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Abstract

This monograph reviews both the theory and practice of the numeri-
cal computation of geodesic distances on Riemannian manifolds . The
notion of Riemannian manifold allows one to define a local metric
(a symmetric positive tensor field) that encodes the information about
the problem one wishes to solve. This takes into account a local
isotropic cost (whether some point should be avoided or not) and a local
anisotropy (which direction should be preferred). Using this local tensor
field, the geodesic distance is used to solve many problems of practical
interest such as segmentation using geodesic balls and Voronoi regions,
sampling points at regular geodesic distance or meshing a domain with



geodesic Delaunay triangles. The shortest paths for this Riemannian
distance, the so-called geodesics, are also important because they follow
salient curvilinear structures in the domain. We show several applica-
tions of the numerical computation of geodesic distances and shortest
paths to problems in surface and shape processing, in particular seg-
mentation, sampling, meshing and comparison of shapes. All the figures
from this review paper can be reproduced by following the Numerical
Tours of Signal Processing.

http://www.ceremade.dauphine.fr/~peyre/numerical-tour/

Several textbooks exist that include description of several manifold
methods for image processing, shape and surface representation and
computer graphics. In particular, the reader should refer to [42, 147,
208, 209, 213, 255] for fascinating applications of these methods to
many important problems in vision and graphics. This review paper is
intended to give an updated tour of both foundations and trends in the
area of geodesic methods in vision and graphics.



1

Theoretical Foundations of Geodesic Methods

This section introduces the notion of Riemannian manifold that is a
unifying setting for all the problems considered in this review paper.
This notion requires only the design of a local metric, which is then
integrated over the whole domain to obtain a distance between pairs
of points. The main property of this distance is that it satisfies a non-
linear partial differential equation, which is at the heart of the fast
numerical schemes considered in Section 2.

1.1 Two Examples of Riemannian Manifolds

To give a flavor of Riemannian manifolds and geodesic paths, we give
two important examples in computer vision and graphics.

1.1.1 Tracking Roads in Satellite Image

An important and seminal problem in computer vision consists in
detecting salient curves in images, see for instance [57]. They can be
used to perform segmentation of the image, or track features. A repre-
sentative example of this problem is the detection of roads in satellite
images.

199



200 Theoretical Foundations of Geodesic Methods

Image f Metric W

Geodesic distance and path Path over the original image

Fig. 1.1 Example of geodesic curve extracted using the weighted metric (1.1). zs and z.
correspond, respectively, to the red and blue points.

Figure 1.1, upper left, displays an example of satellite image f,
that is modeled as a 2D function f:{2 — R, where the image domain is
usually = [0,1]2. A simple model of road is that it should be approxi-
mately of constant gray value ¢ € R. One can thus build a saliency map
W (z) that is low in area where there is a high confidence that some
road is passing by, as suggested for instance in [72]. As an example, one
can define

W(x)=|f(x) —c|+e¢ (1.1)

where ¢ is a small value that prevents W (x) from vanishing.
Using this saliency map, one defines the length of a smooth curve
on the image 7:[0,1] — Q as a weighted length

1
L(y) = /0 W(y@®) ' (t)dt (1.2)
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where /() € R? is the derivative of . We note that this measure of
lengths extends to piecewise smooth curves by splitting the integration
into pieces where the curve is smooth.

The length L(7) is smaller when the curve passes by regions where
W is small. It thus makes sense to declare as roads the curves that
minimize L(). For this problem to make sense, one needs to further
constrain . And a natural choice is to fix its starting and ending points
to be a pair (x4, 1) € Q2

P(xs,xe) ={7:[0,1] > 2\ ~v(0) =2zs and ~(1)==z.}, (1.3)
where the paths are assumed to be piecewise smooth so that one can
measure their lengths using (1.2).

Within this setting, a road v* is a global minimizer of the length

~* = argmin L(y), (1.4)
YEP(xs,ze)
which in general exists, and is unique except in degenerate situations
where different roads have the same length. Length L(y*) is called
geodesic distance between x5 and x. with respect to W(x).

Figure 1.1 shows an example of geodesic extracted with this method.
It links two points x5 and x. given by the user. One can see that this
curve tends to follow regions with gray values close to ¢, which has been
fixed to ¢ = f(x,).

This idea of using a scalar potential W (x) to weight the length of
curves has been used in many computer vision applications beside road
tracking. This includes in particular medical imaging where one wants
to extract contours of organs or blood vessels. These applications are
further detailed in Section 3.

1.1.2 Detecting Salient Features on Surfaces

Computer graphics applications often face problems that require the
extraction of meaningful curves on surfaces. We consider here a smooth
surface S embedded into the 3D Euclidean space, S C R3.

Similarly to (1.2), a curve 4:[0,1] — S traced on the surface has a
weighted length computed as

1
L(3) = / W ()7 (1))t (1.5)
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where 7/(t) € Ty C R? is the derivative vector, that lies in the embed-
ding space R?, and is in fact a vector belonging to the 2D tangent plane
T5) to the surface at ¥(t), and the weight W is a positive function
defined on the surface domain S.

Note that we use the notation Z = 4(t) to insist on the fact that
the curves are not defined in a Euclidean space, and are forced to be
traced on a surface.

Similarly to (1.4), a geodesic curve

7* = argmin L(7), (1.6)
FEP (Zs,Ze)

is a shortest curve joining two points Zs,Z. € S.

When W =1, L(¥) is simply the length of a 3D curve, that is
restricted to be on the surface S§. Figure 1.2 shows an example of
surface, together with a set of geodesics joining pairs of points, for
W = 1. As detailed in Section 3.2.4, a varying saliency map W (Z) can
be defined from a texture or from the curvature of the surface to detect
salient curves.

Geodesics and geodesic distance on 3D surfaces have found many
applications in computer vision and graphics, for example, surface
matching, detailed in Section 5, and surface remeshing, detailed in
Section 4.

Surface S Geodesic distance and paths.

Fig. 1.2 Example of geodesic curves on a 3D surface.
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1.2 Riemannian Manifolds

It turns out that both previous examples can be cast into the same
general framework using the notion of a Riemannian manifold of dimen-
sion 2.

1.2.1 Surfaces as Riemannian Manifolds

Although the curves described in Sections 1.1.1 and 1.1.2 do not belong
to the same spaces, it is possible to formalize the computation of
geodesics in the same way in both cases. In order to do so, one needs to
introduce the Riemannian manifold Q C R? associated to the surface
S [148].

A smooth surface S C R? can be locally described as a parametric
function

QcR? -5 ScR3

1.7
z = T =p(x) (1.7)

¥

which is required to be differentiable and one-to-one, where {2 is an
open domain of R2.

Full surfaces require several such mappings to be fully described,
but we postpone this difficulty until Section 1.2.2.

The tangent plane 7z at a surface point & = ¢(x) is spanned by
the two partial derivatives of the parameterization, which define the
derivative matrix at point x = (x1,22)

Dy(z) = <§Z(w),§£(x)> e R3*2, (1.8)
As shown in Figure 1.3, the derivative of any curve 7 at a point Z = 7(t)
belongs to the tangent plane 7z of S at Z.

The curve ¥(t) € S C R? defines a curve y(t) = ¢~ 1(F(t)) € Q2 traced
on the parameter domain. Note that while 7 belongs to a curved sur-
face, v is traced on a subset of a Euclidean domain.

Since (t) = ¢(7(t)) € Q the tangents to the curves are related via
¥'(t) = Do(y(t))Y'(t) and 7/(t) is in the tangent plane 75 which is
spanned by the columns of Dy (vy(t)). The length (1.5) of the curve 4
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Fig. 1.3 Tangent space Tz and derivative of a curve on surface S.

is computed as

L3 / 7 (®)lr, (1.9)

where the tensor T}, is defined as
Ve eQ, T,=+/W(@)l,(x) whereZ = p(x),
and I,(z) € R**? is the first fundamental form of S

@) = (Dp)" Do) = ((GEwgr@)) o)

and where, given some positive symmetric matrix A = (A4; ;)1<i j<2 €
R2%2, we define its associated norm

|ul} = (u, u)a  where (u, v)4 = (Au, v) Z A, juv;. (1.11)
1<i,j<2

A domain € equipped with such a metric is called a Riemannian
manifold.

The geodesic curve 4* traced on the surface S defined in (1.6)
can equivalently be viewed as a geodesic 7* = ¢~ !(7*) traced on the
Riemannian manifold €. While 4* minimizes the length (1.5) in the 3D
embedding space between I and Z. the curve v* minimizes the Rie-
mannian length (1.9) between z, = ¢~ 1(Z,) and z. = ¢~ (%.).
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1.2.2 Riemannian Manifold of Arbitrary Dimensions

Local description of a manifold without boundary. We con-
sider an arbitrary manifold S of dimension d embedded in R™ for some
n > d [164]. This generalizes the setting of the previous Section 1.2.1
that considers d = 2 and n = 3. The manifold is assumed for now to be
closed, which means without boundary.

As already done in (1.7), the manifold is described locally using a
bijective smooth parametrization

QcRY =5 ScR»

P
x = T =p(x)

so that ¢(£2) is an open subset of S.

All the objects we consider, such as curves and length, can be trans-
posed from S to 2 using this application. We can thus restrict our
attention to €2, and do not make any reference to the surface S.

For an arbitrary dimension d, a Riemannian manifold is thus locally
described as a subset of the ambient space 2 C R, having the topology
of an open sphere, equipped with a positive definite matrix 7, € R¢*4
for each point x € €2, that we call a tensor field. This field is further
required to be smooth.

Similarly to (1.11), at each point z € 2, the tensor 7, defines the
length of a vector u € R? using

||UH%“$ = (u, u)y, where (u,v)p, = (Tyu,v) = Z (T )i, juivy.
1<i,j<d
This allows one to compute the length of a curve v(t) € Q traced on
the Riemannian manifold as a weighted length where the infinitesimal
length is measured according to 7,

1
Liy) = /0 7 () (1.12)

The weighted metric on the image for road detection defined in Sec-
tion 1.1.1 fits within this framework for d = 2 by considering 2 = [0, 1]?
and T, = W (x)?Idy, where Ids € R?*? is the identity matrix. In this
case, 2 =8, and ¢ is the identity application. The parameter domain
metric defined from a surface S € R? considered in Section 1.1.2 can



206 Theoretical Foundations of Geodesic Methods

also be viewed as a Riemannian metric as we explained in the previous
section.

Global description of a manifold without boundary. The local
description of the manifold as a subset Q C R? of an Euclidean space
is only able to describe parts that are topologically equivalent to open
spheres.

A manifold § € R" embedded in R"™ with an arbitrary topology is
decomposed using a finite set of overlapping surfaces {S;}; topologically
equivalent to open spheres such that

Usi=s. (1.13)

A chart ;:{Q;}; — S; is defined for each of sub-surface S;.
Figure 1.4 shows how a 1D circle is locally parameterized using
several 1D segments.

Manifolds with boundaries. In applications, one often encounters
manifolds with boundaries, for instance images defined on a square,
volume of data defined inside a cube, or planar shapes.

The boundary 02 of a manifold €2 of dimension d is itself by defini-
tion a manifold of dimension d — 1. Points z strictly inside the manifold
are assumed to have a local neighborhood that can be parameterized
over a small Euclidean ball. Points located on the boundary are param-
eterized over a half Euclidean ball.

oim on
90’3/» _/,\9‘02

Fig. 1.4 The circle is a 1-dimensional surface embedded in R2, and is thus a 1D manifold.
In this example, it is decomposed in four sub-surfaces which are topologically equivalent to
sub-domains of R, through charts ;.
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Such manifolds require some extra mathematical care, since
geodesic curves (local length minimizers) and shortest paths (global
length minimizing curves), defined in Section 1.2.3, might exhibit tan-
gential discontinuities when reaching the boundary of the manifold.

Note however that these curves can still be computed numerically
as described in Section 2. Note also that the characterization of the
geodesic distance as the viscosity solution of the Eikonal equation still
holds for manifolds with boundary.

1.2.3 Geodesic Curves

Globally minimizing shortest paths. Similarly to (1.4), one
defines a geodesic v*(t) € Q between two points (xs,z.) € Q% as the
curve between xg and z, with minimal length according to the
Riemannian metric (1.9):
v* = argmin L(y). (1.14)
YEP (ws,Te)

As an example, in the case of a uniform T, = Id; (i.e., the metric
is Euclidean) and a convex €2, the unique geodesic curve between xg
and z. is the segment joining the two points.

Existence of shortest paths between any pair of points on a
connected Riemannian manifold is guaranteed by the Hopf-Rinow
theorem [134]. Such a curve is not always unique, see Figure 1.5.

Locally minimizing geodesic curves. It is important to note that
in this paper the notion of geodesics refers to minimal paths, that

Fig. 1.5 Example of non-uniqueness of a shortest path between two points: there is an
infinite number of shortest paths between two antipodal points on a sphere.
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are curves minimizing globally the Riemannian length between two
points. In contrast, the mathematical definition of geodesic curves usu-
ally refers to curves that are local minimizer of the geodesic lengths.
These locally minimizing curves are the generalization of straight lines
in Euclidean geometry to the setting of Riemannian manifolds.

Such a locally minimizing curve satisfies an ordinary differential
equation, that expresses that it has a vanishing Riemannian curvature.

There might exist several local minimizers of the length between
two points, which are not necessarily minimal paths. For instance, on
a sphere, a great circle passing by two points is composed of two local
minimizer of the length, and only one of the two portion of circle is a
minimal path.

1.2.4 Geodesic Distance

The geodesic distance between two points g, z. is the length of ~v*.
d(zs,ze) = min  L(vy) = L(v). (1.15)
YEP(xs,ze)
This defines a metric on €2, which means that it is symmetric d(xg, z.) =
d(xe,zs), that d(xs,x.) > 0 unless x5 = x, and then d(zs,z.) =0, and
that it satisfies the triangular inequality for every point y

d(l'Saxe) < d(xmy) + d(y,xe).

The minimization (1.15) is thus a way to transfer a local metric defined
point-wise on the manifold € into a global metric that applies to arbi-
trary pairs of points on the manifold.

This metric d(zs,z.) should not be mistaken for the Euclidean
metric ||zs — z¢|| on R™, since they are in general very different. As
an example, if r denotes the radius of the sphere in Figure 1.5,
the FEuclidean distance between two antipodal points is 2r while the
geodesic distance is 7r.

1.2.5 Anisotropy

Let us assume that 2 is of dimension 2. To analyze locally the behavior
of a general anisotropic metric, the tensor field is diagonalized as

Ty = M(z)er(z)er(2)T + Ao(2)ea(x)ea ()T, (1.16)
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where 0 < A\ (z) < A2(x). The vector fields e;(x) are orthogonal eigen-
vectors of the symmetric matrix T, with corresponding eigenvalues
Ai(z). The norm of a tangent vector v =+/(t) of a curve at a point
x = (t) is thus measured as

[vlz, = Ar(@)[{er(@), v)* + Ao () |(ea(x), ).

