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Figure 1: Advanced mesh editing operations using Laplacian coordinates: free-form deformations (a-b), coating transfer (c) and mesh
transplanting (d). Representing the geometry using the Laplacian coordinates enables preservation of detail.

Abstract

Surface editing operations commonly require geometric details of
the surface to be preserved as much as possible. We argue that
geometric detail is an intrinsic property of a surface and that, con-
sequently, surface editing is best performed by operating over an
intrinsic surface representation. We provide such a representation
of a surface, based on the Laplacian of the mesh, by encoding each
vertex relative to its neighborhood. The Laplacian of the mesh is
enhanced to be invariant to locally linearized rigid transformations
and scaling. Based on this Laplacian representation, we develop
useful editing operations: interactive free-form deformation in a re-
gion of interest based on the transformation of a handle, transfer
and mixing of geometric details between two surfaces, and trans-
planting of a partial surface mesh onto another surface. The main
computation involved in all operations is the solution of a sparse
linear system, which can be done at interactive rates. We demon-
strate the effectiveness of our approach in several examples, show-
ing that the editing operations change the shape while respecting
the structural geometric detail.1

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid and object rep-
resentations

Keywords: mesh editing, detail preservation

1 Introduction

Surfaces in computer graphics are mostly represented in global co-
ordinate systems: explicit representations are based on points, ver-

1The conference version of this paper will be presented at the Eurograph-
ics Symposium on Geometry Processing 2004.

tices, or nodes that are typically described using absolute Euclidean
coordinates. Implicit representations describe the shape as the level
set of a function defined in Euclidean space. A global coordinate
system is the natural choice for all operations involving other ob-
jects such as rendering, intersection testing and computation, trans-
formations, or CSG modeling. On the other hand, for local surface
modeling, it would be desirable that the representation captures the
local shape (i.e. the intrinsic geometry of the surface) rather than
the absolute position or orientation in Euclidean space.

Manipulating and modifying a surface while preserving the geo-
metric details is important for various surface editing operations, in-
cluding free-form deformations [Sederberg and Parry 1986; Coquil-
lart 1990], cut and paste [Ranta et al. 1993; Kuriyama and Kaneko
1999; Biermann et al. 2002], fusion [Kanai et al. 1999], morph-
ing [Alexa 2003], and others. Note that the absolute position of the
vertices in a mesh is not important for these operations, which calls
for an intrinsic surface representation.

A partially intrinsic surface mesh representation is multi-
resolution decompositions [Forsey and Bartels 1988; Zorin et al.
1997; Kobbelt et al. 1998] [Kobbelt et al. 1999; Guskov et al. 1999;
Capell et al. 2002]. In a multi-resolution mesh, the geometry is
encoded as a base mesh and several levels of refinement. The re-
finement is typically described locally, so that the geometric details
are mostly captured in a discrete set of intrinsic coordinates. Using
this representation, several modeling operations can be performed
on an appropriate user-specified level-of-detail.

Our approach to encoding geometric details is to use differen-
tial coordinates for the vertices. This provides an intrinsic repre-
sentation of the surface mesh, where the reconstruction of global
coordinates from this representation always preserves the local ge-
ometry as much as possible given the modeling constraints. Using
a differential representation for editing operations has been shown
to be quite effective in image domain [Fattal et al. 2002; Pérez et al.
2003]. Image domain has a natural regular parameterization and a



resulting inherent definition of a gradient, which allows modeling
many editing tasks as a discrete Poisson equation. However, this
approach cannot be directly applied or adapted to discrete (as well
as continuous) surfaces.

We rather realize an approach to surface mesh editing based
on encoding each vertex relative to the centroid of its topological
neighbors. The difference of a vertex position from the centroid
of its neighbors is known as a Laplacian coordinate [Alexa 2003;
Karni and Gotsman 2000; Sorkine et al. 2003; Lipman et al. 2004].
Laplacian coordinates are a linear function of the global mesh ge-
ometry, which allows efficient converting between absolute and in-
trinsic representations by solving a sparse linear system. Laplacian
coordinates are invariant under translation (of absolute geometry),
but they are not invariant to scaling and rotation, which poses the
main practical problem.

