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Principal Geodesic Analysis for the Study of
Nonlinear Statistics of Shape
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Abstract—A primary goal of statistical shape analysis is to
describe the variability of a population of geometric objects. A
standard technique for computing such descriptions is principal
component analysis. However, principal component analysis is
limited in that it only works for data lying in a Euclidean vector
space. While this is certainly sufficient for geometric models that
are parameterized by a set of landmarks or a dense collection of
boundary points, it does not handle more complex representations
of shape. We have been developing representations of geometry
based on the medial axis description or m-rep. While the medial
representation provides a rich language for variability in terms of
bending, twisting, and widening, the medial parameters are not
elements of a Euclidean vector space. They are in fact elements of a
nonlinear Riemannian symmetric space. In this paper, we develop
the method of principal geodesic analysis, a generalization of prin-
cipal component analysis to the manifold setting. We demonstrate
its use in describing the variability of medially-defined anatomical
objects. Results of applying this framework on a population of
hippocampi in a schizophrenia study are presented.

Index Terms—Deformable models, medial geometry, statistical
shape analysis.

I. INTRODUCTION

STATISTICAL shape analysis [1]–[3] is emerging as an
important tool for understanding anatomical structures

from medical images. Given a set of training images, the
goal is to model the geometric variability of the anatomical
structures within a class of images. Statistical models give
an efficient parameterization of the geometric variability of
anatomy. These models can provide shape constraints during
image segmentation [4]. Statistical descriptions of shape are
also useful in understanding the processes behind growth and
disease [5].

Deformable model approaches represent the underlying ge-
ometry of the anatomy and then use a statistical analysis to de-
scribe the variability of that geometry. Several different geo-
metric representations have been used to model anatomy. Book-
stein [6] uses landmarks to capture the important geometric fea-
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tures. The active shape model (ASM) of Cootes and Taylor
[4] represents an object’s geometry as a dense collection of
boundary points. Cootes et al. [7] have augmented their models
to include the variability of the image information as well as
shape. Kelemen et al. [8] use a spherical harmonic (SPHARM)
decomposition of the object geometry.

In all of these approaches, the underlying geometry is param-
eterized as a Euclidean vector space. The training data is given
as a set of vectors in a vector space . For ASMs,
each vector is constructed by concatenation of the boundary
points in an object. For SPHARMs, each vector is constructed
as the concatenation of the coefficients of a SPHARM surface
representation of the object. An average object vector is com-
puted as the linear average of the training set

Principal component analysis (PCA) [9] is then used to find an
efficient parameterization of the model variability. This is ac-
complished by computing an eigenanalysis of the sample co-
variance matrix

If are the ordered eigenvectors of the quadratic
form with corresponding eigenvalues , then a new object
within the realm of statistically feasible shapes is parameterized
by

where the weight the modes of variation.
Shape is often defined as the geometry of objects that is in-

variant under global translation, rotation, and scaling. To ensure
that the variability being computed is from shape changes only,
an important preprocessing step of any shape analysis technique
is to align the training objects to a common position, orientation,
and scale. The common alignment technique used is Procrustes
alignment [10], which seeks to minimize, with respect to global
translation, rotation and scaling, the sum-of-squared distances
between corresponding data points.

While most work on the statistical analysis of shape has fo-
cused on linear methods, there has been some work on statis-
tical methods for nonlinear geometric data. Pennec [11] defines
Gaussian distributions on a manifold as probability densities
that minimize information. Related work includes the statistical
analysis of directional data [12] and the study of shape spaces
as complex projective spaces [13].
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Linear shape models treat shape changes as combinations of
local translations. Shape changes can also be usefully consid-
ered as combinations of local translations, rotations, and mag-
nifications. Following that point of view, in our previous work
[14], [15] we have developed methodology based on medial de-
scriptions called m-reps. The medial representation provides a
powerful framework for describing shape variability in intuitive
terms such as local thickness, bending, and widening. How-
ever, the medial parameters are not elements of a Euclidean
space. Therefore, the standard linear techniques of shape anal-
ysis, namely linear averaging and PCA, do not apply. In this
paper, we show that the medial parameters are in fact elements
of a certain type of manifold known as a Riemannian symmetric
space. We then show how the standard shape analysis techniques
can be generalized to handle manifold data. First, we describe
how averages can be computed on a manifold. Next, we develop
a new method named principal geodesic analysis (PGA), a gen-
eralization of PCA, for describing the variability of data on a
manifold.

