Chapter 2

Cohomology of (Mostly) Constant Sheaves and Hodge Theory

2.1 Real and Complex

Let X be a complex analytic manifold of (complex) dimension n. Viewed as a real manifold, X is a C^∞-manifold of dimension $2n$. For every $x \in X$, we know $T_{X,x}$ is a \mathbb{C}-vector space of complex dimension n, so, $T_{X,x}$ is a real vector space of dimension $2n$. Take local (complex) coordinates z_1, \ldots, z_n at $x \in X$, then we get real local coordinates $x_1, y_1, \ldots, x_n, y_n$ on X (as an \mathbb{R}-manifold), where $z_j = x_j + iy_j$. (Recall, T_X is a complex holomorphic vector bundle). If we view $T_{X,x}$ as a real vector space of dimension $2n$, then we can complexify $T_{X,x}$, i.e., form

$$T_{X,x,\mathbb{C}} = T_{X,x} \otimes_{\mathbb{R}} \mathbb{C},$$

a complex vector space of dimension $2n$. A basis of $T_{X,x,\mathbb{C}}$ at x (as \mathbb{R}-space) is just $\partial/\partial x_1, \partial/\partial y_1, \ldots, \partial/\partial x_n, \partial/\partial y_n$.

These are a \mathbb{C}-basis for $T_{X,x,\mathbb{C}}$, too. We can make the change of coordinates to the coordinates z_j and \bar{z}_j, namely,

$$z_j = x_j + iy_j, \quad \bar{z}_j = x_j - iy_j,$$

and of course,

$$x_j = \frac{1}{2}(z_j + \bar{z}_j), \quad y_j = \frac{1}{2i}(z_j - \bar{z}_j).$$

So, $T_{X,x,\mathbb{C}}$ has a basis consisting of the $\partial/\partial z_j, \partial/\partial \bar{z}_j$; in fact, for $f \in C^\infty(\text{open})$, we have

$$\frac{\partial f}{\partial z_j} = \frac{\partial f}{\partial x_j} - \frac{i}{\partial y_j} \quad \text{and} \quad \frac{\partial f}{\partial \bar{z}_j} = \frac{\partial f}{\partial x_j} + \frac{i}{\partial y_j}.$$

More abstractly, let V be a \mathbb{C}-vector space of dimension n and view V as a real vector space of dimension $2n$. If e_1, \ldots, e_n is a \mathbb{C}-basis for V, then ie_1, \ldots, ie_n make sense. Say $e_j = f_j + ig_j$ (from \mathbb{C}-space to \mathbb{R}-space), then, $ie_j = if_j - g_j = -g_j + if_j$. Consequently, the map $(e_1, \ldots, e_n) \mapsto (ie_1, \ldots, ie_n)$ corresponds to the map

$$((f_1, g_1), \ldots, (f_n, g_n)) \mapsto ((-g_1, f_1), \ldots, (-g_n, f_n))$$

where V is viewed as \mathbb{R}-space of dimension $2n$. The map J an endomorphism of V viewed as \mathbb{R}-space and obviously, it satisfies

$$J^2 = -\text{id}.$$
If, conversely, we have an \(R \)-space, \(V \), of even dimension, \(2n \) and if an endomorphism \(J \in \text{End}_R(V) \) with \(J^2 = -\text{id} \) is given, then we can give \(V \) a complex structure as follows:

\[
(a + ib)v = av + bJ(v).
\]

In fact, the different complex structures on the real vector space, \(V \), of dimension \(2n \) are in one-to-one correspondence with the homogeneous space \(\text{GL}(2n, R) / \text{GL}(n, C) \), via

\[
\text{class } A \mapsto AJA^{-1}.
\]

Definition 2.1 An almost complex manifold is a real \(C^\infty \)-manifold together with a bundle endomorphism, \(J : T_X \to T_X \), so that \(J^2 = -\text{id} \).

Proposition 2.1 If \((X, O_X) \) is a complex analytic manifold, then it is almost complex.

Proof. We must construct \(J \) on \(T_X \). It suffices to do this locally and check that it is independent of the coordinate patch. Pick some open, \(U \), where \(T_X \rvert_U \) is trivial. By definition of a patch, we have an isomorphism \((U, O_X \rvert_U) \cong (B_C(0, \epsilon), O_B) \) and we have local coordinates denoted \(z_1, \ldots, z_n \) in both cases. On \(T_X \rvert_U \), we have \(\partial / \partial x_1, \ldots, \partial / \partial x_n \) and \(\partial / \partial y_1, \ldots, \partial / \partial y_n \), as before. The map \(J \) is given by

\[
J = \begin{pmatrix}
\frac{\partial}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n} \\
\frac{\partial}{\partial y_1} & \cdots & \frac{\partial}{\partial y_n} \\
\frac{\partial}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n}
\end{pmatrix}.
\]

We need to show that this does not depend on the local trivialization. Go back for a moment to two complex manifolds, \((X, O_X) \) and \((Y, O_Y) \), of dimension \(2n \) and consider a smooth map \(f : (X, O_X) \to (Y, O_Y) \). For every \(x \in X \), we have an induced map on tangent spaces, \(df : T_{X,x} \to T_{Y,y} \), where \(y = f(x) \) and if, as \(R \)-spaces, we use local coordinates \(x_1, \ldots, x_n, y_1, \ldots, y_n \) on \(T_{X,x} \) and local coordinates \(u_1, \ldots, u_n, v_1, \ldots, v_n \) on \(T_{Y,y} \), then \(df \) is given by the Jacobian

\[
J_R(f) = \begin{pmatrix}
\frac{\partial u_{\alpha}}{\partial x_j} & \frac{\partial v_{\alpha}}{\partial x_j} \\
\frac{\partial v_{\alpha}}{\partial y_j} & \frac{\partial u_{\alpha}}{\partial y_j}
\end{pmatrix}.
\]

If \(f \) is holomorphic, the Cauchy-Riemann equations imply

\[
\frac{\partial u_{\alpha}}{\partial x_j} = \frac{\partial v_{\alpha}}{\partial y_j} \quad \text{and} \quad \frac{\partial v_{\alpha}}{\partial x_j} = -\frac{\partial u_{\alpha}}{\partial y_j}.
\]

Now, this gives

\[
J_R(f) = \begin{pmatrix}
\frac{\partial v_{\alpha}}{\partial y_j} & \frac{\partial u_{\alpha}}{\partial y_j} \\
-\frac{\partial u_{\alpha}}{\partial y_j} & \frac{\partial v_{\alpha}}{\partial y_j}
\end{pmatrix} = \begin{pmatrix} A & B \\ -B & A \end{pmatrix}.
\]

Going back to our problem, if we have different trivializations, on the overlap, the transition functions are holomorphic, so \(J_R(f) \) is as above. Now \(J \) in our coordinates is of the form

\[
J = \begin{pmatrix}
0_n & I_n \\
-I_n & 0
\end{pmatrix}
\]

and we have \(J J_R(f) = J_R(f) J \) when \(f \) is holomorphic (DX). \(\square \)

So, an almost complex structure is a bundle invariant.

Question: Does \(S^6 \) possess a complex structure?
The usual almost complex structure from $S^7 (= \text{unit Cayley numbers = unit octonions})$ is not a complex structure. Borel and Serre proved that the only spheres with an almost complex structure are: S^0, S^2 and $S^6.$

Say we really have complex coordinates, z_1, \ldots, z_n down in $X.$ Then, on $T_X \otimes_{\mathbb{R}} \mathbb{C},$ we have the basis

$$\frac{\partial}{\partial z_1}, \ldots, \frac{\partial}{\partial z_n}, \frac{\partial}{\partial \bar{z}_1}, \ldots, \frac{\partial}{\partial \bar{z}_n},$$

and so, in this basis, if we write $f = (w_1, \ldots, w_n), \text{where } w_\alpha = u_\alpha + i v_\alpha,$ we get

$$J_R(f) = \begin{pmatrix} \frac{\partial w_\alpha}{\partial z_j} & \frac{\partial w_\alpha}{\partial \bar{z}_j} \\ \frac{\partial w_\alpha}{\partial \bar{z}_j} & \frac{\partial w_\alpha}{\partial z_j} \end{pmatrix}$$

and, again, if f is holomorphic, we get

$$\frac{\partial w_\alpha}{\partial \bar{z}_j} = \frac{\partial \bar{w}_\alpha}{\partial z_j} = 0,$$

which yields

$$J_R(f) = \begin{pmatrix} \frac{\partial w_\alpha}{\partial z_j} & 0 \\ 0 & \frac{\partial \bar{w}_\alpha}{\partial z_j} \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & \bar{A} \end{pmatrix}.$$

Write

$$J(f) = \frac{\partial w_\alpha}{\partial z_j}$$

and call it the holomorphic Jacobian. We get

(1) $J_R(f) = \begin{pmatrix} J(f) & 0 \\ 0 & J(f) \end{pmatrix}, \text{so, } \mathbb{R}\text{-rank } J_R(f) = 2\mathbb{C}\text{-rank } J(f).$

(2) We have $\det(J_R(f)) = |\det(J(f))|^2 \geq 0,$ and $\det(J_R(f)) > 0$ if f is a holomorphic isomorphism (in this case, $m = n =$ the common dimension of $X, Y).$

Hence, we get the first statement of

Proposition 2.2 Holomorphic maps preserve the orientation of a complex manifold and each complex manifold possesses an orientation.

Proof. We just proved the first statement. To prove the second statement, as orientations are preserved by holomorphic maps we need only give an orientation locally. But, locally, a patch is biholomorphic to a ball in $\mathbb{C}^n.$ Therefore, it is enough to give \mathbb{C}^n an orientation, i.e., to give \mathbb{C} an orientation. However, \mathbb{C} is oriented as (x, ix) gives the orientation. \(\square\)

Say we have a real vector space, $V,$ of dimension $2n$ and look at $V \otimes_{\mathbb{R}} \mathbb{C}.$ Say V also has a complex structure, $J.$ Then, the extension of J to $V \otimes_{\mathbb{R}} \mathbb{C}$ has two eigenvalues, $\pm i.$ On $V \otimes_{\mathbb{R}} \mathbb{C},$ we have the two eigenspaces, $(V \otimes_{\mathbb{R}} \mathbb{C})^{1,0} = \text{the } i\text{-eigenspace and } (V \otimes_{\mathbb{R}} \mathbb{C})^{0,1} = \text{the } -i\text{-eigenspace.}$ Of course,

$$(V \otimes_{\mathbb{R}} \mathbb{C})^{0,1} = \overline{(V \otimes_{\mathbb{R}} \mathbb{C})^{1,0}}.$$

Now, look at $\bigwedge^p(V \otimes_{\mathbb{R}} \mathbb{C}).$ We can examine

$$\bigwedge^p(V \otimes_{\mathbb{R}} \mathbb{C}) \overset{\text{def}}{=} \bigwedge^p[(V \otimes_{\mathbb{R}} \mathbb{C})^{1,0}] \text{ and } \bigwedge^q(V \otimes_{\mathbb{R}} \mathbb{C}) \overset{\text{def}}{=} \bigwedge^q[(V \otimes_{\mathbb{R}} \mathbb{C})^{0,1}].$$
and also

\[\bigwedge^{p,q}(V \otimes_R \mathbb{C}) \overset{\text{def}}{=} \bigwedge^{p,0}(V \otimes_R \mathbb{C}) \otimes \bigwedge^{0,q}(V \otimes_R \mathbb{C}). \]

Note that we have

\[\bigwedge^{l}(V \otimes_R \mathbb{C}) = \prod_{p+q=l} \bigwedge^{p,q}(V \otimes_R \mathbb{C}). \]

Now, say \(X \) is an almost complex manifold and apply the above to \(V = T_X, T^D_X \); we get bundle decompositions for \(T_X \otimes_R \mathbb{C} \) and \(T^D_X \otimes_R \mathbb{C} \). Thus,

\[\bigwedge^{l}(T^D_X \otimes_R \mathbb{C}) = \prod_{l=1}^{2n} \prod_{p+q=l} \bigwedge^{p,q}(T^D_X \otimes_R \mathbb{C}). \]

Note that \(J \) on \(\bigwedge^{p,q} \) is multiplication by \((-1)^{q_i(p+q)}\). Therefore, \(J \) does not act by scalar multiplication in general on \(\bigwedge^{l}(V \otimes_R \mathbb{C}) \).

Say \(X \) is now a complex manifold and \(f: X \to Y \) is a \(C^\infty \)-map to another complex manifold, \(Y \). Then, for every \(x \in X \), we have the linear map

\[Df: T_{X,x} \otimes_R \mathbb{C} \longrightarrow T_{Y,f(x)} \otimes_R \mathbb{C}. \]

The map \(f \) won’t in general preserve the decomposition \(T_{X,x} \otimes_R \mathbb{C} = T_{X,x}^{1,0} \sqcup T_{X,x}^{0,1} \).

However, \(f \) is holomorphic iff for every \(x \in X \), we have \(Df: T_{X,x}^{1,0} \to T_{Y,f(x)}^{1,0} \).

Let us now go back to a real manifold, \(X \). We have the usual exterior derivative

\[d: \bigwedge^{l}(T^D_X \otimes_R \mathbb{C}) \longrightarrow \bigwedge^{l+1}(T^D_X \otimes_R \mathbb{C}), \]

namely, if \(\xi_1, \ldots, \xi_{2n} \) are real coordinates at \(x \), we have

\[\sum_{|I|=l} a_I d\xi_I \mapsto \sum_{|I|=l} da_I \wedge d\xi_I. \]

here, the \(a_I \) are \(\mathbb{C} \)-valued function on \(X \) near \(x \) and \(d\xi_I = d\xi_{i_1} \wedge \cdots \wedge d\xi_{i_l} \), with \(I = \{ i_1 < i_2 < \cdots < i_l \} \).

In the almost complex case, we have the \(p,q \)-decomposition of \(T^D_X \otimes_R \mathbb{C} \) and consequently

\[\bigwedge^{p,q}(T^D_X \otimes_R \mathbb{C}) \overset{i_{p,q}}{\longrightarrow} \bigwedge^{l}(T^D_X \otimes_R \mathbb{C}) \overset{d}{\longrightarrow} \bigwedge^{l+1}(T^D_X \otimes_R \mathbb{C}) = \prod_{r+s=l+1} \bigwedge^{r,s}(T^D_X \otimes_R \mathbb{C}). \]

We let

\[\partial = \{ \partial_{p,q} = \text{pr}_{p+1,q} \circ d \circ i_{p,q}: \bigwedge^{p,q}(T^D_X \otimes_R \mathbb{C}) \longrightarrow \bigwedge^{p+1,q}(T^D_X \otimes_R \mathbb{C}) \}_{p,q} \]

and

\[\overline{\partial} = \{ \overline{\partial}_{p,q} = \text{pr}_{p,q+1} \circ d \circ i_{p,q}: \bigwedge^{p,q}(T^D_X \otimes_R \mathbb{C}) \longrightarrow \bigwedge^{p,q+1}(T^D_X \otimes_R \mathbb{C}) \}_{p,q}. \]
2.1. REAL AND COMPLEX

Note that \(d = \partial + \overline{\partial} + \text{other stuff} \). Let us take a closer look in local coordinates. We can pick \(\xi_1, \ldots, \xi_n \), some coordinates for \(T^{1,0}_X \), then \(\xi_1, \ldots, \xi_n \) are coordinates for \(T^{0,1}_X \) (say \(x_1, \ldots, x_{2n} \) are local coordinates in the base). Then, any \(\omega \in \Lambda^{p,q}(T^D_P \otimes \mathbb{C}) \) has the form

\[
\omega = \sum_{|I| = p \atop |\bar{I}| = q} a_{I, \bar{I}} d\xi_I \wedge d\xi_{\bar{I}},
\]

and so

\[
d\omega = \sum_{|I| = p \atop |\bar{I}| = q} da_{I, \bar{I}} \wedge d\xi_I \wedge d\xi_{\bar{I}} + \sum_{|I| = p \atop |\bar{I}| = q} a_{I, \bar{I}} d(d\xi_I \wedge d\xi_{\bar{I}}) = \partial \omega + \overline{\partial} \omega + \text{stuff}.
\]

If we are on a complex manifold, then we can choose the \(\xi_j \) so that \(\xi_j = \partial/\partial z_j \) and \(\bar{\xi}_j = \partial/\partial \bar{z}_j \), constant over our neighborhood and then,

\[
d\omega = \sum_{|I| = p \atop |\bar{I}| = q} da_{I, \bar{I}} d\xi_I \wedge d\bar{\xi}_{\bar{I}}
\]

\[
= \sum_{|I| = p \atop |\bar{I}| = q} \sum_{j=1}^n \frac{\partial a_{I, \bar{I}}}{\partial z_j} dz_j \wedge d\bar{z}_I \wedge d\bar{\xi}_{\bar{I}} + \frac{\partial a_{I, \bar{I}}}{\partial \bar{z}_j} d\bar{z}_j \wedge d\bar{z}_I \wedge d\xi_{\bar{I}}
\]

\[
= \partial \omega + \overline{\partial} \omega = (\partial + \overline{\partial})\omega.
\]

Consequently, on a complex manifold, \(d = \partial + \overline{\partial} \).