We provide a technique that makes Laplacian coordinates invari-
ant to rotation and isotropic scaling. Using this technique, we de-
velop useful surface editing operations, which preserve the intrinsic
geometry of the surface as much as possible given the constraints
of the modeling operations. The major contributions of this work
are:
Rotation and scale invariant (RSI) Laplacian coordinates:We
reformulate the process of least squares fitting of the Euclidean ge-
ometry to the given Laplacian coordinates. In our fitting process,
we implicitly compute an appropriate transformation per vertex,
which is applied to the respective Laplacian coordinate. This leads
to Laplacian coordinates that are almost insensitive to rotation and
scaling.
Interactive detail-preserving surface editing: Based on the RSI
Laplacian coordinates, we develop an interactive editing system.
The user interactively deforms a region of the surface by manipu-
lating a handle. The transformation of the handle induces a global
deformation that resembles the outcome of manipulating an object
made of some physical soft material.
Transfer of geometric detail (coating): Since the detail is cap-
tured in the Laplacian coordinates, we are able to “peel” high-
frequency details from one surface and transfer them to another.
The method can be applied to arbitrary homeomorphically parame-
terized surface patches.
Transplanting surface patches with homeomorphic boundaries:
Our transplanting technique only requires that the surfaces have
matching topology at the boundaries; the surface patches within
the boundaries need not match. A seamless transition with gradual
change of detail from one part to another results from blending the
Laplacian representations of the parts.

2 Related work

Editing three-dimensional shapes has been an important research
area in geometric modeling and computer graphics. The dominat-
ing approach for (free-form) designing of a surface from scratch is
based on parametric surfaces (see e.g., [Farin 1992; Hoschek and
Lasser 1993]), which can be generalized to non-regular base do-
mains using subdivision techniques [Schröder and Zorin 2000].

However, we are interested in editing an existing surface, proba-
bly acquired with scanning devices. If the surface is smooth, mod-
ifications should remain smooth [Welch and Witkin 1994; Taubin
1995; Le Veuvre 2003]. If the surface contains geometric details
(e.g. a sharp feature), these details should be preserved. The edit-
ing operation should naturally change the shape and simultane-
ously respect the structural detail. The standard approach to detail-
preserving modeling operations uses a multi-resolution representa-
tion of the mesh. The geometric details are usually expressed rel-
ative to a local coordinate frame [Forsey and Bartels 1988; Zorin
et al. 1997; Kobbelt et al. 1998; Kobbelt et al. 1999; Guskov et al.
1999]. The different levels can be considered as frequencies of the

geometry. The coarsest level refers to the smoothest surface and
adding finer levels introduces smaller details. Editing operations
can be performed on coarse levels, and the so modified shape is
computed by “adding” the displacements in their local coordinate
frames.

The problem of basis elements with large support in multi-
resolution representations has motivated differential representations
for image editing [Ṕerez et al. 2003]. Note that the completely local
and intrinsic differential representation comes at the expense of a
global reconstruction computation (e.g. the solution of a global
PDE), while the generation of absolute coordinates from multi-
resolution representations is restricted to the modified bases.

Our motivation is similar to image editing methods based on
PDEs. We propose a local differential representation, at the ex-
pense of a global reconstruction from differential to absolute geom-
etry. Specifically, the modified surface is reconstructed by solving a
sparse linear system. Using state-of-the-art solvers this turns out to
be very fast and adequate for interactive systems, even for editing
operations on large meshes.

The potential of differential coordinates for free-form model-
ing is briefly discussed by Alexa [Alexa 2003]. He specifically
discusses the difficulty of deriving affine-invariant coordinates for
mesh representation as the vertex neighborhood may be degener-
ated (i.e. planar) and, even more difficult, near-degenerate situa-
tions make the reconstruction numerically intractable.

In a recent work, Yu et al. [Yu et al. 2004] introduce an edit-
ing technique, formulated by manipulation of the gradients of the
coordinate functions (x,y,z) defined on the mesh. The surface is re-
constructed by solving the least-squares system resulting from dis-
cretizing the Poisson equation∆ f = g with Dirichlet boundary con-
ditions. Lipman et al. [Lipman et al. 2004] reconstruct the surface
from discrete Laplacians of the mesh functions and spatial bound-
ary conditions by solving a very similar least-squares system. Both
works point out the main problem of this approach: the need to ro-
tate the local frames that define the gradients, or the Laplacians, to
preserve the orientation of the local details. They propose to remedy
this problem by explicit assignment of the local rotations. Lipman
et al. [Lipman et al. 2004] estimate the local rotations of the frames
on the underlying smooth surface, and Yu et al. [Yu et al. 2004]
propagate the rotation of the editing handle, defined by the user,
to all the vertices of the region of interest. In contrast to these ex-
plicit solutions, in this paper we introduce a method that implicitly
transforms the differential coordinates based on finding anoptimal
transform for each vertex. The transform is defined by a linear ex-
pression of local coordinates and a sparse set of control points. The
solution of this linear system strives to preserve the size and the
orientation of the differential coordinates and consequently of the
surface details.

