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Abstract

This work introduces the concepts and methods for Ricci flamcbdbm-
puter scientists and engineers. Readers can understabdakground the-
ories as well as the implementation details, such that tiaeyncake Ricci
flow software easily and find potential applications in giapfiield.

First, the basic concepts from local differential geometny briefly in-
troduced, the concepts of metric, curvature are explainadktails. Then
different energies are defined to quantitative measureiitergon of para-
meterizations. The conformal parameterizations are egipd

Second, the theories from global differential geometry tamroughly
explained, such as manifolds, affine atlas, Riemann swgfdtiemann uni-
formization theorem. Then Ricci flow is introduced to confiatly deform
surfaces, such that the solution surfaces have constarsisaalcurvatures.

Third, the concepts and methods from continuous geomedrgystem-
atically translated to the discrete setting via circle pagknetric. The dis-
crete Ricci flow is thoroughly explained, the existence @& $olution, the
exponential convergence, the variational energy, the diggaimethod are
explained.

Finally, discrete Ricci flow is implemented based a commoshrie
brary. The details of the algorithms are illuminated. Expental results
are illustrated and discussed.

Readers who are only interested in the implementation afiRmwv can
skip the first two chapters.
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1 Introduction

Shape representation and deformation are fundamentdépnslin computer graph-
ics. Ricci flow is a theoretic solid and piratical simple nattor tackling these
problems.

Ricci Flow was first introduced in differential geometry byatdilton [3] in
1980’s. Later, Hamilton generalize Ricci flow for 3-manifolds. #$been broadly
studied and developed by pure mathematicians and has Isebesn applied to
prove the famous Poincare conjecture on the topology of BHolds [7].

Circle packing was introduced by Thurston [9], which is alg to transfer
conformal mappings from smooth surface case to combirzignaphs.

Chow and Luo [1] combined Ricci flow with circle packing andaddished
the theoretic foundations of combinatorial Ricci flow.

Gu and Luo [] implemented the Ricci flow algorithms and im@d\vhe ef-
ficiency by changing gradient flow to Newton’s method. Thehundthas been
applied for global parameterizations, and further madi&plines.

In the following discussion, we briefly draw the big pictumreboth continuous
setting and discrete setting. They are systematicallyl’daaach other.

1.1 Motivation

Shape representation and deformation are the centralgmngbh computer graph-
ics and geometric modelling.

In engineering fields, triangular meshes are commonly useEpresent shapes,
its connectivity models the topology, the edge lengthsiless the metric (intrin-
sic geometry), the dihedral angles further determine thieegltling of the mesh
in R3.

The edge lengths determine the curvature on each vertexthBuhverse is
much more difficult,

Problem 1 Given curvature on the mesh, how to find compatible edgehefigt

This problem has fundamental importance. The solutionitogioblem will
allow the users to model the shapes by designing their aunevat

For example, surface parameterizations have played arriamgoole in graph-
ics. Many real applications in graphics heavily rely on paeterizations, such as
texture mapping, shape comparison, fluid simulation, géecn@orphing and so
on. Surface parameterization is equivalent to find a speoiafiguration of edge
lengths, such that the curvatures of vertices are zero, lgathe mesh is flat.
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Another example is for parametric surface, especiallynggli In order to
model natural shapes with manifold structure, specialrpatar atlas need to be
constructed, such that all the chart transition functiores affine. Finding the
affine atlas is equivalent to find a flat metric of the mesh.

For surface fairing, it is desirable to distribute the ctiova more uniformly
on vertices. It is straightforward to compute the resultogvature, but difficult
to find the edge length and the embedding of the mesh.

Ricci flow is the powerful tool to solve the problem. It offdise freedom
to traverse the intrinsic shape space (all the admissibdigiorations of edge
lengths)that can be represented by a mesh, enable the asamiel shapes by
designing their curvature distributions. The most direetl @pplications include
global surfaces parameterizations, manifold splinesasarfairing, shape match-
ing, shape morphing etc.

1.2 Continusing Setting

A surface in the Euclidean spa®€ has three level information,
e Topology,
e Riemannian Metric,
e Embedding.

Topology is determined by the number of boundaries and learaflthe surface.
Metric is a structure such that the lengths and angles ofetatngectors can be
measured. Embedding is the way the surface sif&’in

Gaussian curvature is the measurement of how close a nelgbdxbof a point
on the surface to a plane, it is solely determined by the Rnemaa metric, and
independent of the embedding of the surface. But, the Gaarssiurvature is
confined by the topology of the surface.

A topological surface can be equipped with different Rieman metrics.
Two metrics are conformal or angle preserving if for any tamgent vectors, the
angles between them are the same measured by the differemtand&herefore,
all possible Riemannian metrics of a surface can be clagddiffethis conformal
equivalence relation.

Any surface embedded iR? has a unique metric induced by the Euclidean
metric of R®. The surface can be equipped by a unique metric, which isocora
equivalent to the induced metric, and it has constant Geaissiurvature. One can



ask a much broader question:

Given a function satisfying the topological constrainthame find a Riemannian
metric, such that the Gaussican curvature induced by theienetjuals to the
function? If it exists, how to compute it?

The answer to these questions are the main focus of thisialjtooughly
speaking,

The metric exists, it is unique in each conformal class. it ba computed using
Ricci flow.

The basic idea of Ricci flow is to deform the current metricfoomally driven
by the difference between current Gaussian curvature athet Gaussian cur-
vature pointwisely. The flow will converge to the desired neetthe curvature
error shrinks exponentially fast.

The above problem can be modelled as a variational problaoh ghat by
minimizing the energy, the desired metric can be reached.efergy function is
convex, therefore it has unique global optima. Ricci flowusstjthe gradient flow.
By using Newton’s method, the convergence speed can besfurtiproved.