In Section II, we review the necessary theory of symmetric
spaces and m-reps, showing that m-rep models are parameter-
ized by a symmetric space. Section III describes how mean
values are computed on manifolds. PGA is developed in Sec-
tion IV as a method for describing the variability of data on a
manifold. The statistical methods are then applied to the study
of medially-defined anatomical shapes in Section V.

II. BACKGROUND THEORY

A. M-Rep Overview

The medial representation used in this paper is based on the
medial axis of Blum [16]. In this framework, a geometric object
is represented as a set of connected continuous medial mani-
folds. For three-dimensional (3-D) objects these medial mani-
folds are formed by the centers of all spheres that are interior to
the object and tangent to the object’s boundary at two or more
points. The medial description is defined by the centers of the
inscribed spheres and by the associated vectors, called spokes,
from the sphere centers to the two respective tangent points on
the object boundary. Each continuous segment of the medial
manifold represents a medial figure. In this paper, we focus on
3-D objects that can be represented by a single medial figure.

We sample the medial manifold over a spatially regular
lattice. The elements of this lattice are called medial atoms. A
medial atom (Fig. 1) is defined as a 4-tuple ,
consisting of: , the center of the inscribed sphere;

, the local width defined as the common spoke length;
, the two unit spoke directions (here is the

sphere in with radius one). The medial atom implies two
opposing boundary points, , called implied boundary
points, which are given by

(1)

The surface normals at the implied boundary points are
given by , respectively.

We point out that in our previous work [17], [18] we param-
eterized medial atoms with a position , a radius ,
an orthonormal frame , and an object angle

Fig. 1. Medial atom with a cross section of the boundary surface it implies
(left). An m-rep model of a hippocampus and its boundary surface (right).

(see Fig. 1). Here the vector points in the direction
of the spoke bisector, is normal to the medial sheet, and is
chosen to complete the orthonormal frame. The object angle is
the half-angle between the two spokes. This representation has
the drawback that medial atoms may not have a unique represen-
tation. For example, consider a medial atom with object angle

, i.e., the spokes are aligned in opposing directions. In
this case, the frame may be rotated arbitrarily about the vector

without changing the medial atom. The representation pre-
sented in this paper, replacing the frame and object angle with
two spoke directions, does not suffer from such multiplicities.
For generic atoms with there is a well-defined
conversion between the two representations.

For 3-D figures (Fig. 1), the lattice of medial atoms is a
quadrilateral mesh . The sampling
density of medial atoms in a lattice is inversely proportional
to the radius of the medial description. Given an m-rep figure,
we fit a smooth boundary surface to the model. We use a
subdivision surface method [19] that interpolates the boundary
positions and normals implied by each atom.

A medial atom as defined above is a point on the manifold
. Moreover, an m-rep model con-

sisting of medial atoms may be considered as a point on the
manifold , i.e., the direct product of
copies of . The space is a particular type of mani-
fold known as a Riemannian symmetric space, which simplifies
certain geometric computations, such as computing geodesics
and distances. These concepts will be instrumental in our devel-
opment of PGA, and we review them now.

B. Riemannian Manifolds

A Riemannian metric on a manifold is a smoothly
varying inner product on the tangent space at each
point . The norm of a vector is given by

. Given a smooth curve segment in , its
length is computed by integrating the norm of the tangent
vectors along the curve. The Riemannian distance between two
points , denoted , is defined as the minimum
length over all possible smooth curves between and . A
geodesic curve is a curve that locally minimizes the length
between points. An isometry of is a diffeomorphic map

that preserves the Riemannian distance, i.e.,
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, for all . A manifold is said
to be complete if all geodesics extend indefinitely. This is an
important property because it implies that between any two
points there exists a length-minimizing geodesic.

Given a tangent vector , there exists a unique
geodesic, , with as its initial velocity. The Riemannian
exponential map, denoted , maps to the point at time one
along the geodesic . The geodesic has constant speed equal
to and, thus, the exponential map preserves
distances from the initial point, i.e., .
The exponential map is a diffeomorphism in a neighborhood
of zero, and its inverse in this neighborhood is the Riemannian
log map, denoted . Thus, for a point in the domain of

the geodesic distance between and is given by

(2)

C. Lie Groups and Symmetric Spaces

Briefly, a Riemannian symmetric space is a connected
manifold such that at each point the mapping that reverses
geodesics through that point is an isometry. For a detailed
treatment of symmetric spaces, see the standard texts [20], [21].
Common examples of symmetric spaces are Euclidean spaces,

, spheres, , and hyperbolic spaces, . Symmetric
spaces, and the methods for computing geodesics and distances
on them, arise naturally from Lie group actions on manifolds.