We focus our work on meshes as they are the dominating repre-
sentation of surfaces these days. Other surface representations are
advantageous for certain modeling operations. Implicit surfaces al-
low easy blending, space warping, and CSG modeling [Rockwood
1989; Guy and Wyvil 1995; Pasko et al. 1995; Wyvill et al. 1999].
The recently popular level-set approach yields a particularly simple
formulation and implementation of these operations [Museth et al.
2002] based on the discrete and regular representation of a distance
field. Adaptively sampled distance fields [Frisken et al. 2000] pro-
vide a discrete surface representation with controlled error. All of
these essentially implicit representations allow changing the topol-
ogy of the surface during modeling. Point-sampled surfaces are re-
lated to meshes; however, explicit information about the topology
is missing. This has advantages for some operations [Pauly et al.
2003], though sometimes requires surface reconstruction steps to
add more points to the representation.



3 Fitting transformed Laplacian coordi-
nates

Let the meshM be described by a pair(K,V), whereK describes
the connectivity andV = {v1, . . . ,vn} describes the geometric po-
sitions of the vertices inR3. We use the following terminology:
the neighborhood ringof a vertexi is the set of adjacent vertices
Ni = { j|(i, j) ∈ K} and thedegree di of this vertex is the number
of elements inNi . We assume that the mesh is connected.

Instead of using absolute coordinatesV, we would like to de-
scribe the mesh geometry using a set of differentials∆ = {δi}.
Specifically, coordinatei will be represented by the difference be-
tweenvi and the average of its neighbors:

δi = L (vi). (1)

For simplicity, we defineL with uniform weights:

L (vi) = vi −
1
di

∑
j∈Ni

v j . (2)

These weights proved to be sufficient in all our experiments. How-
ever, our approach does not depend on the particular choice ofL .
For instance, the cotangent weights (see, e.g. [Desbrun et al. 1999])
would accommodate extremely non-uniform tessellations, and their
application is straightforward. The transformation betweenV and
∆ can be described in matrix algebra. LetA be the mesh adja-
cency matrix andD = diag(d1, . . . ,dn) be the degree matrix. Then
∆ = LV, whereL = I−D−1A for the uniform weights. The matrixL
is commonly considered as the Laplacian operator of the mesh with
connectivityA [Taubin 1995; Karni and Gotsman 2000], which is
why we call δi the Laplacian coordinateof vertex i. Laplacian
coordinates are invariant under translation, but sensitive to linear
transforms. L has rankn− 1, which meansV can be recovered
from ∆ by fixing one vertex and solving a linear system.

The approach to performing modeling operations using Lapla-
cian coordinates∆ is to fix the absolute position of several vertices
(see [Alexa 2003]), i.e.,

v′i = ui , i ∈ {m, . . . ,n}, m< n (3)

and solve for the remaining vertices{v′i}, i ∈ {1, . . . ,m−1} by fit-
ting the Laplacian coordinates of the geometryV ′ to the given
Laplacians∆. It has been observed that the solution behaves bet-
ter if the constraints{ui} are satisfied in a least squares sense rather
than exactly [Sorkine et al. 2003; Lipman et al. 2004]. This results
in the following error functional:

E(V ′) =
n

∑
i=1

∥∥δi −L (v′i))
∥∥2 +

n

∑
i=m

‖v′i −ui‖
2, (4)

which has to be minimized to find a suitable set of coordinatesV ′.
Solving this quadratic minimization problem results in a sparse lin-
ear system of equations.

The rationale of fitting given Laplacian coordinates is that details
of the shape are preserved, as the relative location of vertices is en-
coded in∆. As mentioned, however, these coordinates are sensitive
to linear transformations. Thus, the detail structure of the shape can
be translated, but not rotated or scaled. If the constraintsui imply a
linear transform, the details are not transformed accordingly.

The main idea of our approach is to compute an appropriate
transformationTi for each vertexi based on the eventual new con-
figuration of verticesV ′. Thus,Ti(V

′) is a function ofV ′ and we
formulate the error functional as

E(V ′) =
n

∑
i=1

∥∥Ti(V
′)δi −L (v′i)

∥∥2 +
n

∑
i=m

‖v′i −ui‖
2. (5)

Figure 2: Editing 2D meshes using Laplacian-coordinates fitting.
The red dots denote fixed anchor points and the yellow ones are the
pulled-handle vertices. The original meshes are colored blue.

Note that in Eq. 5 bothTi andV ′ are unknown. However, if the
coefficients ofTi are a linear function inV ′, then solving forV ′

implies findingTi (though not explicitly) sinceE(V ′) is simply a
quadratic function inV ′.

