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CONDITION ESTIMATES FOR MATRIX FUNCrlONS*

CHARLES KENNEY" AND ALAN J. LAUB

Abstract. A sensitivity theory based on Fr6chet derivatives is presented that has both theoretical and
computational advantages. Theoretical results such as a generalization of Van Loan’s work on the matrix
exponential are easily obtained: matrix functions are least sensitive at normal matrices. Computationally, the
central problem is to estimate the norm ofthe Fr6chet derivative, since this is equal to the function’s condition
number. Two norm-estimation procedures are given; the first is based on a finite-difference approximation of
the Fr6chet derivative and costs only two extra function evaluations. The second method was developed specifically
for the exponential and logarithmic functions; it is based on a trapezoidal approximation scheme suggested by
the chain rule for the identity ex (eX/2")2". This results in an infinite sequence ofcoupled Sylvester equations
that, when truncated, is uniquely suited to the "scaling and squaring" procedure for ex or the "inverse scaling
and squaring" procedure for log X.

Both the trapezoid approximation method and the more general finite-difference approach yield excellent
condition estimates for a large class of problems taken from the literature. The problems in this set illustrate
that condition estimates based on the Fr6chet derivative have the virtue of reliability and general applicability.
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1. Introduction. In this paper, we are concerned with the effects of perturbations
on matrix functions

(1.1) F(X) , a,,X"
tt=O

where a, and X p P. We assume that the scalar power series

(1.2) V(x) Z a,,x"
n=O

is absolutely convergent for xl < r for some r > O. We are interested in estimating the
"worst ease" perturbations as defined by the condition numbers 28

IIF(X+6Z)-F(X)II
K K(F,X)= max

(1.3) IIZII- 6

K=K(F,X)=- lim K(F,X)
0+

where we assume that > 0 and IJX + 6 < r, so that F(X + Z) is well defined. We
shall use the Frobenius matrix norm

(1.4) MII = 2 M,
throughout the paper unless explicitly noted otherwise, since this norm has nice properties
vis-a-vis the Kronecker matrix product.
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192 C. KENNEY AND A. J. LAUB

The condition number K(F, X) of F at X is determined by the Fr6chet derivative
ofF at X: we say that a linear mapping L" PP --P is the Fr6chet derivative ofF
at X (see [2], [12]) if for all Z in

(1.5) lim F(X/Z)-F(X)_L(Z) =0.
--0

When it is convenient to explicitly indicate the dependence of L on X, we ll write
L(Z, X) instead of L(Z). For brevity, we ll refer to L as the derivative of F.

Example 1. The squaring function F(X)
XZ + ZX + Z2, so its derivative at X is ven by L(Z) XZ + ZX.

Example 2. The derivative at X of the exponential function F(X) ex is ven
by [31]

(1.6) L(Z eTM Zex" ds.

Other examples are Nven in Aendix B.
From the definition of the Frchet derivative (see 31, Thin. 5 ), we have

IIL(Z,X)II
(1.7) K(F,X)= L(’,X)ll-max

zo Ilgl[

Because of this, most of our effo is devoted to studying L and methods for estimating
its no.

In 2, the eigenvalues ofXare used to obtain a lower bound on K(F, X); this lower
bound is in fact equal to K(F, X) when X is no. Thus matrix functions exhibit
minimal sensitivity when they are evaluated atno matrices, an effect demonstrated
by Van Loan 31 for the exponenti function F(X) ex. Similar results are ven for
large scale peurbations.

In 2, we Mso lay the oundwork for estimating the no of L via the power
method: ven Zo of unit no, let

(.8) W-L(Zo,X),

(.9) ZL(W,X).
For suitably chosen Z0, IIzll ’/= ILL(., x)ll, and more accurate estimates can
obtained by repeating the cycle with Zo

The main problem with this approach is that evaluating L(Z) directly may rather
dieult. For example, in the ease of the matrix exponentiM, it is not at MI clear how we
should go about evaluating the inteM representation in (1.6). In 3, we consider the
problem of foxing L(Z) for both the exponenti and logarithmic matrix functions.
For the exponenti problem, L(Z) can accurately appromated by using a communal
trapezoid approximation in (1.7); this approach can be eeiently implemented during
theungphe ofthe "seng andung"meth ofevMuafing.Tsiation
th sealing and squaring is quite natural because the trapezoid approximation can
derived from the chain le for the identity ex (eXit")". For the logarithmic problem,
a similar approximation can be done during theue root phase ofthe "inve=e seMing
and squaring" method of evaluating log X.
Wethe nsifity estimation produres can eyineoted into smnd

packages, such as MATEXP by Ward 32 ], the numefieM effo involved in using them
can vaff considerably depending on the amount of sealing to be done. For example, one
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power method cycle of evaluating L and Lr for the matrix exponential can range in cost
from to as much as three times the effort needed to evaluate ex.

By contrast, there is another way of evaluating L such that, independent of the
function F, LII can be estimated at a cost of only two extra function evaluations. The
idea behind this method is to use the relation

(1.10)
F(X+Z) F(X)

L(Z,X) + 0(

as a means ofapproximating L(Z, X). Thus the power method steps (1.8) and (1.9) can
be approximated by

(1.11) W

(1.12) Zl

for i sufficiently small.

F(X+iZo)-F(X)

F(Xr+W)-F(Xr)

To provide a practical assessment of the trapezoid and finite-difference condition
estimators, a large set of problems from 3 ], 7 ], 16 ], 25 ], and 32 was tested nu-
merically; a selected subset of the results is given in 4. For almost all of the examples,
our condition estimates, based on one power method cycle, were within 90 percent of
the actual condition number and none of the estimates was less than 25 percent of the
actual condition number (see Tables and 2). Of particular interest is an example
considered by Ward [32, Example 3 that has shown that the sensitivity estimation
scheme employed in the subroutine MATEXP can give very conservative bounds. In
this case, Ward’s method predicts that not more than 12 digits ofaccuracy would be lost
in the computation of the matrix exponential, whereas one cycle of the power method
predicted that at most four digits would be lost; in fact, the numerically computed result
had lost exactly four digits of accuracy. This illustrates that condition estimates based
on the Fr6chet derivative appear to be extremely reliable.

