
Chapter 5

Homological Algebra

5.1 Introduction

Homological Algebra has now reached into almost every corner of modern mathematics. It started with the
invasion of algebra into topology at the hands of Emmy Noether. She pointed out that the ranks and “torsion
coefficients” computed for various spaces were just the descriptions of finitely generated abelian groups as
coproducts of cyclic groups; so, one should instead study these “homology invariants” as homology groups.
Algebraic topology was born.

In the late 30’s through the decade of the 40’s, the invasion was reversed and topology invaded algebra.
Among the principal names here were Eilenberg, MacLane, Hochschild, Chevalley and Koszul. This created
“homological algebra” and the first deeply influential book was in fact called “Homological Algebra” and
authored by H. Cartan and S. Eilenberg (1956) [9].

Our study below is necessarily abbreviated, but it will allow the reader access to the major applications
as well as forming a good foundation for deeper study in more modern topics and applications.

5.2 Complexes, Resolutions, Derived Functors

From now on, let A denote an abelian category; think of Mod(R), where R is a ring, not necessarily
commutative. This is not so restrictive an example. The Freyd-Mitchell embedding theorem [15, 40], says
that each “reasonable” abelian category admits a full embedding intoMod(R) for a suitable ring R.

We make a new category, Kom(A), its objects are sequences of objects and morphisms from A:

· · · −→ A−n d−n

−→ A−n+1 d
−n+1

−→ · · · −→ A−1 d−1

−→ A0 d0−→ A1 −→ · · · −→ An
dn

−→ An+1 −→ · · · ,

in which di+1 ◦ di = 0, for all i. That is, its objects are complexes from A.

Such a complex is usually denoted by A• (sometimes, (A•, d•)). The morphisms of Kom(A) are more

complicated. However, we have the notion of “premorphism”: (A•, d•)
ϕ•
−→ (B•, δ•). This is a sequence, ϕ•,

of morphisms from A, where ϕn : An → Bn, and we require that for all n, the diagram

An
dn

��

ϕn

��

An+1

ϕn+1

��
Bn

δn
�� Bn+1
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commutes. Such ϕ’s are called chain maps, or cochain maps. The collection of complexes and their chain
maps forms the category PreKom(A).

Remarks:

(1) Write An = A−n. This notation is usually used when A• stops at A0 (correspondingly, write dn for
d−n).

(2) A complex is bounded below (resp. bounded above) iff there is some N ≥ 0 so that Ak = (0) if k < −N
(resp. Ak = (0) if k > N). It is bounded iff it is bounded above and below. The sub (pre)category of
the bounded complexes is denoted PreKomb(A).

(3) If Ak = (0) for all k < 0, we have a cohomological complex (right complex or co-complex ).

(4) If Ak = (0) for all k > 0, then we use lower indices and get a homological complex (left complex , or
just complex ).

(5) The category A has a full embedding in PreKom(A) via A �→ A•, where Ak = (0) if k �= 0 and A0 = A
and all dk ≡ 0.

(6) Given a sequence, {An}∞n=−∞ from A, we get an object of PreKom(A), namely:

· · · −→ A−n 0−→ A−n+1 0−→ · · · −→ A−1 0−→ A0 0−→ A1 0−→ A2 −→ · · · ,

where all maps are the zero map. Since Kom(A) and PreKom(A) will have the same objects, we will
drop references to PreKom(A) when objects only are discussed.

(7) Given (A•, d•) in Ob(Kom(A)), we make a new object of Kom(A): H•(A•), with

Hn(A•) = Ker dn/Im dn−1 ∈ Ob(A),

and with all maps equal to the zero map. The object H•(A•) is the homology of (A•, d•).

Nomenclature. A complex (A•, d•) ∈ Kom(A) is acylic iff H•(A•) ≡ (0). That is, the complex (A•, d•) is
an exact sequence.

Given A ∈ Ob(A), a left (acyclic) resolution of A is a left complex, P• = {Pn}∞n=0, in Kom(A) and a
map P0 −→ A so that the new complex

· · ·Pn −→ Pn−1 −→ · · · −→ P0 −→ A −→ 0

is acyclic. A right (acyclic) resolution of A ∈ Ob(A) is the dual of a left acyclic resolution of A considered
as an object of AD.

We shall assume of the category A that:

(I) A has enough projectives (or enough injectives, or enough of both). That is, given any A ∈ Ob(A)
there exists some projective object, P0, (resp. injective object Q0) and a surjection P0 −→ A (resp.
an injection A −→ Q0).

Observe that (I) implies that each A ∈ Ob(A) has an acyclic resolution P• −→ A −→ 0, with all Pn
projective, or an acyclic resolution 0 −→ A −→ Q•, with all Qn injective. These are called projective
(resp. injective) resolutions. ForMod(R), both exist. (For Sh(X), the category of sheaves of abelian
groups on the topological space, X, injective resolutions exist.)

(II) A possesses finite coproducts (resp. finite products, or both). This holds forMod(R) and Sh(X).
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Remark: The following simple fact about projectives will be used in several of the subsequent proofs: If
we have a diagram

P
θ

��
f

��
A ϕ

�� B
ψ

�� C

in which

(1) P is projective.

(2) The lower sequence is exact (i.e., Im ϕ = Ker ψ).

(3) ψ ◦ f = 0,

then there is a map θ : P → A lifting f (as shown by the dotted arrow above). Indeed, ψ ◦ f = 0 implies that
Im f ⊆ Ker ψ; so, we have Im f ⊆ Im ϕ, and we are reduced to the usual situation where ϕ is surjective.
Of course, the dual property holds for injectives.

Proposition 5.1 Suppose we are given an exact sequence

0 −→ A′ ψ−→ A
ϕ−→ A′′ −→ 0

and both A′ and A′′ possess projective resolutions P ′
• −→ A′ −→ 0 and P ′′

• −→ A′′ −→ 0. Then, there exists
a projective resolution of A, denote it P•, and maps of complexes P ′

• −→ P• and P• −→ P ′′
• , so that the

diagram

0 �� P ′
•

��

ψ• �� P•

��

ϕ• �� P ′′
•

��

�� 0

0 �� A′

��

ψ �� A

��

ϕ �� A′′

��

�� 0

0 0 0

commutes and has exact rows and columns. A similar result holds for injective resolutions.

Proof . We have 0 −→ P ′
n −→ Pn −→ P ′′

n −→ 0 if Pn exists and P ′′
n is projective. So, the sequence would

split and Pn = P ′
n 	 P ′′

n . Look at

0 −→ P ′
n

ψn−→ P ′
n 	 P ′′

n︸ ︷︷ ︸
Pn

i′′n←−−→
ϕn

P ′′
n −→ 0.

We have a map Pn −→ Pn via i′′n ◦ ϕn; we also have the map id− i′′n ◦ ϕn and

ϕn ◦ (id− i′′n ◦ ϕn) = ϕn − ϕn ◦ i′′n ◦ ϕn = ϕn − id′′
n ◦ ϕn = ϕn − ϕn ≡ 0.

It follows that id− i′′n ◦ ϕn factors through ψn, i.e.,

id− i′′n ◦ ϕn : Pn −→ P ′
n

ψn−→ Pn.

So, we may speak of “elements of Pn” as pairs xn = (x′n, x
′′
n), where x′′n = ϕn(xn) and

(id− i′′n ◦ ϕn)(xn) = xn − i′′n(x′′n) = x′n. Therefore,

xn = “x′n + i′′n(x
′′
n)” = (x′n, x

′′
n).
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This shows that for every n, we should define Pn as P ′
n 	 P ′′

n . We need d• on P•. The map dn takes Pn to
Pn−1. These dn should make the diagram

0 �� P ′
n+1

d′n+1

��

�� Pn+1

dn+1

��

�� P ′′
n+1

d′′n+1

��

�� 0

0 �� P ′
n

d′n
��

ψn �� Pn

dn

��

ϕn �� P ′′
n

d′′n
��

�� 0

0 �� P ′
n−1

ψn−1 �� Pn−1
ϕn−1 �� P ′′

n−1
�� 0

commute and dn ◦ dn+1 = 0. In terms of pairs, xn = (x′n, x
′′
n), where ψn(x′n) = (x′n, 0) and ϕn(xn) = x′′n, the

commutativity of the lower left square requires

dn(x′n, 0) = (d′nx
′
n, 0).

How about (0, x′′n)? Observe that we have ϕn−1dn(0, x′′n) = d′′n(x
′′
n). Write dn(0, x′′n) = (αn−1, βn−1); we

know that ϕn−1(αn−1, βn−1) = βn−1, thus,

dn(0, x′′n) = (αn−1, d
′′
nx

′′
n).

So, we need a map θn : P ′′
n → P ′

n−1; namely θn(x′′n) = αn−1, the first component of dn(0, x′′n). If we know
θn, then

dn(xn) = dn(x′n, x
′′
n) = dn((x′n, 0) + (0, x′′n))

= (d′n(x
′
n), 0) + dn(0, x′′n)

= (d′n(x
′
n), 0) + (θn(x′′n), d

′′
n(x

′′
n))

= (d′n(x
′
n) + θn(x′′n), d

′′
n(x

′′
n)).

Everything would be OK in one layer from Pn to Pn−1, but we need dn ◦ dn+1 = 0. Since

dn+1(xn+1) = dn+1(x′n+1, x
′′
n+1) = (d′n+1(x

′
n+1) + θn+1(x′′n+1), d

′′
n+1(x

′′
n+1)),

we must have

dn ◦ dn+1(xn+1) = (d′n ◦ d′n+1(x
′
n+1) + d′n ◦ θn+1(x′′n+1) + θn ◦ d′′n+1(x

′′
n+1), d

′′
n ◦ d′′n+1(x

′′
n+1))

= (d′n ◦ θn+1(x′′n+1) + θn ◦ d′′n+1(x
′′
n+1), 0) = 0.

Therefore, we need

d′n ◦ θn+1 + θn ◦ d′′n+1 = 0, for all n ≥ 1. (†n)
The case n = 0 requires commutativity in the diagram

0 �� P ′
1

d′1
��

�� P1

d1

��

�� P ′′
1

d′′1
��

�� 0

0 �� P ′
0

ε′

��

ψ0 �� P0

ε

��

ϕ0 �� P ′′
0

ε′′

��

�� 0

0 �� A′

��

ψ �� A

��

ϕ �� A′′

��

�� 0

0 0 0
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Since P ′′
0 is projective, there is a map σ : P ′′

0 → A so that

ϕ ◦ σ = ε′′.

We can now define ε. We have ε(x0) = ε((x′0, x
′′
0)) = ε((x′0, 0)) + ε((0, x′′0)) and ε((x′0, 0)) = ψε′(x′0), as the

lower left square commutes. We also have

ϕ(ε(0, x′′0)) = ε′′(ϕ0(0, x′′0)) = ε′′(x′′0) = ϕσ(x′′0).

Consequently, ε((0, x′′0))− σ(x′′0) is killed by ϕ and it follows that

ε((x′0, x
′′
0)) = ψε′(x′0) + σ(x′′0).

We construct the map θn by induction on n and begin with n = 1. Note that

0 = εd1(x′1, x
′′
1) = ε(d′1(x

′
1) + θ1(x′′1), d′′1(x′′1)) = ψε′(d′1(x

′
1) + θ1(x′′1)) + σd′′1(x′′1).

Therefore, we need to have

ψε′θ1 + σd′′1 = 0. (††)

Construction of θ1: In the diagram

P ′′
1

θ1

��
−σd′′1

��
P ′

0
ψε′

�� A �� A′′ �� 0

as P ′′
1 is projective, the map −σd′′1 lifts to a map θ1 : P ′′

1 → P ′
0; thus (††) holds.

Next, we construct θ2: Consider the diagram

P ′′
2

θ2

��
−θ1d′′2

��
P ′

1
d′1

�� P ′
0

ε′
�� A′ �� 0.

If we know that ε′(−θ1d′′2) = 0, we can lift our map and get θ2, as shown. But, apply ψ, then by (††), we get

ψε′θ1d′′2 = σd′′1d
′′
2 = 0.

Yet, ψ is an injection, so ε′θ1d′′2 = 0. Thus, the map θ2 exists and we have d′1θ2 = −θ1d′′2 , i.e. (†1) holds.

Finally, consider the case n > 1 and assume the θr are constructed for r ≤ n and (†k) holds for all
k ≤ n− 1. By the induction hypothesis,

−d′n−1θnd
′′
n+1 = θn−1d

′′
nd

′′
n+1 = 0.

We have the diagram
P ′′
n+1

θn+1

��
−θnd

′′
n+1

��
P ′
n

d′n
�� P ′

n−1
d′n−1

�� P ′
n−2



258 CHAPTER 5. HOMOLOGICAL ALGEBRA

in which P ′′
n+1 is projective, −d′n−1θnd

′′
n+1 = 0 and the lower sequence is exact. Therefore, −θnd′′n+1 lifts to

θn+1 so that
d′nθn+1 = −θnd′′n+1,

which is (†n). The case of injectives follows from the dual category.

Definition 5.1 Say

· · · −→ X−n d−n
X−→ X−n+1 d

−n+1
X−→ · · · −→ X−1 d−1

X−→ X0 d0X−→ X1 −→ · · · −→ Xn dn
X−→ Xn+1 −→ · · ·

and

· · · −→ Y −n d−n
Y−→ Y −n+1 d

−n+1
Y−→ · · · −→ Y −1 d−1

Y−→ Y 0 d0Y−→ Y 1 −→ · · · −→ Y n
dn

Y−→ Y n+1 −→ · · ·
are objects of Kom(A). A homotopy between two maps f•, g• : X• −→ Y • is a sequence, {sn}, of maps
sn : Xn → Y n−1 so that

fn − gn = sn+1 ◦ dnX + dn−1
Y ◦ sn, for all n,

as illustrated in the diagram below:

· · · �� Xn−1
dn−1

X ��

∆n−1

��

Xn
dn

X ��

∆n

��

sn

��������������
Xn+1 ��

∆n+1

��

sn+1

��������������
· · ·

· · · �� Y n−1

dn−1
Y

�� Y n
dn

Y

�� Y n+1 �� · · ·

where ∆n = fn − gn.

Remark: From f• and g• we get two maps on homology:

H•(f•) : H•(X•) −→ H•(Y •)
H•(g•) : H•(X•) −→ H•(Y •).

But, when f• and g• are homotopic, these maps on homology are equal. Indeed,

H•(f• − g•) = H•(s•+1d•) +H•(d•−1s•)
= H•(s•+1)H•(d•) +H•(d•−1)H•(s•).

As H•(d•) = 0 and H•(d•−1) = 0, we get

H•(f•)−H•(g•) = H•(f• − g•) = 0,

as claimed.

Now, based on this, we define the category Kom(A) by changing the morphisms in PreKom(A).

Definition 5.2 Kom(A) is the category whose objects are the chain complexes from A and whose morphisms
are the homotopy classes of chain maps of the complexes.

Theorem 5.2 Under the usual assumptions on A, suppose P •(A) −→ A −→ 0 is a projective resolution of
A and X•(A′) −→ A′ −→ 0 is an acyclic resolution of A′. If ξ : A → A′ is a map in A, it lifts uniquely
to a morphism P •(A) −→ X•(A′) in Kom(A). [ If 0 −→ A −→ Q•(A) is an injective resolution of A and
0 −→ A′ −→ Y •(A′) is an acyclic resolution of A′, then any map ξ : A′ → A lifts uniquely to a morphism
Y •(A′) −→ Q•(A) in Kom(A).]
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Proof . We begin by proving the existence of the lift, stepwise, by induction. Since we have morphisms
ε : P0(A)→ A and ξ : A→ A′, we get a morphism ξ ◦ ε : P0(A)→ A′ and we have the diagram

P0(A)

ξ◦ε
��

f0

��
X0(A′) �� A′ �� 0.

As P0(A) is projective, the map f0 : P0(A) → X0(A′) exists and makes the diagram commute. Assume the
lift exists up to level n. We have the diagram

Pn+1(A)
dP

n+1 �� Pn(A)
dP

n ��

fn

��

Pn−1(A)

fn−1

��

�� · · ·

Xn+1(A′)
dX

n+1

�� Xn(A′)
dX

n

�� Xn−1(A′) �� · · · ,
(†)

so we get a map fn ◦ dPn+1 : Pn+1(A)→ Xn(A′) and a diagram

Pn+1(A)

fn◦dP
n+1

��

fn+1

��
Xn+1(A′) �� Xn(A′)

dX
n

�� Xn−1(A′).

But, by commutativity in (†), we get

dXn ◦ fn ◦ dPn+1 = fn−1 ◦ dPn ◦ dPn+1 = 0.

Now, Pn+1(A) is projective and the lower row in the above diagram is exact, so there is a lifting
fn+1 : Pn+1(A)→ Xn+1(A′), as required.

Now, we prove uniqueness (in Kom(A)). Say we have two lifts {fn} and {gn}. Construct the homotopy
{sn}, by induction on n.

For the base case, we have the diagram

P0(A) ε ��

s0

��
g0

��
f0

��

A ��

ξ

��

0

X1(A′)
dX
1

�� X0(A′)
ε′

�� A′ �� 0.

As ε′(f0 − g0) = (ξ − ξ)ε = 0, the lower row is exact and P0(A) is projective, we get our lifting
s0 : P0(A)→ X1(A′) with f0 − g0 = dX1 s0.

Assume, for the induction step, that we already have s0, . . . , sn−1. Write ∆n = fn − gn, then we get the
diagram

Pn(A)
dP

n ��

∆n

��

Pn−1(A) ��

∆n−1

��

sn−1

������������
Pn−2(A) ��

∆n−2

��

· · ·

Xn+1(A′) �� Xn(A′)
dX

n

�� Xn−1(A′) �� Xn−2
�� · · ·

(††)
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There results a map ∆n − sn−1 ◦ dPn : Pn(A) −→ Xn(A′) and a diagram

Pn(A)

∆n−sn−1◦dP
n

��
Xn+1(A′)

dX
n+1

�� Xn(A′)
dX

n

�� Xn−1(A′).

As usual, if we show that dXn ◦ (∆n− sn−1 ◦dPn ) = 0, then there will be a lift sn : Pn(A)→ Xn+1(A′) making
the diagram commute. Now, by the commutativity of (††), we have dXn ◦∆n = ∆n−1 ◦ dPn ; so

dXn ◦ (∆n − sn−1 ◦ dPn ) = ∆n−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn .

By the induction hypothesis, ∆n−1 = fn−1 − gn−1 = sn−2 ◦ dPn−1 + dXn ◦ sn−1, and therefore

∆n−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn = dXn ◦ sn−1 ◦ dPn + sn−2 ◦ dPn−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn = 0.

Hence, sn exists and we are done. The case of injective resolutions follows by duality.

Corollary 5.3 Say ξ : A→ A′ is a morphism in A and P, P ′ are respective projective resolutions of A and
A′. Then, ξ extends uniquely to a morphism P −→ P ′ of Kom(A). (A similar result holds for injective
resolutions.)

Corollary 5.4 If P and P ′ are two projective resolutions of the same object, A, of A, then in Kom(A), P
is uniquely isomorphic to P ′. (Similarly for injective resolutions.)

Proof . We have the identity morphism, id : A → A, so we get unique lifts, f and g in Kom(A), where
f : P → P ′ and g : P ′ → P (each lifting the identity). But then, f ◦ g and g ◦ f lift the identity to
endomorphisms of P ′ and P respectively. Yet, the identity on each is also a lift; by the theorem we must
have f ◦ g = id and g ◦ f = id in Kom(A).

Using the same methods and no new ideas, we can prove the following important proposition. The proof
will be omitted–it provides nothing new and has many messy details.

Proposition 5.5 Suppose we have a commutative diagram

0 �� A′ ��

f ′

��

A ��

f

��

A′′ ��

f ′′

��

0

0 �� B′ �� B �� B′′ �� 0.

(We call such a diagram a “small commutative diagram.”) Given objects, X
′•,X•, etc. of Kom(A) as

below, an exact sequence
0 −→ X

′• −→ X• −→ X
′′• −→ 0

over the A-sequence and an exact sequence

0 −→ Y
′• −→ Y • −→ Y

′′• −→ 0

over the B-sequence, assume X
′′• and Y

′′• are projective resolutions, while X
′• and Y

′• are acyclic resolu-
tions. Suppose further we have maps Φ′ : X

′• → Y
′• and Φ′′ : X

′′• → Y
′′• over f ′ and f ′′. Then, there exists

a unique Φ: X• → Y • (over f) in Kom(A) so that the “big diagram” of augmented complexes commutes
and X• and Y • are acyclic.
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Definition 5.3 If T is a functor (resp. cofunctor) on A to another abelian category B, the left derived
functors of T are the functors, LnT , given by

(LnT )(A) = Hn(T (P•(A))),

where P•(A) is any projective resolution of A (resp., when T is a cofunctor, the right derived functors of T
are the functors, RnT , given by (RnT )(A) = Hn(T (P•(A)))).

If T is a functor, its right derived functors are the functors, RnT , given by

(RnT )(A) = Hn(T (Q•(A))),

where Q•(A) is any injective resolution of A (when T is a cofunctor, the left derived functors of T , written
(LnT )(A), are given by (LnT )(A) = Hn(T (Q•(A)))).

The definition of derived functors is somewhat complicated and certainly unmotivated. Much of the
complication disappears when one observes that the values of either right or left derived functors are just
the homology objects of a complex; that, no matter whether T is a functor or a cofunctor, right (resp. left)
derived functors are the homology of a right (resp. left) complex (homology of a right complex is usually
called cohomology). Thus, for a functor, T , an injective resolution will yield a right complex and so is used to
compute right derived functors of T . Mutatis mutandis for projective resolutions; for cofunctors, T , simply
reverse all arrows. Of course, what we are investigating here is the effect of T on a resolution. We always
get a complex , but acyclicity is in general not preserved and the deviation from acyclicity is measured by the
derived functors.

As for motivation, the concept arose from experience first from algebraic topology later from homological
methods applied to pure algebra. Indeed the notion of derived functor took a long time to crystallize from
all the gathered examples and results of years of work. Consider, for example, a group G and the abelian
category of G-modules. On this category, we have already met the left exact functor M �MG with values
in Ab. Our notation for this functor was H0(G,M). Now, in Chapters 1 and 4, we constructed a sequence
of functors of M , namely Hn(G,M). An obvious question is: Are the functors Hn(G,−) the right derived
functors of H0(G,−)? We will answer this question below by characterizing the derived functors of a given
functor, T .

Further remarks:

(1) The definition makes sense, i.e., derived functors are independent of the resolution chosen. Use Corol-
lary 5.4 to see this.

(2) Suppose T is a functor and A is a projective object of A (resp. an injective object of A), then
(LnT )(A) = (0) for n > 0 (resp. (RnT )(A) = (0) for n > 0). If T is a cofunctor, interchange
conclusions. (A is its own resolution in either case; so, remark (1) provides the proof.)

(3) If T is exact, then LnT and RnT are (0) for n > 0 (the homology of an acyclic complex is zero).

Proposition 5.6 If T is any functor, there are always maps of functors T −→ R0T and L0T −→ T . If Q
is injective and P projective, then T (Q) −→ (R0T )(Q) and (L0T )(P ) −→ T (P ) are isomorphisms. When T
is a cofunctor interchange P and Q. For either a functor or a cofunctor, T , the zeroth derived functor R0T
is always left-exact while L0T is always right-exact. A necessary and sufficient condition that T be left-exact
(resp. right-exact) is that T −→ R0T be an isomorphism of functors (resp. L0T −→ T be an isomorphism
of functors). Finally, the functor map T −→ R0T induces an isomorphism of functors RnT −→ RnR0T for
all n ≥ 0 and similarly there is an isomorphism of functors LnL0T −→ LnT .
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Proof . Most of this is quite trivial. The existence of the maps T −→ R0T and L0T −→ T follows immediately
from the definition (and the strong uniqueness of Corollary 5.4 as applied in Remark (1) above). That R0T
is left exact is clear because it is a kernel and because the exact sequence of resolutions lifting a given exact
sequence can always be chosen as split exact at each level. Similarly, L0T is right exact as a cokernel. Of
course, if T is isomorphic to R0T it must be left exact, while if T is left exact, the terms in the augmented
complex outlined by the braces form an exact sequence:

0 −→ T (A) −→ TQ0(A)
T (d0)−→ TQ1(A)︸ ︷︷ ︸ −→ · · · .

Thus, the canonical map T (A) −→ (R0T )(A) = Ker T (d0) is an isomorphism. Similarly for right exactness
and L0.

Should Q be injective, the sequence

0 −→ Q
id−→ Q −→ 0 −→ 0 −→ · · ·

is an injective resolution ofQ and it shows that T (Q) is equal to (R0T )(Q). Similarly for P and for cofunctors.
But now if A is arbitrary and Q•(A) is an injective resolution of A, the diagram

0 �� T (A) ��

��

T (Q0(A)) ��

��

T (Q1(A)) ��

��

· · ·

0 �� (R0T )(A) �� (R0T )Q0(A) �� (R0T )Q1(A) �� · · ·

in which the vertical arrows except the leftmost are isomorphisms shows immediately that RnT −→ Rn(R0T )
is an isomorphism for all n ≥ 0. Similarly for Ln(L0T ) −→ LnT .

The point of the above is that right derived functors belong with left exact functors and similarly if we
interchange left and right .

There are two extremely important examples of derived functors—they appear over and over in many
applications.

Definition 5.4 If A is any abelian category and B = Ab (abelian groups), write TB(A) = HomA(A,B), for
fixed B. (This is a left-exact cofunctor, so we want its right derived functors RnTB). Set

ExtnA(A,B) = (RnTB)(A). (∗)

If A =Mod(Rop) and B = Ab, set SB(A) = A⊗R B, for fixed B. (This is a right-exact functor, so we
want its left-derived functors LnSB). Set

TorRn (A,B) = (LnSB)(A). (∗∗)

To be more explicit, in order to compute Ext•A(A,B), we take a projective resolution of A

P • −→ A −→ 0

apply HomA(−, B) and compute the cohomology of the (right) complex HomA(P •, B). For the tensor
product, we similarly take a projective resolution of the Rop module, A,

P • −→ A −→ 0
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apply −⊗R B and compute the homology of the complex P • ⊗R B. Because HomA(−, B) is left exact and
−⊗R B is right exact, we have

HomA(A,B) = Ext0A(A,B)
A⊗R B = TorR0 (A,B).

The following proposition, which we will call the basic lemma, will give us a chief property of derived
functors and help us characterize the sequence of derived functors of a given functor.

Proposition 5.7 (Long (co)homology sequence) Suppose X•, Y •, Z• are complexes and

0 −→ X• −→ Y • −→ Z• −→ 0

is exact in pre-Kom(A) (also OK in Kom(A)). Then, there exists a long exact sequence of homology (or
cohomology)

· · · �� Hn−1(Z•) ����
����

�� Hn(X•) �� Hn(Y •) �� Hn(Z•) ����
����

�� Hn+1(X•) �� Hn+1(Y •) �� Hn+1(Z•) ����
����

�� Hn+2(X•) �� · · ·
(for all n). The maps δn : Hn(Z•)→ Hn+1(X•) are called connecting homomorphisms.

Proof . Look at the diagram

0 �� Xn−1 ��

��

Y n−1 ��

��

Zn−1 ��

��

0

0 �� Xn ��

dn
X

��

Y n ��

dn
Y

��

Zn ��

dn
Z

��

0

0 �� Xn+1 ��

��

Y n+1 ��

��

Zn+1 ��

��

0

0 �� Xn+2 �� Y n+2 �� Zn+2 �� 0

and apply the snake lemma to the rows n and n+ 1. We get

0 −→ Ker dnX −→ Ker dnY −→ Ker dnZ
δ−→ Coker dnX −→ Coker dnY −→ Coker dnZ −→ 0.

If we look at Im dn−1
X and apply the map X• −→ Y •, we land in Im dn−1

Y , etc. Thus, at every level we get
that

Hn(X•) −→ Hn(Y •) −→ Hn(Z•) is exact.

Now, the connecting map, δ, of the snake lemma maps Ker dnZ to Hn+1(X•). But, clearly, Im dn−1
Z

goes to zero under δ (because every element of Im dn−1
Z comes from some element in Y n−1). So, we get the

connecting homomorphism
δn : Hn(Z•) −→ Hn+1(X•).