The basic idea for definingTi is to derive it from the transforma-
tion of vi and its neighbors intov′i and its neighbors:

min
Ti

(
‖Tivi −v′i‖2 + ∑

j∈Ni

‖Tiv j −v′j‖2

)
. (6)

Since this is a quadratic expression, the minimizer is a linear func-
tion of V ′, as required. However, ifTi is unconstrained, the natu-
ral minimizer forE(V ′) is a membrane solution, and all geometric
detail is lost. Thus,Ti needs to be constrained in a reasonable way.
We have found thatTi should include rotations, isotropic scales, and
translations. In particular, we want to disallow anisotropic scales,
as they allow removing the normal component from Laplacian co-
ordinates.

The translational part ofTi is introduced simply by using ho-
mogeneous coordinates. The linear part should satisfy the follow-
ing conditions: The transformation should be a linear function in
the target configuration but constrained to isotropic scales and rota-
tions. The class of matrices representing isotropic scales and rota-
tion can be written asT = sexp(H), whereH is a skew-symmetric
matrix. In 3D, skew-symmetric matrices emulate a cross product
with a vector, i.e.Hx = h× x. Drawing upon several other prop-
erties of 3×3 skew matrices (see Appendix A), one can derive the
following representation of the exponential above:

sexpH = s(αI +βH + γ hTh). (7)

Inspecting the terms we find that onlys, I , andH are linear in the
unknownss andh, while hTh is quadratic2. As a linear approx-
imation of the class of constrained transformations we, therefore,

2Figure 2 illustrates editing of a 2D mesh. Note that in 2D the matrices
of classsexp(H) can be completely characterized with the linear expression

Ti =
(

a w tx
−w a ty
0 0 1

)
.



(a) (b) (c)

Figure 3: The editing process. (a) The user selects the region of interest – the upper lip of the dragon, bounded by the belt of stationary
anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) is manipulated by the user: translated and rotated. (c) The editing
result.

(a) (b) (c)

Figure 4: Different handle manipulations. (a) The region of interest (arm), bounded by the belt of stationary anchors, and the handle.
(b) Translation of the handle. (c) Subsequent handle rotation. Note that the detail is preserved in all the manipulations.

use

Ti =

 s −h3 h2 tx
h3 s −h1 ty
−h2 h1 s tz

0 0 0 1

 . (8)

This matrix is a good linear approximation for rotations with small
angles. The consequences for larger angles are discussed later.

Given the matrixTi as in Eq. 8, we can write down the linear
dependency (cf. Eq. 6) ofTi onV ′, explicitly. Let (si ,hi , t i)

T be the
vector of the unknowns inTi . Then we wish to minimize

‖Ai(si ,hi , t i)
T −bi‖

2, (9)

where Ai contains the positions ofvi and its neighbors andbi
contains the position ofv′i and its neighbors. The structure of
(si ,hi , t i)

T yields

Ai =


vkx

0 vkz
−vky

1 0 0
vky

−vkz
0 vkx

0 1 0
vkz

vky
−vkx

0 0 0 1
...

 , k∈ {i}∪Ni ,

(10)
and

bi =


v′kx

v′ky

v′kz

...

 , k∈ {i}∪Ni . (11)

The linear least-squares problem above is solved by

(si ,hi , t i)
T =

(
AT

i Ai

)−1
AT

i bi , (12)

which shows that the coefficients ofTi are linear functions ofbi ,
sinceAi is known from the initial meshV. The entries ofbi are
simply entries ofV ′ so that(si ,hi , t i) and, thus,Ti is a linear func-
tion in V ′, as required.

3.1 Adjusting Ti

In many modeling situations, solving for absolute coordinates in the
way explained above is sufficient. However, there are two excep-
tions that require adjusting the transformations:

1. As mentioned,Ti does not exactly represent the class of
isotropic scales and rotations. For large anglesφ around the
axis h/‖h‖ the space is scaled alongh/‖h‖ with a factor of
cosφ .

2. Sometimes anisotropic scaling is the wanted free-form defor-
mation, e.g., the dislocation of a single vertex typically im-
plies a stretch in only one direction.

Both situations are handled in a similar way: The current set of
transformations{Ti} is computed fromV andV ′. Then eachTi is
inspected, the corresponding Laplacian coordinateδi is updated ap-
propriately depending on the cases above, and the system is solved
again. In the case of too large angles of rotations, it is possi-
ble to first apply an approximated reconstruction using the method
in [Lipman et al. 2004] and then refine it with our technique, such
that smaller rotations are involved. In the case of wanted anisotropic
scaling, the{δi} are scaled by the inverse of the scale implied by
the constraints. See Figure 4 for an example of large rotations.



(a) (b) (c)

Figure 5: Deformations of a model (a) with detail that cannot be expressed by height field. The deformation changes the global shape while
respecting the structural detail as much as possible.

