
Volume 25 (2006), number 4 pp. 789–807 COMPUTER GRAPHICS forum

Differential Representations for Mesh Processing

Olga Sorkine

School of Computer Science, Tel Aviv University, Israel
sorkine@gmail.com

Abstract

Surface representation and processing is one of the key topics in computer graphics and geometric modeling,
since it greatly affects the range of possible applications. In this paper we will present recent advances in geometry
processing that are related to the Laplacian processing framework and differential representations. This framework
is based on linear operators defined on polygonal meshes, and furnishes a variety of processing applications, such
as shape approximation and compact representation, mesh editing, watermarking and morphing. The core of the
framework is the definition of differential coordinates and new bases for efficient mesh geometry representation,
based on the mesh Laplacian operator.

Keywords: discrete Laplacian, surface representation, detail preservation, geometry compression, mesh editing

ACM CCS: I.3.5 Computer Graphics: Computational Geometry and Object Modeling — Boundary representa-
tions

1. Introduction

Surface representation and processing is one of the key top-

ics in computer graphics, geometric modeling and computer-

aided design. To put it simply, the way a 3D object is defined

greatly affects the range of things one can do with it. Different

object representations may reveal different geometric, com-

binatorial or even perceptive properties of the shape at hand.

For instance, the very popular piecewise-linear surface rep-

resentation (triangular meshes) provides immediate means

to display the surface, learn about its topological properties

(through Euler’s characteristic) and, with some effort, differ-

ential properties of the smooth surface it approximates. On

the other hand, many modeling tasks are difficult to perform

on meshes. Moreover, nowadays the common scanned sur-

faces usually come as very detailed, complex and at times

noisy meshes that require geometry processing, such as fil-

tering, resampling and compression for efficient storage and

streaming.

In this paper, we describe recent work on mesh process-

ing and modeling that is based on the Laplacian framework

and differential representations. In this framework, surface

meshes are studied through their differential properties, de-

rived from certain linear operators defined on the mesh. These

operators are usually different variants of the mesh Laplacian,

and they provide means to represent a surface by new bases

that benefit various processing applications. In contrast to the

traditional global Cartesian coordinates, which can only tell

the spatial location of each point, a differential surface rep-

resentation carries information about the local shape of the

surface, the size and orientation of local details. Therefore,

defining operations on surfaces that strive to preserve such

a differential representation, results in detail-preserving op-

erations. The linearity of the processing framework makes it

very efficient, and it has become an attractive and promising

research direction, as is evident from the amount of recent

publications on the subject.

In the following section we will closely look into the

Laplacian operator, the differential representations and the

associated surface reconstruction problems. We will then re-

view some results and applications that benefit from this

framework, such as shape approximation, geometry com-

pression and watermarking (Section 3) and interactive mesh

editing and interpolation(Section 4).

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford 2DQ, UK and 350 Main Street,
Malden, MA 02148, USA.

789

Submitted September 2005
Revised April 2006

Accepted May 2006

790 O. Sorkine / Differential Representations for Mesh Processing

2. Laplacian Operator and Differential Surface

Representation

In the following, we review the definition of differential coor-

dinates (δ-coordinates), the associated mesh Laplacian oper-

ator, describe the surface reconstruction framework and dis-

cuss various properties of the Laplacian operator.

2.1. Basic definitions

Let M = (V , E, F) be a given triangular mesh with n ver-

tices. V denotes the set of vertices, E denotes the set of edges

and F denotes the set of faces. Each vertex i ∈ M is con-

ventionally represented using absolute Cartesian coordinates,

denoted by vi = (xi, yi, zi). We first define the differential or

δ-coordinates of vi to be the difference between the absolute

coordinates of vi and the center of mass of its immediate

neighbors in the mesh,

δi =
(
δ

(x)
i , δ

(y)
i , δ

(z)
i

)
= vi − 1

di

∑
j∈N (i)

v j

where N (i) = { j |(i , j) ∈ E} and di = |N (i)| is the number

of immediate neighbors of i (the degree or valence of i).

The transformation of the vector of absolute Cartesian co-

ordinates to the vector of δ-coordinates can be represented in

a matrix form. Let A be the adjacency (connectivity) matrix

of the mesh

Ai j =
{

1 (i, j) ∈ E

0 otherwise

and let D be the diagonal matrix such that Dii = di. Then

the matrix transforming the absolute coordinates to relative

coordinates is

L = I − D−1 A.

It is often more convenient to consider the symmetric version

of the L matrix, defined by Ls = DL = D − A,

(Ls)i j =

⎧⎪⎨⎪⎩
di i = j

−1 (i, j) ∈ E

0 otherwise

That is, Lsx = Dδ(x), Ls y = Dδ(y) and Lsz = Dδ(z), where

x is an n-vector containing the x absolute coordinates of all

the vertices and so on. See Figure 3 for an example of a mesh

and its associated matrices.

The matrix Ls (or L) is called the topological (or graph)

Laplacian of the mesh [1]. Graph Laplacians have been ex-

tensively studied in algebra and graph theory [2], primarily

because their algebraic properties are related to the combi-

natorial properties of the graphs they represent. We will look

into some of these properties later on, in Sections 2.2 and 3.

Figure 1: The vector of the differential coordinates at a ver-
tex approximates the local shape characteristics of the sur-
face: the normal direction and the mean curvature.

From a differential geometry perspective, the δ-

coordinates can be viewed as a discretization of the con-

tinuous Laplace–Beltrami operator [3], if we assume that our

mesh M is a piecewise-linear approximation of a smooth

surface. We can write the differential coordinate vector at

vertex vi as

δi = 1

di

∑
j∈N (i)

(vi − v j).

The sum above is a discretization of the following curvilinear

integral: 1
|γ |

∫
v∈γ

(vi − v) dl(v), where γ is a closed simple

surface curve around vi and |γ | is the length of γ . It is known

from differential geometry that

lim
|γ |→0

1

|γ |
∫

v∈γ

(vi − v) dl(v) = −H (vi) ni

where H (vi) is the mean curvature at vi and ni is the surface

normal. Therefore, the direction of the differential coordinate

vector approximates the local normal direction and the mag-

nitude approximates a quantity proportional to the local mean

curvature [4] (the normal scaled by the mean curvature is

termed mean-curvature normal). Intuitively, this means that

the δ-coordinates encapsulate the local surface shape (see

Figure 1).

It should be noted that geometric discretizations of the

Laplacian have better approximation qualities. Meyer et al.
[5] propose employ the cotangent weights, first proposed by

Pinkall and Polthier [6], instead of uniform weights:

δc
i = 1

|�i |
∑

j∈N (i)

1

2
(cot αi j + cot βi j)(vi − v j)

where |�i | is the size of the Voronoi cell of i and α i j , β i j

denote the two angles opposite of edge (i , j) (see Figure 2),

to approximate mean-curvature normals. These geometry-

dependent weights lead to vectors δc
i with normal compo-

nents only, unlike the previously defined δ i which also have

tangential components and may be nonzero on planar 1-rings.

The cotangent weights may be negative and problematic to

define for very large angles due to the properties of cotangent

near π ; convex weights that mimic the cotangent weights are

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 791

Figure 2: The angles used in the cotangent weights and the
mean-value coordinates formulae for edge (i , j).

called mean-value coordinates [7]

wi j = tan(θ 1
i j/2) + tan(θ 2

i j/2)

‖vi − v j‖ ,

where the θ angles are depicted in Figure 2. These geometric

discretizations are beneficial for applications where the mesh

geometry is always known, such as mesh filtering and edit-

ing, since they approximate the differential properties more

accurately. However, in compression applications we will de-

fine effective bases for geometry representation based on the

topological Laplacian, so that the weights in the operator def-

inition, and thus the bases themselves, are implicitly encoded

in the mesh connectivity and no extra information is required

to store them.

2.2. Surface reconstruction from δ-coordinates

In the following, we will be working with the above defined

differential surface representation. We will perform different

operations on the δ-coordinates, depending on the task at

hand. The final step of any such manipulation must be surface

reconstruction, or, in other words, we need to recover the

Cartesian coordinates of M’s vertices.

Given a set of δ-coordinates, can we uniquely restore the

global coordinates? The immediate answer is no, because the

matrix L (or Ls) that we use to transform from global to dif-

ferential coordinates is singular, and therefore the expression

x = L−1δ(x) is undefined. The sum of every row of L is zero,

which implies that L has a nontrivial zero eigenvector (1,

1, . . . , 1)T . The matrix is singular since the δ-coordinates are

translation invariant: if we use weights w i j that sum up to 1

to define the Laplacian operator and we translate the mesh

by vector u to obtain the new vertices v′
i then

L(v′
i) =

∑
j∈N (i)

wi j (v
′
i − v′

j)

=
∑

j∈N (i)

wi j ((vi + u) − (v j + u))

= ∑
j∈N (i) wi j (vi − v j) = L(vi).

It follows that

rank(L) = n − k

where k is the number of connected components of M,

because each connected component has one (translational)

degree of freedom.

In order to uniquely restore the global coordinates, we need

to solve a full-rank linear system. AssumingM is connected,

we need to specify the Cartesian coordinates of one vertex

to resolve the translational degree of freedom. Substituting

the coordinates of vertex i is equivalent to dropping the ith
row and column from L, which makes the matrix invertible.