A curve 7 is thus locally shorter near x if its tangent +/(¢) is collinear
to ej(x), as shown in Figure 1.6. Geodesic curves thus tend to be as
parallel as possible to the eigenvector field e;(x). This diagonalization
(1.16) carries over to arbitrary dimension d by considering a family of
d eigenvector fields.

For image analysis, in order to find significant curves as geodesics
of a Riemannian metric, the eigenvector field ej(x) should thus match
the orientation of edges or of textures, as this is the case for Figure 1.7,
right.

The strength of the directionality of the metric is measured by its
anisotropy A(z), while its global isotropic strength is measured using
its energy W (x)

(z)

Aa() = Mil@) 2 _ A2(@) + Mi(2)
() + Ai(2) N

€1[0,1] and W(z) 5

> 0.
(1.17)
A tensor field with A(x) =0 is isotropic and thus verifies T, =
W (z)?Idy, which corresponds to the setting considered in the road
tracking application of Section 1.1.1.

Figure 1.7 shows examples of metric with a constant energy
W(z) =W and an increasing anisotropy A(x) = A. As the anisotropy

e1(z)

VAT \ V() \
1/v/ M1 (2) 1/v/Ai(z)

Isotropic metric Anisotropic metric

Fig. 1.6 Schematic display of a local geodesic ball for an isotropic metric or an anisotropic
metric.
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Image f A=0 A=04 A=08

Fig. 1.7 Example of geodesic distance to the center point, and geodesic curves between this
center point and points along the boundary of the domain. These are computed for a metric
with an increasing value of anisotropy A, and for a constant W. The metric is computed
from the image f using (4.37).

A drops to 0, the Riemannian manifold comes closer to Euclidean, and
geodesic curves become line segments.

1.3 Other Examples of Riemannian Manifolds

One can find many occurrences of the notion of Riemannian mani-
fold to solve various problems in computer vision and graphics. All
these methods build, as a pre-processing step, a metric 7, suited for
the problem to solve, and use geodesics to integrate this local distance
information into globally optimal minimal paths. Figure 1.8 synthe-
sizes different possible Riemannian manifolds. The last two columns
correspond to examples already considered in Sections 1.1.1 and 1.2.5.

1.3.1 Euclidean Distance

The classical Euclidean distance d(zs,2¢) = ||zs — zc|| in Q@ =R? is
recovered by using the identity tensor T, = Idy. For this identity met-
ric, shortest paths are line segments. Figure 1.8, first column, shows
this simple setting. This is generalized by considering a constant metric
T, =T € R?*?in which case the Euclidean metric is measured accord-
ing to T', since d(xs,x.) = ||xs — Zel|7. In this setting, geodesics between
two points are straight lines.

1.3.2 Planar Domains and Shapes

If one uses a locally Euclidean metric T, = Idy in 2D, but restricts
the domain to a non-convex planar compact subset  C R2, then
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Euclidean Shape Metric Anisotropic

Fig. 1.8 Examples of Riemannian metrics (top row), geodesic distances and geodesic curves
(bottom row). The blue/red color-map indicates the geodesic distance to the starting red
point. From left to right: Euclidean (7, = Ids restricted to = [0,1]?), planar domain
(Ty = Ida restricted to M C [0,1]?), isotropic metric (Q = [0,1]?, T(z) = W (z)Idz, see
Equation (1.1)), Riemannian manifold metric (7% is the structure tensor of the image, see
Equation (4.37)).

the geodesic distance d(zs,z.) might differ from the Euclidean length
|zs — xe||. This is because paths are restricted to lie inside €2, and some
shortest paths are forced to follow the boundary of the domain, thus
deviating from line segment (see Figure 1.8, second column).

This shows that the global integration of the local length measure T,
to obtain the geodesic distance d(xs,z.) takes into account global geo-
metrical and topological properties of the domain. This property is
useful to perform shape recognition, that requires some knowledge of
the global structure of a shape € C R?, as detailed in Section 5.

Such non-convex domain geodesic computation also found applica-
tion in robotics and video games, where one wants to compute an opti-
mal trajectory in an environment consisting of obstacles, or in which
some positions are forbidden [153, 161]. This is detailed in Section 3.6.

1.3.3 Anisotropic Metric on Images

Section 1.1.1 detailed an application of geodesic curve to road tracking,
where the Riemannian metric is a simple scalar weight computed from
some image f. This weighting scheme does not take advantage of the
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local orientation of curves, since the metric W (z)|7/(¢)|| is only sensitive
to the amplitude of the derivative.

One can improve this by computing a 2D tensor field T}, at each pixel
location x € R?*2. The precise definition of this tensor depends on the
precise applications, see Section 3.2. They generally take into account
the gradient V f(x) of the image f around the pixel z, to measure the
local directionality of the edges or the texture. Figure 1.8, right, shows
an example of metric designed to match the structure of a texture.

1.4 Voronoi Segmentation and Medial Axis
1.4.1 Voronoi Segmentation

For a finite set S = {z; fi 61 of starting points, one defines a segmen-
tation of the manifold €2 into Voronoi cells

0= UCZ- where C; = {z € Q\ Vj #1i, d(z,z;) > d(x,z;)}. (1.18)
1
Each region C; can be interpreted as a region of influence of z;. Sec-
tion 2.6.1 details how to compute this segmentation numerically, and
Section 4.1.1 discusses some applications.
This segmentation can also be represented using a partition function
{(z) = argmin d(x,x;). (1.19)
0<i<K
For points x which are equidistant from at least two different starting
points z; and xj, i.e., d(z,x;) = d(x,x;), one can pick either ¢(z) = or
0(x) = j. Except for these exceptional points, one thus has ¢(z) =i if
and only if x € C;.

Figure 1.9, top row, shows an example of Voronoi segmentation for
an isotropic metric.

This partition function ¢(x) can be extended to the case where S is
not a discrete set of points, but for instance the boundary of a 2D shape.
In this case, £(z) is not integer valued but rather indicates the location
of the closest point in S. Figure 1.9, bottom row, shows an example
for a Euclidean metric restricted to a non-convex shape, where S is the
boundary of the domain. In the third image, the colors are mapped to
the points of the boundary S, and the color of each point x corresponds
to the one associated with ¢(z).
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Metric W (z) Distance Ug Voronoi £(x) MedAxis(5)

Fig. 1.9 Examples of distance function, Voronoi segmentation and medial axis for an
isotropic metric (top left) and a constant metric inside a non-convex shape (bottom left).

1.4.2 Medial Axis

The medial axis is the set of points where the distance function Ug is
not differentiable. This corresponds to the set of points = € 2 where
two distinct shortest paths join x to S.

The major part of the medial axis is thus composed of points that
are at the same distance from two points in S

1 7'5 T2 .
{x € Q\ 3(xy,z2) € 52 A1) = d(:c,asg)} C MedAxis(S). (1.20)

This inclusion might be strict because it might happen that two points
xz € and y € S are linked by two different geodesics.

Finite set of points. For a discrete finite set S = {xi}i]ial, a point
x belongs to MedAxis(S) either if it is on the boundary of a Voronoi
cell, or if two distinct geodesics are joining x to a single point of S. One
thus has the inclusion

| 9Ci © MedAxis(S) (1.21)

;€S

where C; is defined in (1.18).
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For instance, if S = {xg,z1} and if T} is a smooth metric, then
MedAxis(S) is a smooth mediatrix hyper surface of dimension d — 1
between the two points. In the Euclidean case, T, = Idy, it corresponds
to the separating affine hyperplane.

As detailed in Section 4.1.1, for a 2D manifold and a generic dense
enough configuration of points, it is the union of portion of mediatri-
ces between pairs of points, and triple points that are equidistant from
three different points of S.

Section 2.6.2 explains how to compute numerically the medial axis.

Shape skeleton. The definition (1.20) of MedAxis(S) still holds
when S is not a discrete set of points. The special case considered
in Section 1.3.2 where Q is a compact subset of R? and S = 99 is of
particular importance for shape and surface modeling. In this setting,
MedAxis(.S) is often called the skeleton of the shape S, and is an impor-
tant perceptual feature used to solve many computer vision problems.
It has been studied extensively in computer vision as a basic tool for
shape retrieval, see for instance [252]. One of the main issues is that
the skeleton is very sensitive to local modifications of the shape, and
tends to be complicated for non-smooth shapes.

Section 2.6.2 details how to compute and regularize numerically the
skeleton of a shape. Figure 1.9 shows an example of skeleton for a 2D
shape.

1.5 Geodesic Distance and Geodesic Curves

1.5.1 Geodesic Distance Map

The geodesic distance between two points defined in (1.15) can be gen-
eralized to the distance from a point x to a set of points S C Q by
computing the distance from x to its closest point in €2, which defines
the distance map

Us(x) = 1;1161? d(x,y). (1.22)

Similarly a geodesic curve 7* between a point x € (2 and S is a curve
v* € P(z,y) for some y € S such that L(y*) = Us(x).
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One starting point Two starting points

Fig. 1.10 Examples of geodesic distances and curves for a Euclidean metric with different
starting configurations. Geodesic distance is displayed as an elevation map over 2 = [0, 1}2.
Red curves correspond to iso-geodesic distance lines, while yellow curves are examples of
geodesic curves.

Figure 1.8, bottom row, shows examples of geodesic distance map
to a single starting point S = {xs}.

Figure 1.10 is a three-dimensional illustration of distance maps for
a Euclidean metric in R? from one (left) or two (right) starting points.

1.5.2 Eikonal Equation

For points z outside both the medial axis MedAxis(S) defined in (1.20)
and S, one can prove that the geodesic distance map Ug is differen-
tiable, and that it satisfies the following non-linear partial differential
equation

IVUs(z)[7-1 =1, with boundary conditions Ug(x) =0 on 5, (1.23)

where VUg is the gradient vector of partial differentials in R¢.

Unfortunately, even for a smooth metric 7, and simple set S, the
medial axis MedAxis(S) is non-empty (see Figure 1.10, right, where
the geodesic distance is clearly not differentiable at points equidistant
from the starting points). To define Ug as a solution of a PDE even
at points where it is not differentiable, one has to resort to a notion
of weak solution. For a non-linear PDE such as (1.23), the correct
notion of weak solution is the notion of viscosity solution, developed
by Crandall and Lions [82, 83, 84].

A continuous function u is a viscosity solution of the Eikonal equa-
tion (1.23) if and only if for any continuously differentiable mapping
¢ € CHQ) and for all 2y € Q\S local minimum of v — ¢ we have

IVe(o)lgr =1
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O 2 T

Fig. 1.11 Schematic view in 1D of the viscosity solution constrain.

For instance in 1D, d = 1, 2 = R, the distance function
u(z) = Ug(z) = min(|z — x1|,|z — z2|)

from two points S = {z1,22} satisfies |v/| =1 wherever it is differen-
tiable. However, many other functions satisfies the same property, for
example v, as shown on Figure 1.11. Figure 1.11, top, shows a Cl(R)
function ¢ that reaches a local minimum for u — ¢ at xg. In this case,
the equality |¢'(x0)| = 1 holds. This condition would not be verified by
v at point xp. An intuitive vision of the definition of viscosity solution
is that it prevents appearance of such inverted peaks outside S.

An important result from the viscosity solution of Hamilton—Jacobi
equation, proved in [82, 83, 84], is that if S is a compact set, if z — T,
is a continuous mapping, then the geodesic distance map Ug defined in
(1.22) is the unique viscosity solution of the following Eikonal equation

{\m e, [VUs(x)|lp1 =1, 124)
VeelS, Us(x)=0.
In the special case of an isotropic metric T, = W (z)?Idy, one recovers
the classical Eikonal equation

VeeQ, [VUs(x)|=W(z). (1.25)

For the Euclidean case, W(x) =1, one has |[VUg(z)| =1, whose
viscosity solution for S = {zs} is U, (x) = || — x5].
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1.5.3 Geodesic Curves

If the geodesic distance Ug is known, for instance by solving the Eikonal
equation, a geodesic v* between some end point z. and S is computed
by gradient descent. This means that v* is the solution of the following
ordinary differential equation

*

dvy*(t)
dt

Vit >0,
7(0) = ze.

where the tangent vector to the curve is the gradient of the distance,
twisted by T,

= —no(y*(t)), (1.26)

v(z) =T, 'VUs(z),

and where 7, > 0 is a scalar function that controls the speed of the
geodesic parameterization. To obtain a unit speed parameterization,
[(v*)'(t)|| = 1, one needs to use

e = Jo(r (@)1~
If x, is not on the medial axis MedAxis(.S), the solution of (1.26) will
not cross the medial axis for ¢ > 0, so its solution is well defined for
0<t<t,,, for some t,_ such that v*(t, )€ S.

For an isotropic metric T, = W (z)?Idy, one recovers the gradient
descent of the distance map proposed in [74]

*
dvdt(t) = —n:VUs(7*(1))-

Figure 1.10 illustrates the case where T, = Ids: geodesic curves are
straight lines orthogonal to iso-geodesic distance curves, and corre-
spond to greatest slopes curves, since the gradient of a function is
always orthogonal to its level curves.

Vit >0,
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Numerical Foundations of Geodesic Methods

This section is concerned with the approximation of geodesic distances
and geodesic curves with fast numerical schemes. This requires a dis-
cretization of the Riemannian manifold using either a uniform grid or
a triangulated mesh. We focus on algorithms that compute the discrete
distance by discretizing the Eikonal equation (1.24). The discrete non-
linear problem can be solved by iterative schemes, and in some cases
using faster front propagation methods.

We begin the description of these numerical algorithms by a simple
setting in Section 2.3 where the geodesic distance is computed on a reg-
ular grid for an isotropic metric. This serves as a warmup for the general
case studied in Section 2.4. This restricted setting is useful because the
FEikonal equation is discretized using finite differences, which allows to
introduce several important algorithms such as Gauss—Seidel iterations
or Fast Marching propagations.

2.1 Eikonal Equation Discretization

This section describes a general setting for the computation of the
geodesic distance. It follows the formulation proposed by Bornemann

218
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and Rasch [35] that unifies several particular schemes, which are
described in Sections 2.3 and 2.4.

2.1.1 Derivative-Free Eikonal Equation

The Eikonal equation (1.24) is a PDE that describes the infinitesimal
behavior of the distance map Ug, it however fails to describe the behav-
ior of Ug at points where it is not differentiable. To derive a numerical
scheme for a discretized manifold one can consider an equation equiv-
alent to (1.24) that does not involve derivatives of Ug.

We consider a small neighborhood B(z) around each z € Q\S, such
that B(x) NS = 0. It can, for instance, be chosen as a Euclidean ball,
see Figure 2.1.