(a) (b) (c)

Figure 6: Coating transfer; The coating of the Bunny (a) is trans-
ferred onto the mammal’s leg (b) to yield (c).

4 Mesh editing

There are many different tools to manipulate an existing mesh. Per-
haps the simplest form consists of manipulating ahandle, which is
a set of vertices that can be moved, rotated and scaled by the user.
The manipulation of the handle is propagated to the shape such that
the modification is intuitive and resembles the outcome of manipu-
lating an object made of some physical soft material. This can be
generalized to a free-form deformation tool which transforms a set
of control points defining a complex of possibly weighted handles,
enabling other modeling metaphors to be mimicked (see e.g., the re-
cent work of [Bendels and Klein 2003] and the references therein).

The editing interaction is comprised of the following stages:
First, the user defines the region of interest (ROI) for editing. The
ROI is defined by the closed simple loop of its boundary edges.
Next, the handle inside the ROI is defined. In addition, the user
can optionally define the amount of “padding” of the ROI bysta-
tionary anchors. These stationary anchors form abelt that supports
the transition between the ROI and the untouched part of the mesh.
Then, the user manipulates the handle, and the surface is recon-
structed with respect to the relocation of the handle and displayed.

The submesh of the ROI is the only part considered during the
editing process. The positions of the handle vertices and the sta-
tionary anchors constrain the reconstruction and hence the shape of
the resulting surface. The handle is the means of user control, and
therefore, its constraints are constantly updated. The unconstrained
vertices of the submesh are repeatedly reconstructed to follow the
user interaction. The stationary anchors are responsible for the tran-
sition from the ROI to the fixed untouched part of the mesh, result-
ing in a soft transition between the submesh and stationary part of
the mesh. Selecting the amount of padding by anchor vertices de-
pends on the user’s requirements, as mentioned above. We have ob-
served in all our experiments that setting the radius of the “padding

(a) (b) (c) (d)

Figure 7: The coating of theMax Planckis transferred onto the
Mannequin. Different levels of smoothing were applied to theMax
Planckmodel to peel the coating, yielding the results in (c) and (d).

ring” to be up to 10% of the ROI radius gives satisfying results.
The reconstruction of the submesh requires solving the linear

least-squares system as described in Section 3. The method of
building the system matrix (Eq. 12), including the computation of
a sparse factorization, is relatively slow, but constructed only once
when the ROI is selected. The user interaction with the handle re-
quires solely updating the positions of the handle vertices in the
right-hand-side vector, and solving.

Figures 3 and 4 illustrate the editing process. Note that the de-
tails on the surface are preserved, as one would intuitively expect.
Figure 5 demonstrates deformation of a model with large extruding
features which cannot be represented by a height field.

5 Coating transfer

Coating transfer is the process of peeling the coating of asource
surface and transferring it onto atarget surface. See Figure 6 for
an example of such an operation. We use the termcoatingto refer
to the high-frequency surface details. More precisely, the coating
is defined as the difference between the original surface and a low-
frequency band of the surface. LetS be the source surface from
which we would like to extract the coating, and letS̃ be a smooth
version ofS. The surfaceS̃ is a low-frequency surface associated
with S, which can be generated by filtering (see, e.g., [Desbrun et al.
1999]). The amount of smoothing is a user-defined parameter, and
depends on the range of detail that the user wishes to transfer.

We encode the coating of a surface based on the Laplacian coor-
dinates. Letδi andδ̃i be the Laplacian coordinates of the vertexi in
SandS̃, respectively. We defineξi to be the encoding of the coating
at vertexi defined by

ξi = δi − δ̃i . (13)



(a) (b) (c) (d)

Figure 8: Coating transfer. The orientation of a coating detail (a) is defined by the normal at the corresponding vertex in the low frequency
surface in (b). The transferred coating vector needs to be rotated to match the orientation of the corresponding point in (c) to reconstruct (d).

The values ofξ j encode the coating ofS, since given the bare sur-

faceS̃ we can recover the original coating simply by addingξ j to

δ̃i and reconstructingS with the inverse Laplacian transformL−1.
That is,

S= L−1(δ̃ +ξ ) . (14)

In this case of a coating transfer ofS onto itself,S is faithfully
reconstructed. However, in general, instead of coatingS̃with ξ , we
would like to add the coatingξ onto an arbitrary surfaceU . If the
target surfaceU is not smooth, it can be smoothed first, and then
the coating transfer applied. Before we move on, we should note
that the coating transfer fromS onto S̃ is simple, since the neigh-
borhoods of the corresponding verticesi have the sameorientation.
We define the orientation of a vertexi in a surfaceS by the local
frame ofi on S̃. Loosely speaking, the orientation of a point reflects
the general orientation of its neighborhood, without respecting the
high frequencies of the surface.