On an almost complex manifold, \(d^2 = 0 \), yet, \(\partial^2 \neq 0 \) and \(\overline{\partial}^2 \neq 0 \) in general.

However, suppose we are lucky and \(d = \partial + \overline{\partial} \). Then,

\[
0 = d^2 = \partial^2 + \overline{\partial} \partial + \partial \overline{\partial} + \overline{\partial}^2,
\]

and we deduce that \(\overline{\partial}^2 = \partial^2 = \overline{\partial} \partial + \partial \overline{\partial} = 0 \), in this case.

Definition 2.2 The almost complex structure on \(X \) is **integrable** iff near every \(x \in X \), there exist real coordinates, \(\xi_1, \ldots, \xi_n \) in \(T^{1,0}_X \) and \(\bar{\xi}_1, \ldots, \bar{\xi}_n \) in \(T^{0,1}_X \), so that \(d = \partial + \overline{\partial} \).

By what we just did, a complex structure is integrable. A famous theorem of Newlander-Nirenberg (1957) shows that if \(X \) is an almost complex \(C^\infty \)-manifold whose almost complex structure is integrable, then there exists a unique complex structure (i.e., complex coordinates everywhere) inducing the almost complex one.

Remark: Say \(V \) has a complex structure given by \(J \). We have

\[
V = V \otimes_{\mathbb{R}} \mathbb{R} \hookrightarrow V \otimes_{\mathbb{R}} \mathbb{C} \cong V^{1,0} \oplus V^{0,1}.
\]

The vector space \(V^{1,0} \) also has a complex structure, namely, multiplication by \(i \). So, we have an isomorphism \(V \cong V^{1,0} \), as \(\mathbb{R} \)-spaces, but also an isomorphism \(V \cong V^{1,0} \), as \(\mathbb{C} \)-spaces, where the complex structure on \(V \) is \(J \) and the complex structure on \(V^{0,1} \) is multiplication by \(i \). Therefore, we also have an isomorphism \(V \cong V^{1,0} \), where the complex structure on \(V \) is \(-J \) and the complex structure on \(V^{0,1} \) is multiplication by \(-i \).

For tangent spaces, \(T^{1,0}_X \) is spanned by \(\partial/\partial z_1, \ldots, \partial/\partial z_n \), the space \(T^{0,1}_X \) is spanned by \(\partial/\partial \bar{z}_1, \ldots, \partial/\partial \bar{z}_n \); also, \(T^{D,1,0}_X \) is spanned by \(dz_1, \ldots, dz_n \) and \(T^{D,0,1}_X \) is spanned by \(d\bar{z}_1, \ldots, d\bar{z}_n \).
2.2 Cohomology, de Rham, Dolbeault

Let X be a real $2n$-dimensional C^∞-manifold and let d be the exterior derivative, then we get the complex

$$T_X^D \xrightarrow{d} \bigwedge^2 T_X^D \xrightarrow{d} \cdots \xrightarrow{d} \bigwedge^{2n} T_X^D,$$

($d^2 = 0$). The same is true for complex-valued forms, we have the complex

$$T_X^D \otimes \mathbb{C} \xrightarrow{d} \bigwedge^2 T_X^D \otimes \mathbb{C} \xrightarrow{d} \cdots \xrightarrow{d} \bigwedge^{2n} T_X^D \otimes \mathbb{C},$$

($d^2 = 0$). Here, there is an abuse of notation: T_X^D denotes a sheaf, so we should really use a notation such as T_X^D. To alleviate the notation, we stick to T_X^D, as the context makes it clear that it is a sheaf. These maps induce maps on global X-sections, so we get the complexes

$$\Gamma(X, T_X^D) \xrightarrow{d} \bigwedge^2 \Gamma(X, T_X^D) \xrightarrow{d} \cdots \xrightarrow{d} \bigwedge^{2n} \Gamma(X, T_X^D)$$

and

$$\Gamma(X, T_X^D \otimes \mathbb{C}) \xrightarrow{d} \bigwedge^2 \Gamma(X, T_X^D \otimes \mathbb{C}) \xrightarrow{d} \cdots \xrightarrow{d} \bigwedge^{2n} \Gamma(X, T_X^D \otimes \mathbb{C}).$$

Define

\begin{align*}
Z_{\text{DR}}^l(X) &= \text{Ker } d, \quad \text{where } d: \bigwedge^l \Gamma(X, T_X^D) \rightarrow \bigwedge^{l+1} \Gamma(X, T_X^D) \\
Z_{\text{DR}}^l(X)_{\mathbb{C}} &= \text{Ker } d, \quad \text{where } d: \bigwedge^l \Gamma(X, T_X^D \otimes \mathbb{C}) \rightarrow \bigwedge^{l+1} \Gamma(X, T_X^D \otimes \mathbb{C}) \\
B_{\text{DR}}^l(X) &= \text{Im } d, \quad \text{where } d: \bigwedge^l \Gamma(X, T_X^D) \rightarrow \bigwedge^{l} \Gamma(X, T_X^D) \\
B_{\text{DR}}^l(X)_{\mathbb{C}} &= \text{Ker } d, \quad \text{where } d: \bigwedge^l \Gamma(X, T_X^D \otimes \mathbb{C}) \rightarrow \bigwedge^{l} \Gamma(X, T_X^D \otimes \mathbb{C}) \\
H_{\text{DR}}^l(X) &= Z_{\text{DR}}^l(X)/B_{\text{DR}}^l(X) \\
H_{\text{DR}}^l(X)_{\mathbb{C}} &= Z_{\text{DR}}^l(X)_{\mathbb{C}}/B_{\text{DR}}^l(X)_{\mathbb{C}}.
\end{align*}

Note: $H_{\text{DR}}^l(X)_{\mathbb{C}} = H_{\text{DR}}^l(X) \otimes \mathbb{C}$. These are the de Rham cohomology groups. For Dolbeault cohomology, take X, a complex manifold of dimension n, view it as a real manifold of dimension $2n$, consider the complexified cotangent bundle, $T_X^D \otimes \mathbb{C}$, and decompose its wedge powers as

$$\bigwedge^l (T_X^D \otimes \mathbb{C}) = \bigoplus_{p+q=l} \bigwedge^p (T_X^D \otimes \mathbb{C}).$$

Since X is a complex manifold, $d = \partial + \overline{\partial}$ and so, $\partial^2 = \overline{\partial}^2 = 0$. Therefore, we get complexes by fixing p or q:

(a) Fix q: \(\bigwedge^{0,q} (T_X^D \otimes \mathbb{C}) \xrightarrow{\partial} \bigwedge^{1,q} (T_X^D \otimes \mathbb{C}) \xrightarrow{\partial} \cdots \xrightarrow{\partial} \bigwedge^{n,q} (T_X^D \otimes \mathbb{C}) \).

(b) Fix p: \(\bigwedge^{p,0} (T_X^D \otimes \mathbb{C}) \xrightarrow{\overline{\partial}} \bigwedge^{p,1} (T_X^D \otimes \mathbb{C}) \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \bigwedge^{p,n} (T_X^D \otimes \mathbb{C}) \).

The above are the Dolbeault complexes and we have the corresponding cohomology groups $H^\partial_p(X)$ and $H^{\overline{\partial}}_q(X)$. Actually, the $H^\partial_p(X)$ are usually called the Dolbeault cohomology groups. The reason for that is if $f: X \rightarrow Y$ is holomorphic, then df and $(df)^\partial$ respect the p,q-decomposition. Consequently, ∂.

$$\left(\partial f\right)^p_{D} : \bigwedge^p (T_{Y,f(x)}^D \otimes \mathbb{C}) \rightarrow \bigwedge^p (T_{X,x}^D \otimes \mathbb{C})$$
for all \(x \in X \) and
\[(df)^D \circ \overline{\partial} = \overline{\partial} \circ (df)^D\]

imply that \((df)^D\) induces maps \(H^{p,q}_Y \rightarrow H^{p,q}_X \).

The main local fact is the Poincaré lemma.

Lemma 2.3 (Poincaré Lemma) If \(X \) is a real \(C^\infty \)-manifold and is actually a star-shaped manifold (or particularly, a ball in \(\mathbb{R}^n \)), then \(H^p_{\text{DR}}(X) = (0) \), for all \(p \geq 1 \).

If \(X \) is a complex analytic manifold and is a polydisc \((PD(0,r)) \), then

(a) \(H^p_{\overline{\partial}}(X) = (0) \), for all \(p \geq 0 \) and all \(q \geq 1 \).

(b) \(H^p_{\overline{\partial}}(X) = (0) \), for all \(q \geq 0 \) and all \(p \geq 1 \).

Proof. Given any form \(\omega \in \bigwedge^{0,q}(PD(0,r)) \) with \(\overline{\partial} \omega = 0 \), we need to show that there is some \(\eta \in \bigwedge^{0,q-1}(PD(0,r)) \) so that \(\overline{\partial} \eta = \omega \). There are three steps to the proof.

Step I. Reduction to the case \(p = 0 \).

Say the lemma holds is \(\omega \in \bigwedge^{0,q}(PD(0,r)) \). Then, our \(\omega \) is of the form
\[\omega = \sum_{|I|=p} a_{I,J} d z_I \wedge d \overline{z}_J. \]

Write
\[\omega_I = \sum_{|J|=q} a_{I,J} d \overline{z}_J \in \bigwedge^{0,q}(PD(0,r)). \]

Claim: \(\overline{\partial} \omega_I = 0 \).

We have \(\omega = \sum_{|I|=p} d z_I \wedge \omega_I \) and
\[0 = \overline{\partial} \omega = \sum_{|I|=p} \overline{\partial}(d z_I \wedge \omega_I) = \sum_{|I|=p} \pm d z_I \wedge \overline{\partial} \omega_I. \]

These terms are in the span of
\[d z_{i_1} \wedge \cdots \wedge d z_{i_p} \wedge d \overline{z}_j \wedge d \overline{z}_{j_1} \wedge \cdots \wedge d \overline{z}_{j_q} \]

and by linear independence of these various wedges, we must have \(\overline{\partial} \omega_I = 0 \), for all \(I \). Then, by the assumption, there is some \(\eta_I \in \bigwedge^{0,q-1}(PD(0,r)) \), so that \(\overline{\partial} \eta_I = \omega_I \). It follows that
\[\omega = \sum_{|I|=p} d z_I \wedge \overline{\partial} \eta_I = \sum_{|I|=p} \pm \overline{\partial}(d z_I \wedge \eta_I) = \overline{\partial}(\sum_{|I|=p} \pm d z_I \wedge \eta_I), \]

with \(\sum_{|I|=p} \pm d z_I \wedge \eta_I \in \bigwedge^{p,q-1}(PD(0,r)) \), which concludes the proof of Step I.

Step II: Interior part of the proof.

We will prove that for every \(\epsilon > 0 \), there is some \(\eta \in \bigwedge^{0,q-1}(PD(0,r)) \) so that \(\overline{\partial} \eta = \omega \) in \(\text{PD}(0,r - \epsilon) \).

Let us say that \(\eta \) depends on \(d \overline{z}_1, \ldots, d \overline{z}_s \) if the terms \(a_J d \overline{z}_J \) in \(\eta \) where \(J \not\subseteq \{1, \ldots, s\} \) are all zero, i.e., in \(\eta \), only terms \(a_J d \overline{z}_J \) appear for \(J \subseteq \{1, \ldots, s\} \).
Claim: If ω depends on $d\bar{z}_1, \ldots, d\bar{z}_s$, then there is some $\eta \in \bigwedge^{0, q-1}(PD(0, r))$ so that $\omega - \bar{\partial}\eta$ depends only on $d\bar{z}_1, \ldots, d\bar{z}_{s-1}$ in $PD(0, r - \epsilon)$.

Clearly, if the claim is proved, the interior part is done by a trivial induction. In ω, isolate the terms depending on $d\bar{z}_1, \ldots, d\bar{z}_{s-1}$, call these ω_2 and ω_1 the rest. Now, $\omega_1 = \theta \wedge d\bar{z}_s$, so $\omega = \theta \wedge d\bar{z}_s + \omega_2$ and we get

$$0 = \bar{\partial}\omega = \bar{\partial}(\theta \wedge d\bar{z}_s) + \bar{\partial}\omega_2.$$ (1)

Examine the terms

$$\frac{\partial a_J}{\partial \bar{z}_l} d\bar{z}_s \wedge d\bar{z}_J,$$ where $l > s$.

Linear independence and (1) imply

$$\frac{\partial a_J}{\partial \bar{z}_l} = 0 \text{ if } J \subseteq \{1, 2, \ldots, s-1\} \text{ and } l > s.$$ (2)

If $s \in J$, write $\bar{J} = J - \{s\}$. Look at the function

$$\eta_J(z_1, \ldots, z_n) = \frac{1}{2\pi i} \int_{|\xi| \leq r - \epsilon} a_J(z_1, \ldots, z_{s-1}, \xi, z_{s+1}, \ldots, z_n) \frac{d\xi \wedge d\bar{\xi}}{\xi - z_s}.$$ (3)

We have the basic complex analysis lemma:

Lemma 2.4 Say $g(\xi) \in C^\infty(\Delta_r)$ (where Δ_r is the open disc of radius r), then the function

$$f(z) = \frac{1}{2\pi i} \int_{|\xi| \leq r - \epsilon} g(\xi) \frac{d\xi \wedge d\bar{\xi}}{\xi - z}$$

is in $C^\infty(\Delta_r')$ and $\frac{\partial f}{\partial z} = g$ on $\Delta_{r-\epsilon}$.

By this lemma, we have

$$a_J(z_1, \ldots, z_n) = \frac{\partial \eta_J}{\partial \bar{z}_s} \text{ on } \Delta_{r-\epsilon}(z's)$$

and if $l > s$,

$$\frac{\partial \eta_J}{\partial \bar{z}_l} = \frac{1}{2\pi i} \int_{|\xi| \leq r - \epsilon} \frac{\partial a_J}{\partial \bar{z}_l} \frac{d\xi \wedge d\bar{\xi}}{\xi - z_s} = 0,$$

by the above. So, if we set $\eta = \sum_J \eta_J d\bar{z}_J$, then $\omega - \bar{\partial}\eta$ depends only on $d\bar{z}_1, \ldots, d\bar{z}_{s-1}$ in $PD(0, r - \epsilon)$.

Step III: Exhaustion.

Pick a sequence, $\{\epsilon_t\}$, with ϵ_t monotonically decreasing to 0 and examine $PD(0, r - \epsilon_t)$. Write $r_t = r - \epsilon_t$, then the sequence $\{r_t\}$ monotonically increases to r.

Claim. We can find a sequence, $\eta_t \in \bigwedge^{0, q-1}(PD(0, r))$, such that

1. η_t has compact support in $PD(0, r_{t+1})$.
2. $\eta_t = \eta_{t-1}$ on $PD(0, r_{t-1})$.
3. $\bar{\partial}\eta_t = \omega$ on $PD(0, r_t)$.

We proceed by induction on q, here is the induction step. Pick a sequence of cutoff C^∞-functions, γ_t, so that
2.2. COHOMOLOGY, DE RHAM, DOLBEAULT

(i) γ_t has compact support in $PD(0, r_{t+1})$.
(ii) $\gamma_t \equiv 1$ on $\overline{PD(0, r_t)}$.

Having chosen η_t, we will find η_{t+1}. First, by the interior part of the proof, there is some $\tilde{\eta}_{t+1} \in \Lambda^{0,a-1}(PD(0, r))$ with $\partial\tilde{\eta}_{t+1} = \omega$ in $PD(0, r_{t+1})$. Examine $\tilde{\eta}_{t+1} - \eta_t$ on $PD(0, r_t)$, then

$$\overline{\partial}(\tilde{\eta}_{t+1} - \eta_t) = \overline{\partial}\tilde{\eta}_{t+1} - \overline{\partial}\eta_t = \omega - \omega = 0.$$

By the induction hypothesis, there is some $\beta \in \Lambda^{0,a-2}(PD(0, r))$ with

$$\overline{\partial}\beta = \tilde{\eta}_{t+1} - \eta_t \text{ on } PD(0, r_t).$$

Let $\eta_{t+1} = \gamma_{t+1}(\tilde{\eta}_{t+1} - \overline{\partial}\beta) = \gamma_{t+1} \eta_t$. We have

1. $\eta_{t+1} \in C^\infty(\Lambda^{0,a-1}(PD(0, r_{t+2})))$.
2. As $\gamma_{t+1} \equiv 1$ on $PD(0, r_{t+1})$, we have $\eta_{t+1} = \tilde{\eta}_{t+1} - \overline{\partial}\beta$ and so, $\partial\eta_{t+1} = \partial\tilde{\eta}_{t+1} = \omega$ on $PD(0, r_{t+1})$.
3. $\eta_{t+1} - \eta_t = \tilde{\eta}_{t+1} - \overline{\partial}\beta - \eta_t = 0$ on $PD(0, r_t)$.

