
Choice of Riemannian Metrics for Rigid Body Kinematics
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Abstract

The set of rigid body motions forms a Lie group called SE(3), the special Euclidean group in three
dimensions. In this paper we investigate possible choices of Riemannian metrics and affine connections on
this manifold. In the first part of the paper we derive the semi-Riemannian metrics whose geodesics are screw
motions and show that the only metrics are indefinite but non degenerate, and they are unique up to a choice
of two scaling constants. In the second part of the paper we investigate affine connections which through the
covariant derivative give the correct expression for the acceleration of a rigid body. We prove that there is a
unique symmetric connection which achieves this. Further, we show that there is a family of metrics that are
compatible with such connection. A metric in this family must be a product of the bi-invariant metric on the
group of rotations and a positive definite constant metric on the group of translations.

1 Introduction

The set of all three-dimensional rigid body displacements forms a Lie group [1, 2]. This group is generally referred
to as SE(3), the special Euclidean group in three dimensions. The tangent space at the identity endowed with
the Lie bracket operation has the structure of a Lie algebra and is denoted by se(3). It is isomorphic to the set
of all twists and the Lie bracket of two twists corresponds to the motor product of the respective motors.

There is extensive literature on the algebra of twists and the theory of screws [3, 4, 5, 6]. It is well known that
there is an inner product on the space of twists induced by the usual inner product on IR6 but this inner product
is not invariant under change of coordinate frame [5, 7]. On the space of twists, there are two quadratic forms, the
Killing form and the Klein form that are bi-invariant [2]: They are invariant under change of the inertial reference
frame and change of the body-fixed reference frame. However neither form is positive definite: The Killing form
is degenerate and the Klein form is indefinite.

Because of the Lie group structure of SE(3) it is possible to define a positive definite quadratic form or a metric
on the tangent space at the identity and extend it to the whole group by left translation. Such a metric is called
left invariant and is invariant with respect to change in inertial frame (but not with respect to change in body-fixed
frame). Similarly, one can define a right invariant metric through right translation and this metric is invariant
with respect to change in body-fixed frame. In this way we can endow SE(3) with a Riemannian metric and give
it the structure of a Riemannian manifold. If we only require the quadratic form to be non-degenerate (instead of
positive definite), the resulting metric is called a semi-Riemannian metric. Park and Brockett [8] propose a left
invariant Riemannian metric, which when restricted to the group of rotations, SO(3), is bi-invariant, and further
preserves the isotropy of IR3. However, the metric depends on the choice of a length scale. A good discussion on
the geometry of SE(3) can be found in the appendix of [9].

A Riemannian metric imposes quite strong structure on the manifold. We can obtain somewhat less restrictive
structure through a connection. In particular, an affine connection defines the notion of parallelism (which is
trivial in Euclidean space) on the manifold by defining a rule for parallel transport along curves. The notion
of parallelism leads to definition of the covariant derivative of a vector field (the generalization of directional
derivatives in Euclidean space) along a curve. In the context of kinematics, the motion of a rigid body is a curve
on SE(3) and the velocity at any point is the tangent to the curve at that point. We need the definition of a
covariant derivative before we can talk about the acceleration of the rigid body: The acceleration is the covariant
derivative of the velocity field along the curve.



Given a Riemannian metric, a theorem due to Levi-Civita guarantees the existence and uniqueness of a special
connection which is compatible with the metric and symmetric. This connection is called a Riemannian connection.
The connection determines the geodesics, the generalization of straight lines of Euclidean geometry to Riemannian
manifolds. Park [10] derives geodesics for the scale-dependent left invariant metric on SE(3) using covering maps.
Žefran et al. [11] obtain the same result directly from the connection. They also find minimum acceleration and
minimum jerk trajectories on SE(3) and develop expressions for the acceleration of a rigid body.

This paper addresses the choice of metrics and connections for SE(3). Some of the geodesics from the scale
dependent left invariant metric, are screw motions [11]. Since Chasles theorem guarantees the existence of a screw
motion (and the uniqueness of the screw axis) between any two points on SE(3), a natural question is whether
there exists a metric for which all the geodesics are screw motions. We show that there is a semi-Riemannian
metric which is uniquely determined up to two scale constants, for which the screw motions are geodesics. The
second question that we ask is whether there is a unique connection that gives the physically correct acceleration
for a rigid body motion. We show that there is a unique symmetric connection which is physically meaningful
(from the point of view of acceleration analysis). Further, this connection can be derived from a family of
Riemannian metrics. Any element of this family of metrics is a product of a bi-invariant metric on the group of
rotations and a positive definite constant metric on the group of translations.

The paper is organized as follows. At the beginning we briefly discuss notions of a Riemannian manifold,
a metric and a connection that are later used in the derivations. In the next section, we look for metrics
for which screw motions are geodesics. We arrive at a system of partial differential equations for the metric
coefficients. The solution of the system follows from the conditions on the consistency of the system. Next, we
study affine connections which lead to the acceleration used in rigid-body kinematics. By requiring symmetry of
the connection, we are able to show that such connection is unique. Further, we find a family of metrics which
are consistent with the connection. We arrive at the resulting family of metrics through the study of geodesics.
We conclude the paper with a short discussion.

2 Kinematics, Lie groups and differential geometry

2.1 The Lie group SE(3)

Consider a rigid body moving in free space. Assume any inertial reference frame F fixed in space and a frame M
fixed to the body at point O′ as shown in Figure 1. At each instance, the configuration (position and orientation)
of the rigid body can be described by a homogeneous transformation matrix corresponding to the displacement
from frame F to frame M . The set of all such matrices is called SE(3), the special Euclidean group of rigid body
transformations in three-dimensions. It is not difficult to show that SE(3) is a group for the standard matrix
multiplication and that it can be endowed with a differentiable structure. It is therefore a Lie group [12].

Figure 1: The inertial (fixed) frame and the moving frame attached to the rigid body

On any Lie group, G, the tangent space at the group identity, TIG, has the structure of a Lie algebra. A short
calculation shows that the Lie algebra of SE(3), denoted by se(3), is given by:

se(3) =

{[
Ω v
0 0

]
,Ω ∈ IR3×3, v ∈ IR3,ΩT = −Ω

}
. (1)

A 3× 3 skew-symmetric matrix Ω can be uniquely identified with a vector ω ∈ IR3 so that for an arbitrary vector
x ∈ IR3, Ωx = ω × x, where × is the vector cross product operation in IR3. Each element T ∈ se(3) can be

thus identified with a vector pair {ω, v} or a 6×1 vector
[
ωT , vT

]T
. In the paper, both notations will be used

interchangeably.
Given a curve A(t) : [−a, a] → SE(3), an element of the Lie algebra, T (t), can be attributed to the tangent

vector Ȧ(t) at an arbitrary point t by:
T (t) = A−1(t)Ȧ(t). (2)

A curve on SE(3) physically represents a motion of the rigid body. If {ω(t), v(t)} is the vector corresponding
to T (t), then ω physically corresponds to the angular velocity of the rigid body while v is the linear velocity of
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the origin O′ of the frame M fixed to the rigid body, both expressed in the frame M . In kinematics, elements
of this form are called twists [13]. Thus, se(3) is isomorphic to the set of twists. For this reason, elements of
se(3) will be called twists. It is easy to check that the twist T (t) computed from Eq. (2) does not depend on the
choice of the inertial frame F . For this reason, T (t) is called the left invariant representation of the tangent vector
Ȧ. Alternatively, a tangent vector Ȧ can be identified with a right invariant twist (invariant with respect to the
choice of the body-fixed frame M). In this paper we concentrate on the left invariant twists but the derivations
for the right invariant twists are analogous.