One can prove that the distance map Ug is the unique continuous
solution U to the equation

{Vm €qQ, Ulx)= ye%llgzx) Uly) + d(y,z), 1)
VeesS, U(x)=0,

where d(y,z) is the geodesic distance defined in (1.15).

Equation (2.1) will be referred to as the control reformulation of the
Eikonal equation. It makes appear that U(z) depends only on values
of U on neighbors y with U(y) < U(z). This will be a key observation
in order to speed up the computation of U.

The fact that Ug solves (2.1) is easy to prove. The triangu-
lar inequality implies that Us(x) < Ug(y) + d(y,z) for all y € 0B(x).

Fig. 2.1 Neighborhood B(z) for several points z € .
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Fig. 2.2 Proof of Equation (2.1).

Conversely, the geodesic v* joining z to S passes through some y €
0B(x), see Figure 2.2. This shows that this point y achieves the equal-
ity in the minimization (2.1).

Uniqueness is a bit more technical to prove. Let us consider two con-
tinuous mappings Uy and Us that satisty Uj(x) # Uz (x) for some x ¢ S.
We define ¢ = Uj(z) — Uz(x) #0 and 7* a geodesic curve between
S and x, such that 4*(0) =2 and 7*(1) € S. We define A= {te
[0,1\U1(7v*(t)) — U2(~*(t)) =€}. By definition we have 1 ¢ A since
Ui(v*(1)) = U2(v*(1)) = 0. Furthermore, 0 € A, and this set is non-
empty. Let us denote s = sup A its supremum. U; and Us being contin-
uous mappings, we have Uj(s) — Ua(s) =€ and s € A, and thus s # 1
and x5 =v*(s) ¢ S. If we denote y an intersection of 0B(z,) with the
part of the geodesic v* joining s to S, we get Uy (zs) = Ur(y) + d(y,xs)
and Us(xs) = Us(y) + d(y,xs), such that Uy(y) — Ua(y) =e. Let us
denote t such that y =~*(t). Then t € A and t > s, which contra-
dicts the definition of s. Thus the initial hypothesis Uj(z) # Uz(z)
is false.

Equation (2.1) can be compactly written as a fixed point

U=T(U)

over the set of continuous functions U satisfying U(z) = 0 for all € S,
where the operator V =T'(U) is defined as

V(z)= min U d(y,z).
(r) oo (y) + d(y,x)
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2.1.2 Manifold Discretization

To compute numerically a discrete geodesic distance map, we suppose
that the manifold 2 is sampled using a set of points {z;}¥ 5! C Q. We
denote € the precision of the sampling.

The metric of the manifold is supposed to be sampled on this grid,
and we denote

E _ Txl c R2X2

the discrete metric.

To derive a discrete counterpart to the Eikonal equation (1.24), each
point z; is connected to its neighboring points x; € Neigh(z;). Each
point is associated with a small surrounding neighborhood B (x;), that
is supposed to be a disjoint union of simplexes whose extremal vertices
are the grid points {z;};. The sampling is assumed to be regular, so
that the simplexes have approximately a diameter of &.

For instance, in 2D, each neighborhood B(z;) is an union of
triangles

Bg(l‘l) = U tijk (2.2)

x;,x ENeigh(z;)
x;€Neigh(z)

where ; ;1 is the convex hull of {z;, ;1 }.

Figure 2.3 shows example of 2D neighborhoods sets for two impor-
tant situations. On a square grid, the points are equi-spaced, x; =
(i1€,i2¢), and each B.(x;) is composed of four regular triangles. On
a triangular mesh, each B.(z;) is composed of the triangles which
contain x;.

This description extends to arbitrary dimensions. For instance, for
a 3D manifold, each B.(z;) is an union of tetrahedra.

2.1.3 Discrete Eikonal Equation

A distance map Ug(x) for x € Q is approximated numerically by com-
puting a discrete vector u € RY where each value u; is intended to
approximate the value of Ug(z;).

This discrete vector is computed as a solution of a finite dimensional
fixed point equation that discretizes (2.1). To that end, a continuous
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Fig. 2.3 Neighborhood sets on a regular grid (left), and a triangular mesh (right).

function u(z) is obtained from the discrete samples {u;}; by linear
interpolation over the triangles.

We compute the minimization in (2.1) at the point = x; over the
boundary of B.(z;) defined in (2.2) where ¢ is the sampling precision.
Furthermore, the tensor metric is approximated by a constant tensor
field equal to T; over B.(x;). Under these assumptions, the discrete
derivative free Eikonal equation reads

yEIBe(x;)
Vr; €5, wu;=0.

Va, €Q, w;= min u(y) + ||y — xz‘HTfh
i (2.3)

Decomposing this minimization into each triangle (in 2D) of the
neighborhood, and using the fact that u(y) is affine on each triangle,
one can re-write the discrete Eikonal equation as a fixed point

u=TI(u) and Vz;€S, u;=0 (2.4)
where the operator v = I'(u) € RY is defined as

v; =Ti(u) = ,, D Vidk (25)
where
Vijk = tgég] tu; + (1 — t)ug + |ty + (1 — t)xy, — IZ’HTi—l.
We have written this equation for simplicity in the 2D case, so that
each point y is a barycenter of two sampling points, but this extends



2.2 Algorithms for the Resolution of the Eikonal Equation 223

to a manifold of arbitrary dimension d by considering barycenters of d
points.

Sections 2.3 and 2.4 show how this equation can be solved explicitly
for the case of a regular square grid and for a 2D triangulation.

Convergence of the discretized equation. One can show that
the fixed point equation (2.4) has a unique solution u € RY, see [35].
Furthermore, if the metric T}, is continuous, one can also prove that the
interpolated function u(z) converges uniformly to the viscosity solution
Us of the Eikonal equation (1.24) when € tends to zero. This was first
proved by Rouy and Tourin [244] for the special case of an isotropic
metric on a regular grid, see [35] for the general case.

2.2 Algorithms for the Resolution of the Eikonal Equation
The discrete Eikonal equation is a non-linear fixed point problem. One
can compute the solution to this problem using iterative schemes. In
some specific cases, one can compute the solution with non-iterative
Fast Marching methods.
2.2.1 Iterative Algorithms
One can prove that the mapping I' is both monotone
u<au = T'(u)<T(a), (2.6)

and non-expanding

IP(w) = T(@)]los < flu = tfloc = max u; — @l (2.7)
These two properties enable the use of simple iterations that converge

to the solution u of the problem.

Jacobi iterations. To compute the discrete solution of (2.4), one
can apply the update operator I' to the whole set of grid points. Jabobi
non-linear iterations initialize u(°) = 0 and then compute

u ) = (k).
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Algorithm 1: Jacobi algorithm.

Initialization: set u(®) =0, k « 0.
repeat
for 0<:< N do
| Y =1y ),
Set k — k + 1.
until [u®) — u*=D| o <7 ;

Algorithm 2: Non-adaptive Gauss—Seidel algorithm.

Initialization: set v(©) =0, k « 0.
repeat
Set u(k+1) = u(k)
for 0 <i< N do
| ult =1y (ulD),
Set k — k + 1.
until |u® — o*D| < n;

Properties (2.6) and (2.7), together with the fact that the iterates u(*)
are bounded, imply the convergence of u*) to a fixed point u satisfy-
ing (2.4). Algorithm 1 details the steps of the Jacobi iterations.

The fixed point property is useful to monitor the convergence of
iterative algorithms, since one stops iterations when one has computed
some distance u with

IP(w) = ulloc <0 where [Jullo = max |uil,

and where n > 0 is some user-defined tolerance.

Non-adaptive Gauss—Seidel iterations. To speed up the compu-
tation, one can apply the local updates sequentially, which corresponds
to a non-linear Gauss-Seidel algorithm, that converges to the solution
of (2.4) — see Algorithm 2.

Adaptive Gauss—Seidel iterations. To further speed up the con-
vergence of the Gauss—Seidel iterations, and to avoid unnecessary
updates, Bornemann et al. introduced in [35] an adaptive algorithm
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Algorithm 3: Adaptive Gauss—Seidel algorithm.
0 ifies, B
+o0 otherwise. Q=5

Initialization: u; = {

repeat
Pop i from Q.
Compute v = T';(u).
if |v —wu;| >n then
Set u; + v.
L Q + QU Neigh(z;).

until 9 =0 ;

that maintains a list @ of points that need to be updated. At each
iteration, a point is updated, and neighboring points are inserted to
the list if they violate the fixed point condition up to a tolerance 7.
This algorithm is detailed in Algorithm 3.

See also [141, 145, 287] for other fast iterative schemes on parallel
architectures.

2.2.2 Fast Marching Algorithm

The resolution of the discrete Eikonal equation (2.4) using the Gauss—
Seidel method shown in Algorithm 2, is slow because all the grid points
are visited several times until reaching an approximate solution.

For an isotropic metric on a regular grid, Sethian [254] and
Tsitsiklis [276] discovered independently that one can by-pass these
iterations by computing exactly the solution of (2.4) in O(Nlog(N))
operations, where N is the number of sampling points. Under some con-
ditions on the sampling grid and on the metric, this scheme extends to
general discretized Riemannian manifolds, see Section 2.4.3.

This algorithm is based on an optimal ordering of the grid points
that ensures that each point is visited only once by the algorithm, and
that this visit computes the exact solution. For simplicity, we detail the
algorithm for a 2D manifold, but it applies to arbitrary dimension.

Causality and ordering. A desirable property of the discrete
update operator I' is the following causality principle, that requires
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for any v that
Va; € Neigh(z;), TI'i(v)>vj. (2.8)

This condition is a strong requirement that is not always fulfilled by
a given manifold discretization, either because the sampling triangles
have poor shapes, or because the metric 7; is highly anisotropic.

If this causality principle (2.8) holds, one can prove that the value w;
of the solution of the discrete Eikonal equation (2.4) at point x; can be
computed by using pairs of neighbors z;,z) € Neigh(z;) with strictly
smaller distance values

w; > max(uj,ug).

This property suggests that one can solve progressively for the solu-
tion wu; for values of u sorted in increasing order.

Front propagation. The Fast Marching algorithm uses a priority
queue to order the grid points as being the current estimate of the
distance. At a given step of the algorithm, each point x; of the grid is
labeled according to a state

Y; € {Computed, Front, Far}.

During the iterations of the algorithm, while an approximation u; of
Ug is computed, a point can change of label according to

Far — Front — Computed.

Computed points with a state X; = Computed are those that the algo-
rithm will not consider any more. This means that the computation of
u; is done for these points, so that u; ~ Ug(x;). Front points z; that
satisfies ¥; = Front are the points being processed. The value of wu;
is well defined but might change in future iterations. Far points with
>; = Far are points that have not been processed yet, so that we define
U; = “+o0.

Because the value of Ug(z;) depends only on the neighbors x; which
have a smaller value, and because each update is guaranteed to only
decrease the value of the estimated distance, the point in the front
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Algorithm 4: Fast Marching algorithm.

Initialization:
Va; € S,u; < 0, X; < Front,
Va; & S,u; < 400, ¥; < Far.
repeat
Select point: i «— argmin wuyg.
k,2X=Front
Tag: >; < Computed.
for z;, € Neigh(x;) do
if ¥, = Far then
| X < Front
if ¥, = Front then
L Up < Fk(u)

until {i\ ¥; = Front} =0 ;

with the smallest current distance u; is actually the point with smaller
distance Ug amongst the points in Front U Far. Selecting at each step
this point thus guarantees that w; is the correct value of the distance,
and that its correct priority has been used.

Algorithm 4 gives the details of the front propagation algorithm
that computes a distance map u approximating Ug(x) on a discrete
grid.

Numerical complexity. The worse case numerical complexity of
this algorithm is O(Nlog(NV)) for a discrete grid of N points. This is
because all the N points are visited (tagged Computed) exactly once
while the time required for updating only depends on the size of the
neighborhood. Furthermore, the selection of point ¢ with minimum wu;
from the priority queue of the front points takes at most log(N') opera-
tions with a special heap data structure [120, 288]. However, in practice,
it takes much less time and the algorithm is nearly linear in time.

Using different data structures requiring additional storage, dif-
ferent O(N) implementations of the Fast Marching were proposed
in [145, 293].
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2.2.3 Geodesics on Graphs

Graph as discrete manifold. In this setting, for each z; ¢
Neigh(z;), the metric is represented as a weight W; ; along the edge
[;,2;]. The graph is an abstract structure represented only by its
indices 0 < ¢ < N, and by its weights. We denote ¢ ~ j to indicate that
the points are connected for x; € Neigh(x;). One only manipulates the
indices ¢ of the points x; for the geodesic computation on the graph
with the position x; being used only for display purpose.

One should be careful that in this graph setting, the metric W; ; is
defined on the edge [z;,z;] of the graph, whereas for the Eikonal equa-
tion discretization detailed in Section 2.1.2, the metric is discretized
on the vertex x;. Notice that — while it is less usual — it is possible to
define graphs with weights on the vertices rather than on the edges.

Geodesic distances on graphs. A path + on a graph is a set of
K., indices {%}fjo_l C Q, where K, > 1 can be arbitrary, 0 <y < N,
and each edge is connected on the graph, v; ~ y¢+1. The length of this
path is

Ky—2
L(v) = Z Wiy
t=0

The set of path joining two indices is

IP(Za]):{’Y\fYO:Z and ’}/KW—l:j}v
and the geodesic distance is
d;; = min L(v).
W= PO
Floyd Algorithm. A simple algorithm to compute the geodesic dis-
tance d; ; between all pairs of vertices is the algorithm of Floyd [249].
Starting from an initial distance map
(0) Wi if x; € Neigh(x;),
d. D= .
J 400 otherwise,
it iterates, for k=0,...,N — 1

(k+1) (k) (k) (k)
d; ; dijdiy +dyf)-

= mlin(
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One can then show that dg;-f)

is O(N?3) operations, whatever the connectivity of the graph is.

=d; ;. The complexity of this algorithm

Dijkstra algorithm. The Fast Marching algorithm can be seen as
a generalization of Dijkstra algorithm that computes the geodesic dis-
tance on a graph [103]. This algorithm computes the distance map to
an initial vertex i

uj =d;,

using a front propagation on the graph. It follows the same steps of the
Fast Marching as detailed in Algorithm 4.

The update operator (2.5) is replaced by an optimization along the
adjacent edges of a vertex

Di(u) = 1}11? u; + Wi (2.9)

As for the Fast Marching algorithm, the complexity of this algorithm
is O(VN + Nlog(N)), where V is a bound on the size of the one
ring Neigh(z;). For sparse graphs, where V' is a small constant, com-
puting the distance between all pairs of points in the graph thus
requires O(N?log(N)) operations, which is significantly faster than
Floyd algorithm.