Now, for any compact subset, K, in $PD(0, r)$, there is some t so that $K \subseteq PD(0, r_t)$. It follows that the η_t's stabilize on K and our sequence converges uniformly on compacta. Therefore,

$$\eta = \lim_{t \to \infty} \eta_t = \overline{\partial}\eta \text{ and } \partial\eta = \lim_{t \to \infty} \partial\eta_t = \omega.$$

Finally, we have to deal with the case $\gamma = 1$. Let $\omega \in \Lambda^{0,1}(PD(0, r))$, with $\partial\omega = 0$. Again, we need to find some functions, η_t, with compact support on $PD(0, r_{t+1})$, so that

(a) $\overline{\partial}\eta_t = \omega$ on $PD(0, r_t)$.

(b) η_t converges uniformly on compacta to η, with $\overline{\partial}\eta = \omega$. Here, $\eta_t, \eta \in C^\infty(PD(0, r))$.

Say we found η_t with

$$\|\eta_t - \eta_{t-1}\|_{\infty, PD(0, r_{t-1})} \leq \frac{1}{2^{t-1}}.$$

Pick $\eta_{t+1} \in C^\infty(PD(0, r))$, with $\overline{\partial}\eta_{t+1} = \omega$ on $PD(0, r_{t+1})$. Then, on $PD(0, r_t)$, we have

$$\overline{\partial}(\eta_{t+1} - \eta_t) = \overline{\partial}\eta_{t+1} - \overline{\partial}\eta_t = \omega - \omega = 0.$$

So, $\eta_{t+1} - \eta_t$ is holomorphic in $PD(0, r_t)$. Take the MacLaurin series for it and truncate it to the polynomial θ so that on the compact $PD(0, r_{t-1})$, we have

$$\|\eta_{t+1} - \eta_t - \theta\|_{\infty, PD(0, r_{t-1})} \leq \frac{1}{2^t}.$$

Take $\eta_{t+1} = \gamma_{t+1}(\eta_{t+1} - \theta)$. Now, η_{t+1} has compact support on $PD(0, r_{t+2})$ and on $PD(0, r_{t+1})$, we have $\gamma_{t+1} \equiv 1$. This implies that $\eta_{t+1} = \eta_{t+1} - \theta$, so

$$\|\eta_{t+1} - \eta_t\|_{\infty, PD(0, r_{t-1})} \leq \frac{1}{2^t}$$

and

$$\partial\eta_{t+1} = \overline{\partial}\eta_{t+1} + \overline{\partial}\theta = \overline{\partial}\eta_{t+1} = \omega \text{ on } PD(0, r_{t+1}),$$

as θ is a polynomial. Therefore, the η_t's converge uniformly on compacta and if $\eta = \lim_{t \to \infty} \eta_t$, we get $\overline{\partial}\eta = \omega$. \(\square\)
Corollary 2.5 (\(\partial\overline{\partial}\text{ Poincaré}\)) Say \(\omega \in \bigwedge^{p,q}(U)\), where \(U \subseteq X\) is an open subset of a complex manifold, \(X\), and assume \(d\omega = 0\). Then, for all \(x \in U\), there is a neighborhood, \(V \ni x\), so that \(\omega = \partial\overline{\partial}\eta\) on \(V\), for some \(\eta \in \bigwedge^{p-1,q-1}(V)\).

Proof. The statement is local on \(X\), therefore we may assume \(X = \mathbb{C}^n\). By ordinary \(d\text{-Poincaré}\), for every \(x \in X\), there is some open, \(V_1 \ni x\), and some \(\zeta \in \bigwedge^{p+q-1}(V_1)\), so that \(\omega = d\zeta\). Now,

\[
\bigwedge^{p+q-1}(V_1) = \bigwedge_{r+s=p+q-1}^{r,s}(V_1),
\]

so, \(\zeta = (\zeta_{r,s})\), where \(\zeta_{r,s} \in \bigwedge^{r,s}(V_1)\). We have

\[
\omega = d\zeta = \sum_{r,s} d\zeta_{r,s} = \sum_{r,s} (\partial + \overline{\partial})\zeta_{r,s}.
\]

Observe that if \((r,s) \neq (p-1,q)\) or \((r,s) \neq (p,q-1)\), then the \(\zeta_{r,s}\)'s have \(d\zeta_{r,s} \notin \bigwedge^{p,q}(V_1)\). It follows that \(\zeta_{r,s} = 0\) and we can delete these terms from \(\zeta\); we get \(\zeta = \zeta_{p-1,q} + \zeta_{p,q-1}\) with \(d\zeta = 0\). We also have

\[
\omega = d\zeta = (\partial + \overline{\partial})\zeta = \partial\zeta_{p-1,q} + \overline{\partial}\zeta_{p,q-1} + \partial\zeta_{p-1,q} + \partial\zeta_{p,q-1} = \omega + \overline{\partial}\zeta_{p-1,q} + \partial\zeta_{p,q-1},
\]

that is, \(\overline{\partial}\zeta_{p-1,q} + \partial\zeta_{p,q-1} = 0\). Yet, \(\overline{\partial}\zeta_{p-1,q}\) and \(\partial\zeta_{p,q-1}\) belong to different bigraded components, so \(\overline{\partial}\zeta_{p-1,q} = \partial\zeta_{p,q-1} = 0\). We now use the \(\overline{\partial}\) and \(\partial\text{-Poincaré}\) lemma to get a polydisc, \(V \subseteq V_1\) and some forms \(\eta_1\) and \(\eta_2\) in \(\bigwedge^{p-1,q-1}(V)\), so that \(\zeta_{p-1,q} = \overline{\partial}\eta_1\) and \(\zeta_{p,q-1} = \partial\eta_2\). We get

\[
\overline{\partial}\partial(\eta_1) = \partial\zeta_{p-1,q} \quad \text{and} \quad \partial\overline{\partial}(\eta_2) = -\partial\zeta_{p,q-1}
\]

and so,

\[
\overline{\partial}\partial(\eta_1 - \eta_2) = \partial\zeta_{p-1,q} + \overline{\partial}\zeta_{p,q-1} = \omega,
\]

which concludes the proof. \(\square\)

Remark: Take \(\mathcal{C}^\infty = \) the sheaf of germs of real-valued \(\mathcal{C}^\infty\)-functions on \(X\), then

\[
\mathcal{H} = \text{Ker} \left(\overline{\partial}\partial : \mathcal{C}^\infty \longrightarrow \bigwedge^1(X) \right)
\]

is called the sheaf of germs of pluri-harmonic functions.

Corollary 2.6 With \(X\) as in Corollary 2.5, the sequences

\[
0 \longrightarrow \Omega^p_X \overset{\partial}{\longrightarrow} \bigwedge^p X \overset{\overline{\partial}}{\longrightarrow} \bigwedge^p X \overset{\partial}{\longrightarrow} \bigwedge^{p-1} X \overset{\overline{\partial}}{\longrightarrow} \bigwedge^{p-1} X \overset{\partial}{\longrightarrow} \cdots
\]

(when \(p = 0\), it is \(0 \longrightarrow \mathcal{O}_X \overset{\partial}{\longrightarrow} \bigwedge^0 X \overset{\overline{\partial}}{\longrightarrow} \bigwedge^0 X \overset{\partial}{\longrightarrow} \bigwedge^1 X \overset{\overline{\partial}}{\longrightarrow} \bigwedge^1 X \overset{\partial}{\longrightarrow} \cdots\)),

\[
0 \longrightarrow \Omega^q_X \overset{\partial\overline{\partial}}{\longrightarrow} \bigwedge^q X \overset{\overline{\partial}}{\longrightarrow} \bigwedge^q X \overset{\partial\overline{\partial}}{\longrightarrow} \bigwedge^{q-1} X \overset{\overline{\partial}}{\longrightarrow} \cdots
\]

and

\[
0 \longrightarrow \mathcal{H} \overset{\partial\overline{\partial}}{\longrightarrow} \mathcal{C}^\infty X \overset{\overline{\partial}\partial}{\longrightarrow} \bigwedge^1 X \overset{\partial}{\longrightarrow} \bigwedge^1 X \overset{\overline{\partial}}{\longrightarrow} \bigwedge^2 X \overset{\partial}{\longrightarrow} \cdots
\]

are resolutions (i.e., exact sequences of sheaves) of \(\Omega^p_X, \Omega^q_X, \mathcal{H}\), respectively.
2.2. COHOMOLOGY, DE RHAM, DOLBEAULT

Proof. These are immediate consequences of $\bar{\partial}, \partial, \partial \bar{\partial}$ and d-Poincaré.

In Corollary 2.6, the sheaf Ω^p_X is the sheaf of holomorphic p-forms (locally, $\omega = \sum a_idz_I$, where the a_I are holomorphic functions), $\Omega^{\bar{\partial}}_X$ is the sheaf of anti-holomorphic q-forms ($\omega = \sum a_id\bar{z}_I$, where the a_I are anti-holomorphic functions) and \mathcal{H} is the sheaf of pluri-harmonic functions.

If \mathcal{F} is a sheaf of abelian groups, by cohomology, we mean derived functor cohomology, i.e., we have

$$\Gamma: \mathcal{F} \mapsto \mathcal{F}(X) = \Gamma(X, \mathcal{F}),$$

a left-exact functor and

$$H^p(X, \mathcal{F}) = (R^p\Gamma)(\mathcal{F}) \in \text{Ab}. $$

We know that this cohomology can be computed using flasque (= flabby) resolutions

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{G}_0 \rightarrow \mathcal{G}_1 \rightarrow \cdots \rightarrow \mathcal{G}_n \rightarrow \cdots,$$

where the \mathcal{G}_i's are flasque, i.e., for every open, $U \subseteq X$, for every section $\sigma \in \mathcal{G}(U)$, there is a global section, $\tau \in \mathcal{G}(X)$, so that $\sigma = \tau \upharpoonright U$. If we apply Γ, we get a complex of (abelian) groups

$$0 \rightarrow \Gamma(X, \mathcal{F}) \rightarrow \Gamma(X, \mathcal{G}_0) \rightarrow \Gamma(X, \mathcal{G}_1) \rightarrow \cdots \rightarrow \Gamma(X, \mathcal{G}_n) \rightarrow \cdots, \tag{*}$$

and then $H^p(X, \mathcal{F}) = \text{the } p\text{th cohomology group of } (*)$.

Unfortunately, the sheaves arising naturally (from forms, etc.) are not flasque; they satisfy a weaker condition. In order to describe this condition, given a sheaf, \mathcal{F}, we need to make sense of $\mathcal{F}(S)$, where $S \subseteq X$ is a closed subset. Now, remember (see Appendix A on sheaves, Section A4) that for any subspace, Y of X, if $j: Y \hookrightarrow X$ is the inclusion map, then for any sheaf, \mathcal{F}, on X, the sheaf $j^*\mathcal{F} = \mathcal{F} \upharpoonright Y$ is the restriction of \mathcal{F} to Y. For every $x \in Y$, the stalk of $\mathcal{F} \upharpoonright Y$ at x is equal to \mathcal{F}_x. Consequently, if S is any subset of X, we have $\sigma \in \mathcal{F}(S)$ iff there is an open cover, $\{U_\alpha\}$, of S and a family of sections, $\sigma_\alpha \in \mathcal{F}(U_\alpha)$, so that for every α, we have

$$\sigma \upharpoonright S \cap U_\alpha = \sigma_\alpha \upharpoonright S \cap U_\alpha.$$

Remark: (Inserted by J.G.) If X is paracompact, then for any closed subset, $S \subseteq X$, we have

$$\mathcal{F}(S) = \lim_{U \supseteq S} \mathcal{F}(U),$$

where U ranges over all open subsets of S (see Godement[5], Chapter 3, Section 3.3, Corollary 1). [Recall that for any cover, $\{U_\alpha\}_\alpha$ of X, we say that that $\{U_\alpha\}_\alpha$ is locally finite iff for every $x \in X$, there is some open subset, $U_x \ni x$, so that U_x meets only finitely many U_α. A topological space, X, is paracompact iff it is Hausdorff and if every open cover possesses a locally finite refinement.]

Now, we want to consider sheaves, \mathcal{F}, such that for every closed subset, S, the restriction map $\mathcal{F}(X) \rightarrow \mathcal{F}(S)$ is onto.

Definition 2.3 Let X be a paracompact topological space. A sheaf, \mathcal{F}, is soft (mou) iff for every closed subset, $S \subseteq X$, the restriction map $\mathcal{F}(X) \rightarrow \mathcal{F} \upharpoonright S(S)$ is onto. A sheaf, \mathcal{F}, is fine iff for all locally finite open covers, $\{U_\alpha \rightarrow X\}$, there exists a family, $\{\eta_\alpha\}$, with $\eta_\alpha \in \text{End}(\mathcal{F})$, so that

1. $\eta_\alpha \upharpoonright \mathcal{F}_x = 0$, for all x in some neighborhood of U_α^c, i.e., $\text{supp}(\eta_\alpha) \subseteq U_\alpha$.
2. $\sum_\alpha \eta_\alpha = \text{id}.$

We say that the family $\{\eta_\alpha\}$ is a sheaf partition of unity subordinate to the given cover $\{U_\alpha \rightarrow X\}$ for \mathcal{F}.

Remark: The following sheaves are fine on any complex or real C^∞-manifold:

1. C^∞
2. \bigwedge^p
3. $\bigwedge^{p,q}$
4. Any locally-free C^∞-bundle ($= C^\infty$-vector bundle).

For, any open cover of our manifold has a locally finite refinement, so we may assume that our open cover is locally finite (recall, a manifold is locally compact and second-countable, which implies paracompactness). Then, take a C^∞-partition of unity subordinate to our cover, $\{U_\alpha \to X\}$, i.e., a family of C^∞-functions, φ_α, so that

1. $\varphi_\alpha \geq 0$.
2. $\text{supp}(\varphi) < U_\alpha$ (this means $\text{supp}(\varphi)$ is compact and contained in U_α).
3. $\sum_\alpha \varphi_\alpha = 1$.

Then, for η_α, use multiplication by φ_α.

Remark: If we know a sheaf of rings, \mathcal{A}, on X is fine, then every \mathcal{A}-module is also fine and the same with soft.

Proposition 2.7 Let X be a paracompact space. Every fine sheaf is soft. Say

$$0 \to \mathcal{F}' \xrightarrow{\lambda} \mathcal{F} \xrightarrow{\mu} \mathcal{F}'' \to 0$$

is an exact sequence of sheaves and \mathcal{F}' is soft. Then,

$$0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X) \to 0$$

is exact.

Again, if

$$0 \to \mathcal{F}' \xrightarrow{\lambda} \mathcal{F} \xrightarrow{\mu} \mathcal{F}'' \to 0$$

is an exact sequence of sheaves and if \mathcal{F}' and \mathcal{F} are soft, so is \mathcal{F}''. Every soft sheaf is cohomologically trivial ($H^p(X, \mathcal{F}) = (0)$ if $p > 0$).

Proof. Take \mathcal{F} fine, S closed and $\tau \in \mathcal{F}(S)$. There is an open cover of S and sections, $\tau_\alpha \in \mathcal{F}(U_\alpha)$, so that $\tau_\alpha \upharpoonright U_\alpha \cap S = \tau \upharpoonright U_\alpha \cap S$. Let $U_0 = X - S$, an open, so that U_0 and the U_α cover X. By paracompactness, we may assume that the cover is locally finite. Take the $\eta_\alpha \in \text{Aut}(\mathcal{F})$ guaranteed as \mathcal{F} is fine. Now, we have $\eta_\alpha(\tau_\alpha) = 0$ near the boundary of U_α, so $\eta_\alpha(\tau_\alpha)$ extends to all of X (as section) by zero, call it σ_α. We have $\sigma_\alpha \in \mathcal{F}(X)$ and

$$\sigma = \sum_\alpha \sigma_\alpha$$

exists (by local finiteness).

As $\sigma_\alpha \upharpoonright U_\alpha \cap S = \tau_\alpha \upharpoonright U_\alpha \cap S$, we get

$$\sigma_\alpha = \eta_\alpha(\tau_\alpha) = \eta_\alpha(\tau) \quad \text{on } U_\alpha \cap S$$

and we deduce that

$$\sigma = \sum_\alpha \sigma_\alpha = \sum_\alpha \eta_\alpha(\tau_\alpha) = \sum_\alpha \eta_\alpha(\tau) = \left(\sum_\alpha \eta_\alpha\right)(\tau) = \tau; \quad \text{on } S.$$
Therefore, σ is a lift of τ to X from S.

Exactness of the sequence

$$0 \to \mathcal{F}' \xrightarrow{\lambda} \mathcal{F} \xrightarrow{\mu} \mathcal{F}'' \to 0$$

implies that for every $\sigma \in \mathcal{F}''(X)$, there is an open cover, $\{U_\alpha \to X\}$, and a family of sections, $\tau_\alpha \in \mathcal{F}(U_\alpha)$, so that $\mu(\tau_\alpha) = \sigma | U_\alpha$. By paracompactness, we may replace the U_α's by a locally finite family of closed sets, S_α. Consider the set

$$S = \left\{ (\tau, S) \mid \begin{array}{l}
(1) \quad S = \bigcup S_\alpha, \text{ for some of our } S_\alpha \\
(2) \quad \tau \in \mathcal{F}(S), \quad \tau | S_\alpha = \tau_\alpha, \text{ for each } S_\alpha \text{ as in (1).}
\end{array} \right\}$$

The set S is, as usual, partially ordered and it is inductive (DX). By Zorn's lemma, S possesses a maximal element, (τ, S). I claim that $X = S$.