1.3 Discrete Setting

In computer graphics and geometric modeling, general sesfanR?® are repre-
sented as triangular meshes. Each mesh has three levehatfon,

e Topology, indicated by the connectivity of the mesh.
e Riemannian Metric, the edge lengths.
e Embedding, the dihedral angles for edges.

The Gaussian curvature of a vertex is the measurement offteeedce of its
one ring neighbor with the plane. It is defined as the diffeednetween the sum-
mation of its adjacent angles add. The Gaussian curvature is solely determined
by the edge lengths. The total Gaussian curvature of alicesrequals t@ny,
wherey is the Euler number of the mesh.

In smooth case, a conformal deformation has the followingiet properties,

1. It transform an infinitesimal circle to an infinitesimaitate.

2. It preserves the intersection angles among the infinit@stircles.
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Figure 1: Conformal mapping and its properties. Conformal mappings pre-
serves angles, the right angles of checkers in are presarvi@. Conformal
mapping transforms the infinitesimal circles on the texplame to the infinitesi-
mal circles on the surface, it also preserves the tangencyabés.

A cone is associated with each vertex, such that the cone @aglals to the
curvature of the vertex, the boundary of each cone is a ciideh edge connect-
ing 2 vertices, the correspondircircles intersect each other. The edge length
is determined by the radii of the circles and their interieecangle. We call this
kind of edge lengths aircle packing metriof the mesh.

One can change the circle radii, preserving the interseetngles of a circle
packing metric. This kind of deformation is the analogy affaymal deformation
in smooth case, and called the discrete conformal defoomati

Given a closed mesh equipped with a circle packing metrie, can con-
formally deform its metric such that the final metric can balized in constant
Gaussican curvature spaces. Namely, a closed genus zenacarebe embedded



in asphere, each edge is a geodesic, the length equals tethe;a closed genus
one mesh can be embedded in the plane, each edge is realiadthbysegment
with the length of the metric; a high genus closed mesh careakzed in the
hyperbolic disk, each edge is a geodesic with the lengthifspedy the circle
packing metric.

One can ask a much broader question:

Given a function satisfying the topological constraint defl on the vertices, can
one find a circle packing metric, such that the Gaussicanatuire induced by the
metric equals to the function? If it exists, how to compue it

The answer to these questions are the main focus of thisialjtooughly

speaking,
The curvature function has more constraints than topolaigoonstraint. If the
curvature function satisfies all the constraints, then tiele packing metric ex-
ists, it is unique in each conformal class. It can be computgdg discrete Ricci
flow.

The basic idea of discrete Ricci flow is to deform the vertehi@driven by the
difference between current Gaussian curvature and thett&agussian curvature
on each vertex. The flow will converge to the desired methie,durvature error
shrinks exponentially fast.

The above problem can be modelled as a variational problaoh ghat by
minimizing the energy, the desired metric can be reached.efergy function is
convex, therefore it has unique global optima. Ricci flowusstjthe gradient flow.
By using Newton’s method, the convergence speed can besfurtiproved.

2 Smooth Ricci flow

This section introduces the concepts and theoretic resuttsiooth surface Ricci
flow.

We first introduce the major relevant concepts from locded#ntial geome-
try, then from global differential geometry.

2.1 Local Differential Geometry

Suppose a surface C R? has a parametric representation,
r(u,v) = (z(u,v),y(u,v), z(u,v))

for points(u, v) in some domain ifR?. The parameterization iegular if
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1. z1(u,v), xs(u,v), z3(u, v) are smooth functions.

2. The tangent vectors
or or

= — I‘v = ==,
ou’ ov
are linearly independent at every point.

ry

Therefore, thanormalvector

() r, X T,
n = —
v v, X 1y

is well defined everywhere.
The first fundamental form of is defined as

ds® = Edu® + 2Fdudv + Gdv?,

where
E=r, - r,,F=r,-r,,G=r, 1,

Suppose two tangent vectors(at v) are
dI'l = rudul —+ rvdvl, dI‘2 = I'udUQ —+ I'UdUQ,

then the inner product of them is defined as

<dr1,dr2>g:(du1 duy )<1€ Z)(ZZ;)

Thus, the length and angles of tangent vectors can be meldsythe first funda-

mental form. First fundamental form is also called Riemannian metriof the

surface. The geometry determined by the metric is calledntin@sic geometry

which is independent of the embedding of the surfad®’irsuch as the geodesics.
The surface embedding is described by the second fundahfiemba

IT = Ldu® + 2Mdudv + Ndv?,

where
L=r,, nM=r, -nN=r,- n

First fundamental form and the second fundamental formttegeletermines the
surface uniquely up to rotation and translatioRih
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The the map between the surface, v) to the normal vecton(u, v) is called
Gauss mapits derivative mapV’ : dr(u,v) — dn(u,v) is called theNeingarten
map which is a linear map, and can be represented easily a$ ur, — An, +

pny,
L M E F\ '
WZ(M N)(F G)

The determinant of the matrid” represents the area distortion of the Gauss map,
and is defined aGaussian curvature

LN — M?

K=WI=%c—p

By definition, Gaussian curvature requires the embedditiggodurfacel,, M, N),
but in fact, it can be computed solely using the metfic F, G), namely, it is in-
trinsic. The formula is

VG VE
Consider a curve on surfage(s), v(s)), assume the tangent direction of the

curve has an angl¥ s) with r,,, then thegeodesic curvaturef the curve is defined
as

Jo + ( )ul

do 1 O0lnFE 1 olnG .
k, = — cos 6 +

9T ds  2G O WE Ou
Geodesic curvature is also intrinsic.