2. General perturbation results. For IIz II-- and IIx / < r, we may write
by (1.2),

(2.1)

F(X+ Z)= F(X)+ i , a, , xkzx"- l-k_.
n=l k=O

n- m

..m Z a,, , XklZXk2Z"’xkmzxn-m-k’ km-I’-’"
n--m kl+’"+km--O

where the absolute convergence of the series justifies the rearrangement of the terms in
(2.1). From (2.1), and (1.5),

nl(2.2) L(Z,X) , a, xkzxn ko
n--I k=0

The discussion in the previous section has shown that the condition number (1.3) satisfies

IIz z,x)ll
K(F,X) L(,,X) max

z,o IIzll
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We use the Frobenius norm (1.4) because of its natural connection to the spectral or
two-norm of the Kronecker form ofthe Frrchet derivative. Let Vec A denote the vector
formed by stacking the columns ofa matrix A, and define the Kronecker product oftwo
matrices A and B by (see 15 ]) A (R) B --- aijB ]. Then the Frobenius norm of a matrix
Z is equal to the two-norm of Vec Z:

(2.3) Ilz IlVec z 112.
Also, Vec (AZB Br (R) A) Vec Z. Thus,

(2.4) Vec L(Z,X) D(X) Vec Z

where D(X) is the Kronecker form of the Frrchet derivative

nl(2.5) D(X)= , an (xT)n- l-k()Xk.
n=l k=0

By (2.3) and (2.4), we have

Z(Z,X) IlVec Z(Z,X) I1= D(X) Vec Z
max max max
z/ 0 z z / o Vec Z I1= z / o Vec z

so that the Frobenius norm of the Frrchet derivative is equal to the two-norm of its
Kronecker matrix form:

(2.6) Z(.,X)II O(X)I1=.

The importance of this identity lies in the fact that the two-norm of a real matrix
A is the square root of the largest eigenvalue ) ofA rA, and hence can be estimated by
using the power method. For a given vector Vo with Ilv0]]2 1, compute the vectors
uk Avk + - A TUk l)k+ " )k+ /II )k+ 1112 for k 0, 1, 2, If v0 is not orthogonal
to the eigenspace Ex of ArA corresponding to h where ),1/2= IIAII=, then I111
IIAII2; and unless v0 is poorly chosen, I111 ,/2 IIAII2. That is, one cycle of the power
method provides an approximation of A I1= that is usually sufficient for the purposes of
condition estimation 8 ].

Using (A (R) B)r A r (R) Br and (2.5), we have

(2.7)
(D(X))r= ’ an Xn--k(R)(xr)k

n=l k=0

D(Xr).

Define v by Uo D(X)vo, (D(X))rUo, v =- ,/I1,11=. From (2.4) and (2.7)
this is equivalent to forming Z by

(2,8) W=-L(Zo,X), ,--L(W,X),
where v0 Vec (Z0) and v Vec (Z). This is fortunate, because it means that we can
avoid dealing with the p2 p: Kronecker matrix D(X) when estimating the condi-
tion of F at X by the power method. Instead, we may use the more compact formula-
tion (2.8).

Now we establish a lower bound on K(F, X) and show that this lower bound is in
fact equal to K(F, X) when X is normal.
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LEMMA 2.1. Let v and w be nonzero vectors such that Xv Xv and Xrw tw.
Then w (R) v is an eigenvector ofD(X) with associated eigenvalue o where

v =F’(X) forX=l,

(2.9)
v

F( x F(u
for X 4: t.

Proof. Since (A (R) B)( C (R) D) (AC) (R) (BD) for any compatible matrices A, B,
C, D (see [15]), we have

D(X)(w(R)v)= , an ((xr)n-l-k(R)xk)(W(R)V)
n--I k=0

a. ((Xr)"--w)(R)(Xv)
n=l k=0

Z an Z Un-l-kxk w(R)v).
n=l k=0

Now, if t , then Y ,- t" kkk n" and

D(X)(w(R)v)= , na,’-l(w(R)v)=F’(X)(w(R)v).
n=l

Otherwise, if tz 4: X, then Y , t" kXk X. #.) / t) and

X-i F(X)-F(I),,(w(R)v)= (w(R)v).D(X)(w(R)v) , an X-I

COROLLARY 2.2. Let 0max be defined by

(2.1 O) 1)ma max
x,u A(X)

F(X)-F(#)

where A(X) denotes the set of eigenvalues ofX and the ratio in (2.10) is taken to be
F’(X)I when . Then the condition number off at X is bounded below by Vmx

I)ma K(F, X).
Proof. By (1.3), (1.7), and (2.6) we have thatK(F,X) ILL(., X)ll IID(X)ll2,

but the two-norm ofD(X) is bounded below by the absolute value of any eigenvalue of
D(X). Hence by Lemma 2.1 we must have l)ma lID(X)1[2.

LEMMA 2.3. IfX PP is normal, that is, XrX XXr, then D(X) is normal.
Proof. Use (A (R) B)(C(R) D) (AC)(R) (BD) together with (A (R) B) r= At(R) Br

and (2.5) to show that D(X) and Dr(X) commute.
COROLLARY 2.4. lfX is normal, then the condition number ofF at X is equal to

1)ma in (2.10)"

F(X)-F(t)
K(F,X)= max

Proof. By Lemma 2.3, D(X) is normal. Thus its two-norm is equal to its spectral
radius that, by Lemma 2.1, is just 1)max in (2.10).
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The fact that the lower bound in Corollary 2.2 is attained for normal matrices
indicates that the condition number ofF is as small as possible when X is normal. This
effect has been demonstrated for the exponential function F(X) ex in the sensitivity
study of Van Loan 31], by using the explicit representation (1.6) together with the
property that when X is normal, eXl[2 etx) where a(X) --- maxxAtx) Re (),).