However, as we will see shortly, usually we place more than

one constraint on spatial locations of Ms vertices. Denote by

C the set of indices of those vertices whose spatial location

is known. We have therefore |C | additional constraints of the

form

v j = c j , j ∈ C . (1)

If we assume w.l.o.g. that the vertices are indexed such that

C = {1, 2, . . . , m} then our linear system now looks like this(
L

ω Im×m | 0

)
x =

(
δ(x)

ω c1:m

)
. (2)

The same goes for y and z coordinate vectors, of course. We

denote the system matrix in (2) by L̃ . Note that we treat the

positional constraints (1) in the least-squares sense: instead

of substituting them into the linear system, we add the above

equations as additional rows of the linear system. This way,

for each j ∈ C we are also able to retain the “smoothness”

term, that is, the equation Lv j = δ j . Note that in our discus-

sion we will keep addressing (1) as “positional constraints”

or “modeling constraints,” although they may not be fully

satisfied by the least-squares solution. The weight ω > 0 can

be used to tweak the importance of the positional constraints

(generally, every constraint may have its own weight, and we

can furthermore apply varying weights on the rows of the ba-

sic Laplacian matrix as well). The additional constraints make

our linear system over-determined (more equations than un-

knowns) and in general no exact solution may exist. However,

the system is full-rank and thus has a unique solution in the

least-squares sense

x̃ = argmin
x

(∥∥∥Lx − δ(x)
∥∥∥2

+
∑
j∈C

ω2 |x j − c j |2
)

. (3)

The analytical least-squares solution is expressed in terms

of the rectangular (n + m) × n system matrix L̃ from

Equation (2):

x̃ = (L̃T L̃)−1 L̃T b

where b = (δ, ω c1, . . . , ω cm)T is the right-hand side vector

of the linear system. See Figure 3 for an example of a small

mesh and its associated matrix L̃ .

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

792 O. Sorkine / Differential Representations for Mesh Processing

Figure 3: A small example of a triangular mesh and its as-
sociated Ls matrix (top right). Second row: a 2-anchor in-
vertible Laplacian and a 2-anchor L̃ matrix. The anchors are
denoted in the mesh by red.

An important practical aspect of surface reconstruction

from δ-coordinates is the availability of efficient and accurate

numerical methods for solving the least-squares problem (3).

A recent comparative study [8] shows that direct methods

prove to be superior for these types of problems on mod-

erately sized meshes (up to a few hundreds of thousands of

vertices). The system (3) can be solved by applying Cholesky

factorization to the associated normal equations

(L̃T L̃) x = L̃T δ.

The matrix L̃ is sparse, and M = L̃T L̃ is also sparse (al-

though not as sparse as L̃) and positive definite. By using

fill-reducing reordering, it is possible to compute a sparse
Cholesky factorization of M

M = RT R

where R is an upper-triangular sparse matrix. The factoriza-

tion is computed once, and we can solve for several mesh

functions (x, y and z) by back substitution

RT ξ = L̃T δ(x)

R x = ξ.

Table 1: Time measurements of manipulations of the (extended)
Laplacian matrices for several typical meshes, on a 3.4 GHz Pentium
4 computer. Factorization stands for Cholesky factorization of L̃T L̃
and Solve denotes solving by back-substitution for one mesh function.

No. of Factor Solve

Model vertices (seconds) (seconds)

Eight 2,718 0.085 0.004

Horse 19,851 0.900 0.032

Camel 39,074 2.096 0.073

Feline 49,864 2.750 0.110

Max Planck 100,086 7.713 0.240

The factorization takes the bulk of the computation time, and

the back-substitution step is usually very fast. Using advanced

linear solvers, such as TAUCS library [9], makes the computa-

tions very efficient. See Table 1 for timing data on several typ-

ical meshes. Another important advantage of direct solvers is

the separation between the matrix processing (factorization)

and the right-hand side, which is only involved in the fast

back-substitution step. This permits frequently changing the

right-hand sides at the price of the factorization pre-process,

which is done only once per fixed matrix. This property is

extremely useful for interactive mesh editing, as described

in Section 4. When the system matrix is very large (million

variables and more), the size of the factor becomes too large

to fit into memory. In this case, it is possible to either use the

out-of-core version of Cholesky factorization (available, e.g.,

with [9]) or iterative solvers whose complexity scales linearly

with the size of the system (for instance, see the recent work

on multigrid solvers [10,11]).

Note that the accuracy of the solution is highly depen-

dent on the conditioning of the linear system. The Laplacian

matrix is notoriously ill-conditioned: when we add only one

anchor, the largest singular value of L̃ is proportional to the

maximal degree in the mesh, while a good estimate for the

smallest singular value is one over the product of the maxi-

mum topological distance of a vertex from the single anchor

vertex and the number of vertices in the mesh [12,13]. For

a typical n-vertex 3D mesh, the condition number is there-

fore likely to be �(n−1.5), and it is squared when we consider

the normal equations. However, adding anchors to the sys-

tem improves its conditioning and makes the factorization

of the normal equations stable. A rigorous way to bound the

smallest singular value of L̃ from below is shown in [14]; the

bound depends on the number of anchors and their spacing

across the mesh.

In summary, the transition from the global Cartesian rep-

resentation to differential representation is performed by a

linear operator with local support: the mesh Laplacian. And

vice versa: in order to recover the Cartesian coordinates

from the differential representation, one needs to solve a

sparse linear least-squares problem. This provides a powerful

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 793

framework for surface manipulation: we will apply different

modifications to the differential coordinates (such as quan-

tization for compression purposes) and/or pose additional

modeling constraints, and then reconstruct the surface by

solving the least-squares problem. The advantages of this

framework can be summarized as follows:� It strives to preserve local surface detail as much as pos-

sible under the constraints.� The least-squares solution smoothly distributes the error

across the entire domain, providing a graceful reconstruc-

tion.� Sparse linear systems can be solved very efficiently.

2.3. Spectral properties

Let us consider the Ls matrix, since it is symmetric and thus

simpler to analyze. The matrix Ls is symmetric positive semi-

definite and thus has an orthonormal eigenbasis

E = {e1, e2, . . . , en}.
Denote the eigenvalues by λi ,

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn .

It is known that the first nonzero λi are very small, and the

largest eigenvalue λn is bounded by the largest vertex va-

lence in M times 2. The first eigenvectors (corresponding

to small eigenvalues) are smooth, slowly varying functions

on the mesh, and the last eigenvectors have high frequency

(rapid oscillations). For example, the first eigenvector e1 is

the constant vector, that is, the “smoothest” mesh function

that does not vary at all. In fact, the Laplacian eigenbasis is

an extension of the discrete Fourier basis to irregular domains

[4]. The eigenvalues are considered as mesh-frequencies. We

will see in the following how this fact is exploited for sig-

nal processing on meshes, compact geometry representation,

watermarking and more. See also [16] for an earlier state-of-

the-art report on this subject.

3. Efficient Shape Representation

In this section we review several methods for efficient and

compact geometry representation that benefit from the mesh

Laplacian operator and the framework presented in Section 2.

For an extensive recent survey on general compression meth-

ods, we refer the reader to [17].

3.1. Efficient bases for geometry representation

Finding a good basis for compact shape representation means

that one can use only a fraction of the basis functions to ap-

proximate a given geometry well. This idea is extensively

used in signal processing and in the image domain, by defin-

ing Fourier or wavelet bases. The regular 1D and 2D settings

are well studied in both continuous and discrete settings, and

the sampling theorem tells us the number of basis functions

we need to use for perfect signal reconstruction. Things are

more involved for the irregular setting of arbitrary triangu-

lar meshes. One possible approach of direct application of

the signal processing theory on meshes is to first perform

semi-regular remeshing by parameterizing the mesh over a

simple base complex, and then apply variations of 2D signal

processing methods [18,19,20,21,22]. Another possibility is,

instead of altering the mesh, to work directly on the irreg-

ular mesh and develop generalizations of the methods from

regular settings.

Karni and Gotsman [15] introduce a spectral method where

the mesh is approximated by reconstructing its geometry us-

ing a linear combination of a number of basis vectors. The

basis is the spectral basis E of the Ls matrix, which can be

regarded as a generalization of the discrete Fourier basis (see

Section 2.3). Similarly to JPEG compression of images, the

mesh geometry functions x, y, z are decomposed in the basis

E:

x = α1 e1 + α2 e2 + · · · + αn en (4)

and the high-frequency components (coefficients of the last

eigenvectors) are truncated. The coefficients α i are quantized

and subsequently entropy coded. It is assumed that the mesh

connectivity is known to the decoder prior to receiving the

geometry coefficients, so that the decoder first computes the

spectral basis and then reconstructs the geometry by combin-

ing the coefficients. Note that this method is readily made for

progressive streaming, since if one sends the α i coefficients in

ascending order of i, the decoder can first reconstruct a coarse

(very smooth) approximation of the geometry, and then grad-

ually add high-frequency detail, as more coefficients become

available.

An example of the progressive encoding of [15] is shown

in Figure 4. The geometry of the Horse model is first approx-

imated using only a few of the first eigenvectors ei , and the

resulting approximation is very smooth. As more and more

eigenvectors participate in the approximation, the obtained

surface receives more high-frequency detail.