When applying a coating transfer between two surfaces, the coat-
ing ξ should first be aligned, or rotated with respect to the target.
This compensates for the different local surface orientations of cor-
responding points in the source and target surfaces.

The following is an important property of the Laplacian coordi-
nates:

R·L−1(δ j ) = L−1(R·δ j ) , (15)

whereL−1 is the transformation from Laplacian coordinates to ab-
solute coordinates, andR a global rotation applied to the entire
mesh. The mapping between corresponding points inSandU de-
fines different local orientations across the surfaces. Thus, our key
idea is to use the above property of the Laplacian coordinates lo-
cally, assuming that, locally, the rotations are close to each other
(in induced norm).

5.1 Coating

Assume that the source surfaceS and the target surfaceU share
the same connectivity, but have different geometries, and that the
correspondence between their vertices is given. In the following
we generalize this to arbitrary surfaces.

The local rotationRi at each vertexi in SandU is taken to be the
local rotation between their corresponding frames (see Figure 8).
The frame of vertexi in Sis defined by its normalns and the normal-
ized projection of some edgees emanating fromi onto the tangent
plane defined byns (the third vector is determined by the right-
hand product of the first two). The corresponding frame inU is
established bynu (the normal ofi in U) and the projection of the
edgeeu which corresponds toes. Denote the rotated coating encod-
ing of vertexi by ξ ′

i = Ri(ξi). Having all theRi associated with the

(a) (b) (c)

Figure 9: Transferring the coating of theMannequinonto the face
of theBunny. (a) The source surfaceS. It is significantly smoothed
to peel the coating. (b) The smoothed surfaceS̃. (c) The result of
coating transfer onto theBunny.

ξi , the coating transfer fromSontoU is expressed as follows:

U ′ = L−1(∆+ξ
′) (16)

where∆ denotes the Laplacian coordinates of the vertices ofU .
Now the new surfaceU ′ has the coating ofU .

5.2 Mapping and resampling

So far we have assumed that the source and target meshes (S and
U) share the same connectivity, and hence the correspondence is
readily given. However, the coating transfer between arbitrary sur-
faces is more involved. To sample the Laplacian coordinates, we
need to define a mapping between the two surfaces.

This mapping is established by parameterizing the meshes over a
common domain. Both patches are assumed to be homeomorphic to
a disk, so we may choose either the unit circle or the unit square as a
common domain. We apply the mean-value coordinate parameter-
ization [Floater 2003], as it efficiently produces a quasi-conformal
mapping, which is guaranteed to be valid for convex domains. We
fix the boundary conditions for the parameterization such that a cor-
respondence between the source and target surfaces is achieved, i.e.
we identify corresponding boundary vertices and fix them at the
same domain points. In practice, this is a single vertex inSand in
U that constrains rotation for the unit circle domain, or four bound-
ary vertices for the unit square domain.

Some applications require a more careful correspondence than
what can be achieved from choosing boundary conditions. For ex-
ample, the mapping between two faces (see Figure 7) should link
relevant details like facial features (e.g., the brow wrinkles of the
Max Planck). In this case the user provides a few additional (in-
ner) point-to-point constraints which define a warp of the mean-



(a) (b) (c)

Figure 10: Mixing details using Laplacian coordinates. The Laplacian coordinates of surfaces in (a) and (b) are linearly blended in the middle
to yield the shape in (c).

(a) (b)

Figure 11: Transplanting theArmadillo’s coating onto theBunny’s
back with a soft transition (a) and a sharp transition (b) between the
two types of details. The size of the transition area in which the
Laplacians are blended is large in (a) and small in (b).

value parameterization. In our implementation we used a radial
basis function elastic warp; see e.g., [Lévy 2001; Praun et al. 2001;
Kraevoy et al. 2003] for advanced constrained mapping techniques.

In general, a vertexi ∈U is mapped to some arbitrary point in-
side a triangleτ ∈ S. We experimented with several methods of
sampling the Laplacian for a vertex. The best results are obtained
by first mapping the 1-ring ofi ontoS using the parameterization,
and then computing the Laplacian from this mapped 1-ring. Note
that this approach assumes a locally similar distortion in the map-
ping. This is usually the case for the coating transfer; we used the
1-ring sampling in all the respective examples. We obtain simi-
lar results by linear interpolation of the three Laplacian coordinates
sampled at the vertices of the triangleτ. While this approach leads
to some “blurring” compared to the first one, it is even simpler and
does not suffer from extremely different parametric distortion. In
addition, no special treatment is required at the boundary of the do-
main when it is chosen to be a disk.