Since se(3) is a vector space any element can be expressed as a 6× 1 vector of components corresponding to a
chosen basis. The standard basis that will be used throughout the paper is:

L1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 L2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 L3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



L4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 L5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 L6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


(3)

Twists L1, L2 and L3 represent instantaneous rotations about while L4, L5 and L6 correspond to the instantaneous
translations along the Cartesian axes x, y and z, respectively. The chosen basis has the useful property that the
components of a twist T ∈ se(3) are given precisely by the pair of the velocities, {ω, v}.

The Lie bracket of two elements T1, T2 ∈ se(3) is defined by:

[T1, T2] = T1T2 − T2T1.

It can be easily verified that if {ω1, v1} and {ω2, v2} are vectors of components corresponding to twists T1 and
T2, the vector pair {ω, v} corresponding to their Lie bracket [T1, T2] is given by[

ω
v

]
=

[
ω1 × ω2

ω1 × v2 + v1 × ω2

]
. (4)

In kinematics, this expression is known as the motor product of the two twists.
The Lie bracket of two elements of a Lie algebra is an element of the Lie algebra. Thus, it can be expressed

as a linear combination of the basis vectors. The coefficients Ckij corresponding to the Lie brackets of the basis
vectors, defined by

[Li, Lj ] =
∑
k

CkijLk. (5)

are called structure constants of the Lie algebra [12]. For se(3), they can be directly computed from Equation
(4). The nonzero structure constants for the basis (3) are:

C3
12 = C2

31 = C1
23 = C6

15 = C4
26 = C5

34 = C6
42 = C4

53 = C5
61 = 1

C3
21 = C2

13 = C1
32 = C6

51 = C4
62 = C5

43 = C6
24 = C4

35 = C5
16 = −1 (6)

2.2 Left invariant vector fields

A differentiable vector field on a manifold is a smooth assignment of a tangent vector to each element of the
manifold. On SE(3), an example of a differentiable vector field, X, is obtained by left translation of an element
of se(3):

X(A) = T̂ (A) = AT, (7)

where T ∈ se(3). Such a vector field is called a left invariant vector field. We use the notation T̂ to indicate that
the vector field is obtained by left translating the Lie algebra element T . The set of all left invariant vector fields
is a vector space and by construction it is isomorphic to se(3). A similar approach can be used to derive right
invariant vector fields. In general, a vector field need not be left or right invariant.
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Since vectors L1, L2, . . . , L6 are a basis for the Lie algebra se(3), at any point A ∈ SE(3) the vectors
L̂1(A), . . . , L̂6(A) obtained from Eq. (7) form a basis of the tangent space at that point. Therefore, any vector
field X can be expressed as

X =

6∑
i=1

XiL̂i, (8)

where the coefficients Xi vary over the manifold. If the coefficients are constants, then X is left invariant.
Equation (8) suggests that we associate a vector pair {ω, v} defined by

ω = [X1, X2, X3]T , v = [X4, X5, X6]T .

to an arbitrary vector field X. We also have [14]:

[L̂i, L̂j ] = ̂[Li, Lj ] =
∑
k

CkijL̂k. (9)

2.3 Exponential mapping and local coordinates

Since SE(3) is a 6-dimensional manifold, it can be locally described as a diffeomorphic image of an open set in IR6

[14]. A particularly convenient representation of SE(3) can be derived from the exponential map exp : se(3) →
SE(3). For T ∈ se(3), the exponential map is given by the usual matrix exponentiation:

exp(T ) =

∞∑
k=0

T k

k!
. (10)

The explicit formula for the exponential map restricted to SO(3) is given by the Rodrigues’ formula [9].
The function exp is a surjective map of se(3) onto SE(3) [9]. However, for a small enough neighborhood of

zero in se(3) it is a diffeomorphism onto a neighborhood of the identity element in SE(3). We can thus define
local coordinates, ξi, for A ∈ SE(3) sufficiently close to the identity:

A(ξ) = exp
(
ξ1L1 + ξ2L2 + ξ3L3 + ξ4L4 + ξ5L5 + ξ6L6

)
. (11)

The coordinates ξi are called canonical coordinates of the first kind [15].

2.4 Riemannian metrics on Lie groups

If a smoothly varying, positive definite, bilinear, symmetric form is defined on the tangent space at each point
on the manifold, we say the manifold is Riemannian. The bilinear form is an inner product on the tangent space
and is called a Riemannian metric.

On a Lie group, an inner product in the tangent space at the identity can be extended to a Riemannian metric
(everywhere on the manifold) using the idea of left translation. Assume that the inner product of two elements
T1, T2 ∈ se(3) is defined by

< T1, T2 >I= tT1Wt2, (12)

where t1 and t2 are the 6× 1 vectors of components of T1 and T2 with respect to some basis and W is a positive
definite matrix. If V1 and V2 are tangent vectors at an arbitrary group element A ∈ SE(3), the inner product
< V1, V2 >A in the tangent space TASE(3) can be defined by:

< V1, V2 >A=< A−1V1, A
−1V2 >I . (13)

The metric obtained in such a way is called a left invariant metric [14]. A right invariant Riemannian metric can
be defined in a similar way.
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2.5 Affine connection and covariant derivative

The motion of a rigid body can be represented by a curve, A(t), on SE(3). The velocity at an arbitrary point is
the tangent vector to the curve at that point. In order to obtain other kinematic quantities, such as acceleration
and jerk, or to engage in a dynamic analysis, we need to be able to differentiate a vector field along the curve.
If the manifold SE(3) is embedded in the space of all 4× 4 matrices differentiation is a straightforward process.
However, we would like to obtain definitions for the derivative that are intrinsic, that is, they depend only on the
manifold SE(3) itself and not on the ambient space. Further, we would like to obtain a definition that is invariant
with respect to the choice of local coordinate systems.

Differentiable structure of the manifold does not provide any means to compare values of a vector field at
different points. At each point, A ∈ SE(3), the value of a vector field belongs to the tangent space TA SE(3) and
tangent spaces at different points are not related. To be able to differentiate a vector field, we have to define how
to compare vectors that belong to different tangent spaces. More precisely, to differentiate a vector field along a
curve, we must be able to compare vectors from tangent spaces at different points on the curve. For this purpose,
it suffices to define when two vectors that belong to tangent spaces at different points of a curve are parallel. The
affine connection formalizes the notion of parallelism: Given a point A on a curve γ and a vector V ∈ TA SE(3),
the affine connection assigns to each other point A′ ∈ γ a vector V ′ ∈ TA′ SE(3). By definition, V ′ is parallel to
V along the curve γ and is called parallel transport of V along γ.

With parallel transport, we can compare two vectors at different points of the curve simply by transporting
them to the same point on a curve. In particular, we can define a derivative of a vector field along a curve γ(t).
Let X be a vector field defined along γ, A = γ(t0) and V = X(A). Denote by Xt0(t) the parallel transport of the
vector X(γ(t)) to the point A = γ(t0). The covariant derivative of X along γ is:

DX

dt
(A) = lim

t→t0

Xt0(t)−X(A)

t
. (14)

If Y = dγ
dt is the tangent vector field for the curve γ, the covariant derivative is also denoted by:

DX

dt
= ∇YX. (15)

It is important to note that in order to compute the covariant derivative of a vector field along a curve it suffices to
know the values of the vector field on the curve, it does not have to be defined elsewhere. If a covariant derivative
of a vector field X along a curve γ(t) vanishes, then X is equal to its parallel transport along γ.

