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The Generalized Higher Order Singular Value
Decomposition and the Oriented Signal-to-signal Ratios of
Pairs of Signal Tensors and their Use in Signal Processing

Joos Vandewalle' , Lieven De Lathauwer?, and Pierre Comon®

Abstract - Two new generalizations of tensor concepts
for signal processing are presented. These generali-
zations are typically relevant for applications where
one tensor consists of valuable measured data or
signals, that should be retained, while the second
tensor contains data or information that should be
rejected. First the higher order singular value
decomposition for a single tensor is extended to pairs
of tensors; this is the multilinear equivalent of the
generalized or quotient SVD (GSVD, QSVD) for pairs
of matrices. Next the notion of oriented signal-to-
signal ratios that was derived for pairs of matrices is
extended to pairs of tensors. These signal to signal
ratios can be linked to the previously defined

gener alized higher order singular value
decomposition.

1 INTRODUCTION

In recent years more and more instances of

applications occur, where the data have more than
two indices and hence are not organized in a matrix
but in a tensor, also called a multiway or
multidimensional array. Let us mention here
psychometrics [16], chemometrics [7, 8, 15, 17] and
statistical signal and image processing [6, 9, 10, 18].
In typical image applications, the 4 different indices
of a 4" order image tensor can be the x, y, t and
color axes. A recent application is the websearch
tensor. Here we will mainly work in a signal
processing, but many concepts can be carried over to
the other domains. Typically the methods of matrix
theory and related numerical computations [1] are no
longer adequate and valuable for tensors. Therefore a
number of studies [10-14, 19-20] have been
performed to extend some matrix concepts to tensors,
like the higher order singular value decomposition or
the canonical decom position of a tensor. Also the use
of tensors for finding independent components [9] in
signals is a topic of current interest.

Many applications occur where the measured data
lead to two tensors A and B rather than to a single
tensor A. Typically one tensor (called A) contains
the valuable information, whereas the other (called B)
contains information that is irrelevant and hence
should be rejected. This is the class of problems that
are tackled in this paper. It tums out that there are

several ways to extend the relevant matrix concepts,
and that their extensions are not trivial.

The matrix counterpart of this paper, was already
known in the 80ies with the work of Golub and Van
Loan [1] on the Generalized Singular Value
Decomposition of a matrix pencil and its numerically
reliable computation. We studied [5] the oriented
signal to signal ratios for the matrix case, their
relevance for signal processing [2-5] and related
computational issues. In [10, 11] we discussed a
possible multilinear generalization of the Singular
Value Decomposition (SVD), called the Higher Order
SVD (HOSVD). The different n-rank values can
easily be read from this decomposition. In [12-14,
19] some techniques to compute the least-squares
approximation of a given tensor by a tensor with
rank 1 or with a prespecified n-rank are discussed.

In section 2 the generalized higher order singular
value decom position of a pair of tensors is presented,
which generalizes the HOSVD. The oriented signal
to signal ratio of a tensor pair is described in section
3 and is brought in relation to the generalized
HOSVD. The paper ends with conclusions and views
on signal processing applications.

Let us conclude the introduction with some basic
definitions and a comment on the unavoidably
complicated notation that is used. The scalar product

<A,B> of two tensors A,BE RIxIv s defined
in a straightforward way as

a b ()]
lN=l I]lz,.lN l]lz.JN
The Frobenius-norm of a tensor is defined as

H‘AH =14/<4A,A > Two tensors are called orthogonal

when their scalar product is zero.