The preceding dealt with linear perturbation theory ofthe matrix function F(X)
n%o a,X, by considering the limiting behavior of the finite-difference operator

DF(Z,X, =- F(X+6Z)-F(X)

as i --} 0 +. We conclude this section with similar results on the behavior ofFwith respect
to large (i.e., nondifferential)perturbations, and our goal will be to bound K(F,X)
in (1.3).

LEMMA 2.5. Let Ilxll + < r. Let v and w be normalized eigenvectors such that
Xv hv and wnX h2wn. Define Z vw. ThenZ (F(X + Z) F(X))/ where

F(X)- F(X2)
(2.11) / if), / ),2,

),- ),2

F( )k "" wHI) F(
(2.12) /z wnv8 if),- ),2.

The right-hand side of (2.12) is taken to be F’()) if why O. As a consequence, we
have the lower bound

(2.13) max I1 _K(F,X).

Proof. The proof is essentially the same as that used in Lemma 2.1. El
The next lemma gives a simple upper bound for K(F, X) in terms of the function

F+ defined by the associated "positive" series F+(x) _-o a Ix.
LEMMA 2.6. Let [Izll - and Ilxll / < r. Then

(2.14) K(F,X)_
F+(IIX + )-F+(llX II)

F(IIxll +).

Proof. From (2.1) and Z 1,

[IF(X+Z)-F(X)II -.__,, nla.I IIX -’ / ... m n:m la.I IlXl[ - m +

Thus

m

F_ x +.., +..F’( x ) +.,,

F/(llxll + )-F/(llx II).

F(X+ aZ F(X) F+( X + ) F+ ( x =F(IIX +o)F(IIX +)

for some 0

_
p

_
a by the mean value theorem and the fact that F is nondecreas-

ing.
For example, if F(x) ex, then Lemma 2.6 gives

ex+z_ eXll / a ellxl + ell"ql l a
_
ellxl + .
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This upper bound can be very conservative in some cases. However, the next lemma
shows that there are situations where the upper bound in Lemma 2.6 coincides with the
lower bound in Lemma 2.5 to give an exact value for K,(F, X).

LEMMA 2.7. Let X Xr >= 0 and let the series (1.2) have nonnegative coefficients,
a >- O, so that F F+. Then K(F, X) (F( X + 6) F( X )) /.

Proof. Since x is nonnegative definite symmetric there exists a real eigen-
vector v such that Xv=Xv with v rv= where ,= [[X[]. By Lemma 2.5, tZ=
(F(X + 6Z) F(X))/6 where Z vv r and t (F(X + 6) F(X))/6. Note that
# > 0, since F is nondecreasing. Thus, K(F, X)

_
[[#Z #, since [[Z Ilvvrl[

1. On the other hand, # (F( X + d) F( x II))!, since x . Thus, since
F F+, we have by Lemma 2.6 that K(F,X)_ #. This shows that we must have
K(F,X) =/ (F(llXl[ / )- F(llXll))/. rn

The next lemma shows that for F F+ and large i, Lemma 2.7 is approximately
true, not just for symmetric nonnegative definite matrices, but for any matrix X.

LEMMA 2.8. Let F F+ with radius ofconvergence r oo. Thenfor/ > 2[I X and
any real matrix X, we have

(2.15)
F(- IlXll)-F(llXll)

<K(F,X) <
F(i+ liXll)-F(llXll)

Proof. The fight-hand side inequality of (2.15 is simply a restatement of (2.14)
in Lemma 2.6. To prove the left-hand side inequality in (2.15), let Z -= eelr where
e (1, 0, 0) r and set Z (1 e)Z X/6 where e is chosen so that ][Z 1.
Then IIz - / x II/ so

_
x !. Now x / Z ( t)Zl, so

F(X + diZ) F(/i(l t))ZI, since F(aZI) F(a)Z for any scalar a. Moreover, since- IIx II, IIF(X / z)l[ F((1 ))

_
F( IIX II) because F= F+ is nondecreasing.

However, IIF(X / Z)ll liE(X) - IIF(X / Z)- F(X)ll. Thus,

F(- IIxI[)-F(IIxll) IIF(X+Z)ll F(X)II IIF(X+Z)-F(X)[I
because F(X)I1 - F( X ). Dividing by/i in the above completes the proof.

Example. Let F(X) ex with X 1; then by Lemma 2.8, we have that

e e e + e< K(F,X)<

which determines K, to within a factor of e2 for large 6.
3. Exponential and logarithmic linear perturbation theory. In this section, we treat

the problem ofapproximating the Frtchet derivatives ofthe exponential and logarithmic
matrix functions.

The earliest representation ofthe exponential derivative appears to be due to Haus-
dorff[17]

(3.1) L(Z,X)= ex Xn eX
n__0(n+ 1)! {Z, } { Z,(eX-I)X-l }

where the nested Lie product {., } is defined by {Z, X } - [... [Z, X], X], ..., X]
with n factors ofXappearing; [Z, X denotes the Lie bracket ZX XZ. In the dghtmost
side of (3.1), the expression (ex- I)X- should be interpreted as the series Z --o xm/
(m + 1)! when X is not invertible. This Lie product expansion for the exponential
derivative arose in connection with the Baker-Campbell-Hausdorff formula (see 23,
pp. 656-658 ], 4 ])

eXe’=exp X+ Y+[X, Y]+ [[X, YI, Y-XI+
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From (2.2), with F(X) ex, we obtain another series representation:

ln-I
g(z,x)- xkzxtl-l-k,

n=l k=0

but this series and (3.1) are too hard to work with numerically. A much more useful
representation is given by Van Loan in [31]" L(Z, X) f eTM -s)zeXs ds. This may be
approximated by using the trapezoid rule (see 10