Suppose there are two surface patch®su, v) and Sa(u,v), the mapg :
S1(u,v) — So(u,v) is called aconformal mappingif

Ey(u,v)  Fi(u,v)  Gi(u,v)

Ey(u,v)  Fy(u,v)  Gy(u,v)

= AMu,v),

where\(u, v) is called theconformal factor It can be easily verified that, any two
intersecting curves of; will be mapped ta5,, and the intersection angle doesn't
change. Therefore, conformal mapping is also cadlegle preserving mapping

Especially, the parameterizatidn, v) of S(u,v) is aconformal parameteri-
zation if the metric can be represented as

ds* = Mu,v)?(du® + dv?).



Many geometric computations will be simplified using confiat parameter, such
as the Gaussian curvature

K(u,v) = Ayln A(u,v).

where L o P

By = A2(8u2 * 8@2)’
is the Laplace-Beltrami operator. Conformal mapping preessetheshapesf the
parameter domain, it is highly desirable to use conformaap@terization for
graphics applications, such as texture mapping.

Although, conformal parameterization has no angle digiarst will intro-
ducearea distortion If conformal factor function equals to one everywherer¢he
will be no area distortion at all, the resulting map isismmetric map In gen-
eral two surfaces have an isometric map between them, df@eame metric, so
the Gaussian curvature functions are equal. It is impasdigcause surfaces are
usually curved, and the parameter plane is flat.

In order to measure the area distortion for a conformal patarzation, we
define the followingarea distortion energy

/()\(u, v) —1)%dA = /()\(u, v) — 1)2\*(u, v)dudw,
S S

with the assumption, both the parametric domain area edqoidle surface area
and equals to one, otherwise, we can normalize the surfaterfamely

/dAzl,/dudvzl.
S D

whereD is the parameter domain.

2.2 Global Differential Geometry

General surfaces can not be covered by a single parameteimanstead, they
may need many local parameters overlapping one anotherefbine, one region
on the surface may be covered by several parameter chartsheAyeometric
meaningful quantities should be consistent under diftgparameterizations.

A manifoldof dimensiom: is a connected Hausdorff spakéfor which every
point has a neighborhoaod that is homeomorphic to an open subgebf R2.
Such a homeomorphism

¢o:U—-V
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is called acoordinate chart An atlasis a family of charts{(U,, ¢.)} for which
U, constitute an open covering 6f.

Suppose{ (U, ¢o)} and{(Us, ¢3)} are two charts on a manifold/, U, N
Us # 0, the chart transition is

¢o¢6 : ¢o¢(Ua N Uﬁ) - ¢5(Ua N Uﬁ)

If all chart transition functions are affine maps B#, the atlas is called an
affine atlas

Theorem 2 A surface admits an affine atlas, if and only if it has zero Enlem-
ber.

Affine atlas plays an crucial role for manifold splines. Afsige admits a manifold
spline if and only if it admits an affine atlas. In practicasitmportant to compute
an affine atlas. This can be accomplished by Ricci flow.

If all chart transition functions are holomorphic functgrhe atlas is called
an conformal atlas If a metric surface admits an conformal atlas, it is called a
Riemann surface

Theorem 3 All metric surfaces are Riemann surfaces.

Therefore, we can use conformal parameter charts to cozevtible surface. Rie-
mann surface has special vector fields, the so-called hajamwl-forms, which
have zero curl and divergence, and have been applied foalgiobhformal surface
parameterization [].

The global definition of a metric is as the following: on chéit,, ¢.}, the

metric has the form
< 911 912 )
951 9%
on another chartUs, ¢3}, the metric is
5 IB 8u/3 8’!},5 a a 8’!},5 8’!},5 T
( 9161 91ﬁ2 ) S gTa ( g 912 ) Qua gTa
() () (07 (07 () () *
921 Y922 aui ﬁ 921 922 Bui ﬁ

We simply us€ M, ¢) to denote a manifold/ equipped with a Riemannian metric
g.

SupposeV! is a manifold, it can be equipped with different metrics. Blit
metrics satisfy the following Gauss-Bonnet formula,
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Theorem 4 A surface with a Riemannian metrig/, g), then
/ KdA + K,ds = 2mx (M),
M oM

whereK is the Gaussican curvature induced fykK, is the geodesic curvature,
OM is the boundary of\/, x(M) is the Euler number af/.

This means the metric has the topological constraints.
Any closed metric surface\/, g) has a special metrig, such thag is confor-
mal equivalent t@g;, andg has constant Gaussian curvature everywhere.

Theorem 5 Any closed metric surfadg\/, g) admits a canonical metrig, such
that

1. g is conformally equivalent tg, g = Ag,

2. g induces constant Gaussian curvature.

Namely, closed genus zero surface can be conformally defdnm a spherical
metric, with +1 curvature; genus one surface can be conformally deformed to
have flat metric, with) curvature; high genus surfaces can have a hyperbolic met-
ric conformally equivalent to its original metric, with1 curvature.

Suppose the desired Gaussian curvafiires assigned to the surfade, we
would like to find a desired metrig, such that it induce&’. Ricci flow is able to
accomplishiit.

Definition 6 A Ricci flow for a surfacé)M, g) is defined as

dg; j
dt

= (K - K)gij'

Basically, the metric is deformed by the difference betwiencurrent curvature
and the target curvature.

Theorem 7 1. Forallthe time, the solution to the Ricci flow exists andjue.
2. The convergence is exponentially fast.

3. The metrics of the solutions are conformal equivalenéodriginal metric.
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4. If K = 0, and the surface area is normalized to be a constant, thefirthe
metric will induce a constant curvature.