Geodesics on graph. Once the distance map u to some starting
point is has been computed using Dijkstra algorithm, one can com-
pute the shortest path v between i; and any points i, by performing a
discrete gradient descent on the graph

Yo =1t and ;41 = argmin u;.
iN'yt

Metrication error. As pointed out in [74] and [214], the distance u;
computed with this Dijkstra algorithm is however not a faithful dis-
cretization of the geodesic distance, and it does not converge to Ug
when N tends to +oo. For instance, for a Euclidean metric W(x) =
1, the distance between the two corners xs = (0,0) and z.=(1,1)
computed with Dijkstra algorithm is always the Manhattan distance



230 Numerical Foundations of Geodesic Methods

d(zs,ze) = ||xs — xcl1 =2 whereas the geodesic distance should be
|5 — xe|| = v/2. This corresponds to a metrication error, which can
be improved but not completely removed by an increase of the size of
the chosen neighborhood.

One can however prove that randomized refinement rule produces
a geodesic distance on graph that converges to the geodesic distance
on the manifold, see for instance Refs. [26, 41]. This requires that the
vertices of the graph are a dense covering of the manifold as detailed
in Section 4.2.1. This also requires that the edges of the graph links all
pairs of vertices that are close enough.

2.3 Isotropic Geodesic Computation on Regular Grids

This section details how the general scheme detailed in Section 2.1
is implemented in a simple setting relevant for image processing and
volume processing.

The manifold is supposed to be sampled on a discrete uniform grid,
and the metric is isotropic. We consider here only the 2D case to ease
notations so that the sampling points are z; = x;, ;, = (41¢,42¢), and the
metric reads T; = W;Ids. The sampling precision is € = 1/ V/N, where
N is the number of pixels in the image.

2.3.1 Update Operator on a Regular Grid

Each grid point z; is connected to four neighbors Neigh(z;), see
Figure 2.3, left, and the discrete update operator I';(u) defined in (2.5)
computes a minimization over four adjacent triangles.

Fz(u) = ti’j’klgiBIi(xi) 'Ui,j,k (210)

where

Uik = tn%(i)rh tuj + (1 — t)ug + Wilte; + (1 — t)ap — 4. (2.11)
€0,

This corresponds to the minimization of a strictly convex function
under convex constraints, so that there is a single solution.
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Vi, 5,k

Fig. 2.4 Geometric interpretation of update on a single triangle.

As illustrated in Figure 2.4, we model u as an affine mapping over
triangle ¢; ; ., and we denote

t* = argmingeo 1 {tu; + (1 — t)ug + Willte; + (1 — t)ag — i}
o =t"w; + (1 —tF)ay )
v =truy 4+ (1 — t)ug = u(z”)
(2.12)
such that
Vi ik — U
=W, (2.13)
i — |
From a geometrical point of view, finding v; ;5 and x* is related
to finding the maximal slope in ¢; ;5. If ”ZJ :Z:lll < W;, it is possible to
J
find z* € [z, 2] such that Equation (2.13) holds, and W; is then the

maximal slope in t; j . In this case, we have ||Vu| = Wj;, which can be

rewritten as

(vigk — ) + (Vijk — u)? = W7, (2.14)

Notice that the condition |‘|Z] :Z:h < W; imposes that this equation
J

has solutions. Furthermore, since Equation (2.11) imposes that v; ;
be larger than both u; and wug, v; . corresponds to the largest root
of (2.14).

Ui —u
If however |7 il
J
|z —zxll

up = +00, Wj is no longer the maximal slope in ¢; jx, and the solu-
tion of (2.11) is reached for ¢t = 0 if uy < u;, and t =1 if u; < uy.

> W;, including the cases when u; = +o00 or
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Finally, v; ;1 is computed as

L ; >
Viik = {2(uy +up +VA), if A>0, (2.15)

min(uj,ug) +eW;, otherwise
where

A =22WE — (uj — uy,)?

Optimizing computation. The equivalence of the four triangles
neighboring z; suggests that some computations can be saved with
respect to the expression (2.10) of the update operator. As an
example, if w; 1,4, > Ui 41,4,, the solution computed from triangle
ti(i1—1,i2),(i1,i2+1) Will be larger than the one computed from triangle
Ci (114 1,i2), (i1 i2+1)5 L€ Vi (i1 1/in),(i1,ia4+1) > Vi (i1 41in),(i1,i2+1)- Comput-
ING Vj (i1 —1,is),(i1,iz+1) 1S thus unnecessary.
More generally, denoting, for a given point x;

U1 = min (Ui, 1y, Uiy 41,5,)  and - vg = min(Ui; iy -1, Uiy ip41),
the update operator v = I';(u) is obtained as

T+ v+ VA), ifA>0,
min(vy,ve) + eW;, otherwise.

rw = {

where A corresponds to solving Equation (2.11) in the triangle with
minimal values. This update scheme can be found in [71, 74] for 2D
Fast Marching and was extended to 3D images in [95].

2.3.2 Fast Marching on Regular Grids

One can prove that the update operator defined by (2.10) satisfies
the causality condition (2.8). One can thus use the Fast Marching
algorithm, detailed in Algorithm 4, to solve the Eikonal equation in
O(Nlog(N)) operations, where N is the number of grid points.

Figure 2.5 shows examples of Fast Marching propagations on a reg-
ular 2D grid.

Other methods, inspired by the Fast Marching methods, have been
developed, such as the Fast Sweeping [275]. They can be faster in some
cases, and implemented on parallel architectures [298].
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Fig. 2.5 Examples of isotropic front propagation. The color-map indicates the values of
the distance functions at a given iteration of the algorithm. The background image is the
potential W, which range from 102 (white) to 0 (black), so that geodesics tend to follow
bright regions.

Alternative discretization schemes, which might be more precise in
some cases, have been proposed, that can also be solved with Fast
Marching methods [66, 202, 228, 238].

Reducing Computational Time. Notice also that the computa-
tional time of Algorithm 4 can be reduced in the following way: when
x; and xy, € Neigh(xz;) are selected and ¥j = Front, computing I'y,(u)
is not always needed in order to update uj. Indeed, if we denote x;
the symmetric of z; with respect to x and if u; < u;, then v; = u; or
vg = u; during the computation of I'y(u), and u; will not be used. In
this case, it is thus unnecessary to update uy. Overall, roughly half of
the computations can be saved in that way.

Fast Marching Inside Shapes. It is possible to restrict the propa-
gation inside an arbitrary compact sub-domain  of R%. This is achieved
numerically by removing a connection z; € Neigh(z;) if the segment
[z;,2;] intersect the boundary 0€.

Figure 2.6 shows an example of propagation inside a planar domain
Q C R2
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AR

Fig. 2.6 Fast Marching propagation inside a 2D shape.

Section 5 details applications of geodesic computations inside a pla-
nar domain to perform shape comparison and retrieval.

2.3.3 Upwind Finite Differences

As suggested by Equation (2.14), this update step can be reformulated
in the more classical framework of upwind finite differences, which is
a usual tool to discretize PDE. One needs to be careful about the
discretization of the gradient operator, such that the minimal solution
over all the triangles is selected.

Upwind Discretization. For a discrete 2D image u; sampled at
location x; = (i1¢,i2¢), we denote u; = u;, ;, to ease the notations. For-
ward or backward finite differences are defined as

(DY w)i = (Wiy41,6, — Uirip)/e  and (D7) = (wiy iy — Uiy —1,4,)/€
(D3 u)i = (Wiyinr1 — Wirip)/e  and (D3 u); = (Ui 5, — Uiy ip—1) /¢
Upwind schemes, initially proposed by Rouy and Tourin [244] for the

Eikonal equation, retain the finite difference with the largest magni-
tude. This defines upwind partial finite differences

(D1u); = max((Dy w);, —(Dyu);,0), and
(Dou); = max((Dy u);, —(Dy u);,0),

where one should be careful about the minus sign in front of the back-
ward derivatives. This defines an upwind gradient

(Vu)l = ((Dlu)l, (bgu)z) S R2.
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The discrete Eikonal equation can be written as
|(Vu)i|| = W;  with Va; € S, u; = 0. (2.16)

In the restricted isotropic setting, this equation is the same as (2.5).

2.4 Anisotropic Geodesic Computation on
Triangulated Surfaces

Uniform grids considered in the previous section are too constrained
for many applications in vision and graphics. To deal with complicated
domains, this section considers planar triangulations in R? and triangu-
lated surfaces in general dimension (e.g., R?), which are two important
settings of 2D Riemannian manifolds of dimension 2. In particular, we
consider generic metrics T, that are not restricted to be isotropic as in
the previous section. The anisotropy of the metric raises convergence
issues.

The techniques developed in this section generalize without diffi-
culties to higher dimensional manifolds by considering higher order
simplexes instead of triangles. For instance tetrahedra should be used
to discretize 3D manifolds.

2.4.1 Triangular Grids

We consider a triangulation

Q= U ti,j,k

of the manifold, where each sampling point z; € R?, and each triangle
tijk is the convex hull of (x;,7;,21). The set of triangle indices is
T c {0,...,N — 1}3. Each edge (;, ;) of a face belongs either to two
different triangles, or to a single triangle for edges on the boundary of
the domain.

We consider for each vertex z; a tensor T; € R4 This section
considers both planar domains €, and domains that are surfaces Q C R¢
equipped with a metric T; that operates in the tangent plane. A careful
design of the tensor field T; makes the treatment of these two settings
amendable to the same algorithms in a transparent manner.
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Planar manifolds. For a planar triangulation, d = 2, the set of tri-
angles {t; j .} i j k)7 18 @ partition of the domain 2 C R?, possibly with
an approximation of the boundary. Each vertex x; is associated with a
2D planar tensor T; € R?*2 that discretizes the Riemannian metric.

We note that this planar triangulation framework also allows one to
deal with anisotropic metrics on an image (a regular grid), by splitting
each square into two adjacent triangles.

Surface manifolds. We also consider the more general setting of a
discrete surface S embedded in R3, in which case S is a discretization
of a continuous surface in R>. In this case, the tensor T; € R3*3 is
intended to compute the length ||7/|7, of the tangent 7/(¢) to a curve
traced on S. These tangents are vector v/ (t) € Ty,, the 2D tangent plane
at x; = (t) to S. We thus assume that the tensor T; is vanishing for
vectors v orthogonal to the tangent plane 7,, T;v = 0. This corresponds
to imposing that the tensor is written as

T, = )\1(.%‘)61(.%'@')61 (wZ)T + )\g(wi)eg(xi)eg(xi)T, (2.17)

where (e1(x;),e2(x;)) is an orthogonal basis of 7y, .

2.4.2 Update Operator on Triangulated Surfaces

One can compute explicitly the update operator (2.4) on a 2D tri-
angulation. This update rule was initially proposed by Kimmel and
Sethian [151] and Fomel [121] for surface meshes with isotropic metric,
and was extended to anisotropic metrics in [42]. The process is essen-
tially the same as in Section 2.3.1. The formulation we propose has
the advantage of being easily generally applicable to higher dimension
manifolds.

The discrete update operator I';(u) defined in (2.5) computes a min-
imization over all adjacent triangles.

Ii(u)= min vk
ti, .k CBe (i)

where

Vijk = tH[l(i)nl} tuj + (1 — thug + |[tr; + (1 — t)ag — x| 1. (2.18)
€10, i
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Let us denote
p=(uj,u)" €R:LT=(1,1)T €eR? and X = (z; — zj,2; — 1) € RPZ.

Modeling u as an affine mapping over triangle ¢; ; 1, and defining X =
X(XTX)~!, one can show as in Section 2.3.1 that under the condition

A= X2 A (XL X p)go — [XFTEX Pl >0,

the solution v of (2.18) is the largest root of the following quadratic
polynomial equation,

UQHXHIH%_I = 20(XFL X ")y + [ X Fpllpr = 1.

If A <0, the update is achieved by propagating from x; or x;. The
update operator for the triangle ¢; ; ;. is thus defined as

(XHLXp), 1 +VA
2
XE

it A>0,

Vigk = ;
min(u; + [|z; — o) p-1,u + |zx — @il p-1), otherwise.
’ Z (2.19)
Note that these calculations are developed in [214], which also genelar-
izes them to an arbitrary dimension.

2.4.3 Fast Marching on Triangulation

Unfortunately, the update operator (2.10) on a triangulated mesh does
not satisfy in general the causality requirement (2.8).

One notable case in which this condition holds is for an isotropic
metric and a triangulated surface in R? that does not contain poorly
shaped triangles with obtuse angles. In this case, one can use the Fast
Marching algorithm, detailed in Algorithm 4 to solve the Eikonal equa-
tion in O(Nlog(N)) operations, where N is the number of grid points.
Figure 2.7 shows an example of propagation on a triangulated surface,
for a constant isotropic metric. The colored region corresponds to the
points that have been computed at a step of the propagation with its
boundary being the front.

Reducing Computational Time. As in the case of regular grids,
computational time of Algorithm 4 can be reduced: let us assume that
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Fig. 2.7 Example of Fast Marching propagation on a triangulated mesh.

x; and x € Neigh(z;) were selected, and that X = Front. During the
computation of I'y(u), vk jm needs not to be computed if z; is not
a vertice of ty ;. Indeed, the value of vy ;,, is either +oo, or has
not changed since it was last computed. Omitting such calculations
can lead to an important computational gain, depending on the
connectivity of the mesh.

Triangulations with Strong Anisotropy or Obtuse Angles. If
the triangulation is planar with strong anisotropy in the metric, or if
the triangulation contains obtuse angles (these two conditions being
essentially dual, as shown in [214]), then the Fast Marching method
might fail to compute the solution of the discrete Eikonal equation.

In this case, several methods have been proposed to obtain such
a solution. Firstly, one can split the obtuse angle by extending the
neighborhood of a point if it contains obtuse angles [152], see Figure 2.8.
However, computing the neighbor n to add is a non-trivial task, even in
dimension 2, and extending the neighborhood has several drawbacks:
loss of precision, loss of the topology of the manifold, increase of the
running-time (depending on the anisotropy of the tensor, or on the
measure of the obtuse angle to split).

In the specific case when the manifold is completely parametrized
from Q =[0,1)2 or Q = [0,1]3, the computation of neighbor n can be
performed faster using integer programming [48, 263].

Early proposals to compute geodesic distances on surfaces make use
of a level set implementation of the front propagation [148, 150].

The idea of extending the size of B.(x;) is more systematically
developed in Ordered Upwind Methods (OUM) [256]. In OUM the
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Fig. 2.8 Obtuse angle splitting: assume that the blue point x; on the left image is to be
updated. As shown on the middle image, its natural neighborhood B.(z;) with respect to
the triangulation which represents the surface contains an obtuse angle. In order to perform
the update, a farther point y needs to be added to Be(z;) such that Be(z;) U {y} does not

contain an obtuse angle anymore.

1-pixel width front of the Fast Marching is replaced by an adaptive
width front, which depends on the local anisotropy. Notice that OUM
is in fact a class of numerical methods which allows to solve a large
class of partial differential equations. More specifically, its convergence
is proven for all static Hamilton—Jacobi equations.