(3.2) L(Z,X)L,,(Z,X)"
2

eXZ+ 2
kl

for n 0, 1, 2, ....
We have selected this method ofapproximation because it is uniquely suited to one

ofthe most successful methods ofcomputing ex, namely the scaling and squaring method
[24], [32 ]. In this method, X is scaled by a power of two, say 2", so that ex-E is easily
evaluated by using, for example, a Pad approximation. The result is then squared n
times: ex (eXit’). During the squaring phase, we have available to us sequentially
the computed values of the matrices exz’, ex’-’ ..., ex, and ex. This raises the
possibility of evaluating the trapezoid approximant, L,,(Z, X), for a given matrix Z,
during the computation of ex. This would not be practical if we implemented (3.2)
directly, but fortunately there is an equivalent formulation for L,,(Z, X) that is much
easier to evaluate and only requires the matrices exz"- as they become available. Let

(3.3) Wo_(eX/2Z+ ZeX/2.)/2n+
and forj n, n 1, 1, define

(3.4) IYn+ l- j’eX/2Iyn-j+ In-jex/2.

Then from 3.2)-(3.4), L,,(Z, X)
We will show that if n is large, then L,,(Z, X) is near L(Z, X) and

provides a good estimate of IlL( ", X)]]. For example, if n is large enough so that
eX/2n Ill < 4L, then our results give

0.95011L(",X) II- IlL(",X) - 1.05511 g(",X) II.
Somewhat surprisingly, it seems to be the case that the easiest way to determine how
well Ln( ", X) approximates L(., X) is to study the approximation of L-(., X) by
L( X). Both L-(., X) and L(., X) arise naturally in the study of the inverse
exponential or logarithmic problem ex -- X. Such problems occur, for example, in a
control theory setting wherein discrete samples from a continuous system are used to
identify system parameters. See 20 ], 27 ], and 29 ]. Since the logarithm is a multivalued
function, we need some restriction on Xto ensure the existence ofa unique real solution
Xto the problem ex A (cf. 9 ], 13 ], 18 ], 33 ). To do so, we shall assume throughout
this section that A P p has no eigenvalues on the negative real axis including zero.
This is sucient to ensure that there exists a unique real matrix X such that
ex= A with the eigenvalues of X confined to the strip -r < Im (2)< r. (See
Appendix A.)

Under the above assumptions,

(3.5) log A 2 n log A /2n

where A /2 denotes the unique real nth square root ofA (see 11 ]) whose eigenvalues,, ,(A /2) lie in the sector -r/2 < arg () < r/2. (See Appendix A.) This forms
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the basis of the "inverse scaling and squaring" method for approximating log A. Take
n square roots ofA, so that A /2 is near the identity. Then log A /2 can be computed
by using, for example, a Pad6 approximation in the variable Y =- I- A /2. Multiplying
the result by 2, we obtain log A as in (3.5). (See 4 for more details.)

By Lemma A l, in Appendix A, the derivative of the logarithmic function ex -- Xis the inverse of L(., X) in (1.6) provided L(., X) is invertible. However, L(., X) is
invertible if and only if the associated Kronecker matrix D(X) given by (2.5) is nonsin-
gular. By Lemma 2.1, D(X) is singular for the exponential function if and only if ex

0 or (ex e)/( , -/z) 0 for ,, t A(X), t :/: ,. However, ex is never zero and ex

e with t means that , =/z + 2rik for some nonzero integer k, which would violate
the condition that -r < Im (,), Im (tt) < r. Thus D(X) is nonsingular and L(-, X) is
invertible whenever A(X) is confined to the strip -r < Im (z) < r. This strip condition
also implies that L(., X) is invertible. To see this, note that L(W, X), for a given
matrix W, can be found by inverting the procedure in (3.3)-(3.4). That is, for A ex,
set W Wand solve sequentially for W_ , ..., Wo and Z in

(3.6) W,+ j=A I/2JWn_j-F Wn_jA 1/2,
(3.7) 2 "+ Wo =A l/2nZ-F ZA l/2n.

Then L(W,X) Z because L(Z,X) Why (3.2)-(3.4).
From this we see that L (., X) is invertible whenever the Sylvester equations (3.6)

and (3.7) are uniquely solvable. However, the strip condition onXforces the eigenvalues
of A /2, for j

_
1, to lie in the open right-half complex plane. Consequently # + X : 0

for #, )k 6 A(A 1/2) and (3.6), (3.7) have unique solutions [21].
The sequence W0, "., W has a nice representation that forms the basis of our

analysis of the relationship between L and L and which originally inspired our work in
this area.

LEMMA 3.1. Let W be defined by (3.6), (3.7) with W= W-L(,X), i.e.,
W, f ex( -)ex’’ ds Then

l/2j

(3.8) W,_j= eX(/2-)2eXs ds

forj= 1, n.
Proof. We show that (3.8) is valid for j 1; for j > use similar arguments.

By (3.6),

Wn =A I/2Wn "- Wn 1A 1/2

ex/2 Under the as-which we may rewrite, using A ex, as W eX/2Wn + W_
sumption that A(X) lies in the strip -r < Im (z) < r, this equation has a unique

eX/2where I, --solution. Thus it is sufficient to show that W eX/EIn- + I’n-
f/2 eX(l/2_S)2eX,, ds. But

r1/2 fo1/2ex/2= eXt-S)exs ds+ eX(l/2-S)eX(s+ 1/2) dseX/2In l+Irn
dO

/2eX(-:)ex: ds+ eTM-:)ex: ds
d0 /2

ex( -)ex ds W.
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We need two technical lemmas to prove our main result (Theorem 3.4).
LEMMA 3.2. Let C, B] denote the Lie product C, B] CB- BC. Then we

may write

e -s)Cem ds=-(eZC+ Cen)-- [e -s),[em, C]] ds.

(3.9)

Proof. Expand the nested Lie product on the right-hand side and use the identity

eB(l )Ce" ds enCe ) ds.

LEMMA 3.3. Let I(B =-- 1/2 max B + Br Then we have

e(’ s)CeBs ds--(eBC+ Ce) -gllCII Ilnll=et.

