cm(ξD)tm
)
,

as required.