The spectral method of [15] provides high compression

ratios, since most of the energy is concentrated in the low-

frequency coefficients (the first α i), and the high-frequency

components add negligible weight. However, computing

even the first few eigenvectors of typical meshes (with tens

of thousands of vertices) is an extremely computationally

expensive task of superlinear complexity, that has to be car-

ried out both on the encoder and the decoder side. Karni

and Gotsman [15] propose to divide the mesh into patches

and compute the spectral decomposition separately for each

patch. This speeds up the computation, but the quality of

the low bit-rate reconstructions suffers from artifacts along

the boundaries between patches. Later, Karni and Gotsman

developed another technique, where fixed spectral bases are

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

794 O. Sorkine / Differential Representations for Mesh Processing

Figure 4: Progressive approximations of the Horse geometry using the eigenvectors of the topological Laplacian [15]. The left
figure shows an approximation using only a small number of the first eigenvectors (those that correspond to small eigenvalues).
When more eigenvectors are added to the approximation, the surface attains more high-frequency detail (middle and right).
Data courtesy of Zachi Karni.

employed [23]. The spectral basis of a regular mesh with

n vertices is used to approximate the Laplacian eigenbasis,

and the computational cost of spectral analysis is avoided on

the decoder side altogether. Of course, this technique works

better for meshes that are close to being regular.

In [24,25], a different class of shape approximation tech-

niques for irregular triangular meshes was introduced. The

method approximates the geometry of the mesh using a lin-

ear combination of a small number of basis vectors that are

functions of the mesh connectivity and of the mesh indices

of a number of anchor vertices. The initial motivation was

to improve the shortcomings of the spectral basis [15]. One

must bear in mind that, together with their appealing proper-

ties, the spectral bases are geometry-oblivious, since the basis

vectors are functions of the connectivity alone. In contrast, the

new geometry-aware method derives the basis both from the

mesh connectivity and geometry. The basis vectors in [25] are

centered around selected “geometrically important” anchor

vertices. This allows a terse capturing of important features of

the surface and leads to compact and efficient representation

of the mesh geometry. Figure 5 illustrates the reconstruction

using such basis vectors on a 2D curve example. The bottom

row shows the meshes reconstructed using geometry-aware

bases. The locations of the anchors are marked by small dots.

The reconstructed mesh passes close to the original locations

of the anchor points, which enables good approximation of

such features as the tips of the bird’s wings and tail. For

comparison, reconstruction of this mesh using an analogous

number of spectral basis vectors misses out the features. This

behavior is evident in large as well as in small scale.

It should be noted that explicit computation of the basis

vectors is, generally speaking, too expensive for large meshes.

The method in [25] avoids explicit computation of the under-

lying basis. Instead of directly representing the geometry by

the coefficients of the linear combination of the basis vectors,

the reconstruction problem is reduced to solving a sparse lin-

ear least-squares system of the type (2). Each basis function is

selected so that it fulfills the following conditions in the least-

Figure 5: Reconstruction of the swallow curve (simple
closed path) using different bases. The top row shows re-
construction using the Laplacian eigenvectors, which are the
discrete Fourier basis function in this case. The bottom row
displays reconstruction with geometry-aware basis vectors.
The reconstructed mesh is shown in black, while the original
mesh is tinted in blue. The geometry-aware bases better ap-
proximate the features of the shape, on a large as well as on
a small scale.

squares sense: it attains the value 1 at one of the anchors and

0 at the other anchors, and it is the smoothest among all the

functions that satisfy these requirements (a slightly different

definition for strictly interpolatory anchors is also proposed,

but the principle is the same). The smoothness of a function is

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 795

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
5 first vectors out of 5 anchor vectors

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
5 first vectors out of 20 anchor vectors

(a) (b)

Figure 6: Geometry-aware basis functions on a 1D domain.
The mesh here is a simple closed path with 274 vertices. Plot
(a) displays the five basis functions corresponding to a set of
five anchors; (b) shows the first five basis functions out of a
20-anchor basis.

defined in a discrete manner using the Laplacian of the mesh.

Specifically, the basis functions are defined as follows: Given

a set of k anchor vertex indices 1 ≤ a1, a2, . . . , ak ≤ n, the

ith function fi in the basis minimizes

‖L fi‖2 +
(

ω2
∣∣∣(fi)ai − 1

∣∣∣2

+
∑
j �=i

ω2
∣∣∣(fi)a j − 0

∣∣∣2

)

where ω is a positive weight. See Figure 6 for a 2D example

of these basis functions (note that they were computed here

for illustration purposes only; the algorithm in [25] does not

require the bases explicitly). The definition results in smooth

basis functions that are easy to combine into an approxima-

tion that attains specific values at the anchors. The compact

geometry representation thus consists of the indices of the

anchor vertices and the coefficients associated with the basis

functions. To recover the surface geometry, we simply need

to solve the system (3), where instead of δ we put zero

x̃ =
k∑

i=1

ci fi = argmin
x

{
‖Lx‖2 +

k∑
i=1

ω2
∣∣∣xai − ci

∣∣∣2

}
.

Taking a sufficiently large value forω (in the order of n) makes

the reconstruction effectively interpolatory at the anchors.

Figure 7 demonstrates an example of shape approximation

obtained with these basis functions.

3.2. High-pass quantization

One of the main ways to compress floating-point data, such as

mesh geometry, is by quantization. Quantization necessarily

introduces errors and causes a certain loss of data. Loosely

speaking, quantizing the Cartesian coordinates of the mesh

produces high-frequency errors across the surface. This es-

pecially damages the fine-sampled areas, since the relative

error is greater when the polygons are smaller. Aggressive

quantization significantly alters the surface normals, causing

the irritating “jaggies” effect. Thus, only mild quantization

of Cartesian coordinates is possible without causing visible

artifacts (10–16 bits per coordinate).

In [26], a different approach to geometry quantization is

proposed. Instead of directly quantizing the Cartesian coor-

dinates, the quantization is applied to the δ-coordinates, and

the geometry of the mesh can be restored on the decoder

side by solving a linear least-squares system defined by the

extended Laplacian matrix (discussed in Section 2.2). Intro-

ducing high-frequency errors by quantizing the δ-coordinates

results in low-frequency errors in the reconstructed Cartesian

coordinates. By considering a visual error metric between

meshes, which takes into account not only the Euclidean dis-

tance between corresponding vertices (or the “Metro” dis-

tance [27]) but also the smoothness error, it can be argued

that low-frequency displacements in the surface geometry

are less noticeable than high-frequency displacements that

modify the local characteristics of the surface such as nor-

mals and curvature. Consequently, strong quantization of the

δ-coordinates yields a small visual error, in contrast to stan-

dard Cartesian coordinate quantization.

The strategy of [26] is called high-pass quantization, to

emphasize the fact that it tends to concentrate the quantization

error at the low-frequency end of the spectrum, in contrast

to the spectral method of [15]. Mesh frequencies are defined

as in Section 2.3. Let us look what happens to quantization

errors. The δ-coordinates are obtained by applying the mesh

Laplacian, δ = Lsx. When the δ-coordinates are quantized, an

error ε (with small norm) is added. To reconstruct the mesh

function x from δ + ε, we write

x′ = L−1
s (δ + ε) = L−1

s δ + L−1
s ε = x + L−1

s ε

(We assume a nonsingular Ls by adding one anchor.) Thus,

the quantization error is qε = L−1
s ε, and its norm is no longer

small. In fact, if we look at qε in the spectral basis, we will

see that its low-frequency component is amplified

ε = c1e1 + c2e2 + · · · + cnen

qε = L−1
s ε = 1

λ1

c1e1 + 1

λ2

c2 e2 + · · · + 1

λn
cnen .

The last statement holds since a matrix and its inverse share

the same set of eigenvectors, and the corresponding eigen-

values are inversed. The first λi are very small, thus the first
1
λi

are large. This means that qε has very strong components

in the direction of the first ei , that is, low frequencies. The

high-frequency components are damped, because the last λi

are relatively large, so for large i, 1
λi

< 1. Thus we can con-

clude that when quantizing δ-coordinates, we get mostly low-

frequency errors. Note that the eigendecomposition is used

solely for analysis purposes; the quantization method only

requires linearly computing the δ-coordinates and linear sur-

face reconstruction on the decoder side.

To reduce the low-frequency error, more anchor ver-

tices, whose spatial location is known, can be added to the

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

796 O. Sorkine / Differential Representations for Mesh Processing

Figure 7: Reconstruction of the Feline model using an increasing number of geometry-aware basis vectors. The sizes of the
encoded geometry files are displayed below the models. The letter e denotes the L2 error value, given in units of 10−4.

Figure 8: The δ-coordinates quantization to 5 bits/
coordinate (left) introduces low-frequency errors, whereas
Cartesian quantization to 11 bits/coordinate (right) intro-
duces noticeable errors. The upper row shows the quantized
model, and the bottom figures use color to visualize the cor-
responding quantization errors. It is recommended to zoom
in into the electronic version to see the quantization artifacts.

representation. These vertices “nail” the geometry in place

and prevent large shifts or rotations. Algebraically, anchors

improve the conditioning of the Laplacian matrix by making

the smallest singular value larger. Adding anchors requires

more storage space, and therefore their placement needs to

be optimized so as to minimize the error. A greedy placement

technique is given in [26], where the anchors are chosen one-

by-one, each new anchor is placed at the vertex that achieved

highest reconstruction error in the previous iteration. A dif-

ferent placement strategy that conforms with provable upper

bounds on the geometry error is introduced in [14].