To enable faithful resampling of the Laplacian coordinates, the
tessellations of the surfacesU andS need to be ”compatible”, i.e.
each mesh must be (locally) fine enough to accommodate the de-
tail of the other mesh. This can be achieved by a local, isotropic
remeshing (see e.g., [Alliez et al. 2003; Surazhsky and Gotsman
2003; Vorsatz et al. 2003]) of the sampled regions ofU andS.

After the mapping betweenU and S has been established and
the Laplacians have been sampled, the coating transfer proceeds as
explained before. Note that now the correspondingξi is the differ-
ence between thesampledLaplacian coordinates inS and S̃. See
the examples in Figures 6, 7 and 9.

5.3 Mixing details

Given two meshes with different detail, a variant of the above trans-
fer mechanism can be applied on a third target mesh from the two
sources. Each vertex in the transitional region of the target mesh re-
ceives the linear interpolation of the corresponding Laplacian coor-
dinates of the source meshes. Figure 10 illustrates the effect of mix-
ing the details. This example emphasizes the gradual transition of
geometric structure, as the details of the two source meshes differ in
smoothness, form and orientation. Note that the the global shape of
the target mesh is deformed respectively. By adding anchor points
over the target, its shape can be further deformed. Figure 11 shows
the application of this mechanism to transplant theArmadillo’s back
onto theBunny’s back with a soft transition. In the next section we
further discuss this transplanting operation.

6 Transplanting surface patches

In the previous sections we showed how the Laplacian coordinates
allow us to transfer the details of a surface onto another and how
to gradually mix the details of two surfaces. These techniques are
refined to allow a seamless transplanting of one shape onto another.
The transplanting operation consists of two apparently independent
classes of operations: topological and geometric. The topological
operation creates one consistent triangulation from the connectivi-
ties of the two submeshes. The geometric operation creates a grad-
ual change of the geometric structure of one shape into another.
The latter operation is based on the Laplacian coordinates and the
reconstruction mechanism.

Let Sdenote the mesh that is transplanted onto a surfaceU . See
Figure 12, where the right wing (S) of the Feline is transplanted
onto theBunny(U). The transplanting requires the registration of
the two parts in world coordinates. This defines the desired location
and orientation of the transplanted shape, as well as its scale. If re-
quired, the meshes are locally remeshed in order to make the scale
of the Laplacian coordinates compatible (cf. Section 5.2). The user
selects a regionU◦ of U onto whichSwill be transplanted. Hence
the boundary ofU◦ is assumed to be homeomorphic to the boundary
of S. After cuttingU◦ off U , the two boundary loops are trivially
zipped. This creates the connectivity of the target meshD (Fig-
ure 12(a)).

The remaining transplanting algorithm is similar to details mix-
ing. The transitional regionsfor resampling,S′ on S andU ′ on
U◦, are selected, e.g., by offsetting from the respective cut seams.
SinceD includes a zipped “copy” ofS, its transitional regionD′

is implicitly defined byS′ along with a trivial mapping between
vertices of the two regions. For sampling, we require a correspon-
dence between the patchesS′ andU ′. We parameterize both meshes
over a common domain, e.g., the unit square. If the patches have
to be cut to match the topology of the domain, the cuts are used
to align the mappings for correspondence between the patches. In
our experiments no further warping was necessary to improve the
correspondence (cf. Section 5.2).



(a) (b) (c) (d)

Figure 12: Transplanting ofFeline’s wings onto theBunny. (a) After cutting the parts and fixing the desired pose, the zipping (in green)
defines the target connectivityD. The transitional regionD′ is marked red. (b)D′ is sampled over the respective regionsU ′ ⊂U◦ (U◦ is the
cut part of theBunny’s back) andS′ (the bottom of the wing). The texture withuv-isolines visualizes the mapping over the unit square. The
cut (in yellow) aligns the two maps. (c) The result of reconstruction. The reconstructed submesh is padded by a belt of anchors (red dots).
Note the change of the zipping seam triangles (in green) and the gradual change and preservation details within the transition region (red).
(d) The flyingBunny(see also Figure 1(d)).

Figure 13: Transplanting part of theFelineonto theDragon.

Once the transitional regions and the mappings are defined, the
transplanting procedure is ready to sample the Laplacian coordi-
nates over the target regionD′. In order to mix details, the cor-
responding samples fromS′ andU ′ are linearly interpolated with
weights defined by their relative position in the unit square param-
eter domain. More precisely, ifv ∈ [0,1] defines the coordinate
along the “height” axis (the blue and red lines in Figure 12(b), then
the weights are(1−v) andv, respectively. Since the length distor-
tion of the maps may significantly differ, we linearly interpolate the
Laplacian coordinates for sampling (cf. Section 5.2). The transition
region is padded with some additional free vertices and a belt of an-
chors (similar to the editing ROI). These vertices are supposed to
stay in place as much as possible, and their Laplacian coordinates
are sampled fromD. The remaining vertices are fixed and hence
not required for the reconstruction. Figures 12(c)-(d), 13 show the
results.