A diagram chase proves exactness (DX).
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Corollary 5.8 Given a commutative diagram of complexes

0 �� X• ��

��

Y • ��

��

Z• ��

��

0

0 �� X̃• �� Ỹ • �� Z̃• �� 0

we have the big diagram of long exact sequences

· · · �� Hn(X•) ��

��

Hn(Y •) ��

��

Hn(Z•) ��

��

Hn+1(X•) ��

��

· · ·

· · · �� Hn(X̃•) �� Hn(Ỹ •) �� Hn(Z̃•) �� Hn+1(X̃•) �� · · ·
(∗∗)

which commutes.

Proof . Chase the diagram in the usual way.

Suppose T is a right-exact functor on A and

0 −→ A −→ B −→ C −→ 0

is an exact sequence in A. Resolve this exact sequence (as we have shown is possible, cf. Proposition 5.1) to
get

0 �� P •(A) ��

εA

��

P •(B) ��

εB

��

P •(C) ��

εC

��

0

0 �� A ��

��

B ��

��

C ��

��

0

0 0 0

Then, as LnT is the homology of the TP • complexes (still horizontaly exact on the complex level, as our
objects are projectives and the horizontal complex sequences split!), from the basic lemma, we get the long
exact sequence (of derived functors)

· · · �� LnT (A) �� LnT (B) �� LnT (C) ����
����

�� Ln−1T (A) �� · · · · · · ����
����

�� · · · · · · �� L1T (C) ����
����

�� T (A) �� T (B) �� T (C) �� 0

Moreover, we have a commutative diagram corresponding to (∗∗):
· · · �� (LnT )(A) ��

��

(LnT )(B) ��

��

(LnT )(C) ��

��

(Ln−1T )(A) ��

��

· · ·

· · · �� (LnT )(Ã) �� (LnT )(B̃) �� (LnT )(C̃) �� (Ln−1T )(Ã) �� · · ·
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stemming from Proposition 5.5.

We can abstract this behavior of the sequences {LnT}∞n=0 and {RnT}∞n=0 according to the following
definition:

Definition 5.5 A δ-functor (resp. ∂-functor) is a sequence, {Tn}, (resp. a sequence, {Tn}) of functors so
that for every exact sequence

0 −→ A −→ B −→ C −→ 0

in A, we have a long exact sequence

0 �� T 0(A) �� T 0(B) �� T 0(C) ����
����

�� T 1(A) �� T 1(B) �� T 1(C) ����
����

�� T 2(A) �� · · ·

and it is functorial in morphisms of exact sequences (similarly for ∂-functors, but reverse the arrows). [This
means that for every commutative diagram

0 �� A ��

��

B ��

��

C ��

��

0

0 �� A′ �� B′ �� C ′ �� 0,

where the rows are exact, the induced diagram

0 �� T 0(A) ��

��

T 0(B) ��

��

T 0(C) ��

��

T 1(A) · · ·

��

�� Tn−1(C) ��

��

Tn(A) ��

��

· · ·

0 �� T 0(A′) �� T 0(B′) �� T 0(C ′) �� T 1(A′) · · · �� Tn−1(C ′) �� Tn(A′) �� · · ·

is also commutative.]

Of course, our results on derived functors give us

Proposition 5.9 The sequence of derived functors {RnT} (resp. {LnT}) for a left-exact (resp. right-exact)
functor, T , forms a δ-functor (resp. ∂-functor).

Another δ-functor is the sequence {Hn(G,−)}∞n=0 defined on the category of G-modules. To get at the
characterization of derived functors, we need

Definition 5.6 A δ-functor {Tn} is universal iff for all δ-functors, {Sn}, given a map (of functors),
f0 : T 0 → S0, there exists a unique extension of f0 to a map {fn : Tn → Sn} of δ-functors. Similarly for
∂-functors, but reverse the directions of the arrows.

Remark: Say {Tn} and {Sn} are universal δ-functors and f0 : T 0 ∼= S0 is an isomorphism of functors.
Then, there is a unique isomorphism {fn : Tn → Sn} of δ-functors lifting f0. That is, universal δ-functors
are determined by their components in dimension 0.
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Proof . Since f0 : T 0 ∼= S0 is an isomorphism of functors, there is a map of functors, g0 : S0 → T 0 so that
f0g0 = id and g0f0 = id. Universality implies that there exist unique fn : Tn → Sn and gn : Sn → Tn lifting
f0 and g0. But, fngn and gnfn lift f0g0 and g0f0, i.e., lift id. Yet, id lifts id in both cases. By uniqueness,
fngn = id and gnfn = id.

Theorem 5.10 (Uniqueness I; Weak effaceability criterion) Say {Tn} is a δ-functor on A and suppose for
every n > 0 there is some functor, En : A → A, which is exact and for which there is a monomorphism of
functors id −→ En [ i.e., for every object A in Ob(A) and all n > 0, we have an injection A −→ En(A)
functorially in A and En is exact ] so that the map Tn(A) −→ Tn(En(A)) is the zero map for every n > 0.
Then, {Tn} is a universal δ-functor. Hence, {Tn} is uniquely determined by T 0.

Proof . Construct the liftings by induction on n. The case n = 0 is trivial since the map f0 : T 0 → S0 is
given. Assume the lifting exists for all r < n. We have the exact sequence

0 −→ A −→ En(A) −→ cokA −→ 0

and so, we have a piece of the long exact diagram

Tn−1(En(A)) ��

fn−1

��

Tn−1(cokA) δ ��

fn−1

��

Tn(A) 0 �� Tn(En(A))

Sn−1(En(A)) �� Sn−1(cokA) δ �� Sn(A)

(††)

where the left square commutes and the rows are exact. Hence, by a simple argument, there is a unique
fn : Tn(A)→ Sn(A) that makes the diagram commute. This construction is functorial since En is an exact
functor; when we are done, all the diagrams commute.

Now, we need to prove uniqueness. Say we have two extensions {fn} and {gn} of f0. We use induction
to prove that fn = gn for all n. This is obviously true for n = 0. Assume that uniqueness holds for all r < n.
Write (††) again:

Tn−1(En(A)) ��

fn−1

��
gn−1

��

Tn−1(cokA) ��

fn−1

��
gn−1

��

Tn(A) 0 ��

fn

��
gn

��

Tn(En(A))

Sn−1(En(A)) �� Sn−1(cokA) �� Sn(A)

.

As fn−1 = gn−1 on all arguments, the above diagram implies fn = gn on A. As A is arbitrary, fn = gn and
the proof is complete.

Corollary 5.11 Say En = E for all n (E functorial and exact) and E satisfies the hypotheses of Theorem
5.10. (For example, this happens when E(A) is {Tn}-acyclic for all A (i.e., Tn(E(A)) = (0) for all A and
all n > 0).) Then, {Tn} is universal.

We can apply Corollary 5.11 to the sequence {Hn(G,−)}, because E(A) = Map(G,A) satisfies all the
hypotheses of that Corollary according to Proposition 4.54. Hence, we obtain the important

Corollary 5.12 The sequence of functors {Hn(G,−)} is a universal δ-functor from the category G-mod to
Ab.

Corollary 5.13 If En(A) is functorial and exact for every n > 0, and En(Q) is Tn-acyclic for each n and
for every injective Q, then every injective object of A is {Tn}-acyclic.
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Proof . Pick Q injective, then we have an exact sequence

0 −→ Q −→ En(Q) −→ cokQ −→ 0.

Since Q is injective, the sequence splits and so,

Tn(En(Q)) = Tn(Q)	 Tn(cokQ).

By assumption, the left hand side is zero; thus, Tn(Q) = (0).

Theorem 5.14 (Uniqueness II) Say {Tn} and {Sn} are δ-functors on A and {fn : Tn → Sn} is a map of
δ-functors. If for all injectives, Q, the map fn(Q) : Tn(Q)→ Sn(Q) is an isomorphism (all n), then {fn} is
an isomorphism of δ-functors. The same statement holds for ∂-functors and projectives.

Proof . (Eilenberg) Of course, we use induction on n. First, we consider the case n = 0.

Step 1. I claim that f0 : T 0(A)→ S0(A) is a monomorphism for all A.

Since A has enough injectives, we have an exact sequence

0 −→ A −→ Q −→ cokA −→ 0,

for some injective, Q. We have the commutative diagram

0 �� T 0(A) ��

f0

��

T 0(Q)

θQ,0

��
0 �� S0(A) �� S0(Q)

where θQ,0 : T 0(Q)→ S0(Q) is an isomorphism, by hypothesis. It follows that f0 is injective.

Step 2. The map f0 is an isomorphism, for all A.

We have the commutative diagram

0 �� 0 �� T 0(A) ��

��

T 0(Q) ��

θQ,0

��

T 0(cokA)

��
0 �� 0 �� S0(A) �� S0(Q) �� S0(cokA),

where the rightmost vertical arrow is injective by step 1 and θQ,0 is an isomorphism. By the five lemma, the
middle arrow is surjective, and thus bijective.

Next, consider the induction step.

Step 3. The map fn is injective for all A.

Consider the commutative diagram

Tn−1(Q) ��

θQ,n−1

��

Tn−1(cokA) ��

fn−1

��

Tn(A) ��

fn

��

Tn(Q) ��

θQ,n

��

Tn(cokA)

��
Sn−1(Q) �� Sn−1(cokA) �� Sn(A) �� Sn(Q) �� Sn(cokA).

By the induction hypothesis, fn−1 is injective; moreover, θQ,n−1 and θQ,n are bijective, by assumption, so
the five lemma implies that fn : Tn(A)→ Sn(A) is injective.
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Step 4. The map fn is an isomorphism for all n.

By step 3, the righthand vertical arrow is an injection and by the induction hypothesis, fn−1 is an
isomorphism. As θQ,n and θQ,n−1 are isomorphisms, by the five lemma, again, fn is surjective and thus
bijective.

Theorem 5.15 (Uniqueness III) Given a δ-functor {Tn} on A, suppose that for any A ∈ A, any injective
Q and any exact sequence

0 −→ A −→ Q −→ cokA −→ 0,

the sequence

Tn−1(Q) −→ Tn−1(cokA) −→ Tn(A) −→ 0 is exact, if n > 0.

Under these conditions, {Tn} is a universal δ-functor. (Similarly for ∂-functors and projectives).

Proof . We proceed by induction. Given another δ-functor, {Sn}, and a morphism of functors f0 : T 0 → S0,
suppose f0 is already extended to a morphism fr : T r → Sr, for all r ≤ n−1. Since A has enough injectives,
we have the exact sequence

0 −→ A −→ Q −→ cokA −→ 0

and we get the diagram

Tn−1(Q) ��

fn−1

��

Tn−1(cokA) ��

fn−1

��

Tn(A) ��

ϕQ

��

0

Sn−1(Q) �� Sn−1(cokA) �� Sn(A) .

By a familiar argument, there exists only one map, ϕQ, making the diagram commute. Note that ϕQ might
depend on Q. To handle dependence on Q and functoriality, take some Ã and its own exact sequence

0 −→ Ã −→ Q̃ −→ cok eA −→ 0

and say we have a map g : A → Ã. Since Q̃ is injective, there exist θ and θ making the following diagram
commute:

0 �� A ��

g

��

Q ��

θ

��

cokA ��

θ
��

0

0 �� Ã �� Q̃ �� cok eA �� 0.

We have the diagram:
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Tn−1(Q) Tn−1(cokA) Tn(A) 0

Tn−1(Q̃) Tn−1(cok eA) Tn(Ã) 0

Sn−1(Q) Sn−1(cokA) Sn(A)

Sn−1(Q̃) Sn−1(cok eA) Sn(Ã)

fn−1 fn−1 ϕQ

fn−1 fn−1
ϕ eQ

Tn(g)

Sn(g)

All squares at top and bottom commute and the two left hand vertical squares also commute by the
induction hypothesis. It follows that the righthand vertical square commutes (DX), i.e.:

ϕ eQ ◦ Tn(g) = Sn(g) ◦ ϕQ.

If we set g = id (perhaps for different Q and Q̃), we see that

ϕ eQ = ϕQ,

so ϕ is independent of Q. Moreover, for any g, the righthand vertical diagram gives functoriality.

It remains to show commutativity with the connecting homomorphisms. Given an exact sequence

0 −→ A′ −→ A −→ A′′ −→ 0

begin the resolution of A′ by injectives, i.e., consider an exact sequence

0 −→ A′ −→ Q′ −→ cok′ −→ 0.

We obtain the diagram below in which θ and θ exist making the diagram commute:

0 �� A′ �� A ��

θ

��

A′′ ��

θ

��

0

0 �� A′ �� Q′ �� cok′ �� 0.

Consequently, we get the diagram below in which all top and bottom diagrams commute and the left
vertical cube commutes:
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Tn−1(A) Tn−1(A′′) Tn(A′)

Tn−1(Q′) Tn−1(cok′) Tn(A′)

Sn−1(A) Sn−1(A′′) Sn(A′)

Sn−1(Q′) Sn−1(cok′) Sn(A′)

δT

δS

fn−1 fn−1 fn

fn−1 fn−1 fn

If we use the rightmost horizontal equalities, a diagram chase shows

Tn−1(A′′)
δT ��

fn−1

��

Tn(A′)

fn

��
Sn−1(A′′)

δS �� Sn(A′)

commutes (DX).

Corollary 5.16 The right derived (resp. left derived) functors of T are universal δ-functors (resp. universal
∂-functors). A necessary and sufficient condition that the δ-functor {Tn} be isomorphic to the δ-functor
{RnT 0} is that {Tn} be universal. Similarly for ∂-functors and the sequence {LnT0}.

Corollary 5.17 For any group, G, the δ-functor {Hn(G,−)} is isomorphic to the δ-functor {RnH0(G,−)}.
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5.3 Various (Co)homological Functors

There are many homological and cohomological functors all over mathematics. Here, we’ll give a sample from
various areas and some simple applications. By these samples, some idea of the ubiquity of (co)homological
functors may be gleaned.

First of all, the functors Ext•A(A,B) and TorR• (A,B) have been defined in an asymmetric manner: We
resolved A, not B. We’ll investigate now what happens if we resolve B.

Pick any B ∈ A and write
TB(−) = HomA(−, B).

[Remember, (RnTB)(A) = ExtnA(A,B).]

If 0 −→ B′ −→ B −→ B′′ −→ 0 is exact and P is projective, we get the exact sequence

0 −→ TB′(P ) −→ TB(P ) −→ TB′′(P ) −→ 0.

[Recall, P is projective iff HomA(P,−) is exact.]

Resolve A: P•
ε−→ A −→ 0. We get the commutative diagram

0 �� TB′(Pn) ��

		

TB(Pn) ��

		

TB′′(Pn) ��

		

0

...

		

...

		

...

		

0 �� TB′(P0) ��

		

TB(P0) ��

		

TB′′(P0) ��

		

0

0 �� TB′(A) ��

		

TB(A) ��

		

TB′′(A)

		

0

		

0

		

0

		

Applying cohomology,1 we get the long exact sequence of (co)homology:

· · · �� Rn−1TB′′(A) ����
����

�� RnTB′(A) �� RnTB(A) �� RnTB′′(A) ����
����

�� Rn+1TB′(A) �� · · ·

1The locution “apply (co)homology” always means make the long exact sequence arising from the given short one.
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Therefore, we have the exact sequence

· · · �� Extn−1
A (A,B′′) ����

����
�� ExtnA(A,B′) �� ExtnA(A,B) �� ExtnA(A,B′′) ����

����
�� Extn+1

A (A,B′) �� · · ·
Consequently, we find that:

(1) Ext•A(A,B) is a functor of A and B, actually a co-functor of A and a functor of B.

(2) {Ext•A(A,−)}∞n=0 is a δ-functor (functorial in A).

(3) {Ext•A(−, B)}∞n=0 is a universal δ-functor (functorial in B).

Now, write Ẽxt
•
A(A,B) for what we get by resolving the righthand variable B (using injective resolutions).

We obtain analogs of (1), (2), (3); call them (1̃), (2̃) and (3̃). Note that

Ẽxt
0

A(A,B) = HomA(A,B) = Ext0A(A,B).

Now, Ẽxt
•
A(A,−) is a universal δ-functor and Ext•A(A,−) is a δ-functor. Thus, there is a unique extension

Ẽxt
n

A(A,B)
ϕn−→ ExtnA(A,B),

which is a map of δ-functors. When B is injective, the left hand side is (0) (as derived functors vanish on
injectives). Moreover, in this case, HomA(−, B) is exact, and so,

RnHomA(A,B) = (0), for all n > 0 and all A.

By Uniqueness II (Theorem 5.14), we conclude

Theorem 5.18 The derived functor Ext•A can be computed by resolving either variable. The same result
holds for TorR• (in Mod(R)).

There is a technique by which the value of RnT (A) can be computed from Rn−1T (Ã) for a suitable Ã.
This is known as décalage2 or dimension shifting . Here is how it goes for a left exact functor, T , or left
exact cofunctor, S.

For T , consider A and embed it in an acyclic object for RnT , e.g., an injective

0 −→ A −→ Q −→ cokA −→ 0.

Now apply cohomology:

0 �� T (A) �� T (Q) �� T (cokA) �� R1T (A) �� 0 �� R1T (cokA) ����
����

�� R2T (A) �� 0 �� R2T (cokA) �� · · · �� 0 �� Rn−1T (cokA) ����
����

�� RnT (A) �� 0 �� · · ·
2The French word means a shift in space and is also used for time.
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We find that

Rn−1T (cokA) −̃→ RnT (A), n ≥ 2
cok(T (Q) −→ T (cokA)) −̃→ R1T (A),

so the suitable Ã is just cokA.

For the cofunctor, S, project an acyclic object (for RnS), e.g., a projective, onto A:

0 −→ KerA −→ P −→ A −→ 0.

Just as above, we find

Rn−1S(KerA) −̃→ RnS(A)
cok(S(P ) −→ S(KerA)) −̃→ R1S(A).

Similar statements hold for right exact functors or cofunctors and their left derived functors.

There is a very important interpretation of Ext1A(A,B); indeed this interpretation is the origin of the
word “Ext” for the derived functor of Hom. To keep notation similar to that used earlier for modules in
Chapter 2, we’ll replace A by M ′′ and B by M ′ and consider Ext1A(M ′′,M ′).

Say

0 −→M ′ −→M −→M ′′ −→ 0 (E)

is an extension of M ′′ by M ′. Equivalence is defined as usual: In the diagram below, the middle arrow, g,
is an isomorphism that makes the diagram commute:

0 �� M ′ �� M ��

g

��

M ′′ �� 0

0 �� M ′ ��
M̃

�� M ′′ �� 0

Apply to (E) the functor HomA(M ′′,−). We get

0 −→ HomA(M ′′,M ′) −→ HomA(M ′′,M) −→ HomA(M ′′,M ′′)
δ(E)−→ Ext1A(M ′′,M ′).

So, δ(E)(id) is a canonical element in Ext1A(M ′′,M ′); it is called the characteristic class of the extension (E),
denoted χ(E). Note: χ(E) = 0 iff (E) splits.

Now, given ξ ∈ Ext1A(M ′′,M ′), resolve M ′ by injectives:

0 −→M ′ −→ Q0 −→ Q1 −→ Q2 −→ · · · .
If we apply HomA(M ′′,−), we get

0 −→ HomA(M ′′,M ′) −→ HomA(M ′′, Q0) d0−→ HomA(M ′′, Q1) d1−→ HomA(M ′′, Q2) −→ · · · ,
and we have Ext1(M ′′,M ′) = Ker d1/Im d0. Consequently, ξ comes from some f ∈ HomA(M ′′, Q1) and
d1(f) = 0.

0 �� M ′ �� Q0 d0 �� Q1 d1 �� Q2

M ′′

f

		

d1(f)=0



��������
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Thus,
Im f ⊆ Ker d1 = Im d0 = X,

and so, f is a map M ′′ −→ X ⊆ Q1. We get

0 �� M ′ �� Q0 d0 �� X �� 0

M ′′

f

		
(∗)

Taking the pullback of (∗) by f , we find

0 �� M ′ �� M ��

g

��

M ′′ ��

f

��

0

0 �� M ′ �� Q0 �� X �� 0,

(E)

i.e., we get an extension, (E). One checks that (E) is independent of f , but depends only on ξ. This involves
two steps (DX): (E) does not change if f is replaced by f + d0(h); (E) does not change if we use another
injective resolution. Hence, we’ve proved

Theorem 5.19 There is a one-to-one correspondence

(E) �→ χ(E)

between equivalence classes of extensions of modules of M ′′ by M ′ and elements of Ext1A(M ′′,M ′).

An interpretation of ExtnA(M ′′,M ′) for n ≥ 2 will be left for the exercises. The cohomological functor
Ext•A(A,B) is the most important of the various cohomological functors because many cohomological functors
are special cases of it. The same holds for TorR• (A,B) with respect to homological functors. Here are several
examples of these considerations:

We begin with groups. Recall that we proved the δ-functor {Hn(G,A)} coincided with the right-derived
functors of the functor A � AG. (Of course, here G is a group and A is a G-module.) We form the group
ring R = Z[G]3; every G-module is an R-module and conversely—in particular, every abelian group is an
R-module with trivial action by G. Consider Z as R-module with trivial G-action and for any G-module
introduce the functor

A� HomR(Z, A).

It is left exact and its derived functors are Ext•R(Z, A). But, a homomorphism f ∈ HomR(Z, A) is just an
element of A, namely f(1). And, as Z has trivial G-action, our element, f(1), is fixed by G. Therefore

HomR(Z, A) −̃→ AG,

and so we find

Proposition 5.20 If G is any group and A is any G-module, there is a canonical isomorphism

Extn
Z[G](Z, A) −̃→ Hn(G,A), all n ≥ 0.

3Recall that Z[G] is the free Z-module on the elements of G. Multiplication is defined by σ ⊗ τ �→ στ , where σ, τ ∈ G and
we extend by linearity.
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As for group homology, first consider the exact sequence of G-modules

0 −→ I −→ Z[G] ε−→ Z −→ 0, (∗)

in which ε takes the element
∑
aσ · σ to

∑
aσ; that is, ε sends each group element to 1. The ideal I is by

definition Ker ε; one sees easily that I is freely generated by the elements σ − 1 (for σ ∈ G, σ �= 1) as a
Z-module. A little less obvious is the following:

Proposition 5.21 The mapping log(σ) = (σ − 1)(mod I2) is an isomorphism of abelian groups

log : G/[G,G] −̃→ I/I2.

Proof . The operations on the two sides of the claimed isomorphism, log, are the group multiplication abelian-
ized and addition respectively. Clearly, log(σ) = (σ − 1)(mod I2) is well-defined and

(στ − 1) = (σ − 1) + (τ − 1) + (σ − 1)(τ − 1)

shows it’s a homomorphism. Of course we then have log(σ−1) = −(σ− 1), but this is easy to see directly. It
follows immediately that [G,G] lies in the kernel of log; so we do get a map

log : G/[G,G] −→ I/I2.

As I is the free Z-module on the elements (σ − 1), as σ ranges over G (σ �= 1), we can define

exp: I −→ G/[G,G],

via

exp

∑
σ �=1

nσ(σ − 1)

 =
∏
σ �=1

σnσ mod [G,G]

and considerations entirely simililar to those above for log show that exp is a homomorphism from I to
G/[G,G] and that I2 is killed by exp. It should be obvious that log and exp are mutually inverse, so we’re
done.

If A is a G-module, we can tensor exact sequence (∗) over Z[G] with A; this gives

I ⊗Z[G] A −→ A −→ Z⊗Z[G] A −→ 0.

Of course, this shows
A/(IA) −̃→ Z⊗Z[G] A.

The functor A� A/IA is a right-exact functor fromG-modules toAb and its left derived functors, Hn(G,A),
are the homology groups of G with coefficients in A. The isomorphism we’ve just observed (together with
the usual arguments on universal ∂-functors) allows us to conclude

Proposition 5.22 If G is a group and A is any G-module, there is a canonical isomorphism (of ∂-functors)

Hn(G,A) −̃→ TorZ[G]
n (Z, A), all n ≥ 0.

We first introduced and computed group cohomology via an explicit chain complex, is there a similar
description for group homology? There is indeed, and while we can be quite direct and give it, perhaps it is
better to make a slight detour which is necessary anyway if one is to define (co)homology of algebras in a
direct manner.
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Write K for a commutative ring and R for a (possibly non-commutative) K-algebra. In the case of
groups, K will be Z and R will be Z[G], while for other purposes K will be a field and R the polynomial
ring K[T1, . . . , Tn]; there will be still other purposes.

For an integer, n ≥ −1, write Cn(R) for the (n+ 2)-fold tensor product of R with itself over K:

Cn(R) = R⊗K R⊗K · · · ⊗K R︸ ︷︷ ︸
n+2

C−1(R) = R

Cn+1(R) = R⊗K Cn(R).

Next, introduce the module R⊗KRop. We want to make R⊗KRop into a K-algebra by the multiplication

(ρ⊗ σop)(r ⊗ sop) = ρr ⊗ σopsop = ρr ⊗ (sσ)op

and for this we must have K in the center of R. To see this, pick λ ∈ K, set ρ = s = 1, set σ = λ, and
compute

rλ⊗K 1op = (r ⊗K λop1op) = r ⊗K λop

= (1⊗K λop)(r ⊗K 1op)
= (λ⊗K 1op)(r ⊗K 1op) = λr ⊗K 1op.

As r is arbitrary, we are done. So, from now on, we shall assume K is in the center of R. The
algebra R ⊗K Rop is called the enveloping algebra of R over K; it is usually denoted Re. Now, there is a
map Re −→ R via

r ⊗ sop �→ rs.

� This map is not a map of K-algebras, only a map of Re-modules. (Re acts on R via (r⊗sop)(m) = rms;
in general, two-sided R-modules are just Re-modules (as well as (Re)op-modules).) It will be aK-algebra
map if R is commutative.

We should also note that the map
r ⊗ sop �→ sop ⊗ r

is a K-isomorphism of K-algebras Re −̃→ (Re)op. (DX)

It will be best to use “homogeneous notation” for elements of Cn(R): r0 ⊗ r1 ⊗ · · · ⊗ rn+1. Then Cn(R)
is a left Re-module under the rule

(s⊗ top)(r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗ rn+1) = (sr0)⊗ r1 ⊗ · · · ⊗ rn ⊗ (rn+1t).

Now we’ll make {Cn(R)}∞n=0 into an acyclic left complex. The boundary map is

∂n(r0 ⊗ r1 ⊗ · · · ⊗ rn+1) =
n∑
i=0

(−1)i r0 ⊗ · · · ⊗ (riri+1)⊗ · · · ⊗ rn+1,

it is an Re-homomorphism Cn(R) −→ Cn−1(R). In particular, ∂0 is the Re-module map discussed above,

∂0(r0 ⊗ r1) = r0r1

and
∂1(r0 ⊗ r1 ⊗ r2) = (r0r1)⊗ r2 − r0 ⊗ (r1r2).
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From these, we see ∂0∂1 = 0 precisely because R is associative. To prove {Cn(R)} is a complex and acyclic,
introduce the map

σn : Cn(R) −→ Cn+1(R) via σn(ξ) = 1⊗K ξ.

The map σn is only an Rop-module map but it is injective because there is a map τn : Cn+1(R)→ Cn(R) given
by τn(r0 ⊗ (rest)) = r0(rest) and we have τnσn = id. Moreover, Im (σn) generates Cn+1(R) as R-module! It
is easy to check the relation

∂n+1σn + σn−1∂n = id on Cn(R), for n ≥ 0. (†)

Now use induction to show ∂n−1∂n = 0 as follows: Above we showed it for n = 1, assume it up to n and
apply ∂n (on the left) to (†), we get

∂n∂n+1σn + ∂nσn−1∂n = ∂n.

However, ∂nσn−1 = idn−1 − σn−2∂n−1, by (†) at n− 1. So,

∂n∂n+1σn + ∂n − σn−2∂n−1∂n = ∂n,

that is, ∂n∂n+1σn = 0 (because ∂n−1∂n = 0). But, the image of σn generates Cn+1 as R-module; so
∂n∂n+1 = 0, as needed. Now, notice that ∂0 takes C0(R) = Re onto C−1(R) = R, and so

· · · −→ Cn(R) ∂n−→ Cn−1(R) −→ · · · −→ C0(R) ∂0−→ R −→ 0

is an acyclic resolution of R as Re-module.