Proof. Use the methods of Lemma 3 of [24, Appendix 2 ].
Using the preceding three lemmas we can now prove our main result on the ap-

proximation ofL- (., X) by L (., X).
THEOREM 3.4. Let n be large enough so that o =- I- ex/2" < 1. Then for any

We Rpp we have

IIZ-’(W,X)ll.(3.10) IIL-(W’X) Z(W’X)ll - -o

Proof. Let Ln(Z, X) W and L(, X) W so that Z L (W, X) and
L- (W, X). Now define W0, W, ..., Wn_ by (3.6), (3.7), so that by the definition
ofL in (3.6), (3.7)

ex/2"Z+ Zex/2)
(3.11) W0 2n+l

However, by Lemma 3.1,

l/2n
(3.12) Wo eX(/2-S)eX ds.

By the change of variables, s --} 2

(3.13) eX(l/2"-S)exs ds= e(Xl2")(-S)e(xl2")s ds.
dO

Now by Lemma 3.2 with B X2 and C ,
(3.14) " etX/2")tl s),,etX/2")s ds 2,,1+, ex/2"2+ 2eX/2"

2 "+1 fO [e<x/2") -) [e(X/z")s,2]] ds

Combining (3.11)-(3.14), we obtain

eX/Z+ ZeX’- eX/":2+ :2exn"- [e(XZ"(-’,[e(Xn"’,:211ds.
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This may be written as fl(- Z) f [etx/2-)t-), [etx/2-)‘, 11 ds where fl(V) -eX/2"V + Vex/2". Thus Z fl-l(f [etX/2.)t-), [etX/2.), ;]] ds), so

(3.15) - zll -111 [ex/") -), e<X/Z"),2]] ds

2 X 2

as in the proof of Lemma 3.3. We now show that for w III ex/2" < 1,

(3.16) I1-’11 -21-w’

(3.17) _log
1-to

(3.18) euX/2.)
lto

When combined with 3.15 and L- (W, X), Z L (W, X), we shall have (3.10),
thus completing the proof.

To show (3.16), let Q fl(v) so that V fl-l(Q). Now, 2V Q + YV + vY
where Y-I- eX/2"and [[YI[ w < 1. Thus, 2llvll -IIQII + 2wllvll, so Ilvll- IIQII/
2 w). Inequality 3.16 follows immediately since V[I fl-1 (Q) [].

To get (3.17), use X/2" log ex/2" log (I- Y), and
m

(1 /Illog (I- ’11 - 2; I1, II,, log (1 " I11 log i tom--I m

This also gives (3.18) because e"tx/2")
_

eIIx/2"ll <= exp (log (1/(1 to)))
/( ).

From Theorem 3.4, we can easily obtain a bound on the logarithmic condition
number, L-( ", X)II in terms of the norm, L( ", X)II of the inverse trapezoid ap-
proximant.

COROLLARY 3.5. Let w- III- eX/Zll < and define
0 (1/(1 -) og (/( ))).

lfn is large enough so that to1 < 1, then

[IZ’(.,X) II/( /,)- IIL-’(’,X)II

Proof. Use (3.10) for the proof.
As an example, if I ex/== -1.05211Z( ", X)II. To obtain bounds on the exponential condition number L(., X)II,

we now return to the problem of how well Ln( ", X) approximates L(., X).
THEOREM 3.6. Let to2 to1/( to1) for to and to1 as in Corollary 3.5. Assume that

n is large enough so that to, to1, and to2 are less than one. Then for any Z’xp,
we have

Z(Z,X)- L(Z,X)II - 0=11Z(.,S)I1 IIZ II.
Proof. Let Z be given and let W

L-I(W, X) so that L(, X) W Ln(Z, X). Then by Theorem 3.4, I1 zll --<
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2 II. But by Corollary 3.5, Ell/(1 w,) so Ell , Ell/( ,)
=llz It. Thus,

Z(Z,X)- t(Z,S)II t(Z,X)- Z(,S)II

L(Z- 2,X)II
L(.,X) IIz- 211

IIL(.,x) IIo=ll z II. t

COROLLARY 3.7. Under the assumptions of Theorem 3.6,

L(.,x) II/(1 + o2) _-< L(.,x) Ln(.,X) II/( 6o2).
Proof. Use standard norm arguments and Theorem 3.6 for the proof, r-i

As an example, if I- ex/2 --< $, then 0.95011Z(-, X)II -< Z(., X)II --<
1.05511Z( ",

To illustrate the trapezoid approximation method and Theorem 3.6, let X
[ ]. Then

eX= [ 11] and eX/2"= [ 101/2"].1
If we impose a scaling condition of I- ex/2’’ < 4!, then we may take n 3, in which
case I ex/8 , Let Z eXexr + eXrex 23 ]. (For reasons explained in the next
section, this choice ofZ can be expected to have a large component in the matrix direction
which maximally perturbs eX.) Using 3.3 and (3.4), we find (to four significant figures),
L3(Z, X) [ 5"3428]. To compare this with L(Z, X), note that X is nilpotent with X2

0. Thus from (2.2),

L(Z,X) ,,’=1 -" k=OZ xkzxn- k Z q-XZ +2 ZX t-=XZX 425.3334
This gives, as in Theorem 3.6, 0.005 IlL(Z, x) Z3(Z, x)ll - IlL(., x)IIo=llz
0.064, where L(., X)II 1.609 was determined by finding the largest singular value
of the associated Kronecker matrix D in (2.5). It is interesting to note that one power
method cycle, using L3 and this Z, gives an estimate of 1.592 for the norm of L(., X).

4. Numerical results. In this section, we discuss some of the details of testing the
trapezoid approximation and finite-difference condition estimation procedures for the
exponential and logarithmic matrix functions.