Covariant derivative of a vector field is another vector field so it can be expressed as a linear combination of
the basis vector fields. The coefficients, Γkji, of the covariant derivative of a basis vector field along another basis
vector field,

∇L̂iL̂j =
∑
k

ΓkjiL̂k,

are called Christoffel symbols1. Note the reversed order of indices i and j.
The velocity, V (t), of the rigid body describing the motion A(t) is given by the tangent vector field along the

curve:

V (t) =
dA(t)

dt
The acceleration of the rigid body is the covariant derivative of the velocity along the curve

D

dt

(
dA

dt

)
= ∇V V

Note that the acceleration depends on the choice of the connection.
Given a Riemannian manifold, there exists a unique connection, called Levi-Civita or Riemannian connection,

which is compatible with the metric and symmetric [14]. That is, given vector fields X, Y and Z,

(a) X <Y,Z>=<∇XY, Z> + <Y,∇XZ> (compatibility with the metric),

(b) ∇XY −∇YX = [X,Y ] (symmetry).

1In the literature, different definitions for the Christoffel symbols can be found. Some texts (e.g. [14]) reserve the term for the
case of the coordinate basis vectors. We follow the more general definition from [16] in which the basis vectors can be arbitrary.
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3 Metrics and screw motions

3.1 Screw motions and displacements on SE(3)

One of the fundamental results in rigid body kinematics [13] states that any displacement of a rigid body can be
realized in a special canonical way and was proved by Chasles at the beginning of the 19th century:

Theorem 3.1 (Chasles) Any rigid body displacement can be realized by a rotation about an axis combined with
a translation parallel to that axis. This displacement is called a screw displacement and the axis along which the
displacement occurs is known as a screw axis.

A rigid body motion in which the rigid body rotates with a constant rotational velocity about an axis while
concurrently translating with a constant translational velocity along that axis is called a screw motion. Strictly
speaking, a displacement is different from a motion: A motion is a curve on SE(3) while a displacement is an
element of SE(3).

Another family of curves of particular interest on SE(3) are one-parameter subgroups. On a Lie group, a curve
A(t) is a one-parameter subgroup, if it is a subgroup and if the following identity holds:

A(t1 + t2) = A(t1) ◦A(t2), (16)

where ◦ denotes the group operation on SE(3). One-parameter subgroups on SE(3) are given by [14]:

A(t) = exp(t S) (17)

where S is an element of se(3). Therefore, a one-parameter subgroup can be viewed as a curve whose tangent
vector field is a left invariant vector field obtained from the Lie algebra element S. It is not difficult to see
that physically, a one-parameter subgroup represents a screw motion. Therefore, in the language of differential
geometry, the Chasles theorem becomes:

Theorem 3.2 (Chasles restated) For every element in SE(3) there is a one-parameter subgroup to which that
element belongs. Except for the identity, the screw axis for every element is unique, but there are multitude of
screw motions along that axis which contain the element.

The following corollary immediately follows:

Corollary 3.3 Given any two distinct elements, A1 and A2, the following is true:

1. There is a unique one-parameter subgroup, γL(t) = exp(t SL), which when left translated by A1 contains A2:

AL(t) = A1 exp(t SL), A2 = AL(1) = A1 exp(SL).

2. There is a unique one-parameter subgroup, γR(t) = exp(t sR), which when right translated by A1 contains
A2:

AR(t) = exp(t SR)A1, A2 = AR(1) = exp(SR)A1.

SL and SR both belong to se(3). Since

A1 exp(t SL) = A1

∞∑
k=0

tk SkL
k!

=

∞∑
k=0

tk(A1 SLA
−1
1 )k

k!
A1, (18)

it follows that:
SR = A1SLA

−1
1 = AdA1

SL,

and
AR(t) = AL(t).
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3.2 Screw motions as geodesics

Given a Riemannian manifold (a manifold with a Riemannian metric), Σ, the length of a smooth curve A : [a, b]→
Σ, is defined as

L(A) =

∫ b

a

<
dA

dt
,
dA

dt
>

1
2 dt (19)

Among all the curves connecting two points, we are usually interested in the curve of minimal length. If a
minimum length curve between two points exists, the curve must be a critical point of L. Critical points of the
functional L are given by [14]:

∇ dA
dt

dA

dt
= 0. (20)

Curves that satisfy this equation are called geodesics and the equation itself is called the geodesic equation. From
what we said in 2.5, we see that geodesics are curves for which velocity is a parallel vector field. There are cases
when a geodesic between two arbitrary points does not exist. Furthermore, there could be more than one geodesic
connecting two points.

Given that any two elements of SE(3) can be connected with a screw motion, it is natural to ask whether screw
motions can be geodesics. More precisely, is there a Riemannian metric for which screw motions are geodesics.

We have seen that for a screw motion γ(t) = exp(t S) the tangent vector field dγ
dt is a left invariant vector field

corresponding to S ∈ se(3). This means that components of S with respect to the basis L̂i are constant. If this
trajectory is to be a solution to Eq. (20), we have

∇SiL̂iS
jL̂j =

dSi

dt
L̂j + SiSj∇L̂iL̂j = SiSj∇L̂iL̂j = 0.

The above equation is satisfied if and only if

∇L̂iL̂j +∇L̂j L̂i = 0.

Since ∇ is a metrical connection, it is symmetric:

∇L̂iL̂j −∇L̂j L̂i = [L̂i, L̂j ].

It immediately follows that:

∇L̂iL̂j =
1

2
[L̂i, L̂j ]. (21)

Further, ∇ must be compatible with the metric, so we have

L̂k < L̂i, L̂j >=< ∇L̂k L̂i, L̂j > + < L̂i,∇L̂k L̂j > . (22)

Let gij =< L̂i, L̂j >. The last equation implies

L̂k(gij) =
1

2

(
< [L̂k, L̂i], L̂j > + < L̂i, [L̂k, L̂j ] >

)
. (23)

Since L̂i are left invariant vector fields, [L̂i, L̂j ] = [Li, Lj ] and < L̂i, L̂j >=< Li, Lj > [14]. Furthermore, the Lie
bracket can be expressed using the structure constants:

[Li, Lj ] =
∑
k

CkijLk. (24)

Equation (23) therefore becomes:

L̂k(gij) =
1

2
(Clkiglj + Clkjgli). (25)

We have arrived at the following:

Proposition 3.4 Screw motions will satisfy the geodesic equation (20) for a Riemannian metric G = {gij} if
and only if the coefficients gij satisfy Eq. (25).
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Metric coefficients are symmetric. Since SE(3) is a 6 dimensional manifold, there are 21 coefficients defining
the metric: {gij |i ≤ j, j ≤ 6}. Furthermore, we have 6 basis vectors. Equation 25 thus expands to a total of 126
equations. These are partial differential equations because each vector field represents a derivation. The system
of equations has to be solved for the metric coefficients gij . The complete set of equations is given in Appendix
A.

To find the solution we will use the following Lemma:

Lemma 3.5 Given a set of partial differential equations

X(f) = gx (26)

Y (f) = gy (27)

Z(f) = gz (28)

where X, Y , and Z are vector fields such that Z = [X,Y ] and f , gx, gy and gz are differentiable (real valued)
functions, the solution exists only if

X(gy)− Y (gx) = gz. (29)

Proof: By applying X on Eq. (27), Y on Eq. (26) and subtracting the two resulting equations, we get:

X Y (f)− Y X(f) = X(gy)− Y (gx). (30)

But the left-hand side is by definition [X,Y ](f), which is by assumption equal to Z(f). Equation (29) then follows
from Eq. (28).

We now state the first major result of this paper:

Theorem 3.6 A matrix of coefficients G = {gij} satisfies the system of partial differential equations (25) if and
only if it has the form

G =

[
α I3×3 β I3×3
β I3×3 03×3

]
, (31)

where α and β are constants.

Proof: To find the metric coefficients, we start with the following subset of equations of system (78):

L̂1(g11) = 0 L̂2(g11) = −g13 L̂3(g11) = g12 (32)

First, observe that [L̂1, L̂2] = L̂3 (see Appendix C). By application of Lemma 3.5, the following equation must
hold:

−L̂1(g13) = g12. (33)

But from (78), we have:

L̂1(g13) = −1

2
g12.

Therefore, Eq. (33) becomes:
1

2
g12 = g12.

Obviously, this implies that g12 = 0. We next observe that g12 = 0 implies L̂i(g12) = 0, i = 1, . . . , 6. From the
system (78) we obtain:

g13 = 0 g23 = 0 g11 = g22
g16 = 0 g26 = 0 g14 = g25

(34)
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By using the equations for g13, g23, g16 and g26 from (78), and the fact that these coefficients are all 0, we further
obtain

g15 = 0 g24 = 0 g11 = g33
g34 = 0 g35 = 0 g14 = g36
g44 = 0 g45 = 0 g46 = 0
g55 = 0 g56 = 0 g66 = 0

(35)

Next observation is that L̂i(g11) = 0, i = 1, . . . , 6. This, together with Eq. (34) and (35) implies:

g11 = g22 = g33 = α.

where α is an arbitrary constant. Similarly, we obtain

g14 = g25 = g36 = β.

for an arbitrary constant β. In this way we have obtained all 21 independent values of G. The reader can easily
check that all the equations (78) are satisfied by the above values so the theorem is proved.

Corollary 3.7 There is no Riemannian metric whose geodesics are screw motions.

Proof: It is easy to check that the matrix of the form

G =

[
α I3×3 β I3×3
β I3×3 03×3

]
,

has two distinct real eigenvalues

λ1 =
1

2
(α+

√
α2 + 4β2)

λ2 =
1

2
(α−

√
α2 + 4β2)

which both have multiplicity 3. For any choice of α and β, the product of the eigenvalues is λ1λ2 = −4β2 ≤ 0.
Therefore, G is not positive-definite as required for a Riemannian metric.

Although G does not define a Riemannian metric, it induces a metrical structure on SE(3) that can be treated
in the analogous way as Riemannian structure. In particular, we can investigate the invariance properties of the
metric given by G. By definition, the metric is left-invariant if for any A,B ∈ SE(3) and for any vector fields X
and Y :

< AX(B), AY (B) >AB=< X(B), Y (B) >B , (36)

and it is right-invariant if:
< X(B)A, Y (B)A >BA=< X(B), Y (B) >B . (37)

Before we investigate the invariance properties of the metric (31), we prove the following lemma:

Lemma 3.8 If S1 and S2 are two elements of se(3) and SE(3) has the metric (31), then for any A ∈ SE(3)

< S1, S2 >I=< AdA(S1),AdA(S2) >I . (38)

If S is represented in its matrix form, the map Ad : se(3)→ se(3) is defined by AdA(S) = AS A−1.

Proof: Let S1 = {ω1, v1} and S2 = {ω2, v2}. By a straightforward algebraic calculation it can be shown that for
S = {ω, v} ∈ se(3) and A ∈ SE(3), where

A =

[
R d
0 1

]
the value of AdA(S) is given by:

AdA(S) = {Rω,R v − (Rω)× d} (39)
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where × is the usual vector cross product. Therefore, we have:

< AdA(S1),AdA(S2) >I=< {Rω1, R v1 − (Rω1)× d}, {Rω2, R v2 − (Rω2)× d} >I
= α (Rω1)T (Rω2) + β (Rω1)T (Rv2 − (Rω2)× d) + β (Rω2)T (v1 − (Rω1)× d)

= α ωT1 ω2 + β (ωT1 v2 + ωT2 v1)− β((Rω1)T ((Rω2)× d) + (Rω2)T ((Rω1)× d))

= α ωT1 ω2 + β (ωT1 v2 + ωT2 v1) =< {ω1, v1}, {ω2, v2} >I=< S1, S2 >I (40)

The lemma implies:

Proposition 3.9 Metric G given by (31) is bi-invariant (both, left- and right-invariant).

Proof: It is obvious that the metric G is left-invariant, since it is constant for the basis of the left-invariant vector
fields L̂i. To show that it is also right invariant, take two vector fields X and Y . We have to check that Eq. (37)
holds. First, since the metric is left-invariant, we have:

< X(B)A, Y (B)A >BA=< (BA)−1X(B)A, (BA)−1Y (B)A >I=< A−1B−1X(B)A,A−1B−1Y (B)A >I .

By Lemma 3.8,
< A−1B−1X(B)A,A−1B−1Y (B)A >I=< B−1X(B), B−1Y (B) >I .

But because of the left-invariance of G, the last expression is:

< B−1X(B), B−1Y (B) >I=< X(B), Y (B) >B ,

as required.

Analogously to the Riemannian case, we could define length of a curve γ(t) between two points A1 and A2 on
SE(3) by:

L(γ;A1, A2) =

∫ A2

A1

<
dγ

dt
,
dγ

dt
>

1
2 dt. (41)

But G is not positive definite, so length of a curve would be in general a complex number. Instead, we define the
energy measure:

E(γ;A1, A2) =

∫ A2

A1

<
dγ

dt
,
dγ

dt
> dt. (42)

Since G is not positive definite, energy of a curve can be in general negative. There are also curves (other than
points) which have zero energy.

Two special cases of metric (31) are particularly interesting. With α = 0 and β = 1 we obtain the metric:

G =

[
03×3 I3×3
I3×3 03×3

]
.

This metric, taken as a quadratic form on se(3), is known as Klein form. The eigenvalues for the metric are
{1, 1, 1,−1,−1,−1} and the form is therefore non-degenerate. For a screw motion:

A(t) = A0 exp(t S)

the energy of the segment t ∈ [0, 1] is given by

E(A) =
2

3
ωT v (43)

where S = {ω, v} ∈ se(3). This implies that the energy of the geodesics will be positive when ωT v > 0, it will be
negative when ωT v < 0 and it will be 0 if ωT v = 0. If ω 6= 0, the quantity:

h =
ωT v

|ω|2
(44)
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is a constant known as a pitch of the screw motion. Physically, the pitch of the screw motion determines how
much translation along the screw axis occurs per rotation about the axis. Zero energy screw motions with ω 6= 0
are therefore pure rotations. On the other hand, if ω = 0, the energy of the screw motion will be also 0. Screw
motions with ω = 0 are pure translations. In short, zero energy screw motions are either pure rotations or
pure translations. Screw motions with positive energy are those with positive pitch. Trajectories for such motions
correspond to right-handed spirals and the motions are also called right-handed screw motions. Analogously, screw
motions with negative energy correspond to left-handed screw motions. Since pure rotations and pure translations
are zero-energy motions, it is always possible to find a zero energy curve between two arbitrary points by breaking
the motion into a segment consisting of pure rotation followed by a segment of pure translation. A natural choice
of orthonormal basis on se(3) for the Klein from are screw motions along the x, y and z axes with pitch +1 and
−1. In kinematic literature, these motions are known as principal screws.

By putting α = 1 and β = 0, we get the metric:

G =

[
I3×3 03×3
03×3 03×3

]
.

This metric, as a form on se(3), is called the Killing form. Its eigenvalues are {1, 1, 1, 0, 0, 0} so it is degenerate.
The energy of a screw motion with S = {ω, v} is equal to 1

3ω
T ω so it is always non-negative. Pure translations

are zero-energy motions while any motion involving rotation will have positive energy.
In the general case, for α 6= 0 and β 6= 0, the energy of a screw motion along S = {ω, v} is 1

3ω
T (αω + 2β v).

Zero-energy motions are pure translations. Whether the energy of the motion will be positive or negative in this
case depends also on α and β, not only on the geometry.

4 Affine connections on SE(3)

Once a differentiable structure on a manifold is defined, notions of a tangent vector and a vector field naturally
follow. To measure distances on the manifold we had to introduce a metric. This, in turn, allowed definition of a
length of a curve and a geodesic as a curve which minimizes the distance between two points. There is no natural
choice of metric – any n× n symmetric matrix G whose components are differentiable functions (in other words,

any symmetric

(
0
2

)
tensor field) can be chosen. In the previous section, we chose a particular family of curves

and found the metric G for which these curves were geodesics. In this process we interpreted geodesics as shortest
distance curves thus notion of the distance was implicitly assumed.

In this section, we take a different approach: We try to introduce additional structure on the manifold until
we have enough constraints that the metric eventually follows. We are guided by the notion of acceleration from
kinematics. If a manifold is endowed with a metric, there is a natural way to differentiate vector fields, given
by the metrical connection. Instead, we start by introducing a connection to SE(3) so that the acceleration
can be computed. By requiring that the acceleration computed through the connection agrees with the usual
expression for the acceleration, we are able to partially characterize the affine connection. We then require that
the connection is symmetric and show that this determines a unique connection. Finally, we find a class of metrics
which are compatible with the derived affine connection.

4.1 A physically meaningful connection

At the beginning of the paper we have shown that the space of twists known from kinematics is isomorphic to
the Lie algebra se(3). Furthermore, by introducing the basis of left-invariant vector fields L̂i (Eq. 8) we found
a natural framework for studying motion on SE(3): The components of tangent vector fields with respect to
the basis L̂i correspond to components of the instantaneous twist associated with the motion, expressed in the
body-fixed coordinate frame. To arrive at the acceleration, we compute a covariant derivative of the velocity (that
is, the tangent vector field) along the curve describing the motion.

We now turn our attention to the acceleration as computed in kinematics. Let A(t) be a curve describing
motion of a rigid body. Let V (t) = {ω, v} represent the instantaneous velocity of the rigid body, expressed in the
moving frame M fixed to the rigid body. More precisely, ω represents the angular velocity of the rigid body while
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v represents velocity of the origin of the body-fixed coordinate frame M , both expressed in the frame M . The
acceleration of the rigid body is given by time derivative of V (t) (where V (t) is viewed simply as a vector in IR6):

dV

dt
=

[
ω̇
v̇

]
+

[
0

ω × v

]
. (45)

The second term in the acceleration occurs due to rotation of the frame M in which the vectors are expressed.
On the other hand, geometrically the acceleration of the rigid body, X, is given by the covariant derivative of

V̂ along A(t):
X = ∇V̂ V̂ (46)

Note that the twist V (t) belongs to se(3) for all t, while V̂ (A0) at A0 = A(t) belongs to the tangent space
TA0 SE(3)!

Let X = XiL̂i = {ω, v}. According to Eq. (45), the affine connection that produces kinematically consistent
acceleration must satisfy:

∇XX =

[
ω̇
v̇

]
+

[
03×1
ω × v

]
. (47)

But in components, ∇XX can be rewritten as:

∇XX =
dXk

dt
L̂k +XiXjΓkjiL̂k. (48)

where Γkji are the Christoffel symbols (which define the affine connection) for the basis L̂i. The two expressions
(47) and (48) will be the same if the first and the second term in Eq. (47) correspond to the first and the second
term in Eq. (48), respectively. Obviously, the first terms are the same regardless of the choice of the affine
connection. However, because of the symmetry of the coefficients in the second term in Eq. (48), we can only
conclude that: ∑

k

∑
j,i≤j

XiXj(Γkji + Γkij)L̂k =

[
03×1
ω × v

]
. (49)

(The reader should be reminded that ω = {X1, X2, X3} and v = {X4, X5, X6}.) In this way we obtain a set of
126 equations of the following form:

Γkij + Γkji = akij j = 1, . . . , 6 i ≤ j (50)

where akij are constants that can be directly obtained from the right-hand side of Eq. (49). The only non-zero

values akij are:

a624 = −1 a534 = 1 a615 = 1
a435 = −1 a516 = −1 a426 = 1

(51)

It is clear that the system (50) does not contain enough equations to solve for Γkij if i 6= j. However, the equations

imply that Γkii = 0.
To obtain a unique solution for the remaining Christoffel symbols we have to impose additional constraints on

the connection. One desirable property is that the covariant derivatives of coordinate basis vectors are symmetric:

∇ ∂
∂ξi

∂

∂ξj
= ∇ ∂

∂ξj

∂

∂ξi
. (52)

It is not difficult to check that this is exactly the definition of the symmetry from 2.5. Therefore, for general
vector fields, symmetry of the connection is equivalent to:

∇XY −∇YX = [X,Y ]. (53)

It immediately follows that for the basis L̂i the symmetry of the connection implies:

Γkji − Γkij = Ckij . (54)
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Equations (54) and (50) together uniquely specify the Christoffel symbols Γkji and therefore the connection. We
will call this connection the kinematic connection. The non-zero Christoffel symbols for the kinematic connection
are:

Γ3
21 = Γ2

13 = Γ1
32 =

1

2
, Γ3

12 = Γ2
31 = Γ1

23 = −1

2

Γ6
51 = Γ4

62 = Γ5
43 = 1, Γ6

42 = Γ4
53 = Γ5

61 = −1 (55)

4.2 Choice of metric that produces physically meaningful acceleration

Next, we answer the question whether there exists a metric for which the kinematic connection obtained in the
previous subsection is the Riemannian connection. We show that there is a whole family of metrics for which this
is true.

As seen in 2.5, a connection will be Riemannian if it is symmetric and compatible with the metric. Since we
explicitly required that the kinematic connection be symmetric, we have to find a metric, which is compatible
with the connection. Therefore, we must find a metric for which:

Z <X, Y >=<∇ZX,Y > + <X,∇ZY >, (56)

where X, Y and Z are arbitrary vector fields. By substituting the basis vector fields L̂i, L̂j and L̂k for X, Y and
Z, the compatibility condition becomes:

L̂k(gij) = Γlikglj + Γljkgli (57)

where the Christoffel symbols Γkji were computed above. Because of the symmetry of the metric coefficients, Eq.
(57) produces a system of 126 partial differential equations for metric coefficients, similarly to Eq. (25) in Section
3.2. The complete set of equations is listed in Appendix B.

In finding the solution for the functions gij we initially proceed in the same way as in 3.2, using Lemma 3.5.
Take the following subset of equations of (80):

L̂1(g11) = 0 L̂2(g11) = −g13 L̂3(g11) = g12 (58)

According to Lemma 3.5 the following equality holds:

−L̂1(g13) = g12.

By substituting for L̂1(g13) from Eqs. (80), we obtain:

1

2
g12 = g12,

which gives g12 = 0. Substituting in the system (80), we next obtain:

g13 = 0 g23 = 0 g11 = g22 g11 = g33 (59)

It is easy to see that these equations imply L̂i(g11) = 0, i = 1, . . . , 6, which together with Eq. (59) results in:

g11 = g22 = g33 = α,

where α is a constant. Therefore, the upper-left 3× 3 block in the matrix G is of the form αI3×3, where I is the
identity matrix.

By taking equations:

L̂1(g14) = 0 L̂2(g14) = − 1
2g34 − g16 L̂3(g14) = 1

2g24 + g15, (60)

and again using Lemma 3.5, we get g24 = 0. By substituting this in the system (80) it is easy to see that all the
entries in the upper-right 3×3 block of the matrix G (and since G is symmetric, also of the lower-left 3×3 block)
are equal to 0.

We can try to proceed in the same way with the rest of the equations for the entries of the lower-right 3×3 block.
However, it turns out that the equations are consistent, in all cases Lemma 3.5 is trivially satisfied. Therefore,
we have to use different approach to find the rest of the coefficients.

We begin with a simple result:
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Proposition 4.1 A family of left invariant metrics:

G =

[
αI 0
0 βI

]
, (61)

where α and β are arbitrary constants, satisfies all the equations (80). This are the only left-invariant metrics
which are compatible with the acceleration connection.

Proof: If a metric is left invariant then the matrix G is constant. But if gij = const., then L̂i(gij) = 0. It is then
easy to check that the form of G in (61) follows from the equations (80).

To determine whether there are other solutions, it helps to investigate what do metrics which share the same
metrical connection, have in common geometrically. A geometric entity that is determined from the connection is
a geodesic (cf. Eq. 20). Therefore, two metrics with the same connection will have the same family of geodesics.
By reasoning similar to the one that led to the acceleration connection we can prove that also the converse is
true: The family of geodesics uniquely determines the symmetric connection. A manifold on which two different
metrics are defined can be viewed as two different manifolds with the same differential structure. Thus, to study
which metrics have the same geodesics, we study diffeomorphisms which map geodesics to geodesics. Such maps
are called affine maps.

Park [10] and Žefran et al. [11] showed that the geodesics for metric (61) are the same as geodesics on the
product manifold SO(3)× IR3 (which is the underlying topological space for SE(3)) endowed with the bi-invariant
metric on SO(3) and the Euclidean metric on IR3. It can be actually shown that the metric (61) is a product
metric itself [11]. Geometrically, the geodesic between two points A1 and A2 on SE(3) is then a product of a
geodesic on SO(3) (basically a screw motion between two frames with the same origin) and a geodesic on IR3 (a
straight line). But on IR3, straight lines are geodesics for an arbitrary inner product (defined by a positive-definite
constant matrix). Therefore, any product metric on SO(3) × IR3 with the bi-invariant metric on SO(3) and an
inner product metric on IR3 will also have the same geodesics as metric (61). If the basis L̂1, L̂2 and L̂3 is chosen
for the vector fields on SO(3) and the Euclidean basis E4, E5, E6 for the vector fields on IR3, the product metric
Gp for this basis has the form:

Gp =

[
αI3×3 0

0 W

]
(62)

where W is a constant 3× 3 positive-definite matrix defining an inner product on IR3. Change of the basis vector
fields on IR3 will only change the lower-right block of matrix Gp. To compare metric (62) with (61) we have to

change the basis on IR3 from E4, E5, E6 to L̂4, L̂5 and L̂6.
Take a point A ∈ SE(3), where:

A =

[
R d
0 1

]
.

Note that A, as element of SO(3)× IR3 is represented by a pair (R, d). Take a vector field:

X = X4L̂4 +X5L̂5 +X6L̂6 = vT

 L̂4

L̂5

L̂6

 , (63)

where the components X4, X5 and X6 are constants and v = {X4, X5, X6}T . The integral curve of this vector
field passing through A is given by γ(t) = A exp(tTX), where TX is the matrix representation of the vector
{0, 0, 0, X4, X5, X6} ∈ se(3). It is easy to see that:

γ(t) =

[
R tR v + d
0 1

]
.

The tangent vector to a curve γ(t) = {ξ1(t), . . . , ξ6(t)} is given by:

dγ

dt
=
dξi
dt

∂

∂ξi
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The expression for the tangent vector X(A) in the basis Ei = ∂
∂ξi

is therefore:

vT

 L̂4

L̂5

L̂6

 = (R v)T

 E4

E5

E6

 (64)

Since the equation must be true for arbitrary v, we get: L̂4

L̂5

L̂6

 = RT

 E4

E5

E6

 (65)

The elements of the matrix G for the basis L̂i are:

G =

 L̂4

L̂5

L̂6

 · [ L̂4 L̂5 L̂6

]
= RT

 E4

E5

E6

 · [ E4 E5 E6

]
R = RTWR, (66)

where Ei · Ej
def
=< Ei, Ej >.

We have therefore arrived at the result that any metric described by a matrix:

G(R, d) =

[
αI 0
0 RT W R

]
(67)

where W is a positive definite matrix, is a solution to system of partial differential equations (80). Note that
the form of G agrees with the previous analysis of the system (80). Another important observation is that for
W = βI, (67) agrees with (61).

Equation (67) describes a whole family of metrics that are compatible with the acceleration connection. It
turns out that there are no other metrics with these property – any metric that agrees with the acceleration
connection has the form (67). To see this we concentrate on the system of partial differential equations (80)
again. More precisely, we study the equations describing the lower-right 3× 3 block of the matrix G. Denote this
3× 3 symmetric matrix by GT :

GT =

 g44 g45 g46
g45 g55 g56
g46 g56 g66

 .
Proposition 4.2 Let IGT , IIGT and IIIGT be the three invariants of the matrix G. That is:

IGT = Trace(GT ) = g44 + g55 + g66

IIGT = g245 + g246 + g256 − g44g55 − g44g66 − g55g66
IIIGT = Det(GT ) = g44g55g66 + 2g45g46g56 − g44g256 − g55g246 − g66g245 (68)

These matrix invariants are first integrals for the system of partial differential equations (80).

Proof: The proof is a pure algebraic manipulation: Function Φ is a first integral of the system (80) if and only if
L̂i(Φ) = 0 for i = 1, . . . , 6. Using expressions for L̂i(gij) from (80) and the Leibniz’ rule L̂i(f g) = L̂i(f) g+f L̂i(g)
it is easy to check the claim.

Corollary 4.3 If a matrix GT represents a solution of (80), then it can be decomposed in the following form:

GT = U Λ UT , (69)

where U ∈ SO(3) is an orthogonal matrix which varies over the manifold and Λ is a constant (nonsingular)
diagonal matrix.
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Proof: The invariants of the matrix correspond to the coefficients of its characteristic polynomial. Since they
are constant, the eigenvalues (which are the roots of the characteristic polynomial) of GT will be constant. The
decomposition (69) is a simple fact from the linear algebra.

Next, we state the second result of our paper:

Theorem 4.4 A metric G(R, d) is compatible with the acceleration connection given by Eq. (49) and (54) if and
only if it has the form:

G(R, d) =

[
αI3×3 03×3
03×3 RT W R

]
(70)

where W is a positive definite constant matrix.

Proof: We have seen that if G has the form (70) then it will be compatible with the acceleration connection.
This proves the (⇐) direction of the theorem.

We have showed that if G is compatible with the acceleration connection (that is, it solves the system (80)) it
must have the form:

G =

[
αI3×3 03×3
03×3 GT

]
.

To complete the proof for the (⇒) direction we therefore have to show that GT (R, d) = RT W R where W is a
constant positive-definite matrix.

Assume that GT is a solution of (80). According to (69), GT can be written as:

GT (R, d) = U Λ UT

where U = U(R, d) ∈ SO(3). Let
V (R, d) = R U

and
W = V Λ V T (71)

Obviously,
U Λ UT = RT W R,

and therefore:
GT = RT W R.

Let the part of the system (80) which describes GT be written in the form[
L1 L2 L3

]
GT = M, (72)

where M is a 3×9 matrix of the right-hand sides of the equations in (80) which only depends on the entries of GT .
Fix a point (R, d) ∈ SE(3) and set W ′ to be a constant matrix W ′ = W (R, d). Define a matrix G′T = RT W ′ R.
At (R, d), GT = G′T . But G′T is a solution of (80), according to the first part of the proof. Therefore,[

L1 L2 L3

]
G′T = M ′

We have assumed that GT is also a solution of (80). This means that:[
L1 L2 L3

]
GT = M.

The matrices M and M ′ depend only on entries of GT and G′T , respectively. Since at (R, d), GT = G′T , it follows
that at (R, d):

M = M ′. (73)

At (R, d), we also have:

M =
[
L1 L2 L3

]
GT =

[
L1 L2 L3

]
G′T +

[
R L1(W ) RT R L2(W ) RT R L3(W ) RT

]
. (74)
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Equations (73) and (74) together imply:

M = M +
[
R L1(W ) RT R L2(W ) RT R L3(W ) RT

]
. (75)

¿From the last equation it clearly follows that:[
L1 L2 L3

]
W = 03×9

which finally implies:
W = const. (76)

To complete the proof, we observe that Eq. (71) implies that W is positive-definite.

5 Conclusion

Spatial displacements form a Lie group SE(3). The Lie algebra of SE(3), denoted by se(3), is isomorphic to the
space of twists and therefore provides a natural setting for analysis of instantaneous motions. However, in order
to engage in higher order kinematic analysis or talk about the length of curves on the manifold, the differentiable
structure of SE(3) is not enough: To be able to differentiate a notion of covariant derivative must be introduced,
while a Riemannian metric must be defined to define the length of a curve.

In this paper we investigate how additional structure can be introduced to SE(3) to obtain notions that are
familiar from the kinematics literature. First, we show that a natural setting to study screw motions is SE(3)
equipped with a two-parameter family of semi-Riemannian metrics. These metrics are non-definite and in general
they are non-degenerate. Viewed as a quadratic form on se(3), the metrics are a sum of the Killing form and
the Klein form. When a metric in this family is non-degenerate, it defines a unique symmetric connection and
screw motions are unique geodesics. When the metric is degenerate, as a form on se(3) it is a scalar multiple of
the Killing form. In this case the symmetric connection compatible with the metric is not unique any more and
geodesics are not unique. However, screw motions are still one of possible solutions for geodesics.

To study acceleration or higher order derivatives of the velocity, SE(3) must be equipped with an affine
connection. The choice of the affine connection is restricted if we want to obtain the acceleration as known from
physics. Further, if we require that the connection is symmetric, the connection is uniquely specified. In this
case, a family of metrics which are compatible with this connection can be identified. All of them are product
metrics: As a Riemannian manifold, SE(3) is a Cartesian product of SO(3) with the bi-invariant metric and IR3

with the inner product metric. Alternatively, the symmetric connection studied in the paper can be viewed as a
symmetric part of a general connection with non-zero torsion (asymmetric part). Since geodesics do not depend
on torsion, the family of metrics compatible with the symmetric part of the connection corresponds to the metrics
which have the geodesics given by this general connection.
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A Equations defining metric with screw motions as geodesics

In Section 3.2 we concluded that Eq.(25) must be satisfied by the metric if screw motions are geodesics:

L̂k(gij) =
1

2
(Clkiglj + Clkjgli). (77)

Coefficients Ckij are the structure constants of the Lie algebra se(3). We evaluated this equation in Mathematica
to obtain a system of 126 partial differential equations, that have to be solved for the metric coefficients gij :

L̂1(g11) = 0 L̂2(g11) = −g13 L̂3(g11) = g12

L̂4(g11) = 0 L̂5(g11) = −g16 L̂6(g11) = g15

L̂1(g12) = 1
2g13 L̂2(g12) = − 1

2g23 L̂3(g12) = 1
2 (−g11 + g22)

L̂4(g12) = 1
2g16 L̂5(g12) = − 1

2g26 L̂6(g12) = 1
2 (−g14 + g25)

L̂1(g13) = − 1
2g12 L̂2(g13) = 1

2 (g11 − g33) L̂3(g13) = 1
2g23

L̂4(g13) = − 1
2g15 L̂5(g13) = 1

2 (g14 − g36) L̂6(g13) = 1
2g35

L̂1(g14) = 0 L̂2(g14) = 1
2 (−g34 − g16) L̂3(g14) = 1

2 (g24 + g15)

L̂4(g14) = 0 L̂5(g14) = − 1
2g46 L̂6(g14) = 1

2g45

L̂1(g15) = 1
2g16 L̂2(g15) = − 1

2g35 L̂3(g15) = 1
2 (g25 − g14)

L̂4(g15) = 0 L̂5(g15) = − 1
2g56 L̂6(g15) = 1

2g55

L̂1(g16) = − 1
2g15 L̂2(g16) = 1

2 (−g36 + g14) L̂3(g16) = 1
2g26

L̂4(g16) = 0 L̂5(g16) = − 1
2g66 L̂6(g16) = 1

2g56

L̂1(g22) = g23 L̂2(g22) = 0 L̂3(g22) = −g12

L̂4(g22) = g26 L̂5(g22) = 0 L̂6(g22) = −g24

L̂1(g23) = 1
2 (−g22 + g33) L̂2(g23) = 1

2g12 L̂3(g23) = − 1
2g13

L̂4(g23) = 1
2 (−g25 + g36) L̂5(g23) = 1

2g24 L̂6(g23) = − 1
2g34

L̂1(g24) = 1
2g34 L̂2(g24) = − 1

2g26 L̂3(g24) = 1
2 (−g14 + g25)

L̂4(g24) = 1
2g46 L̂5(g24) = 0 L̂6(g24) = − 1

2g44

L̂1(g25) = 1
2 (g35 + g26) L̂2(g25) = 0 L̂3(g25) = 1

2 (−g15 − g24)

L̂4(g25) = 1
2g56 L̂5(g25) = 0 L̂6(g25) = − 1

2g45

L̂1(g26) = 1
2 (g36 − g25) L̂2(g26) = 1

2g24 L̂3(g26) = − 1
2g16

L̂4(g26) = 1
2g66 L̂5(g26) = 0 L̂6(g26) = − 1

2g46

(78)
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L̂1(g33) = −g23 L̂2(g33) = g13 L̂3(g33) = 0

L̂4(g33) = −g35 L̂5(g33) = g34 L̂6(g33) = 0

L̂1(g34) = − 1
2g24 L̂2(g34) = 1

2 (g14 − g36) L̂3(g34) = 1
2g35

L̂4(g34) = − 1
2g45 L̂5(g34) = 1

2g44 L̂6(g34) = 0

L̂1(g35) = 1
2 (−g25 + g36) L̂2(g35) = 1

2g15 L̂3(g35) = − 1
2g34

L̂4(g35) = − 1
2g55 L̂5(g35) = 1

2g45 L̂6(g35) = 0

L̂1(g36) = 1
2 (−g26 − g35) L̂2(g36) = 1

2 (g16 + g34) L̂3(g36) = 0

L̂4(g36) = − 1
2g56 L̂5(g36) = 1

2g46 L̂6(g36) = 0

L̂1(g44) = 0 L̂2(g44) = −g46 L̂3(g44) = g45

L̂4(g44) = 0 L̂5(g44) = 0 L̂6(g44) = 0

L̂1(g45) = 1
2g46 L̂2(g45) = − 1

2g56 L̂3(g45) = 1
2 (−g44 + g55)

L̂4(g45) = 0 L̂5(g45) = 0 L̂6(g45) = 0

L̂1(g46) = − 1
2g45 L̂2(g46) = 1

2 (g44 − g66) L̂3(g46) = 1
2g56

L̂4(g46) = 0 L̂5(g46) = 0 L̂6(g46) = 0

L̂1(g55) = g56 L̂2(g55) = 0 L̂3(g55) = −g45

L̂4(g55) = 0 L̂5(g55) = 0 L̂6(g55) = 0

L̂1(g56) = 1
2 (−g55 + g66) L̂2(g56) = 1

2g45 L̂3(g56) = − 1
2g46

L̂4(g56) = 0 L̂5(g56) = 0 L̂6(g56) = 0

L̂1(g66) = −g56 L̂2(g66) = g46 L̂3(g66) = 0

L̂4(g66) = 0 L̂5(g66) = 0 L̂6(g66) = 0
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B Equations for the metric compatible with the acceleration connec-
tion

In Section 4 we concluded that a metric compatible with the acceleration connection must satisfy:

L̂k(gij) = Γlikglj + Γljkgli. (79)

The Christoffel symbols Γkij specify the acceleration connection and are listed in (55). The equation was expanded
in Mathematica to obtain a system of 126 partial differential equations for the metric coefficients gij :

L̂1(g11) = 0 L̂2(g11) = −g13 L̂3(g11) = g12

L̂4(g11) = 0 L̂5(g11) = 0 L̂6(g11) = 0

L̂1(g12) = 1
2g13 L̂2(g12) = − 1

2g23 L̂3(g12) = − 1
2g11 + 1

2g22

L̂4(g12) = 0 L̂5(g12) = 0 L̂6(g12) = 0

L̂1(g13) = − 1
2g12 L̂2(g13) = 1

2g11 −
1
2g33 L̂3(g13) = 1

2g23

L̂4(g13) = 0 L̂5(g13) = 0 L̂6(g13) = 0

L̂1(g14) = 0 L̂2(g14) = − 1
2g34 − g16 L̂3(g14) = 1

2g24 + g15

L̂4(g14) = 0 L̂5(g14) = 0 L̂6(g14) = 0

L̂1(g15) = g16 L̂2(g15) = − 1
2g35 L̂3(g15) = 1

2g25 − g14

L̂4(g15) = 0 L̂5(g15) = 0 L̂6(g15) = 0

L̂1(g16) = −g15 L̂2(g16) = − 1
2g36 + g14 L̂3(g16) = 1

2g26

L̂4(g16) = 0 L̂5(g16) = 0 L̂6(g16) = 0

L̂1(g22) = g23 L̂2(g22) = 0 L̂3(g22) = −g12

L̂4(g22) = 0 L̂5(g22) = 0 L̂6(g22) = 0

L̂1(g23) = − 1
2g22 + 1

2g33 L̂2(g23) = 1
2g12 L̂3(g23) = − 1

2g13

L̂4(g23) = 0 L̂5(g23) = 0 L̂6(g23) = 0

L̂1(g24) = 1
2g34 L̂2(g24) = −g26 L̂3(g24) = − 1

2g14 + g25

L̂4(g24) = 0 L̂5(g24) = 0 L̂6(g24) = 0

L̂1(g25) = 1
2g35 + g26 L̂2(g25) = 0 L̂3(g25) = − 1

2g15 − g24

L̂4(g25) = 0 L̂5(g25) = 0 L̂6(g25) = 0

L̂1(g26) = 1
2g36 − g25 L̂2(g26) = g24 L̂3(g26) = − 1

2g16

L̂4(g26) = 0 L̂5(g26) = 0 L̂6(g26) = 0

(80)
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L̂1(g33) = −g23 L̂2(g33) = g13 L̂3(g33) = 0

L̂4(g33) = 0 L̂5(g33) = 0 L̂6(g33) = 0

L̂1(g34) = − 1
2g24 L̂2(g34) = 1

2g14 − g36 L̂3(g34) = g35

L̂4(g34) = 0 L̂5(g34) = 0 L̂6(g34) = 0

L̂1(g35) = − 1
2g25 + g36 L̂2(g35) = 1

2g15 L̂3(g35) = −g34

L̂4(g35) = 0 L̂5(g35) = 0 L̂6(g35) = 0

L̂1(g36) = − 1
2g26 − g35 L̂2(g36) = 1

2g16 + g34 L̂3(g36) = 0

L̂4(g36) = 0 L̂5(g36) = 0 L̂6(g36) = 0

L̂1(g44) = 0 L̂2(g44) = −2g46 L̂3(g44) = 2g45

L̂4(g44) = 0 L̂5(g44) = 0 L̂6(g44) = 0

L̂1(g45) = g46 L̂2(g45) = −g56 L̂3(g45) = −g44 + g55

L̂4(g45) = 0 L̂5(g45) = 0 L̂6(g45) = 0

L̂1(g46) = −g45 L̂2(g46) = g44 − g66 L̂3(g46) = g56

L̂4(g46) = 0 L̂5(g46) = 0 L̂6(g46) = 0

L̂1(g55) = 2g56 L̂2(g55) = 0 L̂3(g55) = −2g45

L̂4(g55) = 0 L̂5(g55) = 0 L̂6(g55) = 0

L̂1(g56) = −g55 + g66 L̂2(g56) = g45 L̂3(g56) = −g46

L̂4(g56) = 0 L̂5(g56) = 0 L̂6(g56) = 0

L̂1(g66) = −2g56 L̂2(g66) = 2g46 L̂3(g66) = 0

L̂4(g66) = 0 L̂5(g66) = 0 L̂6(g66) = 0
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C Lie brackets for se(3)

In our derivations we need to evaluate Lie brackets of the basis vectors L̂i. Since these basis vectors are left
invariant, it suffices to evaluate the brackets on se(3) (see Eq. 9):

[L1, L1] = 0 [L1, L2] = L3 [L1, L3] = −L2

[L1, L4] = 0 [L1, L5] = L6 [L1, L6] = −L5

[L2, L2] = 0 [L2, L3] = L1 [L2, L4] = −L6

[L2, L5] = 0 [L2, L6] = L4 [L3, L3] = 0

[L3, L4] = L5 [L3, L5] = −L4 [L3, L6] = 0

[L4, L4] = 0 [L4, L5] = 0 [L4, L6] = 0

[L5, L5] = 0 [L5, L6] = 0 [L6, L6] = 0
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