In order to facilitate the distinction between scalars,
vectors, matrices and higher-order tensors, the type of
a quantity will be reflected by its representation:
scalars are denoted by lower-case letters (a, b...),
vectors are written as lower-case italic letters (a,b,..),
matrices correspond to bold-face capitals (A, B...)

and tensors are written as calligraphic letters (4,

il=li2=1

‘B...). This notation is consistently used for entries
of a given structure. The entry with row index i and
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column index j in a matrix A i.e. (A); is symbolized
by ajj. Also (A)i = a and (7{)‘1 2., iNTail 2. iN
Furthermore, the i-th column vector of a matrix A is
denoted as A;, i.e., A= [A; A, ...]. To enhance the
overall readability, we have made one exception to
this rule: as we frequently use the characters i, j, r
and n in the meaning of indices (counters), I, J, R
and N will be reserved to denote the index upper

bounds, unless stated otherwise. We define the n-

mode product of a tensor A€ R Nyith a
matrix UE R as the (, x 1, x.I,_

tensor with entries

X J“ x 1/,+ X ,.IN)

1 1

I

n

(Ax,U), ., .. . =Ya u
by byt Jntns1 N 12 win-1inins1 ~iN  Jnin

i,=1
Although the results can be easily generalized for

complex tensors and matrices, we describe these here

only for real, in order not to complicate the notation.

2 GENERALIZED HIGHER ORDER
SINGULAR VALUE DECOMPOSITION OF A
MATRIX PAIR

2.1 The multilinear SVD or HOSVD of a tensor

A multilinear SVD (HOSVD) of a tensor has
recently been discussed in [10,11]. Through an
unfolding (see figure 1) of an N-th order tensor as a
matrix we can apply the regular matrix SVD and
obtain the orthogonal or unitary transformation
matrices. This matrix unfolding cuts the tensor resp.
along vertical, frontal and horizontal planes into
patches, and pastes these patches resp. into the
matri ces A(]), A(z) and A(3)
matrix unolding A(1 ) of the 3rd order tensor AL

3rd arder tensor A

14 iz
matrix unfolding A(s) of the 3rd order tensor A

11 xlg

Figure 1 Matrix unfolding of a 3™ order tensor A produces 3
matrices A(j), Ay and A, to which the matrix SVD can be
applied.

Theorem 1 [HOSVD] Every (Iix Lx... Ix) tensor A4
can be decomposed as the product of N or- thogonal
matrices and an all-orthogonal tensor §, i.e.,
A=Sx,U"x, U?. . .x, U" )
in which all U” are orthogonal (I,xl,) matrices for

n=1,..N, and in which S is an (Iix Lx... Iy) tensor
whose subtensors Si-, and Su;  are orthogonal for

all possible values of n, o and f subject to a#p,
ie.,

<Sin = o, Sin = [s> =0 when a#p (3)
The subtensors of S are ordered as follows:
‘Sf,slHZ‘SIfZHZ“" Sifl/szO (4)

for all possible values of n.

Observe that the remaining tensor S is not diagonal
unlike the matrix case, but the information in the
original tensor 4 is compressed in an all-orthogonal

tensor, in which, generally speaking, the strongest
contributions occur for the smallest values of the
indices.

2.2 The generalized multilinear SVD or HOSVD of
a tensor pair

When two tensors A and ‘B have the same range for

one of their indices (here we assume that this is the
first index I), then we can define the new concept of
the generalized HOSVD of this pair.

Theorem 2 [Generalized HOSVD] Given an arbitrary
pair of tensors with the same first index I,, say, (Iix

Ix... Iy) tensor A and (Iix Jx... Ju) tensor ‘B, then
the generalized HOSVD of this tensor pair exists and
is basically unique, where A and B are decom posed

each as product of orthogonal matrices and one
nonsingular (Iix I;)-matrix W and all-orthogonal

tensors S and R, i.e.,
A=Sx, Wx, U”..x, UV ®)
B=Rx, Wx, V@ _.x, VM (6)
where all U” for n=2,..N (resp. V" for n=2,..M) are
orthogonal (I,xl,) (resp. (JuxJn) ) matrices, and in

which S (resp. R) is a real (Ix Lx... Iy) tensor of
which the subtensors Si-, and Sy, are orthogonal

for all possible values of n, a and  when a#f,
ie.,

<Si,, =, Siu = [3> =0
when a#f (7
(Rir= o, Ris =) =0
The subtensors of S and R are ordered as follows:
Si1=1 /‘ ’Rl-1=1 = Si1=2H/‘Ril=2H == 5i1=11 MRil:Il =0
(8).
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The proof stems from the fact that we can apply the
generalized SVD [1, 4] on the matrix unfolding

along the first index of the tensors A and B and the
regular SVD on the matrix unfoldings along the
other indices of 4 and B . Observe that the matrix W

is not orthogonal, like in the matrix case. So its
columns or rows are not mutually orthogonal. The
conditions under which a tensor pair with more than
one common dimension have a similar
decomposition, with more than one nonsingular
matrix W, are still under investigation.