A Lie group is a differentiable manifold that also forms an
algebraic group, where the two group operations

are differentiable mappings (the symbol used in this way
should not be confused with the mean). Many common geo-
metric transformations of Euclidean space form Lie groups.
For example, rotations, translations, magnifications, and affine
transformations of all form Lie groups. More generally,
Lie groups can be used to describe transformations of smooth
manifolds.

Given a manifold and a Lie group , a smooth group ac-
tion of on is a smooth mapping , written

, such that for all , and all we
have and where is the
identity element of . The group action should be thought of as
a transformation of the manifold , just as matrices are trans-
formations of Euclidean space.

The orbit of a point is defined as
. In the case that consists of a single orbit, we call a

homogeneous space and say that the group action is transitive.
The isotropy subgroup of is defined as

, i.e., is the subgroup of that leaves the point fixed.
Let be a closed Lie subgroup of the Lie group . Then

the left coset of an element is defined as
. The space of all such cosets is denoted and is

a smooth manifold. There is a natural bijection
given by the mapping . Now let be a symmetric
space and choose an arbitrary base point . We can always
write as a homogeneous space , where is a
connected group of isometries of , and the isotropy subgroup

is compact. The fact that is a group of isometries means
that , for all .

As an example consider the symmetric space , the sphere
in . Rotations of the sphere are a smooth group action by the
group Lie , the 3 3 rotation matrices. We choose the
base point to be the north pole, . It is easy
to see that the orbit of is the entire sphere. Thus, is a ho-
mogeneous space. Also, the isotropy subgroup of is the group
of all rotations about the -axis, which can be identified with
the group of two-dimensional rotations, . Therefore,
is naturally identified with the quotient space .

Finally, we turn to the symmetric space of medial atoms,
. The group

acts smoothly on . Let be an
element of and be a medial atom. Then
the group action is given by

This action is transitive, and we can choose a base atom
with center , radius , and both spoke di-

rections, , equal to . The isotropy subgroup,
, is given by . Thus,

the medial atom space can be thought of as the quotient
.

Other examples of symmetric spaces are the compact Lie
groups, such as the rotation groups, , and the Euclidean
groups, . These groups act on themselves transitively by their
group multiplication. Thus, the geodesics for such a Lie group
at the identity are its one-parameter subgroups.

D. Geodesics

Geodesics on a symmetric space are computed
through the group action. Since is a group of isometries acting
transitively on , it suffices to consider only geodesics starting
at the base point . For an arbitrary point , geodesics
starting at are of the form , where and is a
geodesic with . Geodesics are the image of the action
of a one-parameter subgroup of acting on the base point .

Returning to the sphere, , the geodesics at the base point
are the great circles through , i.e., the meridians.

These geodesics are realized by the group action of a one-pa-
rameter subgroup of . Such a subgroup consists of all ro-
tations about a fixed axis in perpendicular to . We consider
a tangent vector in as a vector in the -
plane. Then the exponential map is given by

(3)

where . This equation can be derived as a
sequence of two rotations that rotate the base point
to the point . The first is a rotation about the -axis by
an angle of . The second, aligning the geodesic with
the tangent vector , is a rotation about the -axis by an angle
of , where and .

The corresponding log map for a point
is given by

(4)
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where is the spherical distance from the base
point to the point . Notice that the antipodal point is not
in the domain of the log map.

III. MEANS ON MANIFOLDS

The first step in extending statistical methods to manifolds
is to define the notion of a mean value. In this section, we for-
mulate two different notions of means on manifolds. We then
describe a method for computing the mean of a collection of
data on a manifold. Throughout this section we consider only
manifolds that are connected and have a complete Riemannian
metric.