Basically, supposé), g) is a metric surface equipped with a Riemannian
metricg, A > 0 is a positive functions defined avi. Then the Gaussian curvature
mapll : \¢g — Kis a homeomorphism between the conformal metric space

G={\g\: M — R},

and the curvature space

K={KIK:M—R, | KdA+ Kyds =2mx(M)}.
M oM

The inverse mapl—! : K — \g can be computed using Ricci flow.
The solution to the Ricci flow

9ij

=-K K
dt Fij

conformally deform the metric
gij(t) = g3 (0)e Jo K.

The conformal facton, = e~ /o~ X(M47 s the global minimum of the following
energy,

E(\) = KAgdAig,
M

with the normalized area, such that

[ any =1
M

wherek), is the Gaussian curvature under the metgjcd A, is the area element
under the metrid\g.

3 Discrete Ricci Flow
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Continuous Surface

Discrete Mesh

Metric (First fundamental form)

edge length

Second fundamental form

dihedral angle

For convex surfaces, metric
determines the embedding

For convex meshes, edge lengths
determine the dihedral angles

Gaussian curvature

_ 1 (VE)y
K—_\/ﬁ[( N/E )v+(

(VE)u

VE

Jul

Discrete Gaussian curvature
_ ik
Ki = 27'(' — ZfijkeF 92-

Geodesic Curvature

Discrete geodesic curvature
ik
Ki=m—=> fijkeFeﬁ ,v; € OM

Conformal equivalent metrics
A M — R {\g}

circle packing metrics based 9n/, @)
{(M, @ 1)}

conformal mapping

a mapping betweeq\/, ®,T')
and(M, ®,T'y), preserves edge anglés

Gauss-Bonnet formulae
Jy KdA + faM K,ds = 2myx

Discrete Gauss-Bonnet formulae
> vigons Ki + 2 y,con Ki = 21X

None Combinatorial constraints
for Gaussian curvature on vertices
Ricci flow discrete Ricci flow
d i I i I
i = (K - K)gi %= (K — Ki)v,
Ricci flow energy discrete Ricci flow energy
fM K/%quM f Zz Kidln;

The solution to Ricci flow exists,
unique. The flow exponentially converge

the solution to discrete Ricci flow exists
rqunique. The flow exponentially converge

?S.

The flow% = —Kg;; with normalized
total area leads to a metric with
constant Gaussian curvature

The flow 2 = —K;~; with normalized
total area leads to a metric with

constant Gaussian curvature.

Table 1: Concepts and theories in continuous setting amdedessetting
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(a) genus one mesh (b) A flat circle packing metric

Figure 2:A flat circle packing metric for a genus one mesh.

Figure 3:Circle packing metric.

The major theoretic results of Ricci flow for smooth surfacas be systemat-
ically translated to the discrete setting. The bridge fronosth surface to trian-
gular mesh is the so callegircle packingmetric [9].

In this section, we explain the theoretical background etudite Ricci Flow
and show its exponential convergence rate. Theoretic preand be found in [1].
Conventional Ricci flow is a gradient flow of some energy fome, introduce a
novel algorithm based on the Newton’s method, it convergasmfaster.

A two dimensional simplicial complex (triangular mesh) isndtedM =
(V,E, F), whereV is the set of all verticedy is the set of all non-oriented edges
and F' the set of all faces. We usg,i = 1,--- ,n to denote its vertices;;; to
denote an oriented edge fromto v;, and f;;; to denote an oriented face with
verticesu;, v;, v, Which are ordered counter-clockwise such that the face alsrm
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Figure 4:Circle packing metric for a triangle . Triangle|v;, vo, v3] has vertices
vy, U9, v3, and edges s, es3, €31. Three circles centered af, v,, andws, with

radii v, 7, and~s intersect one another, with intersection angle®gf, .3 and

®5,, which are the weights associated with the edges. The edgéhke of the
triangle are determined by and®,; by the cosine law.

toward outside.

3.1 Circle Packing

The following key observation plays vital role for systeinally translating smooth
Ricci flow to discrete Ricci flow,

Observation 8 A conformal mapping has the following two properties,
1. It transform infinitesimal circles to infinitesimal cied.

2. It preserves the intersection angles between two inginital circles.

Figure 1 illustrates these properties of a conformal mapdmorder to trans-
late conformal mappings from smooth surface category trelis mesh category,
Thurston definedircle packingas the followings,

1. Change infinitesimal circles to circles with finite radii.
2. Each circle is centered at a vertex like a cone, the radidenoted as; for

vertexv;.

14



Vi

> K,

Figure 5: Circle packing metric and curvature. For a canonical tetrahedron,
the edges lengths are @l= 1.0, and the radius at each vertexris= 0.5. The
curvature on each vertex equalsip = 7. The weights on all edges ade= 0.

Y
/| -

Circle packing metric sgagejature Space

Figure 6:Gaussian curvature is a homeomorphism between the circle g&ing
metric space and the curvature space. The inverse map can be@mputed
using Ricci Flow. Starting from the known metrig, and the known curvature
ko, using Ricci Flow, as we flow to the target curvatii€e,, the metric flows to
the corresponding metrig,, = 117 (K., ).

3. An edge has two vertices, the two circles intersect eduoér otith an inter-
section angle, the angle is denotedbgsfor edgee;;, and called theveight

The way to determine the radij; and the intersection angl®;; is to make
themcompatibleto the induced metric fror3.

Definition 9 A mesh with circle packing/, T", ®), wherelM represents the trian-
gulation (connectivity)l" = {v;, v; € V'} are the vertex radiip = {®,;,¢;; € £}
are the angles associated with each edgeliskrete conformal mapping

7: (M, T,®) — (M,T,®),

solely changes the vertex radij but preserves the intersection angies

15



In really, a discrete conformal mappings can approximata@osh conformal
mapping with arbitrary accuracy. If we keep subdividing thesh and construct
refiner and refiner circle packing, the discrete conformgbpivags will converge
to the smooth conformal mapping. For a rigorous proof, werrtie readers to
[8].