Figures 8 and 9 show some quantization results from [26].

3.3. Mesh watermarking

The visual properties of low-frequency errors in geometry

prove to be useful not only for geometry compression. The

insensitivity of the human visual system to low-frequency

errors (such as smooth shifts or rotations of parts of the

surface) is exploited in mesh watermarking techniques

[28,29,30]. Mesh watermarking, similar to image water-

marking, is essential for copyright protection and ownership

authentication of geometric data. The goal is to embed an

invisible bit string into the geometric representation of the

object, so that the actual owner of the authentic digital object

would be able to robustly compare the marked copy with the

real (unmodified) version of the 3D object and to verify the

presence of the correct watermark.

The idea of Ohbuchi et al. [29,30] was to embed a wa-

termark bit string into the spectral representation of the 3D

mesh at hand, by slightly modifying the low-frequency co-

efficients of the spectral decomposition (4). As previously

discussed, small changes in the low-frequency component of

the surface geometry, or low-frequency errors, do not alter

the local surface appearance, and thus they are less apparent

to the human eye. Therefore, in applications where the 3D

meshes are used primarily for display, such an approach to

watermarking is definitely plausible. In brief, the watermark-

ing algorithm works as follows: the input mesh is partitioned

into balanced patches to reduce the cost of spectral decom-

position, and then the eigendecomposition of the symmetric

topological Laplacian matrix is computed for each patch (see

Equation (4)). Next, the low-frequency coefficients (the first

α i) are modulated by the selected watermark bit string, and

the mesh geometry is reassembled by summing up the right-

hand side of (4) with the modified coefficients. This com-

pletes the watermarking process. To extract the watermark

from a “suspected” mesh, it is first aligned with the original

mesh and remeshed so that it has the same connectivity as

the original mesh. Then, spectral analysis is performed, and

the spectral coefficients of the suspected mesh are subtracted

from the original (unmodified) coefficients, so that the wa-

termark bit string can be retrieved.

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 797

Figure 9: Visualization of the visual error across the mesh surface. The surface was reconstructed from δ-coordinates quantized
to 7 bits/coordinate using 2 anchors (a), 4 anchors (b) and 20 anchors (c). The anchor points are shown as small red spheres.
Each vertex v is colored according to its visual error value Evis(v). We have also added a sign to these values, so that vertices
that move outside of the surface have positive error values (colored by red), and vertices that move inwards have negative error
values (colored by blue). In (d), the visual error of direct quantization of the Cartesian coordinates is shown.

Recently, the above watermarking scheme was extended

to point-set data where explicit connectivity is not present

(see [31]).

4. Mesh Editing and Shape Interpolation

Manipulating and modifying a surface while preserving the

geometric details is important for various surface editing op-

erations, including free-form deformations [32,33], cut and

paste [34,35,36], fusion [37], morphing [38] and others. Note

that the absolute position of the vertices in a mesh is not

important for these operations; what is needed is a local de-

scription of the shape that is not dependent on the particular

placement of the shape in the Euclidean space. We call such

shape representation “shape-intrinsic”: it is invariant under

rigid transformations of the space in which the shape is em-

bedded, and it allows to reconstruct the shape uniquely, up

to a rigid transformation. In the following we will describe

several types of local surface representation that employ the

Laplacian framework and other differential representations,

and show how they are used for mesh editing. In all these rep-

resentation methods the main question is how to make them

behave in a shape-intrinsic manner.

4.1. The modeling metaphor

Let us first briefly describe the traditional way of direct sur-

face manipulation. The modeling metaphor is very simple

from the user’s point of view [39]. First, the user marks the

desired region of interest (ROI) on the mesh that is to be

modified. The rest of the mesh will remain unchanged (and

thus does not participate in the calculations). Next, the user

selects a group of vertices that will serve as the manipulation

handle. The user can then drag the handle around and apply

arbitrary transformations to it (such as rotation, scaling, etc.),

and the surface of the ROI is modified on the fly, following

the handle manipulation.

From the algorithmic standpoint, the handle vertices func-

tion as boundary conditions for the calculation of the edited

surface. These conditions change every time the user manip-

ulates the handle. An additional set of boundary constraints

expresses the static parts of the surface that remain unchanged

during the editing process. Usually, this set of constraints con-

sists of some padding belt of vertices around the ROI bound-

ary, and it ensures a gradual transition between the ROI and

the rest of the mesh (which, as mentioned above, is com-

pletely static and is usually not included the editing process

at all for efficiency reasons). Thus, if we denote the group

of constrained vertices (those that belong to the handle and

the static ones) by U, the boundary constraints are written

simply as

vi = ui , ∀i ∈ U (5)

where ui are the desired positions for the constrained vertices.

Any editing algorithm in fact changes the shape of the

ROI so as to satisfy the modeling constraints (5) while striv-

ing to give the modified surface a natural shape. Here, we

will concentrate on one particular definition of natural defor-

mation, namely: a deformation that preserves the local details

of the original surface. In the next sections we will see how

the above modeling metaphor is implemented using various

surface representations.

4.2. Multiresolution mesh editing

Partially shape-intrinsic surface mesh representa-

tions are given by multiresolution decompositions

[19,21,39,40,41,42,43]. In a multi-resolution mesh, the

geometry is encoded as a base mesh and several levels

of refinement. The base mesh is the low-frequency com-

ponent of the shape, and it is typically represented in

Cartesian coordinates. Thus it is not shape-intrinsic, but the

shape details are represented in an intrinsic manner. The

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

798 O. Sorkine / Differential Representations for Mesh Processing

refinements are described locally, so that the geometric

details are mostly captured in a discrete set of translation-

and rotation-invariant coordinates. Using this representation,

modeling operations can be performed on an appropriate

user-specified level-of-detail. The multiresolution hierarchy

can be constructed for both the connectivity and the

geometry (as in, e.g., [19,21]), or the only geometry (as

in, e.g., [39,42,43]), where the connectivity of the mesh

remains full and unchanged in all the levels-of-detail in the

hierarchy. Different levels of refinement are usually obtained

by gradual smoothing of the mesh.

We will outline the editing mechanism of the multireso-

lution framework of Kobbelt and colleagues [39,41,43] as

an exemplary multiresolution technique that also uses the

Laplacian framework. For simplicity, let us assume that the

mesh hierarchy consists of two levels only, sharing the same

connectivity: the smooth base mesh and the detailed mesh.

The detailed level is encoded with respect to the base level

by computing the offset of each vertex and representing this

offset in the local frame of the corresponding vertex in the

base mesh. The choice of the local frames is rotation- and

translation-invariant, and therefore the representation of the

offsets (which are, in fact, the surface details in this case)

is independent of the location of the mesh in space. Mesh

editing is performed as follows: first, the smooth base mesh

is deformed according to the constraints (5); then the local

frames are recomputed on the deformed base mesh, and fi-

nally, the original detail offsets (in their local frame represen-

tation) are added to the base mesh. This way, the local details

are reproduced correctly in the deformed mesh: for example,

if the surface was bent, the local frames of the smooth base

mesh rotate, and thus so do the offsets. This key concept of

invariance in local representation is illustrated in Figure 10.

How is the base mesh deformed? It is assumed that the base

mesh is smooth enough and does not contain local details that

need to be preserved. Therefore, the base mesh is deformed

by solving an optimization problem with two objectives:

(i) satisfying the user constraints (5) and (ii) keeping the

surface of the base mesh smooth. The latter goal is achieved

by describing smoothness in terms of the mesh Laplacian op-

erator, as we already saw in Section 3.1. Botsch and Kobbelt

[43] propose different orders of smoothness, obtained via dif-

ferent orders of the Laplacian operator. The optimization is

formulated as

Lkx = 0

leading to C k−1 smoothness of the resulting surface. Proba-

bly the most common value is k = 2, producing the so-called

“thin-plate” surface. The Equations (5) are incorporated as

hard constraints into the above system by substitution, secur-

ing its nontrivial solution. When k = 2, this optimization is

equivalent to solving the least-squares problem (3) where all

the δ-coordinates are set to zero and sufficiently large weight

is put on the positional constraints, to effectively make them

Figure 10: The importance of rotation-invariant represen-
tation. (a) the original shape, where the base shape is drawn
in brown. In (b), the base shape was bent, while the details
were encoded in a rotation-invariant manner, and thus their
orientation with respect to the base was preserved. In (c), the
same deformation leads to distorted orientation of the details
(stretch) because the encoding was not rotation-invariant.

hard constraints. Note that the factorization of the system

matrix can be computed once per choice of ROI and handle

vertices; each time the user transforms the handle, only the

right-hand side of the system changes and thus only a back-

substitution step is required. This allows interactive response

of the editing mechanism for fairly large ROIs (up to several

tens of thousands of vertices, refer to Table 1).

The multiresolution approach is probably the most intuitive

method for mesh editing, and its advantage is the straightfor-

ward representation of the details of the shape in a man-

ner that is invariant to the global coordinate system. On the

other hand, this approach defines details explicitly, or in other

words, one may need to explicitly set the required amount of

smoothing to create a satisfactory base mesh. In meshes with

complex details, many levels of multi-resolution hierarchy

may be required in order to handle the details correctly.

4.3. Single-resolution local representations

for mesh editing

Local details can be defined in a more implicit way with

a single-resolution mesh, by using differential coordinates.