From 3, we have implemented the trapezoid approximation method (3.3), (3.4)
for the matrix exponential in conjunction with the subroutine MATEXP ofWard 32 ].
To avoid analytical complications in the sensitivity estimate resulting from the use of
the balancing transformation BALANX (which is a modified version of the EISPACK
subroutine BALANC [30]), we have implemented (3.3), (3.4) after the back substitution
BALINV in MATEXP. For one cycle of the power method, this results in a condition
estimate, which costs 4n + 4 matrix multiplications, where the scaling parameter n is
chosen so that IIX/2nll

_
log (5/4) 0.223. This ensures that 1]I- eX/2"l[ <- 14, as seen

by the following lemma. (By Corollary 3.7, this scaling condition forces the norm ofthe
trapezoid approximation, L(., X)II to be within six percent ofthe exponential condition
number, L(., X)113

LEMMA 4.1. If zll
Proof. III- eZil
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The subroutine MATEXP needs about 8 + n matrix multiplications to evaluate ex

(to a relative precision of about 10-16), so the sensitivity estimate via (3.3), (3.4) is
about 1.9 times as expensive as evaluating ex when n 6, which was the average value
of n for the examples we considered.

We also implemented the inverse trapezoid approximation (3.6), (3.7) to estimate
the condition of the logarithm, subject to the scaling condition [11- A l/2n " The
square root ofa matrix can be obtained in a stable manner by using the Schur algorithm
described in 5 ]. This involves finding the real Schur form ofA: A QTQr where Q is
orthogonal and T is quasi-upper-triangular. Once this is done, A /2 QT/2Qr, where
T/2 is found by a simple linear recursion involving the entries of Tand the square roots
of the main diagonal entries of T (including the 2 2 blocks corresponding to the
complex conjugate eigenvalues of T; see [22 ]). Moreover, the jth square root satis-
fies A /2J QT,/2JQr, which means that the Schur decomposition need only be done
once in the process of generating A /2n. This is important because the Schur decompo-
sition of a matrix of order p requires about 8ff 3 floating-point operations (flops),
whereas the square root ofa quasi-upper-triangular matrix oforderp requires only about
p3/6 flops. The logarithm of A /2 can be approximated by truncating the slowly con-
vergent Taylor series, log (I Y) , ym/m, but rational Pad6 approximants are
generally superior. For example, it is shown in 20 that if Y I A 1/2 =< , then
the eighth-order main diagonal Pad6 approximant R88(Y) P88(Y)Q (Y) differs from
log (I- Y) by less than 10-8, whereas the sixteenth-order Taylor approximant, which
requires about the same amount of work, can be in error by as much as 5 10 -12. In
the above,

7 y2 73 y3 41 y4_ 743 y5 10 y6_ 111 y7 761 y8+’i + 5775 + 180180
98 y2

_
y3ass(Y) 4Y+]-

35 y4 28 13 y6_ 4 y7 y8+ +,2870
Moreover, when III- A ’/2[1 4

, the Pad6 denominator matrix Qs8(Y) is very well-
conditioned with K(Qss(Y)) =- 1108811 IIa- - 7.59 (see [20]).

The inverse scaling and squaring procedure for evaluating the logarithm ofa matrix
takes about 11 + n/6 matrix multiplications, whereas the first cycle ofthe power method
of estimating the condition number L-’ (., X)II takes about 2 + 13 /6n matrix multi-
plications. Thus the condition estimate takes about 1.2 times the effort needed to evaluate
the logarithm when n 6.

We have also implemented the "finite-difference" power method for the expo-
nential and logarithmic functions. Given Zo define I’o --- (F(X + Zo) F(X))/6,
W0 if’0/II 1011, and Z, - (F(Xr + iWo) F(Xr))/i. Then IIz, provides a condition
estimate ofF at X, at a cost oftwo function evaluations beyond F(X), when we use the
fact that F(Xr) (F(X)) r.

A common problem, for both the trapezoid and finite-difference approximation
methods, is the choice of the initial matrix Z0. The complex nature of both methods
makes it difficult to use "look-ahead" procedures such as those described in 8 and 6 ].
Instead, we have tried two different methods of choosing Zo. The first consists of letting
Zo have random entries in the interval [-1, 1]. This practically guarantees that Zo has
a nontrivial component in the matrix direction that maximizes L(Z, X)II. Consequently,
one power method cycle usually provides an estimate of L(., X)II that is sufficient for
the purposes ofcondition estimation 8 ]. We found that this was the case for the problems
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that we tested and that for most ofthe examples, one cycle ofthe finite-difference power
method with a random Z0 produced a condition estimate that was within 90 percent of
the true condition number while none ofthe one cycle estimates was less than 25 percent
of the true value.

The second method ofchoosing Z0, for the exponential function, consists of setting
Zo =- (exrex + eXexr)/2. The rationale behind this choice is that since

L(Z,X) ext s)Zex" ds,

if we set Z I, then L(I, X) ex. The adjoint step in the power method then gives

exex+ eXexL(eX,Xr) exTt -S)eXexr ds
2 Zo.

Thus one cycle of the power method with Z0 as above has approximately the effect of
two cycles and the resulting condition estimate should be much nearer the true condition
number. We found that this was indeed the ease and the resulting condition estimates
were always better than those obtained with random matrices. A similar procedure was
used for the logarithmic problem.

To determine the true condition numbers for our problem set, the trapezoid power
method was iterated until the estimates from one iteration to the next had a relative
difference of less than 10 -8. (The resulting values were cross-checked by iterating the
finite-difference method.)

In Tables and 2, we give the following relative condition numbers:

(4.1) KrAV--= IIF(X)I-- L(,,X)I1,

IIxll IIL(,,x)llD,(4,2) KD--IIFgX)II
X

L( ,,X) II,(4.3) r.c-IIF(X)II
for the exponential and logarithmic functions where L(., X)I[vAP and L(., X)IID
refer to the one-cycle power method estimates of L(., X)II obtained by using the trap-
ezoid and finite-difference approximation methods, respectively.

The problems tested included eight examples from the standard collection ofmatrices
[16 ], four examples of Ward [32]; 10 examples arising from state space models [1] in
control theory 3 ], 7 ], 25 ], 26 ]; and 1,000 randomly generated matrices of orders
between two and 16. For brevity, we discuss only a representative subsample consisting
of six problems.

TABLE
Condition estimatesfor F(X) ex.

Problem number KTRAP (from 4.1) Kvo (from 4.2) KExAcr (from 4.3)

7.49 7.50 7.50
2 53.9 53.9 53.9
3 2X 104 2X 104 2X104
4 1.59 1.59 1.68
5 210 210 210
6 3 x 10 3 x 10 3 )< 10
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TABLE 2
Condition estimatesfor F(X) log X.

Problem number KTgAP (from 4.1) KFD (from 4.2) KEXACT (from 4.3)

5.15 5.17 5.25
2 9 X 10 9 X 10 9 X 10
3 6 X 10 6 X 10 6 109
4 3.76 3.76 4.03
5 3 10I’ 3 10I’ 3 10II

6 6X 106 6X 106 6X 106

The first four problems ofTables and 2 were taken from 32 ]. Ofthese, Examples
3 and 4 are interesting because they show, as noted by Ward 32 ], that the condition
estimation scheme used in the subroutine MATEXP can give very conservative bounds.
For problem 3, MATEXP predicted that not more than 12 digits of accuracy would be
lost in the computation of ex, whereas one cycle of the power method for the Fr6chet
derivative (see KTRAP and KFD, Table 1, problem 3) predicted four digits would be lost.
In fact, the computed result had lost exactly four digits ofaccuracy. Similarly, for problem
4, MATEXP predicted a loss of at most nine digits, the power method predicted a loss
of one digit, and the computed result had lost one digit of accuracy. This illustrates that
condition estimates based on the norm of the Fr6chet derivative have the virtue of reli-
ability. For the fifth problem, X 0 with l0 6. This value of was chosen because
the exponential condition number is then very large. The excellent agreement between
KTRAP KFD and KEXACT in Tables and 2 is reminiscent of the fact that inverse power
method estimates of A-I become more accurate as A becomes more singular.

An interesting feature of this problem is the strong dependence of KFD on /i, as
illustrated in Table 3. For example, KFD 7 X l0 36 when a/[] X 5 10 -9. This
seems rather conservative since KEXACT K(F, X) 2 l0 . However, the given
values of KFD are correct and appropriate, as the following two points will make clear.
First, for a given value of/i, KFD is a lower bound on K in 1.3 )"

KFD (ll ex+z_ eXll/a)(ll X II/II eXll)--< K.
Thus KFD estimates K rather than K(F,X)=-lim_.oK. Normally, when di
5 10-9 X II, the difference between K and K(F, X) is small. However, and this is the
second point, for this example, K grows dramatically with//. To see this, let Z [ 0],
then (after some algebra),

ex+ z_ eXll IlXl___[_l Ce<KIleXl[= 2:

TABLE 3
Perturbation estimates for

Problem 5 with IIx lO6.

alllxll K,

5 10-9 7 1036
10-9 9 X 1020

5 10-1 3 1017
10-1 X 1013

5 10-11 2 1012
110-I’ 3101’
510-12 2 101’
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For example, if 106 and 6 5 10-9 5 X 10-3, then 1/e/262
7.24 10 36. In fact, for this problem, KFD provides a reasonably good estimate of non-
linear, "large-scale" perturbation effects.

This points the way to choosing the fight value of/ to use with KFD: 6/[[ X should
be on the order ofthe uncertainty in the data, X, or ifis known exactly, fi / X should
be near the machine epsilon, since this is the size of the error induced by machine
representation. After extensive numerical testing, we found that good results were con-
sistently obtained by taking 6 e 10 3 X where e is the machine epsilon (2.8 10 17

for double precision on a VAX 11/780). This value of 6 is small enough so that
(F(X + 6Z) F(X))/6 provides a good approximation to L(Z, X), but not so small
as to generate the truncation effects which occur when 6/[[X is at or below the
machine epsilon. For extremely ill-conditioned problems (for example, problem 5 with
_

108) even 6 103llx is too large to give a good estimate for IlL(., X)[[. In cases
of this type, the trapezoid method provides a reliable means of estimating L(., X)II
(see Corollary 3.5) since it does not depend on/.

The last problem (#6) in Tables and 2 is taken from [26 and illustrates the fact
that condition estimates based on upper triangular canonical forms can be extremely
conservative. For this problem,

48 -49 50 49
0 -2 100 0
0 -1 -2

-50 50 50 -52

Let X SJS- where J is the Jordan form of X. Petkov, Christov, and Konstantinov
[26 show that the Jordan decomposition bound,

ex+ z_ eX[12 x 112
_

16di all 11 s-ll e411sII211s-11 IIxIl=
6 IleXll2 IleXll

gives

K(F,X) <=4 10 TM

for 4 10 -3. However, Lyapunov arguments can be given to show that
K(F, X)

_
2 10 6; a lower bound for K(F, X) is given by KFD 3.4 10 3 for

=4X 10 -3.

5. Conclusion. The natural connection between the Fr6chet derivatives of matrix
functions and sensitivity allows us to develop a very general condition estimation pro-
cedure based on finite-difference approximations. This procedure is computationally
reasonable since it only requires two extra function evaluations. As seen in the section
on numerical tests, the ability to manipulate the "stepsize" in the finite-difference
method can lead to sensitivity estimates even when the size ofthe perturbation is relatively
large (see Table 3, 4). This area needs further research, as does the related problem of
condition estimation for perturbations that are restricted in some way, as in the theory
of structured singular values.

We have also presented an alternative sensitivity estimation procedure for the matrix
exponential and logarithmic functions. This method is based on a trapezoid approximation
of the integral representation of the Fr6chet derivative of the exponential function.