7 Implementation details

All the techniques presented in this paper are implemented and
tested on a 2.0 GHz Pentium 4 computer. The main computational

core of the surface reconstruction algorithm is solving a sparse lin-
ear least-squares problem. We use a direct solver [Toledo 2003]
which first computes a sparse triangular factorization of the normal
equations (employing fill-reducing reordering) and then finds the
minimizer by back-substitution. The system is well-conditioned
thanks to the anchors. As mentioned in Section 4, constructing the
matrix of the least-squares system and factorizing it takes the bulk
of the computation time. This might seem a heavy operation for
such an application as interactive mesh editing; however, it is done
only once per ROI selection. Solving by back-substitution is quite
fast and enables us to reconstruct the surface interactively, follow-
ing the user’s manipulations of the handle. It should be noted that
the system is comprised of only the vertices that fall into the ROI;
thus the complexity is not directly dependent on the size of the en-
tire mesh, but rather on the size of the ROI. We experimented with
various ROIs of sizes in the order of tens of thousands of vertices.
The “intermediate preprocess” times observed were a few seconds,
while the actual editing process runs at interactive frame rates. For
example, the construction of the system matrix for a ROI on the arm
of theOctopus(about 10K vertices) took 1.5 seconds and the factor-
ization 1.9 seconds. The solve (when moving the handle) took 0.07
seconds. The construction of the normal equations can probably be
further optimized. Some short editing sessions are demonstrated in
the accompanying video.

8 Conclusions

We have developed an intrinsic geometry representation for meshes
that fosters several local surface editing operations. Geometry is es-
sentially encoded using differential properties of the surface, so that
the local shape (or, surface detail) is preserved as much as possible
given the constraints posed by the user. We show how to use this
representation for interactive free-form deformations, detail trans-
fer or mixing, and transplanting partial surface meshes.

It is interesting to compare the Laplacian-based approach to
multi-resolution approaches: since each vertex is represented in-
dividually as a Laplacian coordinate, the user can freely choose the
editing region and model arbitrary boundary constraints, however,
computing absolute coordinates requires the solution of a linear sys-
tem. On the other hand, the non-local bases in multi-resolution rep-
resentations limit the choice of the editing region and the boundary
constraints, but absolute coordinates are computed simpler, by sum-
ming displacements through the hierarchy.



Global modeling operations naturally require global surface rep-
resentations. We would like to adapt our approach to implicit
shapes, possibly to the level-set framework. When working with
meshes, explicit handling of connectivity is required. In [Biermann
et al. 2002], this problem is dealt with by using regular remeshing.
Here, we tried to preserve the original connectivities as much as
possible, modifying only the transition area. A similar approach
is taken in [Ĺevy 2003]. However, the reconstruction of the tran-
sitional region respects only smoothness conditions, while in our
case the transitional surface includes a gradual change of shape and
details inherited from the original surfaces.

In general, modeling geometry should be coupled to modeling
other surface properties, such as textures. The machinery of dis-
crete Poisson equations has already shown to be effective for image
editing, so that editing textured surfaces should possibly be per-
formed on a combined differential geometry/texture representation.
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A Exponential of a 3 ×3 skew-symmetric
matrix

Let h ∈ R3 be a vector andH ∈ R3×3 be a skew-symmetric matrix
so thatHx = h×x,∀x∈R3. We are interested in expressing the ex-
ponential ofH in terms of the coefficients ofH, i.e. the elements of
h. The matrix exponential is computed using the series expansion

expH = I +
1
1!

H +
1
2!

H2 +
1
3!

H3 + . . .

The powers of skew-symmetric matrices in three dimensions have
particularly simple forms. For the square we find

H2 =

−h2
2−h2

3 h1h2 h1h3
h1h2 −h2

1−h2
3 h2h3

h1h3 h2h3 −h2
1−h2

2

= hhT −hTh I

and using this expression (together with the simple fact that
H h = 0) it follows by induction that

H2n = (−hTh)n−1hhT +(−hTh)n I

and
H2n−1 = (−hTh)n−1H

for n∈ N. Thus, all powers ofH can be expressed as linear combi-
nations ofI , H, andhhT , and, therefore,

expH = αI +βH + γhhT

for appropriate factorsα,β ,γ.