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 799

Mesh editing using this representation was pioneered by

Alexa [44]. The basic idea is simply to add the positional

constraints (5) to the system that reconstructs the Cartesian

coordinates of the mesh from the differential coordinates (3).

Once again, note that the system matrix needs to be con-

structed and factored only once per choice of ROI and handle;

during user manipulation one only needs to solve the linear

system by back-substitution, which is very efficient.

The above idea for surface representation and reconstruc-

tion was further elaborated in [45,46,47]. Yu et al. [47] in-

troduce a technique called Poisson Editing, formulated by

manipulation of the gradients of the coordinate functions

(x , y, z) of the mesh. The surface is reconstructed by solv-

ing the least-squares system resulting from discretizing the

Poisson equation

∇2 f = � f = ∇ · w (6)

with Dirichlet boundary conditions. Here, f is the unknown

scalar function on the mesh, that is, one of the coordinate

functions x , y, z of the deformed mesh. The vector field w

is the gradient field of the corresponding original coordi-

nate function. The set of boundary constraints consists of

both positional constraints of the form (5) and constraints

on the gradients of the handle vertices, directly expressed by

the desired linear transformation on the handle. The spatial

Laplacian operator �, restricted to the mesh, is discretized

using the cotangent weights. By inspecting Equation (6), we

can see that it has a similar form to the Laplacian surface re-

construction system (3); the difference lies on the right-hand

side, that is expressed in terms of a vector field rather than a

scalar field, and the constraints are substituted into the system

(so that this is not a least-squares optimization).

In [45], the surface is reconstructed from the Laplacian

δ-coordinates of the mesh and spatial boundary conditions

by solving (3). Both Lipman et al. [45] and Yu et al. [47]

point out the main problem of the above approach: the need

to rotate the local frames that define the Laplacians, or the gra-

dients, to correctly handle the orientation of the local details.

If this issue is not properly addressed, the system in (3) (or in

(6)), tries to preserve the Laplacian vectors (or the gradients)

in their original orientation with respect to the global coor-

dinate system. Therefore a result in the spirit of the sketch in

Figure 10c would be obtained.

Yu et al. and Lipman et al. propose remedy to this prob-

lem by explicit assignment of the local rotations. Lipman

et al. [45] estimate the local rotations of the frames on the

underlying smooth surface by smoothing the “naive” solu-

tion of (3); then the original Laplacians are rotated by these

estimated rotations and the reconstruction system is solved

again. This heuristic achieves good results on meshes with

relatively small details; applying it to complex meshes where

the details are far from being height-fields above a smooth

base surface would require a lot of smoothing iterations. An

important feature of this approach is that it deduces the lo-

cal rotations based on translational, or positional constraints

alone; the user is not expected to provide rotational trans-

formations of the handle. So even in the simplest case of

grabbing one handle vertex and “pulling” it out of the sur-

face, the technique will produce rotation estimates for the

surface details and they will be transformed accordingly.

Yu et al. [47] propagate the rotation (or any other linear

transformation) of the editing handle, defined by the user, to

all the gradient vectors of the ROI. This is the major differ-

ence from [45], because here the user is expected to specify

compatible translation and rotation constraints on the han-

dle; translational constraints alone will result in no local

rotations (and thus the surface details may be significantly

distorted). The propagated transformations are interpolated

with the identity, where the interpolation weight for each tri-

angle is proportional to the geodesic distance of the triangle

from the handle. As pointed out in [48], this solution may also

produce unexpected results for meshes with complex features

protruding from the smooth base surface. This is because the

tip of a protruding feature is geodesically further from the

handle than the vertices around the feature’s base, and thus

the tip receives a smaller share of the deformation than the

base (whereas for a natural result, it should be roughly the

same amount of deformation).

A different interpolation scheme for deformation propa-

gation was recently proposed by Zayer et al. [49]: it avoids

geodesics computation, creating a harmonic scalar field on

the mesh instead. The harmonic field attains the value of 1

at the handle vertices and 0 at the boundary of the ROI, and

varies monotonically on the rest of the ROI, thus providing a

valid and smoother alternative to the geodesic weights. The

harmonic field is obtained by solving (2), only the 1 and 0

constraints are substituted into the system rather than added in

least-squares sense. An additional advantage of this approach

is that it uses the same system matrix both for the computation

of the weights and for the actual editing (only with different

right-hand sides), thus the factorization of the matrix serves

both tasks at once. As a side note, we mention that the mesh

Laplacian operator is tightly coupled with Hodge theory and

computation of globally conformal (harmonic) mesh param-

eterizations for arbitrary topology. This topic is outside of

the scope of this paper; the reader is kindly referred to recent

publications [6,50,51,52] for further information.

It is important to note that all the above-mentioned methods

[45,47,49] are fast: the size of the system matrices involved in

the reconstruction is n × n, where n is the number of vertices

in the ROI. This size will grow in the follow-up works, as we

will see shortly.

Subsequent research continued to look for truly shape-

intrinsic representation suitable for mesh editing. Sheffer and

Kraevoy [53] introduced the so-called pyramid coordinates:

at each vertex i of the mesh, the normal and the tangential

components of the local frame are stored, independently of

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

800 O. Sorkine / Differential Representations for Mesh Processing

the global coordinate frame. To construct this representa-

tion, a local projection plane is fitted to the vertices of the

1-ring by averaging the face normals of the 1-ring. The nor-

mal component of the center vertex i is its distance to the

projection plane, whereas the tangential component is en-

coded as the edge lengths and the angles between the edges

of the 1-ring, projected onto the plane. Since this representa-

tion is evidently rotation-invariant, it allows performing nat-

ural and large deformations on meshes based on translational

(or other) constraints on the handle, as well as linear blend

between different shapes (given the correspondence between

them). However, the reconstruction of the Cartesian coor-

dinates from the pyramid coordinates is clearly a nonlinear

optimization (involving cross-product and norm computa-

tions to construct the projection planes), which makes it time

consuming.

In [46], the Laplacian editing method that implicitly trans-

forms the differential δ-coordinates is proposed, based on

finding an optimal transform for each vertex. The editing

paradigm implies positional constraints on some vertices,

and it deduces the local rotations based on translations of the

handle, similarly to [45]. The local transforms are defined

by comparing 1-rings in the original mesh and the unknown

deformed mesh, and are formulated as linear expressions in

the vertices of the unknown mesh. The reconstruction Equa-

tion (3) is thus altered to make the differential coordinates

similarity-invariant: we solve for the reconstructed geometry

V ′ = {v′
1, . . . , v′

n} by minimizing

E(V ′) =
n∑

i=1

∥∥Ti (V
′)δi − L(v′

i)
∥∥2 +

∑
i∈U

‖v′
i − ui‖2 (7)

where U is the set of constrained vertices. The transforma-

tions Ti are themselves unknowns that linearly depend on the

unknown vertices V ′. Each Ti is a transformation that takes

the original 1-ring of vertex i to the newly reconstructed one

Ti = argmin
Ti

∑
j∈{i} ⋃

N (i)

‖Ti v j − v′
j‖2

In addition, the Ti’s are constrained to be translations, rota-

tions and scales only, in order to enforce local detail preserva-

tion and to disallow shears. In 2D, this is easy since similarity

transformations have linear form

Ti =

⎛⎜⎝ s −h tx

h s ty

0 0 1

⎞⎟⎠
In 3D, however, a linearized version of rotation constraint is

needed, since true 3D rotation matrices cannot be expressed

linearly in 3D. If h represents the rotation axis and H is

the skew-symmetric matrix such that Hx = h × x, ∀x ∈ R3,

then the class of translations, rotations and scales has the form

s exp H = s(α I + β H + γ hT h).

Figure 11: Laplacian mesh editing [46]. The red belt bounds
the region of interest; editing is performed by manipulating
the handle object represented by the yellow sphere.

The last term is quadratic, and is dropped, which results in

the following linearized form

Ti =

⎛⎜⎜⎜⎜⎝
s −h3 h2 tx

h3 s −h1 ty

−h2 h1 s tz

0 0 0 1

⎞⎟⎟⎟⎟⎠
For further details on the derivation of the expressions for

Ti’s see [54]. The linearization causes anisotropic scaling by

cos θ along the rotation axis h, where θ is the rotation angle.

Therefore, when large rotations are involved in the editing

constraints, this would lead to scaling artifacts. To rectify the

anisotropy, [46] propose to remove this anisotropic scaling

in postprocessing (by scaling the transformed differential co-

ordinates back to their original size) and reconstruct again

using the basic Equation (3). Note that this repair step also

handles the isotropic scaling that may have been caused due

to the scale-invariance of (7). Also note that the size of the

linear system that corresponds to (7) is 3n × 3n because in

the expressions for Ti’s there is a dependence between the x,

y and z coordinates of the mesh, and thus we can no longer

solve the system separately for each coordinate. Figure 11

shows an example of editing with this method.