Because of its form, this method dovetails nicely with the "scaling and squaring"
method of evaluating the matrix exponential and the "inverse scaling and squaring"
method of evaluating the logarithm of a matrix. Both the finite-difference and trapezoid
approaches require almost the same effort computationally. However, the trapezoid
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method has an advantage in that it does not depend on the stepsize , and consequently
is a more reliable method for estimating the norm of the Frrchet derivative when the
matrix function is very ill-conditioned, as in Example 5.

Appendix A. The square root and logarithm ofa matrix. In this Appendix, we show
that any real matrix A P P, with no eigenvalues on the negative real axis including
zero, has a unique real square root and a unique real logarithm. We also justify the
inverse scaling and squaring formula log A 2 n log A 1/2n.

LEMMA A1. Let A xp with no eigenvalues on the negative real axis, including
zero. Then there exists a unique real matrix X, such that we have thefollowing:

(A) () X=a,
(A2) (2) The eigenvalues ofXare restricted to the sector r/2 < arg (z) < r/ 2.

Proof. The existence of such a matrix X follows from the Cauchy integral formula
for operators. This method was used by DePrima and Johnson in 11 ], in which this
lemma was proved under the added condition that X satisfies: (3) XS SX when-
ever AS SA. However, this condition can be shown to be a consequence of (A1)
and (A2). E]

LEMMA A2. Let A v v with no eigenvalues on the negative real axis, including
zero. Then there exists a unique real matrix X, such that we have thefollowing:

(A3) (1) eX=A,
(A4) (2) The eigenvalues ofXlie in the strip-r <Im (z)< r.

Proof. The proof is similar to that of Lemma 6.1.
LEMMA A3. Let A qp p with no eigenvalues on the negative real axis. Let A 1/2

and log A denote the unique real square root and logarithm ofA as in Lemmas A1 and
A2, respectively. Then

A 1/2 el/21ogA(A5)
and

(A6) log A 2 log A /2.

Proof. Let X log A satisfy (6.3) and (6.4). Then ex/2 satisfies ex/2 ex/2 ex A
and the eigenvalues of ex/2 lie in the sector -r/2 < arg (z) < r/2. This means that the
real matrix ex/2 satisfies (A1) and (A2) and so by Lemma A1, A 1/2 ex/2 e 1/21gA,
which proves (A5).

Now suppose that A 1/2 satisfies (A1) and (A2). Using the Cauchy integral
operator representation of the logarithm ofA 1/2, we see that the eigenvalue condition
(A2) implies that the eigenvalues oflog A 1/2 lie in the strip -r/2 < Im (z) < r/2. Thus
the matrix X 2 log A 1/2 satisfies (A3) and (A4) and must be equal to log A by Lemma
A2. This proves (A6).

COROLLARY A4. ForA as in Lemma A3, the "inverse scaling andsquaring"formula
log A 2 n log A 1/2 is valid.

Proof. By Lemma A3, log A 2 log A 1/2 4 log A 1/4 2 n log A

Appendix B. Examples of Frchet derivatives. The following lemma enables us to
find the derivatives of the square root and logarithmic functions.

LEMMA B 1. Let F be diffeomorphic at X, that is, let F be invertible in a neighborhood
ofY F(X and let the derivative, LF( X), offatXbe nonsingular. Then the derivative,
LF-( ., Y) off-1 at Y exists and is given by the inverse ofthe derivative off at X:

LF-,(’,F(X))=L.I(’,X).
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Proof. Although the proof of this lemma is not hard, we omit it for the sake of
brevity.

Using this lernma, we may find the derivatives of the inverse of the functions con-
sidered in Examples and 2 of the introductory section.

Example 3. Let A with no eigenvalues on the negative real axis including
zero, and let A / denote the square root ofA as in Lemma A1. Condition (A2) on the
eigenvalues ofA 1/2 ensures that the Sylvester operator L(Z) A l/2Z + ZA/ is invertible
21 ]. Hence, the derivative, Ll/ of the square root function A -- A t/2 is the inverse of
L in Example of the Introduction: L

_
(W, A) Z, where L(Z, A l/2) W.

Example 4. Let A with no eigenvalues on the negative real axis including
zero, and let log A denote the logarithm of A as in Lemma A2. Condition (A4)
ensures that the exponential derivative operator, L, defined by (1.6) is invertible.
Hence, the derivative, Lo, of the logarithmic function A -- log A is the inverse of L:
Lo(W, A) Z where L(Z, log A) W. (See 3 for more details.)

Example 5. Let X be invertible. Then

(X.. Z)-1 .--X-I-x-Izx-1 - O(2),
so the derivative ofthe inverse function is given by L(Z, X) -X-ZX- It is interesting
to note that the inverse function is invariant under the inversion operation and

L-’(.,X)=L(.,X-).
Since the squaring and exponential functions are related via the identity ex=

(eX/2) 2, it is not surprising that there exists a chain rule relationship between their de-
rivatives:

Lexp(Z,X) 1/2 Ls(Lexp(Z,X/2 ), ex/2)
where Ls and Lexp denote the derivatives of the squaring and exponential functions,
respectively. This relationship is a consequence of the following lemma.

LEMMA B2. Let F(X) g(f(X)) where we assume that the derivatives offand g
exist at X and Y =f(X), respectively. Then the derivative of F at X exists and is
given by

LF(Z,X) Lg(Lf(Z,X), Y)

where Lf, Lg, and LF denote the derivatives off, g, and F, respectively.
Proof. The proof follows rather easily from (1.5).
Example 6. Let A Pxp with no eigenvalues on the negative real axis including

zero. Then we may define a real qth power of A, say X A
We may write A q h(g(f(A))) where f(A) log A, g(B) qB and h(C) ec.
Then the derivative, L, of the map A -- A q is given by L(Z, A) Lexp (qLog (Z, A),
q log A) qLxp (Log (Z, A), q log A).

Note added in proof. We wish to thank N. J. Higham for pointing out to us that
our method for computing a matrix square root based on [5], while arrived at indepen-
dently, is essentially identical to that given in 19]. The latter’s much more thorough
analysis should be consulted for details.
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