Another approach consists in running the standard Fast March-
ing, but to authorize a recursive correction of Computed points [155].
However, there is no proof of convergence for this approach, and the
amount of calculations to perform the correction again depends on the
anisotropy.

The fast sweeping method also extends to solve Eikonal equations
on triangulations [234] and works under the same condition as the Fast

Marching.

2.5 Computing Minimal Paths
2.5.1 Geodesic Curves Extraction

Once the discrete geodesic distance u approximating Ug on the compu-
tation grid is computed, the geodesic v* between some point z, and S is
extracted by integrating numerically the ordinary differential equation

(ODE) (1.26).

Precision of the numerical computation of geodesics. If x. is
not in MedAxis(S), one can prove that the continuous geodesic v*(t)
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MedAxis(zs) O O
x O Te T O X

S S (&

Fig. 2.9 Top row; fast marching propagation in [0,1]? with a metric large in the center of
the image. Bottom row; computation of shortest paths.

never crosses MedAxis(S) for ¢ € [0,1], so that the distance map Uy is
smooth along v*(¢) and (1.26) makes sense.

The precision of the discrete geodesic, and its deviation from the
continuous curve depends on the distance of . to MedAxis(S). As x,
approaches MedAxis(z), small approximation errors on Ug can lead
to important errors in the approximation of v*. Figure 2.9 shows how a
small shift of the location of x. leads to a completely different geodesic
curve.

Thresholding distance maps. The geodesic v* between two points
zs and z, satisfies

{Y)\tel0,1]} ={z € Q\ d(xs,z) + d(xe,z) = d(zs,2c)} -

As was proposed in [74, 148], one can compute numerically the two
distance maps U, and U,,_, and approximate the geodesic curve as

{z € Q\ |Us,(2) + Uz (z) — Up(z)| <€} (2.20)

where € > 0 should be adapted to the grid precision and to the numer-
ical errors in the computation of the distance maps. The thresholding
(2.20) defines a thin band that contains the geodesic. Note that this
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TR

Fig. 2.10 Piecewise linear geodesic path on a triangulation.

method extends to compute the shortest geodesic between two sets Sy
and Ss.

Piecewise paths on triangulation. As detailed in Section 2.4, the
geodesic distance map Ug is approximated on triangulations using a
piecewise affine function. The gradient VUg is thus constant inside
each triangle.

A faithful numerical scheme to integrate numerically the ODE
(1.26) computes a piecewise linear path v* that is linear inside each
triangle. The path either follows an edge between two triangles, or is
parallel to VUg inside a triangle.

Figure 2.10 shows an example of discrete geodesic path on a trian-
gulation.

Figure 2.11 shows examples of minimal paths extracted on a trian-
gulated surface. It makes use of an increasing number of starting points
S, so that a geodesic curve v* links a point x5 € S to its closest point
in S.

Higher order ODE integration schemes. To produce smooth
paths, one can use classical ODE integration schemes of arbitrary order,
such as Runge-Kutta [232], to integrate the ODE (1.26). This approach
is mostly used on regular grid, because VUg can be computed using
finite differences of arbitrary precision, and one can then use spline
interpolation to obtain a smooth interpolated gradient field suitable
for arbitrary ODE integrators.
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Fig. 2.11 Examples of geodesic extraction on a mesh with, from left to right, an increasing
number of starting points.

On complicated domains 2, this requires a proper interpolation
scheme near the boundary to ensure that the gradient always points
inside the domain, and the discrete geodesic is well defined and stays
inside Q.

In practice, it is difficult to ensure this condition. A simple heuris-
tic to construct a valid interpolated gradient field is to compute the
geodesic distance map Ug on a small band outside the domain.
The width of the extension of the domain should match the order of
the interpolation scheme. This ensures that the finite differences are
performed over valid stencils even for points along the boundary of the
domain.

2.5.2 Joint Propagations

To extract a geodesic v* between two points zs and x. in 2, it is
sufficient to compute the geodesic distance U, to xs until the front
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propagation reaches x.. Indeed since a gradient descent is then used to
track the geodesic, the geodesic distance is decreasing from z. to xg,
and we need only to know U, where it is lower than Uy, (x.).

It is possible to speed up the Fast Marching computation by starting
simultaneously the front propagation from the two points, in order
to compute the geodesic distance Ug from S = {zs,z.}. This method
was first proposed for graphs in [223] using the Dijkstra propagation
detailed in Section 2.2.3. It was used for finding a minimal path between
two points with Fast Marching in [95]. The path was found as the union
of its two halves through the use of the meeting point, which is a saddle
point as shown in [74].

Saddle point. One can perform the Fast Marching algorithm until
the fronts emanating from z; and x. meet. If v* is unique, which is the
case except in degenerated situations, the fronts will meet at the saddle
point x ., which is the intersection of the geodesic mediatrix and ~*

Tse =7"(t) where Uy, (v*(t)) = Us, (v*(1))- (2.21)
Saddle point x; . is the point of minimal distance to both xs and z. on
their mediatrix. The geodesic v* is the union of the geodesics

V€ P(xs,xse) and vr € P(xe,Tse)

between the saddle point and the two boundary points.

Joint propagation. One can thus stop the Fast Marching propaga-
tion to compute Ug when it reaches xs.. The front has then covered
the union of two geodesic balls

{r € Q\ Us(z) <Ug(xse)} = Rs U Re (2.22)
where
Vie{s,e}, Ri={zecQ\U;(x)<r}

and r = Uy, (xs¢) = Uy, (xs,¢). This is an important saving with respect
to computing U,, with a propagation starting from x4, which covers
the larger region

{z € Q\ Uy, (2) < Uy, (ze)} = R
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For instance, as was proposed in [95], if the metric is Euclidean T, = Id,
in R%, then Ry, R, and R are spheres, and the computation gain is
L
|Rs U Re| '
Half geodesics. To extract the geodesics v+ for i € {s,e}, one needs
to perform a gradient descent of Ug starting from x,.. Unfortunately
Zs,e is on the medial axis of S, which corresponds to the geodesic medi-
atrix. The distance map Ug is thus not differentiable at ;. It is how-
ever differentiable on both sides of the mediatrix, since it is equal to
Uz, in each region R; for i € {s,e}, and one can thus use as gradient
VU,,(xs,) to find each half of the geodesic. The two minimal paths are
then obtained by the following gradient descent,

df (1)

vi>0, CHU = VU (1)),
d~x(0
’yczhf) = _UOVUxi (fl's,e) and 7*(0) = ZTse-

where the gradient step size 7; can be defined as in (1.26).

Figure 2.12 shows an example of joint propagation on an isotropic
metric T, = W (x)?Idy to extract a geodesic that follows vessels in a
medical image.

2.5.3 Heuristically driven propagations

To compute the geodesic between two points xg,z., the Fast March-
ing algorithm explores a large region. Even if one uses the joint

Fig. 2.12 Example of joint propagations to extract a geodesic between two points x5, xe € 2.
The red points are the boundary points s, ¢, the blue point is the saddle point x5 e.
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propagation, the front is located in two geodesic balls Rs; U R, defined
in (2.22). A large amount of computation is spent in regions that are
thus quite far from the actual geodesic v* € P(xs,x.).

It is possible to use heuristics to drive the propagation and restrict
the front to be as close as possible from the minimal path v* one wishes
to extract.

Heuristics and propagation. We consider the Fast Marching algo-
rithm to compute the distance v € RY, which is intended to be an
approximation of the continuous distance Uy, to the starting point z;.
This framework also contains the case of a metric on a discrete graph, as
detailed in Section 2.2.3, and in this case the Fast Marching algorithm
is the Dijkstra algorithm.

At each step of the Fast Marching propagation, detailed in Algo-
rithm 4, the index ¢ of the front with minimum distance is selected

14— argmin uy.
k,>X=Front

Making use of a heuristic hy > 0, one replaces this selection rule by

1 <— argmin ug + hg.
k,>=Front

Heuristics and causality. This heuristically driven selection differs
from the original one detailed in Algorithm 4, which corresponds to
using by = 0. For this modified Fast Marching to compute the solution
of (2.3), the causality condition (2.8) should be satisfied for the new
ordering, which corresponds to the requirement that for any v,

Vl‘j € Neigh(mi), Fi(U) + h; > v; + hj. (2.23)

If this condition is enforced, then the Fast Marching algorithm with
a heuristically driven propagation computes the same solution on the
visited points as the original Fast Marching. The advantage is that if h;
is well chosen, the number of points visited before reaching z. is much
smaller than the number of points visited by the original algorithm
where h; = 0.

A* algorithm on graphs. For a metric on a discrete graph, as
detailed in Section 2.2.3, u; = d(xs,x;) is the geodesic distance on the
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graph between the initial point xs €  and a vertex x; of the graph.
The heuristic is said to be admissible if

Vir~g, hy <W;;+ h;j. (2.24)
One can show that this condition implies the causality condition (2.23),
so that the heuristically driven selection computes the correct distance
function. Furthermore, defining Wi,j =W, + hj — h; > 0, one has, for
any path v € P(x;,2;), L(y) = L(y) 4+ hj — hi, where L is the geodesic
length for the metric W. This shows that geodesics for the metric W are
the same as the ones for the metric W, and that the heuristically driven
propagation corresponds to a classical propagation for the modified
metric W.

A weaker admissibility condition is that the heuristic does not over-
estimate the remaining distance to x.

0 < hi < d(xe,xi), (2.25)
in which case the method can be shown to find the correct geodesic,
but the propagation needs to be modified to be able to visit several
times a given point.

The modification of the Dijkstra algorithm using a heuristic that
satisfies (2.25) corresponds to the A* algorithm [106, 132, 201]. This
algorithm has been used a lot in artificial intelligence, where shortest
paths correspond to optimal solutions to some problems, such as opti-
mal moves in playing chess. In this setting, the graph Q is huge, and
designing good heuristics is the key to solve efficiently the problem.

Fast Marching with heuristic. The extension of the A* algorithm
to the Fast Marching setting was proposed by Peyré and Cohen [218].
In this setting, where continuous geodesic distances are approximated,
condition (2.24) does not implies anymore that the modified marching
gives the exact same solution as the original algorithm. Numerical tests
however suggest that imposing (2.24) is enough to ensure a good preci-
sion in the computation of the geodesic distance and the geodesic curve.

Efficient heuristics. An efficient heuristic should reduce as much as
possible the region explored by the Fast Marching, which corresponds to

R=A{z; € Q\ d(zs,z;) + hi < d(xs,7¢)}.
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It means that h; should be as large as possible, while satisfying the
admissibility condition (2.24).

Condition (2.25) implies that the geodesic curve 7* between x5 and
x. is contained in the explored area R. The case where h; = d(z¢, ;)
is a perfect heuristic, where R is restricted to the geodesic v*, so that
the front only propagates along this geodesic.

Unfortunately, this optimal heuristic is an oracle that one is not
allowed to use, since computing d(x.,x;) is as computationally difficult
as the original problem of computing d(zs,z;). One thus has to resort
to sub-optimal choices.

Figure 2.13 shows for instance the effect of using a weighted oracle
h; = Ad(ze,z;) for several values of A. This shows the advantage of using
a good estimate of the (unknown) distance d(ze,z;) since the explored
region

Ry ={x; € Q\ d(zs,2;) + Md(ze,z;) < d(xs,2c)}

shrinks around the geodesic. For a Euclidean metric T, = Idg in R,
R) is an ellipsoid that shrinks along the segment [z, z.] when A tends
to 1.

Euclidean-based heuristics. Many strategies can be used to esti-
mate a heuristic. For instance, for a Riemannian metric 7,, one can
use a Euclidean distance approximation

hi = ||x; — ze|m, where Vo, Ty <Ty, (2.26)

A=0 A=0.5 A=0.9

Fig. 2.13 Example of propagations with a heuristic h; = Ad(xe, ;) for various .
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where, for two symmetric positive matrices A < B indicates that
|- lla <| - |lB- We note that this heuristic satisfies (2.24).
In the case of an isotropic metric T, = W (x)%Idy, one obtains

h; = p||lx; — z¢|]| where p = min W (z).
z€eQ)

This choice is popular in video games for Dijkstra propagation on
graphs, and if z; € R? and W; j =1, one chooses h; = ||z; — z.| which
is the straight line distance.

Other geometric approaches based on a Euclidean approximation
have been proposed, for instance using Euclidean clustering of the node
of a graph [284].

Landmark-based heuristics. The approximation (2.26) of d(x.,x;)
by h; can be rather crude for highly varying metrics. In order to com-
pute more accurate heuristic, we use an expression of the geodesic dis-
tance as a minimization

d(xe, i) = max |d(xe,2) — d(z,2;)].

which corresponds to the reversed triangular inequality.

If one restricts the minimum to a small subset of landmark points
{20,...,2K-1} C Q, one can define the following heuristic

h; = Orgnjzi)% |d(e,25) — d(zj,2;)].

We note that this heuristic is exact, meaning that h; = d(x.,z;) if there
is a landmark z; so that w. is located on the geodesic joining z; to x;,
see Figure 2.14, left. A more realistic case is when the geodesics joining
zj and x. to x; are close, which happens frequently for a metric which
is low along thin features such as roads, see Figure 2.14, right.

Ti T.@ )
Le
Zj Zj

Fig. 2.14 Left, ideal case where the heuristic is exact, h; = d(ze,x;). Right, case where the
heuristic is good h; ~ d(xe,x;).
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This heuristic can be computed on the fly if the following set of

geodesic distances d; has been precomputed
h; = Olgnji}% |dj(ze) — dj(x;)]  where dj(x;) = d(zj,2;). (2.27)
We note that this heuristic satisfies (2.24).

The resulting landmark driven algorithm was originally proposed
in [125] for the A* on graphs, and extended in [218] for an arbitrary
discretized Riemannian manifold. The method pre-computes the
distance maps d; using K Fast Marching propagations. Then, when a
query is performed to compute a minimal path between two arbitrary
points xg, ., it makes use of this pre-computation to save time on
the propagation by making use of the heuristic (2.27). Finding good
locations {z;}o<j<k is a difficult problem, see [218] for a study of
different approaches.

The heuristic h; defined in (2.27) converges to the ideal heuristic
d(ze,x;) when the number K of landmarks increases. In practice, it is
a trade off between pre-computation time and memory versus accuracy
of the heuristic. Figure 2.15 shows the influence of the number K of
landmarks on the region explored by the Fast Marching.

2.6 Computation of Voronoi Segmentation and Medial Axis
2.6.1 Geodesic Voronoi Computation

Computing Voronoi segmentation (4.1) is at the heart of segmentation
methods described in Section 4.1.1, and of geodesic meshing algorithm
described in Section 4.

Exact discrete computation. For a discrete set S = {x;};cr of
starting points, the Voronoi segmentation is easily computed if the
whole set of distances {Uy, }icr has been computed.