A 2D variant of the editing algorithm of [46] was success-

fully applied to textured 2D shapes with meshed interior in

the work of Igarashi et al. [55]. As mentioned, the 2D version

of the linear reconstruction problem (7) contains exact linear

expressions for transformations Ti that consist of rotations,

isotropic scale and translations only. Igarashi et al. propose a

different solution to the elimination of isotropic scale in the

deformed shape: after the initial solution to (7) given the user

constraints, each triangle of the original shape is fitted into

its corresponding triangle in the deformed shape, mimicking

the new orientation and translation but retaining the original

size of the triangle. Then, another linear system is solved to

consolidate all these fitted triangles together, similar to the

approaches in [56,57]. Since the 2D editing method works on

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 801

Figure 12: Examples of sketch-based editing of silhouettes
[58]. The sketched curve hints at the new desired shape of
the silhouette. By weakly weighting the sketch constraints in
the reconstruction process (Equation (7)), the details of the
shape are preserved, and the deformation follows the hint of
the user.

a “volumetric” representation (meshed area of the interior of

the shape in the 2D case), the deformations exhibit realistic

rigidity and shape preservation. Additional important contri-

bution of this work is the integration of new input devices for

direct interaction with the shapes, such as two-handed mouse

devices and touch-pads.

The 3D Laplacian editing [46] has been recently extended

and adapted for advanced modeling metaphors. Nealen et al.
[58] employ the Laplacian framework for sketch-based edit-

ing that provides an intuitive yet powerful interface for the

user. The main building block of the interface is manipula-

tion of sketched curves: the user can edit silhouette curves

or any other paths on the mesh via direct sketching of the

new shape for the curves. The underlying machinery is an

adaptation of Equation (7), where the positional constraints

are weighted differently according to the intention of the

user: strong weighting if the intention is to closely follow

the sketch, or weak weighting for approximate sketching.

See Figure 12 for an example of such approximate silhou-

ette sketching. In addition, the new editing system allows to

create sharp or smooth ridges and ravines over the sketched

curves, by constraining the Laplacians to specific values (at-

tained by user-controlled scaling). Finally, suggestive con-

tours (see [59]) can be created by assigning specific rotations

to the Laplacians in the region of interest around the sketched

curve.

The pursuit after a local differential representation that is

invariant to rigid transformations and enables linear recon-

struction mechanism achieved a significant progress in the

work of Lipman et al. [48]. In this paper, a new differential

representation is proposed, which bears similarity to the clas-

sical differential geometry notions of the first and the second

fundamental forms. Assuming a normal to the tangent plane

is given at each vertex of the mesh, Lipman et al. define two

discrete forms: the first represents a scalar product in the tan-

gent plane of each vertex, and is represented by edge lengths

and the angles between the edges of the 1-ring, projected onto

the tangent plane. The second form is linear and expresses

the height function of the mesh with respect to the tangent

plane. It is represented by the signed distance of the 1-ring

vertices to the tangent plane. Clearly, such a representation

is invariant to the global coordinate frame, because it con-

sists solely of distances and angles (similarly to the pyramid

coordinates [53]).

Lipman et al. [48] prove that, given the values of the dis-

crete forms that were taken from an existing mesh, the mesh

Cartesian geometry can be uniquely restored up to global

translation and rotation. The linear reconstruction process is

the key issue: to achieve it, two decoupled steps are needed.

First, the local frames of each vertex are reconstructed. This

can be done by constructing and solving a linear system of

equations that encodes the changes between the local frames

of adjacent vertices. For each mesh edge (i , j) we need an

equation that expresses the difference between {bi
1, bi

2, Ni}
(the local frame at i) and {b

j
1, b

j
2, N j} (the local frame at j)

in the coordinates of the local frame at i

b
j
1 − bi

1 = α
i j
11 bi

1 + α
i j
12 bi

2 + α
i j
13 Ni

b
j
2 − bi

2 = α
i j
21 bi

1 + α
i j
22 bi

2 + αi
23 Ni

N j − Ni = α
i j
31 bi

1 + α
i j
32 bi

2 + α
i j
33 Ni

The coefficients α
i j
km of this equation can be completely de-

fined by the discrete forms representation. Note that since

at each vertex we have three local frames vectors, and the

system of equations is separable in the three coordinates, the

width of the matrix is 3n. By adding modeling constraints on

the local frames we arrive at a least-squares system whose

normal equation matrix is of size 3n × 3n. The next step is to

reconstruct the actual vertex positions from the local frames.

This is done by solving a second linear system of equations,

which simply encodes the edge vectors in the coordinates of

the local frames

v j − vi = β
i j
1 bi

1 + β
i j
2 bi

2 + β
i j
3 Ni , ∀(i, j) ∈ E

Here, the right-hand side is known: the coefficients β
i j
k are

defined by the discrete forms and the local frame vectors were

already computed from the previous system. It is possible to

add positional modeling constraints to this system and to

solve it in the least-squares sense (it is an n × n system).

The power of the method of Lipman et al. [48] lies in

the fact that the proposed geometry representation is com-

pletely rotation-invariant, and the reconstruction process is

linear. Figure 13 shows strong deformations obtained with

this method, while preserving the local details of the sur-

face. The price is solving two linear systems, and it remains

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

802 O. Sorkine / Differential Representations for Mesh Processing

Figure 13: Some editing results using the rotation-invariant representation of [48]. Note the large rotational deformations
achieved and the preservation of local surface details.

unclear whether it is possible to avoid this. Another draw-

back is that the manipulation of the frames and the positions

is decoupled (as in the Poisson editing method of [47]) and

the user must adjust the transformation of the handle frame to

the transformation of the handle position. Sole translation of

the handle will not affect the local frames of the mesh here,

unlike in Laplacian editing, for instance, where the needed

local rotations are automatically deduced from the handle

translation.

It is important to note that all the above-described surface-

based deformation methods do not take the volume of the

object into account. As a result, self-intersections might hap-

pen during the editing process, and in general the volume

of the shape cannot be preserved. The problem of local self-

intersections was treated, for example, in [60], where a mul-

tiresolution framework was used, with details encoded as

volumetric elements rather than displacement vectors. How-

ever, rigorously treating volume conservation in this manner

leads to time-consuming computations that hinder interactive

response. Recently, Zhou et al. [61] proposed to augment the

Laplacian surface representation with a volumetric graph.

More precisely, they place a 3D grid of vertices inside the

shape, as well as a layer of additional vertices wrapping the

shape on the exterior. These additional vertices are connected

between themselves as a standard grid, and also linked to the

surface mesh. Zhou et al. then apply the Laplacian editing

technique to this volumetric mesh graph. It is observed that

such deformation tends to preserve the shape volume better

while retaining local surface detail, at the expense of enhanc-

ing the complexity of the representation. Yet, the challenge

remains to find a theoretically sound deformation approach

that would tie the surface properties with the volumetric ones.

4.4. Shape interpolation using differential

representations

For a recent survey on morphing techniques the reader

is referred to [62]; below we summarize the newest ap-

proaches related to the Laplacian framework and differential

representations.

Local differential representations described above allow

basic mesh manipulation, as well as advanced editing op-

erations. By mixing and interpolating the differential repre-

sentations of several meshes, it is possible to blend between

different shapes, perform detail transfer from one shape onto

another, transplant parts of meshes onto other meshes, etc.

Local shape morphing with differential δ-coordinates was

first proposed by Alexa [44] (see also the extended pa-

per [38]). When simple linear interpolation of Laplacians

is performed, the result is identical to linear interpolation

of Cartesian coordinates, which is known for its artifacts

[56,63]. However, Alexa proposed to use varying interpola-

tion weights, which lead to better results. For example, when

attaching one mesh part to another, the weighting can vary

proportionally to the distance from the merge region, which

leads to a more natural, gradual blend. This idea was further

explored in [46], where the “coating transfer” tool was in-

troduced: by “peeling” mesh detail via smoothing, one can

transfer the details onto another mesh. The peeled coating

is represented by differential coordinates; their orientation is

adapted to the orientation of the corresponding local frames

on the target mesh, and then they are added to the differential

coordinates of the target mesh. Finally, the target mesh with

the new coating is reconstructed via Equation (3). Figure 14

shows some coating transfer results and mesh transplanting

results from [46].

When interpolating between different shapes (given they

have the same connectivity in full correspondence), correct

handling of rotations is extremely important. In the simplest

case, when the target shape is a rigid transformation of the

source shape (say, rotation by 90 degrees about some axis),

we expect the blending between the two shapes to be gradual

rotation of the source shape towards the target. This does not

happen if we linearly blend the Cartesian (or the differential)

coordinates of the two shapes. We need a correct interpolation

of the orientation of the shape. In general, naturally-looking

shape interpolation exhibits rigidity and minimizes elastic

distortion of the in-between shapes [56].

As mentioned, the Laplacians (or the gradients [47]) are

linear functions of the Cartesian coordinates and thus their

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 803

Figure 14: Examples of shape blending using the Laplacian framework [46]. (a-b) show coating transfer (the sources for
coating are framed). In (c-d), the wings of the Feline model were transplanted onto the Bunny.

linear interpolation is equivalent to simple Cartesian interpo-

lation. When a volumetric shape representation is available,

Alexa et al. [56] proposed to consider the local linear trans-

formation between the elements of the simplicial complexes

that describe the two shapes, and interpolate separately be-

tween the rotational and the shearing parts of this transforma-

tion. This was also employed by Sumner and Popović [57]

to transfer local deformations from one mesh animation se-

quence onto another, and by Xu et al. [64] for surface mesh

morphing. For each pair of source and target mesh triangles,

the affine transformation between their local frames is com-

puted by considering the triangles’ edges and normals (this

transformation is in fact the so-called deformation gradient,

see [57]). This affine transformation Hi is factored using the

polar decomposition: Hi = RiSi, where Ri is a rotation and Si

is symmetric and represents the elastic (scaling) part of Hi.