If $S \neq X$, then there is some S_β with $S_\beta \subset S$. On $S \cap S_\beta$, we have

$$\mu(\tau - \tau_\beta) = \sigma - \sigma = 0,$$

where $\mu(\tau) = \sigma$, by (2), and $\mu(\tau_\beta) = \sigma$, by definition. By exactness, there is some $\zeta \in \mathcal{F}'(S \cap S_\beta)$ so that $\lambda(\zeta) = \tau - \tau_\beta$ on $S \cap S_\beta$. Now, as \mathcal{F}' is soft, ζ extends to a global section of \mathcal{F}', say, z. Define ω by

$$\omega = \begin{cases}
\tau & \text{on } S \\
\tau_\beta + \lambda(z) & \text{on } S_\beta.
\end{cases}$$

On $S \cap S_\beta$, we have $\omega = \tau = \tau_\beta + \lambda(z) = \tau_\beta + \lambda(\zeta) = \tau$, so ω and τ agree. But then, $(\omega, S \cup S_\beta) \in S$ and $(\omega, S \cup S_\beta) > (\tau, S)$, a contradiction. Therefore, the sequence

$$0 \to \mathcal{F}' \xrightarrow{\lambda} \mathcal{F} \xrightarrow{\mu} \mathcal{F}'' \to 0$$

has globally exact sections.

Now, assume that \mathcal{F}' and \mathcal{F} are soft and take $\tau \in \mathcal{F}''$, with S closed. Apply the above to $X = S$; as \mathcal{F}' is soft, we deduce that $\mathcal{F}(S) \to \mathcal{F}''(S)$ is onto. As \mathcal{F} and \mathcal{F}' are soft, the commutative diagram

$$\begin{array}{ccc}
\mathcal{F}(X) & \to & \mathcal{F}''(X) \\
\downarrow & & \downarrow \\
\mathcal{F}(S) & \to & \mathcal{F}''(S) \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}$$

implies that $\mathcal{F}''(X) \to \mathcal{F}''(S)$ is surjective.

For the last part, we use induction. The induction hypothesis is: If \mathcal{F} is soft, then $H^p(X, \mathcal{F}) = (0)$, for $0 < p \leq n$. When $n = 1$, we can embed \mathcal{F} in a flasque sheaf, Q, and we have the exact sequence

$$0 \to \mathcal{F} \to Q \to \text{cok} \to 0. \quad (\dagger)$$

If we apply cohomology we get

$$0 \to H^1(X, \mathcal{F}) \to H^1(X, Q) = (0),$$

since Q is flasque, so $H^1(X, \mathcal{F}) = (0)$.

For the induction step, use (†) and note that cok is soft because \(F \) and \(Q \) are soft (\(Q \) is flasque and flasque sheaves are soft over a paracompact space, see Homework). When we apply cohomology, we get
\[
(0) = H^j(X, Q) \rightarrow H^j(X, \text{cok}) \rightarrow H^{j+1}(X, F) \rightarrow H^{j+1}(X, Q) = (0), \quad (j \geq 1)
\]
so \(H^j(X, \text{cok}) \cong H^{j+1}(X, F) \). As cok is soft, by the induction hypothesis, \(H^j(X, \text{cok}) = (0) \), so \(H^{j+1}(X, F) = (0) \).

Corollary 2.8 Each of the resolutions \((p > 0)\)
\[
0 \longrightarrow \Omega^p_X \longrightarrow \bigwedge^p X \overset{\partial}{\longrightarrow} \bigwedge^{p+1} X \overset{\partial}{\longrightarrow} \cdots,
\]
(for \(p = 0 \), a resolution of \(\mathcal{O}_X \)),
\[
0 \longrightarrow \Omega^q_X \longrightarrow \bigwedge^q X \overset{\partial}{\longrightarrow} \bigwedge^{q+1} X \overset{\partial}{\longrightarrow} \cdots,
\]
and
\[
0 \longrightarrow \mathbb{R} \overset{c}{\longrightarrow} \bigwedge^0 X = C^\infty \overset{d}{\longrightarrow} \bigwedge^1 X \overset{d}{\longrightarrow} \cdots,
\]
is an acyclic resolution (i.e., the cohomology of \(\bigwedge^p X, \bigwedge^q X \) vanishes).

Proof. The sheaves \(\bigwedge^p X, \bigwedge^q X \) are fine, therefore soft, by Proposition 2.7. \(\square \)

Recall the spectral sequence of Čech cohomology (\(\check{S}S \)):
\[
E_2^{p,q} = \check{H}^p(X, \mathcal{H}^q(F)) \Rightarrow H^*(X, F),
\]
where
(1) \(F \) is a sheaf of abelian groups on \(X \)
(2) \(\mathcal{H}^q(F) \) is the presheaf defined by \(U \hookrightarrow H^q(U, F) \).

Now, we have the following vanishing theorem (see Godement [5]):

Theorem 2.9 (Vanishing Theorem) Say \(X \) is paracompact and \(F \) is a presheaf on \(X \) so that \(F^\sharp (= \text{associated sheaf to } F) \) is zero. Then,
\[
\check{H}^p(X, F) = (0), \quad \text{all } p \geq 0.
\]

Putting the vanishing theorem together with the spectral sequence (\(\check{S}S \)), we get:

Theorem 2.10 (Isomorphism Theorem) If \(X \) is a paracompact space, then for all sheaves, \(F \), the natural map
\[
\check{H}^p(X, F) \longrightarrow H^p(X, F)
\]
is an isomorphism for all \(p \geq 0 \).

Proof. The natural map \(\check{H}^p(X, F) \longrightarrow H^p(X, F) \) is just the edge homomorphism from (\(\check{S}S \)). By the handout on cohomology,
\[
\mathcal{H}^q(F)^\sharp = (0), \quad \text{all } q \geq 1.
\]
Thus, the vanishing says
\[
E_2^{p,q} = \check{H}^p(X, \mathcal{H}^q(F)) = (0), \quad \text{all } p \geq 0, q \geq 1,
\]
which implies that the spectral sequence (\(\check{S}S \)) degenerates and we get our isomorphism. \(\square \)
2.2. COHOMOLOGY, DE RHAM, DOLBEAULT

Comments: How to get around the spectral sequence \((\hat{S}S) \).

(1) Look at the presheaf \(\mathcal{F} \) and the sheaf \(\mathcal{F}^\circ \). There is a map of presheaves, \(\mathcal{F} \rightarrow \mathcal{F}^\circ \), so we get a map, \(\hat{H}^p(X, \mathcal{F}) \rightarrow \hat{H}^p(X, \mathcal{F}^\circ) \). Let \(K = \text{Ker}(\mathcal{F} \rightarrow \mathcal{F}^\circ) \) and \(C = \text{Coker}(\mathcal{F} \rightarrow \mathcal{F}^\circ) \). We have the short exact sequences of presheaves

\[
0 \rightarrow K \rightarrow \mathcal{F} \rightarrow \text{Im} \rightarrow 0 \quad \text{and} \quad 0 \rightarrow \text{Im} \rightarrow \mathcal{F}^\circ \rightarrow C \rightarrow 0,
\]

where \(\text{Im} \) is the presheaf image \(\mathcal{F} \rightarrow \mathcal{F}^\circ \). The long exact sequence of \(\check{\text{C}} \)ech cohomology for presheaves gives

\[
\cdots \rightarrow \hat{H}^p(X, K) \rightarrow \hat{H}^p(X, \mathcal{F}) \rightarrow \hat{H}^p(X, \text{Im}) \rightarrow \hat{H}^{p+1}(X, K) \rightarrow \cdots
\]

and

\[
\cdots \rightarrow \hat{H}^{p-1}(X, C) \rightarrow \hat{H}^p(X, \text{Im}) \rightarrow \hat{H}^p(X, \mathcal{F}^\circ) \rightarrow \hat{H}^p(X, C) \rightarrow \cdots,
\]

and as \(K^\circ = C^\circ = (0) \), by the vanishing theorem, we get

\[
\hat{H}^p(X, \mathcal{F}) \cong \hat{H}^p(X, \text{Im}) \cong \hat{H}^p(X, \mathcal{F}^\circ).
\]

Therefore, on a paracompact space, \(\hat{H}^p(X, \mathcal{F}) \cong \hat{H}^p(X, \mathcal{F}^\circ) \).

(2) \(\check{\text{C}} \)ech cohomology is a \(\delta \)-functor on the category of sheaves for paracompact \(X \).

Say

\[
0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow 0
\]

is exact as sheaves. Then, if we write \(\text{Im} \) for \(\text{Im}(\mathcal{F} \rightarrow \mathcal{F}'') \) as presheaves, we have the short exact sequence of presheaves

\[
0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \text{Im} \rightarrow 0
\]

and \(\text{Im}^\circ = \mathcal{F}'' \). Then, for presheaves, we have

\[
\cdots \rightarrow \hat{H}^p(X, \mathcal{F}) \rightarrow \hat{H}^p(X, \text{Im}) \rightarrow \hat{H}^{p+1}(X, \mathcal{F}') \rightarrow \cdots
\]

and by (1), \(\hat{H}^p(X, \mathcal{F}) \cong \hat{H}^p(X, \mathcal{F}^\circ) \), so we get (2).

(3) One knows, for soft \(\mathcal{F} \) on a paracompact space, \(X \), we have \(\hat{H}^p(X, \mathcal{F}) = (0) \), for all \(p \geq 1 \). Each \(\mathcal{F} \) embeds in a flasque sheaf; flasque sheaves are soft, so \(\{ \hat{H}^p \} \) is an effaceable \(\delta \)-functor on the category of sheaves and it follows that \(\{ \hat{H}^p \} \) is universal. By homological algebra, we get the isomorphism theorem, again.

In fact, instead of (3), one can prove the following proposition:

Proposition 2.11 Say \(X \) is paracompact and \(\mathcal{F} \) is a fine sheaf. Then, for a locally finite cover, \(\{ U_\alpha \rightarrow X \} \), we have

\[
\hat{H}^p(\{ U_\alpha \rightarrow X \}, \mathcal{F}) = (0), \quad \text{if} \ p \geq 1.
\]

Proof. Take \(\{ \eta_\alpha \} \), the sheaf partition of unity of \(\mathcal{F} \) subordinate to our cover, \(\{ U_\alpha \rightarrow X \} \). Pick \(\tau \in Z^p(\{ U_\alpha \rightarrow X \}, \mathcal{F}) \), with \(p \geq 1 \). So, we have \(\tau = \tau(U_{\alpha_0} \cap \cdots \cap U_{\alpha_p}) \). Write

\[
\omega = \sum_3 \eta_\beta(\tau(U_\beta \cap U_{\alpha_0} \cap \cdots \cap U_{\alpha_p})).
\]

Observe that \(\omega \) exists as section over \(U_{\alpha_0} \cap \cdots \cap U_{\alpha_p} \) as \(\eta_\beta \) is zero near the boundary of \(U_\beta \); so \(\omega \) can be extended from \(U_\beta \cap U_{\alpha_0} \cap \cdots \cap U_{\alpha_p} \) to \(U_{\alpha_0} \cap \cdots \cap U_{\alpha_p} \) by zero. You check (usual computation): \(d\omega = \tau \).

Corollary 2.12 If \(\mathcal{F} \) is fine (over a paracompact, \(X \)), then

\[
\hat{H}^p(X, \mathcal{F}) = (0), \quad \text{for all} \ p \geq 1.
\]
Theorem 2.13 (P. Dolbeault) If \(X \) is a complex manifold, then we have the isomorphisms
\[
H^q(X, \Omega^p_X) \cong H^{p,q}_\partial(X) \cong \check{H}^q(X, \Omega^p_X).
\]

Proof. The middle cohomology is computed from the resolution of sheaves
\[
0 \rightarrow \Omega^p_X \rightarrow \bigwedge^p X \rightarrow \bigwedge^{p,1} X \rightarrow \bigwedge^{p,2} X \rightarrow \ldots.
\]
Moreover, the \(\bigwedge^{p,q} X \) are acyclic for \(H^\bullet(X, -) \) and for \(\check{H}^\bullet(X, -) \). Yet, by homological algebra, we can compute \(H^q(X, \Omega^p_X) \) and \(\check{H}^q(X, \Omega^p_X) \) by any acyclic resolution (they are \(\delta \)-functors).

To prove de Rham’s theorem, we need to look at singular cohomology.

Proposition 2.14 If \(X \) is a real or complex manifold and \(\mathcal{F} \) is a constant sheaf (sheaf associated with a constant presheaf), then there is a natural isomorphism
\[
\check{H}^p(X, \mathcal{F}) \cong H^p_{\text{sing}}(X, \mathcal{F}),
\]
provided \(\mathcal{F} \) is torsion-free.

Proof. The space, \(X \), is triangulable, so we get a singular simplicial complex, \(\mathcal{K} \) (see Figure 2.1). Pick a vertex, \(v \), of \(\mathcal{K} \) and set
\[
\text{St}(v) = \bigcup \{ \sigma \in \mathcal{K} \mid v \in \sigma \},
\]
the open star of \(v \) (i.e., the union of the interiors of the simplices having \(v \) as a vertex). If \(v_0, \ldots, v_p \) are vertices, consider
\[
\text{St}(v_0) \cap \cdots \cap \text{St}(v_p) = U_{v_0, \ldots, v_p}.
\]
We have
\[
U_{v_0, \ldots, v_p} = \begin{cases}
\emptyset & \text{if } v_0, \ldots, v_p \text{ are not the vertices of a } p\text{-simplex} \\
\text{a connected set} & \text{if } v_0, \ldots, v_p \text{ are the vertices of a } p\text{-simplex}.
\end{cases}
\]
Observe that \(\{ U_v \rightarrow X \}_{v \in \text{vert}(\mathcal{K})} \) is an open cover of \(X \) and as \(\mathcal{F} \) is a constant sheaf, we get
\[
\mathcal{F}(U_{v_0, \ldots, v_p}) = \begin{cases}
\emptyset & \text{if } (v_0, \ldots, v_p) \notin \mathcal{K} \\
\mathcal{F} & \text{if } (v_0, \ldots, v_p) \in \mathcal{K}.
\end{cases}
\]
Let \(\tau \) be a Čech \(p \)-cochain, then \(\tau(U_{v_0, \ldots, v_p}) \in \mathcal{F} \) and let
\[
\Theta(\tau)((v_0, \ldots, v_p)) = \tau(U_{v_0, \ldots, v_p}),
\]
where \((v_0, \ldots, v_p) \in \mathcal{K} \). Note that \(\Theta(\tau) \) is a \(p \)-simplicial cochain and the map \(\tau \mapsto \Theta(\tau) \) is an isomorphism
\[
C^p(\{ U_v \rightarrow X \}, \mathcal{F}) \cong C^p_{\text{sing}}(X, \mathcal{F})
\]
that commutes with the coboundary operators on both sides. So, we get the isomorphism
\[
\check{H}^p(\{ U_v \rightarrow X \}, \mathcal{F}) \cong H^p_{\text{sing}}(X, \mathcal{F}).
\]
We can subdivide \(\mathcal{K} \) simplicially and we get refinements of our cover and those are arbitrarily fine. Subdivision does not change the right hand side and if we take right limits we get
\[
\check{H}^p(X, \mathcal{F}) \cong H^p_{\text{sing}}(X, \mathcal{F}).
\]
As a consequence, we obtain
Theorem 2.15 (de Rham) On a real or complex manifold, we have the isomorphisms

\[H^p(X, \mathbb{R}) \cong \hat{H}^p(X, \mathbb{C}) \cong H^p_{\text{sing}}(X, \mathbb{C}) \cong H^p_{\text{DR}}(X, \mathbb{C}) \]

Proof. The isomorphism of singular cohomology with Čech cohomology follows from Proposition 2.14. The isomorphism of derived functor cohomology with Čech cohomology follows since \(X \) is paracompact. Also de Rham cohomology is the cohomology of the resolution

\[0 \to \mathbb{R} \to \mathcal{C}_d^\infty \to \bigwedge^1 X \to \bigwedge^2 X \to \cdots, \]

and the latter is an acyclic resolution, so it computes \(H^p \) or \(\hat{H}^p \).

Explicit Connection: de Rham \(\rightsquigarrow \) Singular.