A. Intrinsic Versus Extrinsic Means

Given a set of points , the arithmetic mean
is the point that minimizes the sum-of-

squared Euclidean distances to the given points, i.e.,

Since a general manifold may not form a vector space, the
notion of an additive mean is not necessarily valid. However,
like the Euclidean case, the mean of a set of points on can
be formulated as the point which minimizes the sum-of-squared
distances to the given points. This formulation depends on the
definition of distance. One way to define distance on is to
embed it in a Euclidean space and use the Euclidean distance
between points. This notion of distance is extrinsic to , that
is, it depends on the ambient space and the choice of embedding.
Given an embedding , define the extrinsic mean
[22] of a collection of points as

Given the above embedding of , we can also compute the
arithmetic (Euclidean) mean of the embedded points and then
project this mean onto the manifold . This projected mean
is equivalent to the above definition of the extrinsic mean (see
[23]). Define a projection mapping as

Then, the extrinsic mean is given by

A more natural choice of distance is the Riemannian distance
on . This definition of distance depends only on the intrinsic
geometry of . We now define the intrinsic mean of a collec-
tion of points as the minimizer in of the
sum-of-squared Riemannian distances to each point. Thus, the
intrinsic mean is

(5)

where denotes Riemannian distance on . This is the
definition of a mean value that we use in this paper.

The idea of an intrinsic mean goes back to Fréchet [24], who
defines it for a general metric space. The properties of the in-

trinsic mean on a Riemannian manifold have been studied by
Karcher [25]. Moakher [26] compares the properties of the in-
trinsic and extrinsic mean for the group of 3-D rotations. Since
the intrinsic mean is defined in (5) as a minimization problem,
its existence and uniqueness are not ensured. However, Kendall
[27] shows that the intrinsic mean exists and is unique if the data
is well-localized.

B. Computing the Intrinsic Mean

Computation of the intrinsic mean involves solving the
minimization problem in (5). We will assume that our data

lies in a sufficiently small neighborhood so
that a unique solution is guaranteed. We must minimize the
sum-of-squared distance function

We now describe a gradient descent algorithm, first proposed by
Pennec [11], for minimizing . Using the assumption that the

lie in a strongly convex neighborhood, i.e., a neighborhood
such that any two points in are connected by a unique

geodesic contained completely within , Karcher [25] shows
that the gradient of is

The gradient descent algorithm takes successive steps in the
negative gradient direction. Given a current estimate for the
intrinsic mean, the equation for updating the mean by taking a
step in the negative gradient direction is

where is the step size.
Because the gradient descent algorithm only converges lo-

cally, care must be taken in the choices of the initial estimate of
the mean and the step size . Since the data is assumed to
be well-localized, a reasonable choice for the initial estimate
is one of the data points, say . The choice of is somewhat
harder and depends on the manifold . Buss and Fillmore [28]
prove for data on spheres, a value of is sufficient. Notice
that if is a vector space, the gradient descent algorithm with

is equivalent to linear averaging and, thus, converges in
a single step. If , the Lie group of positive reals under
multiplication, the algorithm with is equivalent to the
geometric average and again converges in a single step.

In summary, we have the following algorithm for computing
the intrinsic mean of manifold data.

Algorithm 1: Intrinsic Mean
Input:
Output: , the intrinsic mean

Do

While .
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IV. PRINCIPAL GEODESIC ANALYSIS

Although averaging methods on manifolds have previously
been studied, principal component analysis has not been devel-
oped for manifolds. We present a new method called principal
geodesic analysis (PGA), a generalization of principal compo-
nent analysis to manifolds. We start with a review of PCA in Eu-
clidean space. Consider a set of points with
zero mean. Principal component analysis seeks a sequence of
linear subspaces that best represent the variability of the data.
To be more precise, the intent is to find a orthonormal basis

of , which satisfies the recursive relationship

(6)

(7)

In other words, the subspace is the
-dimensional subspace that maximizes the variance of the data

projected to that subspace. The basis is computed as the
set of ordered eigenvectors of the sample covariance matrix of
the data.

Now turning to manifolds, consider a set of points
on a manifold . Our goal is to describe the variability of the

in a way that is analogous to PCA. Thus, we will project
the data onto lower dimensional subspaces that best represent
the variability of the data. This requires first extending three
important concepts of PCA into the manifold setting:

• Variance: Following the work of Fréchet, we define the
sample variance of the data as the expected value of the
squared Riemannian distance from the mean.

• Geodesic subspaces: The lower dimensional subspaces in
PCA are linear subspaces. For general manifolds we ex-
tend the concept of a linear subspace to that of a geodesic
submanifold.

• Projection: In PCA, the data is projected onto linear sub-
spaces. We define a projection operator for geodesic sub-
manifolds, and show how it may be efficiently approxi-
mated.

We now develop each of these concepts in detail.