Since Cn(R) = R⊗K (R⊗K · · · ⊗K R︸ ︷︷ ︸
n

)⊗K R, we find

Cn(R) = Re ⊗K Cn[R],

where
Cn[R] = R⊗K · · · ⊗K R, n-times

and
C0[R] = K.

Several things follow from this description of Cn(R): First, we see exactly how Cn(R) is an Re-module
and also see that it is simply the base extension of Cn[R] fromK to Re. Next, we want a projective resolution,
so we want to insure that Cn(R) is indeed projective even over Re. For this we prove

Proposition 5.23 Suppose R is a K-algebra and R is projective as a K-module (in particular this holds if
R is K-free, for example when K is a field). Then

(1) Cn[R] is K-projective for n ≥ 0,

(2) R⊗K Cn[R] is R-projective for n ≥ 0,

(3) Cn(R) is Re-projective for n ≥ 0.

Proof . This is a simple application of the ideas in Chapter 2, Section 2.6. Observe that (2) and (3) follow
from (1) because we have

HomR(R⊗K Cn[R], T ) −̃→ HomK(Cn[R], T ) (†)
and

HomRe(Re ⊗K Cn[R], T ) −̃→ HomK(Cn[R], T ) (††)
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where T is an R-module in (†) and an Re-module in (††). An exact sequence of R-modules (resp. Re-modules)
is exact as sequence of K-modules and (1) shows that the right sides of (†) and (††) are exact as functors of
T . Such exactness characterizes projectivity; so, (2) and (3) do indeed follow from (1).

To prove (1), use induction on n and Proposition 2.47 which states in this case

HomK(R⊗K Cn−1[R], T ) −̃→ HomK(Cn−1[R],HomK(R, T )). (∗)
Now, T � HomK(R, T ) is exact by hypothesis; so, the right hand side of (∗) is an exact functor of T by
induction hypothesis. Consequently, (∗) completes the proof.

Corollary 5.24 If the K-algebra, R, is K-projective, then

· · · −→ Cn(R) ∂n−→ Cn−1(R) −→ · · · −→ C0(R) ∂0−→ R −→ 0

is an Re-projective resolution of the Re-module R.

The resolution of Corollary 5.24 is called the standard (or bar) resolution of R. We can define the
homology and cohomology groups of the K-algebra R with coefficients in the two-sided R-module, M , as
follows:

Define the functors
H0(R,−) : M �M/MJ

and
H0(R,−) : M � {m ∈M | rm = mr, all r ∈ R} = MR

to the category of K-modules. Here, the (left) ideal, J, of Re is defined by the exact sequence

0 −→ J −→ Re
∂0−→ R −→ 0, (∗∗)

and is called the augmentation ideal of Re. It’s easy to check that M �M/MJ is right exact and M �MR

is left exact. We make the definition

Definition 5.7 The n-th homology group of R with coefficients in the two-sided R-module, M , is

Hn(R,M) = (LnH0)(M)

and the nth cohomology group with coefficients in M is

Hn(R,M) = (RnH0)(M).

We’ll refer to these groups as the Hochschild homology and cohomology groups of R even though our
definition is more general than Hochschild’s–he assumedK is a field and gave an explicit (co)cycle description.
We’ll recover this below and for this purpose notice that

The augmententation ideal, J, is generated (as left Re-ideal) by the elements r ⊗ 1− 1⊗ rop for r ∈ R.

To see this, observe that
∑
i ri ⊗ sopi ∈ J iff we have

∑
i risi = 0. But then∑

i

ri ⊗ sopi =
∑
i

ri ⊗ sopi −
∑
i

risi ⊗ 1 =
∑
i

(ri ⊗ 1)(1⊗ sopi − si ⊗ 1).

Now, to apply this, tensor our exact sequence (∗∗) with M :

M ⊗Re J −→M
1⊗∂0−→ M ⊗Re R −→ 0,
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so we find
H0(R,M) = M/MJ −̃→ M ⊗Re R.

It follows immediately that we have an isomorphism

Hn(R,M) −̃→ TorR
e

n (M,R).

Similarly, we take HomRe(−,M) of (∗∗) and get

0 −→ HomRe(R,M) −→M
θ−→ HomRe(J,M).

The isomorphism
HomRe(Re,M) −̃→ M

is just
f �→ f(1),

thus if f ∈ HomRe(Re,M) and m = f(1), we find for ξ ∈ J that

(θ(f))(ξ) = f(ξ) = ξm.

Therefore, f is in Ker θ iff ξm = 0 for all ξ ∈ J, where m = f(1). But, by the above, such ξ are generated by
r⊗ 1− 1⊗ rop, and so m ∈ Ker θ when and only when (r⊗ 1)m = (1⊗ rop)m; i.e., exactly when rm = mr,
for all r ∈ R. We have proved that there is an isomorphism (of K-modules)

HomRe(R,M) −̃→ MR = H0(R,M).

Once again we obtain an isomorphism

ExtnRe(R,M) −̃→ Hn(R,M).

Our discussion above proves the first two statements of

Theorem 5.25 If R is a K-algebra (with K contained in the center of R), then for any two-sided R-module,
M , we have canonical, functorial isomorphisms

Hn(R,M) −̃→ TorR
e

n (M,R)

and
Hn(R,M) −̃→ ExtnRe(R,M).

If R is K-projective, then homology can be computed from the complex

M ⊗K Cn[R]

with boundary operator

∂n(m⊗ r1 ⊗ · · · ⊗ rn) = mr1 ⊗ r2 ⊗ · · · ⊗ rn +
n−1∑
i=1

(−1)im⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn

+ (−1)nrnm⊗ r1 ⊗ · · · ⊗ rn−1;

while cohomology can be computed from the complex

HomK(Cn[R],M)

with coboundary operator

(δnf)(r1 ⊗ · · · ⊗ rn ⊗ rn+1) = r1f(r2 ⊗ · · · ⊗ rn+1) +
n∑
i=1

(−1)if(r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn+1)

(−1)n+1f(r1 ⊗ · · · ⊗ rn)rn+1.
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Proof . Only the statements about the explicit complex require proof. Since homology and cohomology are
given by specific Tor’s and Ext’s, and since the standard resolution is an Re-projective resolution of R, we
can use the latter to compute these Tor’s and Ext’s. Here, it will be important to know the Re-module
structure of Cn(R) and the fact that the map

r ⊗ sop �→ sop ⊗ r
establishes a K-algebra isomorphism of Re and (Re)op.

Now, consider the map

Θ: M ⊗Re Cn(R) = M ⊗Re (Re ⊗K Cn[R]) −̃→ M ⊗K Cn[R].

Observe that M is treated as an (Re)op-module, the action being

m(r ⊗ sop) = smr.

Thus,

Θ: m⊗Re (r0 ⊗ · · · ⊗ rn+1) = m⊗Re (r0 ⊗ ropn+1)⊗K (r1 ⊗ · · · ⊗ rn)
�→ [m · (r0 ⊗ ropn+1)]⊗K (r1 ⊗ · · · ⊗ rn)
= (rn+1mr0)⊗K (r1 ⊗ · · · ⊗ rn) ∈M ⊗K Cn[R].

We now just have to see the explicit form of the boundary map induced on M ⊗K Cn[R] by the diagram

M ⊗Re Cn(R)

1⊗∂n

��

M ⊗K Cn[R]Θ−1
��

M ⊗Re Cn−1(R) Θ �� M ⊗K Cn−1[R]

This goes as follows:

m⊗K (r1 ⊗ · · · ⊗ rn) Θ−1

−→ m⊗Re (1⊗ 1)⊗K (r1 ⊗ · · · ⊗ rn)
= m⊗Re 1⊗ r1 ⊗ · · · ⊗ rn ⊗ 1

1⊗∂n−→ m⊗Re r1 ⊗ · · · ⊗ rn ⊗ 1

+
n−1∑
i=1

(−1)im⊗Re (1⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn ⊗ 1)

+ (−1)nm⊗Re (1⊗ r1 ⊗ · · · ⊗ rn)
Θ−→ mr1 ⊗ r2 ⊗ · · · ⊗ rn +

n−1∑
i=1

(−1)im⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn

+ (−1)nrnm⊗ r1 ⊗ · · · ⊗ rn−1,

exactly the formula of the theorem. For cohomology we proceed precisely the same way, but remember that
here M is treated as an Re-module. Details are left as a (DX).

When K is a field, the explicit (co)chain descriptions of Hn(R,M) and Hn(R,M) apply; these are
Hochschild’s original descriptions for the (co)homology of K-algebras, Hochschild [25, 26].

By now, it should be clear that there is more than an analogy between the (co)homology of algebras and
that for groups. This is particularly evident from comparison of the original formula (Chapter 1, Section 1.4)
for cohomology of groups and Hochschild’s formula for the cohomology of the K-algebra, R. If we use just
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analogy then R will be replaced by Z[G] and K by Z; R is then free (rank = #(G)) over K. But, M is just
a left G-module (for cohomology) and for K-algebras, R, we assumed M was a two-sided R-module. This
is easily fixed: Make Z[G] act trivially on the right . Then, H0(Z[G],M) is our old MG and the coboundary
formula becomes (it is necessary only to compute on σ1 ⊗ · · · ⊗ σn+1 as such tensors generate):

(δnf)(σ1 ⊗ · · · ⊗ σn+1) = σ1f(σ2 ⊗ · · · ⊗ σn+1)

+
n∑
i=1

(−1)if(σ1 ⊗ · · · ⊗ σiσi+1 ⊗ · · · ⊗ σn+1)

+ (−1)n+1f(σ1 ⊗ · · · ⊗ σn),

as in Chapter 1. Therefore, keeping the analogy, for homology, where we have a right G-module, we should
make Z[G] act trivially on the left , and get the explicit formula:

∂n(m⊗ σ1 ⊗ · · · ⊗ σn) =mσ1 ⊗ σ2 ⊗ · · · ⊗ σn

+
n−1∑
i=1

(−1)im⊗ σ1 ⊗ · · · ⊗ σiσi+1 ⊗ · · · ⊗ σn

+ (−1)nm⊗ σ1 ⊗ · · · ⊗ σn−1,

(∗)

which formula we had in mind at the beginning of this discussion several pages ago.

The ideal J is generated by σ ⊗ 1 − 1 ⊗ σop as σ ranges over G (σ �= 1). Thus MJ is the submodule
generated by {m−mσ | σ �= 1}. Now the formula

σ−1m = mσ (special for groups)

turnsM into a left Z[G]-module and shows thatMJ is exactly our old IM and therefore proves the Hochschild
H0(Z[G],M) is our old H0(G,M).

However, all this is heuristic, it does not prove the Hochschild groups for Z[G] on our one-sided modules
are the (co)homology groups for G. For one thing, we are operating on a subcategory: The modules
with trivial action on one of their sides. For another, the Hochschild groups are TorZ[G]e

• (−,Z[G]) and
Ext•

Z[G]e(Z[G],−) not TorZ[G]
• (−,Z) and Ext•

Z[G](Z,−). We do know that everything is correct for cohomology
because of a previous argument made about universal δ-functors. Of course, it is perfectly possible to prove
that the groups

H̃n(G,M) = Ker ∂n/Im ∂n+1

for ∂n given by (∗) above form a universal ∂-functor—they clearly form a ∂-functor and universality will
follow from the effaceability criterion (Theorem 5.10). The effaceing module will be M ⊗Z Z[G] in analogy
with Map(G,M) (which is HomZ(Z[G],M)). Here, details are best left as an exercise.

Instead, there is a more systematic method that furthermore illustrates a basic principle handy in many
situations. We begin again with our K-algebra, R, and we assume there is a K-algebra homomorphism
ε : R→ K. Note that this is the same as saying all of (DX)

(i) K is an R-module (and R contains K in its center),

(ii) There is an R-module map R ε−→ K,

(iii) The composition K −→ R
ε−→ K is the identity.

Examples to keep in mind are: K = Z, R = Z[G] and ε(σ) = 1, all σ ∈ G; K arbitrary (commutative),
R = K[T1, . . . , Tn] or K〈T1, . . . , Tn〉 and ε(Tj) = 0, all j.
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In general, there will be no such homomorphism. However for commutative K-algebras, R, we can
arrange a “section”4, ε, after base extension. Namely, we pass to R⊗K R and set ε(r⊗ s) = rs ∈ R; so now
R plays the role of K and R ⊗K R the role of R. (The map ε : R → K is also called an augmentation of
R as K-algebra.) Hence, the basic principle is that after base extension (at least for commutative R) our
K-algebra has a section; we operate assuming a section and then try to use descent (cf. Chapter 2, Section
2.8).

� This technique doesn’t quite work with non-commutative R, where we base extend to get Re = R⊗KRop

and try ∂0 : Re → R for our ε. We certainly find that R is an Re-module, that ∂0 is an Re-module map,
that the composition R

i−→ Re −→ R (i(r) = r ⊗ 1) is the identity; but, R is not in the center of Re

and Re (with the multiplication we’ve given it) is not an R-algebra.

Notwithstanding this cautionary remark, we can do a descent-like comparison in the non-commutative
case provided R possesses a section ε : R → K. In the first place, the section gives K a special position
as R-module. We write I = Ker ε, this is a two-sided ideal of R called the augmentation ideal . Further,
consider the augmentation sequence

0 −→ I −→ R
ε−→ K −→ 0; (†)

by using condition (iii) above, we see that, as K-modules, R ∼= I	K. The special position of K as R-module
leads to the consideration of the ∂-functor and δ-functor:

{Hn(R,M) = TorRn (M,K)} (M an Rop-module)
{Hn

(R,M) = ExtnR(K,M)} (M an R-module)

which, as usual, are the derived functors of

M �M/MI

and
M � {m ∈M | (∀ξ ∈ I)(ξm = 0)},

respectively. (Here, M is an Rop-module for the first functor and an R-module for the second.) You should
keep in mind the case: K = Z, R = Z[G], ε(σ) = 1 (all σ) throughout what follows. The idea is to compare
the Hochschild groups Hn(R,M) and Hn(R,M) with their “bar” counterparts .

Secondly, we make precise the notion of giving a two-sided R-module, M , “trivial action” on one of its
sides5. Given M , a two-sided R-module, we make ε∗M and ε∗opM which are respectively an Rop-module
(“trivial action” on the left) and an R-module (“trivial action” on the right) as follows:

For m ∈ ε∗M and λop ∈ Rop, λop ·m = mλ and for λ ∈ R, λ ·m = ε(λ)m

and

For m ∈ ε∗opM and λ ∈ R, λ ·m = λm and for λop ∈ Rop, λop ·m = mε(λ).

Clearly, these ideas can be used to promote one-sided R-modules to two-sided ones (i.e., to Re-modules),
viz :

4The term “section” is geometric: We have the “structure map” Spec R −→ Spec K (corresponding to K −→ R) and ε gives

a continuous map: Spec K −→ Spec R so that Spec K
ε−→ Spec R −→ Spec K is the identity.

5Our earlier, heuristic, discussion was sloppy. For example, in the group ring case and for trivial action on the right, we
stated that Z[G] acts trivially on the right. But, n · 1 = n ∈ Z[G] and m · n �= m if n �= 1; so, our naive idea must be fixed.
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Any R, Rop, or Re-module is automatically a K-module and, as K is commutative so that Kop = K, we
see that λ ·m = m ·λ for λ ∈ K in any of these cases. Now if we have an R-module, M , we make Re operate
by

(r ⊗ sop) ·m = rmε(s) = rε(s)m = ε(s)rm,

and similarly for Rop-modules, M , we use the action

(r ⊗ sop) ·m = ε(r)ms = mε(r)s = msε(r).

When we use the former action and pass from an R-module to an Re-module, we denote that Re-module by
εop∗ (M); similarly for the latter action, we get the Re-module ε∗(M). And so we have pairs of functors{

ε∗ : Re-mod� Rop-mod
ε∗ : Rop-mod� Re-mod

and {
ε∗op : Re-mod� R-mod
εop∗ : R-mod� Re-mod

As should be expected, each pair above is a pair of adjoint functors, the upper star is left adjoint to the
lower star and we get the following (proof is (DX)):

Proposition 5.26 If R is a K-algebra with a section ε : R → K, then ε∗ is left-adjoint to ε∗ and similarly
for ε∗op and εop∗ . That is, if M is any Re-module and T and T ′ are respectively arbitrary Rop and R-modules,
we have

HomRop(ε∗M,T ) ∼= HomRe(M, ε∗T )
HomR(ε∗opM,T ′) ∼= HomRe(M, εop∗ T

′).

Lastly, we come to the comparison of the Hochschild groups with their “bar” counterparts. At first, it
will be simpler conceptually and notationally (fewer tensor product signs) to pass to a slightly more general
case: R and R̃ are merely rings and K and K̃ are chosen modules over R and R̃ respectively . In addition we
are given module surjections R ε−→ K and R̃ eε−→ K̃. By a map of the pair (R̃, K̃) to (R,K), we understand
a ring homomorphism ϕ : R̃ → R so that ϕ(Ker ε̃) ⊆ Ker ε. Of course, Ker ε and Ker ε̃ are just left ideals
and we obtain a map of groups, ϕ : K̃ → K and a commutative diagram

R̃
ϕ ��

eε
��

R

ε

��
K̃

ϕ �� K.

Now the ring map ϕ : R̃ → R makes every R-module an R̃-module (same for Rop-modules). So, K is an
R̃-module, and the diagram shows ϕ is an R̃-module map.

Suppose P̃• −→ K̃ −→ 0 is an R̃-projective resolution of K̃ and P• −→ K −→ 0 is an R-projective
resolution of K. We form R⊗ eR K̃, then we get an R-module map

θ : R⊗ eR K̃ −→ K

via
θ(r ⊗ eR k̃) = rϕ(k̃).

(Note that as ϕ is an R̃-module, this makes sense.) Now the complex R ⊗ eR P̃• is R-projective and surjects
to R⊗ eR K̃.
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By a slight generalization of Theorem 5.2, our R-module map lifts uniquely in Kom(R-mod) to a map

Θ: R⊗ eR P̃• −→ P•

(over θ, of course). Thus, if M is an Rop-module, we get the map on homology

H•(M ⊗ eR P̃•) = H•(M ⊗R (R⊗ eR P̃•) −→ H•(M ⊗R P•),

while if M is an R-module, we get the map on cohomology

H•(HomR(P•,M)) −→ H•(HomR(R⊗ eR P̃•,M)) = H•(Hom eR(P̃•,M)).

But, H•(M ⊗ eR P̃•) computes Tor
eR
• (M, K̃) (where, M is an R̃op-module through ϕ) and H•(M ⊗R P•)

computes TorR• (M,K). This gives the map of ∂-functors

Tor
eR
• (M, K̃) −→ TorR• (M,K).

Similarly, in cohomology we get the map of δ-functors

Ext•R(K,M) −→ Ext•eR(K̃,M).

Our arguments give the first statement of

Theorem 5.27 If ϕ : (R̃, K̃)→ (R,K) is a map of pairs, then there are induced maps of ∂ and δ–functors

H•(M,ϕ) : Tor
eR
• (M, K̃) −→ TorR• (M,K)

(for M ∈ Rop-mod), and
H•(M,ϕ) : Ext•R(K,M) −→ Ext•eR(K̃,M)

(for M ∈ R-mod).

Moreover, the following three statements are equivalent:

(1)

{
a) θ : R⊗ eR K̃ → K is an isomorphism, and
b) Tor

eR
n (R, K̃) = (0) for n > 0,

(2) Both maps H•(M,ϕ) and H•(M,ϕ) are isomorphisms for all M ,

(3) The map H•(M,ϕ) is an isomorphism for all M .

Proof . (1) =⇒ (2). Write P̃• −→ K̃ −→ 0 for a projective resolution of K̃. Then R⊗ eR P̃• −→ R⊗ eR K̃ −→ 0
is an R-projective complex over R ⊗ eR K̃. By (1)b), it is acyclic and by (1)a) we obtain an R-projective
resolution of K. Thus, we may choose as R-projective resolution of K the acyclic complex R ⊗ eR P̃•. But
then, Θ is the identity and (2) follows.

(2) =⇒ (3). This is a tautology.

(3) =⇒ (1). We apply the isomorphism H•(M,ϕ) for M = R. This gives us the isomorphism

Tor
eR
• (R, K̃) −̃→ TorR• (R,K).

We get (1)a) from the case 0 and (1)b) from n > 0.

Corollary 5.28 If ϕ : (R̃, K̃)→ (R,K) is a map of pairs and conditions (1)a) and b) of Theorem 5.27 hold,
then for any R̃-projective resolution of K̃, say P̃• −→ K̃ −→ 0, the complex R ⊗ eR P̃• is an R-projective
resolution of K.
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Proof . This is exactly what we showed in (1) =⇒ (2).

We apply these considerations to the comparison of the Hochschild groups and their bar counterparts.
The idea is to cast Re in the role of R̃ (and, since (Re)op isK-isomorphic to Re by the map τ : sop⊗r �→ r⊗sop,
cast (Re)op as R̃, too). The role of K̃ is played by R for Re and by Rop for (Re)op. Then R and K are just
themselves and, in the op-case, we use Rop and K.

Now ∂0 : Re → R, resp. ∂0 : (Re)op → Rop, by ∂0(r ⊗ sop) = rs, resp. ∂0(sop ⊗ r) = soprop = (rs)op, is
an Re-module map, resp. an (Re)op-module map. Moreover, the diagram

(Re)op

∂0

��

τ

∼ �� Re

∂0

��
Rop

=

op �� R

commutes for our formulae for ∂0. So, we cast ∂0 as ε̃. But we need the map of pairs and this is where our
section, ε, is essential . Define ϕ : Re → R (resp. (Re)op −→ Rop) by

ϕ(r ⊗ sop) = rε(s) (resp. ϕ(sop ⊗ r) = sopε(r)).

Clearly, ϕ is a ring homomorphism and as Ker ε̃ is generated by r ⊗ 1− 1⊗ rop (resp. rop ⊗ 1− 1⊗ r), we
find ϕ(Ker ε̃) ⊆ Ker ε. There results the commutative diagram of the map of pairs:

(Re)op
ϕ ��

∂0=eε

��

τ

∼=

����������� Rop

ε

��

Re
ϕ ��

∂0=eε�����������
R

ε

��
��

��
��

Rop = R
ε �� K

Now consider an R-module, M (resp. an Rop-module, M), how does ϕ make M an Re (resp. (Re)op)-
module? This way:

(r ⊗ sop) ·m = ϕ(r ⊗ sop) ·m = rε(s)m
(resp. (sop ⊗ r) ·m = ϕ(sop ⊗ r) ·m = sopε(r) ·m = msε(r)).

That is, the R-module, M , goes over to the Re-module εop∗ (M) and the Rop-module, M , goes over to the
(Re)op-module ε∗(M). Therefore, the map of pairs yields the comparison maps

H•(M,ϕ) : H•(R, ε∗(M)) = TorR
e

• (ε∗(M), R) −→ TorR• (M,K) = H•(R,M)

H•(M,ϕ) : H
•
(R,M) = Ext•R(K,M) −→ Ext•Re(R, εop∗ (M)) = H•(R, εop∗ (M)).

Theorem 5.29 If R is K-projective, then the comparison maps

H•(M,ϕ) : H•(R, ε∗(M)) −→ H•(R,M)

and
H•(M,ϕ) : H

•
(R,M) −→ H•(R, εop∗ (M))

are isomorphisms of ∂ (resp. δ)-functors. Moreover, if P̃• −→ R −→ 0 is an Re-projective resolution of R,
then P̃• ⊗R K is an R-projective resolution of K.
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Proof . Everything will follow from Theorem 5.27 once we verify conditions (1)a) and b) of that theorem.
Here, there is the non-commutativity of R that might cause some confusion. Recall that Re operates on the
right on a module, N , via

n · (r ⊗ sop) = snr;

so, Re operates on ε∗N via
n · (r ⊗ sop) = ε(s)nr.

We apply this when N is R–itself and M is any two-sided R-module. For ρ⊗Re m ∈ ε∗R⊗Re M , we observe
that

ε(s)ρr ⊗Re m = ρ · (r ⊗ sop)⊗Re m = ρ⊗Re rms; (∗)
hence, the map

α : ε∗R⊗Re M −→M ⊗R K
via

α(ρ⊗Re m) = ρm⊗R 1

is well–defined. The only (mildly) tricky thing to check is that α preserves relation (∗). But, α of the left
side of (∗) is ε(s)ρrm⊗R 1 and α of the right side of (∗) is ρrms⊗R 1. Now,

zs⊗R 1 = z ⊗R ε(s) = zε(s)⊗R 1;

so, α agrees on the left and right sides of (∗). And now we see that α is an isomorphism of K-modules
because the map

β : M ⊗R K −→ ε∗R⊗Re M

via
β(m⊗R κ) = κ⊗Re m

is its inverse. (Note that β is well-defined for:

mρ⊗R κ = m⊗R ε(ρ)κ
and

ε(ρ)κ⊗Re m = κ · (1⊗ ρop)⊗Re m = κ⊗Re mρ = β(mρ⊗R κ),
while

ε(ρ)κ⊗Re m = β(m⊗R ε(ρ)κ), as required.)

However,
αβ(m⊗R κ) = α(κ⊗Re m) = κm⊗R 1 = m⊗R κ
βα(ρ⊗Re m) = β(ρm⊗R 1) = 1⊗Re ρm = ρ⊗Re m.

We can now apply the K-module isomorphism α. First, take M = R (= K̃). We find that

α : ε∗R⊗Re R −̃→ R⊗R K = K

and ε∗R is just R as R̃ (= Re-module). This gives (1)a). To see (1)b), take P̃• −→ R −→ 0 an Re (= R̃)-
projective resolution. We choose M = P̃• an Re-module (i.e., a complex of same). Now apply α:

Tor
eR
• (R, K̃) = TorR

e

• (ε∗R,R) = H•(ε∗R⊗Re P̃•) −̃→
α

H•(P̃• ⊗R K).

But, R is K-projective and so (by the usual arguments (DX)) P̃• is Rop-projective which means the last
homology complex computes TorR• (R,K). We’ve shown

Tor
eR
n (R, K̃) −̃→

α
TorRn (R,K).
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Yet, R is free (so flat) over R and so TorRn (R,K) = (0) when n > 0; we are done.

Of course, we should apply all this to the standard resolution, C•(R), when R is K-projective. Here,

Cn(R)⊗R K = R⊗K Cn[R]⊗K R⊗R K −̃→ R⊗K Cn[R]

via the map
Θn(r0 ⊗ · · · ⊗ rn+1 ⊗R κ) = ε(rn+1)κ(r0 ⊗ · · · ⊗ rn).

As in the proof of Theorem 5.25, the standard boundary map induces a boundary map, ∂n, on R⊗K Cn[R],
by the formula ∂n = Θn−1 ◦ ∂n ◦Θ−1

n , and we find

∂n(r0 ⊗ r1 ⊗ · · · ⊗ rn) =
n−1∑
i=0

(−1)ir0 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn + (−1)nε(rn)r0 ⊗ · · · ⊗ rn−1.

This gives us our R-projective resolution R ⊗K C•[R] −→ K −→ 0 with which we can compute. The case
when r0 = 1 is most important:

∂n(1⊗ r1⊗ · · · ⊗ rn) = r1⊗ · · · ⊗ rn +
n−1∑
i=1

(−1)ir1⊗ · · · ⊗ riri+1⊗ · · · ⊗ rn + (−1)nε(rn)(1⊗ r1⊗ · · · ⊗ rn−1).

Now, for a right R-module, M , the groups TorR• (M,K) are the homology of

M ⊗R R⊗K C•[R] = M ⊗K C•[R]

under 1⊗R ∂. We find

∂n(m⊗K r1 ⊗K · · · ⊗K rn) =mr1 ⊗K r2 ⊗K · · · ⊗K rn

+
n−1∑
i=1

(−1)im⊗K r1 ⊗K · · · ⊗K riri+1 ⊗K · · · ⊗K rn

+ (−1)nε(rn)m⊗K r1 ⊗K · · · ⊗K rn−1.

Therefore, we recover Hochschild’s homology formula for ε∗(M), and when R = Z[G] and K = Z (with
ε(σ) = 1, all σ ∈ G) we also recover the explicit boundary formula for H•(G,M).

For a left R-module, M , the groups Ext•R(K,M) are the cohomology of

HomR(R⊗R C•[R],M) = HomK(C•[R],M).

If, as usual, we write f(r1, . . . , rn) for f(r1 ⊗K r2 ⊗K · · · ⊗K rn), then

(δnf)(r1, . . . , rn+1) = r1f(r2, . . . , rn+1)

+
n∑
i=1

(−1)if(r1, . . . , riri+1, . . . , rn)

+ (−1)n+1ε(rn+1)f(r1, . . . , rn).

Here, f ∈ HomK(Cn[R],M). Once again, we recover Hochschild’s cohomology formula for εop∗ (M), and when
R = Z[G], etc., we get our explicit coboundary formula for H•(G,M).

But, we’ve done more; all this applies to any K-algebra, R, with a section (especially for K-projective
algebras). In particular, we might apply it to R = K[T1, . . . , Tn] or R = K〈T1, . . . , Tn〉, with ε(Tj) = 0
for j = 1, 2, . . . , n. The standard resolution though is very inefficient for we must know m ⊗ r1 ⊗ · · · ⊗ rl
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or f(r1, . . . , rl) on all monomials rj of whatever degree. Instead we will find a better resolution, but we
postpone this until Section 5.5 where it fits better.

Let us turn to the cohomology of sheaves and presheaves. These objects have been introduced already
and we assume that Problem 69 has been mastered. Here, we’ll be content to examine ordinary topological
spaces (as in part (a) of that exercise) and (pre)sheaves on them. The most important fact is that the
categories of presheaves and sheaves of R-modules on the space X have enough injectives. Let us denote by
P(X,R-mod) and S(X,R-mod) these two abelian categories. Remember that

0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact in P(X,R-mod) iff the sequence of R-modules

0 −→ F ′(U) −→ F (U) −→ F ′′(U) −→ 0

is exact for every open U of X. But for sheaves, the situation is more complicated:

0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact in S(X,R-mod) iff

(a) 0 −→ F ′(U) −→ F (U) −→ F ′′(U) is exact for every open U or X and

(b) For each open U and each ξ ∈ F ′′(U), there is an open cover {Uα −→ U}α so that each ξα (= ρUα

U (ξ))
is the image of some ηα ∈ F (Uα) under the map F (Uα) −→ F ′′(Uα).

A more perspicacious way of saying this is the following: Write i : S(X,R-mod)� P(X,R-mod) for the
full embedding which regards a sheaf as a presheaf. There is a functor, #: P(X,R-mod) � S(X,R-mod)
which is left adjoint to i. That is, for F ∈ S and G ∈ P, we have

HomS(G#, F ) −̃→ HomP(G, i(F )).6

We can now say (b) this way: If cok(F −→ F ′′) is the presheaf cokernel

cok(F −→ F ′′)(U) = cok(F (U) −→ F ′′(U)),

then cok(F −→ F ′′)# = (0).

Given x ∈ X, and a (pre)sheaf, F , we define the stalk of F at x, denoted Fx, by

Fx = lim−→
{U�x}

F (U).

It’s easy to see that (F#)x = Fx for any presheaf, F . Stalks are important because of the following simple
fact:

Proposition 5.30 If F
ϕ−→ G is a map of sheaves, then ϕ is injective (surjective, bijective) if and only if

the induced map ϕx : Fx → Gx on stalks is injective (surjective, bijective) for every x ∈ X.

We leave the proof as a (DX).

6One constructs # by two successive limits. Given U , open in X, write G(+)(U) for

G(+)(U) = lim−→
{Uα−→U}

Ker (
Y

α

G(Uα) −→−→
Y

β,γ

G(Uβ ∩ Uγ))

(the limit taken over all open covers of U) and set G#(U) = G(+)(+)(U).
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� This result is false for presheaves, they are not local enough.

Property (a) above shows that i is left-exact and the proposition shows # is exact. To get at the existence
of enough injectives, we investigate what happens to P(X,R-mod) and S(X,R-mod) if we have a map of
spaces f : X → Y . In the first place, if F is a (pre)sheaf on X, we can define a (pre)sheaf f∗F , called the
direct image of F by f via

(f∗F )(V ) = F (f−1(V )), V open in Y .

A simple check shows that the direct image of a sheaf is again a sheaf. Now, in the second place, we want a
functor f∗ : P(Y )� P(X) (resp. S(Y )� S(X)) which will be left adjoint to f∗. If we knew the (classical)
way to get a sheaf from its stalks, we could set (f∗G)x = Gf(x) for G ∈ S(Y ) and x ∈ X any point. But
from our present point of view this can’t be done. However, our aim is for an adjoint functor, so we can use
the method of D. Kan [30].

We start we a presheaf, G, on Y and take an open set, U , of X. We set

(f∗G)(U) = lim−→
{f−1(V )⊇U}

G(V ),

here, as noted, V ranges over all opens of Y with f−1(V ) ⊇ U . Then, f∗G is a presheaf (of R-modules) on
X. If G is a sheaf on Y , we form f∗G, as above, and then take (f∗G)#. We’ll continue to denote the latter
sheaf by f∗G if no confusion results. Once the idea of defining f∗G by a direct limit is in hand, it is easy to
prove (and the proof will be left as a (DX)):

Proposition 5.31 If f : X → Y is a map of topological spaces, then the functors f∗ from P(Y ) to P(X)
(resp. from S(Y ) to S(X)) are left adjoint to the direct image functors. That is, for G ∈ P(Y ) and F ∈ P(X)
(resp. G ∈ S(Y ) and F ∈ S(X)), we have functorial isomorphisms

HomP(X)(f∗G,F ) −̃→ HomP(Y )(G, f∗F )

(resp.
HomS(X)(f∗G,F ) −̃→ HomS(Y )(G, f∗F )).

Moreover, we have (f∗G)x = Gf(x), for all x ∈ X.

Since lim−→ is an exact functor on R-mod, our definition of the presheaf f∗G shows that f∗ is an exact
functor P(Y )� P(X). The statement in the proposition about stalks shows (by Proposition 5.30) that f∗

is also an exact functor S(Y )� S(X). Of course, f∗ is a left-exact functor on sheaves and an exact functor
on presheaves.

There is a useful lemma that connects pairs of adjoint functors and injectives—it is what we’ll use to get
enough injectives in P and S.

Lemma 5.32 Say A and B are abelian categories and α : A � B and β : B � A are functors with β left
adjoint to α. If β is exact, then α carries injectives of A to injectives of B.
Proof . Take an injective, Q, of A and consider the co-functor (on B)

T � HomB(T, α(Q)).

By adjointness, this is exactly
T � HomA(β(T ), Q).

Now, HomA(β(−), Q) is the composition of the exact functor β with the exact functor HomA(−, Q) (the
latter being exact as Q is injective). But then, HomB(−, α(Q)) is exact, i.e., α(Q) is injective in B.

If we apply the lemma to the cases α = i, β = #; α = f∗, β = f∗, we get
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Corollary 5.33 Let f : X → Y be a map of topological spaces and write P(X), etc. for the categories of
R-module presheaves on X, etc. Further consider the functors i : S(X) � P(X) and #: P(X) � S(X).
Then,

(1) If Q is an injective in P(X), the presheaf f∗(Q) is injective on Y .

(2) If Q is an injective in S(X), the sheaf f∗(Q) is injective on Y .

(3) If Q is an injective sheaf on X, then i(Q) is an injective presheaf on X.

Theorem 5.34 If X is a topological space, then the category S(X,R-mod) possesses enough injectives.

Proof . Pick any point, ξ, of X and consider the map of spaces iξ : {ξ} ↪→ X. The categories P({ξ}) and
S({ξ}) are each just R-mod, and for any module, M , we have

iξ∗(M)(U) =
{
M if ξ ∈ U
(0) if ξ /∈ U .

For any sheaf F onX, look at its stalk, Fξ, at ξ and embed Fξ into an injective R-moduleQξ (say jξ : Fξ ↪→ Qξ
is the embedding). We form iξ∗(Qξ) which is an injective sheaf on X by Corollary 5.33 and then form
Q =

∏
ξ∈X iξ∗(Qξ), again an injective sheaf on X. Note that

Q(U) =
∏
ξ∈U

Qξ.

Now, I claim that the map θ : F → Q via

for z ∈ F (U) : θ(z) = (jξ(zξ))ξ∈U ,

where zξ is the image of z in Fξ, is the desired embedding. If θ(z) = 0, then for each ξ ∈ U , the elements
jξ(zξ) = 0; as jξ is an embedding, we get zξ = 0. By the definition of stalk, there is a neighborhood, Uξ, of
ξ in U where ρUξ

U (z) = 0. These neighborhoods give a covering of U , so we see that z goes to zero under the
map

F (U) −→
∏
ξ∈U

F (Uξ). (+)

But, this map is injective by the sheaf axiom; so, z = 0.

Remark: The theorem is also true for presheaves and our proof above works for “good” presheaves; that is,
those for which the maps (+) are indeed injective. (For general presheaves, G, the presheaf G(+) will satisfy
(+) is injective). We can modify the argument to get the result for P(X) or use a different argument; this
will be explored in the exercises.

To define cohomology with coefficients in a sheaf, F , on X, we consider the functor

Γ: F � F (X).

We already know this is left exact and we define the cohomology of X with coefficients in F by

H•(X,F ) = (R•Γ)(F ).

A little more generally, if U is open in X, we can set ΓU (F ) = F (U) and then

H•(U,F ) = (R•ΓU )(F ).
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If we assume proved the existence of enough injectives in P(X), then for a presheaf, G, we set

Ȟ0(X,G) = G(+)(X) = lim−→
{Uα−→U}

Ker (
∏
α

G(Uα) −→−→
∏
β,γ

G(Uβ ∩ Uγ))

and define
Ȟ•(X,G) = (R•Ȟ0)(G).

There is an explicit complex that computes Ȟ•(X,G), see the exercises. The R-modules Ȟ•(X,G) are called
the Čech cohomology groups of X with coefficients in the presheaf G. Again, as above, we can generalize to
cohomology over an open, U .

Pick open U ⊆ X, and write RU for the presheaf

RU (V ) =
{
R if V ⊆ U
(0) if V �⊆ U

(so, RX is the constant presheaf, R). Also write RU for the sheaf (RU )#. It turns our that the RU form a
set of generators for P(X), while the same is true for the RU in S(X). Moreover, we have

Proposition 5.35 If X is a topological space and U is a given open set, then we have an isomorphism of
δ-functors

H•(U,−) ∼= Ext•S(X)(RU ,−)

on the category S(X) to R-mod.

Proof . All we have to check is that they agree in dimension 0. Now,

HomS(X)(RU , F ) ∼= HomP(X)(RU , i(F )).

Notice that ρVU : R(U)→ R(V ) is just the identity if V ⊆ U and is the zero map otherwise. It follows that

HomP(X)(RU , i(F )) ∼= HomR-mod(R,F (U)) = F (U),

and we are done.

� We don’t compute Ext•S(X)(RU , F ) by projectively resolving RU—such a resolution doesn’t exist in
S(X). Rather, we injectively resolve F .

Recall that we have the left exact functor i : S(X) � P(X), so we can inquire as to its right derived
functors, R•i. The usual notation for (R•i)(F ) isH•(F )—these are presheaves. We compute them as follows:

Proposition 5.36 The right derived functors H•(F ) are given by

H•(F )(U) = H•(U,F ).

Proof . It should be clear that for fixed F , each Hp(U,F ) is functorial in U ; that is, U � Hp(U,F ) is a
presheaf. Moreover, it is again clear that

F � H•(U,F )

is a δ-functor from S(X) to P(X). If Q is injective in S(X), we have Hp(U,Q) = (0) when p > 0; so, our
δ-functor is effaceable. But, for p = 0, the R-module H0(U,F ) is just F (U); i.e., it is just H0(F )(U). By
the uniqueness of universal δ-functors, we are done.

For the computation of the cohomology of sheaves, manageable injective resolutions turn out to be too
hard to find. Sometimes one can prove cohomology can be computed by the Čech method applied to i(F ),
and then the explicit complex of the exercises works quite well. This will depend on subtle properties of the
space, X. More generally, Godement [18] showed that a weaker property than injectivity was all that was
needed in a resolution of F to compute the R-module H•(X,F ). This is the notion of flasqueness.7

7The French word “flasque” can be loosely translated as “flabby”.
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Definition 5.8 A sheaf, F , on the space X is flasque if and only if for each pair of opens V ⊆ U of X, the
map

ρVU : F (U)→ F (V )

is surjective. Of course, this is the same as F (X) −→ F (U) being surjective for each open, U .

Here are two useful lemmas that begin to tell us how flasque sheaves intervene in cohomology.:

Lemma 5.37 The following are equivalent statements about a sheaf, F ′, on the space X:

(1) Every short exact sequence in S(X)

0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact in P(X).

(2) For every open U of X, the R-module H1(U,F ′) is zero.

Proof . (1) =⇒ (2). Embed F ′ in an injective and pick open U ⊆ X. From 0 −→ F ′ −→ Q −→ cok −→ 0,
we get

0 −→ F ′(U) −→ Q(U) −→ cok(U) −→ H1(U,F ′) −→ (0);

By (1), 0 −→ F ′(U) −→ Q(U) −→ cok(U) −→ 0 is exact; so, H1(U,F ′) = (0).

(2) =⇒ (1). Just apply cohomology over U to the short exact sequence 0 −→ F ′ −→ F −→ F ′′ −→ 0.
We get

0 −→ F ′(U) −→ F (U) −→ F ′′(U) −→ H1(U,F ′).

By (2), we’re done as U is an arbitrary open.

Lemma 5.38 Say F ′ is a flasque sheaf and 0 −→ F ′ −→ F −→ F ′′ −→ 0 is exact in S(X). Then it is
exact in P(X). Moreover, if 0 −→ F ′ −→ F −→ F ′′ −→ 0 is exact in S(X), then F is flasque if and only if
F ′′ is flasque (of course, F ′ is always assumed to be flasque).

Proof . Pick any open U ⊆ X; all we must prove is that F (U) −→ F ′′(U) is surjective. Write Σ for the
collection of pairs (V, σ) where V is open, V ⊆ U and σ is a lifting to F (V ) of ρVU (s) ∈ F ′′(V ) for some
s ∈ F ′′(U) fixed once and for all. As s admits liftings to F locally on U , our set Σ is non-empty. Now
partially order Σ in the standard way: (V, σ) ≤ (Ṽ , σ̃) iff V ⊆ Ṽ and ρVeV (σ̃) = σ. Of course, Σ is inductive
and Zorn’s Lemma yields a maximal lifting, σ0, of s defined on V0 ⊆ U . We must prove V0 = U .

Were it not, there would exist ξ ∈ U with ξ /∈ V0. Now the stalk map Fξ −→ F ′′
ξ is surjective, so the

image of s in some small neighborhood, U(ξ), of ξ in U lifts to an element τ ∈ F (U(ξ)). We will get an
immediate contradiction if U(ξ) ∩ V0 = ∅, for then Ũ = U(ξ) ∪ V0 has two opens as a disjoint cover and
F (Ũ) = F (U(ξ))

∏
F (V0) by the sheaf axiom. The pair 〈τ, σ0〉 is a lifting of s to a bigger open than V0—a

contradiction.

Therefore, we may assume U(ξ) ∩ V0 �= ∅—it is here that the flasqueness of F ′ enters. For on the
intersection both ρU(ξ)∩V0

U(ξ) (τ) and ρU(ξ)∩V0
V0

(σ0) lift ρU(ξ)∩V0
U (s). Thus, there is an “error” ε ∈ F ′(U(ξ) ∩ V0),

so that
ρ
U(ξ)∩V0
V0

(σ0)− ρU(ξ)∩V0

U(ξ) (τ) = ε.

As F ′ is flasque, ε lifts to F ′(U(ξ)); call it ε again on this bigger open. Then τ + ε also lifts ρU(ξ)
U (s) and τ + ε

and σ0 now agree on U(ξ)∩V0; so, the sheaf axiom shows we get a lifting to the bigger open U(ξ)∪V0—our
last contradiction. Thus, U = V0.
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For the second statement, in which F ′ is given as a flasque sheaf, pick open V ⊆ U in X. We have the
commutative diagam

0 �� F ′(U) ��

ρ′

��

F (U) ��

ρ

��

F ′′(U) ��

ρ′′

��

0

0 �� F ′(V ) �� F (V ) �� F ′′(V ) �� 0,

in which Coker (ρ′) = (0), By the snake lemma

Coker (ρ) −̃→ Coker (ρ′′),

and we are done.

Remark: There is an important addendum to Lemma 5.37. We mention this as the method of argument
is fundamental in many applications. This addendum is: The statement

(3) Ȟ1(U, i(F ′)) = (0) for all U open in X, is equivalent to either properties (1) or (2) of Lemma 5.37.

Let us show (3)⇐⇒ (1). So say (3) holds. This means given any open cover of U , say U =
⋃
α Uα, and

any elements zαβ ∈ F ′(Uα ∩ Uβ) so that

zαβ = −zβα and zαγ = zαβ + zβγ on Uα ∩ Uβ ∩ Uγ (∗)
we can find elements zα ∈ F ′(Uα) so that zαβ = zα − zβ on Uα ∩ Uβ . Now suppose we have s ∈ F ′′(Uα),
we can cover U by opens Uα so that the sα = ρUα

U (s) ∈ F ′′(Uα) lift to σα ∈ F (Uα) for all α. The elements
σα−σβ ∈ F (Uα ∩Uβ) are not necessarily 0 but go to zero in F ′′(Uα ∩Uβ). That is, if we set zαβ = σα−σβ ,
the zαβ belong to F ′(Uα ∩ Uβ). These zαβ satisfy (∗) and so by (3) we get zαβ = zα − zβ for various
zα ∈ F ′(Uα). Thus

zα − zβ = σα − σβ on Uα ∩ Uβ ,
that is

σα − zα = σβ − zβ on Uα ∩ Uβ .
This equality and the sheaf axiom for F give us an element σ ∈ F (U) with ρUα

U (σ) = σα − zα. The zα go to
zero in F ′′, thus σ lifts s and this shows F (U) −→ F ′′(U) is surjective.

To show (1) =⇒ (3), we simply embed F ′ in an injective again to get 0 −→ F ′ −→ Q −→ cok −→ 0 in
S(X). By (1), the sequence

0 −→ i(F ′) −→ i(Q) −→ i(cok) −→ 0

is exact in P(X) and i(Q) is an injective of P(X). Apply Čech cohomology (a δ-functor on P(X)):

0 −→ F ′(U) −→ Q(U) −→ cok(U) −→ Ȟ1(U, i(F ′)) −→ 0

is exact. Since Q(U) −→ cok(U) is surjective, by (1), we get (3).

Proposition 5.39 Every injective sheaf is a flasque sheaf. For every flasque sheaf, F , and every open U ,
we have Hn(U,F ) = (0) for n > 0.

Proof . Pick open V ⊆ U , call our injective sheaf Q. Since V ⊆ U , we have the exact sequence

0 −→ RV −→ RU −→ cok −→ 0

in S(X). Now HomS(X)(−, Q) is an exact functor; so

0 −→ HomS(X)(cok, Q) −→ HomS(X)(RU , Q) −→ HomS(X)(RV , Q) −→ 0
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is exact. The middle and right-hand groups are Q(U) and Q(V ) respectively; so Q is flasque.

Let’s prove the second statement by induction on n. Take a flasque sheaf, F . By Lemmas 5.37 and 5.38,
we have H1(U,F ) = (0) for all open U . Now embed F in an injective sheaf

0 −→ F −→ Q −→ cok −→ 0.

By Lemma 5.38 and the above, the sheaf cok is also flasque. So by our induction hypothesis all the groups
Hp(U, cok) = (0) for 1 ≤ p ≤ n− 1. Now apply cohomology to our exact sequence; this gives

Hp(U, cok) −̃→ Hp+1(U,F ), for p ≥ 1.

When p = n− 1 this gives the induction step for F .

The important part of this proposition is that flasque sheaves are acyclic objects over every open U of
X; that is, Hn(U,F ) = (0) for all n > 0 and every open U . And now we have the following general

Proposition 5.40 Suppose A is an abelian category, T is a left exact functor from A to R-mod and

0 −→ F −→ L0 −→ L1 −→ · · ·

is an acyclic resolution of F by R•T -acyclic objects L0, L1, . . . (That is, (RpT )(Lj) = (0), all p > 0, all
j ≥ 0.) Then the cohomology of the complex

T (L0) −→ T (L1) −→ T (L2) −→ · · ·

computes the derived functors of T on the object F (i.e., the (RnT )(F ), n ≥ 0).

Proof . We use induction on n and décalage. (There are other methods of proof, e.g., by double complexes.)
Of course, the assertion for n = 0 is true and trivial, being independent of resolutions. So assume for an
object G resolved by a sequence of the L’s, we have (RpT )(G) = Hp(T (L•)) for 0 ≤ p ≤ n − 1. Then the
sequence,

0 −→ F −→ L0 −→ cok −→ 0

yields the resolution
0 −→ cok −→ L1 −→ L2 −→ · · · (†)

and the cohomology sequence

0 �� T (F ) �� T (L0) �� T (cok) �� (R1T )(F ) �� · · · ����
����

�� (RpT )(L0) �� (RpT )(cok) �� (Rp+1T )(F ) �� (Rp+1T )(L0) �� · · · .

If p ≥ 1, we get
(RpT )(cok) −̃→ (Rp+1T )(F )

while for p = 0, we get
T (L0) −→ T (cok) −→ (R1T )(F ) −→ 0. (††)

Now by induction hypothesis on n, (RpT )(cok) is the pth cohomology of T (L1) −→ T (L2) −→ · · · , for
p ≤ n− 1. This is exactly the p+ 1 cohomology of T (L0) −→ T (L1) −→ · · · , that is Hp+1(T (L•)). So,

Hp+1(T (L•)) = (RpT )(cok) −̃→ (Rp+1T )(F )

if 1 ≤ p ≤ n− 1. As long as n ≥ 2, we can set p = n− 1 and get the induction step.
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So, all that remains is the step from n = 0 to n = 1. From (†), we see

T (cok) −̃→ Ker (T (L1) −→ T (L2)).

By the short exact sequence for F,L0, cok, we find that Im (T (L0) −→ T (cok)) is exactly the image
(T (L0) −→ T (L1)); that means

T (cok)/T (L0) = H1(T (L•)).

But, we know
T (cok)/T (L0) −̃→ (R1T )(F )

by (††), and we are done.

Of course, we apply this to resolving a sheaf, F , by flasque sheaves. If we do this, we get a complex
(upon applying ΓU ) and so from its cohomology we compute the Hp(U,F ). It remains to give a canonical
procedure for resolving each F by flasque sheaves. This is Godement’s method of “discontinuous sections”.

Definition 5.9 For a sheaf, F , write G(F ) for the presheaf

G(F )(U) =
∏
x∈U

Fx,

and call G(F ) the sheaf of discontinuous sections of F .

Remarks:

(1) G(F ) is always a sheaf.

(2) G(F ) is flasque. For, a section over V of G(F ) is merely a function on V to
⋃
x∈V Fx so that its value

at x lies in Fx. We merely extend by zero outside V and get our lifting to a section of U (with U ⊇ V ).

(3) There is a canonical embedding F −→ G(F ). To see this, if s ∈ F (U), we have s(x) ∈ Fx, its image
in Fx = lim−→

V � x
F (V ). We send s to the function x �→ s(x) which lies in G(F )(U). Now, if s and t go to

the same element of G(F )(U), we know for each x ∈ U , there is a small open U(x) ⊆ U where s = t

on U(x) (i.e., ρU(x)
U (s) = ρ

U(x)
U (t)). But these U(x) cover U , and the sheaf axiom says s = t in F (U).

Therefore, S(X,R-mod) has enough flasques; so every sheaf, F , possesses a canonical flasque resolution
(the Godement resolution) : Namely

0 −→ F −→ G(F ) −→ cok1 −→ 0
0 −→ cok1 −→ G(cok1) −→ cok2 −→ 0

. . . . . . . . . . . . . . . . . . . . . .
0 −→ cokn −→ G(cokn) −→ cokn+1 −→ 0 · · ·

This gives
0 −→ F −→ G0(F ) −→ G1(F ) −→ · · · −→ Gn(F ) −→ · · · ,

where we have set
G0(F ) = G(F ) and Gn(F ) = G(cokn) when n ≥ 1.

It’s not hard to extend all our results on sheaves of R-modules to sheaves of OX -modules, where OX
is a sheaf of rings on X. To replace maps of spaces, we need the notion of a map of ringed spaces (i.e.,
of pairs (X,OX) in which OX is a sheaf of rings on X): By a map (X,OX) −→ (Y,OY ) of ringed spaces,
we understand a pair (f, ϕ) in which f is a map X −→ Y and ϕ is a map of sheaves OY −→ f∗OX (over



296 CHAPTER 5. HOMOLOGICAL ALGEBRA

Y ). For intuition think of OX as the sheaf of germs of continuous functions on X. If F is an OX -module,
then f∗F will be an OY -module thanks to the map OY −→ f∗OX . But if G is an OY -module, f∗G is not
an OX -module. We must augment the notion of inverse image. Our map ϕ : OY → f∗OX corresponds by
adjunction to a map ϕ̃ : f∗OY → OX . Now f∗G is an f∗OY -module, so we form

(f, ϕ)∗G = OX ⊗f∗OY
f∗G

and get our improved notion of inverse image—an OX -module.

Finally, to end this long section we give some results (of a very elementary character) concerning
TorR• (−,−) and properties of special rings, R. The first of these works for every ring:

Proposition 5.41 Say M is an R-module (resp. Rop-module), then the following are equivalent:

(1) M is R-flat.

(2) For all Z, we have TorRn (Z,M) = (0), for all n > 0.

(3) For all Z, we have TorR1 (Z,M) = (0).

Proof . (1) =⇒ (2). Since the functor Z � Z ⊗RM is exact, its derived functors are zero for n > 0, i.e., (2)
holds.

(2) =⇒ (3). This is a tautology.

(3) =⇒ (1). Given an exact sequence

0 −→ Z ′ −→ Z −→ Z ′′ −→ 0

tensor with M and take cohomology. We get the following piece of the long exact sequence

· · · −→ TorR1 (Z ′′,M) −→ Z ′ ⊗RM −→ Z ⊗RM −→ Z ′′ ⊗RM −→ 0.

By (3), we have TorR1 (Z ′′,M) = (0), so the tensored sequence is exact.

For the rest, we’ll assume R is a domain. Now for a P.I.D. we know divisibility of a module is the same
as injectivity. That’s not true in general, but we have

Proposition 5.42 If R is an integral domain, every injective R-module is divisible. Conversely, if a module
is divisible and torsion free it is injective.

Proof . We use the exact sequence
0 −→ R

r−→ R

(R is a domain) for a given element (�= 0) of R. The functor HomR(−, Q) is exact as Q is injective. Then
we get

Q = HomR(R,Q) r−→ HomR(R,Q) = Q −→ 0

is exact. As r is arbitrary, Q is divisible.

Next, assume M is a torsion-free, divisible module. For an exact sequence

0 −→ A −→ R,

suppose we have an R-module map ϕ : A → M . We need only prove ϕ extends to a map R −→ M . Of
course, this means we need to find m ∈M , the image of 1 under our extension of ϕ, so that

(∀r ∈ A)(ϕ(r) = rm).
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Now for each fixed r ∈ A, the divisibility of M shows there is an element, m(r) ∈M , so that

ϕ(r) = r ·m(r).

This element of M is uniquely determined by r because M is torsion-free. Now pick s ∈ A, s �= 0, consider
sr. We have

ϕ(sr) = sϕ(r) = srm(r).

But, sr = rs; so
ϕ(sr) = ϕ(rs) = rϕ(s) = rsm(s).

By torsion freeness, again, we find m(r) = m(s). So, all the elements m(r) are the same, m; and we’re done.

Write F = Frac(R). The field F is a torsion-free divisible, R-module; it is therefore an injective R-module
(in fact, it is the injective hull of R). The R-module, F/R, is an R-module of some importance. For example,
HomR(F/R,M) = (0) provided M is torsion-free. In terms of F/R we have the

Corollary 5.43 If M is a torsion-free module, then M is injective iff Ext1R(F/R,M) = (0). In particular,
for torsion-free modules, M , the following are equivalent

(1) M is injective

(2) ExtnR(F/R,M) = (0) all n > 0

(3) Ext1R(F/R,M) = (0).

Proof . Everything follows from the implication (3) =⇒ (1). For this, we have the exact sequence

0 −→ R −→ F −→ F/R −→ 0

and so (using HomR(F/R,M) = (0)) we find

0 −→ HomR(F,M) θ−→M −→ Ext1R(F/R,M)

is exact. The map, θ, takes f to f(1). By (3), θ is an isomorphism. Given m ∈M and r �= 0 in R, there is
some f : F →M , with f(1) = m. Let q = f(1/r), then

rq = rf(1/r) = f(1) = m;

so, M is divisible and Proposition 5.42 applies.

The field F is easily seen to be lim−→
λ

( 1
λR), where we use the Artin ordering on R: λ ≤ µ iff λ | µ.

Consequently, F is a right limit of projective (indeed, free of rank one) modules. Now tensor commutes with
right limits, therefore so does TorR• (DX). This gives us

TorRn (F,M) = lim−→
λ

TorRn

(
1
λ
R,M

)
= (0), if n > 0.

That is, F is a flat R-module. Moreover, we have

Proposition 5.44 If R is an integral domain and M is any R-module, then TorR1 (F/R,M) = t(M), the
torsion submodule of M . The R-modules TorRp (F/R,M) vanish if p ≥ 2.
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Proof . Use the exact sequence
0 −→ R −→ F −→ F/R −→ 0

and tensor with M . We get

0 −→ TorR1 (F/R,M) −→ R⊗RM (= M) −→ F ⊗RM −→ F/R⊗RM −→ 0

and, further back along the homology sequence

(0) = TorRp+1(F,M) −→ TorRp+1(F/R,M) −→ TorRp (R,M) = (0)

for all p ≥ 1. Thus, all will be proved when we show

t(M) = Ker (M −→ F ⊗RM).

Since F ⊗RM = lim−→
λ

( 1
λR⊗RM), we see ξ ∈ Ker (M −→ F ⊗RM) iff there is some λ (�= 0) with

ξ ∈ Ker (M −→ 1
λR ⊗R M). But, R is a domain, so multiplication by λ is an isomorphism of 1

λR and R.
This gives us the commutative diagram

M ��

��

(
1
λ

)
R⊗RM

mult. by λ

��
M R⊗RM

and we see immediately that the left vectical arrow is also multiplication by λ. Hence
ξ ∈ Ker (M −→ ( 1

λR)⊗RM) when and only when λξ = 0, and we are done.

The name and symbol for TorR• arose from this proposition.

When R is a P.I.D., the module, F/R, being divisible is injective. Consequently,

Proposition 5.45 If R is a P.I.D., the sequence

0 −→ R −→ F −→ F/R −→ 0

is an injective resolution of R. Hence, ExtpR(M,R) = (0) if p ≥ 2, while

Ext1R(M,R) = Coker (HomR(M,F ) −→ HomR(M,F/R)).

When M is a finitely generated R-module, we find

Ext1R(M,R) = HomR(t(M), F/R).

Proof . We know the exact sequence is an injective resolution of R and we use it to compute the Ext’s. This
gives all but the last statement. For that, observe that

0 −→ t(M) −→M −→M/t(M) −→ 0

is split exact because M/t(M) is free when R is a P.I.D. and M is f.g. Now F is torsion free, so

HomR(M,F ) = Fα, α = rankM/t(M)

and
HomR(M,F/R) = HomR(t(M), F/R)	 (F/R)α.

Therefore, Ext1R(M,R) computed as the cokernel has the value claimed above.

For torsion modules, M , the R-module HomR(M,F/R) is usually called the dual of M and its elements
are characters of M . The notation for the dual of M is MD. With this terminology, we obtain

Corollary 5.46 Suppose R is a P.I.D. and M is a f.g. R-module. Then the equivalence classes of extensions
of M by R are in 1–1 correspondence with the characters of the torsion submodule of M .
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5.4 Spectral Sequences; First Applications

The invariants provided by homological algebra are obtained from the computation of the (co)homology of a
given complex. In general, this is not an easy task—we need all the help we can get. Experience shows that
many complexes come with a natural filtration (for example, the complex of differential forms on a complex
manifold with its Hodge filtration). In this case, if the filtration satisfies a few simple properties, we can go
a long way toward computing (co)homology provided there is a suitable beginning provided for us.

So let C• be a complex (say computing cohomology) and suppose C• is filtered. This means there is a
family of subobjects, {F pC•}p∈Z, of C• such that

· · · ⊇ F pC• ⊇ F p+1C• ⊇ · · · .
We also assume that

⋃
p F

pC• = C• and
⋂
p F

pC• = (0). Moreover, if d is the coboundary map of the
complex C• (also called differentiation), we assume that

(1) The filtration {F pC•} and d are compatible, which means that d(F pC•) ⊆ F pC•, for all p.

(2) The filtration {F pC•} is compatible with the grading on C•, i.e.,

F pC• =
∐
q

F pC• ∩ Cp+q =
∐
q

Cp,q,

where Cp,q = F pC• ∩ Cp+q. Then, each F pC• is itself a filtered graded complex as are the F pC•/F p+rC•,
for all r > 0.

Remarks:

(1) We have F pC• =
∐
q C

p,q, the elements in Cp,q have degree p+ q.

(2) The Cp,q’s are subobjects of Cp+q.

(3) The Cp,q’s filter Cp+q, and p is the index of filtration.

Now, C• possesses cohomology; H•(C•). Also, F pC• possesses cohomology, H•(F pC•). There is a map
of complexes F pC• ↪→ C•, so we have a map H•(F pC•) −→ H•(C•), the image is denoted H•(C•)p and
the H•(C•)p’s filter H•(C•). So, H•(C•) is graded and filtered. Thus, we can make

H(C)p,q = H•(C•)p ∩Hp+q(C•).

There is a graded complex, gr(C•), induced by F on C•, defined as

gr(C•)n = FnC•/Fn+1C•.

So, we have gr(C•) =
∐
n gr(C•)n and it follows that

gr(C•) =
∐
p

(F pC•/F p+1C•)

=
∐
p

[(∐
q

F pC• ∩ Cp+q
)/(∐

q

F p+1C• ∩ Cp+q
)]

=
∐
p

∐
q

(F pC• ∩ Cp+q)/(F p+1C• ∩ Cp+q)

=
∐
p,q

Cp,q/Cp+1,q−1.



300 CHAPTER 5. HOMOLOGICAL ALGEBRA

So, we get
gr(C•) =

∐
p,q

Cp,q/Cp+1,q−1 =
∐
p,q

gr(C)p,q,

with gr(C)p,q = Cp,q/Cp+1,q−1. Similarly, H•(gr(C•)) is also bigraded; we have

H•(gr(C•)) =
∐
p,q

H(gr(C))p,q,

where H(gr(C))p,q = Hp+q(F pC•/F p+1C•).

Finally, we also have the graded pieces of Hp+q(C•) in its filtration,

gr(H(C))p,q = H(C)p,q/H(C)p+1,q−1 = Hp+q(C•) ∩H•(C•)p/Hp+q(C•) ∩H•(C•)p+1.

As a naive example of a filtration, we have F pC• =
∐
n≥p C

n.

The rest of this section is replete with indices—a veritable orgy of indices. The definitions to remember
are four : Cp,q, gr(C)p,q, H(gr(C))p,q and gr(H(C))p,q. Now C• is filtered and it leads to the graded object
gr(C•). One always considers gr(C•) as a “simpler” object than C•. Here’s an example to keep in mind
which demonstrates this idea of “simpler”. Let C be the ring of power series in one variable, x, over some
field, k. Convergence is irrelevant here, just use formal power series. Let F pC be the collection of power
series beginning with terms involving xp+1 or higher. We feel that in F pC the term of a series involving xp+1

is the “dominating term”, but there are all the rest of the terms. How to get rid of them? Simply pass to
F pC/F p+1C, in this object only the term involving xp+1 survives. So gr(C) is the coproduct of the simplest
objects: the single terms ap+1x

p+1. It is manifestly simpler than C. Ideally, we would like to compute the
cohomology, H•(C•), of C•. However, experience shows that this is usually not feasible, but instead we can
begin by computing H•(gr(C•)) because gr(C•) is simpler than C•. Then, a spectral sequence is just the
passage from H•(gr(C•)) to gr(H•(C•)); this is not quite H•(C•) but is usually good enough.

The following assumption makes life easier in dealing with the convergence of spectral sequences: A
filtration is regular iff for every n ≥ 0, there is some µ(n) ≥ 0, so that for all p > µ(n), we have
F pC• ∩ Cn = (0).

Definition 5.10 A cohomological spectral sequence is a quintuple,

E = 〈Ep,qr , dp,qr , αp,qr , E, βp,q〉,
where

(1) Ep,qr is some object in Ob(A), with p, q ≥ 0 and 2 ≤ r ≤ ∞ (the subscript r is called the level).

(2) dp,qr : Ep,qr → Ep+r,q−r+1
r is a morphism such that dp,qr ◦ dp−r,q+r−1

r = 0, for all p, q ≥ 0 and all r <∞.

(3) αp,qr : Ker dp,qr /Im dp−r,q+r−1
r → Ep,qr+1 is an isomorphism, for all p, q, all r <∞.

(4) E is a graded, filtered object from A, so that each F pE is graded by the Ep,q = F pE ∩ Ep+q.
(5) βp,q : Ep,q∞ → gr(E)p,q is an isomorphism, for all p, q (where gr(E)p,q = Ep,q/Ep+1,q−1).

Remarks:

(1) The whole definition is written in the compact form

Ep,q2 =⇒
p

E

and E is called the end of the spectral sequence. The index p is called the filtration index , p + q is
called the total or grading index and q the complementary index .
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(2) If r > q + 1, then Im dp,qr = (0) and if r > p, then Im dp−r,q+r−1
r = (0). So, if r > max{p, q + 1}, then

(3) implies that Ep,qr = Ep,qr+1, i.e., the sequence of Ep,qr stabilizes for r >> 0.

(3) In general, when Ep,qr stabilizes, Ep,qr �= Ep,q∞ . Further assumptions must be made to get Ep,qr = Ep,q∞
for r >> 0.

(4) One can instead make the definition of a homological spectral sequence by passing to the “third quad-
rant” (p ≤ 0 and q ≤ 0) and changing arrows around after lowering indices in the usual way, viz :
H−n becomes Hn. Further, one can make 2nd or 4th quadrant spectral sequences or those creeping
beyond the quadrant boundaries. All this will be left to the reader—the cohomological case will be
quite enough for us.

Spectral sequences can be introduced in many ways. The one chosen here leads immediately into appli-
cations involving double complexes but is weaker if one passes to triangulated and derived categories. No
mastery is possible except by learning the various methods together with their strengths and weaknesses. In
the existence proof given below there are many complicated diagrams and indices. I urge you to read as far
as the definition of Zp,qr and Bp,qr (one–half page) and skip the rest of the proof on a first reading.

Theorem 5.47 Say C• is a filtered right complex whose filtration is compatible with its grading and differ-
entiation. Then, H•(C•) possesses a filtration (and is graded) and there exists a spectral sequence

Ep,q2 =⇒
p

H•(C•),

in which Ep,q2 is the cohomology of H•(gr(C•))—so that Ep,q1 = H(gr(C))p,q = Hp+q(F pC•/F p+1C•)). If
the filtration is regular, the objects Ep,q∞ (= gr(H•(C•))p,q = H(C)p,q/H(C)p+1,q−1 = composition factors in
the filtration of Hp+q(C•)) are exactly the Ep,qr when r >> 0.

In the course of the proof of Theorem 5.47, we shall make heavy use of the following simple lemma whose
proof will be left as an exercise:

Lemma 5.48 (Lemma (L)) Let
B

ϕ

��

ψ

��
��

��
��

A′
ϕ′

��

����������
A η

�� A′′

be a commutative diagram with exact bottom row. Then, η induces an isomorphism
Im ϕ/Im ϕ′ −̃→ Im ψ.

Proof of Theorem 5.47. First, we need to make Zp,qr and Bp,qr and set Ep,qr = Zp,qr /Bp,qr .

Consider the exact sequence (we will drop the notation C• in favor of C for clarity)

0 −→ F pC −→ F p−r+1C −→ F p−r+1C/F pC −→ 0.

Upon applying cohomology, we obtain

· · · −→ Hp+q−1(F p−r+1C) −→ Hp+q−1(F p−r+1C/F pC) δ∗−→ Hp+q(F pC) −→ · · ·
There is also the natural map Hp+q(F pC) −→ Hp+q(F pC/F p+1C) induced by the projection
F pC −→ F pC/F p+1C. Moreover, we have the projection F pC/F p+rC −→ F pC/F p+1C, which induces a
map on cohomology

Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C).
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Set

Zp,qr = Im (Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C))
Bp,qr = Im (Hp+q−1(F p−r+1C/F pC) −→ Hp+q(F pC/F p+1C)),

the latter map being the composition of δ∗ and the projection (where r ≥ 1).

The inclusion F p−r+1C ⊆ F p−rC yields a map F p−r+1C/F pC −→ F p−rC/F pC; hence we obtain the
inclusion relation Bp,qr ⊆ Bp,qr+1. In a similar way, the projection F pC/F p+r+1C −→ F pC/F p+rC yields the
inclusion Zp,qr+1 ⊆ Zp,qr . When r = ∞, the coboundary map yields the inclusion Bp,q∞ ⊆ Zp,q∞ (remember,
F∞C = (0)). Consequently, we can write

· · · ⊆ Bp,qr ⊆ Bp,qr+1 ⊆ · · · ⊆ Bp,q∞ ⊆ Zp,q∞ ⊆ · · · ⊆ Zp,qr+1 ⊆ Zp,qr ⊆ · · · .

Set
Ep,qr = Zp,qr /Bp,qr , where 1 ≤ r ≤ ∞, and En = Hn(C).

Then, E =
∐
nEn = H(C), filtered by the H(C)p’s, as explained earlier. When r = 1, Bp,q1 = (0) and

Zp,q1 = Hp+q(F pC/F p+1C);

We obtain Ep,q1 = Hp+q(F pC/F p+1C) = H(gr(C))p,q. On the other hand, when r = ∞ (remember,
F−∞C = C), we get

Zp,q∞ = Im (Hp+q(F pC) −→ Hp+q(F pC/F p+1C))
Bp,q∞ = Im (Hp+q−1(C/F pC) −→ Hp+q(F pC/F p+1C)).

Now the exact sequence 0 −→ F pC/F p+1C −→ C/F p+1C −→ C/F pC −→ 0 yields the cohomology sequence

· · · −→ Hp+q−1(C/F pC) δ∗−→ Hp+q(F pC/F p+1C) −→ Hp+q(C/F p+1C) −→ · · ·

and the exact sequence 0 −→ F pC −→ C −→ C/F pC −→ 0 gives rise to the connecting homomorphism
Hp+q−1(C/F pC) −→ Hp+q(F pC). Consequently, we obtain the commutative diagram (with exact bottom
row)

Hp+q(F pC)

�� ��															

Hp+q−1(C/F pC) ��

��















Hp+q(F pC/F p+1C) �� Hp+q(C/F p+1C)

and Lemma (L) yields an isomorphism

ξp,q : Ep,q∞ = Zp,q∞ /Bp,q∞ −→ Im (Hp+q(F pC) −→ Hp+q(C/F p+1C)).

But another application of Lemma (L) to the diagram

Hp+q(F pC)

�� ���������������

Hp+q(F p+1C) ��

��������������
Hp+q(C) �� Hp+q(C/F p+1C)

gives us the isomorphism

ηp,q : gr(H(C))p,q −→ Im (Hp+q(F pC) −→ Hp+q(C/F p+1C)).
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Thus, (ηp,q)−1 ◦ ξp,q is the isomorphism βp,q required by part (5) of Definition 5.10.

Only two things remain to be proven to complete the proof of Theorem 5.47. They are the verification
of (2) and (3) of Definition 5.10, and the observation that Ep,q∞ , as defined above, is the common value of
the Ep,qr for r >> 0. The verification of (2) and (3) depends upon Lemma (L). Specifically, we have the two
commutative diagrams (with obvious origins)

Hp+q(F pC/F p+rC)

��

θ

��

Hp+q(F pC/F p+r+1C) ��

������������������
Hp+q(F pC/F p+1C)

δ∗
�� Hp+q+1(F p+1C/F p+r+1C)

and

Hp+q(F pC/F p+rC)

��

θ

���������������������

Hp+q(F p+1C/F p+rC)
δ∗

��

��������������������
Hp+q+1(F p+rC/F p+r+1C) �� Hp+q+1(F p+1C/F p+r+1C).

Here, the map θ is the composition

Hp+q(F pC/F p+rC) −→ Hp+q+1(F p+rC) −→ Hp+q+1(F p+1C/F p+r+1C).

Now, Lemma (L) yields the following facts:

Zp,qr /Zp,qr+1 −̃→ Im θ,

Bp+r,q−r+1
r+1 /Bp+r,q−r+1

r −̃→ Im θ,

that is,
δp,qr : Zp,qr /Zp,qr+1 −̃→ Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r .

As Bp,qr ⊆ Zp,qs for every r and s, there is a surjection

πp,qr : Ep,qr −→ Zp,qr /Zp,qr+1

with kernel Zp,qr+1/B
p,q
r ; and there exists an injection

σp+r,q−r+1
r+1 : Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r −→ Ep+r,q−r+1

r .

The composition σp+r,q−r+1
r+1 ◦ δp,qr ◦ πp,qr is the map dp,qr from Ep,qr to Ep+r,q−r+1

r required by (2). Observe
that,

Im dp−r,q+r−1
r = Bp,qr+1/B

p,q
r ⊆ Zp,qr+1/B

p,q
r = Ker dp,qr ;

hence
H(Ep,qr ) = Ker dp,qr /Im dp−r,q+r−1

r
∼= Zp,qr+1/B

p,q
r+1 = Ep,qr+1,

as required by (3).

To prove that Ep,q∞ as defined above is the common value of Ep,qr for large enough r, we must make use
of the regularity of our filtration. Consider then the commutative diagram

Hp+q(F pC/F p+rC)

��

λ

����������������

Hp+q(F pC) ��

���������������
Hp+q(F pC/F p+1C) �� Hp+q+1(F p+1C)
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where λ is the composition

Hp+q(F pC/F p+rC) δ∗−→ Hp+q+1(F p+rC) −→ Hp+q+1(F p+1C).

By Lemma (L), we have Zp,qr /Zp,q∞ −̃→ Im λ. However, if r > µ(p+ q+1)− p, then δ∗ is the zero map. This
shows Im λ = (0); hence, we have proven

Zp,qr = Zp,q∞ for r > µ(p+ q + 1)− p.
By our assumptions, the filtration begins with C = F 0C, therefore if r > p we find Bp,qr = Bp,q∞ . Hence, for

r > max{p, µ(p+ q + 1)− p}
the Ep,qr equal Ep,q∞ .

Remark: Even if our filtration does not start at 0, we can still understand Ep,q∞ from the Ep,qr when the
filtration is regular. To see this, note that since cohomology commutes with right limits, we have

lim−→
r

Bp,qr = Bp,q∞ ,

and this implies
⋃
r B

p,q
r = Bp,q∞ . Hence, we obtain maps

Ep,qr = Zp,qr /Bp,qr −→ Zp,qs /Bp,qs = Ep,qs

for s ≥ r > µ(p+q+1)−p, and these maps are surjective. (The maps are in fact induced by the dp−r,q+r−1
r ’s

because of the equality

Ep,qr /Im dp−r,q+r−1
r = (Zp,qr /Bp,qr )/(Bp,qr+1/B

p,q
r ) = Ep,qr+1

for r > µ(p+ q + 1)− p.) Obviously, the right limit of the surjective mapping family

Ep,qr −→ Ep,qr+1 −→ · · · −→ Ep,qs −→ · · ·
is the group Zp,q∞ /(

⋃
Bp,qr ) = Ep,q∞ ; so, each element of Ep,q∞ arises from Ep,qr if r >> 0 (for fixed p, q).

Regularity is therefore still an important condition for spectral sequences that are first and second quadrant
or first and fourth quadrant.

� It is not true in general that Zp,q∞ =
⋂
r Z

p,q
r or that lim←−r Z

p,q
r = Zp,q∞ . In the first case, we have a weakly

convergent spectral sequence. In the second case, we have a strongly convergent spectral sequence.

Remark: Let us keep up the convention of the above proof in which the complex C appears without the
“dot”. Then, by (5) of our theorem we find

Ep,q∞ = (Hp+q(C) ∩H(C)p)/(Hp+q(C) ∩H(C)p+1),

so that, for p+ q = n, the Ep,q∞ = Ep,n−p∞ are the composition factors in the filtration

Hn(C) ⊇ Hn(C)1 ⊇ Hn(C)2 ⊇ · · · ⊇ Hn(C)ν ⊇ · · · .
To understand a spectral sequence, it is important to have in mind a pictorial representation of it in its

entirety. We are to imagine an “apartment house”; on the rth floor the apartments are labelled Ep,qr and a
plan of the rth floor is exactly the points of the pq-plane. The roof of the apartment building is the ∞-floor.
In addition, there is the map dp,qr on the rth floor; it goes “over r and down r − 1”. Hence, a picture of the
rth floor is
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dp,qr

p

q

Ep,qr

Ep+r,q−r+1
r

Figure 5.1: The Ep,qr terms of a spectral sequence (“rth floor”)

The entire edifice looks like

E∞ (roof)
E p,q∞

E
2

E
3

E
4

E
s

E
rE p,qr

d
s

Figure 5.2: The entire spectral sequence (regular filtration)

One passes vertically directly to the apartment above by forming cohomology (with respect to dr); so,
one gets to the roof by repeated formings of cohomology at each higher level.

Once on the roof—at the∞-level—the points on the line p+q = n, i.e., the groups E0,n
∞ , E1,n−1

∞ , . . . , En,0∞ ,
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are the composition factors for the filtration of Hn(C):

Hn(C) ⊇ Hn(C)1 ⊇ Hn(C)2 ⊇ · · · ⊇ Hn(C)n ⊇ (0).

p

q

p+ q = n; points = composition factors in Hn(C)

Figure 5.3: The Ep,q∞ terms of a spectral sequence (“roof level”)

To draw further conclusions in situations that occur in practice, we need three technical lemmas. Their
proofs should be skipped on a first reading and they are only used to isolate and formalize conditions
frequently met in the spectral sequences of applications. We’ll label them Lemmas A, B, C as their conclusions
are only used to get useful theorems on the sequences.

First, observe that if for some r, there are integers n and p1 > p0 so that Eν,n−νr = (0) whenever
ν �= p0, ν �= p1, then certainly Eν,n−νs = (0) for every s with r ≤ s ≤ ∞. If the filtration is regular, then
Ep0,n−p0∞ and Ep1,n−p1∞ are the only possible non-zero composition factors for Hn(C) and therefore we obtain
the exact sequence

0 −→ Ep1,n−p1∞ −→ Hn(C) −→ Ep0,n−p0∞ −→ 0. (†)

Lemma 5.49 (Lemma A) Let Ep,q2 =⇒ H•(C) be a spectral sequence with a regular filtration. Assume there
are integers r; p1 > p0;n so that

Eu,vr = (0) for

 u+ v = n, u �= p0, p1

u+ v = n+ 1, u ≥ p1 + r
u+ v = n− 1, u ≤ p0 − r.

Then, there is an exact sequence

Ep1,n−p1r −→ Hn(C) −→ Ep0,n−p0r . (A)

Proof . The remarks above and the first hypothesis yield sequence (†). In the proof of Theorem 5.47, we saw
that

Im dp0−t,n−p0+t−1
t = Bp0,n−p0t+1 /Bp0,n−p0t .

We take ∞ > t ≥ r, let u = p0 − t and v = n− p0 + t− 1. Using these u and v and the third hypothesis, we
deduce Bp0,n−p0t is constant for t ≥ r. Therefore, Bp0,n−p0∞ = Bp0,n−p0r . This gives an injection
Ep0,n−p0∞ ↪→ Ep0,n−p0r .
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Next, with u = p1 + t; v = n − p1 − t + 1 and ∞ > t ≥ r, the second hypothesis shows that
Ker dp1+t,n−p1−t+1

t = (0) and the latter is Zp1+t,n−p1−t+1
t+1 /Bp1+t,n−p1−t+1

t . But,

B•,•
r ⊆ B•,•

t ⊆ B•,•
∞ ⊆ Z•,•

∞ ⊆ Z•,•
t+1,

and so we get
Bp1+t,n−p1−t+1
t+1 = Bp1+t,n−p1−t+1

t , ∞ ≥ t ≥ r.
However, from the proof of Theorem 5.47, we find

Zp1,n−p1t /Zp1,n−p1t+1 � Bp1+t,n−p1−t+1
t+1 /Bp1+t,n−p1−t+1

t ;

and therefore Zp1,n−p1t is constant for ∞ > t ≥ r. By the regularity of the filtration, we find
Zp1,n−p1r = Zp1,n−p1∞ . This gives a surjection Ep1,n−p1r −→ Ep1,n−p1∞ , and if we combine (†), our injection for
p0, n− p0 and the surjection for p1, n− p1 we get sequence (A).

Lemma 5.50 (Lemma B) Suppose that Ep,q2 =⇒ H•(C) is a spectral sequence with a regular filtration.
Assume that there are integers s ≥ r; p, n so that

Eu,vr = (0) for

 u+ v = n− 1, u ≤ p− r
u+ v = n, u �= p and u ≤ p+ s− r
u+ v = n+ 1, p+ r ≤ u and u �= p+ s.

Then, there is an exact sequence

Hn(C) −→ Ep,n−pr −→ Ep+s,(n+1)−(p+s)
r . (B)

Proof . We apply dp,n−pr to Ep,n−pr and land in Ep+r,n−p−r+1
r which is (0) by hypothesis three. Also,

Ep−r,n−p+r−1
r is (0) by the first hypothesis, so the image of dp−r,n−p+r−1

r is (0). This shows Ep,n−pr = Ep,n−pr+1 .
Repeat, but with dr+1; as long as r+1 < s we can continue using hypotheses one and three. Thus we obtain
Ep,n−pr = Ep,n−ps . Now apply dp,n−pt to Ep,n−pt where t ≥ s + 1. Hypothesis three shows our map is zero
and similarly the map dp−t,n−p+t−1

t is zero by hypothesis one. So, for all t, with ∞ > t ≥ s + 1, we get
Ep,n−pt = Ep,n−tt+1 . As the filtration is regular, we obtain Ep,n−ps+1 = Ep,n−p∞ .

Next, by hypothesis two with u = p + (s − r) (provided s > r, otherwise there is nothing to prove), we
see that Im d

p+s−r,n−(p+s−r)
r is (0). Thus,

B
p+s,(n+1)−(p+s)
r+1 = Bp+s,(n+1)−(p+s)

r .

Should s > r + 1, we continue because

(0) = Im d
p+s−(r+1),n−(p+s−(r+1))
r+1 .

This gives
B
p+s,(n+1)−(p+s)
r+2 = B

p+s,(n+1)−(p+s)
r+1 .

Hence, we get
Bp+s,(n+1)−(p+s)
s = Bp+s,(n+1)−(p+s)

r

by repetition. Of course, this gives the inclusion

Ep+s,(n+1)−(p+s)
s ⊆ Ep+s,(n+1)−(p+s)

r .

Lastly, by hypothesis one, Ep−s,(n−1)−(p−s)
r = (0); so, Ep−s,(n−1)−(p−s)

t = (0) for every t ≥ r. Take t = s,
then dp−s,(n−1)−(p−s)

s vanishes, and in the usual way we get

Bp,n−ps+1 = Bp,n−ps .
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But then, we obtain an inclusion
Ep,n−ps+1 ↪→ Ep,n−ps .

However, the kernel of dp,n−ps is Zp,n−ps+1 /Bp,n−ps = Ep,n−ps+1 ; therefore we get the exact sequence

0 −→ Ep,n−ps+1 −→ Ep,n−ps

dp,n−p
s−→ Ep+s,(n+1)−(p+s)

s .

And now we have a surjection Hn(C) −→ Ep,n−p∞ because Eu,n−u∞ = (0) when u ≤ p + s − r (r �= p) by
hypothesis two. If we put all this together, we get sequence (B).

In a similar manner (see the exercises) one proves

Lemma 5.51 (Lemma C) If Ep,q2 =⇒ H•(C) is a spectral sequence with a regular filtration and if there
exist integers s ≥ r; p, n so that

Eu,vr = (0) for

 u+ v = n+ 1, u ≥ p+ r
u+ v = n, p+ r − s ≤ u �= p
u+ v = n− 1, p− s �= u ≤ p− r,

then, there is an exact sequence

Ep−s,(n−1)−(p−s)
r −→ Ep,n−pr −→ Hn(C). (C)

Although Lemmas A, B, C are (dull and) technical, they do emphasize one important point: For any
level r, if Ep,qr lies on the line p+ q = n, then dr takes it to a group on the line p+ q = n+ 1 and it receives
a dr from a group on the line p+ q = n− 1. From this we obtain immediately

Corollary 5.52 (Corollary D) Say Ep,q2 =⇒ H•(C) is a regularly filtered spectral sequence and there are
integers r, n so that

Ep,qr = (0) for
{
p+ q = n− 1
p+ q = n+ 1.

Then, Ep,n−pr = Ep,n−p∞ and the Ep,n−pr are the composition factors for Hn(C) in its filtration.

Now we wish to apply Lemmas A, B, C and we begin with the simplest case—a case for which we do not
need these Lemmas. A spectral sequence Ep,q2 =⇒ H•(C) degenerates at (level) r when and only when for
each n there is a q(n) so that

En−q,qr = (0) if q �= q(n).

Of course then En−q,qs = (0) when q �= q(n) for all s ≥ r; so that, in the regular case, we have En−q,q∞ = (0)
if q �= q(n). If we have q(n + 1) > q(n) − (r − 1) for all n (e.g., if q(n) is constant), then En−q,qr = En−q,q∞
for every n and q and we deduce that

Hn(C) = En−q(n),q(n)
∞ = En−q(n),q(n)

r

for all n. This proves

Proposition 5.53 When the filtration of C is regular and the spectral sequence

Ep,q2 =⇒ H•(C)

degenerates at r, then Hn(C) = E
n−q(n),q(n)
∞ . If in addition, q(n+ 1) > q(n)− (r − 1) for all n, then

Hn(C) ∼= En−q(n),q(n)
r

for every n.
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Theorem 5.54 (Zipper Sequence) Suppose Ep,q2 =⇒ H•(C) is a regularly convergent spectral sequence and
there exist integers p0, p1, r with p1 − p0 ≥ r ≥ 1 so that Eu,vr = (0) for all u �= p0 or p1. Then we have the
exact zipper sequence

· · · −→ Ep1,n−p1r −→ Hn(C) −→ Ep0,n−p0r −→ Ep1,n+1−p1
r −→ Hn+1(C) −→ · · ·

Dually, if there are integers q0, q1, r with q1 − q0 ≥ r − 1 ≥ 1 so that Eu,vr = (0) for v �= q0 or q1, then the
zipper sequence is

· · · −→ En−q0,q0r −→ Hn(C) −→ En−q1,q1r −→ En+1−q0,q0
r −→ Hn+1(C) −→ · · ·

Proof . Write s = p1 − p0 ≥ r and apply Lemmas A, B and C (check the hypotheses using u + v = n). By
splicing the exact sequences of those lemmas, we obtain the zipper sequence. Dually, write s = 1+q1−q0 ≥ r,
set p0 = n− q1 and p1 = n− q0. Then Lemmas A, B and C again apply and their exact sequences splice to
give the zipper sequence.

The name “zipper sequence” comes from the following picture. In it, the dark arrows are the maps
Ep0,n−p0r −→ Ep1,n+1−p1

r and the dotted arrows are the compositions Ep1,n+1−p1
r −→ Hn+1 −→ Ep0,n+1−p0

r

(one is to imagine these arrows passing through the Hn+1 somewhere behind the plane of the page). As you
see, the arrows zip together the vertical lines p = p0 and p = p1.

(Level r in the spectral sequence)

p = p0 p = p1

p

q

Figure 5.4: Zipper Sequence

Theorem 5.55 (Edge Sequence) Suppose that Ep,q2 =⇒ H•(C) is a regularly convergent spectral sequence
and assume there is an integer n ≥ 1 so that Ep,q2 = (0) for every q with 0 < q < n and all p (no hypothesis
if n = 1). Then Er,02

∼= Hr(C) for r = 0, 1, 2, . . . , n− 1 and

0 −→ En,02 −→ Hn(C) −→ E0,n
2 −→ En+1,0

2 −→ Hn+1(C)

is exact (edge sequence). In particular, with no hypotheses on the vanishing of Ep,q2 , we have the exact
sequence

0 −→ E1,0
2 −→ H1(C) −→ E0,1

2

d0,1
2−→ E2,0

2 −→ H2(C).
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Proof . Since we have a cohomological (first quadrant) spectral sequence all the differentials dr,0l vanish for
all l and if l ≥ n no differential dp,ql hits Er,0l if p ≥ 0 and r ≤ n− 1. All the differentials dp,ql are 0 if q < n

and so we find Er,02
∼= Er,0∞ for 0 ≤ r ≤ n− 1. But, only one non-zero term Ep,q∞ exists on the line r = p+ q

for r < n by our hypothesis on the vanishing; so, indeed Er,02
∼= Er,0∞ = Hr(C) when 0 ≤ r ≤ n− 1.

For En,0l , since dp,n−p−1
n−p : Ep,n−p−1

n−p → En,0n−p, and since p ≥ 0 implies q ≤ n− 1, we see that no non-zero
differential hits En,0l for any l. Thus, En,02

∼= En,0∞ and we get the injection En,02 −→ Hn(C). Apply Lemma
A with p0 = 0, p1 = n, r = 2 to find the sequence

0 −→ En,02 −→ Hn(C) −→ E0,n
2 . (∗)

Next, in Lemma B, take r = 2, s = n+ 1 ≥ 2, and p = 0. Sequence (B) splices to (∗) to yield

0 −→ En,02 −→ Hn(C) −→ E0,n
2 −→ En+1,0

2 . (∗∗)
And, lastly, use Lemma C with r = 2, s = n+ 1 ≥ 2, the n of Lemma C to be our n+ 1 = s and p = n+ 1.
Upon splicing Lemma C onto (∗∗) we find the edge sequence

0 −→ En,02 −→ Hn(C) −→ E0,n
2 −→ En+1,0

2 −→ Hn+1(C).

Obviously, the edge sequence gets its name from the fact that the Ep,q2 which appear in it lie on the
edge of the quadrant in the picture of E2 as points (of the first quadrant) in the pq-plane. Equally obvious
is the notion of a morphism of spectral sequences. Whenever C and C̃ are graded, filtered complexes and
g : C → C̃ is a morphism of such complexes, we find an induced morphism

ss(g) : Ep,q2 =⇒ H•(C) �→ Ẽp,q2 =⇒ H•(C̃)

of spectral sequences.

Theorem 5.56 Suppose C and C̃ are graded filtered complexes and write E•,•(C) and E•,•(C̃) for their
associated spectral sequences. Assume both filtrations are regular and g• : E•,•(C) → E•,•(C̃) is a spectral
sequence morphism. If, for some r ≥ 2, the level r map g•r : E•,•

r → Ẽ•,•
r is an isomorphism, then for every

s ≥ r the level s map, g•s , is also an isomorphism (also for s =∞) and we have an induced isomorphism on
the graded cohomology

grH(g•) : grH•(C) −̃→ grH•(C̃).

The proof of this is obvious because by regularity Ep,q∞ = Ep,qs for s >> 0. But for Hn, its graded pieces
are the Ep,n−p∞ , and p ≥ 0. Thus, p ≤ n and q ≤ n; so, our choice s = s(n) >> 0 will do to get

Ep,qs = Ep,q∞ (all p, q with p+ q = n).

These groups are exactly the graded pieces of Hn as we’ve remarked and
∐
p+q=n g

p,q
s is our isomorphism.

Our technical results on spectral sequences are over, now we actually need some spectral sequences to use
them on. Big sources of spectral sequences are double complexes. So, let C =

∐
p,q C

p,q be a doubly-graded
complex (we assume that p, q ≥ 0). We have two differentiations:

dp,qI : Cp,q −→ Cp+1,q, (horizontal)
dp,qII : Cp,q −→ Cp,q+1 (vertical)

such that
dI ◦ dI = dII ◦ dII = 0.



5.4. SPECTRAL SEQUENCES; FIRST APPLICATIONS 311

We will require
dp+1,q
II ◦ dp,qI + dp,q+1

I ◦ dp,qII = 0, for all p, q.

Then we get the (singly graded) total complex

C =
∐
n

( ∐
p+q=n

Cp,q

)

with total differential dT = dI + dII. We immediately check that dT ◦ dT = 0. There are two filtrations

F pI C =
∐
r≥p,q

Cr,q and F qIIC =
∐
p,s≥q

Cp,s.

Both have every compatibility necessary and give filtrations on the total complex and are regular. Therefore,
we find two spectral sequences

Ip,q2 =⇒
p

H•(C) and IIp,q2 =⇒
q

H•(C).

Observe that

grI(C) =
∐

grpI (C)

=
∐

(F pI C/F
p+1
I C)

=
∐
p

(∐
q

Cp,q

)

and Ep,qI = Hp,q(grpI (C)), which is just Hp,q
II (C). Now, we need to compute dp,q1 in spectral sequence (I). It

is induced by the connecting homomorphism arising from the short exact sequence

0 −→ F p+1
I C/F p+2

I C −→ F pI C/F
p+2
I C −→ F pI C/F

p+1
I C −→ 0.

Pick ξ ∈ Hp,q
II (C), represented by a cocycle with respect to dII in Cp+q, call it x. The connecting homomor-

phism (= d1) is given by “dTx”. But, dTx = dIx+ dIIx = dIx, as dIIx = 0. Therefore, d1 is exactly the map
induced on Hp,q

II (C) by dI. It follows that

Ip,q2 = Zp,q2 /Bp,q2 = Hp
I (Hq

II(C)).

We have therefore proved

Theorem 5.57 Given a double complex C =
∐
p,q C

p,q, we have two regular spectral sequences converging
to the cohomology of the associated total complex:

Hp
I (Hq

II(C)) =⇒
p

H•(C)

and
Hq

II(H
p
I (C)) =⇒

q
H•(C).

It still is not apparent where we’ll find an ample supply of double complexes so as to use the above
theorem. A very common source appears as the answer to the following

Problem. Given two left-exact functors F : A → B and G : B → C between abelian categories (with
enough injectives, etc.), we have GF : A → C (left-exact); how can we compute Rn(GF ) if we know RpF
and RqG?

In order to answer this question, we need to introduce special kinds of injective resolutions of complexes.
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Definition 5.11 A Cartan–Eilenberg injective resolution of a complex, C, (with Ck = (0) if k < 0) is a
resolution

0 −→ C• −→ Q• 0 −→ Q• 1 −→ Q• 2 −→ · · · ,
in which each Q• j =

∐
iQ

i,j is a complex (differential dij) and every Qi,j injective and so that if we write
Zi,j = Ker di,j ; Bi,j = Im di−1,j and Hi,j = Zi,j/Bi,j , we have the injective resolutions

(1) 0 �� Ci �� Qi,0 �� Qi,1 �� · · ·

(2) 0 �� Zi(C) �� Zi,0 �� Zi,1 �� · · ·

(3) 0 �� Bi(C) �� Bi,0 �� Bi,1 �� · · ·

(4) 0 �� Hi(C) �� Hi,0 �� Hi,1 �� · · · .

The way to remember this complicated definition is through the following diagram:

0 �� Ci+1

		

�� Qi+1,0

		

�� Qi+1,1

		

�� · · ·

0 �� Ci

δi

		

�� Qi,0

di,0

		

�� Qi,1

di,1

		

�� · · ·

0 �� Zi

		

�� Zi,0

		

�� Zi,1

		

�� · · ·

0

		

0

		

0

		

Proposition 5.58 Every complex, C, has a Cartan–Eilenberg resolution, 0 −→ C −→ Q•, where the {Qi,j}
form a double complex. Here, we have suppressed the grading indices of C and the Qj.

Proof . We begin with injective resolutions 0 −→ B0(C) −→ B0,•; 0 −→ B1(C) −→ B1,• and
0 −→ H0(C) −→ H0,• of B0(C); B1(C); H0(C). Now, we have exact sequences

0 −→ B0(C) −→ Z0(C) −→ H0(C) −→ 0

and
0 −→ Z0(C) −→ C0 δ0−→ B1(C) −→ 0;

so, by Proposition 5.1, we get injective resolutions 0 −→ Z0(C) −→ Z0,• and 0 −→ C0 −→ Q0,•, so that

0 −→ B0,• −→ Z0,• −→ H0,• −→ 0

and
0 −→ Z0,• −→ Q0,• −→ B1,• −→ 0

are exact.

For the induction step, assume that the complexes Bi−1,•, Zi−1,•, Hi−1,•, Qi−1,• and Bi,• are determined
and satisfy the required exactness properties (i ≥ 1). Pick any injective resolution Hi,• of Hi(C), then using
the exact sequence

0 −→ Bi(C) −→ Zi(C) −→ Hi(C) −→ 0
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and Proposition 5.1, we get an injective resolution 0 −→ Zi(C) −→ Zi,• so that

0 −→ Bi,• −→ Zi,• −→ Hi,• −→ 0

is exact. Next, pick an injective resolution, 0 −→ Bi+1(C) −→ Bi+1,•, of Bi+1(C) and use the exact
sequence

0 −→ Zi(C) −→ Ci
δi

−→ Bi+1(C) −→ 0

and Proposition 5.1 to get an injective resolution 0 −→ Ci −→ Qi,• so that

0 −→ Zi,• −→ Qi,• −→ Bi+1,• −→ 0

is exact. The differential di,jII of the double complex {Qi,j} is the composition

Qi,j −→ Bi+1,j −→ Zi+1,j −→ Qi+1,j

and the differential di,jI is given by

di,jI = (−1)iεi,j ,

where, εi,• is the differential of Qi,•. The reader should check that {Qi,j} is indeed a Cartan–Eilenberg
resolution and a double complex (DX).

Note that, due to the exigencies of notation (we resolved our complex C• horizontally) the usual conven-
tions of horizontal and vertical were interchanged in the proof of Proposition 5.58 at least as far as Cartesian
coordinate notation is concerned. This will be rectified during the proof of the next theorem, which is the
result about spectral sequences having the greatest number of obvious applications and forms the solution
to the problem posed before.

Theorem 5.59 (Grothendieck) Let F : A → B and G : B → C be two left-exact functors between abelian
categories (with enough injectives, etc.) and suppose that F (Q) is G-acyclic whenever Q is injective, which
means that RpG(FQ) = (0), if p > 0. Then, we have the spectral sequence of composed functors

RqG((RpF )(A)) =⇒
q

(R•(GF ))(A).

Proof . Pick some object A ∈ A and resolve it by injectives to obtain the resolution 0 −→ A −→ Q•(A):

0 −→ A −→ Q0 −→ Q1 −→ Q2 −→ · · · .

If we apply GF to Q•(A) and compute cohomology, we get Rn(GF )(A). If we just apply F to Q•(A), we
get the complex:

F (Q0) −→ F (Q1) −→ F (Q2) −→ · · · , (FQ•(A))

whose cohomology is RqF (A).
Now resolve the complex FQ•(A) in the vertical direction by a Cartan-Eilenberg resolution. There results
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a double complex of injectives (with exact columns)

...
...

...

Q0,1 ��

		

Q1,1 ��

		

· · · �� Qn,1 ��

		

· · ·

Q0,0 ��

		

Q1,0 ��

		

· · · �� Qn,0 ��

		

· · ·

F (Q0) ��

		

F (Q1) ��

		

· · · �� F (Qn) ��

		

· · ·

0

		

0

		

0

		

in the category B. Apply the functor G to this double complex to obtain a new double complex we will label
C:

...
...

...

G(Q0,1) ��

		

G(Q1,1) ��

		

· · · �� G(Qn,1) ��

		

· · ·

G(Q0,0) ��

		

G(Q1,0) ��

		

· · · �� G(Qn,0) ��

		

· · ·

GF (Q0) ��

		

GF (Q1) ��

		

· · · �� GF (Qn) ��

		

· · ·

0

		

0

		

0

		

,

(C)

in which, by hypothesis, all the columns are still exact . Therefore, using the notations for the two spectral
sequences converging to H•(C), we have H•

II(C) = (0) so that (by our first remarks)

H•(C) ∼= R•(GF )(A).

From the second spectral sequence, we get

IIl,m2 = H l
II(H

m
I (C)) =⇒

l
R•(GF )(A).

Since we used a Cartan-Eilenberg resolution of FQ•(A), we have the following injective resolutions

0 −→ Zp(FQ•(A)) −→ Zp,0 −→ Zp,1 −→ · · ·
0 −→ Bp(FQ•(A)) −→ Bp,0 −→ Bp,1 −→ · · ·
0 −→ Hp(FQ•(A)) −→ Hp,0 −→ Hp,1 −→ · · · ,

for all p ≥ 0. Moreover, the exact sequences

0 −→ Zp,• −→ Qp,• −→ Bp+1,• −→ 0
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and
0 −→ Bp,• −→ Zp,• −→ Hp,• −→ 0

are split because the terms are injectives of B. Therefore, the sequences

0 −→ G(Zp,•) −→ G(Qp,•) −→ G(Bp+1,•) −→ 0

and
0 −→ G(Bp,•) −→ G(Zp,•) −→ G(Hp,•) −→ 0

are still exact and we find
Hp

I (C•,q) = G(Hp,q).

But, the Hp,• form an injective resolution of Hp(FQ•(A)) and the latter is just RpF (A). So, G(Hp,•) is the
complex whose cohomology is exactly RqG(RpF (A)). Now, this cohomology is Hq

II(G(Hp,•)) and Hp
I (C•,•)

is G(Hp,•) by the above. We obtain

RqG(RpF (A)) = Hq
II(H

p
I (C•,•)) = IIq,p2 =⇒

q
H•(C).

Since H•(C) ∼= R•(GF )(A), we are done.

There are many applications of the Spectral Sequence of Composed Functors. We give just a few of these.

(I) The Hochschild-Serre Spectral Sequence for the Cohomology of Groups

Write G for a (topological) group, N for a (closed) normal subgroup and A for a (continuous) G-module.
(Our main interest for non-finite or non-discrete groups is in the case of profinite groups because of their
connection with Galois cohomology in the non-finite case. For a profinite group, the G-module is always
given the discrete topology and the action G

∏
A −→ A is assumed continuous.)

We have three categories: G-mod, G/N -mod and Ab. And we have the two functors

A� H0(N,A) = AN (G-mod� G/N -mod),

and
B � H0(G/N,B) = BG/N (G/N -mod� Ab).

Of course, their composition is exactly A � AG. To apply Grothendieck’s Theorem, we have to show
that if Q is an injective G-module, then QN is G/N -cohomologically trivial. But, I claim QN is, in fact,
G/N -injective. To see this, take 0 −→M ′ −→M exact in G/N -mod and look at the diagram (in G-mod)

Q

QN
��

		

0 �� M ′

		

�� M

��

Every G/N -module is a G-module (via the map G −→ G/N) and Q is G-injective; so, the dotted arrow
exists as a G-homomorphism rendering the diagram commutative. Let θ be the dotted arrow; look at Im θ.
If q = θ(m) and σ ∈ N ⊆ G, then σq = θ(σm) = θ(m) = q, because M is a G/N -module so N acts trivially
on it. Therefore q ∈ QN and so θ factors through QN , as required.

We obtain the Hochschild-Serre SS

Hp(G/N,Hq(N,A)) =⇒
p
H•(G,A). (HS)
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Here is an application of importance for profinite groups (and Galois cohomology). If G is profinite,
write c.d.(G) ≤ r (resp. c.d.p(G) ≤ r) provided Hs(G,M) = (0) whenever M is a Z-torsion G-module
(resp. p-torsion G-module) and s > r. This notion is uninteresting for finite groups (see the exercises for
the reason).

Theorem 5.60 (Tower Theorem) If G is a profinite group and N is a closed normal subgroup, then

c.d.(G) ≤ c.d.(N) + c.d.(G/N).

(also true for c.d.p).

Proof . We may assume c.d.(N) ≤ a < ∞ and c.d.(G/N) ≤ b < ∞, otherwise the result is trivial. Let M
be a torsion G-module and suppose n > a+ b. All we need show is Hn(G,M) = (0). Write n = p+ q with
p ≥ 0, q ≥ 0. In the Hochschild-Serre SS, the terms

Ep,q2 = Hp(G/N,Hq(N,M))

must vanish. For if p ≤ b, then q > a and Hq(N,M) is zero by hypothesis. Now M is torsion therefore MN

is torsion and we saw in Chapter 4 that Hq(N,M) is always torsion if q > 0 as it is a right limit of torsion
groups. So, if q ≤ a, then p > b and Ep,q2 = (0) by hypothesis on G/N . Therefore, Ep,qs = (0) for all s with
2 ≤ s ≤ ∞, when p + q = n > a + b. Hence, the terms in the composition series for Hn(G,M) all vanish
and we’re done.

(II) The Leray Spectral Sequence

The set-up here is a morphism
π : (X,OX) −→ (Y,OY )

of ringed spaces (c.f. Section 5.3) and the three categories are: S(X), S(Y ), Ab. The functors are

π∗ : S(X)� S(Y )

and
H0(Y,−) : S(Y )� Ab.

Of course, H0(X,−) : S(X) � Ab is the composition H0(Y,−) ◦ π∗. We must show that if Q is an
injective sheaf on X, then π∗Q is cohomologically trivial on Y . Now every injective is flasque and flasque
sheaves are cohomologically trivial; so, it will suffice to prove π∗ takes flasque sheaves on X to flasque sheaves
on Y .

But this is trivial, for if U and V are open on Y and V ⊆ U , then π−1(V ) ⊆ π−1(U) and

π∗F (U)

��

F (π−1(U))

��
π∗F (V ) F (π−1(V ))

shows that surjectivity of the left vertical arrow follows from surjectivity on the right. We therefore obtain
the Leray Spectral Sequence

Hp(Y,Rqπ∗F ) =⇒
p
H•(X,F ). (LSS)

Unfortunately, full use of this spectral sequence demands considerable control of the sheaves Rqπ∗F and
this is vitally affected by the map π; that is, by the “relative geometry and topology of X vis a vis Y ”. We
must leave matters as they stand here.
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(III) The Čech Cohomology Spectral Sequence

Once again, let (X,OX) be a ringed space and write S(X) and P(X) for the categories of sheaves of OX -
modules and presheaves of OX -modules. We also have two left exact functors from P(X) to Ab. Namely,
if {Uα −→ X}α is an open cover of X and G ∈ P(X), then H0({Uα −→ X}α, G) is in Ab and we have
Ȟ0(X,G), where the latter abelian group is what we called G(+)(X) in footnote 6 of Section 5.3. For the
three abelian categories: S(X), P(X), Ab we now have the two composed functors

S(X) � � i �� P(X)
H0({Uα→X},−)���������������� Ab

S(X) � � i �� P(X)
Ȟ0(X,−) ���������������� Ab.

Observe that both composed functors are the same functor:

F ∈ S(X)� H0(X,F ) ∈ Ab.

We need to show that if Q is an injective sheaf, then i(Q) is acyclic for either H0({Uα → X},−) or
Ȟ0(X,−). However, part (3) of Corollary 5.33 says that i(Q) is injective as presheaf and is therefore acyclic.
From Grothendieck’s Theorem, we obtain the two Čech Cohomology Spectral Sequences:

Hp({Uα −→ X}α,Hq(F )) =⇒
p
H•(X,F ) (CCI)

Ȟp(X,Hq(F )) =⇒
p
H•(X,F ) (CCII)

Now it turns out that Hq(F )# = (0) for every q > 0 and every sheaf, F . (See the exercises.) Also,
Hq(F )(+) ⊆ Hq(F )#; so, we find

E0,q
2 = Ȟ0(X,Hq(F )) = Hq(F )(+) = (0), when q > 0.

If we apply the edge sequence to (CCII), we deduce

Proposition 5.61 If (X,OX) is a ringed space and F is a sheaf of OX-modules and if we continue to write
F when F is considered as a presheaf (instead of i(F )), then

(1) Ȟ1(X,F ) −→ H1(X,F ) is an isomorphism and

(2) Ȟ2(X,F ) −→ H2(X,F ) is injective.

(IV) The Local to Global Ext Spectral Sequence

Again, let (X,OX) be a ringed space and fix a sheaf, A, of OX -modules on X. Write S(X) for the
(abelian) category of OX -modules. We can make a functor from S(X) to itself, denoted HomOX

(A,−) via

HomOX
(A,B)(U) = HomOX�U (A � U,B � U).

Here, U is open in X, the functor HomOX
(A,−) is usually called the sheaf Hom, it is (of course) left exact

and its right derived functors (called sheaf Ext) are denoted Ext•OX
(A,−).

Therefore, we have the situation of three categories S(X), S(X), Ab and the two functors

HomOX
(A,−) : S(X)� S(X)

H0(X,−) = Γ(X,−) : S(X)� Ab

whose composition is the functor HomOX
(A,−). In order to apply Grothendieck’s Theorem, we must show

that if Q is injective in S(X), then HomOX
(A,Q) is an acyclic sheaf . This, in turn, follows from
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Proposition 5.62 Suppose that Q is an injective sheaf of OX-modules. Then HomOX
(A,Q) is a flasque

OX-module.

Proof . If U is open in X, recall we have the presheaf AU defined by

AU (V ) =
{
A(V ) if V ⊆ U
(0) if V �⊆ U

and this gives rise to the associated sheaf (AU )�. Now by adjointness,

HomOX
((AU )�, B) ∼= HomOX-presheaves(AU , i(B)).

On the right hand side, if V is open and V ⊆ U , then an element of HomOX
(AU , i(B)) gives the map

A(V ) −→ B(V ) (consistent with restrictions). But, if V �⊆ U , we just get 0. However, this is exactly what
we get from HomOU

(A � U,B � U); therefore

HomOX
((AU )�, B) = HomOX�U (A � U,B � U).

Now take Q to be an injective sheaf, we have to show that

HomOX
(A,Q) −→ HomOX�U (A � U,Q � U)

is surjective for each open U of X. This means we must show that

HomOX
(A,Q) −→ HomOX

((AU )�, Q)

is surjective. But, 0 −→ (AU )� −→ A is exact and Q is injective; so, we are done.

We obtain the local to global Ext spectral sequence

Hp(X, ExtqOX
(A,B)) =⇒

p
Ext•OX

(A,B). (LGExt)

Remark: If j : U ↪→ X is the inclusion of the open set U in X, then the sheaf we have denoted (AU )� above
is usually denoted j!A. The functor, j!, is left-exact and so we have a basic sequence of sheaf invariants R•j!.
Of course, we also have R•π∗ (for a morphism π : Y → X) as well as π∗, j! (adjoint to j!). The six operations

R•π∗, R•j!, π∗, j!, R•Hom, ⊗
were singled out by A. Grothendieck as the important test cases for the permanence of sheaf properties under
morphisms.

(V) “Associativity” Spectral Sequences for Ext and Tor

In the proof of Grothendieck’s Theorem on the spectral sequence for composed functors, there were two
parts. In the first part, we used the essential hypothesis that F (Q) was G-acyclic to compute the cohomology
of the total complex (of our double complex) as R•(GF (A))—this is the ending of the spectral sequence. In
the second part, which depends only on using a Cartan-Eilenberg resolution and did not use the G-acyclicity
of F (Q), we computed the spectral sequence IIp,q2 =⇒ H•(C) and found RpG(RqF (A)) =⇒ H•(C). This
second part is always available to us by Proposition 5.58 and we’ll make use of it below.

We consider modules over various rings. In order that we have enough flexibility to specialize to varying
cases of interest, we begin with three K-algebras, R,S, T and modules A,B,C as follows:

(†)
 A is a right R and a right S-module

B is a left R-module and a right T -module
C is a right S and a right T -module.
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Then

A⊗R B is a right S ⊗K T -module

and

HomT (B,C) is a right R⊗K S-module.