Take a singular \(p \)-chain, \(\sum_j a_j \Delta_j \), where \(\Delta_j = f_j(\Delta) \); \(f_j \in \mathcal{C}(\Delta) \); \(\Delta = \) the usual \(p \)-simplex (\(a_j \in \mathbb{Z} \), or \(a_j \in \mathbb{R} \), or \(a_j \in \mathbb{C} \), ...). We say that this \(p \)-chain is piecewise smooth, for short, ps, if the \(f_j \)’s actually are \(\mathcal{C}^\infty \)-functions on a small neighborhood around \(\Delta \). By the usual \(\mathcal{C}^\infty \)-approximation (using convolution), each singular \(p \)-chain is approximated by a ps \(p \)-chain in such a way that cocycles are approximated by ps cocycles and coboundaries, too. In fact, the inclusion

\[C^\text{ps}_p(X, \mathbb{R}) \hookrightarrow C^\text{sing}_p(X, \mathbb{R}) \]

is a chain map and induces an isomorphism

\[H^p_{\text{ps}}(X, \mathbb{R}) \cong H^p_{\text{sing}}(X, \mathbb{R}). \]

Say \(\omega \in \bigwedge^p X \), a de Rham \(p \)-cochain, i.e., a \(p \)-form. If \(\sigma \in C^\text{ps}_p(X, \mathbb{R}) \), say \(\sigma = \sum_j a_j f_j(\Delta) \) (with \(a_j \in \mathbb{R} \)), then define \(\Phi(\omega) \) via:

\[\Phi(\omega)(\sigma) = \int_\sigma \omega \overset{\text{def}}{=} \sum_j a_j \int_{f_j(\Delta)} \omega \overset{\text{def}}{=} \sum_j a_j \int_\Delta f_j^* \omega \in \mathbb{R}. \]

The map \(\Phi(\omega) \) is clearly a linear map on \(C^\text{ps}_p(X, \mathbb{R}) \), so we have \(\Phi(\omega) \in C^\text{ps}_p(X, \mathbb{R}) \). Also, observe that

\[\Phi(d\omega)(\tau) = \int_\tau \omega = \int_{\partial \tau} \omega \ (\text{by Stokes}) = \Phi(\omega)(\partial \tau), \]

from which we conclude that \(\Phi(d\omega)(\tau) = (\partial \Phi)(\omega)(\tau) \), and thus, \(\Phi(d\omega) = \partial \Phi(\omega) \). This means that

\[\int : \bigwedge^p (X, \mathbb{R}) \to C^\text{ps}_p(X, \mathbb{R}) \]

is a cochain map and so, we get our map

\[H^p_{\text{DR}}(X, \mathbb{R}) \to H^p_{\text{sing}}(X, \mathbb{R}). \]

2.3 Hodge I, Analytic Preliminaries

Let \(X \) be a complex analytic manifold. An Hermitian metric on \(X \) is a \(C^\infty \)-section of the vector bundle \((T^1_{X,0} \otimes \overline{T^1_{X,0}})^D \), which is Hermitian symmetric and positive definite. This means that for each \(z \in X \), we have a map \((-,-)_z : T^1_{X,z} \otimes T^1_{X,z} \to \mathbb{C} \) which is linear in its first argument, Hermitian symmetric and positive definite, that is:
(1) \((v, u)_z = (u, v)_z\) (Hermitian symmetric)

(2) \((u_1 + u_2, v)_z = (u_1, v)_z + (u_2, v)_z\) and \((u, v_1 + v_2)_z = (u, v_1)_z + (u, v_2)_z\).

(3) \((\lambda u, v)_z = \lambda(u, v)_z\) and \((u, \mu v)_z = \overline{\mu}(u, v)_z\).

(4) \((u, u)_z \geq 0\), for all \(u\), and \((u, u)_z = 0\) iff \(u = 0\) (positive definite).

(5) \(z \mapsto h(z) = (\alpha, \beta)_z\) is a \(C^\infty\)-function.

Remark: Note that (2) and (3) is equivalent to saying that we have a \(\mathbb{C}\)-linear map, \(T^{1,0}_{X,z} \otimes T^{0,1}_{X,z} \to \mathbb{C}\).

In local coordinates, since \((T^{1,0}_X)^D = \Lambda^{1,0}T^D_X\) and \(\overline{T^{1,0}_X} = T^{0,1}_X\) and since \(\{dz_j\}, \{d\overline{z}_j\}\) are bases for \(\Lambda^{1,0}T^D_{X,z}\) and \(\Lambda^{0,1}T^D_{X,z}\), we get

\[
h(z) = \sum_{k,l} h_{kl}(z)dz_k \otimes d\overline{z}_l,
\]

for some matrix \((h_{kl}) \in M_n(\mathbb{C})\). Now, \((-\cdot)_z\) is an Hermitian inner product, so locally on a trivializing cover for \(T^{1,0}_X\), \(T^{0,1}_X\), by Gram-Schmidt, we can find \((1,0)\)-forms, \(\varphi_1, \ldots, \varphi_n\), so that

\[
(-\cdot)_z = \sum_{j=1}^n \varphi_j(z) \otimes \overline{\varphi_j(z)}.
\]

The collection \(\varphi_1, \ldots, \varphi_n\) is called a coframe for \((-\cdot)_z\) (on the respective open of the trivializing cover). Using a partition of unity subordinate to a trivializing cover, we find all these data exist on any complex manifold.

Consider \(\Re(-\cdot)_z\) and \(\Im(-\cdot)_z\). For \(\lambda \in \mathbb{R}\), (1), (2), (3), (4) imply that \(\Re(-\cdot)_z\) is a positive definite bilinear form, \(C^\infty\) as a function of \(z\), i.e., as \(T^*_{X,z}\) real tangent space \(\cong T^{1,0}_{X,z}\); we see that \(\Re(-\cdot)_z\) is a \(C^\infty\)-Riemannian metric on \(X\). Hence, we have concepts such as length, area, volume, curvature, etc., associated to an Hermitian metric, namely, those concepts for the real part of \((-\cdot)_z\), i.e., the associated Riemannian metric.

If we look at \(\Im(-\cdot)_z\), then (1), (2), (3) and (5) imply that for \(\lambda \in \mathbb{R}\), we have an alternating real bilinear nondegenerate form on \(T^{1,0}_{X,z}\), \(C^\infty\) in \(z\). That is, we get an element of \((T^{1,0}_{X,z} \wedge T^{1,0}_{X,z})^D \subseteq \Lambda^2(T^D_{X,z} \otimes \mathbb{C})\). In fact, this is a \((1,1)\)-form. Look at \(\Im(-\cdot)_z\) in a local coframe. Say \(\varphi_k = \alpha_k + i\beta_k\), where \(\alpha_k, \beta_k \in T^D_{X,z}\). We have

\[
\sum_k \varphi_k(z) \otimes \overline{\varphi_k(z)} = \sum_k (\alpha_k(z) + i\beta_k(z)) \otimes (\alpha_k(z) - i\beta_k(z)) = \sum_k (\alpha_k(z) \otimes \alpha_k(z) + \beta_k(z) \otimes \beta_k(z) + i(\beta_k(z) \otimes \alpha_k(z) - \alpha_k(z) \otimes \beta_k(z))).
\]

Now, a symmetric bilinear form yields a linear form on \(S^2T_{X,z} = S^2T^{1,0}_{X,z}\); consequently, the real part of the Hermitian inner product is \(\Re(-\cdot)_z = \sum_k (\alpha_k(z))^2 + (\beta_k(z))^2\). We usually write \(ds^2\) for \(\sum_k \varphi_k \otimes \overline{\varphi_k}\) and \(\Re(ds^2)\) is the associated Riemannian metric. For \(\Im(ds^2)\), we have a form in \(\Lambda^2(T^{1,0}_X)^D\):

\[
\Im(ds^2) = -2 \sum_{k=1}^n \alpha_k \wedge \overline{\alpha_k}.
\]

We let

\[
\omega_{ds^2} = \omega = -\frac{1}{2} \Im(ds^2)
\]
2.3. Hodge I, Analytic Preliminaries

and call it the associated \((1,1)\)-form to the Hermitian \(ds^2\). If we write \(\varphi_k = \alpha_k + i\beta_k\), we have

\[
\sum_{k=1}^{n} \varphi_k \wedge \overline{\varphi_k} = \sum_{k=1}^{n} (\alpha_k + i\beta_k) \wedge (\alpha_k - i\beta_k) = -2i \sum_{k=1}^{n} \alpha_k \wedge \beta_k.
\]

Therefore,

\[
\omega = \sum_{k=1}^{n} \alpha_k \wedge \beta_k = \frac{i}{2} \sum_{k=1}^{n} \varphi_k \wedge \overline{\varphi_k},
\]

which shows that \(\omega\) is a \((1,1)\)-form.

Remark: The expression for \(\omega\) in terms of \(\Im(ds^2)\) given above depends on the definition of \(\wedge\). In these notes,

\[
\alpha \wedge \beta = \frac{1}{2}(\alpha \otimes \beta - \beta \otimes \alpha),
\]

but in some books, one finds

\[
\omega = -\Im(ds^2).
\]

Conversely, suppose we are given a real \((1,1)\)-form. This means, \(\omega\) is a \((1,1)\)-form and for all \(\xi\),

\[
\omega(\xi) = \overline{\omega(\xi)} \quad \text{(reality condition)}.
\]

Define an “inner product” via

\[
H(v, w) = \omega(v \wedge iw).
\]

We have

\[
H(w, v) = \omega(w \wedge iw) \\
= -\omega(iw \wedge w) \\
= \omega(iw \wedge \overline{w}) \\
= \overline{\omega(iw \wedge \overline{w})} \\
= \omega(v \wedge i\overline{w}) \\
= \overline{H(v, w)}.
\]

(Note we could also set \(H(v, w) = -\omega(v \wedge i\overline{w})\).) Consequently, \(H(v, w)\) will be an inner product provided \(H(v, v) > 0\) iff \(v \neq 0\). So, we need \(\omega(v \wedge iw) = -i\omega(v \wedge \overline{v}) > 0\), for all \(v \neq 0\). Therefore, we say \(\omega\) is positive definite iff

\[
-i\omega(v \wedge \overline{v}) > 0, \quad \text{for all } v \neq 0.
\]

Thus, \(\omega = -(1/2)\Im(ds^2)\) recaptures all of \(ds^2\). You check (DX) that \(\omega\) is positive definite iff in local coordinates

\[
\omega = \frac{i}{2} \sum_{k,l} h_{kl}(z) dz_k \wedge d\overline{z}_l,
\]

where \((h_{kl})\) is a Hermitian positive definite matrix.

Example 1. Let \(X = \mathbb{C}^n\), with \(ds^2 = \sum_{k=1}^{n} dz_k \otimes d\overline{z}_k\). As usual, if \(z_k = x_k + iy_k\), we have

(a) \(\Re(ds^2) = \sum_{k=1}^{n} (dx_k^2 + dy_k^2)\), the ordinary Euclidean metric.

(b) \(\omega = -(1/2)\Im(ds^2) = (i/2) \sum_{k=1}^{n} dz_k \wedge d\overline{z}_k\), a positive definite \((1,1)\)-form.
Remark: Assume that \(f: Y \to X \) is a complex analytic map and that we have an Hermitian metric on \(X \). Then, \(Df: T_Y \to T_X \) maps \(T_{Y,y}^{1,0} \) to \(T_{X,f(y)}^{1,0} \), for all \(y \in Y \). We define an “inner product” on \(Y \) via
\[
\left(\frac{\partial}{\partial y_k}, \frac{\partial}{\partial y_l} \right)_y = \left(Df \frac{\partial}{\partial y_k}, Df \frac{\partial}{\partial y_l}\right)_{f(y)}.
\]
We get a Hermitian symmetric form on \(Y \). If we assume that \(Df \) is everywhere an injection, then our Hermitian metric, \(ds^2 \), on \(X \) induces one on \(Y \); in particular, this holds if \(Y \hookrightarrow X \).

Assume \(Df \) is injective everywhere. We have the dual map, \(f^*: T_Y^0 \to T_X^0 \), i.e., \(f^*: \wedge^{1,0} X \to \wedge^{1,0} Y \). Pick \(U \) small enough in \(Y \) so that
\begin{enumerate}
\item \(T_Y \mid U \) is trivial
\item \(T_X \mid f(U) \) is trivial.
\item We have a local coframe, \(\varphi_1, \ldots, \varphi_n \), on \(T_X \mid f(U) \) and \(f^*(\varphi_{m+1}) = \cdots = f^*(\varphi_n) = 0 \), where \(m = \dim(Y) \) and \(n = \dim(X) \).
\end{enumerate}

Then,
\[
f^* \omega_X = f^* \left(\frac{i}{2} \sum_{k=1}^{n} \varphi_k \wedge \overline{\varphi_k} \right) = \frac{i}{2} \sum_{k=1}^{m} f^*(\varphi_k) \wedge f^*(\overline{\varphi_k}) = \omega_Y.
\]
Hence, the \((1,1)\)-form of the induced metric on \(Y \) (from \(X \)) is the pullback of the \((1,1)\)-form of the metric on \(X \).

Consequently (Example 1), on an affine variety, we get an induced metric and an induced form computable from the embedding in some \(\mathbb{C}^N \).

Example 2: Fubini-Study Metric on \(\mathbb{P}^n \). Let \(\pi \) be the canonical projection, \(\pi: \mathbb{C}^{n+1} - \{0\} \to \mathbb{P}^n \), let \(z_0, \ldots, z_n \) be coordinates on \(\mathbb{C}^{n+1} \) and let \((Z_0: \cdots : Z_n) \) be homogeneous coordinates on \(\mathbb{P}^n \). For a small open \(U \), pick some holomorphic section, \(F: U \to \mathbb{C}^{n+1} - \{0\} \), of \(\pi \) (so that \(\pi \circ F = \text{id}_U \)). For any \(p \in U \), consider
\[
\|F(p)\|^2 = \sum_{j=0}^{n} F_j(p) \overline{F_j(p)} \neq 0.
\]
Pick \(U \) small enough so that \(\log \|F\|^2 \) is defined. Now, set
\[
\omega_F = \frac{i}{2\pi} \partial \overline{\partial} \log \|F\|^2.
\]
We need to show that this definition does not depend on the choice of the holomorphic section, \(F \). So, let \(S \) be another holomorphic section of \(\pi \) over \(U \). As \(\pi \circ S = \pi \circ F = \text{id}_U \), we have
\[
(S_0(p): \cdots : S_n(p)) = (F_0(p): \cdots : F_n(p)), \quad \text{for all } p \in U,
\]
so, there is a holomorphic function, \(\lambda \), on \(U \), so that
\[
\lambda(p)S(p) = F(p), \quad \text{for all } p \in U.
\]
We have
\[
\|F\|^2 = \overline{F} F = \lambda \overline{S} S = \lambda \overline{\lambda} \|S\|^2,
\]
so we get
\[
\log \|F\|^2 = \log \lambda + \log \overline{\lambda} + \log \|F\|^2.
\]
Consequently,

\[\omega_F = \frac{i}{2\pi} \partial \overline{\partial} (\log \lambda + \log \overline{\lambda}) + \omega_S = \omega_S, \]

since \(\lambda \) is holomorphic, \(\overline{\lambda} \) is anti-holomorphic, \(\partial (\text{holo}) = 0, \overline{\partial} (\text{holo}) = 0 \), \(\partial \overline{\partial} = -\overline{\partial} \partial \) and \(\partial (\text{anti-holo}) = 0 \). Clearly, our \(\omega_F \) are \((1,1)\)-forms. Now, cover \(\mathbb{P}^n \) by opens, as above; pick any section on each such open, use a partition of unity and get a \textit{global} \((1,1)\)-form on \(\mathbb{P}^n \) which is \(C^\infty \). We still need to check positivity, but since the unitary group, \(U(n + 1) \), acts transitively on \(\mathbb{C}^{n+1} \), we see that \(\mathbb{P}U(n) \) acts transitively on \(\mathbb{P}^n \) and our form is invariant. Therefore, it is enough to check positivity at one point, say \((1:0: \cdots :0)\). This point lies in the open \(Z_0 \neq 0 \). Lift \(Z_0 \) to \(\mathbb{C}^{n+1} - \{0\} \) via

\[F: (Z_0: \cdots : Z_n) \mapsto (1, z_1, \ldots, z_n), \quad \text{where} \quad z_j = \frac{Z_j}{Z_0}. \]

Thus, \(\|F\|^2 = 1 + \sum_{k=1}^n z_k \bar{z}_k \), and we get

\[
\partial \overline{\partial} \log \left(1 + \sum_{k=1}^n z_k \bar{z}_k \right) = \partial \left(\frac{\sum_{k=1}^n z_k d\bar{z}_k}{1 + \sum_{k=1}^n z_k \bar{z}_k} \right)
= \left(\sum_{k=1}^n dz_k \wedge d\bar{z}_k \right) \left(1 + \sum_{k=1}^n z_k \bar{z}_k \right) - \left(\sum_{k=1}^n \bar{z}_k dz_k \right) \wedge \left(\sum_{l=1}^n z_l d\bar{z}_l \right)
\]
\[
\left(1 + \sum_{k=1}^n z_k \bar{z}_k \right) \]

When we evaluate the above at \((1:0: \cdots :0)\), we get \(\sum_{k=1}^n dz_k \wedge d\bar{z}_k \) and so

\[\omega_F(1:0: \cdots :0) = \frac{i}{2\pi} \sum_{k=1}^n dz_k \wedge d\bar{z}_k, \]

which is positive. Therefore, we get a Hermitian metric on \(\mathbb{P}^n \), this is the \textit{Fubini-Study metric}. As a consequence, every projective manifold inherits an Hermitian metric from the Fubini-Study metric.