In graphics and geometric modeling applications, meshessually embed-
ded inR?, and the metrics are induced from thosdRof We can find the optimal
weight® with initial circle radii I", such that the circle packing metiig/, ®,T")
is as close as possible to the Euclidean metric in the leasrsgense.

Namely, we want to findM, ®,T") by minimizing the following functional

1121721 Z |Lij — L |?, 1)

eijEE
Wherel_ij is the edge length af;; in R®.
After finding the optimal circle packing\/, ®,T"), we will use discrete Ricci

flow to adjust the vertex radii to deform the mesh, therefore, the deformation is
discrete conformal.

3.2 Discrete Metric and Gaussian Curvature

We first define the circle packing metric and the Gaussianature for the mesh.
Definition 10 A metricon the triangular mesii/ is an edge length function
l:E— R,
satisfying the triangle inequality, namely for each fgcg,
lij + Lig, > .

The intersection angle associated with each edge is defsmétkeaveight of
the edge,

Definition 11 Aweighton the mesh is a function defined on edgesty — [0, 7].

Definition 12 A radiusfunction assigns to each vertexa positive numbery;,
:v—-mnR~"

A circle packing(M, ®,T") uniquely determines a metric, defined as

16



Definition 13 A circle packing M, ®,I") deduces a metric. The edge lengths
associated with the edgg; is computed using the Cosine law,

lij = \/%2 + 732» + 2,7, cos @;;. (2)

This metric is called theircle packing metriof (M, ®,T"). The metrics deduced
from @, I' using the Cosine Law are called tlwgrcle-packing metricbased on
(M, D).

Figure 4 illustrates a circle packing metric for a triangjg.. The triangle is
formed by the centers of three circles of raglii,; and~; intersecting at angles
(bija (I)jk: and@ki.

The discrete Gaussian curvature is defined as the diffelsgteeeen the one-
ring neighbor of the vertex and the plane.

Definition 14 Given a metric, let the angle of vertexin f;;, be denoted byg’k.
Then the discrete Gaussian curvatute at an interior vertexy; is defined as

Ki=2r— Y 6" v ¢oM, (3)
fijk€F
while the discrete Gaussian curvature for a boundary verteg defined as
Ki=m— Y 6"  vcoM (4)
fijx€F

Figure 5 demonstrates the circle packing metric for mesiéar by a tetrahe-
dron, where all the edge weights are zero, all the vertex aaeli).5, and all the
vertex curvatures are.

The Gaussian curvature at each individual vertex is amyittaut thetotal
curvature is determined by the topology of the surface, disated by the Gauss-
Bonnet theorem:

Theorem 15 (Gauss-Bonnet)Supposél/ is a mesh, the total discrete Gaussian
curvature equals to the product 2f and its Euler number,

Z K; =27y. (5)

wherex = |V | + |F| — |E|.

17



Furthermore, for any circle packing met(i¢/, ®,I"), ® : £ — [0, %] and any
proper subset of verticesV/,

D Kilr)> = Y (7= ®(e) + 2mx(F), (6)

iel (e,v)eLk(I)

whereF7 is the set of all faces i/ whose vertices are i, Lk([) is the link of
I, the set of pairge, v) of an edge: and a vertex satisfying

1. the end points of are not in/,
2. thevertex isin I, and(3) e andv form a triangle.

The following fundamental theorem states that the map batvibe vertex
radii I' and the discrete Gaussian curvatéies a homeomorphism(a one to one
continuous map, the inverse is also continuous):

Theorem 16 (Vertex Radii and Curvature) Let P be the set of normalized ver-
tex radii, such that the product of the radii is one

P={y=m,7, ") € R, v, =1}

The Gaussian curvature map
II:P—R"?

sends the vertex radii to its curvature

I(y) = (K1(7), K2(7), -+, Kn (7))

By the Gauss-Bonnet Theorem, its image lies in the convgxopely” defined by
the set of all linear Inequalities 6 on the hyperplane defibgdquation 5. The
mapll : P — Y is a homeomorphism.

This theoretic result is very useful for practical applioas. It allows the user
to design surfaces by designing their vertex curvaturesfiivsn finding the corre-
sponding edge lengths using discrete Ricci flow, and finaligtifig the positions
of vertices.
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3.3 Ricci Flow

One can assign discrete values for Gaussian curvdtufer a weighted mesh
(M, ®) as long asy satisfies the Conditions 5 and 6. Having done so, we wish to
find the unique circle packing metricwhich induces the curvatut&. For this
purpose, we introduce the discrete Ricci Flow.

Definition 17 (Discrete Ricci Flow) We define the discrete Ricci Flow as

dv;i %
T (Ki - Ko ™)

wherek; is the desired discrete Gaussian curvature at vertex

Definition 18 (convergence)A solution to Equation 7 exists andasnvergentf
1. lim,_, K;(t) = K; for all 4,
2. limy_o, v(t) =% € R* for all 4.

A convergent solutiononverges exponentialiy there are positive constants
c1, ¢, SO that for all timef > 0

‘Kl(t) — Kz| S Cle_CQt,

and

cat

Vi(t) — 7l < cre”
In theory, the discrete Ricci Flow is guaranteed to be exptaky convergent.

Theorem 19 Supposél/, ®) is a closed weighted mesh. Given any initial circle-
packing metric based on the weighted mesh, the solutionedlicrete Ricci
Flow 7 in the Euclidean geometry with the given initial vakmsts for all time
and converges exponentially fast. The solution convem#setmetricl—(K).