Observe that A is then a right R⊗K S-module via

a(r ⊗ s) = (ar)s

because to say A is a right R and a right S-module is to imply

(ar)s = (as)r (all a ∈ A, r ∈ R, s ∈ S).

Also, C is a right S ⊗K T -module. We know in this situation there is an “associativity” isomorphism

HomR⊗KS(A,HomT (B,C)) ∼= HomS⊗KT (A⊗R B,C). (∗)

If S is K-projective and P• −→ A −→ 0 is an R ⊗K S-projective resolution of A, then P• −→ A −→ 0
is still an R-projective resolution of A and similarly if 0 −→ C −→ Q• is an S ⊗K T -injective resolution, it
still is a T -injective resolution of C. Our spectral sequences IIp,q2 then give us two spectral sequences with
the same ending (by (∗)):

ExtpR⊗KS
(A,ExtqT (B,C)) =⇒ Ending•

ExtpS⊗KT
(TorRq (A,B), C) =⇒ Ending•.

In a similar way, but this time if C is a (left) S and T -module, we get the “associativity” isomorphism

A⊗R⊗KS (B ⊗T C) ∼= (A⊗R B)⊗S⊗KT C. (∗∗)

Again, we assume S is K-projective and we get two spectral sequences with the same ending (by (∗∗)):

TorR⊗KS
p (A,TorTq (B,C)) =⇒ Ẽnding

•

TorS⊗KT
p (TorRq (A,B), C) =⇒ Ẽnding

•
.

However, it is not clear how to compute the endings in these general cases. If we assume more, this can
be done. For example, say TorRq (A,B) = (0) if q > 0—this will be true when either A or B is flat over
R—then the second Ext sequence and second Tor sequence collapse and we find

ExtpR⊗KS
(A,ExtqT (B,C)) =⇒ Ext•S⊗KT (A⊗R B,C)

TorR⊗KS
p (A,TorTq (B,C)) =⇒ TorS⊗KT• (A⊗R B,C).

We have proved all but the last statement of

Proposition 5.63 Suppose R,S, T are K-algebras with S projective over K and say A is an R and S right
module, C is an S and T right (resp. left) module and B is a left R and right T -module. Then there are
spectral sequences with the same ending

ExtpR⊗KS
(A,ExtqT (B,C)) =⇒ Ending•

ExtpS⊗KT
(TorRq (A,B), C) =⇒ Ending•
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(resp.

TorR⊗KS
p (A,TorTq (B,C)) =⇒ Ẽnding

•

TorS⊗KT
p (TorRq (A,B), C) =⇒ Ẽnding

•
)

If TorRq (A,B) = (0) when q > 0 (e.g. if A or B is R-flat) then

ExtpR⊗KS
(A,ExtqT (B,C)) =⇒ Ext•S⊗KT (A⊗R B,C) (Ext)

and
TorR⊗KS

p (A,TorTq (B,C)) =⇒ TorS⊗KT• (A⊗R B,C)). (Tor)

Lastly, if B is T -projective (more generally ExtqT (B,C) vanishes if q > 0 and TorTq (B,C) vanishes if q > 0),
then we have the Ext and Tor associativity formulae

ExtpR⊗KS
(A,HomT (B,C)) ∼= ExtpS⊗KT

(A⊗R B,C)

and
TorR⊗KS

p (A,B ⊗T C) ∼= TorS⊗KT
p (A⊗R B,C).

Proof . The last statement is trivial as our spectral sequences (Ext), (Tor) collapse.

Upon specializing the K-algebras R,S, T and the modules A,B,C, we can obtain several corollaries of
interest. For example, let S = Rop and A = R. Then ExtpR⊗Rop(R,−) = Hp(R,−) in Hochschild’s sense (by
Section 5.3) and if R is K-projective the spectral sequences involving Ext yield

Corollary 5.64 If R is K-projective then there is a spectral sequence

Hp(R,ExtqT (B,C)) =⇒ Ext•Rop⊗KT (B,C)

provided B is a left R and right T -module and C is also a left R and right T -module.

Note that this is reminiscent of the local-global Ext spectral sequence. Note further that if B is also
T -projective, we deduce an isomorphism

Hp(R,HomT (B,C)) ∼= ExtpRop⊗T (B,C).

Next, let A = B = R = K in the Ext-sequences. If S is K-projective the second Ext sequence collapses
and gives ExtpS⊗KT

(K,C) ∼= Endingp. The first spectral sequence then yields

Corollary 5.65 Say S is K-projective and S and T possess augmentations to K, then we have the spectral
sequence

ExtpS(K,ExtqT (K,C)) =⇒ Ext•S⊗KT (K,C),

where C is a right S and right T -module.

Here is another corollary:

Corollary 5.66 Say S and T are K-algebras with S being K-projective. Assume C is a two-sided S ⊗K T -
module, then there is a spectral sequence

Hp(S,Hq(T,C)) =⇒ H•(S ⊗K T,C).
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Proof . For this use K,Se, T e in place of R,S, T . Now Se is K-projective as S is so. Further replace A,B,C
by (S, T,C)—this is O.K. because C is indeed both a right Se and right T e-module by hypothesis. The
second Ext sequence collapses; so,

Extp(S⊗KT )e(S ⊗K T,C) ∼= Endingp.

But, the left-side is just Hp(S ⊗K T,C) by definition. Now the Ep,q2 term of our first Ext sequence is

ExtpSe(S,ExtqT e(T,C))

that is, it equals Hp(S,Hq(T,C)); so our proposition concludes the proof.

Clearly, there are analogous results for homology. Here are the conclusions, the exact hypotheses and
the proofs will be left as (DX).

Hp(T,TorRq (A,B)) =⇒ TorR⊗KT
op

• (A,B)

TorSp (TorRq (A,K),K) =⇒ TorR⊗KS• (A,K)
Hp(S,Hq(R,A)) =⇒ H•(R⊗K S,A).



322 CHAPTER 5. HOMOLOGICAL ALGEBRA

5.5 The Koszul Complex and Applications

In our previous work on the Hochschild cohomology of algebras, we studied the standard or bar complex,
but we saw that it was inefficient in several cases of interest. As mentioned there, we have another, much
better complex—the Koszul complex—which will serve for varied applications and which we turn to now.

Let A be a ring and M a module over this ring. For simplicity, we’ll assume A is commutative as the
main applications occur in this case. But, all can be done wih appropriate care in the general case. The
Koszul complex is defined with respect to any given sequence (f1, . . . , fr) of elements of A. We write

−→
f = (f1, . . . , fr).

Form the graded exterior power
∧•

Ar. We make
∧•

Ar into a complex according to the following prescrip-
tion: Since

•∧
Ar =

r∐
k=0

k∧
Ar,

it is a graded module, and we just have to define differentiation. Let (e1, . . . , er) be the canonical basis of
Ar, and set

dej = fj ∈
0∧
Ar = A,

then extend d to be an antiderivation. That is, extend d via

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.
For example,

d(ei ∧ ej) = fiej − fjei,
and

d(ei ∧ ej ∧ ek) = d(ei ∧ ej) ∧ ek + (ei ∧ ej) ∧ dek
= (fiej − fjei) ∧ ek + fk(ei ∧ ej)
= fiêi ∧ ej ∧ ek − fjei ∧ êj ∧ ek + fkei ∧ ej ∧ êk,

where, as usual, the hat above a symbol means that this symbol is omitted. By an easy induction, we get
the formula:

d(ei1 ∧ · · · ∧ eit) =
t∑

j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ eit .

We denote this complex by K•(
−→
f ), i.e., it is the graded module

∧•
Ar with the antiderivation d that we

just defined. This is the Koszul complex .

Given an A-module M , we can make two Koszul complexes for the module M , namely:

K•(
−→
f ,M) = K•(

−→
f )⊗AM,

K•(
−→
f ,M) = HomA(K•(

−→
f ),M).

We can take the homology and the cohomology respectively of these complexes, and we get the modules

H•(
−→
f ,M) and H•(

−→
f ,M).

For the cohomology complex, we need the explicit form of δ. Now,

Kt(
−→
f ,M) = HomA(

t∧
Ar,M),
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and the family of elements of the form

ei1 ∧ · · · ∧ eit with 1 ≤ i1 < i2 < . . . < it ≤ r,

is a basis of
∧t

Ar; thus, HomA(
∧t

Ar,M) is isomorphic to the set of alternating functions, g, from the
set of sequences (i1, . . . , it) of length t in {1, . . . , r} to M . Hence, the coboundary δ is given (on elements
g ∈ HomA(

∧t
Ar,M)) by

(δg)(i1, . . . it+1) =
t+1∑
j=1

(−1)j−1fijg(i1, . . . , îj , . . . , it+1).

We have H0(
−→
f ,M) = Z0(

−→
f ,M) = Ker δ. (Note that K0(

−→
f ,M) = M , via the map g �→ g(1).) Then,

δg(ei) = fig(1) = fim,

so δf = 0 implies that fim = 0 for all i. We find that

H0(
−→
f ,M) = {m ∈M | Am = 0}, (5.1)

where A is the ideal generated by {f1, . . . , fr}. Also, it is clear that

Ht(
−→
f ,M) = 0 if t < 0 or t > r. (5.2)

Let us compute the top cohomology group Hr(
−→
f ,M). We have

Zr(
−→
f ,M) = Kr(

−→
f ,M) = HomA(

r∧
Ar,M) = M,

via the map g �→ g(e1 ∧ · · · ∧ er). Now, Im δr−1 = Br(
−→
f ,M), but what is Br(

−→
f ,M)? If g ∈ Kr−1(

−→
f ,M)

is an alternating function on i1, . . . , ir−1, then

δr−1g(1, . . . , r) = (δr−1g)(e1 ∧ · · · ∧ er) =
r∑
j=1

(−1)j−1fjg(1, . . . , ĵ, . . . , r).

Therefore,
Br = f1M + · · ·+ frM,

and we find that
Hr(
−→
f ,M) = M/(f1M + · · ·+ frM) = M/AM.

It is important to connect the Koszul homology (whose boundary map is

∂(ei1 ∧ · · · ∧ eit ⊗m) =
t∑

j=1

(−1)j−1ei1 ∧ · · · ∧ êij ∧ · · · eit ⊗ fijm)

and cohomology via the notion of Koszul duality . This is the following: Consider Kt(
−→
f ,M); an element of

Kt(
−→
f ,M) has the form

h =
∑

ei1 ∧ · · · ∧ eit ⊗ zi1...it , where 1 ≤ i1 < i2 < . . . < it ≤ r.
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We define a map (the duality map)

Θ: Kt(
−→
f ,M) −→ Kr−t(

−→
f ,M)

as follows: Pick j1 < j2 < · · · < jr−t, and set

Θ(h)(j1, . . . , jr−t) = εzi1...it ,

where

(α) i1, . . . , it is the set of complementary indices of j1, . . . , jr−t taken in ascending order,

(β) ε is the sign of the permutation

(1, 2, . . . , r) �→ (i1, . . . , it, j1, . . . , jr−t),

where both i1, . . . , it and j1, . . . , jr−t are in ascending order.

We find (DX) that
Θ(∂h) = δΘ(h),

where ∂ is the homology boundary map described above. So, the isomorphism, Θ, induces an isomorphism

Ht(
−→
f ,M) ∼= Hr−t(

−→
f ,M) for all t ≥ 0,

which is called Koszul duality . This notion of Koszul duality does not look like a duality, but we can make
it look so. For this, write Q(A) for “the” injective hull of A as A-module and set MD = HomA(M,Q(A)).
The cofunctor M �MD is exact; we’ll refer to MD as the dual of M . Now the associativity isomorphism

HomA(M ⊗A N,Z) ∼= HomA(M,HomA(N,Z))

shows that (Kt(
−→
f ,M))D is isomorphic to Kt(

−→
f ,MD). Moreover, it is easy to see that

(Kt(
−→
f ,M))D

∼= ��
Kt(
−→
f ,MD)

(Kt−1(
−→
f ,M))D

∼= ��

∂D
t

		

Kt−1(
−→
f ,MD)

δt−1

		

is a commutative diagram. So, it follows (by the exactness of M �MD) (DX) that our isomorphisms yield
isomorphisms

Ht(
−→
f ,M)D ∼= Ht(

−→
f ,MD), for all t ≥ 0. (5.3)

Put these together with the above notion of Koszul duality and obtain the duality isomorphisms

Ht(
−→
f ,MD) ∼= Hr−t(

−→
f ,M)D

Ht(
−→
f ,MD) ∼= Hr−t(

−→
f ,M)D, for all t ≥ 0.

Gathering together what we have proved above, we find the following

Proposition 5.67 If A is a (commutative) ring, M is an A-module, and
−→
f = (f1, . . . , fr) an ordered set

of r elements from A, then for the Koszul homology and cohomology of M we have



5.5. THE KOSZUL COMPLEX AND APPLICATIONS 325

(0) Ht(
−→
f ,M) = Ht(

−→
f ,M) = (0) if t < 0 or t > r,

(1) (Koszul duality) There is an isomorphism

Ht(
−→
f ,M) ∼= Hr−t(

−→
f ,M), all t ≥ 0,

(2)
H0(
−→
f ,M) = Hr(

−→
f ,M) = M/AM,

H0(
−→
f ,M) = Hr(

−→
f ,M) = {m | Am = 0},

where A is the ideal generated by f1, . . . , fr.

Write MD = HomA(M,Q(A)) with Q(A) the injective hull of A, then

(3) Ht(
−→
f ,M)D ∼= Ht(

−→
f ,MD)

and Koszul duality becomes

Ht(
−→
f ,MD) ∼= Hr−t(

−→
f ,M)D,

Ht(
−→
f ,MD) ∼= Hr−t(

−→
f ,M)D, for all t ≥ 0.

We need one more definition to exhibit the main algebraic property of the Koszul complex.

Definition 5.12 The sequence
−→
f = (f1, . . . , fr) is regular for M or M -regular if for every i, with 1 ≤ i ≤ r,

the map
z �→ fiz

is an injection of M/(f1M + · · ·+ fi−1M) to itself.

By its very definition, the notion ofM -regularity appears to depend on the order of the elements f1, . . . , fr.
This is indeed the case as the following classical example [39] shows: Let A be C[X,Y,Z] and f1 = X(Y −1);
f2 = Y ; f3 = Z(Y − 1). Then unique factorization in A shows that f1, f2, f3 is A-regular, but f1, f3, f2
is certainly not A-regular as f3X is zero in A/f1A but X is not zero there. In the special case that A is
graded, M is a graded module and the fj are homogeneous elements of A, the order of an M -sequence does
not matter.

If A is a given ideal of A and f1, . . . , fr ∈ A (the fj are not necessarily generators of A), and if f1, . . . , fr is
an M -regular sequence but no for other element g ∈ A is f1, . . . , fr, g an M -regular sequence, then f1, . . . , fr
is a maximal M -regular sequence from A. It turns out that the number of elements in a maximal M -regular
sequence from A is independent of the choice of such a sequence; this number is called the A-depth of M
and denoted depthAM . (When A is a local ring and A = M is its maximal ideal, one writes depthM and
omits any reference to M.)

Here is the main property of the Koszul complex vis a vis M -regularity (and, hence, depth):

Proposition 5.68 (Koszul) Suppose M is an A-module and
−→
f is an M -regular sequence of length r. Then

the Koszul complexes K•(
−→
f ,M) and K•(

−→
f ,M) are acyclic and consequently

Hi(
−→
f ,M) = (0) if i �= 0 and Hi(

−→
f ,M) = (0) if i �= r.
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Proof . The two Koszul complexes

K•(
−→
f ,M) : M ∂r−→

r−1∧
Ar ⊗AM ∂−→ · · · ∂−→ Ar ⊗AM ∂1−→M

K•(
−→
f ,M) : M δ0−→ HomA(Ar,M) δ−→ · · · δ−→ HomA(

r−1∧
Ar,M) δ

r−1

−→ M

will be exact sequences when H1(
−→
f ,M) = · · · = Hr−1(

−→
f ,M) = (0) and when

H1(
−→
f ,M) = · · · = Hr−1(

−→
f ,M) = (0); so the vanishing statement of the conclusion appears stronger than

acyclicity. But, under our hypothesis the modules

Hr(
−→
f ,M) = H0(

−→
f ,M) = {m | Am = (0)}

automatically vanish since f1 is a non-zero divisor on M .

We will prove the vanishing statements and, of course, by Koszul duality all we need prove is that

Ht(
−→
f ,M) = (0) for all t > 0. There are several ways of proving this; all use induction on r, the length of

the M -sequence. We choose a method involving the tensor product of complexes.

If C• and D• are left complexes, we make their tensor product C• ⊗D• by setting

(C• ⊗D•)t =
∐
i+j=t

Ci ⊗Dj

and defining differentiation by

d(α⊗ β) = dC(α)⊗ β + (−1)degαα⊗ dD(β).

Then, (C• ⊗ D•)• is a complex. Consider for example the Koszul complex for the single element f ∈ A.
Namely,

K•(f)t =
{
A if t = 0 or 1
(0) if t > 1

a two term complex. Its differentiation is given by d(e) = f , where e (= 1) is a base for A as A-module; in
other words, d is just multiplication by f . With this notation, we have

K•(
−→
f ) = K•(f1)⊗ · · · ⊗K•(fr).

Now the vanishing statements are true and trivial for r = 0 or 1. So, write
−→
f ′ = (f1, . . . , fr−1) and set

L• = K•(
−→
f ′ ,M). Since

−→
f ′ is M -regular we see that

Ht(
−→
f ′ ,M) = Ht(L•) = (0), for all t > 0,

by the induction hypothesis. Further, set M• = K•(fr,M). Then K•(
−→
f ,M) = (L• ⊗M•)•, and this will

enable our induction.

I claim that we have the exact sequence

· · · −→ H0(Ht(L•)⊗M•) −→ Ht(L• ⊗M•) −→ H1(Ht−1(L•)⊗M•) −→ · · · (5.4)

for every t ≥ 0. Suppose this claim is proved, take t ≥ 2 (so that t− 1 ≥ 1) and get

Ht(L•) = Ht−1(L•) = (0)
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by the induction hypothesis. The exact sequence (5.4) tells us that Ht(
−→
f ,M) = Ht(L• ⊗M•) = (0) when

t ≥ 2. If t = 1, we know that H1(L•) vanishes, so (5.4) gives us the exact sequence

0 −→ H1(
−→
f ,M) −→ H1(H0(L•)⊗M•).

But H1(−) = H0(−) by Koszul duality for M• and the latter is the kernel of multiplication by fr on (−).
However, in this case (−) is H0(L•) = M/(f1M + · · · + fr−1M); the kernel of multiplication by fr on this
last module is zero because f1, . . . , fr is M -regular. We conclude H1(H0(L•) ⊗M•) is zero, finishing our
induction.

There remains only the proof of exact sequence (5.4). It, in turn, follows from a general homological
lemma:

Lemma 5.69 Suppose M is a two-term complex of A-modules, zero in degree �= 0, 1 and for which M0 and
M1 are free A-modules. If L• is any complex of A-modules, we have the exact sequence

· · · −→ H0(Ht(L•)⊗M•) −→ Ht(L• ⊗M•) −→ H1(Ht−1(L•)⊗M•) −→ · · · (5.4)

for all t ≥ 0.

Proof . Once again, we have more than one proof available. We’ll sketch the first and give the second in
detail. The modules comprising M• are A-free, so there is a “Künneth Formula” spectral sequence

E2
p,q = Hp(Hq(L•)⊗AM•) =⇒ H•(L• ⊗AM•).

(For example, see Corollary 5.66 and its homology analog.) But, as M• is a two-term complex, E2
p,q = (0) if

p �= 0, 1 and we obtain the zipper sequence (5.4) of our lemma.

More explicitly (our second proof), we make two one-term complexes, Mi, in which Mi has its one term
in degree i (i = 0, 1). Each differentiation in these complexes is to be the trivial map. We form the tensor
product complexes L• ⊗Mi and recall that (L• ⊗M0)p = Lp ⊗M0

d(α⊗ β) = dL(α)⊗ β
Hp(L• ⊗M0) = Hp(L•)⊗M0

and  (L• ⊗M1)p = Lp−1 ⊗M1

d(α⊗ β) = dL(α)⊗ β
Hp(L• ⊗M1) = Hp−1(L•)⊗M1.

Then, we obtain an exact sequence of complexes

0 −→ L• ⊗M0 −→ L• ⊗M• −→ L• ⊗M1 −→ 0

and its corresponding long exact homology sequence

· · ·Hp+1(L• ⊗M1)
∂−→ Hp(L• ⊗M0) −→ Hp(L• ⊗M•) −→ Hp(L• ⊗M1) −→ · · · .

But, ∂ is just 1⊗ dM• and so the above homology sequence is exactly (5.4).

The main applications we shall make of the Koszul complex concern the notion of “dimension”—and even
here most applications will be to commutative rings. We begin by defining the various notions of dimension.
Suppose R is a ring (not necessarily commutative) and M is an R-module.
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Definition 5.13 The module M has projective dimension (resp. injective dimension) ≤ n if and only if it
possesses a projective (resp. injective) resolution P• −→M −→ 0 (resp. 0 −→M −→ Q•) for which Pt = 0
(resp. Qt = 0) when t > n. The infimum of the integers n for which M has projective (resp. injective)
dimension ≤ n is called the projective dimension (resp. injective dimension) of M .

Remark: Of course, if no n exists so that proj dim M ≤ n, then we write proj dim M = ∞ and similarly
for injective dimension. A module is projective (resp. injective) iff it has proj (resp. inj) dim = 0. It is
convenient to set proj (or inj) dim (0) equal to −∞. If M is a right R-module, it is an Rop-module and
so it has proj (and inj) dimension as Rop-module. Therefore, it makes sense to include R in the notation
and we’ll write dimRM for the projective or injective dimension of M (as R-module) when no confusion can
arise.

By this time, the following propositions, characterizing the various dimensions, are all routine to prove.
So, we’ll omit all the proofs leaving them as (DX’s).

Proposition 5.70 If R is a ring and M is an R-module, then the following are equivalent conditions:

(1) M has projective dimension ≤ n (here, n ≥ 0)

(2) Extn+1
R (M,−) = (0)

(3) ExtnR(M,−) is a right exact functor

(4) If 0 −→ Xn −→ Pn−1 −→ · · · −→ P0 −→ M −→ 0 is an acyclic resolution of M and if P0, . . . , Pn−1

are R-projective, then Xn is also R-projective

Also, the following four conditions are mutually equivalent:

(1′) M has injective dimension ≤ n (here, n ≥ 0)

(2′) Extn+1
R (−,M) = (0)

(3′) ExtnR(−,M) is a right exact functor

(4′) If 0 −→M −→ Q0 −→ · · · −→ Qn−1 −→ Xn −→ 0 is an acyclic resolution of M and if Q0, . . . , Qn−1

are R-injective, then Xn is also R-injective.

If we use the long exact sequence of (co)homology, we get a corollary of the above:

Corollary 5.71 Say 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence of R-modules.

(1) If dimRM
′ and dimRM

′′ ≤ n (either both projective or both injective dimension), then dimRM ≤ n
(2) Suppose M is projective, then either

(a) dimRM
′′ = 0 (i.e., M ′′ is projective), in which case M ′ is also projective; or

(b) dimRM
′′ ≥ 1, in which case dimRM

′ = dimRM
′′ − 1.

To get an invariant of the underlying ring, R, we ask for those n for which projdimRM ≤ n (resp.
injdimRM ≤ n) for all R-modules M . For such an n, we write gldimR ≤ n and say the global dimension
of R is less than or equal to n. (It will turn out that we can check this using either projdim for all M or
injdim for all M ; so, no confusion can arise.) Of course, the infimum of all n so that gldimR ≤ n is called
the global dimension of R. When we use right R-modules, we are using Rop-modules and so are computing
gldimRop.
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Notice that gldimR is an invariant computed from the category of R-modules. So, if R and S are
rings and if there is an equivalence of categories R-mod ≈ S-mod, then gldimR = gldimS. Rings for
which R-mod ≈ S-mod are called Morita equivalent rings. For commutative rings, it turns out that Morita
equivalence is just isomorphism; this is not true for non-commutative rings. Indeed, if R is a ring and Mn(R)
denotes, as usual, the ring of n × n matrices over R, then R ≈ Mn(R). Moreover, this is almost the full
story. Also, if R ≈ S, then Rop ≈ Sop. Now for a field, K, we clearly have gldimK = 0; so, we find
gldimMn(K) = 0, as well. If A is a commutative ring and G is a group, then the map σ �→ σ−1 gives an
isomorphism of A[G] onto A[G]op. Hence, gldimA[G] = gldimA[G]op.

Proposition 5.72 Let R be a ring and let n be a non-negative integer. Then the following statements are
equivalent:

(1) Every R-module, M , has projdimR ≤ n.

(2) Every R-module, M , has injdimR ≤ n.

(3) gldimR ≤ n.

(4) ExttR(−,−) = (0) for all t > n.

(5) Extn+1
R (−,−) = (0).

(6) ExtnR(−,−) is right-exact.

A ring R is called semi-simple if and only if every submodule, N , of each R-module, M , possesses an
R-complement. (We say M is completely reducible.) That is, iff given N ⊆M , there is a submodule Ñ ⊆M
so that the natural map N

∐
Ñ −→ M is an isomorphism (of R-modules). Of course each field, K, or

division ring, D, is semi-simple. But, again, semi-simplicity is a property of the category R-mod; so Mn(K)
and Mn(D) are also semi-simple. It is a theorem of Maschke that if K is a field, G is a finite group, and
(ch(K),#(G)) = 1, then the group algebra, K[G], is semi-simple. See Problem 134 for this result. Again,
there are many equivalent ways to characterize semi-simplicity:

Proposition 5.73 For any ring, R, the following statements are equivalent:

(1) R is semi-simple.

(2) Rop is semi-simple.

(3) R, as R-module, is a coproduct of simple R-modules.

(4) R, as R-module, is completely reducible.

(5) Each (left) ideal of R is an injective module.

(6) Every R-module is completely reducible.

(7) In R-mod, every exact sequence splits.

(8) Every R-module is projective.

(9) Every R-module is injective.

(10) gldimR = 0.
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The proofs of these equivalences will be left as the material of Problem 145. Note that dimension
is defined using Ext•R(−,−) and TorR• is not mentioned. There are two reasons for this. First, while
Hom,Ext, projective and injective are properties of abelian categories, tensor and Tor are generally not.
Second, the vanishing of Tor characterizes flatness which is a weaker property than projectivity. However,
for commutative rings, the notions of dimension and global dimension are frequently reduced by localization
to the case of local rings. For noetherian local rings, we already know flatness and freeness are equivalent
for f.g. modules; so over noetherian local rings the vanishing of Tor is connected with dimension (at least
on the category of f.g. modules). In the general case, when we use Tor, we call the resulting invariant the
Tor-dimension. It’s easy to see that when R is a PID we have gldimR ≤ 1.

For our main applications of the Koszul complex, we return to the situation of a pair (R,Q) in which
R is a ring and ε : R → Q is a surjective R-module map. Such a pair is an augmented ring , the map ε is
the augmentation (as discussed in Section 5.3) and Q is the augmentation module. As usual, write I for the
augmentation ideal (just a left ideal, in general): I = Ker ε. Then the exact sequence

0 −→ I −→ R
ε−→ Q −→ 0

and Corollary 5.71 above show:

Either Q is projective (so that I is projective) or 1 + dimR I = dimRQ.

Note that if R is commutative then I is a 2-sided ideal and Q becomes a ring if we set ε(r) · ε(p) = r · ε(p);
i.e., if we make ε a ring homomorphism. The map ε is then a section in case R is a Q-algebra. Here is the
main result on which our computations will be based.

Theorem 5.74 Assume (R,Q) is an augmented ring and suppose I is finitely generated (as R-ideal) by
elements f1, . . . , fr which commute with each other. If f1, . . . , fr form an R-regular sequence, then
dimRQ = r (if Q �= (0)). In particular, gldimR ≥ r.

Proof . Write A for the commutative ring Z[T1, . . . , Tr], then as the f1, . . . , fr commute with each other, R
becomes an A-module if we make Tj operate via ρTj = ρfj for all ρ ∈ R. We form the Koszul complex

K•(
−→
T ) for A and then form R ⊗A K•(

−→
T ). The latter is clearly the Koszul complex K•(

−→
f ,R) and as

(f1, . . . , fr) is an R-regular sequence, K•(
−→
f ,R) is acyclic. Thus, we obtain the exact sequence

0 −→ R
∂r−→

r−1∧
(Rr)

∂r−1−→ · · · ∂2−→
1∧

(Rr) ∂1−→ R −→ Q −→ 0 (∗)

because we know the image of ∂1 is the (left) ideal generated by f1, . . . , fr; that is, Im ∂1 = I. Now (∗) is
visibly an R-projective resolution of Q and so dimRQ ≤ r.

Since (∗) is an R-projective resolution of Q, we can use it to compute Ext•R(Q,−). In particular, we can
compute Ext•R(Q,Q)—this is the cohomology of the complex HomR((∗), Q). But, the latter complex is just

K•(
−→
f ,Q). We find

ExtrR(Q,Q) = Hr(
−→
f ,Q) = Q

and so dimRQ = r provided Q �= (0).

Corollary 5.75 If K is a ring (not necessarily commutative) and R is the graded ring K[T1, . . . , Tr], then
dimRK = r. If K is a field or division ring and R is the local ring of formal power series K[[T1, . . . , Tr]],
then dimRK = r. (This is also true if K is any ring though R may not be local.) Lastly, if K is a field
complete with respect to a valuation and R is the local ring of converging power series K{T1, . . . , Tr}, then
dimRK = r. In all these cases, gldimR ≥ r.
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Proof . In each case, the variables T1, . . . , Tr play the role of the f1, . . . , fr of our theorem; all hypotheses
are satisfied.

Notice that for A (= Z[T1, . . . , Tr]), the Koszul resolution

0 −→ A −→
r−1∧

(Ar) −→ · · ·
1∧

(Ar) −→ A −→ Z −→ 0 (∗∗)

can be used to compute TorA• (−,Z) as well as Ext•A(Z,−). So for M , any A-module,

TorAp (M,Z) = Hp(
−→
T ,M) and ExtpA(Z,M) = Hp(

−→
T ,M).

By Koszul duality,
TorAp (M,Z) ∼= Extr−pA (Z,M).

Further, the acyclicity of M ⊗A K•(
−→
T ) is equivalent with TorAp (M,Z) = (0) when p > 0.

Now, recall that, for a ring R possessing a section R
ε−→ K (here, R is a K-algebra), we defined the

homology and cohomology “bar” groups by

Hn(R,M) = TorRn (M,K) (M an Rop-module)
H
n
(R,M) = ExtnR(K,M) (M an R-module).

In the cases

(1) R = K[T1, . . . , Tr]

(2) R = K[[T1, . . . , Tr]]

(3) R = K{T1, . . . , Tr} (K has a topology),

our discussion above shows that

Hn(R,M) = Hn(
−→
T ,M) and H

n
(R,M) = Hn(

−→
T ,M).

So, by the Hochschild (co)homology comparison theorem (Theorem 5.29), we see that the Hochschild groups

Hn(R, ε∗(M)) and Hn(R, εop∗ (M)) can be computed by the Koszul complexes K•(
−→
T ,M) and K•(

−→
T ,M) in

cases (1)–(3) above. This is what we alluded to at the end of the discussion following Theorem 5.29.
We now face the problem of the global dimension of a ring R. We assume R is not only an augmented

ring (with augmentation module, Q, and ideal, I) but in fact that I is a two-sided ideal so that Q is a ring
and ε : R → Q is a ring homomorphism. Experience shows that for certain types of rings some subclasses
of modules have more importance than others. For example, if R is a graded ring, the graded modules are
the important ones for these are the ones giving rise to sheaves over the geometric object corresponding
to R (a generalized projective algebraic variety) and the cohomology groups of these sheaves are geometric
invariants of the object in question. Again, if R is a (noetherian) local ring, the finitely generated modules
are the important ones as we saw in Chapter 3. It makes sense therefore to compute the global dimension
of R with respect to the class of “important” R-modules, that is to define

I-gldimR = inf{m | I-gldimR ≤ m},

where I-gldimR ≤ m iff for every important module, M , we have dimRM ≤ m; (here, I–stands for “impor-
tant”).

Eilenberg ([9]) abstracted the essential properties of the graded and finitely generated modules to give
an axiomatic treatment of the notion of the class of “important” modules. As may be expected, the factor
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ring, Q, plays a decisive role. Here is the abstract treatment together with the verification that for graded
(resp. local) rings, the graded (resp. finitely generated) modules satisfy the axioms.

(A) Call an Rop-module, M , pertinent provided M⊗RQ �= (0) when M �= (0); also (0) is to be pertinent.

If R is a graded ring, say R =
∐
j≥0Rj , then we set I = R(+) =

∐
j>0Rj and Q = R0. When M is a

graded Rop-module with grading bounded below then M is pertinent . For we have M =
∐
n≥BMn; so,

MI =
∐
n≥B+1Mn �= M . But M ⊗R Q = M/MI. When R is a local ring, we set I = MR (its maximal

ideal) and then Q = κ(R)–the residue field. Of course, all f.g. Rop-modules are pertinent by Nakayama’s
Lemma.

If S is a subset of a module, M , write F (S) for the free R (or Rop)-module generated by S. Of course,
there’s a natural map F (S) −→M and we get an exact sequence

0 −→ Ker (S) −→ F (S) −→M −→ cok(S) −→ 0.

(B) The subset, S, of M is good provided 0 ∈ S and for each T ⊆ S, in the exact sequence

0 −→ Ker (T ) −→ F (T ) −→M −→ cok(T ) −→ 0,

the terms Ker (T ) and cok(T ) are pertinent.

Notice right away that free modules are pertinent; so, if S is good and we take {0} = T , then, as the map
F ({0}) −→ M is the zero map, we find M = cok({0}) and therefore M is pertinent. That is, any module
possessing a good subset is automatically pertinent. Conversely, if M is pertinent, then clearly S = {0} is a
good subset; so, we’ve proved

Proposition 5.76 If R is an augmented ring and I is two-sided, the following are equivalent conditions on
an Rop-module, M :

(a) M possesses a good subset

(b) M is pertinent

(c) {0} is a good subset of M .

In the case that R is a graded ring, we shall restrict all attention to modules whose homogeneous elements
(if any) have degrees bounded below. In this case, any set S ⊆M consisting of 0 and homogeneous elements
is good. For suppose T ⊆ S, then we grade F (T ) by the requirement that F (T ) −→ M be a map of degree
zero (remember; M is graded and, further, observe if 0 ∈ T it goes to 0 in M and causes no trouble). But
then, Ker (T ) and cok(T ) are automatically graded (with grading bounded below) and so are pertinent. If
Rop is a noetherian local ring and M is a finitely generated Rop-module, then any finite set containing 0 is
good . For if S is finite, then any T ⊆ S is also finite and so all of F (T ), M , cok(T ) are f.g. But since Rop is
noetherian, Ker (T ) is also f.g.

(C) A family, F , of Rop-modules is a class of important modules provided

(1) If M ∈ F it has a good set S which generates M , and

(2) In the exact sequence
0 −→ Ker (S) −→ F (S) −→M −→ 0

resulting from (1), we have Ker (S) ∈ F .

For graded rings, R, the graded modules (whose degrees are bounded below) form an important family .
This is easy since such modules are always generated by their homogeneous (= good) elements and Ker (S)
is clearly graded and has degrees bounded below. In the case that R is noetherian local, the family of all f.g.
modules is important . Again, this is easy as such modules are generated by finite (= good) sets and Ker (S)
is again f.g. because R is noetherian.

In what follows, one should keep in mind the two motivating examples and the specific translations of
the abstract concepts: pertinent modules, good sets of elements, the class of important modules.
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Abstract R R graded R noetherian local
pertinent module graded module with finitely generated module

degrees bounded below
good subset of subset of homogeneous finite subset of module
a module elements of a module
class of important class of graded modules class of finitely
modules with degrees bounded below generated modules

Since we have abstracted the local case, it is no surprise that we have a “generalized Nakayama’s Lemma”:

Proposition 5.77 (Generalized Nakayama’s Lemma) If (R,Q) is an augmented ring with I a two-sided
ideal, then for any good subset, S, of an Rop-module, M , whenever the image of S−{0} in M⊗RQ generates
M ⊗R Q as Qop-module the set S − {0} generates M . Moreover, if TorR1 (M,Q) = (0), and the image of
S − {0} freely generates M ⊗R Q as Qop-module, then S − {0} freely generates M as Rop-module.

Proof . The proof is practically identical to the usual case (write S instead of S − {0}): We have the exact
sequence

0 −→ Ker (S) −→ F (S)
ϕ−→M −→ cok(S) −→ 0,

and we tensor with Q. We obtain the exact sequence

F (S)⊗R Q ϕ−→M ⊗R Q −→ cok(S)⊗R Q −→ 0

and we’ve assumed ϕ is surjective. Thus cok(S)⊗R Q = (0), yet cok(S) is pertinent; so cok(S) = (0). Next,
our original sequence has become

0 −→ Ker (S) −→ F (S) −→M −→ 0,

so we can tensor with Q again to obtain

TorR1 (M,Q) −→ Ker (S)⊗R Q −→ F (S)⊗R Q ϕ−→M ⊗R Q −→ 0.

Since, in the second part, we’ve assume ϕ is an isomorphism and TorR1 (M,Q) = (0), we get Ker (S)⊗R Q =
(0). But, Ker (S) is also pertinent and so Ker (S) = (0).

If we specialize Q, we get the following:

Corollary 5.78 With (R,Q) as in the generalized Nakayama’s Lemma and assuming Q is a (skew) field,8

we have the following equivalent conditions for an Rop-module, M , which is generated by a good set:

(1) M is free over Rop

(2) M is Rop-flat

(3) TorRn (M,Q) = (0) if n > 0

(4) TorR1 (M,Q) = (0).

Moreover, under these equivalent conditions, every good generating set for M contains an Rop-basis for M .

Proof . (1) =⇒ (2) =⇒ (3) =⇒ (4) are trivial or are tautologies.

(4) =⇒ (1). The image, S, of our good generating set generates M ⊗R Q. But, Q is a (skew) field; so S
contains a basis and this has the form T for some T ⊆ S. Then T ∪ {0} is good and (4) with generalized
Nakayama shows T is an Rop-basis for M . This gives (1) and even proves the last asssertion.

Finally, we have the abstract I-gldim theorem, in which I is a class of important modules.
8A skew field is a division ring.
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Theorem 5.79 (I-Global Dimension Theorem) If (R,Q) is an augmented ring in which Ker (R ε−→ Q) is
a two-sided ideal, if Q is a (skew) field and if I is an important class of Rop-modules, then

I-gldimRop ≤ dimRQ (proj. dim).

Proof . Of course, w.m.a. dimRQ < ∞ else there is nothing to prove; so, write n = dimRQ. The proof
is now practically forced, namely pick an important Rop-module, M , then by assumption there is a good
generating set, S0, in M and an exact sequence

0 −→ Ker (S0) −→ F (S0) −→M −→ 0.

Also, Ker (S0) is important so, there’s a good generating set, S1, in Ker (S0) and an exact sequence

0 −→ Ker (S1) −→ F (S1) −→ Ker (S0) −→ 0

in which Ker (S1) is again important. We repeat and obtain the chain of exact sequences

0 −→ Ker (S0) −→ F (S0) −→M −→ 0
0 −→ Ker (S1) −→ F (S1) −→ Ker (S0) −→ 0

. . . . . . . . . . . . . . . . . . . . . .
0 −→ Ker (St) −→ F (St) −→ Ker (St−1) −→ 0

 (†)

for all t. Upon splicing these sequences, we get the exact sequence

0 −→ Ker (St) −→ F (St) −→ F (St−1) −→ · · · −→ F (S1) −→ F (S0) −→M −→ 0. (††)

Now in the sequence
0 −→ Ker (St) −→ F (St) −→ Ker (St−1) −→ 0

(t ≥ 0 and Ker (S−1) = M), we compute Tor and find

· · · −→ TorRr+1(F (St), Q) −→ TorRr+1(Ker (St−1), Q) −→ TorRr (Ker (St), Q) −→ TorRr (F (St), Q) −→ · · ·
for all r ≥ 1 and t ≥ 0; hence the isomorphisms

TorRr+1(Ker (St−1), Q) ∼= TorRr (Ker (St), Q).

Take r = 1 and t = n− 1, then

TorR2 (Ker (Sn−2), Q) ∼= TorR1 (Ker (Sn−1), Q)

and similarly
TorR3 (Ker (Sn−3), Q) ∼= TorR2 (Ker (Sn−2), Q),

etc. We find
TorRn+1(Ker (S−1), Q) ∼= TorR1 (Ker (Sn−1), Q). (†††)

But, dimRQ = n and so TorRn+1(−, Q) = (0); thus,

TorR1 (Ker (Sn−1), Q) = (0).

Now Ker (Sn−1) is important and the corollary to Generalized Nakayama shows that Ker (Sn−1) is Rop-free.
Thus,

0 −→ Ker (Sn−1) −→ F (Sn−1) −→ · · · −→ Ker (S1) −→ F (S0) −→M −→ 0

is a free resolution (length n) of M and this proves dimRop(M) ≤ n. But, M is arbitrary and we’re done.

Notice that the above argument is completely formal except at the very last stage where we used the
vanishing of TorRn+1(−, Q). But, this vanishing holds if TorR-dim(Q) ≤ n and therefore we’ve actually proved
the following stronger version of the I-global dimension theorem:
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Corollary 5.80 Under the hypotheses of the I-global dimension theorem, we have the strong I-global di-
mension inequality

I-gldim(Rop) ≤ TorR-dim(Q).

To recapitulate and set these ideas firmly in mind, here are the two special, motivating cases:

Theorem 5.81 (Syzygy9 Theorem) Assume of the ring R that either

(I) R is graded; R = Q	R1 	R2 	 · · · , and Q is a (skew) field,

or

(II) R is local with Rop noetherian and Q = κ(R) is a (skew) field.

Then, when I is, in case (I), the class of graded Rop-modules with degrees bounded below, or in case (II),
the class of finitely generated Rop-modules, we have

I-gldim(Rop) ≤ TorR-dim(Q).

Moreover, either Q is projective or else if A is any Rop-ideal (which in case (I) is homogeneous), then we
have

1 + dimRop(A) ≤ dimR(Q).

In case (I) of the Syzygy Theorem, note that Q is an Rop-module, too and that I can be taken to be the
class of graded (with degrees bounded below) R-modules. Therefore, dimRop(Q) ≤ TorR-dim(Q) ≤ dimR(Q).
Interchanging R and Rop as we may, we deduce

Corollary 5.82 In case (I) of the Syzygy Theorem, we have

(a) dimR(Q) = dimRop(Q) = TorR-dim(Q) = TorR
op

-dim(Q),

(b) I-gldim(R) ≤ TorR-dim(Q),

(c) 1 + dimR(A) ≤ dimR(Q) if Q is not projective.

Similarly, in case (II) of the Syzygy Theorem, provided we assume R noetherian, I is again the family
of f.g. R-modules when we interchange R and Rop. There results

Corollary 5.83 If R is local with both R and Rop noetherian, then

(a) dimR(κ(R)) = dimRop(κ(R)) = TorR-dim(κ(R)) = TorR
op

-dim(κ(R)),

(b) I-gldim(R) ≤ TorR-dim(κ(R)),

(c) 1 + dimR(A) ≤ TorR-dim(κ(R)).

Finally, there are the cases that appeared first in the literature:

Corollary 5.84 If K is a (skew) field and

(I) (Hilbert Syzygy Theorem) R = K[T1, . . . , Tn] and M is a graded R-module with degrees bounded from
below or A is a homogeneous R-ideal then

dimRM ≤ n and dimR A ≤ n− 1.
9The Greek (later Latin) derived word “syzygy” means a coupling, pairing, relationship. Thus, for the exact sequence

0 −→ Ker (S) −→ F (S) −→ M −→ 0, the generators of Ker (S) are relations among the generators of M and generate all such
relations. For 0 −→ Ker (S1) −→ F (S1) −→ Ker (S) −→ 0, generators of Ker (S1) are relations among the relations and so on.
Each of Ker (Sj) is a syzygy module.
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or

(II) R = K[[T1, . . . , Tn]] (resp. R = K{T1, . . . , Tn} when K has a non-discrete (valuation) topology) and
M is a f.g. R-module while A is an R-ideal, then

dimRM ≤ n and dimR A ≤ n− 1.

To prove these, we use the above and Theorem 5.74.

Remarks:

(1) Note that Q appears as the “worst” module, i.e., the one with the largest homological dimension. In
the case of a commutative local ring, R, if M is generated by an R-regular sequence (R is then called
a regular local ring) of length n, we see that I-gldim(R) = n and Q = κ(R) achieves this maximum
dimension. The finiteness of global dimension turns out to be characteristic of regular local rings (Serre
[46]).

�
(2) One might think of interchanging R and Rop in the general global dimension theorem. But this is

not generally possible because the class of important modules usually does not behave well under this
interchange. The trouble comes from the self-referential nature of I. The R-module Q is an Rop-
module, pertinence will cause no difficulty, nor will good subsets cause difficulty (in general). But, we
need Ker (S) to be important in the sequence

0 −→ Ker (S) −→ F (S) −→M −→ 0

if M is to be important, so we cannot get our hands on how to characterize importance “externally”
in the general case.

For the global dimension of R (that is, when I = R-mod itself) we must restrict attention to more special
rings than arbitrary augmented rings. Fix a commutative ring K and assume R is a K-algebra as in the
Hochschild Theory of Section 5.3. An obvious kind of cohomological dimension is then the smallest n so that
Hn+1(R,M) = (0) for all Re (= R ⊗K Rop)-modules, M ; where the cohomology is Hochschild cohomology.
But, this is not a new notion because, by definition,

Hr(R,M) = ExtrRe(R,M).

Hence, the Hochschild cohomological dimension is exactly projdimRe(R). Let us agree to write dimRe(R)
instead of projdimRe(R). It’s important to know the behavior of dimRe(R) under base extension of K as
well as under various natural operations on the K-algebra R. Here are the relevant results.

Proposition 5.85 Suppose R is projective over K and let L be a commutative base extension of K. Then

dim(L⊗KR)e(L⊗K R) ≤ dimRe(R).

If L is faithfully flat over K, equality holds.

Remark: To explain the (perhaps) puzzling inequality of our proposition, notice that the dimension of R
is as a K-algebra while that of L⊗K R is as an L-algebra as befits base extension. So we might have written
dimRe(R;K), etc. and then the inequality might not have been so puzzling–but, one must try to rein in
excess notation.
Proof . A proof can be based on the method of maps of pairs as given in Section 5.3, but it is just as simple
and somewhat instructive to use the associativity spectral sequence and associativity formula for Ext (cf.
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Proposition 5.63). To this end, we make the following substitutions for the objects, K,R, S, T,A,B,C of
that Proposition:

K −→ K, R −→ K, S −→ Re, T −→ L,

A −→ R, B −→ L, C −→M (an arbitrary (L⊗K R)e-module).

Since R is projective over K, the abstract hypothesis: A (our R) is R (our K)-flat is valid and moreover B
(our L) is T (again our L)-projective. Hence, the Ext associativity gives

ExtpRe(R,M) ∼= Extp(L⊗KR)e(L⊗K R,M)

because S ⊗K T is equal to (L⊗K R)e. Now M is an L and an Re-module; so, if p > dimRe(R) the left side
vanishes and therefore so does the right side. But, M is arbitrary and the inequality follows. (One could
also use Corollary 5.66).

We have an inequality simply because we cannot say that an arbitrary Re-module is also an L-module.
Now suppose L is faithfully flat as K-algebra, then L splits as K-module into K (= K · 1) 	 V so that we

have a K-morphism π : L → K. The composition K
i
↪→ L

π−→ K is the identity. If M is any Re-module,
then L⊗KM is an Re and an L-module and we may apply our above Ext associativity to L⊗KM . We find
the isomorphism

ExtpRe(R,L⊗K M) ∼= Extp(L⊗KR)e(L⊗K R,L⊗K M). (∗)
However, the composition

M = K ⊗K M
� � i⊗1 �� L⊗K M

π⊗1 �� K ⊗K M = M

is the identity; so, applied to (∗) it gives

ExtpRe(R,M) −→ ExtpRe(R,L⊗K M) −→ ExtpRe(R,M) (∗∗)

whose composition is again the identity. If p > dim(L⊗KR)e(L ⊗K R) the middle group is (0) and so (∗∗)
shows ExtpRe(R,M) = (0). M is arbitrary, therefore dimRe(R) ≤ dim(L⊗KR)e(L⊗K R).

Of course, faithful flatness is always true if K is a field; so, we find

Corollary 5.86 If K is a field and R is a K-algebra, then for any commutative K-algebra, L, we have

dimRe(R) = dim(L⊗KR)e(L⊗K R).

In particular, the notion of dimension is “geometric”, i.e., it is independent of the field extension.

If we’re given a pair of K-algebras, say R and S, then we get two new K-algebras R
∏
S and R ⊗K S.

Now, consider R
∏
S. It has the two projections pr1 and pr2 to R and S and so we get the two functors

pr∗1 and pr∗2 from R-mod (resp. S-mod) to R
∏
S – mod. If M is an R

∏
S-module, then we get two further

functors

pr1∗ : R
∏

S – mod� R-mod

pr2∗ : R
∏

S – mod� S-mod

via M � (1, 0)M (resp. (0, 1)M). Observe that pr∗i (pri∗M) is naturally an R
∏
S-submodule ofM , therefore

we have two functors
F : R-mod

∏
S-mod� R

∏
S – mod
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via
F (M,M̃) = pr∗1 M 	 pr∗2 M̃ (in R

∏
S – mod)

and
G : R

∏
S – mod� R-mod

∏
S-mod

via
G(M) = (pr1∗M,pr2∗M);

the above shows that F and G establish an equivalence of categories

R
∏

S – mod ≈ R-mod
∏

S-mod.

If T = R
∏
S, then T e = Re

∏
Se; so, applying the above, we get the category equivalence

T e-mod = Re
∏

Se – mod ≈ Re-mod
∏

Se-mod.

Then, obvious arguments show that

Hp(R
∏

S,M) ∼= Hp(R, pr1∗M)	Hp(S, pr2∗M)

(where, M is an (R
∏
S)e-module). This proves the first statement of

Proposition 5.87 Suppose R and S are K-algebras and R is K-projective then

dim(R
Q
S)e(R

∏
S) = max(dimRe(R),dimSe(S))

and
dim(R⊗S)e(R⊗ S) ≤ dimRe(R) + dimSe(S).

Proof . For the second statement, we have the spectral sequence (of Corollary 5.66)

Hp(R,Hq(S,M)) =⇒ H•(R⊗K S,M).

Exactly the same arguments as used in the Tower Theorem (Theorem 5.60) for the Hochschild-Serre spectral
sequence finish the proof.

Remark: The K-projectivity of R is only used to prove the inequality for R⊗K S.

We can go further using our spectral sequences.

Theorem 5.88 Suppose R is a K-projective K-algebra, then

gldimRe ≤ dimRe(R) + gldim(R).

Further,
gldim(R) ≤ dimRe(R) + gldimK

and
gldim(Rop) ≤ dimRe(R) + gldimK.
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Proof . We apply the spectral sequence

Ep,q2 = Hp(R,ExtqT (B,C)) =⇒ Ext•Rop⊗KT (B,C)

of Corollary 5.64. Here, B and C are left R and right T -modules (and, in the Ext• of the ending, they are
viewed as right Rop ⊗K T -modules, or left R⊗K T op-modules). We set T = R and see that

ExtqR(B,C) = (0) when q > gldim(R).

But,
Hp(R,−) = ExtpRe(R,−)

and so
Hp(R,−) = (0) when p > dimRe(R).

Therefore, Ep,q2 = (0) when p + q > dimRe(R) + gldim(R). Once again, exactly as in the Tower Theorem,
we conclude ExtnR⊗KRop(B,C) vanishes for n > dimRe(R) + gldim(R). This proves the first inequality.

For the second and third inequalities, we merely set T = K. Then, ExtqK(B,C) vanishes for all
q > gldim(K) and Hp(R,−) vanishes for all p > dimRe(R) = dimRe(Rop). Our spectral sequence argument
now yields the two desired inequalities.

Corollary 5.89 If R is a projective K-algebra and R is semi-simple as K-algebra, then

gldim(Re) = dimRe(R).

If R is arbitrary but K is a semi-simple ring, then

gldim(R) ≤ dimRe(R)

and
gldim(Rop) ≤ dimRe(R).

Proof . In the first inequality, gldim(R) = 0, so

gldim(Re) ≤ dimRe(R).

The opposite inequality is always true by definition.

If now K is semi-simple, R is automatically K-projective; so, our other inequalities (of the theorem)
finish the proof as gldim(K) = 0.

Corollary 5.90 If K is semi-simple and R is a K-algebra, then Re is semi-simple if and only if R is a
projective Re-module (i.e., dimRe(R) = 0).

Proof . Suppose dimRe(R) = (0). Then, by Corollary 5.89 above, gldim(R) = 0, i.e., R is itself a semi-
simple ring. But then we apply the corollary one more time and deduce gldim(Re) = 0. Conversely, if
gldim(Re) = 0, then dimRe(R) = 0.

Corollary 5.91 If K is semi-simple and if Re is semi-simple, then R is semi-simple (as K-algebra).

Proof . As gldim(Re) = 0 and K is semi-simple, we get dimRe(R) = 0. But, gldim(R) ≤ dimRe(R); so, we
are done.

We can now put together the Koszul complex and the material above to prove
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Theorem 5.92 (Global Dimension Theorem) Suppose K is a commutative ring and write
R = K[T1, . . . , Tn]. Then,

dimRe(R) = dimR(K) = n.

We have the inequality
n ≤ gldimR ≤ n+ gldimK,

and so if K is a semi-simple ring (e.g., a field), then

gldimR = n.

Proof . By the main application of the Koszul complex to dimension (Theorem 5.74) we have dimR(K) = n
and so gldimR ≥ n. Here, K is an R-module via sending all Tj to 0. But if ε̃ is any K-algebra map R −→ K,
we can perform the automorphism Tj �→ Tj − ε̃(Tj) and this takes ε̃ to the usual augmentation in which all
Tj −→ 0. Therefore, we still have dimRK = n (and gldimR ≥ n) when viewing K as R-module via ε̃.

Now Rop = R; so, Re = R⊗K R, and thus

Re = K[T1, . . . , Tn, Z1, . . . Zn] = R[Z1, . . . , Zn].

(Remember that Tj stands for Tj ⊗ 1 and Zj for 1 ⊗ Tj). The standard augmentation η : Re → R is given
by ρ⊗ ρ̃ �→ ρρ̃ and it gives a map

Re = R[Z1, . . . , Zn] −→ R,

in which Zj goes to Tj ∈ R. The Zj ’s commute and we can apply Theorem 5.74 again to get

dimRe(R) = n.

Finally, Theorem 5.88 shows that
gldim(R) ≤ n+ gldimK.

Remark: The global dimension theorem is a substantial improvement of Hilbert’s Syzygy Theorem. For
one thing we need not have K a field (but, in the semi-simple case this is inessential) and, more importantly,
we need not restrict to graded modules. Also, the role of the global dimension of K becomes clear.
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5.6 Concluding Remarks

The apparatus of (co)homological methods and constructions and, more importantly, their manifold appli-
cations to questions and situations in algebra and geometry has been the constant theme of this chapter.
Indeed, upon looking back to all earlier chapters from the first appearance of group cohomology as a compu-
tational tool to help with group extensions through the use of sequences of modules and Galois cohomology
in field theory to the theory of derived functors and spectral sequences to obtain new, subtle invariants in
algebra and geometry, we see a unified ever deepening pattern in this theme. The theme and pattern are a
major development of the last sixty years of the twentieth century—a century in which mathematics flowered
as never before. Neither theme nor pattern gives a hint of stopping and we have penetrated just to middling
ground. So read on and work on.

5.7 Supplementary Readings

The classic reference on homological algebra is Cartan and Eilenberg [9]. One may also consult Mac Lane
[36], Rotman [44], Weibel [48], Hilton and Stammback [24], Bourbaki [5], Godement [18] and Grothendieck
[20]. For recent developments and many more references, see Gelfand and Manin’s excellent books [16, 17].
For a global perspective on the role of homological algebra in mathematics, see Dieudonné [10].
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