If C; and C; are two neighboring Voronoi cells, their common
boundary is

CiNC C{xeQ\U,(z) = U, (x)}.

On a triangulated 2D domain, U,, () is discretized as a function that is
affine on each triangle. The boundary C; N C; is thus a piecewise linear
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K=0 K=1 K=3 K =20

Fig. 2.15 Heuristically driven propagations with an increasing number of landmark points,
for an isotropic metric in 2D (top rows) and a 3D surface (bottom row).

polygon, as shown in Figure 2.16, left. The location of the vertices of
this polygonal boundary are found by traversing the edges and com-
puting the intersection of 1D affine function along the edges, as shown
on Figure 2.16, bottom left.

If C;,C; and Cj are neighboring cells, the triple points where the
cells intersect are

C; ﬂCj NC, C {l’ e \ le(l’) = ij(:l:) = Umk(l’)}

On a triangulated surface, they are found by traversing the triangles
and computing the intersection of three 2D affine functions, as shown
in Figure 2.16, bottom right.

On a quadrangular 2D grid, such as for instance on an image, the
computation is more complicated. The distance maps U, (z) can be
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Uz, (a)

Fig. 2.16 Top; extraction of piecewise affine Voronoi boundaries on 2D triangulations.
Bottom; the geodesic distances on the edge (a,b) and triangle (c,d,e) extracted from the
triangulation on the top are displayed as affine functions.

represented as continuous functions using bilinear interpolation. In this
case, the boundaries C; N C; of the Voronoi cells are continuous curves
composed of hyperbolas in each square of the discrete domain.

These extraction procedures extend to higher dimensional
manifolds.

When using Fast Marching computation, it is possible to avoid
unnecessary computation by running the propagation of the set of
fronts emanating from each x; € S in parallel, and allowing the fronts
to overlap on a depth of a few samples.
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Approximate computation. This overlapping is more difficult to
implement when using a Gauss—Seidel iterative algorithm. It is possible
to use a single propagation, but maintain an additional information
¢; € I that approximates the partition function ¢(x;) defined in (1.19).
This allows to retrieve after the propagation, an approximate partition
function. This computation is however approximate and does not give
an exact discrete Voronoi segmentation. The partition can however be
used afterward as an indicator of the locations where the fronts are
allowed to overlap to implement a parallel propagation.
Each time the update operator

Uj < Fi (u)

is applied at a point z;, by either an iterative or a fast marching algo-
rithm, one also applies an update operator to compute ¢; from its
neighbors,

This update is computed by assigning the index of the closest neigh-
boring point used to perform the update. More precisely, if

I'i(u) =v; ;1 where t; ;1 € Neigh(z;)
where v; j 1 is defined in (2.5), one defines

= Ci,o i e — gl < |vijr — ukl
]_—‘, — J 35 J YD ) 2.2
i(w.6) {Ek, otherwise. (2:28)

Figure 2.17 shows examples of Voronoi cells on a surface embedded
in R3.

2.6.2 Shape Skeletons Computation

For a 2D manifold, if S is a smooth closed curve c(t),t € [0,1], then
MedAxis(S) is a connected union of 1D curves. If ¢(¢) is the boundary
of a 2D object, the medial axis is often referred to as the skeleton of
the shape.

As proposed in [269], it is possible to approximate the medial axis
of a smooth curve ¢(t) by processing the nearest neighbor index map
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K =5 K =20 K =50

Fig. 2.17 Example of Voronoi segmentations V(S) for an increasing number of seeding
points.

{(x), see also [133, 279]. In this setting,
S = {i = i/ K}

is assumed to be a dense sampling of a smooth curve. The singular-
ity points of the distance function Ug are difficult to detect from the
variation of Ug. These singularity points are, however, located approx-
imately at sharp transition of the partition function £(z). In the follow-
ing, we assume that {(z) € {0,..., K — 1} indicates the index xy,) € S
of the closest point, and not the closest point itself.

They can be detected by computing the magnitude map of the gra-
dient |V4(z)|, that is computed numerically on the discrete grid by
finite differences from {/¢;};. One should be careful about the fact that
the derivative should be estimated using finite differences modulo K



254  Numerical Foundations of Geodesic Methods

where K = |S| is the number of sampling points along the curve, so that
—K/2 < V/{(z) < K/2. This is because {(x) € {0,..., K — 1} exhibits
an artificial jump discontinuity when ¢ passes from K — 1 to 0.

The medial axis can then be approximated by thresholding the mag-
nitude of the gradient

MedAxis, = {z € Q\ |V{l(z)| > 7}.

Increasing the value of 7 regularizes the medial axis. Figure 2.18 shows
examples of such approximated medial axis for a couple of values of 7.

Other methods to compute skeletons. There exists a variety
of alternative fast methods to compute skeletons and regularize their
geometry for the Euclidean distance T, = Ids. A subset of the edges

Distance to boundary Ug Assignment ((z)

MedAxis;, 7 =n/100 T =mn/20

Fig. 2.18 Computation of the approximated medial axis, for an image of n X n pixels.
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of the Voronoi diagram of a dense sampling of a curve was originally
proposed in [203]. It can be shown to approximate the skeleton of the
continuous curve. One can also use curves evolving according to PDEs
similar to active contours [146, 167] or deformable sets of disks [301].

There have also been several attempts to give alternate formulation
for the skeleton that is more meaningful for shape recognition [300] or
to prune potentially noisy skeletons [252].

2.7 Distance Transform

In the special case where Q = [0,1]? equipped with a uniform metric
T, = Idg, Ug is called distance transform (DT) of the binary shape S.
Compared to the general Riemannian case, taking into account the spe-
cial structure of this problem allows to design several exact or approxi-
mate fast algorithms to compute DT. A flourishing literature exists on
this subject — and we follow in this section the classification of the
review [115].

2.7.1 Propagation algorithms

Distance transform over a continuous domain. In DT frame-
work, since the domain ) is convex, the geodesic distance is the
Euclidean distance

V(w,y) 6927 d(l’,y):”l‘—y”
The knowledge of the partition function,

{(z) = argmin ||z — y| (2.29)
yeS

already defined in (1.19), allows to compute the distance map to the

starting point

Us(x) = o — £(x)]]. (2.30)

A central idea to compute the distance map Ug is thus to keep track
of the partition function ¢(z) € S using an iterative algorithm [194].

In a continuous setting, it is possible to show that for any point x €
O\ S, there exists a neighboring point with the same closest point in S

Jy € B(x), {L(y)={(z), (2.31)
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where the neighborhood B(z) is defined in Section 2.1.1. This point
can be chosen at the intersection of v* and 0B(x).

We now show how this setting can be discretized. Notice that unlike
in the frameworks developed in the previous sections, it is possible to
compute exact discrete solutions to the distance transform problem in
extremely low computational time.

Discrete update of the partition function. The distance function
Ug is discretized using an uniform grid, and is represented as an image
of N =n x n pixels. The set of pixels should be understood as a graph
where each pixel z; is connected to each of its neighbors in Neigh(z;),
which is written as j ~ ¢, similarly to the graph setting described in
Section 2.2.3.

The partition function ¢(x) € S is approximated at a point x; of the
grid as /; € S, and ¢; is computed in parallel to a front propagation
algorithm. The steps of the algorithm are the same as the Dijkstra and
Fast Marching methods, detailed in Algorithm 4. The difference comes
from the update of the distance map, since one first applies an update
of the partition function

i+ Ti(0) (2.32)
before updating the distance according to (2.30)
wi < Ti(u) = ||z — x4, |-
The discrete counterpart of the continuous property (2.31) reads
Va; € Q Jx; € Neigh(z;) £; =¢;. (2.33)
The update of the partition function (2.32) is thus defined as

[;(f) = £j» where j* = argmin ||z; — £;]|.
Ji
This is similar to the partition function update (2.28) defined for the
Fast Marching.
Note that since only roots of integer values are computed during the
execution of the algorithm, several improvements of the implementation
can be performed, as detailed in [115].
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Most unfortunately, as shown in [85], (2.33) is only approximate,
and does not allow for an exact computation of the DT, whatever the
size of Neigh(x;) is. A second pass can be used with a larger Neigh(z;)
in order to correct ¢; at points where it might be wrong after the first
pass [87].

2.7.2 Raster scan methods

Since the computational bottleneck in propagation algorithms is the
maintenance of a bucket structure and the selection of the point to
update, methods have been proposed in which the points are updated
in some predefined order — using sets of ad-hoc update operators.

The reasoning of the previous section applies here, and one cannot
expect to have an exact algorithm if the update operators use neigh-
borhood of fixed size.

Popular raster scan methods are the 4SED and 8SED methods [88],
which uses four scans of the image, and update the points using respec-
tively neighborhoods Neigh(z;) of maximal size 4 and 8 — notice that
the neighborhoods are different from one scan to another. Algorithm 5

Algorithm 5: 4SED-algorithm.
V(i,5) € [0,n — 1]?, set : Neigh, (4,5) = {(i — 1,7), (5,5 — 1)},
Neighy (i, /) = {(i + 1,)}, Neighy(i,j) = {(i + 1,7), (i, + 1)},
Neighy(i,7) = {(i — 1,5)}.
for i from 0 ton — 1 do

for j from 0 ton — 1 do
| Update (4,7) using Neigh; (scan 1)

for j fromn — 1 to 0 do
| Update (4,7) using Neigh, (scan 2)

for i fromn — 1 to 0 do
for j fromn — 1 to 0 do
| Update (4,7) using Neigh; (scan 3)

for j from 0 ton — 1 do
| Update (4,7) using Neigh, (scan 4)
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Fig. 2.19 4SED method. Top row (from left to right), Starting set S, consisting of three
different areas. Distance map after scans 1 and 2. Notice that distance information is only
propagated in the bottom direction, and that some areas still have an oo value. Distance
map after scans 3 and 4. Bottom row (from left to right), Ground Truth distance map, and
relative error of the 4SED method. The computed distance map is correct on the major
part of the image, but relative errors of ~ 27% occurs in some areas.

details the 4SED algorithm, and Figure 2.19 displays results obtained
with the 4SED method.

While its complexity is linear, this algorithm does not lead to
an exact value of the DT. It can be corrected efficiently by a post-
processing step, leading to a linear time exact algorithm [86].

More recently, exact algorithms with only two raster scans and an
adaptive neighborhood Neigh(z;) was proposed [260, 261].

2.7.3 Independent scan methods

Independent scanning methods are an attempt to speed up the DT
computation by using a dynamic programming like approach.
The main idea is to first compute the distance to the closest point
in the same row of the image:
li = argmin |z; — x| (2.34)

IjGS
(wj)1=(zi)1
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¢ can be computed on each line independently, which makes its com-
putation extremely efficient [240].

In a second step, £ is computed from ¢'. Several strategies are avail-
able to perform this operation, and we again refer the interested reader
to the review [115] and to the seminal articles [182, 184, 248|.

Notice that this framework can be generalized for k-dimensional
images. Independent DT computations are computed recursively on
(k — 1)-dimensional slices of the original images, and put together to
obtain the full DT transform of the original image.

2.8 Other Methods to Compute Geodesic Distances

In this section, we detail some other methods which allow to compute
distance maps in different settings.

2.8.1 Mathematical Morphology

Mathematical morphology can be used to compute approximations of
geodesic distance maps.

In the framework of mathematical morphology, a shape is repre-
sented as a subset S of Q. If B, denotes a small disk of radius r centered
at the origin, the dilation of S by the disk B, is [253]

0, S={x+beQ|zeSbe B} (2.35)

If B,, furthermore denotes the same disk of radius r centered at point
x, it is possible to equivalently define

08,8 = | J{Bra}- (2.36)
z€S
Assuming a uniform isotropic potential over €2, one can show that
if Q is convex, then {x € Q, Us(x) <r} =dp,S. Thus the iso-distance
curve {x € Q, Ug(z) =r} can be computed as the border of d5,S.
Equation (2.36) suggests a method to compute this set. For any
point in S, one can mark all the points in ép,, and find the border of
the resulting set.
Numerically, it is possible to define a discrete counter part of the
dilation operator (Figure 2.20). As an example, assuming that Q is
discretized on a regular grid, we denote By the discrete counter-part
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» -

Fig. 2.20 Discrete dilation of the black shape Sy by the red kernel By.

Algorithm 6: Morphologic dilation computation.
Initialization:
Vo, € Q, M, <0
for z; € S do
L for z; € O\ S such that ||z; — x| <r do

| M;+1

+ --n

Fig. 2.21 Geodesic dilation of the black shape by the red kernel (left). The first iteration
is shown on the middle figure, while several others iterations of this dilation are shown on
the right figure.

of B, and by Sy the one of S. The dilation is then defined in the same
way as in the continuous case dp,S¢ ={x +be Q| x € S4,b € By}.

It is then possible to use the method described in Algorithm 6 to
find an approximation M of {x € Q, Ug(z) <r} in linear time.

This method however does not work if 2 is not convex. In this
case, the concept of geodesic dilation was introduced in [29] and [30].
It consists of several small dilations. For a small ball B,., we define

5% 5 =6p,...05,.5. (2.37)
——
n times

Again, a corresponding discrete operator By can be defined (see
Figure 2.21).
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This operator is applied iteratively, thus leading to a shape 5%@5
which approximates the set of point x €  such that Ug(xz) < nr. Note
that computing 6%’98 is equivalent to performing a breadth-first search
algorithm on the discretization of the manifold, where the edges are
given by x ~ y < x — y € By. If n points are visited, the methods thus
run in O(n) time, where the constant depends on the size of By.

This approximation is subject to a metrication error due to the
shape of By. As an example, the distance computed in Figure 2.21,
right, is indeed the Manhattan distance d;. This can be improved (but
not completely dealt with) by taking a bigger By, at the sake of a
possible loss of the topology of €2, and a loss of precision in the areas
where the boundary of €2 is concave.

Voronoi diagrams for this morphological distance give rise to the
celebrated watershed segmentation method, see Section 4.1.1.

2.8.2 Geodesics on Weighted Region

Assuming that ) is partitioned into a family of polyhedral subsets
Qy...Qy, such that W (z) = W; is constant over 2;, exact geodesics can
be computed [192].

This framework was extended when translational flow is present in
the polyhedra [236].

2.8.3 Exact Discrete Geodesics on Triangulations

An alternative way to approximate geodesic distances on surfaces is to
compute the exact distance on a triangulated mesh approximating a
smooth surface. The fastest algorithm run in O(Nlog(V)) on a surface
with N vertices [61]. A simpler approach [191] computes the distance
to a single starting point in O(N?) operations by propagating intervals
over which the distance is linear. This approach can be accelerated by
performing approximate computations [264]. See also [3, 225, 226, 290]
for other approaches.

Computing locally minimizing curves (that might not be globally
shortest paths) on such triangulated mesh is obtained by path tracing
methods [224].
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2.9 Optimization of Geodesic Distance with
Respect to the Metric

In some applications, the object of interest is not the geodesic distance,
but rather the metric itself. This includes landscape design problems,
where the metric represents the ground height to optimize, or seismic
inverse problems, where the metric models the unknown ground veloc-
ity [31].