From now on, assume that \(X \) is \textit{compact} manifold (or each object has compact support). Look at the bundles \(\bigwedge^{p,q} \) and choose once and for all an Hermitian metric on \(X \) and let \(\omega \) be the associated positive \((1,1)\)-form. So, locally in a coframe,

\[\omega = \frac{i}{2} \sum_{k=1}^n \varphi_k \wedge \overline{\varphi}_k. \]

At each \(z \), a basis for \(\bigwedge^z^{p,q} \) is just \(\{ \varphi_I \wedge \overline{\varphi}_J \} \), where \(I = \{i_1 < \cdots < i_p\} \), \(J = \{j_1 < \cdots < j_q\} \) and

\[\varphi_I \wedge \overline{\varphi}_J = \varphi_{i_1} \wedge \cdots \wedge \varphi_{i_p} \wedge \overline{\varphi}_{j_1} \wedge \cdots \wedge \overline{\varphi}_{j_q}. \]

We can define an orthonormal basis of \(\bigwedge^z^{p,q} \) if we decree that the \(\varphi_I \wedge \overline{\varphi}_J \) are pairwise orthogonal, and we set

\[\|\varphi_I \wedge \overline{\varphi}_J\|^2 = (\varphi_I \wedge \overline{\varphi}_J, \varphi_I \wedge \overline{\varphi}_J) = 2^{p+q}. \]

This gives \(\bigwedge^z^{p,q} \) a \(C^\infty \)-varying Hermitian inner product. To understand where \(2^{p+q} \) comes from, look at \(\mathbb{C} \). Then, near \(z \), we have \(\varphi = dz, \overline{\varphi} = d\overline{z} \), so

\[dz \wedge d\overline{z} = (dx + idy) \wedge (dx - i dy) = -i(dx \wedge dy + dx \wedge dy) = -2i dx \wedge dy. \]

Therefore, \(\|dz \wedge d\overline{z}\| = 2 \) and \(\|dz \wedge d\overline{z}\|^2 = 4 = 2^{1+1} \) (here, \(p = 1 \) and \(q = 1 \)).

Let us write \(\bigwedge^z^{p,q}(X) \) for the set of global \(C^\infty \)-sections, \(\Gamma_{C^\infty}(X, \bigwedge^z^{p,q}) \). Locally, on an open, \(U \), we have

\[\omega = \frac{i}{2} \sum_{k=1}^n \varphi_k \wedge \overline{\varphi}_k \in \bigwedge^1(U) \]
and so, we deduce that
\[\omega^n = \left(\frac{i}{2} \right)^n n! (-1)^{\frac{n}{2}} \varphi_1 \wedge \cdots \wedge \varphi_n \wedge \bar{\varphi}_1 \wedge \cdots \wedge \bar{\varphi}_n. \]

We call \(\Phi(z) = \omega^n(z)/n! = C_n \varphi_1 \wedge \cdots \wedge \varphi_n \wedge \bar{\varphi}_1 \wedge \cdots \wedge \bar{\varphi}_n \) the volume form and \(C_n = (\frac{i}{2})^n (-1)^{\frac{n}{2}} \) the twisting constant. We can check that \(\Phi \) is a real, positive form, so we can integrate w.r.t. to it. For \(\xi, \eta \in \bigwedge^{p,q}(X) \), set
\[(\xi, \eta) = \int_X (\xi, \eta) \Phi(z) \in \mathbb{C}. \]

This makes \(\bigwedge^{p,q}(X) \) a complex (infinite-dimensional) inner-product space. We have
\[\partial : \bigwedge^{p,q-1}(X) \to \bigwedge^{p,q}(X) \]
and say (as in the finite dimensional case) \(\overline{\partial} \) is a closed operator (i.e., \(B^{p,q}_\partial \) is closed in \(\bigwedge^{p,q}(X) \)). Pick some \(\xi \in Z^{p,q}_\partial \), i.e., \(\partial \xi = 0 \). All the cocycles representing the class of \(\xi \) (an element of \(H^{p,q}_\partial \)) form the translates \(\xi + B^{p,q}_\partial \subseteq \bigwedge^{p,q}(X) \). This translate is a closed and convex subset of \(\bigwedge^{p,q}(X) \).

Does there exist a smallest (in the norm we've just defined) cocycle in this cohomology class—if so, how to find it?

Now, we can ask if \(\overline{\partial} \) has an adjoint. If so, call it \(\overline{\partial}^* \) and then, \(\overline{\partial}^* : \bigwedge^{p,q}(X) \to \bigwedge^{p,q-1}(X) \) and
\[(\overline{\partial}^* (\xi), \eta) = (\xi, \overline{\partial}(\eta)), \text{ for all } \xi, \eta. \]

Then, Hodge observed the

Proposition 2.16 The cocycle, \(\xi \), is of smallest norm in its cohomology class iff \(\overline{\partial}^* (\xi) = 0 \).

Proof.

(\(\Leftarrow \)). Compute
\[\| \xi + \overline{\partial} \eta \|^2 = (\xi + \overline{\partial} \eta, \xi + \overline{\partial} \eta) = \| \xi \|^2 + \| \eta \|^2 + 2 \Re(\xi, \overline{\partial} \eta). \]
But, \((\xi, \overline{\partial} \eta) = (\overline{\partial}^* (\xi), \eta) = 0 \), by hypothesis, so
\[\| \xi + \overline{\partial} \eta \|^2 = \| \xi \|^2 + \| \eta \|^2, \]
which shows the minimality of \(\| \xi \| \) in \(\xi + B^{p,q}_\partial \) and the uniqueness of such a \(\xi \).

(\(\Rightarrow \)). We know that \(\| \xi + \overline{\partial} \eta \|^2 \geq \| \xi \|^2 \), for all our \(\eta \)'s. Make
\[f(t) = (\xi + t \overline{\partial} \eta, \xi + t \overline{\partial} \eta). \]
The function \(f(t) \) has a global minimum at \(t = 0 \) and by calculus, \(f'(t) \big|_{t=0} = 0 \). We get
\[\left((\overline{\partial} \eta, \xi + t \overline{\partial} \eta) + (\xi + t \overline{\partial} \eta, \overline{\partial} \eta) \right)_{t=0} = 0, \]
that is, \(\Re(\xi, \overline{\partial} \eta) = 0 \). But, \(i \eta \) is another element of \(\bigwedge^{p,q-1} X \). So, let
\[g(t) = (\xi + it \overline{\partial} \eta, \xi + it \overline{\partial} \eta). \]
Repeating the above argument, we get \(\Im(\xi, \overline{\partial} \eta) = 0 \). Consequently, we have \((\xi, \overline{\partial} \eta) = 0 \), for all \(\eta \). Since \((\overline{\partial}^* (\xi), \eta) = (\xi, \overline{\partial}(\eta)) \), we conclude that \((\overline{\partial}^* (\xi), \eta) = 0 \), for all \(\eta \), so \(\overline{\partial}^* (\xi) = 0 \), as required. \(\square \)

If the reasoning can be justified, then
(1) In each cohomology class of $H^{p,q}_{\partial}$, there is a unique (minimal) representative.

(2) $H^{p,q}_{\partial}(X) \cong \{ \xi \in p,q \bigwedge X \mid (a) \partial \xi = 0 \}$. We know from previous work that $H^{p,q}_{\partial}(X) \cong H^{q}(X, \Omega^p_X)$.

Making ∂^*. First, we make the Hodge \ast operator:

$$\ast : \bigwedge X \to \bigwedge^{n-p,n-q} X$$

by pure algebra. We want $(\xi(z), \eta(z)) \mapsto \Phi(z) = \xi(z) \wedge \ast \eta(z)$ for all ξ.

We need to define \ast on basis elements, $\xi = \phi_I \wedge \phi_J$. We want $(\phi_I \wedge \overline{\phi}_J, \sum_{K,L} \eta_{K,L} \phi_K \wedge \overline{\phi}_L) C_n \phi_1 \wedge \cdots \wedge \phi_n \wedge \overline{\phi}_1 \wedge \cdots \wedge \overline{\phi}_n = \phi_I \wedge \overline{\phi}_J \wedge \sum_{|M|=n-p \atop |N|=n-q} a_{M,N} \phi_M \wedge \overline{\phi}_N$,

where $|I| = |K| = p$ and $|J| = |L| = q$. The left hand side is equal to $2^{p+q} \eta_{I,J} C_n \phi_1 \wedge \cdots \wedge \phi_n \wedge \overline{\phi}_1 \wedge \cdots \wedge \overline{\phi}_n$ and the right hand side is equal to

$$\sum_{|M|=n-p \atop |N|=n-q} a_{M,N} \phi_I \wedge \overline{\phi}_J \wedge \phi_M \wedge \overline{\phi}_N = a_{I^0,J^0} \phi_I \wedge \overline{\phi}_J \wedge \phi_{I^0} \wedge \overline{\phi}_{J^0},$$

where $I^0 = \{1, \ldots, n\} - I$ and $J^0 = \{1, \ldots, n\} - J$. The right hand side has $\phi_1 \wedge \cdots \wedge \phi_n \wedge \overline{\phi}_1 \wedge \cdots \wedge \overline{\phi}_n$ in scrambled order. Consider the permutation

$$(1, 2, \ldots, n; \tilde{1}, \tilde{2}, \ldots, \tilde{n}) \mapsto (i_1, \ldots, i_p, \tilde{j}_1, \ldots, \tilde{j}_q, i_{p+1}, \ldots, i_{n-p}, j_1, \ldots, j_{n-q}).$$

If we write $\text{sgn}_{I,J}$ for the sign of this permutation, we get

$$a_{I^0,J^0} = 2^{p+q-n} i^n(-1)^{n/2} \eta_{I,J} \text{sgn}_{I,J}.$$

Therefore,$$\ast \eta = \ast \sum_{K,L} \eta_{K,L} \phi_K \wedge \overline{\phi}_L = 2^{p+q-n} i^n(-1)^{n/2} \sum_{|K^0|=n-p \atop |L^0|=n-q} \text{sgn}_{K,L} \phi_{K^0} \wedge \overline{\phi}_{L^0}.$$

Now, set

$$\overline{\partial}^* = -\ast \circ \overline{\partial} \circ \ast,$$

where $\overline{\partial}^* : \bigwedge^{p,q} X \to \bigwedge^{n-p,n-q} X \to \bigwedge^{n-p,n-q+1} X \to \bigwedge^{p,q-1} X$.

I claim that $-\ast \circ \overline{\partial} \circ \ast$ is the formal adjoint, $\overline{\partial}^*$, we seek. Consider

$$\langle \overline{\partial} \xi, \eta \rangle = \int_X \langle \overline{\partial} \xi, \eta \rangle \Phi(z) = \int_X \overline{\partial} \xi \wedge \ast \eta,$$
where \(\xi \in \bigwedge^{p,q-1}(X) \) and \(\eta \in \bigwedge^{p,q}(X) \). Now, \(\partial(\xi \wedge \ast \eta) = \partial \xi \wedge \ast \eta + (\ast)(\partial \xi \wedge \ast \eta) \), so we get
\[
\int_X (\partial(\xi \wedge \ast \eta) = (\partial \xi, \ast \eta) + (\ast)(\partial \xi \wedge \ast \eta).
\]

Also, \(\xi \wedge \ast \eta \in \bigwedge^{p,q-1}(X) \wedge \bigwedge^{n-p,n-q}(X) \), i.e., \(\xi \wedge \ast \eta \in \bigwedge^{n,n-1}(X) \). But, \(d = \partial + \bar{\partial} \), so
\[
d(\xi \wedge \ast \eta) = \partial(\xi \wedge \ast \eta) + \bar{\partial}(\xi \wedge \ast \eta) = \bar{\partial}(\xi \wedge \ast \eta),
\]
and we deduce that
\[
\int_X \bar{\partial}(\xi \wedge \ast \eta) = \int_X d(\xi \wedge \ast \eta) = \int_{\partial X} \xi \wedge \ast \eta = 0,
\]
if either \(X \) is compact (in which case \(\partial X = \emptyset \)), or the forms have compact support (and hence, vanish on \(\partial X \)). So, we have
\[
(\bar{\partial} \xi, \eta) = (\ast)(\partial \xi \wedge \ast \eta).
\]

Check (DX): For \(\eta \in \bigwedge^{p,q}(X) \), we have
\[
\ast \ast \eta = (\ast)(\partial)(\ast \eta).
\]
As \(\ast \eta \in \bigwedge^{n-p,n-q}(X) \), we have \(\bar{\partial}(\ast \eta) \in \bigwedge^{n-p,n-q+1}(X) \), and so,
\[
\ast \ast \bar{\partial}(\ast \eta) = (\ast)(\partial)(\ast)(\ast \eta) = (\ast)(\partial) = \ast \bar{\partial} \ast \eta.
\]
We conclude that
\[
(\bar{\partial} \xi, \eta) = -\int_X \xi \wedge \ast \partial(\ast \eta)
\]
\[
= \int_X \xi \wedge \ast(\ast \partial \ast \eta)
\]
\[
= (\xi, \ast \partial \ast \eta).
\]

Therefore, \(\bar{\partial} = -\ast \partial \ast \), as contended.

Now, we define the Hodge Laplacian, or Laplace-Beltrami operator, \(\Box \), by:
\[
\Box = \bar{\partial} \partial + \partial \bar{\partial} : \bigwedge^{p,q}(X) \longrightarrow \bigwedge^{p,q}(X).
\]

You check (DX) that \(\Box \) is formally self-adjoint.

Claim: \(\Box(\varphi) = 0 \) iff both \(\bar{\partial} \varphi = 0 \) and \(\partial^\ast \varphi = 0 \).

First, assume \(\Box(\varphi) = 0 \) and compute \((\varphi, \Box(\varphi)) \). We get
\[
(\varphi, \Box(\varphi)) = (\varphi, \partial \bar{\partial} \varphi) + (\varphi, \bar{\partial} \partial \varphi)
\]
\[
= (\partial \varphi, \bar{\partial} \varphi) + (\bar{\partial} \varphi, \partial \varphi)
\]
\[
= (\bar{\partial} \varphi, \bar{\partial} \varphi) + \| \partial \varphi \|^2
\]
\[
= \| \varphi \|^2 + \| \partial \varphi \|^2.
\]

Therefore, if \(\Box(\varphi) = 0 \), then \(\bar{\partial} \varphi = 0 \) and \(\partial^\ast \varphi = 0 \). The converse is obvious by definition of \(\Box(\varphi) \).

Consequently, our minimality is equivalent to \(\Box(\varphi) = 0 \), where \(\Box \) is a second-order differential operator.

To understand better what the operator \(\Box \) does, consider the special case where \(X = \mathbb{C}^n \) (use compactly supported “gadgets”), with the standard inner product, and \(\bigwedge^{0,0}(X) = C_0^\infty \). Pick \(f \in C_0^\infty \), then again, \(\Box(f) \in C_0^\infty \) and on those \(f \), we have \(\bar{\partial}^\ast \partial^\ast f = 0 \). Consequently,
\[
\Box(f) = \partial \bar{\partial} f = \partial \bar{\partial} \left(\sum_{j=1}^n \frac{\partial f}{\partial x_j} dx_j \right).
\]
We also have\[* \left(\sum_{j=1}^{n} \frac{\partial f}{\partial z_j} \, dz_j \right) = 2^{1-n} i^n (-1)^{\frac{n}{2}} \sum_{j=1}^{n} \left(\frac{\partial f}{\partial z_j} \right) dz_1 \wedge \cdots \wedge dz_n \wedge d\xi_j, \]
and it is uniquely determined by\[G = 2^{1-n} i^n (-1)^{\frac{n}{2}} \sum_{j=1}^{n} \frac{\partial f}{\partial z_j} \, sgn_{\emptyset, \{j\}} \, dz_1 \wedge \cdots \wedge dz_n \wedge d\xi_j. \]
Taking $\overline{\partial}$ of the above expression, we get\[2^{1-n} i^n (-1)^{\frac{n}{2}} \sum_{k,j=1}^{n} \frac{\partial^2 f}{\partial z_k \partial z_j} \, sgn_{\emptyset, \{j\}} \, d\xi_k \wedge d\xi_j \wedge dz_1 \wedge \cdots \wedge dz_n \wedge d\xi_j = 2^{1-n} i^n (-1)^{\frac{n}{2}} (-1)^n \sum_{j=1}^{n} \frac{\partial^2 f}{\partial z_j \partial z_j} \, sgn_{\emptyset, \{j\}} \, dz_1 \wedge \cdots \wedge dz_n \wedge d\xi_j \wedge d\xi_j. \]
Taking $-\ast$ of the above, we get\[-2i^{2n} (-1)^{\frac{n}{2}} (-1)^n \sum_{j=1}^{n} \frac{\partial^2 f}{\partial z_j \partial z_j} = -2 \sum_{j=1}^{n} \frac{\partial^2 f}{\partial z_j \partial z_j}. \]
But,\[\frac{4\partial^2 f}{\partial z_j \partial z_j} = \frac{\partial^2 f}{\partial x_j^2} + \frac{\partial^2 f}{\partial y_j^2}, \]
and this implies that on $\bigwedge^{0,0}(X)$, $\Box(f)$ up to a constant $(-1/2)$ is just the usual Laplacian.

Write $\mathcal{H}^{p,q}(X)$ for the kernel of \Box on $\bigwedge^{p,q}(X)$, the space of harmonic forms. Here is Hodge’s theorem.

Theorem 2.17 (*Hodge, (1941)*) Let X be a complex manifold and assume that X is compact. Then,

1. The space $\mathcal{H}^{p,q}(X)$ is finite-dimensional.
2. There exist a projection, $\mathcal{H}^{p,q}(X) \to \mathcal{H}^{p,q}(X)$, so that we have the orthogonal decomposition (Hodge decomposition)
 \[\bigwedge^p(X) = \mathcal{H}^{p,q}(X) \bigoplus \mathcal{H}^{p,q-1}(X) \bigoplus \mathcal{H}^{p,q+1}(X). \]
3. There exists a parametrix (= pseudo-inverse), G, (Green’s operator) for \Box, and it is uniquely determined by
 \[\text{(a) id} = \mathcal{H}^{p,q}(X) \bigoplus \mathcal{H}^{p,q-1}(X) \bigoplus \mathcal{H}^{p,q+1}(X). \]
 \[\text{(b)} G\overline{\partial} = \overline{\partial} G, G\overline{\partial}^* = \overline{\partial}^* G \text{ and } G \mid \mathcal{H}^{p,q}(X) = 0. \]

Remarks: (1) If a decomposition “à la Hodge” exists, it must be an orthogonal decomposition. Say $\xi \in \overline{\partial} \bigwedge^{p,q-1}(X)$ and $\eta \in \overline{\partial}^* \bigwedge^{p,q+1}(X)$, then
 \[(\xi, \eta) = (\overline{\partial} \xi_0, \overline{\partial}^* \eta_0) = (\overline{\partial} \overline{\partial} \xi_0, \eta_0) = 0, \]
and so, $\overline{\partial} \bigwedge^{p,q-1}(X) \perp \overline{\partial}^* \bigwedge^{p,q+1}(X)$. Observe that we can write the Hodge decomposition as
 \[\bigwedge^p(X) = \mathcal{H}^{p,q}(X) \bigoplus \Box \bigwedge^{p,q}(X). \]
For, if \(\xi \in \Box \wedge^{p,q}(X) \), then \(\xi = \overline{\partial}(\overline{\partial}^* \xi_0) + \overline{\partial}^* (\overline{\partial} \xi_0) \), and this implies
\[
\Box \wedge^{p,q}(X) \subseteq \overline{\partial} \wedge^{p,q-1}(X) + \overline{\partial}^* \wedge^{p,q+1}(X).
\]
However, the right hand side is an orthogonal decomposition and it follows that
\[
\mathcal{H}^{p,q}(X) + \Box \wedge^{p,q}(X) = \mathcal{H}^{p,q}(X) + \overline{\partial} \wedge^{p,q-1}(X) \perp \overline{\partial}^* \wedge^{p,q+1}(X) = \wedge^{p,q}(X).
\]
For perpendicularity, as \(\Box \) is self-adjoint, for \(\xi \in \mathcal{H}^{p,q}(X) \), we have
\[
(\xi, \Box(\eta)) = (\Box(\xi), \eta) = 0,
\]
since \(\Box(\xi) = 0 \).

(2) We can give a n.a.s.c. that \(\Box(\xi) = \eta \) has a solution, given \(\eta \). Namely, by (3a),
\[
\eta = \kappa(\eta) + \Box(G(\eta)).
\]
If \(\kappa(\eta) = 0 \), then \(\eta = \Box(G(\eta)) \) and we can take \(\xi = G(\eta) \). Conversely, orthogonality implies that if \(\eta = \Box(\xi) \), then \(\kappa(\eta) = 0 \). Therefore, \(\kappa(\eta) \) is the obstruction to solving \(\Box(\xi) = \eta \).

How many solutions does \(\Box(\xi) = \eta \) have?

The solutions of \(\Box(\xi) = \eta \) are in one-to-one correspondence with \(\xi_0 + \mathcal{H}^{p,q}(X) \), where \(\xi_0 \) is a solution and if we take \(\xi_0 \in \text{Ker} \kappa \), then \(\xi_0 \) is unique, given by \(G(\eta) \).

(3) Previous arguments, once made correct, give us the isomorphisms
\[
\mathcal{H}^{p,q}(X) \cong H^{p,q}_\partial \cong H^q(X, \Omega^p_X).
\]
Therefore, \(H^q(X, \Omega^p_X) \) is a finite-dimensional vector space, for \(X \) a compact, complex manifold.

For the proof of Hodge’s theorem, we need some of the theory of distributions. At first, restrict to \(C^\infty_0(U) \) (smooth functions of compact support) on some open, \(U \subseteq \mathbb{C}^n \). One wants to understand the dual space, \((C^\infty_0(U))^D \). Consider \(g \in L^2(U) \), then for any \(\varphi \in C^\infty_0(U) \), we set
\[
\lambda_g(\varphi) = \int_U \varphi \overline{g} d\mu.
\]
(Here, \(\mu \) is the Lebesgue measure on \(\mathbb{C}^n \).) So, we have \(\lambda_g \in C^\infty_0(U)^D \). Say \(\lambda_g(\varphi) = 0 \), for all \(\varphi \). Take \(E \), a measurable subset of \(U \) of finite measure with \(\overline{E} \) compact. Then, as \(\chi_E \) is \(L^2 \), the function \(\chi_E \) is \(L^2 \)-approximable by \(C^\infty_0(U) \)-functions. So, there is some \(\varphi \in C^\infty_0(U) \) so that
\[
\| \varphi - \chi_E \|_2 < \epsilon.
\]
As \(\chi_E = \chi_E - \varphi + \varphi \), we get
\[
\int_E \overline{g} d\mu = \int_U \chi_E \overline{g} d\mu = \int_U (\chi_E - \varphi) \overline{g} d\mu + \int_U \varphi \overline{g} d\mu = \int_U (\chi_E - \varphi) \overline{g} d\mu
\]
(by hypothesis, \(\lambda_g(\varphi) = 0 \)). Therefore,
\[
\left| \int_E \overline{g} d\mu \right| \leq \| \chi_E - \varphi \|_2 \| \overline{g} \|_2 < \| g \|_2 \epsilon,
\]
which implies that \(g \equiv 0 \) almost everywhere. It follows that \(L^2(U) \to (C_0^\infty(U))^D \). The same argument applies for \(g \in C(U) \) and uniform approximations by \(C_0^\infty \)-functions, showing that \(C(U) \to (C_0^\infty(U))^D \).

Notation. Set
\[
D_j = \frac{1}{i} \frac{\partial}{\partial X_j} = -i \frac{\partial}{\partial X_j},
\]
where \(X_1, \ldots, X_n \) are real coordinates in \(\mathbb{C}^n \), and if \(\alpha = (\alpha_1, \ldots, \alpha_n) \), with \(\alpha_j \in \mathbb{Z} \) and \(\alpha_j \geq 0 \), set
\[
D^\alpha = D_1^{\alpha_1} D_2^{\alpha_2} \cdots D_n^{\alpha_n}
\]
and \(|\alpha| = \sum_{j=1}^n \alpha_j \). Also, for any \(n \)-tuple \(\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n \), we let \(\xi^\alpha = \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n} \) and \(|\xi|^\alpha = |\xi_1|^{\alpha_1} \cdots |\xi_n|^{\alpha_n} \). The reason for the factor \(1/i \) is this: Say \(v \) is a function and look at
\[
D_j(v) = -i \frac{\partial v}{\partial X_j}.
\]
Therefore,
\[
D_j(uv) = (D_ju)v + uD_jv = (D_ju)v - uD_jv.
\]
Consider \(u, v \in C_0^\infty(U) \); then,
\[
(D_ju, v) = \int_U (D_ju)v = \int_U D_j(uv) + \int_U u D_j(v).
\]
The first term on the right hand side is zero as \(u \) and \(v \) have compact support, so we get
\[
(D_ju, v) = \int_U u \overline{D_j(v)} = (u, D_jv),
\]
which says that the \(D_j \)'s are formally self-adjoint. Repeated application of the above gives
\[
(D^\alpha u, v) = (u, D^\alpha v)
\]
and also
\[
\int_U (D^\alpha u)v = \int_U u(D^\alpha v).
\]

Definition 2.4 Let \(\tilde{D}(U) = C_0^\infty(U)^{alg, D} \) be the set of (complex-valued) linear functionals on \(C_0^\infty(U) \). Now define, \(D(U) \), the *space of distributions* on \(U \), so that \(\lambda \in D(U) \) iff \(\lambda \in C_0^\infty(U)^{alg, D} \) and \(\lambda \) is “continuous”, i.e., there is some \(k \geq 0 \) and some \(C_\lambda \), so that for all \(\varphi \in C_0^\infty(U) \),
\[
|\lambda(\varphi)| \leq C_\lambda \max_{|\alpha| \leq k} ||D^\alpha \varphi||_\infty.
\]

As an example of a distribution, if \(g \in C_0(U) \), so \(g \) is bounded (all we need is boundedness and integrability), then
\[
\lambda_g(\varphi) = \int_U \varphi g d\mu.
\]
Then, we have
\[
|\lambda_g(\varphi)| \leq ||\varphi||_\infty ||g||_1,
\]
so we can take \(C_{\lambda_g} = ||g||_1 \) and we get a distribution. The intuition in (⋆) is that the bigger \(k \) is, the “worse” \(\lambda \) is as a distribution (\(k \) indicates how many derivatives we need to control).

We can differentiate distributions: Take \(g \in C^1 \), we have
\[
\lambda_{D_j g}(\varphi) = \int_U \varphi \overline{D_j g} d\mu = \int_U (D_j \varphi) \overline{g} d\mu = \lambda_g(D_j \varphi).
\]
This gives the reason behind the
Definition 2.5 If $\lambda \in \mathcal{D}(U)$, let $D^\alpha \lambda \in \tilde{\mathcal{D}}(U)$, defined by

$$(D^\alpha \lambda)(\varphi) = \lambda(D^\alpha \varphi).$$

Claim: If $\lambda \in \mathcal{D}(U)$, then $D^\alpha \lambda \in \mathcal{D}(U)$.

Indeed, we have

$$|((D^\alpha \lambda)(\varphi))| = |\lambda(D^\alpha \varphi)| \leq C_\lambda \max_{|\beta| \leq k} \|D^{\alpha+\beta}(\varphi)\|_\infty \leq C_\lambda \max_{|\gamma| \leq k+|\alpha|} \|D^{\gamma}(\varphi)\|_\infty.$$

Therefore, $D^\alpha \lambda$ is again a distribution. Given a multi-index, α, write

$$\sigma(\alpha) = |\alpha| + \left\lceil \frac{n}{2} \right\rceil + 1.$$

This is the Sobolev number of α ($n =$ dimension of the underlying space). Now, we can define the Sobolev norm and the Sobolev spaces, H_s ($s \in \mathbb{Z}, s \geq 0$). If $\varphi \in C_0^\infty(U)$, set

$$\|\varphi\|^2_s = \sum_{|\alpha| \leq s} \|D^\alpha \varphi\|^2_{L^2}.$$

This is the Sobolev s-norm. It comes from an inner product

$$(\varphi, \psi)_s = \sum_{|\alpha| \leq s} (D^\alpha \varphi, D^\alpha \psi).$$

If we complete $C_0^\infty(U)$ in this norm, we get a Hilbert space, the Sobolev space, H_s.

Say $s > r$, then for all $\varphi \in C_0^\infty(U)$, we have

$$\|\varphi\|^2_s \leq \|\varphi\|^2_r.$$

Hence, if $\{\varphi_i\}$ is a Cauchy sequence in the s-norm, it is also a Cauchy sequence in the r-norm and we get a continuous embedding

$$H_s \subseteq H_r \quad \text{if} \quad s > r.$$

Let $H_\infty = \bigcap_{s \geq 0} H_s$.

Theorem 2.18 (Sobolev Inequality and Embedding Theorem) For all $\varphi \in C_0^\infty(U)$, for all α, we have

$$\|D^\alpha \varphi\|_{\infty} \leq K_\alpha \|\varphi\|_{\sigma(\alpha)} \quad \text{and} \quad H_s(U) \subseteq C^m(\overline{U}),$$

provided U has finite measure, $m \geq 0$ and $\sigma(m) \leq s$. Furthermore, $H_s(U) \subseteq L^{\frac{2n}{n-2s}}(U)$ if $n > 2s$.

(We have $\sigma(m) \leq s$ iff $m < s - \left\lceil \frac{n}{2} \right\rceil$.)

Theorem 2.19 (Rellich Lemma) The continuous embedding, $\rho_s^*: H_s \hookrightarrow H_r$, (for $s > r$) is a compact operator. That is, for any bounded set, B, the image $\rho_s^*(B)$ has a compact closure. Alternatively, if $\{\varphi_j\}$ is a bounded sequence in H_s, then $\{\rho_s^*(\varphi_j)\}$ possesses a converging subsequence in H_r.

To connect with distributions, we use the Fourier Transform. If $\varphi \in C_0(U)$, we set

$$\hat{\varphi}(\theta) = \left(\frac{1}{2\pi}\right)^n \int_{\mathbb{C}^n} \varphi(x)e^{-i(x,\theta)} \, dx,$$
2.3. HODGE I, ANALYTIC PRELIMINARIES

where \((x, \theta) = \sum_{j=1}^{n} x_j \bar{\theta}_j\). (Recall that over \(\mathbb{R}\), we are in \(\mathbb{R}^{2n}\).) The purpose of the fudge factor in front of the integral is to insure that Fourier transform of the Gaussian

\[
\varphi(x) = e^{-\frac{\|x\|^2}{2}}
\]

is itself. As

\[
\int_{\mathbb{R}^n} e^{-\frac{\|x\|^2}{2}} \, dx = \left(\sqrt{2\pi}\right)^n,
\]
we determine that the “fudge factor” is \((2\pi)^{-n}\). It is also interesting to see what \(\hat{D}_j \varphi(\theta)\) is. We have

\[
\begin{align*}
\hat{D}_j \varphi(\theta) &= \int_{\mathbb{C}^n} (D_j \varphi)(x) e^{-i(x, \theta)} \, dx = \int_{\mathbb{C}^n} \varphi(x) D_j e^{i(x, \theta)} \, dx.
\end{align*}
\]

Now,

\[
\frac{\partial}{\partial x_j} e^{i \sum x_k \bar{\theta}_k} = i \bar{\theta}_k e^{i \sum x_k \bar{\theta}_k}
\]

and

\[
D_j e^{i \sum x_k \bar{\theta}_k} = -i \frac{\partial}{\partial x_j} e^{i \sum x_k \bar{\theta}_k} = \bar{\theta}_k e^{i \sum x_k \bar{\theta}_k}.
\]

It follows that

\[
\hat{D}_j \varphi(\theta) = \theta_j \hat{\varphi}(\theta),
\]

that is, \(D_j\) turns into multiplication by \(\theta_j\) by the Fourier transform. We also get

Theorem 2.20 (Plancherel) If \(\varphi \in C_0^\infty\), then

\[
\|\varphi\|_{L^2} = \|\hat{\varphi}\|_{L^2}.
\]

As a consequence, we can compute the Sobolev norm using the Fourier transform:

\[
\|\varphi\|_s^2 = \sum_{|\alpha| \leq s} \|D^\alpha \varphi\|_{L^2}^2
\]

and

\[
\sum_{|\alpha| \leq s} \|D^\alpha \varphi\|_{L^2}^2 = \sum_{|\alpha| \leq s} \int_{\mathbb{C}^n} \theta^\alpha \hat{\varphi}(\theta) \bar{\theta}^\alpha \hat{\varphi}(\theta) \, d\theta
\]

\[
= \int_{\mathbb{C}^n} \sum_{|\alpha| \leq s} |\theta|^{2\alpha} |\hat{\varphi}(\theta)|^2 \, d\theta
\]

\[
\leq \int_{\mathbb{C}^n} (1 + |\theta|^2)^s |\hat{\varphi}(\theta)|^2 \, d\theta
\]

\[
\leq \text{Const} \int_{\mathbb{C}^n} |\theta|^{2\alpha} |\hat{\varphi}(\theta)|^2 \, d\theta = \text{Const} \|\varphi\|_s^2.
\]

(Using Plancherel in the last step.) Therefore, the norm

\[
\|\varphi\|_s^2 = \int_{\mathbb{C}^n} (1 + |\theta|^2)^s |\hat{\varphi}(\theta)|^2 \, d\theta
\]

satisfies

\[
\|\varphi\|_s^2 \leq \|\hat{\varphi}\|_s^2 \leq \text{Const} \|\varphi\|_s^2,
\]
that is, these norms are equivalent and we can measure φ by the Sobolev norm on the Fourier transform.