A. Variance

The variance of a real-valued random variable with mean
is given by the formula

where denotes expectation. It measures the expected local-
ization of the variable about the mean. When dealing with a
vector-valued random variable in with mean , the vari-
ance is replaced by a covariance matrix

However, this definition is not valid for general manifolds again
since vector space operations do not exist for such spaces.

The definition of variance we use comes from Fréchet [24],
who defines the variance of a random variable in a metric space
as the expected value of the squared distance from the mean.

That is, for a random variable in a metric space with intrinsic
mean , the variance is given by

Thus, given data points on a complete, connected
manifold , we define the sample variance of the data as

(8)

where is the intrinsic mean of the .
Notice that if is a vector space, then the variance definition

in (8) is given by the trace of the sample covariance matrix, i.e.,
the sum of its eigenvalues. It is in this sense that this definition
captures the total variation of the data.

B. Geodesic Submanifolds

The next step in generalizing PCA to manifolds is to gener-
alize the notion of a linear subspace. A geodesic is a curve that is
locally the shortest path between points. In this way, a geodesic
is the generalization of a straight line. Thus, it is natural to use a
geodesic curve as the one-dimensional subspace, i.e., the analog
of the first principal direction in PCA.

In general, if is a submanifold of a manifold , geodesics
of are not necessarily geodesics of . For instance, the
sphere is a submanifold of , but its geodesics are great
circles, while geodesics of are straight lines. A submanifold

of is said to be geodesic at if all geodesics of
passing through are also geodesics of . For example, a

linear subspace of is a submanifold geodesic at 0. Submani-
folds geodesic at preserve distances to . This is an essential
property for PGA because variance is defined as the average
squared distance to the mean. Thus, submanifolds geodesic at
the mean will be the generalization of the linear subspaces of
PCA.

C. Projection

The projection of a point onto a geodesic submanifold
of is defined as the point on that is nearest to in

Riemannian distance. Thus, we define the projection operator
as

Since projection is defined by a minimization, there is no guar-
antee that the projection of a point exists or that it is unique.
However, by restricting to a small enough neighborhood about
the mean, we can be assured that projection is unique for any
submanifold geodesic at the mean.

Projection onto a geodesic submanifold can be approximated
linearly in the tangent space of . Let be a geodesic
submanifold at a point and a point to be projected
onto . Then the projection operator is approximated by

Notice that is simply a vector in . Thus, we may
rewrite the approximation in terms of tangent vectors as
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Fig. 2. The spherical triangle used in the calculation of the projection operator
for S .

But this is simply the minimization formula for linear projection
of onto the linear subspace . So, if is
an orthonormal basis for , then the projection operator can
be approximated by the formula

(9)

Analyzing the quality of the approximation in (9) may be
difficult for general manifolds. Here we demonstrate the error
computations for the special case of the sphere . Let be a
geodesic (i.e., a great circle) through a point . Given a
point , we wish to compute its true projection onto and
compare that with the approximation in the tangent space .
Thus, we have the spherical right triangle as shown in Fig. 2.
We know the hypotenuse length and the angle ,
and we want to derive the true projection, which is given by the
side length . We use the following two relations from the laws
of spherical trigonometry:

Solving for in terms of the hypotenuse and the angle , we
have

The tangent-space approximation in (9) is equivalent to solving
for the corresponding right triangle in . Using standard Eu-
clidean trigonometry, the tangent-space approximation (9) gives

For nearby data, i.e., small values for , this gives a good ap-
proximation. For example, for the maximum abso-
lute error is 0.07 rad. However, the error can be significant for
far away points, i.e., as approaches .

D. Computing Principal Geodesic Analysis

We are now ready to define PGA for data on a
connected, complete manifold . Our goal, analogous to PCA,
is to find a sequence of nested geodesic submanifolds that maxi-
mize the projected variance of the data. These submanifolds are
called the principal geodesic submanifolds.

Let denote the tangent space of at the intrinsic
mean of the . Let be a neighborhood of 0 such
that projection is well-defined for all geodesic submanifolds
of . We assume that the data is localized enough
to lie within such a neighborhood. The principal geodesic
submanifolds are defined by first constructing an orthonormal
basis of tangent vectors that span the
tangent space . These vectors are then used to form a
sequence of nested subspaces .
The principal geodesic submanifolds are the images of the

under the exponential map: . The first
principal direction is chosen to maximize the projected variance
along the corresponding geodesic

(10)

where

The remaining principal directions are defined recursively as

(11)

where

If we use (9) to approximate the projection operator in
(10) and (11), we get

The above minimization problem is simply the standard prin-
cipal component analysis in of the vectors ,
which can be seen by comparing the approximations above
to the PCA equations, (6) and (7). Thus, an algorithm for
approximating the PGA of data on a manifold is as follows.

Algorithm 2: Principal Geodesic Analysis
Input:
Output: Principal directions,

Variances,
intrinsic mean of (Algorithm 1)

eigenvectors/eigenvalues of .

V. APPLICATION TO M-REPS

We now apply the statistical framework presented above for
general manifolds to the statistical analysis of m-rep models of
anatomical objects. That is, we will apply the mean and PGA
algorithms to the symmetric space , representing m-rep
models with atoms. The initial data is a set of m-rep models

that have been fit to a particular class
of objects in a training set of images. As is the case with other
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shape analysis methods, since we are interested in studying
the variability of shape alone, we must first align the models
to a common position, orientation, and scale. We present an
m-rep alignment algorithm that minimizes the sum-of-squared
geodesic distances between models, i.e., has the desirable
property that it minimizes the same metric as is used in the
definition of the mean and principal geodesics, but over the
global similarity transformations of alignment. Next the mean
and PGA algorithms are adapted to the specific case of m-rep
models.

The results of these techniques are demonstrated on a set of
86 m-rep models of hippocampi from a schizophrenia study. A
subset of 16 of these models are displayed as surfaces in Fig. 3.
The m-rep models were automatically generated by the method
described in [29], which chooses the medial topology and sam-
pling that is sufficient to represent the population of objects. The
models were fit to expert segmentations of the hippocampi from
MRI data. The average distance error from the m-rep boundary
to the original segmentation boundary ranged from 0.14 mm
and 0.27 mm with a mean error of 0.17 mm. This is well within
the original MRI voxel size (0.9375 mm 0.9375 mm 1.5 mm).
The sampling on each m-rep was 3 8, making each model a
point on the symmetric space . Since the dimensionality
of is 8, the total number of dimensions required to repre-
sent the hippocampus models is 192.

A. The Exponential and Log Maps for M-Reps

Before we can apply the statistical techniques for manifolds
developed in the previous sections, we must define the expo-
nential and log maps for the symmetric space , the space
of m-rep models with atoms. We begin with a discussion of
the medial atom space . Let

be the base point, where
are the base points for the spherical compo-

nents. The tangent space for at the base point can be
identified with . We write a tangent vector as

, where is the positional tangent com-
ponent, is the radius tangent component, and
are the spherical tangent components. The exponential map for

is now the direct product of the exponential map for each
component. The exponential map for is simply the identity
map, for it is the standard real exponential function, and for

it is the spherical exponential map given in (3). Thus, for
we have

where the two Exp maps on the right-hand side (RHS) are the
spherical exponential maps. Likewise, the log map of a point

is the direct product map

where the two Log maps on the RHS are the spherical log maps
given by (4). Finally, the exponential and log maps for the m-rep
model space are just the direct products of copies of the
corresponding maps for the medial atom space .

Notice that the position, radius, and orientations are not in the
same units. For the PGA calculations in Section IV, we scale

Fig. 3. The surfaces of 16 of the 86 original hippocampus m-rep models.

the radius and sphere components in the Riemannian metric to
be commensurate with the positional components. The scaling
factor for both components is the average radius over all corre-
sponding medial atoms in the population. Thus, the norm of the
vector becomes

where is the average radius over all corresponding medial
atoms. Using this norm and the formula for Riemannian dis-
tance (2), the distance between two atoms is
given by

(12)

B. M-rep Alignment

To globally align objects described by boundary points to a
common position, orientation, and scale, the standard method
is the Procrustes method [10]. Procrustes alignment minimizes
the sum-of-squared distances between corresponding boundary
points, the same metric used in defining the mean and principal
components. We now develop an analogous alignment proce-
dure based on minimizing sum-of-squared geodesic distances
on , the symmetric space of m-rep objects with atoms.

Let denote a similarity transformation in
consisting of a scaling by , a rotation by ,
and a translation by . We define the action of on a
medial atom by

(13)

Now the action of on an m-rep object
is simply the application of to each of ’s medial

atoms

(14)

It is easy to check from (1) that this action of on also
transforms the implied boundary points of by the similarity
transformation .

Consider a collection of m-rep ob-
jects to be aligned, each consisting of medial atoms. We write

to denote the th medial atom in the th m-rep object. No-
tice that the m-rep parameters, which are positions, orientations,
and scalings, are in different units. Before we apply PGA to the
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Fig. 4. The 86 aligned hippocampus m-reps, shown as overlayed medial atom
centers.

m-reps, it is necessary to make the various parameters commen-
surate. This is done by scaling the log rotations and log radii by
the average radius value of the corresponding medial atoms. The
squared-distance metric between two m-rep models and
becomes

(15)

where the for medial atoms on the RHS is given by (12).
The m-rep alignment algorithm finds the set of similarity

transforms that minimize the total sum-of-squared
distances between the m-rep figures:

(16)

Following the algorithm for generalized Procrustes analysis for
objects in , minimization of (16) proceeds in stages.

Algorithm 3: M-rep Alignment
1. Translations. First, the translational part of each in (16)
is minimized once and for all by centering each m-rep model.
That is, each model is translated so that the average of it’s
medial atoms’ positions is the origin.

2. Rotations and Scalings. The th model, , is aligned to
the mean of the remaining models, denoted . The alignment
is accomplished by a gradient descent algorithm on

to minimize . The gradient is approximated
numerically by a central differences scheme. This is done for
each of the models.

3. Iterate. Step 2 is repeated until the metric (16) cannot be
further minimized.

The result of applying the m-rep alignment algorithm to the
86 hippocampus m-rep models is shown in Fig. 4. The resulting
aligned figures are displayed as overlayed medial atom centers.
Since the rotation and scaling step of the alignment algorithm
is a gradient descent algorithm, it is important to find a good

Fig. 5. The surface of the mean hippocampus m-rep.

starting position. Thus, the alignment was initialized by first
aligning the m-rep models with the Procrustes method applied
to the implied boundary points of the m-rep models.

C. M-rep Averages

Algorithm 1 can be adapted for computing means of m-rep
models by taking the manifold to be the symmetric space .
Since this is a direct product space, the algorithm will con-
verge if each of the components converge. Notice that each of
the and components in converge in a single it-
eration since they are commutative Lie groups. A step size of

is sufficient to ensure that the components converge
as well. Also, care must be taken to ensure that the data is con-
tained in a small enough neighborhood that the minimum in (5)
is unique. For the and components there is no restriction
on the spread of the data. However, for the components the
data must lie within a neighborhood of radius (see [28]),
i.e., within an open hemisphere. This is a reasonable assump-
tion for the aligned m-rep models, whose spoke directions for
corresponding atoms are fairly localized, and we have not expe-
rienced in practice any models that do not fall within such con-
straints. We now have the following algorithm for computing
the intrinsic mean of a collection of m-rep models.

Algorithm 4: M-rep Mean
Input: , m-rep models
Output: , the intrinsic mean

Do

While .

Fig. 5 shows the surface of the resulting intrinsic mean of the
86 aligned hippocampus m-rep models computed by Algorithm
4. The maximum difference in the rotation angle from the mean
in either of the components was 0.1276 for the entire data
set. Thus, the data falls well within a neighborhood of radius

as required.
One might be tempted to simplify the statistical computations

by treating a medial atom as three points in : the center point
, and the two implied boundary points . With this linear
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representation, the symmetric space mean algorithm involving
geodesic computations is replaced by a simpler linear average.
However, linear averaging produces invalid medial atoms. To
demonstrate this we computed a linear average of the atoms at
a corresponding location in the hippocampus mesh across the
population. This average was compared to the symmetric space
average described in this paper. The resulting two medial atoms
are shown in Fig. 6. The symmetric space mean is a valid medial
atom, while the linear average is not because the two spoke vec-
tors do not have equal length. The ratio of the two spoke lengths
in the linear average is 1.2 to 1.

D. M-rep PGA

The PGA algorithm for m-rep models is a direct adaptation
of Algorithm 2. The only concern is to check that the data is
localized enough for the projection operator to be unique. That
is, we must determine the neighborhood used in (10) and (11).
Again there is no restriction on the and components. For

components it is also sufficient to consider a neighborhood
with radius . Therefore, there are no further constraints on
the data than those discussed for the mean. Also, we can expect
the projection operator to be well-approximated in the tangent
space, given the discussion of the error in Section IV.C and the
fact that the data lie within 0.1276 rad. from the mean. Finally,
the computation of the PGA of a collection of m-rep models is
as follows.

Algorithm 5: M-rep PGA
Input: M-rep models,
Output: Principal directions,

Variances,
intrinsic mean of (Algorithm 4)

eigenvectors/eigenvalues of .