To interpolate between the identity and Hi, Ri is interpolated

in the Lie algebra (using e.g., quaternions) and Si is linearly

interpolated. Therefore, for a given interpolation parameter

t, for each triangle i we have a local transformation

Hi (t) = LIE INTERP(Ri , I , t) · ((1 − t)Si + t I). (8)

This transformation Hi(t) is applied to the gradients of the

source triangle i, and the intermediate mesh is reconstructed

from the transformed gradients as in [47]. This approach re-

sults in a more natural interpolation of rotations of surface

meshes.

A notable limitation of the above approach is its failure to

correctly interpolate very large rotations: it is impossible to

determine how many laps of rotations an element has gone

through by considering solely the source and target state of

the element (we will not be able to distinguish between rota-

tion of α and α + 2πk for any integer k). The above approach

always chooses the “shortest path” interpolation, assuming

the minimal angle between each pair of elements. Thus, for

example, it is impossible to achieve a natural morphing be-

tween a straight line and a spiral in 2D, or a straight bar and

its multiply twisted form (as in Figure 15).

Observe that in order to correctly interpolate representa-

tions that are linear functions of Cartesian geometry, we have

to perform nonlinear interpolation. This is due to the fact

that those representations are not rotation-invariant. The im-

portance of having a linear interpolation method with the

possibility of linear reconstruction is evident in the work of

Sumner et al. [65]. Sumner et al. propose a new algorithm

for mesh editing, which relies on a space of example edits.

This idea enables easy creation of naturally behaving shapes

when we have an input data base (e.g., key frames of a manu-

ally designed animation or key-frame output of a simulator).

Roughly speaking, given a rest mesh M 0 in some represen-

tation F(M 0), the example space is a span of the deformed

states F(M 1), . . . , F(Mk) of the mesh M 0, again, using the

chosen representation. The representation F(·) should be lo-

cal (at least translation-invariant), such as the Laplacian co-

ordinates or the deformation gradients (which was the choice

of Sumner et al.). When the user interactively edits the mesh

M 0, he/she poses positional modeling constraints of the form

(5). The algorithm searches for a shape that (i) satisfies the

modeling constraints and (ii) whose representation is as close

as possible to the example space. In other words, the algo-

rithm computes a mesh M and a set of scalar weights w1, . . . ,

wk that minimize the following energy:∥∥F(M) − INTERPw1,...,wk · (F(M1), . . . , F(Mk))
∥∥2

(9)

under positional constraints of the form (5). When the exam-

ple space is very rich (meaning, when a dense set of example

edits is available), it is enough to assume that it is a linear

space, that is,

INTERPw1,...,wk (F(M1), . . . , F(Mk)) =
k∑

i=1

wi F(Mi).

Since F(·) is a linear function of the coordinates of M, the

global optimization in (9) can be solved linearly. However,

when we do not have a dense set of examples, a nonlin-

ear interpolation is required, so that the generated shapes

include correct rotations and extrapolate well. Sumner et al.
[65] employ the interpolation method (8), which turns the

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

804 O. Sorkine / Differential Representations for Mesh Processing

Figure 15: Linear shape interpolation sequence of the Bar mesh using the discrete forms representation [48]. Note the natural
rotation of the in-between shapes.

above problem (9) into a global nonlinear optimization, and

thus more expensive.

As mentioned by the authors of [65], a valid alternative for

representation of the example space could be the pyramid co-

ordinates [53]. Since they are rotation-invariant, they can be

simply linearly interpolated in (9). However, the optimization

problem would be still nonlinear because the reconstruction

of Cartesian coordinates from pyramid coordinates is not lin-

ear (F(·) is not a linear representation in this case).

The discrete forms [48] provide an especially powerful

representation for shape interpolation. They are rotation-

invariant and can thus be linearly interpolated, and the re-

construction process requires solving two linear systems. In

the case of the discrete forms, the representation F(·) is not

linear in the Cartesian coordinates, but, figuratively speak-

ing, it can be “factored” so that the reconstruction is done in

two linear stages. In the context of morphing, this represen-

tation can be viewed as an extension of the 2D representation

of Sederberg et al. [63]: they represented polygonal curves

by their edge lengths and angles between successive edges,

whereas Lipman et al. [48] represent 3D meshes by edge

lengths and angles, projected onto the tangent plane, plus the

additional height component. Both methods produce natural

shape interpolations. Figure 15 demonstrates a morphing se-

quence from [48]. Since interpolation of discrete forms does

not require explicit computation of global rotations between

pairs of mesh elements, but rather only considers the dif-
ference between adjacent local orientations (which contains

rotations of up to π radians), it permits correct interpolation

of large (“multiple-lap”) rotations.

5. Conclusions

In this paper, we have described the Laplacian mesh pro-

cessing framework and reviewed the recent applications of

differential surface representations. The advantages of such

surface representations are in their capability for local dif-

ferential shape description and definition of effective bases

for geometry representation. The framework is useful for ap-

plications in geometric modeling where surface details are

important, especially when processing complex scanned sur-

faces with abundant detail. The power of the framework stems

from its linearity, coupled with the availability of advanced

linear solvers. We hope that our paper will help familiarizing

researches with this area of study and believe that similar ap-

proaches will lead to new useful tools in geometric modeling

yet to be discovered.

Acknowledgments

I would like to express my deepest gratitude to my col-

leagues and co-authors, whose work constitutes the core of

this paper: Marc Alexa, Daniel Cohen-Or, Doron Chen, Dror

Irony, David Levin, Yaron Lipman, Andrew Nealen, Chris-

tian Rössl, Hans-Peter Seidel and Sivan Toledo. I am also

grateful to the anonymous reviewers for their extensive help

in improving this paper. This work was supported in part by

grants from the Israel Science Foundation (founded by the

Israel Academy of Sciences and Humanities) and the Israeli

Ministry of Science. The author’s PhD studies are supported

by the Colton Foundation.

References

1. M. Fiedler: Algebraic connectivity of graphs. Czech.
Math. Journal, 23, 298–305, 1973.

2. F. R. K. Chung: Spectral Graph Theory. American Math-

ematical Society, 1997.

3. M. P. do Carmo: Differential Geometry of Curves and
Surfaces. Prentice-Hall, 1976.

4. G. Taubin: A signal processing approach to fair sur-

face design. In Proceedings of ACM SIGGRAPH, ACM

Press, pp. 351–358, 1995.

5. M. Meyer, M. Desbrun, P. Schröder, A. H. Barr: Dis-

crete differential-geometry operators for triangulated 2-

manifolds. In Visualization and Mathematics III, Hege,

H.-C., Polthier, K., (Eds.). Springer-Verlag, Heidelberg,

pp. 35–57, 2003.

6. U. Pinkall, K. Polthier: Computing discrete minimal sur-

faces and their conjugates. Experiment. Math., 2(1): 15–

36, 1993.

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 805

7. M. S. Floater: Mean value coordinates. CAGD, 20(1):

19–27, 2003.

8. M. Botsch, D. Bommes, L. Kobbelt: Efficient linear sys-

tem solvers for mesh processing. IMA Mathematics of
Surfaces XI, Lecture Notes in Computer Science, 3604:

62–83, 2005.

9. S. Toledo: Taucs: A Library of Sparse Linear Solvers,
version 2.2. Tel-Aviv University, Available online at

http://www.tau.ac.il/∼stoledo/taucs/, Sept. 2003.

10. B. Aksoylu, A. Khodakovsky, P. Schröder: Multilevel

solvers for unstructured surface meshes. SISC, 26(4):

1146–1165, 2005.

11. L. Shi, Y. Yu, N. Bell, W.-W. Feng: A fast multigrid

algorithm for mesh deformation. In Proceedings of ACM
SIGGRAPH, To appear, 2006.

12. E. G. Boman, B. Hendrickson: Support theory for pre-

conditioning. SIAM Journal on Matrix Analysis and Ap-
plications, 25(3): 694–717, 2003.

13. S. Guattery, G. L. Miller: Graph embeddings and Lapla-

cian eigenvalues. SIAM Journal on Matrix Analysis and
Applications, 21(3): 703–723, 2000.

14. D. Chen, D. Cohen-Or, O. Sorkine, S. Toledo: Algebraic

analysis of high-pass quantization. ACM Transactions on
Graphics, 24(4): 1259–1282, 2005.

15. Z. Karni, C. Gotsman: Spectral compression of mesh

geometry. In Proceedings of ACM SIGGRAPH, pp. 279–

286, 2000.

16. G. Taubin: Geometric signal processing on polygonal

meshes. In Proceedings of Eurographics (STAR volume),
State of the Art Report, 2000.

17. P. Alliez, C. Gotsman: Recent advances in compression

of 3D meshes. In Advances in Multiresolution for Geo-
metric Modelling, Dodgson, N., Floater, M., Sabin, M.,

(Eds.), Springer-Verlag, pp. 3–26, 2005.

18. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-

bery, W. Stuetzle: Multiresolution analysis of arbitrary

meshes. In Proceedings of ACM SIGGRAPH, pp. 173–

182, 1995.

19. D. Zorin, P. Schröder, W. Sweldens: Interactive mul-

tiresolution mesh editing. In Proceedings of ACM SIG-
GRAPH, pp. 259–268, 1997.

20. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, D.

Dobkin: MAPS: Multiresolution adaptive parameteriza-

tion of surfaces. In Proceedings of ACM SIGGRAPH,

ACM Press, pp. 95–104, 1998.