For the sake of simplicity, we detail here the case of an isotropic
metric T, = W (x)?Idy, but the algorithm extends to general manifolds
for which Fast Marching methods can be used.

2.9.1 Sub-gradient of the Geodesic Distance

In many applications, one is facing the problem of computing an
unknown metric W (z) that optimizes a variational energy that depends
on the geodesic distance dy (zs,x.) between pairs of points s,z € €2,
where we have made the dependency on the metric W explicit. A basic
ingredient to solve such a problem is the gradient of the geodesic dis-
tance dw (rs,Te) with respect to the metric W. This gradient can be
formally derived as

dW—&—eZ(xs;me) = dW(wmwe) + 5<Z7 VdW(xSaxe» + 0(5) (2'38)
where
Vdw (zs,x.): Q2 = R

is the gradient mapping. Note that for each (zs,z.) one obtains a
different mapping.

The expansion (2.38) is only formal, since the mapping
W+ dw(zs,2e) is not necessarily smooth, and in particular it is not
differentiable if x5 and x. are connected by several geodesics. How-
ever, since dy (zs,2.) is the minimum of all path lengths L(v) for
v € P(xs,x.), it is the minimum of linear functions of W, so dyy is a con-
cave function of W. It is thus possible to interpret (2.38) as Vdy (x5, x.)
being a super-gradient of the geodesic distance. Since the term “super-
gradient” of a concave functional is not very well used, we refer to it
as a “sub-gradient” which is the term used for convex functionals.
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A formal derivation shows that if v* € P(xs,x.) is the unique
geodesic path between z; and x;, then

1
(Z, Vdw (2s,2.)) = /O Z(7(8))dt,

so that Vdw (zs,ze) is in fact a 1D measure supported along the
geodesic curve. Computing Vdy (zs, ) directly from this continuous
definition is thus difficult. A better option is to compute the sub-
gradient of a discrete geodesic distance, which is well-posed numerically
and can be obtained with a fast algorithm.

2.9.2 Sub-gradient Marching Algorithm

We consider the discrete Eikonal equation (2.3) that defines a discrete
geodesic distance. Since we consider here the special case of an isotropic
metric on a regular grid, the equation can be equivalently written using
up-wind finite differences (2.16).

This Sub-gradient Marching algorithm that we detail next was intro-
duced in [22], where a proof of the validity of the method is given. It is
applied in [58] to a variational traffic congestion problem [286], where
the discrete sub-gradient is required to obtain a convergence of the
numerical method.

Sub-gradient to a starting point. We aim at computing all the
sub-gradients to a given starting point x4

Vu; = de(xs,a:i) S RN

with a method similar to the Fast Marching algorithm, detailed in
Algorithm 4, that computes all the distances

u; = dy (xs,z;) € R.

Note that the dependency on both W and xs has been made implicit.

Sub-gradient marching algorithm. The Fast Marching algorithm
iteratively makes use of the update operator

U <— Fi(u),
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whose values are computed by solving a quadratic equation. The sub-
gradient marching algorithm makes use of a similar update step,

Vu; + IY (Vu),

that is applied to the sub-gradient map each time I'; is applied to the
distance map.

The resulting algorithm has the exact same structure as the original
Fast Marching propagation detailed in Algorithm 4. Since the manip-
ulated gradients Vu; are vector of RYV, the overall complexity of com-
puting all the vectors Vu; is O(N%log(N)).

Figure 2.22 shows examples of discrete sub-gradients computed with
this algorithm. Note how the gradient for the constant metric is sup-
ported near the segment joining the two points. Note also how the
support of the gradient split for a varying metric, when (z,,z.) are
close to a configuration where two distinct geodesics exist between the
two points.

Sub-gradient update step. We denote as x; and z;, the two adja-
cent points of ¢ that support the update in (2.10), which means that

Ii(u) = v jk,

Le

W=1 Varying W (z)

Fig. 2.22 Example of sub-gradient Vdy (zs,ze) computed for a constant (on the left) and
a varying (on the right metric which is large in the middle of the image.
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where v = v; ; 1, is defined in (2.15) as the solution of

(v —uj)* + (v — uy) = W7 (2.39)

,L' .
We detail here the case where the quadratic equation has two solu-
tions. In this case, the updated gradient Vv = FZ»V(VU,) is obtained by
differentiating (2.39) with respect to the metric W, which gives
a; (Vv — Vi) + ap(Vo — Vug) = e?W;8;  where {aj TwT
ap = U; — Uk

and where §; € RY is defined as 6;(j) =0 if j # 0 and §;(i) = 1. One
thus obtains the definition of the sub-gradient update

1
FZV(VU) = m (52‘/‘/;’51' + Ozjvu]' + OékVUk) .
J J

This algorithm has been extended to metrics on 3D meshes [100].

2.9.3 Inverse Problems Involving Geodesic Distances

The sub-gradient marching method has been applied to various convex
and non-convex inverse problems involving geodesic distance, see [22,
58] for example of isotropic metric, and [100] for inverse problems on
3D meshes.

As an example, one can consider a simple convex problem of land-
scape design, where the metric is

max Z dw (i, ;) (2.40)
(4,5)€D

where {y; }icr is a set of landmarks, D is a set of connections between

pairs of points and where W is a set of convex constraints, for instance

W= {W\W, Winin < Wi < Wiax  and > W; = 1}_

This can be interpreted as designing a ground elevation, with con-
straints on the total available material, and on the minimum and max-
imum height of the landscape, so that locations (x;,z;) for (i,5) € D
are maximally distant one from another.
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Fig. 2.23 Example of optimal metric solving (2.40), where the connections (i,5) € D are
shown in dashed lines.

Existence and uniqueness of a solution of the continuous problem
is investigated in [56]. A projected gradient descent method, detailed
in [22], approximates the solution of (2.40) iteratively

WD = Projy, | W® + o > Ve (3iy5)
(i,j)€D
where Projy,, is the orthogonal projection on W, and n, ~ 1/k are the
gradient step size. The sub-gradient Vdy,w) (yi,y;) are computed at
each iteration using the sub-gradient marching algorithm.

Figure 2.23 shows an example of optimal metric computed with this
method.



3

Geodesic Segmentation

A major area of applications of geodesic methods in image process-
ing is to detect curvilinear features and perform segmentation. The
metric can be designed for geodesic curves to follow the edges and
tubular structures, or, on the contrary, for geodesic balls to stop near
features. These two points of view for using Fast Marching were applied
to active contours, the first one to obtain a global minimum as a min-
imal path [74], the second one using the front of the Fast Marching
propagation to compute a curve evolution [178].

3.1 From Active Contours to Minimal Paths
3.1.1 Snakes and Geodesic Active Contours

Variational curve modeling. Active contours is a class of segmen-
tation methods that detect an object by evolving a curve according to
both a smoothness constraint and a data fitting constraint. This curve
is attracted by the features in the image — typically edges. These
deformable models or active contours were introduced with the snakes
of Kass et al. [144]

267
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A general framework for the evolution of the active contour is the
minimization of a variational energy over curves ~:[0,1] — [0,1]?

1
E(y) = L(7) + AR(7y) where L(W)Z/O W)t (3.1)

where R(7y) is some smoothness enforcing criterion, and L(v) is a data
fitting energy that takes into account the features of the image through
the potential W. This potential should be low near the boundary of
the object to segment. Several strategies to design W are detailed in
Section 3.2. X is a non-negative real value which sets the relative impor-
tance of the two terms.

One can consider open curves that join two points xs,x., and add
to the minimization (3.1) the following boundary constraints:

7(0) =x5 and (1) =z, (3.2)

which correspond to the constraint v € P(zs,x.) as defined in (1.3).
One can also consider closed curves by imposing v(0) = (1), in which
case the minimization (3.1) is unconstrained but the derivatives with
respect to t are computed modulo 1.

One can note that L(vy) is the geodesic length of the curve according
to the isotropic Riemannian metric W, as already defined in (1.2).

In the original snakes [144], the energy takes into account both
the length of the curve and its bending using first and second order
derivatives with respect to ¢, with

1
R(y) = /0 W ()] + sl @) .

This energy is however not intrinsic to the curve geometry, since it
also depends on the parameterization of the curve. This is why these
two terms were replaced by length element and curvature to obtain an
intrinsic energy and define a geometric model [59]. Since it is complex
to deal with the curvature term, it was removed in that model, as
well as in the level set approach of Malladi et al. [179]. Indeed, the
Euclidean length of a curve can be used as regularization term, as can
be seen in the Mumford-Shah energy [197], where penalty on the length
of boundaries leads to their regularization. Regularization properties
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of minimal geodesics were proposed in [75] where it was noticed that
the length term could be included in the potential term and lead to
the same energy as geodesic active contour [60]. If one uses p =0 and
replaces W by W + A, the energy is restricted to the geodesic length

1
E(W)ZL(W)Z/O W () ()4, (3-3)

thus defining the geodesic active contour.

Parametric curve evolution. Curve evolution corresponds to the
minimization of the energy FE(7:) by evolving a family of curves -
indexed by t > 0. For an intrinsic energy, that depends only on the
geometry of the curve and not on its parameterization, this minimiza-
tion is governed by a partial differential equation where 5 evolves in
the direction normal to the curve

%%(8) = B((s),mu(s), ke (s))nu(s), (3.4)

where 3(z,n,k) € R is the velocity, and where the outward unit normal
to the curve ny(s) and the curvature k;(s) at point y;(s) are defined as

v (s) = (7 (s), T)T 1

") = ) — i), Ty W ) = O e
(3.5)

where
1(s) (3.6)

"R
One should also add the constraint (3.2) to this PDE in the case of
open curves. Figure 3.1 shows a schematic display of the evolution.
For the geodesic active contour minimization of (3.3), the minimiza-
tion of the weighted length L(7;) leads to normal velocity

Blx,n,k) =W (x)k — (VW (zx),n). (3.7)

For a constant metric W =1, one recovers the mean-curvature
motion B(x,n,k) = K, that corresponds to the flow that minimizes the
Euclidean length of the curve. Figure 3.2, left, shows an example of
mean curvature motion. Figure 3.2, right, shows an evolution toward a
noisy circle on which the metric is low.
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Tt

Yt+dt

Fig. 3.1 Curve evolution in the normal direction.

W=1 W shown on background

Fig. 3.2 Left, mean curvature motion starting from a polygonal curve. Right, geodesic active
contours for a metric small on a noisy circle.

As proposed initially in [144], evolution (3.4) can be solved by finite
differences to evaluate numerically the derivatives with respect to ¢
and s. Explicit time integration is fast but unstable, so that small time
steps are required. One can use implicit time stepping, which requires
the solution of a sparse linear system at each time step, and is more
stable, see [73].

Implicit curve evolution. The curve evolution (3.7) can also
be solved numerically using the level set framework of Osher and
Sethian [207]. A closed curve is represented as the zero level set of
a function ¢;: R? — R such that

{7e(s) \ s € [0,1]} = {z € R? \ p4(x) = 0},
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pi(z) <0

Circle Square Union

Fig. 3.3 Example of shape embedding using level sets.

and the interior of the domain represented by the curve is {z € R?\
oi(r) < 0}.

In this framework, union and intersection operations of two shapes
represented by ¢} and ¢? are easily performed with algebraic manipu-
lations.

pi(z) = min(p; (2), 97 (x)) and  @i(x) = max(g; (z), 97 (x)).

Figure 3.3 shows examples of curve embeddings using level sets.
For an arbitrary simple closed curve, a canonical choice is the signed
distance function

wi(w) = o(@)@i(x)  where gy(w) = min [z —y(s)] (3.8)

where the sign o(z) = +1 outside the domain bounded by the curve,
and o(z) = —1 inside. The unsigned distance function @ is the unique
viscosity solution of the Eikonal equation

[Vor(z)|=1 and Vse[0,1], @i(v(s))=0. (3.9)

This equation can be solved in O(N log(NV)) operations on a regular grid
of N pixels using the Fast Marching algorithm detailed in Section 2.3.

The level set implementation has the advantage of allowing merging
and splitting of the curve. This enables the segmentation of several
objects at the same time, which is not possible with the parametric
formulation (3.7).
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Within this framework, the curve evolution (3.4) becomes a PDE
on the embedding function ¢,, where all the level sets (including the
zero level set representing ) evolve together

4 (@) = V()18 (w(«r)a ,Wt(w) dv <| v > (x)> |

[Ver()]” Vo]
For the geodesic active contour, the level set PDE is thus
d . Voy
— ¢ = |V div (W) .
dt IVipe|

As the PDE evolves, the function ¢; might become unstable and exhibit
large gradients. To avoid these numerical instabilities, it is necessary to
enforce that ¢, is a distance function as defined in (3.8) for some values
of ¢ during the volution. This necessitates to solve the Eikonal equa-
tion (3.9) from time to time during the level set evolution to re-start
the embedding function.

Local minimizer of the weighted length. Figure 3.4 shows
geodesic active contour evolutions for open and closed curves. The
potential W is computed using the gradient of the image, as detailed
in Section 3.2.2, and an implicit level set curve evolution.

When ¢ tends to 400, 7; converges to a curve that is a local mini-
mizer of the weighted length L. One should be careful, and note that
this curve is not a globally minimal path for the metric, as defined
in (1.4). Indeed, for the case of a closed curve, a globally minimal
closed curve would be restricted to a single point. To avoid the curve
to shrink toward itself, one can add an artificial velocity that inflates
the curve [70], called the pressure force or balloon force.

3.1.2 Minimal Paths

A major difficulty with the active contour approach is that the curve
evolving in time might be trapped in poor local minima of the energy F,
thus leading to a bad segmentation. It is especially the case for noisy
images in many applications such as medical imaging.

In the case of an open curve, subject to the boundary conditions
(3.2), Cohen and Kimmel [74] use the Fast Marching propagation to
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Image f Metric W(z) Evolution

Fig. 3.4 Example of geodesic active contour evolution for medical image segmentation. Top
row, open contour, bottom row, closed contour. The potential W is computed using (3.12)
with @ =1 and ¢ = 1073|V f| oo

find the global minimum of the energy E(v) = L(y). Boundary con-
straints forbid the segmentation of closed object with a single curve,
but allow to track curvilinear features such as roads in satellite imaging
or vessels in medical imaging. Notice that [74] also proposed a way to
find a closed curve as the union of two geodesics. This was followed by
other approaches to define a closed curve as a set of geodesics [24, 71].
The keypoint approach of [24] allows to give only a starting point on
the boundary of an object and find the complete closed contour, see
Figures 3.6 and 3.7.