3 ORIENTED SIGNAL TO SIGNAL RATIOS
OF TENSOR PAIRS

3.1 The oriented signal to signal ratio of a matrix
pair

In [5] the notion of oriented energy of a vector
signal was defined as follows. We consider an (mxn)
matrix 4, whose rows typically correspond to sensors
and whose columns to time instants when the signals
of the sensors are measured. The oriented energy
E.(4) is then the energy that is sensed in the
direction of a unit vectore, i. e.,

n
T \2 7 AP
E(A)=) (e'a) =|¢"A| ©)
i=1

Of course the oriented energy varies for varying
orientations of the unit vector e. In figure 2 the left
picture shows how the oriented energy for two
matrices A and B varies for a case where m=2. It
turns out [5] that the directions of maximal oriented
energy of a matrix A are mutually orthogonal and
correspond to the directions of the left singular
vectors of the SVD of A. This allows to find vectors
and subspaces where a maximal signal contribution
is present in the vector signal. Next, one can define
the oriented signal to signal ratio of a pair of
matrices A and B as follows

Ee(A)/Ee(B)=$ (eTal)z/i (€'b,)? (10)
i=1 i=1

E_tm)

E_(h) en
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Figure 2 (left) oriented energy plots,

Again the oriented signal to signal ratio varies for
varying sensing direction e (see right picture of figure
2). The direction of maximal signal to signal ratio
shows a direction of a linear combination of rows
where the signal A is relatively more pronounced
than signal B. When the generalized SVD (GSVD or
also called QSVD) [1-5] of this matrix pair (A, B) is
computed, the rows of the nonsingular matrix W
correspond with the directions of maximal oriented
signal to signal ratio. Since the matrix is
nonsingular but not necessarily orthogonal, these
directions are not mutually ortho gonal.

3.2 The oriented signal to signal ratio of a tensor
pair

The oriented energy E.(A) of a tensor signal A is
the energy that is sensed in the direction of a unit
vector e i. e.

I, Iy I 2 2

E@B)= Y Y W ey ) =Hﬂx I

e iy iy g !
=1 i,=1\i=1 r
(Im

Of course the oriented energy varies for varying

orientations of the unit vector e. The directions of

maximal oriented energy of a tensor A are mutually

orthogonal and correspond with the directions of the
left singular vectors of the SVD of l-unfolding Aq,

of the tensor A. These directions correspond also
with the columns of U in the HOSVD of the tensor
A. Next, one can define the oriented signal to signal

ratio of a pair of tensors, A and ‘B, that have the same

first index 1, as follows
IZ IN 11 2
222 @n)| fa. I
E,(A) =1 i=1\i-=l 1 I
= 5= - (12)
E,(B) L. In(l H T
Bx e
EE E(eilbiliZ"‘i/y) ! F

ip=1 i,=1\4=1

t index I, as follows

(right) oriented signa I-to-signa | plot
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Again the oriented signal to signal ratio varies for
varying sensing direction e. The direction of
maximal signal to signal ratio shows a direction of a

linear combination of rows where the signal 4 is
relatively more pronounced than signal B. When the

generalized HOSVD of the tensor pair (4, B) is

computed according to theorem 2, it tums out that
the rows of W' correspond to these directions. Again
these are not mutually ortho gonal.

4 CONCLUSIONS

Several notions that are relevant for tensor signal
pairs have been defined. It would be nice to extend
these even for the cases where more than
one index among the pair of tensors is in common.
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