Analogous to linear PCA models, we may choose a subset
of the principal directions that is sufficient to describe the
variability of the m-rep shape space. New m-rep models may be
generated within this subspace of typical objects. Given a set of
real coefficients , we generate a new m-rep
model by

(17)

where is chosen to be within .
The m-rep PGA algorithm was applied to the aligned hip-

pocampus data set. Fig. 7 displays the first three modes of vari-
ation as the implied boundaries of the m-reps generated from
PGA coefficients .
A plot of the eigenvalues and their cumulative sums is given in
Fig. 8. The first 30 modes capture 95 percent of the total vari-
ability, which is a significant reduction from the original 192
dimensions of the hippocampus m-rep model.

Fig. 6. The resulting average of corresponding medial atoms in the
hippocampus models using (a) symmetric space averaging and (b) linear
averaging. Notice that the linear average is not a valid medial atom as the two
spokes do not have equal length.

Fig. 7. The first three PGA modes of variation for the hippocampus m-reps.
From left to right are the PGA deformations for�3;�1:5; 1:5, and 3�

p
� .

Fig. 8. A plot of the eigenvalues from the modes of variation and their
cumulative sums.

VI. DISCUSSION

We presented a new approach to describing shape variability
through PGA of medial representations. While m-rep parame-
ters are not linear vector spaces, we showed that they are ele-
ments of a Riemannian symmetric space. We developed PGA
as a method for efficiently describing the variability of data on
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a manifold. The statistical methods for computing averages and
principal geodesic analyses were applied to the study of shape
from m-rep models.

We believe the methods presented in this paper will have ap-
plication well beyond m-reps. PGA is a promising technique for
describing the variability of data that is inherently nonlinear.
As Lie groups such as translations, rotations, and scalings are
common entities in image analysis and computer vision, statis-
tical analysis on Lie groups is a promising area for future appli-
cations. Also, statistics on linear models may benefit from the
addition of nonlinear information. For instance, the point dis-
tribution model [4] might be augmented with surface normals,
represented as points on a sphere, and handled under the PGA
framework.

There is a method called principal curves [30], which has
a similar name to PGA. However, the two methods are only
loosely related. Principal curves are smooth curves that are fit
to data in Euclidean space by minimizing the sum-of-squared
Euclidean distances to the data. PGA on the other hand con-
cerns data that lie on a manifold, rather than Euclidean space.
Principal geodesic submanifolds are intrinsic to the underlying
space, and they minimize sum-of-squared geodesic distances in
that space.

A. Application to Image Segmentation

We now briefly describe how PGA can be used to guide a de-
formable model image segmentation. We are given an image

and we want to fit an m-rep model to a particular ob-
ject within the image. The m-rep model has been trained,
i.e., a PGA has been computed, on a training population of
m-rep models fit to known objects. PGA will be used to re-
strict the shape of the model to statistically feasible instances
of the object. Following a Bayesian framework, we maximize
the log-posterior

We do not discuss here the image log-likelihood term,
. This term, along with other details of m-rep

segmentation, can be found in [15]. The segmentation is ini-
tialized by placing the mean model in the image. The model’s
geometry is deformed within the image by simultaneously
optimizing over the parameters in (17) and over global
position, orientation, and scale. The geometric log-prior is
defined as the squared Mahalanobis distance

This segmentation strategy has been implemented, and prelim-
inary tests on CT images of the kidney have been promising.
Production of further results and a quantitative analysis of the
quality of the segmentations are in progress.

B. Future Work

Another application of PGA is to the statistical analysis
of diffusion tensor images. A diffusion tensor is a 3 3 real,
symmetric, positive-definite matrix. The space of all such
matrices forms a symmetric space ,
where denotes the Lie group of all 3 3 matrices with

positive determinant. We envision using PGA for studying the
statistical variability of diffusion tensor images across patients
in a statistical atlas framework.

We plan to extend our analysis to more complex m-rep
models. This includes objects consisting of several figures, i.e.,
objects that have a branched medial axis. Also, we intend to
handle scenes containing multiple objects. Preliminary work
in this area has produced a statistical liver model consisting
of several connected figures and a heart model built from
multiple objects. In addition to the segmentation application
mentioned in the previous section, we foresee an application
to shape discrimination, for example, for the separation of the
hippocampi into schizophrenics and controls. This requires
the development of statistical techniques for discrimination on
symmetric spaces.
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