Observe that we can define H_{-s} ($s > 0$) via the completion of C_0^∞ in the norm $\int_{C^n} (1 + |\theta|^2)^{-s} |\hat{\varphi}(\theta)|^2 d\theta$. Clearly, we get the chain of inclusions

$$\cdots \supseteq H_{-n} \supseteq H_{-n+1} \supseteq \cdots \supseteq H_{1} \supseteq L^2 \supseteq H_{0} \cdots \supseteq H_{n} \supseteq \cdots \supseteq H_{\infty}.$$

This suggests defining $H_{-\infty}$ by

$$H_{-\infty} = \bigcup_{n \in \mathbb{Z}} H_n.$$

The Sobolev embedding lemma implies $H_{\infty} \subseteq C^\infty(U)$ and $C_0^\infty(U) \subseteq H_{\infty}$. Now, H_{-s} defines linear functionals on H_s; say $\psi \in H_{-s}$ and $\varphi \in H_s$. Consider

$$\psi(\varphi) := \int (\varphi \overline{\psi})(\theta) d\theta = \int \sqrt{1 + |\theta|^2}^s \varphi \frac{1}{\sqrt{1 + |\theta|^2}^s} \overline{\psi} d\theta.$$

By Cauchy-Schwarz,

$$|\psi(\varphi)| = |\langle \varphi, \psi \rangle| = \int (\varphi \overline{\psi})(\theta) d\theta \leq \|\varphi\| \|\psi\|_{-s}.$$

Therefore, we have a map $H_{-s} \mapsto H_s^D$ and it follows that $H_{-s} \cong H_s^D$, up to conjugation.

Remark: If $\varphi \in C_0^\infty(U)$ and $\lambda \in D(U)$, then

$$|\lambda(\varphi)| \leq C_\lambda \max_{|\alpha| \leq k} \|D^\alpha \varphi\|_{\infty}, \quad \text{for some } k.$$

By Sobolev’s inequality,

$$|\lambda(\varphi)| \leq C_\lambda K_n \|\varphi\|_{\sigma(\alpha)},$$

for some suitable α so that $|\alpha| \leq k$. Thus, if $\lambda \in D(U)$, then there exist some α such that λ is a continuous functional on $C_0^\infty(U)$ in the $\sigma(\alpha)$-norm. But then, λ extends to an element of $H_s^D_{\sigma(\alpha)}$ (by completion) and we conclude that $D(U) = H_{-\infty}$.

Proof of Theorem 2.19 (Rellich Lemma). Given a bounded sequence, $\{\varphi_k\}_{k=1}^\infty$, there is some $C > 0$ so that, for every k,

$$\int_{\mathbb{R}^n} (1 + |\theta|^2)^s |\hat{\varphi}_k(\theta)|^2 d\theta \leq C.$$

Thus, for every θ, the sequence of $(1 + |\theta|^2)^s |\hat{\varphi}_k(\theta)|^2$ is a bounded sequence of complex numbers. Therefore, for every θ, we have a Cauchy subsequence in \mathbb{C}. As there exists a countable dense subset of θ’s in \mathbb{R}^n, the K_0-diagonalization procedure yields a subsequence of the φ_k’s so that this subsequence is Cauchy at every θ (i.e., $(1 + |\theta|^2)^s |\hat{\varphi}_k(\theta)|^2$ is Cauchy at every θ) and, of course, we replace the φ_k’s by this subsequence. Now, pick $\epsilon > 0$, and write U_0 for the set of all θ’s such that

$$\frac{1}{(1 + |\theta|^2)^{s-r}} \geq \epsilon.$$

Look at

$$\|\varphi_k - \varphi_l\|_r^2 = \int_{\mathbb{R}^n} (1 + |\theta|^2)^r |(\hat{\varphi}_k - \hat{\varphi}_l)(\theta)|^2 d\theta$$

$$= \int_{U_0} (1 + |\theta|^2)^r |(\hat{\varphi}_k - \hat{\varphi}_l)(\theta)|^2 d\theta + \int_{\mathbb{R}^n - U_0} (1 + |\theta|^2)^r |(\hat{\varphi}_k - \hat{\varphi}_l)(\theta)|^2 d\theta.$$
But, as \(\{(1 + |\theta|^2)^r |\hat{\varphi}_k(\theta)|^2\} \) is Cauchy, there is some large \(N \) so that for all \(k, l \geq N \),

\[
(1 + |\theta|^2)^r (|\hat{\varphi}_k - \hat{\varphi}_l|) = (1 + |\theta|^2)^r (|\hat{\varphi}_k - \hat{\varphi}_l|) < \epsilon/\mu(U_0)
\]

for all \(\theta \). Then, the first integral is at most \(\epsilon \). In the second integral,

\[
(1 + |\theta|^2)^r (|\hat{\varphi}_k - \hat{\varphi}_l|) = \frac{(1 + |\theta|^2)^s}{(1 + |\theta|^2)^{s-r}} (|\hat{\varphi}_k - \hat{\varphi}_l|) < \epsilon \text{ numerator.}
\]

But then,

\[
\int_{\mathbb{R}^n - U_0} (1 + |\theta|^2)^r (|\hat{\varphi}_k - \hat{\varphi}_l|) d\theta < \epsilon \int_{\mathbb{R}^n} \text{ numerator < } C\epsilon.
\]

Therefore, \(\{\varphi_k\} \) is Cauchy in \(H_r \), and since \(H_r \) is complete, the sequence \(\{\varphi_k\} \) converges in \(H_r \). \(\square \)

Proof of Theorem 2.18 (Sobolev’s Theorem). Pick \(\varphi \in C_0^\infty(U) \) and take \(s = 1 \). Then, for every \(j \), as

\[
|\varphi(x)| \leq \int_{-\infty}^{\infty} |D_j \varphi(x)| dx_j,
\]

we get

\[
|\varphi(x)|^n \leq \prod_{j=1}^{n} \left(\int_{-\infty}^{\infty} |D_j \varphi(x)| dx_j \right).
\]

Thus, we have

\[
|\varphi(x)|^{n/(n-1)} \leq \prod_{j=1}^{n} \left(\int_{-\infty}^{\infty} |D_j \varphi(x)| dx_j \right)^{1/(n-1)}. \tag{*}
\]

We will use the generalized Hölder inequality: If

\[
\frac{1}{p_1} + \cdots + \frac{1}{p_m} = 1,
\]

and if \(\varphi_j \in L^{p_j} \), for \(j = 1, \ldots, m \), then \(\varphi_1 \cdots \varphi_m \in L^1 \) and

\[
\|\varphi_1 \cdots \varphi_m\|_{L^1} \leq \|\varphi_1\|_{L^{p_1}} \cdots \|\varphi_m\|_{L^{p_m}}.
\]

Assume that \(n \geq 2 \) and set \(p_j = n - 1 \), for \(1 \leq j \leq n - 1 \). Integrate \((*)\) w.r.t. \(x_1, x_2, \ldots, x_n \), but in between integration, use the Hölder inequality:

\[
\int_{-\infty}^{\infty} |\varphi(x)|^{n/(n-1)} dx_1 \leq \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |D_1 \varphi(x)| dx_1 \right)^{1/(n-1)} \prod_{j=2}^{n} \left(\int_{-\infty}^{\infty} |D_j \varphi(x)| dx_j \right)^{1/(n-1)} dx_1
\]

\[
\leq \left[\int_{-\infty}^{\infty} |D_1 \varphi(x)| dx_1 \right]^{1/(n-1)} \prod_{j=2}^{n} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |D_j \varphi(x)| dx_j dx_1 \right]^{1/(n-1)}.
\]

If we repeat this procedure, we get

\[
\int_{U} |\varphi(x)|^{n/(n-1)} dx \leq \left[\prod_{j=1}^{n} \int_{U} |D_j \varphi(x)| dx \right]^{1/(n-1)}.
\]
Raising the above to the power \((n - 1)/n\), we get
\[
\|\varphi\|_{L^{n/(n-1)}} \leq \left(\prod_{j=1}^{n} \int_{U} |D_j(\varphi)| \, dx \right)^{1/n} \leq \frac{1}{n} \left(\sum_{j=1}^{n} \int_{U} |D_j(\varphi)| \, dx \right),
\]
by the arithmetic-geometric mean inequality. Apply this to \(\varphi^\gamma\), for some appropriate choice of \(\gamma\). For the rest of this argument, we need \(n > 2\) and we choose \(\gamma\) to satisfy
\[
\gamma \left(\frac{n}{n-1} \right) = 2(\gamma - 1).
\]
We deduce that
\[
\gamma = \frac{2(n-1)}{n-2} > 0,
\]
as \(n > 2\). We plug \(\varphi^\gamma\) in the above and we get
\[
\|\varphi^\gamma\|_{L^{n/(n-1)}} \leq \frac{1}{n} \left(\sum_{j=1}^{n} \int_{U} |\varphi^\gamma| \, dx \right)^{1/n} \leq \frac{2}{n} \left(\sum_{j=1}^{n} \int_{U} |\varphi^{\gamma-1}| \, dx \right)^{1/n} \leq \frac{2}{n} \left(\sum_{j=1}^{n} \|\varphi^{\gamma-1}\|_{L^2} \|D_j(\varphi)\|_{L^2} \right),
\]
by Cauchy-Schwarz. The left hand side is equal to
\[
\left(\int_{U} |\varphi^{\frac{n\gamma}{n-2}}| \, dx \right)^{\frac{n-1}{n}} = \left(\int_{U} |\varphi^{2(\gamma-1)}| \, dx \right)^{\frac{n-1}{n}}.
\]
On the right hand side, the term \(\|\varphi^{\gamma-1}\|_{L^2}\) is common to the summands, so pull it out. This factor is
\[
\left(\int_{U} |\varphi^{2(\gamma-1)}| \, dx \right)^{\frac{1}{2}}.
\]
When we divide both sides by this factor, we get
\[
\left(\int_{U} |\varphi^{2(\gamma-1)}| \, dx \right)^{\frac{n-1}{n}-\frac{1}{2}} \leq \frac{\gamma}{n} \sum_{j=1}^{n} \|D_j(\varphi)\|_{L^2}.
\]
But,
\[
2(\gamma - 1) = \frac{\gamma n}{n-1} = \frac{2n}{n-2}
\]
and
\[
\frac{n-1}{n} - \frac{1}{2} = \frac{n-2}{2n}.
\]
We obtain
\[
\left(\int_{U} |\varphi^{\frac{2n}{n-2}}| \, dx \right)^{\frac{n-2}{2n}} \leq \frac{2(n-1)}{n(n-2)} \sum_{j=1}^{n} \|D_j(\varphi)\|_{L^2}.
\]
Therefore, we get the Sobolev inequality for the case \(s = 1\) and \(n > 2\): For every \(\varphi \in C_0^\infty(U)\), we have
\[
\|\varphi\|_{L^{\frac{2n}{n-2}}} \leq K(n) \|\varphi\|_{1},
\]
2.3. HODGE I, ANALYTIC PRELIMINARIES

Now, say \(\psi \in H_1 \), then there is a sequence, \(\{ \varphi_q \} \), converging to \(\psi \) in the \(\| \|_1 \)-norm, with \(\varphi_q \in C^\infty_0(U) \). Consequently, this is a Cauchy sequence in the \(\| \|_1 \)-norm and so,

\[\| \varphi_q - \varphi_r \|_1 < \epsilon \quad \text{for all } q, r \text{ sufficiently large} \]

which implies that

\[\| \varphi_q - \varphi_r \|_{L^{2n/2}} < \epsilon \quad \text{for all } q, r \text{ sufficiently large}. \]

Therefore, the \(\varphi_q \) converge to a limit, \(\psi_0 \in L^{2n/2} \).

(a) The map \(\psi \mapsto \psi_0 \) does not depend on the choice of the Cauchy sequence.

(b) This map is an injection.

As a consequence, we get the Sobolev embedding when \(s = 1 \):

\[H_1 \hookrightarrow L^{2n/2}, \quad \text{if } n > 2. \]

If we pass to the limit in \((*)\), we get: For every \(\psi \in H_1 \),

\[\| \psi \|_{L^{2n/2}} \leq K(n) \| \psi \|_1. \]

Now, we want the Sobolev inequality on \(\| D^\alpha \varphi \|_\infty \) when \(s = 1 \). In this case, \(\sigma(\alpha) \leq s \) implies \(|\alpha| + 1 + \left\lceil \frac{n}{2} \right\rceil \leq 1 \). Thus, \(n = 1 \) and \(\alpha = 0 \). Therefore, we have to prove

\[\| \varphi \|_\infty \leq K \| \varphi \|_1. \]

In the present case, \(U \subseteq \mathbb{R} \) and \(\varphi \in C^\infty_0(U) \). Then, we have

\[\varphi(x) = \int_{-\infty}^x \varphi'(t)dt, \]

so

\[|\varphi(x)| \leq \int_{-\infty}^x |\varphi'(t)| dt \leq \|1\|_{L^2} \|D\varphi\|_{L^2} \leq \sqrt{\mu(U)} \| \varphi \|_1, \]

where we used Cauchy Schwarz in the first inequality. If we take sup’s, we get the following Sobolev inequality for the case \(s = n = 1 \):

\[\| \varphi \|_\infty \leq K \| \varphi \|_1. \]

(\(** \))

Next, consider the embedding property. Here, we have \(0 \leq m \leq s - \left\lceil \frac{n}{2} \right\rceil \), so \(m = 0 \). Take \(\psi \in H_1 \) and, as before, approximate \(\psi \) by some sequence, \(\{ \varphi_q \} \), where \(\varphi_q \in C^\infty_0(U) \). Then, \((**\)) implies that

\[\| \varphi_q - \varphi_r \|_\infty \leq K \| \varphi_q - \varphi_r \|_1. \]

As the right hand side is smaller than \(\epsilon \) for all \(q, r \geq N \) (for some large \(N \)), we deduce that the \(\varphi_q \) converge uniformly to some \(\psi_0 \in C^0(U) \). Then, again, the map \(\psi \mapsto \psi_0 \) is well-defined and an embedding. Therefore,

\[H_1(U) \subseteq C^0(U), \]

which is the Sobolev embedding in the case \(s = n = 1 \).

To prove the general case, we use induction on \(s \) and iterate the argument. The induction hypothesis is
(a) If \(n > 2s \), then for all \(\varphi \in \mathcal{C}^\infty(U) \),

\[
\|\varphi\|_{L^{\frac{2n}{n-2}}} \leq K(n) \|\varphi\|_s.
\]

\((*)\)

(a') There is an embedding, \(H_s(U) \hookrightarrow L^{\frac{2n}{n-2}} \), so \((*)\) holds for all \(\psi \in H_2 \).

(b) If \(0 \leq m \leq s - \left\lceil \frac{n}{2} \right\rceil \) \((\sigma(m) \leq s) \), then

\[
\| D^\alpha \varphi \|_\infty \leq K \| \varphi \|_{\sigma(\alpha)} \leq K \| \varphi \|_s.
\]

\(((**)\)

(Here, \(\sigma(\alpha) \leq s \).)

(b') There is an embedding, \(H_s(U) \hookrightarrow C^m(U) \), i.e., \((**\)) holds for all \(\psi \in H_s \).

(a) Actually, this part does not require induction. As the case \(s = 1 \) has been settled, we may assume \(s > 1 \) (and \(n > 2s \)). We need to show that for any \(\varphi \in \mathcal{C}^\infty_0(U) \),

\[
\|\varphi\|_{L^{\frac{2n}{n-2}}} \leq \|\varphi\|_s.
\]

We have

\[
\|\varphi\|_1 \leq \|\varphi\|_s
\]

and as \(n > 2s > 2 \), by the \(s = 1 \) case,

\[
\|\varphi\|_{L^{\frac{2n}{n-2}}} \leq \|\varphi\|_1.
\]

We conclude immediately that

\[
\|\varphi\|_{L^{\frac{2n}{n-2}}} \leq \|\varphi\|_s.
\]

Note that \((a')\) is a consequence of \((a)\) in the same way as before.

(b) Assume \(0 \leq m \leq s + 1 - \left\lceil \frac{n}{2} \right\rceil \), i.e., \(m - 1 < s - \left\lceil \frac{n}{2} \right\rceil \). Pick \(\varphi \in \mathcal{C}^\infty_0(U) \) and look at \(D_j \varphi \) and \(\sigma(\beta) \leq s \). Observe that \(m - 1 \) is such a \(|\beta| \). By \((**)\),

\[
\| D^\beta D_j \varphi \|_\infty \leq K \| D_j \varphi \|_{\sigma(\beta)}, \text{ for all } j.
\]

But all \(D^\alpha \varphi \) are of this form, for some \(\beta \) with \(\sigma(\beta) \leq s \). Therefore,

\[
\| D^\alpha \varphi \|_\infty \leq K \| D_j \varphi \|_{\sigma(\beta)} \leq K \| \varphi \|_{s+1}, \text{ by } (\dagger)
\]

which is exactly \((**)\). By the induction hypothesis, each \(D_j \varphi \in C^{m-1}(\overline{U}) \) and we conclude that \(\varphi \in C^m(\overline{U}) \).

\(\square\)

Notion of a Weak Solution to, say \(\square \varphi = \psi \).

Definition 2.6 Given \(\psi \in D(U) \) (but, usually, \(\psi \in C^\infty(U) \)), we call \(\varphi \in D(U) \) a **weak solution** of \(\square \varphi = \psi \) iff for every \(\eta \in \mathcal{C}^\infty_0(U) \), we have

\[
\varphi(\square \eta) = \psi(\eta).
\]

Motivation: We know that \(\square \varphi \) is defined by

\[
(\square \varphi)(\eta) = \varphi(\square \eta).
\]

Therefore, \(\square \varphi = \psi \) in \(D(U) \) when and only when \(\varphi \) is a weak solution.