The curve v € P(xs,z.) minimizing L(vy) is the geodesic minimal
path +* already defined in (1.4). It can be computed as detailed
in Section 1.5 by computing the distance map U,, and performing
the gradient descent (1.26). The distance map U, is computed in
O(N?%log(N)) operations for an image of N? pixels using the Fast
Marching algorithm detailed in Section 2.3.
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Image f Metric W Geodesics

Fig. 3.5 Example of minimal path for vessel extraction. The bottom row shows the evolution
of the Fast Marching propagation.

Figure 3.5 shows an example of the extraction of a tree of vessels,
that are shortest paths joining several end points to a single starting
point. The metric W (z) is computed by applying some standard image
processing techniques to f. In this case, the background is subtracted
by applying a high-pass filter, and the filtered image is thresholded to
increase the contrast of the vessels. The following section details various
methods to compute a metric W adapted to an image to analyze.

3.2 Metric Design

In practice, the difficult task is to design a metric W in order to have
meaningful geodesics. Here are some examples of possible choices, for
the processing of an input image f.

3.2.1 Intensity-based Metric

Starting from an image f:[0,1]> — R, the basic idea is to compute roads
or vessels as shortest paths in the plane of the image. A potential must
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Potential Final segmentation

Fig. 3.6 Illustration of the method of minimal paths with keypoints of [24]. A start point
is given (top left image, red point) and a set of keypoints (top right image, yellow points)
is obtained automatically to segment the closed boundary of an object. The key points are
seeded by using iteratively front propagations as shown in the bottom row.

be designed such that computed shortest paths correspond to actual
roads or vessels in the images.

A natural idea is to design the potential depending on the value of
the image

W () = Wo + p(f(x)), (3.10)

where p:R +— RT, min, p(a) = 0. The constant Wy > 0 is regularizing
the geodesic curve by penalizing their Euclidean length.

Since in most medical images, vessels can be made darker than the
background, p should be a non-decreasing value of the image intensity.
Doing so, shortest paths are likely to follow dark areas of the images,
i.e., vessels. This is illustrated in Figure 3.8.

In other applications, such as satellite images, the curves of interest
are assumed to be of approximately constant gray value c. In this case,
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Fig. 3.7 Illustration of the method of minimal paths with keypoints of [24]. A start point is
given in red and a set of keypoints is obtained automatically to segment the closed boundary
in this biological image.

one can choose for instance
W(z) = Wo + p(f(z)) with p(a) = |a — | (3.11)

where « is tuned depending on the characteristics of the image and on
the confidence one has about c¢. Figure 1.1 shows an example of road
extraction, where the metric (3.11) is used with o = 1.

3.2.2 Gradient-based Metric

In several applications, the curves of interest are located near areas of
large variation of intensity in the image — e.g., when one wants to
detect the boundary of object in images. In this case, one can choose
a gradient based potential, such as for instance

of of

Ox1’ Owy

where p is a non-increasing function such as

W(2) = p(IVf@)]) where Vf(z) = ( ) cR, (3.12)

pla) = (e +a)® (3.13)
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Fig. 3.8 Vessel segmentation using shortest paths. Top left: original retinal image from
DRIVE database [199]. Top middle: distance map computed from the white point (gray
level was used as potential) and iso-distance lines (red). Notice that the front propagates
faster along the vessels. Top right: shortest path computed from another point of the vessel.
Bottom: synthesis on the distance function elevation map.

for some contrast parameter o > 0. This corresponds to an edge attract-
ing potential. The gradient vector V f is estimated numerically using
finite differences, possibly after smoothing the original image to remove
some noise.

Figure 3.9 shows an example of use of the gradient based metric
(3.13) with a = 1. A set of two initial points S linked by four geodesics
to two other point obtained a segmentation of the cortex with a closed
curve.

3.2.3 Volumetric Metric

The Fast Marching works the same way in any dimension and in par-
ticular can be used to extract shortest paths in 3D volumetric medical
data [96]. Such a volume is a discretization of a mapping f:[0,1]® — R.
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IVl Us Minimal paths

Fig. 3.9 Example of segmentation using minimal paths for a gradient-based metric.

Fig. 3.10 Example of volumetric Fast Marching evolution (top row) and geodesic extractions
(bottom row).

Figure 3.10 shows some examples of geodesic extraction on a med-
ical image that represents tubular structures (blood vessels) around
the heart. Since a pixel x inside a vessel has approximately a known
intensity value f(z) = ¢, the potential W (x) is defined as in (3.10).
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Fig. 3.11 Illustration of the method of minimal paths network [11] in order to find a sur-
face as a set of 3D minimal paths between two given curves. On the left, the two curves
and network are shown. On the right the surface obtained by interpolation from the path
network.

Different extensions of minimal paths have been proposed in [11, 12]
in order to find a surface between two curves in a 3D image. These
approaches are based on defining a network of minimal paths between
the two curves, see Figure 3.11. A transport equation was used to find
this network efficiently without computing the paths themselves.

3.2.4 Metrics on 3D Surfaces

Salient features on a surface S C R can be detected by extracting
geodesics that are constrained to be on the surface. As detailed in Sec-
tion 1.2.1, for a parameterized surface ¢:) — R3, this corresponds to
an anisotropic Riemannian metric on the parametric domain €2, whose
tensor is the first fundamental form (1.1.2).

As in Section 1.2.1, one should be careful about the distinction
between a point z € Q C R? in the parameter domain, and its mapping
T =p(xr) €S C R? on the surface.

Metric on textured meshes. In order for the geodesic to follow
salient features, the length L(¥) of a curve 4 € S is measured as in
(1.5) using a weight W (Z) > 0 for each point € S. The simplest way
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Texture f Metric W(z)  Geodesic W =1 Geodesic W (%)

Fig. 3.12 Top row: Fast Marching propagation from the two red points for a texture-based
metric W(Z). Bottom row: comparison of geodesic curves from the two blue points for the
constant metric W = 1 and for a texture-based metric W ().

to define this metric is using some texture function f(Z) € R defined
on the surface. Following (3.10) or (3.12), one can define metrics based
either on the gray levels or on the gradient of f.

Figure 3.12 shows the influence of a varying metric W (&) on the
geodesic that follows the salient features of the texture.

Curvature-based metric. To detect geometric salient features on

surfaces, such as ridges and valleys, one needs to use higher order

derivatives of the surface parameterization, see for instance [204]. One

typically uses curvature information, that corresponds to extrinsic

quantities that depend on the embedding of the surface in R3.
Curvatures are computed by measuring the second order variation

of the surface projected on the unit normal to the surface

_ @) L
|7(z)|| Oxq Oxo

where A denotes the cross product in R3. The second fundamental form

is then defined as

VeeQ, n(x)

where n(x)

2
VeeQ, Jy(z)= {(aigij (x), n(x))} € R?*2, (3.14)

1<i,j<2




3.2 Metric Design 281

If the parametrized surface is smooth enough, this second fundamental
form is a symmetric matrix, that can be diagonalized as

Jo(x) = p(z)er(x)er ()" + pa(z)es(x)ea(w) . (3.15)

The eigenvectors e;(z) € R? for i = 1,2 are orthogonal, and the tangent
vectors Dp(x)e;(x) are the principal curvature directions of curvature
on the surface, where Dy(x) is the differential of the parameterization
defined in (1.8).

This factorization (3.15) should not be confused with the decom-
position (1.16) of the Riemannian tensor T, computed from the first
fundamental form I, (z). In particular the eigenvalues p; can be
negative.

The second fundamental form J,(x) can be approximated numeri-
cally on 3D triangulated meshes using averaging of rank-1 tensors [80]
or using a local covariance analysis [68, 229].

A weighting function W (Z) can be defined from the eigenvalues
(p1(x), p2(z)) so that the geodesics follow local extrema of some cur-
vature measure. For instance, one can use

W(z) = p(pa(2)? + p2()?) (3.16)

where p is a non-increasing function, such as (3.13). Figure 3.13 shows
the computation of the distance map to a set of starting points using
the Fast Marching propagation. The front moves faster along features
when W takes into account the curvature. Figure 3.14 shows how this
curvature-based metric influences the minimal paths, that are forced
to follow the salient features of the surface.

3.2.5 Anisotropic Metrics for Images and
Volumetric Datasets

In order to better follow the salient structures of an image or a vol-
ume f, one can replace the isotropic metric T, = W (x)%Idy by an
anisotropic metric T}, € R%*9,

In some applications, a hardware acquisition device actually gives
access to a local anisotropic metric. This is, for instance, the case in

medical imaging for Diffusion MRI (dMRI) [17], in which case d = 3.
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Fig. 3.13 Top row: Fast Marching propagation from the red points for the metric W = 1.
Bottom row: propagation for the metric W (&) defined in (3.16).

Metric W(z) Geodesics W =1 Geodesics W ()

Fig. 3.14 Comparison of the geodesics for W = 1 and for the curvature based metric W (&)
defined in (3.16).

This modality derives from MRI and aims at computing the proba-
bility distribution of water molecules diffusion at any point of a human
brain over the set S? of all possible directions in 3D. Since water
molecules tend to propagate faster along white matter fibers, dMRI
allows to obtain a local map of white matter fiber directions.

The most commonly used model for the probability distribution of
water diffusion is the diffusion tensor (DTI) [16], which simply con-
sists in a three-dimensional tensor. While this rough representation
does not allow to recover precise information when fiber crossings or
splittings occur, it performs well when only one bundle of fibers is
present at a precise location. Its main advantage is that only scans in
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Fig. 3.15 DTI of a human brain on a coronal slice. Corpus Callosum (CC), whose fibers
have an horizontal orientation, and the left and right Corticospinal Tract (CST), whose
fibers have a mainly vertical orientation, can be seen in the plane of the image.

the three principal directions are needed to recover a diffusion tensor,
which results in a low data acquisition time.

After data acquisition and computation of the diffusion tensor, every
point z in the white matter is thus equipped with a tensor D, whose
principal eigenvector gives an evaluation of the main direction of fibers
at this point (Figure 3.15).

Extracting full length fibers numerically from this local informa-
tion is important to compute a map of the white matter and detect
pathologies.

Full length fibers can be modeled as geodesic curves inside the
white matter for the Riemannian metric T, = D, ': geodesics in such
a Riemannian space will tend to align themselves with the eigenvector
corresponding with the smallest eigenvalues of T, [140, 215, 231]. They
will thus follow high-diffusion paths, which are likely to correspond to
white matter fibers (Figure 3.16).

3.3 Centerlines Extraction in Tubular Structures

In many applications, such as road tracking or vessel extraction, one
is interested in computing the centerline of the tubular structures of
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Fig. 3.16 Geodesics corresponding to major white matter fibers bundles in left hemisphere,
obtained with the geodesic method of [215].

Fig. 3.17 The path centering problem. The centerline is displayed as a dashed curve.

interest. As illustrated in Figures 3.8 and 3.17, minimal paths tend to
follow the boundary of the vessel in regions where the tubular structure
is curved. Furthermore, one is often interested in computing an esti-
mation of the radius of the vessels, whose evaluation may have medical
significance, e.g., in retinal imaging [299] or for detecting stenosis. The
precise value of this radius is not directly accessible using minimal
paths.

3.3.1 Centering the Geodesics

A simple way to re-center the minimal path is to make the potential
locally minimal in the middle of the tubular structure. For symmet-
ric vessels, a possibility is to smooth the potential, and replace W (x)
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defined in (3.10) by

W(z) =&+ (p(f) » Go)(), (3.17)

where G, is a Gaussian kernel of width o > 0. This smoothing is how-
ever difficult to control, and leads to a loss in the resolution of the
image.

Another option is to re-center the geodesic in a post-processing step.
Deschamps and Cohen [96] perform this re-centering using a two step
method. Starting from the initial non-centered geodesic, the boundary
0V of the vessel V is extracted using the front of the Fast Marching.
A modified potential is then defined as

e+ p(d(OV,x)), ifxeV
400 otherwise,

W(z) = {

where d(0V,z) is the geodesic distance to the boundary of the vessel,

and p is a non-increasing mapping. This new potential forces mini-
mal paths to follow the center of the tubular structure. This method
has been applied to enable virtual endoscopy exploration of vessels in
[79, 96], see Figures 3.18-3.20.

Fig. 3.18 Example of a centered path inside the colon in a 3D image. Two different views
of the path together with slices of the image.
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Fig. 3.19 Some images of a virtual flythrough along the 3D minimal path of the previous
figure. Each view is obtained as what a virtual camera would see on a given point of the
path in the direction tangential to the path. The only inputs are the 3D image, a starting
point and a given length of the path.

3.3.2 High Dimensional Lifting

To automatically center the minimal paths and compute the local
radius of the vessel, one can compute a metric W on a higher dimen-
sional space.

Radial lifting. Li et al. [168] proposed extracting minimal paths

*

Y= (7;77:) €Q x [Tmimrmax]
on a space with an additional radius dimension. See also [227] for a
similar approach using geodesic computation on graphs.

The geodesic curves are defined with respect to an isotropic
Riemannian metric W (z,r) > 0 for z € Q and r € [Fmin, "max])- The spa-
tial geodesic 7} is intended to follow the centerline of the vessel, and
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Fig. 3.20 Virtual endoscopy through centered paths inside the aorta tree structure in a 3D
image. Different paths are shown in yellow that link the source point to different endpoints
of the structure.

7x(t) should indicate the local radius of the vessel near ~(¢). This is
achieved if W (z,r) is locally minimal at a point z if a vessel is centered
at x and the radius of the vessel is approximately r.

A local detector D(x,r) evaluates the likelihood of the presence of
the centerline of a vessel of radius r at every point x of the image. The
value of D(z,r) is computed in [168] by measuring the deviation of the
mean and variance of the gray value inside a sphere centered at x and
of radius r. The metric is then defined as W (z,r) = p(D(z,r)) where p
is a decreasing function.

Because a spherical region is a poor match with the anisotropic
geometry of vessel, this method is sensitive to initialization and param-
eters. Figure 3.21 shows an example of result of the method in [168]
together with its extension in [169] using the keypoints of [24].



288  Geodesic Segmentation

Fig. 3.21 Examples of minimal paths in the 2D+radius space for segmentation of vessels
and their centerlines. On the left two endpoints are given and we obtain a centerline together
with a region. On the right only one starting point is given and a set of keypoints is obtained
automatically to segment the vascular tree structure.

Radial and orientation lifting. Pechaud et al. proposed in [214,
216] to lift a 2D image to a 4D space that includes both a radius
information 7 € [ryin, "max] and an orientation 6 € [0, 7).

The method makes use of a basic template M (x) that is scaled and
rotated

Vo € A(r,0), M,g(z) = M(R_g(x)/7),

where A(r,0) is the scaled and rotated domain over which the template
is defined, see Figure 3.22, left. This basic element M is specific to a
given application, and might be different if one considers roads (that
are usually bright on a dark background, with sharp edges) or vessels
(that may have a reversed contrast and blurred edges).
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Fig. 3.22 Left: vessel template at different scales and orientations. