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Abstract. A new Combinatorial Ricci curvature and Laplacian opera-
tors for grayscale images are introduced and tested on 2D medical im-
ages. These notions are based upon more general concepts developed by
R. Forman. Further applications are also suggested.

1 Introduction

Curvature analysis plays a major role in Image Processing, Computer Graph-
ics, Computer Vision and their related fields, for many applications, such as
reconstruction, segmentation and recognition, to list only a few (see, e.g. [12],
[13]). Traditionally, the curvature estimation is that of a polygonal (polyhedral)
mesh, approximating the ideally smooth (C2) image under study, such that the
curvature measures of the mesh converge to the classical, differential, curvature
measure of the investigated surface. For surfaces, by far the most important
curvature is the intrinsic Gaussian (or total) curvature.

Recently, partly as an offshoot of the great interest generated by G. Perel-
man’s seminal work on the Ricci flow and its application in the proof of Thurston’s
Geometrization Conjecture, and, implicitly of the Poincaré Conjecture (see, e.g.
[9] for a comprehensive exposition), a flourishing of the study of various discrete
versions of the Ricci flow (and similar related flows) occurred (see [2], [4], [6],
[8]).

Ricci curvature measures the defect of the manifold from being locally Eu-
clidean in various tangential directions. This is done directionally at the n-
dimensional level, by appearing in the second term of the formula for the (n−1)-
volume Ω(ε) generated within a solid angle (i.e. it controls the growth of mea-
sured angles). While sectional curvature generalizes Gaussian curvature, Ricci
curvature represents an extension of mean curvature:

v ·Ricci(v) =
n− 1

vol
(
Sn−2

)
∫

w∈Tp(Mn), w⊥v

K(< v,w >) ,

where < v,w > denote the plane spanned by v and w, i.e. Ricci curvature
represents an average of sectional curvatures. The analogy with mean curvature
is further emphasized by the following remark: Ricci curvature behaves as the
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Laplacian of the metric g (see, e.g. [1]). It is also important to note that in
dimension n = 2, that is in the case that is the most relevant for classical Image
Processing and its related fields, Ricci curvature reduces to sectional (and scalar!)
curvature, i.e. to the classical Gauss curvature.

However, both in the more classical context, as well as in the new direc-
tions mentioned above, smooth surfaces and/or their polygonal approximations
considered. Unfortunately, smooth surfaces are at best a crude model (and usu-
ally nothing but a polite fiction), as far as digital and grayscale images, i.e.
the standard objects of study in Image Processing, are considered, in particular
for those objects that are not “natural images”, such as images produced using
ultrasound imaging, MRI or CT. It would be of practical interest to define a
proper notion of curvature for digital objects, in the spirit of [5]. By “proper”
we mean discrete, intrinsic to the nature of the spaces under investigation, and
not an approximation or rough discretization of a differential notion.

We are fortunate in our quest to be able to rely on the work of R. Forman [3]
on Combinatorial Ricci curvature and the so called “Bochner Method”, where
he addressed this very problem in the far more general setting of weighted cell
complexes, which represent an abstractization both of polygonal meshes and of
weighted graphs. While we succinctly present some of the more general facts
residing in Forman’s work, in this paper we concentrate solely on the case of
grayscale images with their very special combinatorics and weights, and defer
the study of higher dimensional images and their curvatures and Laplacians for
further study [11].

2 Forman’s Combinatorial Ricci Curvature

We sketch below some of the main ideas [3]. While not wishing to become overly
technical, we do have to use some technical (yet standard) definitions and no-
tations. Due to obvious space restrictions and to avoid spuriousness we do not
introduce here the basic technical notions in Algebraic Topology and Differential
Geometry, and refer the reader to [10] for the former and to [1] for the later.

To generalize the notion of Ricci curvature, in a manner that would include
weighted cell complexes, one starts from the following form of the Bochner-
Weitzenböck formula (see, e.g. [1]) for the Riemann-Laplace operator ¤p on p-
forms on (compact) Riemannian manifolds:

¤p = dd∗ + d∗d = ∇∗p∇p + Curv(R) , (1)

where ∇∗p∇p is the Bochner (or rough) Laplacian and where Curv(R) is a com-
plicated expression with linear coefficients of the curvature tensor (Here ∇p is
the covariant derivative operator.) Of course, for cell-complexes one cannot ex-
pect such differentiable operators. However, a formal differential exists: in our
combinatorial context (the operator) “d” being replaced by “∂” – the boundary
operator of the cellular chain complex (see [10]), cells playing in this setting the
role of the forms in the classical (i.e. Riemannian) one. The following definition
of the combinatorial Laplacian is now natural:
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¤p = ∂∂∗ + ∂∗∂ , (2)

where ∂∗ is the adjoint (or coboundary) operator of ∂, defined by: < ∂p+1cp+1, cp >
=< cp+1, ∂

∗
pcp >p+1 , where < ·, · >=< ·, · >p is a (positive definite) in-

ner product on Cp(M,R), i.e. satisfying: (i) < α, β >= 0, ∀α 6= β and (ii)
< α,α >= wα > 0 – the weight of cell α.

Forman [3] shows that an analogue of the Bochner-Weitzenböck formula holds
in this setting, i.e. that there exists a canonical decomposition of the form:

¤p = Bp + Fp (3)

where Bp is a non-negative operator and Fp is a certain diagonal matrix. Bp

and Fp are called, in analogy with the classical Bochner-Weitzenböck formula,
the combinatorial Laplacian and combinatorial curvature function, respectively.
Moreover, if α = αp is a p-dimensional cell (or p-cell, for short), then we can
define the curvature functions:

Fp =< Fp(α), α >, (4)

Fp being regarded as a linear function on p-chains. For dimension p = 1 we ob-
tain, by analogy with classical case, the following definition of discrete (weighted)
Ricci curvature:

Definition 1. Let α = α1 be a 1-cell (i.e. an edge). Then the Ricci curvature
of α is defined as:

Ric(α) = F1(α). (5)

While general weights are possible, making the combinatorial Ricci curvature
extremely versatile, it turns out (see [3], Theorem 2.5 and Theorem 3.9) that it
is possible to restrict oneself only to so called standard weights:

Definition 2. The set of weights {wα} is called a standard set of weights iff
there exist w1, w2 > 0 such that given a p-cell αp, the following holds:

w(αp) = w1 · wp
2

(Note that the combinatorial weights wα ≡ 1 represent a set of standard weights,
with w1 = w2 = 1.) Using standard weights we obtain the following formula:

Ric(αp) = w(αp)





 ∑

βp+1>αp

w(αp)
w(βp+1)

+
∑

γp−1<e2

w(γp−1)
w(αp)


 (6)

−
∑

αp
1‖αp,αp

1 6=αp

∣∣∣∣∣∣
∑

βp+1>αp
1 ,βp+1>αp

√
w(αp)w(αp

1)
w(βp+1)

−
∑

γp−1<αp
1 ,γp−1<αp

w(γp−1)√
w(αp)w(αp

1)

∣∣∣∣∣∣


 ,

where α < β means that α is a face of β, and the notation α1 ‖ α2 signifies that
the simplices α1 and α2 are parallel, the notion of parallelism being defined as
follows:
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Definition 3. Let α1 = αp
1 and α2 = αp

2 be two p-cells. α1 and α2 are said to
be parallel (α1 ‖ α2) iff either: (i) there exists β = βp+1, such that α1, α2 < β;
or (ii) there exists γ = βp−1, such that α1, α2 > γ holds, but not both simulta-
neously.

For example, in Fig. 1, e1, e2, e3, e4 are all the edges parallel to e0.
Together with the formula above, the (dual) formula for the combinatorial

Laplacian (see [3]) is also obtained to be:

¤p(α
p
1, α

p
2) =

∑

βp+1>αp
1 ,βp+1>αp

2

εα1,α2,β

√
w(αp

1)w(αp
2)

w(βp+1)
(7)

+
∑

γp−1<αp
1 ,γp−1<αp

2

εα1,α2,γ
w(γp−1)√

w(αp
1)w(αp

2)
,

where εα1,α2,β , εα1,α2,γ ∈ {−1, +1} depend on the relative orientations of the
cells.

3 Combinatorial Ricci Curvature of Images

Before developing the relevant formulae in the special combinatorial setting of
the tilling by squares of the plane, as it is usually considered in (Discrete) Image
Processing, let us first underline that it is advantageous to use standard weights.
The natural such weights are proportional to the geometric content (s.a. length
and area). It follows that the weight of any vertex is w(v) = 0. Bearing this in
mind, and considering the combinatorics of the square tilling (see Fig. 1) the
specific form of Combinatorial Ricci curvature for 2D images easily follows:

Ric(e0) = w(e0)

[(
w(e0)
w(c1)

+
w(e0)
w(c2)

)
−

(√
w(e0)w(e1)

w(c1)
+

√
w(e0)w(e2)

w(c2)

)]
. (8)

For the Laplacian there exists more than one possible choice, depending upon
the dimension p. The simplest, and operating on cells of the same dimensionality
as the Discrete Ricci curvature, is ¤1. Because vertices have weight 0 and adja-
cent cells have opposite orientations, Equation (7) becomes, in this case (using
the notation of Fig. 1):

¤1(e0) = ¤1(e0, e0) =
w(e0)
w(c1)

− w(e0)
w(c2)

. (9)

Instead of computing a Laplacian along the edge e0, one can compute a
Laplacian operating across the edge, namely ¤2(c1, c2). Since no 3-dimensional
cells exist, the first sum in Equation (7) vanishes, hence we have (up to sign):

¤2(c1, c2) =
w(e0)√

w(c1)w(c2)
. (10)
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Fig. 1. The elements appearing in the computation of the Combinatorial Ricci curva-
ture of edge e0 in the geometry of pixels.