21. I. Guskov, W. Sweldens, P. Schröder: Multiresolution

signal processing for meshes. In Proceedings of ACM
SIGGRAPH, ACM Press, pp. 325–334, 1999.

22. A. Khodakovsky, P. Schröder, W. Sweldens: Progres-

sive geometry compression. In Proceedings of ACM SIG-
GRAPH, pp. 271–278, 2000.

23. Z. Karni, C. Gotsman: 3D mesh compression using fixed

spectral bases. In Proceedings of Graphics Interface,

Canadian Information Processing Society, pp. 1–8, 2001.

24. O. Sorkine, D. Cohen-Or: Least-squares meshes. In Pro-
ceedings of Shape Modeling International, IEEE Com-

puter Society Press, pp. 191–199, 2004.

25. O. Sorkine, D. Cohen-Or, D. Irony, S. Toledo:

Geometry-aware bases for shape approximation. IEEE
Transactions on Visualization and Computer Graphics,

11(2): 171–180, 2005.

26. O. Sorkine, D. Cohen-Or, S. Toledo: High-pass quan-

tization for mesh encoding. In Proceedings of the Eu-
rographics/ACM SIGGRAPH Symposium on Geometry
processing, Eurographics Association, pp. 42–51, 2003.

27. P. Cignoni, C. Rocchini, R. Scopigno: Metro: Measuring

error on simplified surfaces. Computer Graphics Forum,

17(2): 167–174, 1998.

28. E. Praun, H. Hoppe, A. Finkelstein: Robust mesh water-

marking. In Proceedings of ACM SIGGRAPH, pp. 49–

56, 1999.

29. R. Ohbuchi, S. Takahashi, T. Miyazawa, A. Mukaiyama:

Watermarking 3D polygonal meshes in the mesh spectral

domain. In Proceedings of Graphics Interface, Morgan

Kaufmann Publishers, pp. 9–17, (June 2001).

30. R. Ohbuchi, A. Mukaiyama, S. Takahashi: A frequency-

domain approach to watermarking 3D shapes. Computer
Graphics Forum (Proceedings of Eurographics), 21(3):

373–382, 2002.

31. D. Cotting, T. Weyrich, M. Pauly, M. Gross: Robust wa-

termarking of point-sampled geometry. In Proceedings
of Shape Modeling International, pp. 233–242, 2004.

32. T. W. Sederberg, S. R. Parry: Free-form deformation of

solid geometric models. In Proceedings of ACM SIG-
GRAPH, pp. 151–160, 1986.

33. S. Coquillart: Extended free-form deformation: A sculp-

turing tool for 3D geometric modeling. In Proceedings
of ACM SIGGRAPH, 90, pp. 187–196, 1990.

34. M. Ranta, M. Inui, F. Kimura, M. Mäntylä: Cut and paste

based modeling with boundary features. In SMA ’93:

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

806 O. Sorkine / Differential Representations for Mesh Processing

Proceedings of the Second Symposium on Solid Model-
ing and Applications (May 1993), pp. 303–312.

35. S. Kuriyama, T. Kaneko: Discrete parametrization for

deforming arbitrary meshes. In Proceedings of Graphics
Interface, pp. 132–139, 1999.

36. H. Biermann, I. Martin, F. Bernardini, D. Zorin: Cut-and-

paste editing of multiresolution surfaces. In Proceedings
of ACM SIGGRAPH, pp. 312–321, 2002.

37. T. Kanai, H. Suzuki, J. Mitani, F. Kimura: Interac-

tive mesh fusion based on local 3D metamorphosis. In

Proceedings of Graphics Interface, pp. 148–156, (June

1999.

38. M. Alexa: Differential coordinates for local mesh morph-

ing and deformation. The Visual Computer, 19(2): 105–

114, 2003.

39. L. Kobbelt, S. Campagna, J. Vorsatz, H.-P. Seidel: Inter-

active multi-resolution modeling on arbitrary meshes.

In Proceedings of ACM SIGGRAPH, ACM Press, pp.

105–114, 1998.

40. D. Forsey, R. Bartels: Hierarchical B-spline refinement.

In Proceedings of ACM SIGGRAPH, ACM Press, pp.

205–212, 1988.

41. L. Kobbelt, J. Vorsatz, H.-P. Seidel: Multiresolution hier-

archies on unstructured triangle meshes. Computational
Geometry: Theory and Applications, 14: 5–24, 1999.

42. S. Lee: Interactive multiresolution editing of arbitrary

meshes. Computer Graphics Forum (Eurographics 99),
18(3): 73–82, 1999.

43. M. Botsch, L. Kobbelt: An intuitive framework for real-

time freeform modeling. In Proceedings of ACM SIG-
GRAPH, pp. 630–634, 2004.

44. M. Alexa: Local control for mesh morphing. In Proceed-
ings of the International Conference on Shape Modeling
and Applications (SMI-01) (Los Alamitos, CA, May 7–

11 2001), Werner, B. (Ed.), pp. 209–215.

45. Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C.

Rössl, H.-P. Seidel: Differential coordinates for inter-

active mesh editing. In Proceedings of Shape Modeling
International, IEEE Computer Society Press, pp. 181–

190, 2004.

46. O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl,

H.-P. Seidel: Laplacian surface editing. In Proceedings
of the Eurographics/ACM SIGGRAPH Symposium on
Geometry processing, ACM Press, pp. 179–188, 2004.

47. Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H.-Y.

Shum: Mesh editing with Poisson-based gradient field

manipulation. ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH), 23(3): 644–651, 2004.

48. Y. Lipman, O. Sorkine, D. Levin, D. Cohen-Or: Linear

rotation-invariant coordinates for meshes. ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH),
24(3): 479–487, 2005.

49. R. Zayer, C. Rössl, Z. Karni, H.-P. Seidel: Harmonic

guidance for surface deformation. In Computer Graph-
ics Forum (Proceedings of Eurographics), Eurographics,

Blackwell, pp. 601–609, 2005.

50. X. Gu, S.-T. Yau: Global conformal surface param-

eterization. In Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Geometry processing, Eu-

rographics Association, pp. 127–137, 2003.

51. X. Ni, M. Garland, J. C. Hart: Fair morse functions for

extracting the topological structure of a surface mesh.

ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH), 23(3): 613–622, 2004.

52. S. Dong, S. Kircher, M. Garland: Harmonic functions for

quadrilateral remeshing of arbitrary manifolds. CAGD,

22(5): 392–423, 2005.

53. A. Sheffer, V. Kraevoy: Pyramid coordinates for mor-

phing and deformation. In Proceedings of the Second
International Symposium on 3DPVT (3D Data Process-
ing, Visualization, and Transmission), IEEE Computer

Society Press, pp. 68–75, 2004.

54. Y. Lipman, O. Sorkine, M. Alexa, D. Cohen-Or, D.

Levin, C. Rössl, H.-P. Seidel: Laplacian framework for

interactive mesh editing. International Journal of Shape
Modeling, 11(1): 43–62, 2005.

55. T. Igarashi, T. Moscovich, J. F. Hughes: As-rigid-as-

possible shape manipulation. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), 24(3):

1134–1141, 2005.

56. M. Alexa, D. Cohen-Or, D. Levin: As-rigid-as-possible

shape interpolation. In Proceedings of ACM SIG-
GRAPH, pp. 157–164, 2000.

57. R. W. Sumner, J. Popović: Deformation transfer for tri-

angle meshes. ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH), 23(3): 399–405, 2004.

58. A. Nealen, O. Sorkine, M. Alexa, D. Cohen-Or: A

sketch-based interface for detail-preserving mesh edit-

ing. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), 24(3): 1142–1147, 2005.

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

O. Sorkine / Differential Representations for Mesh Processing 807

59. D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, A. Santella:

Suggestive contours for conveying shape. ACM Trans-
actions on Graphics (Proccedings of ACM SIGGRAPH),
22(3): 848–855, 2003.

60. M. Botsch, L. Kobbelt: Multiresolution surface repre-

sentation based on displacement volumes. Computer
Graphics Forum, 22(3): 483–492, 2003.

61. K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, H.-

Y. Shum: Large mesh deformation using the volumetric

graph Laplacian. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH), 24(3): 496–503, 2005.

62. M. Alexa: Recent advances in mesh morphing. Com-
puter Graphics Forum, 21(2): 173–196, 2002.

63. T. W. Sederberg, P. Gao, G. Wang, H. Mu: 2-D shape

blending: an intrinsic solution to the vertex path prob-

lem. In Proceedings of ACM SIGGRAPH, ACM Press,

pp. 15–18, 1993.

64. D. Xu, H. Zhang, Q. Wang, H. Bao: Poisson shape in-

terpolation. In Proceedings of the ACM Symposium on
Solid and Physical Modeling, ACM Press, pp. 267–274,

2005.

65. R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović:

Mesh-based inverse kinematics. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), 24(3):

488–495, 2005.

About the author

Olga Sorkine received the BSc degree in mathematics and

computer science from Tel Aviv University in 2000. Cur-

rently, she is a PhD student at the School of Computer Science

at Tel Aviv University. Her research interests are in computer

graphics and include shape modeling, mesh processing and

approximation. She has worked in the area of using Laplacian

transforms for mesh processing and will submit a PhD thesis

on this topic.

c© 2006 The Author
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