The basic idea to show the convergence is to use variatippabach. Special
energy form is constructed, Ricci flow is the neigative geatiflow of the energy.
The energy form is convex (namely, the Hessian matrix istpesilefinite every-
where), therefore, global minima exists and unique. Faaitket theoretic proof,
we refer the readers to [1].
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3.4 Variational Approach

Discrete Ricci Flow is the solution to a variational probleramely, it is the neg-
ative gradient flow of some convex energy, and therefore weuse Newton’s
method to further improve the convergence.

Let u; = In~y;. Under this change of variable, the Ricci Flow in Equation 7

takes the following form:
dui .

— (K _F
dt ( (2 Z)?

The corresponding energy form is defined as

n

f(a) = /uZ(Kz’ — K;)du;,

0 =1

whereu = (uy, ug, -+ ,u,), ug is (0,0, --,0).

Thus% = K, — K;, that is, the Ricci Flow 7 is the negative gradient flow of
the energyf.

The Heissian matrix of the energyis

0 f B 0K;
0ui0uj an ’
By .
; —_—— 1 =
8Ki aKZ— 7] Zk 1_(A;€J)2 . ]
—— =5 = 0 - Z%j,eing
Ou, d; cy S o
Nk i V7 e €
where N
A9 — . 295 VK
k (vit7i) (vi+7;)
BY  —  2umwOitt2y;)
k (vite)? (vid;)?
oo 2yi7}
L (i) (vit;)?

which can be verified to be positive definite. Ass strictly convex, it there-
fore has a unique global minimum, so both the Gradient Deéstethod and
Newton’s method can be used to stably find this minimum.
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4 Implementation

Discrete Ricci flow can be easily implemented using commoshridraries
based on halfedge data structure, such as OpenMesh, CGALT&ike imple-
mentation is very simple, it takes a graduate studémhinutes for coding.

4.1 Data structure

First, we define the following traits for vertices, edgedf-kdges,

o Corner angle, representing the angles. Suppose a corneeatory vertex
v;, and in facef;j;, then the corner angle is denoted%(& Each half-edge
represents a corner. Corner angle is a trait associatecualittfedges.

e Edge weight®, representing the intersection angles of circle packirg, d
noted asp;; for edgee;;.

e Edge length, representing the discrete metric on the mesioted ag;; for
edgee;;.

e \ertex radiusy, denoted as; for vertexv;.
e \ertex Gaussian curvature, denotedgdor vertexw;.

e The parameter for a vertex, denoedfor vertexw;.

4.2 Ricci flow algorithm
The Ricci Flow algorithm is summarized as the following step

1. Assignthe weight for each edge and the radii for each xesteninimizing
the energy in Equation 1. If the faces of the initial mesh dosecto right
angles, or the application does not require conformality, can instead
simply set

(IJ(eZ-j) = 0, Veij € E, Yi = 1, VUZ' eV.
2. Compute the current metrig, using the Cosine law
5 =77 + 77 + 2717 cos Dy

davidxgu
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3. Compute corner angles for all corners of the mesh,
2 2 2
IR A

0% = cos
k 201l

4. Compute the discrete Gaussian curvature for each vertex,
K; =2m — Z 07",
fijk€F
5. Update the vertex radii using
Vi =7 +ex (K — K;) Xy (8)

wheree is a step length. In practice, the step length can be variedrdi
cally to improve the efficiency.

6. Normalize the vertex radii, such that the product ofials equal to one.
i
{L/ﬁ7

7. Check the deviation between edghand K;, and find the maximum error

p=1,v=

error = max |K; — K|
(2

If the error is less than a predetermined threshold, stofne@tise, goto
Step2.

The procedure converges fast. By fixing a verntgxhe error curve

y(t) = [Ki(z) — Ki(x)]
is an exponential curve, as depicted in figure 7.

5 Global parameterizations

Discrete Ricci flow gives engineers the freedoms to modestintaces by design
curvatures first. In many applications, it is straightfordvéo find the desired
curvature first, then find the metric and the embedding.

Global surface parameterization problem can be intergrasefinding a spe-
cial metric, such that the curvature is zero at every verkeepgt for several sin-
gularities or boundary vertices.
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Figure 7:Curvature error curve.

5.1 Pipeline

In conventional global conformal surface parametrizati@pecial metric is com-
puted on the mesh such thatgt— 2 singularities, the curvature is equaltQ@r,
and at all other vertices, the curvature is zero. The postaf the singularities
can not be assigned arbitrarily, as they are determined éyg#ometry of the
surface—see Figure?, for example. The singularities are the centers of the oc-
tagons. Their positions are determined by the conformatsgire of the surface
and the cohomologous type of the holomorphic 1-form. Foaitext explanation,
we refer readers td].

The Ricci Flow method allows the user to freely assign siagtiés for global
parameterizations, as long as they satisfy the Gauss-Bdme®rem 5 and the
connectivity condition 6.

We formulate theconstraint global parameterization probleas the follow-

ing,
Definition 20 Given a mesh\/, a set of singular verticq$v1lv2, .. ,ym}, the
target Gaussian curvature of the singularities are g, K», - - , K,,,}, the

constraint global parameterizatias to find a metric, such that it induces the
Gaussian curvaturé;,

1. For a singular vertex;, K; = K;.
2. For a nonsingular vertey;, K; = 0.

An affine atlas can be deduced from a flat metric, the atlas earséd for real
applications, such as texture mapping, texture synthgsismetry images, and
manifold splines.

The wholepipeline of constructing the affine atlascan be summarized as
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Singularity selection.

Connectivity Modification.

1
2
3. Ricci flow.
4. Mesh chartification.
5

Planar Embedding of each chart.

5.2 Singularity selection

The choice of the singularities will affect the quality okthglobal parameteriza-
tions. Because Ricci flow deforms the metric conformally fimal parameteri-
zation has no angle distorsion, but the area distorsiorggréevaries very much.
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Figure 19 demonstrates that the choice of the position dfitirgrularity affect the
area distortion energies.
The discrete area distortion energy is an analogy of the #mayea distortion
energy 9, -
Ajj
E@.T)= Y (52 —1)% A, 9)
fijk€M ijk
whereA;; is the area of facg;;; using the flat metricA,;; is the area of the face
using original metric induced from the Euclide&h metric,

1
s = 5l + U+ la), Aige = \/S(S —Lij) (s — L) (s — lps)-

It is a challenging problem to adjust the singularities toimize the area
distortion,

Problem 21 Given a mesh embedded ¥, how to determine the number, the
positions and the curvature distributions of singularstia order to minimize the
area distortion energy 9.

If the surface is a closed genus one mesh, then no singul@xvierneeded.
For high genus mesh, we could select only one singular vartéxconcentrate all
the curvature at it. If the mesh is open, we can assign tatgeatures of zero to
all interior vertices and only update the radii at interiertices. In this way, the
curvature will be automatically distribute itself alongethoundary. We call this a
free boundary condition

5.3 Local Connectivity modifications

In order to determine the desired flat metric, the combimatoonstraints for the
curvature in Equation 6 have to be satisfied.

If both the initial curvature configuration and the targatature configuration
satisfy these constraints, any intermediate curvaturgumation during the Ricci
Flow will also satisfy the constraints. Thus, itis enouglbmdy consider the target
curvature.

If some singularities violate the combinatorial consgaiwe need to modify
the local connectivity in their neighborhood. The mesh @amtivity can be easily
modified using conventional mesh operations, suckdag collapsgedge swap
edge splif5].

In practice, we use the following heuristic method to modlifg connectivity
around each singular vertex, such that the following detare met:
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1. The topological valence of a singular verieis no less thad — M, thus

K
the average corner angle arount less tharg.

2. For all the vertices in the firgt-rings of neighbors of the singular vertex,
their valences are no less thénn is a small integer, which in our imple-
mentation is choose to be betwekeands.

The Figure?? illustrates the connectivity of the 2-ring neighborhoodtiod
singular vertex on a genuismesh.

5.4 Mesh chartification

Mesh chatrtificaion refers to find an open covering of the meshh that differ-
ent charts overlap each other. The basic idea is to find a seireésG, which
go through all the singularities, such that the mégican be sliced open along
the curves to form a topological disk. Such curves forrmuaigraph as intro-
duced in the work ogeometry imagel?]. If there is only one singularity, the cut
graphG can be constructed using a set of canonical homology basagththe
singularity [4].

The mesh is now cut open along the cut graph to form a charthich is
called thecentral chart Vertices on the cut graph with valenge 2 are called
the nodes All the singularities are also nodes. The cut graph is sd#pdrinto
segments, each of which connects two nodés= U,s;, wheres, denotes a
segment. We cover each segmegnby a chart

Ui = Upes . Nis  N; = Ufiji.

whereN; represents the one ring neighborhood of vettex\e callU,’s bound-
ary charts Then the central chaft/ covers all the faces of the mesh, the boundary
charts covers the boundaries of the central chart, the whe#h is covered by all
the charts. The transition functions among the charts atdranslation and rota-
tion in R2.

The algorithm for computing an open coveringdfis as follows:

1. Compute a cut graph using a canonical homology basis or e.g. the method
used for constructing geometry images.

2. Slice the mesh along the cut graph to form a topologic&l s

3. Find the nodes in the cut graph, and separate the cut graphagments.
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4. For segment, compute the union of the one ring neighbahob all its
vertices.

5. The open covering af/ is formed byM andU,, where

MCMUkUk.

5.5 Planar embedding

Each chart can be flattened on the plane face by face usingthedtric.
The algorithm is straight forward: Suppose a circle packmgric/;; based
on (M, ®,T') is known, then

1. Compute the dual graph of the mesh, each node represeat® anfthe
mesh.

2. Compute a minimal spanning tree of all the nodes in the gigdh.

3. Suppose the root of the tree is a fafg, then embed this face onto the
planeR?,

pi = (0,0),p; = (1;5,0), pr, = (Lix; cos ngy Lix sin ka)

4. Use breadth-first-searching method to traverse thedress a nodg;;;, is
accessed, embgfl;, on to the plane. Supposegandv, has been embedded
in R? already,p;, can be computed easily,

Lire™ 0

Pi = (p; = Pi) + i,

where all the vertex planar parametgrsp,, p, are treated as complex
numbers.

Figure?? demonstrates a planar layout of a flat metric of a genus orsedlo
mesh. If we shift the planar parameter domain, the left bannavill fit to
the right boundary, the top boundary will fit the bottom boarydconsistently.
Namely, we carperiodicallyflatten the mesh with the flat metric.
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6 Global Parameterizations Examples

Our implementation is based on a generic half edge meshyilpgd using at-
tributes to represent edge lengths, vertex radii and aur@atn the following, we

demonstrate the experimental results.

6.1 Data Structure

class Mesh : public PosGraph::Modeling::OMTriMeshBase<M

{

/I custom property

/I vertex radius
OpenMesh::VPropHandleT<double>
/I vertex target curvature
OpenMesh::VPropHandleT<double>
/I vertex current curvature
OpenMesh::VPropHandleT<double>
/I edge length
OpenMesh::EPropHandleT<double>
/I edge weight
OpenMesh::EPropHandleT<double>
/I corner angle
OpenMesh::HPropHandleT<double>

public:
typedef PosGraph::Modeling::OMTriMeshBase<MeshTraits

public:

Mesh(void);
"Mesh(void);

virtual void SetEdgeWeight();
virtual void SetVertexRadius();

VPropRadius;
VPropTargetCurvature,
VPropCurvature;
EPropLength;
EPropWeight;

HPropAngle;

virtual void SetVertexTargetCurvature();

28
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virtual void RicciFlow( double step length = 1e-4, double c

protected:

/lcompute edge lengths

void calcEdgelLengths();

/lcompute corner angles

void calcCornerAngles();

/lcompute vertex curvature

void calcVertexCurvature();

/lcompute vetex radius

void calcVertexRadius( double step length = le-4 );

/lcompute vertex curvature error
double calcVertexCurvatureErr();

urvature_eri

3
6.2 Methods
void Mesh::calcEdgeLengths() {
Edgelter e_it;
for ( e_it=edges_begin(); e_it'=edges_end(); ++e_it)
{
double a = property(VPropRadius, to_vertex_handle( halfe dge handl
double b = property(VPropRadius, to_vertex_handle( halfe dge handl
double C = property(EPropWeight, e_it );
property( EPropLength,e_it) = sqrt( a *a+bx* b+ 2+ axbx
}
} void Mesh::calcCornerAngles() {
Halfedgelter h_it;
for ( h_it = halfedges_begin(); h_it != halfedges_end(); ++ h_it)

{
HalfedgeHandle phe
HalfedgeHandle nhe

prev_halfedge handle( h_it );
next_halfedge_handle( h_it );

29



double a = property( EPropLength, edge_handle( h_it ) );
double b = property( EPropLength, edge_handle( phe ) );
double ¢ = property( EPropLength, edge handle( phe ) );

double angle = acos(( a *a+b=*b-c *xc)2 =+ a=x b))
property( HPropAngle, h_it ) = angle;

}

void Mesh::calcVertexCurvature() {
Vertexlter v_it;
for ( v_it = vertices_begin(); v_it != vertices_end(); ++v_ it)

{
VertexIHalfedgelter vh_it;
double curvature = 2 * 3.1415926535;

for( vh_it = vih_iter( v_it ); vh_it ; ++ vh_it )
{

}

curvature -= property( HPropAngle, vh_it );

property( VPropCurvature, v_it ) = curvature;

}

void Mesh::calcVertexRadius( double step_length ) {
Vertexlter v_it;

for ( v_it = vertices_begin(); v_it != vertices_end(); ++v_ it)
{

double K = property( VPropCurvature, v_it );

double TK = property( VPropTargetCurvature, v_it );

double r = property( VPropRadius, v_it );

double dr = 2.0 * (TK - K) =* r * step_length;
r+= dr;

property( VPropRadius, v_it ) = r;
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}

void Mesh::RicciFlow( double step_length, double
curvature_error_threshold ) {
double curvature_err;

while( true )

{
calcEdgelLengths();
calcCornerAngles();
calcVertexCurvature();
calcVertexRadius();

curvature_err = calcVertexCurvatureErr();

if( curvature_err < curvature_error_threshold )
break;

}

double Mesh::calcVertexCurvatureErr() {
Vertexlter v_it;

double max_error = -1,

for ( v_it = vertices_begin(); v_it != vertices_end(); ++v_ it)

{
double current_curvature = property( VPropCurvature, v_i t);
double target_curvature = property( VPropTargetCurvatur e, V_il
double error = fabs( target curvature - current_curvature );

max_error = ( error > max_error )? error : max_error;

}

return max_error;
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(b)

Figure 9:David Head model with 15k faces, with boundary singularities, each

with curvature %’T where m is the number of boundary vertices. The area

distortion is0.960747.
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Figure 13:Ipheginia model with 30k faces,8 singularities, each with 7 curva-
ture, area distortions is0.571903.
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Figure 14: Manifold spline for an open surface. The bunny mesh has three
boundaries, two are at the ear tips, one is at the bottle. ffine atlas is computed

using Ricci Flow under free boundary condition.

37



D
RCOSIR
uﬂhﬂfiﬁ' 5

VoY

VAVAVJAVAVZ
SO

SO0

RO,
CIRZOOOREKRTS
OISR

Vave
;VA%A
NAVSAVA
AV
KA

(a) Rocker Arm Model (b) planar layout
Figure 15: Rocker arm model with 1% faces and5k faces, no singularities.

The area distortions are0.554323,0.576723 respectively. Planar layout of a flat
metric on a genus one closed mesh.

N\

(c) Manifold Spline (d) Spline surface
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(a) Domain Mesh (b) Control Net  (c) Manifold Spline  (d) Sgisurface

Figure 18: Manifold spline for a genus two surface.
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(a) Center singular Vertex (b) flat metric of (a)
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Figure 19: The position of a singular vertex will affect the flat metric dras-
tically. (a) and (b) shows the flat metric when the singular vertexlecsed in
the center region, the metric is very uniform. (c) and (d)velibe flat metric
when the singular vertex is selected on the side of the mbeehmetric is highly
nonuniform. Also (d) shows that the flat metric induces an arsion (locally
embedding ) but not an global embedding.
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Figure 20:Sculpture model with 2k faces, one singularity with curvature —8,
the area distortion is0.6581109.

(c) zoomd in of (b)

(d) further zoomed in of (b)
Figure 21: Sculpture model with 10k faces, one singularity with curvature
—8, area distortion is 1.000959.
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(b) central chart

immersion

(a) mesh with singularities
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(c) segmentation and cut graph

five singularity with

: Genus six buddaha model with10k faces,

Figure 22

curvature —4m, area distortion is 1.467170.
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