4 Experimental Results

Before commencing any experiments with the combinatorial Ricci curvature in
the context of images, we had to choose a set of weights for the 2-, 1- and 0-
dimensional cells of the picture, that is for squares (pixels), their common edges
and the vertices of the tilling of the image by the pixels. Any such choice should,
obviously, be as natural and expressive as possible for image analysis. The choice
of weights was motivated by two factors: the context of Image Processing, where
a natural choice for weights imposes itself (see below) and the desire (and, indeed,
sufficiency, see Section 2) to employ solely standard weights.

Since natural weights have to be proportional to the dimension of the cell, it
follows immediately that the weight of any vertex (0-cell) has to be 0. Moreover,
in the beginning, it is natural to choose w1 = 1 and w2 = length of a cell. A
somewhat less arbitrary choice for the length (i.e. basic weight) of an edge,
would be Length(e) = (dimension of the picture)−1, hence that for the area (i.e.
basic weight) of a pixel α being Area(α) = (dimension of the picture)−2. The
proper weight for a cell α should, however, take into account the gray-scale level
(or height) hα of the pixel in question, i.e. wα = hα ·Area(α). This will become,
we hope, clearer in the following paragraph. The natural weight for an edge
e common to the pixels α and β is |hα − hβ |. (A less “purely” combinatorial
choice of cells and weights is discussed in [11].) Note that, as given an edge e,
the Ricci curvature Ric(e) represents a kind of generalized mean of the weights
the cells parallel to e. Therefore, it represents a measure of flow in the direction
transversal to e. It follows, that, contrary perhaps to intuition, this type of Ricci
curvature (and the Bochner Laplacian associated to it) in direction, say, parallel
to the x-axis, is suited for the detection of edges and ridges in the y-direction. On
the other hand, since scalar (i.e. Gauss) curvature, is associated to each pixel,
that is to each square of the tessellation, to compute the Gaussian curvature
one has to compute the arithmetic mean of the Ricci curvatures of edges of the
square under consideration – see Fig. 2. (A similar argument holds if one wishes
to compute the 1-Laplacians, ¤1 and B1, of a given pixel.)
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Fig. 2. Horizontal brain scan image (left) and its Combinatorial Ricci curvature (right).

As Fig. 3 illustrates, the combinatorial Ricci curvature we introduce allows,
even for a non-optimal choice of weights, a very good approximation of Gaus-
sian curvature of surfaces (i.e. for gray-scale images). Here, classical Gaussian
curvature was computed using finite element methods standard in Image Pro-
cessing – see [12]. (In order to obtain a clearer, more detailed comparison of the
two curvatures, we illustrate the performance of the algorithm on a non-medical
image.) In contrast, both the Bochner (and Riemann) Laplacian sharply diverge

Fig. 3. Gauss (left) and Combinatorial Ricci (right) comparison.

from the classical one (see Fig. 4). This is not too surprising, given the com-
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binatorial definition considered and the somewhat schematic weights employed.
However, it is probable that the more geometric scheme suggested in Section 2
will produce better results. However, the Bochner Laplacian proves to be an ex-
cellent detector of “sharp” edges, therefore it may prove to be useful for contour
detection and for segmentation.

Fig. 4. Comparison of Different Laplacians: From left to right: the Bochner (rough)
Laplacian B1(e0) (left), and the Matlab Laplacian (right). Note that the combinatorial
Laplacian is a better detector of “sharp” edges.

5 Future Work

We briefly discuss below some of the natural and/or seemingly required direc-
tions of further study:

1. Evidently, the first task in testing the efficiency of the combinatorial Ricci
curvature and Laplacian in medical imaging is to experiment with voxels,
that is to apply the apparatus introduced herein to the analysis of volumetric
data. Such 3- (and even 4-) dimensional manifolds and their evolution in time
is most relevant, for instance, in the analysis of cardiac MRI. This brings us
to the following point:

2. As already mentioned in the introduction, the full power of the Ricci cur-
vature reveals itself in the general heat-type diffusion setting and discrete
versions of the Ricci flow (and other related flows) were introduced and ex-
perimented with ([2], [4], [6], [8])). It is only natural to strive to develop
and experiment with a discrete version of the Ricci flow corresponding to
the combinatorial Ricci curvature introduced herein. Indeed, such work is
actually in progress [11].
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3. As already noted, while we prefer, both for theoretical as well as for practical
reasons, to work with standard weights, Forman’s combinatorial version of
Ricci curvature is extremely versatile. Even if restricting oneself to using
standard weights, i.e. proportional to the p-dimensional geometric content
(p-volume), one still has freedom in choosing the weights w2 and especially
w1 (see Section 2). Hence, to obtain best result, one can experiment in order
to empirically determine, by using, e.g. variational methods, the optimal
standard weights for a given application of the method.

4. The Combinatorial Laplacian is closely connected (by its very definition) to
the cohomology groups of the cellular complex on which it operates (see [3]).
It is natural, therefore, to seek to apply the results and methods of [3] for
the estimation of the dimension, and in some cases even the computation,
of the cohomology groups (and by duality, of homology groups) of images.
(See [7] on this direction of study in Image Processing.)
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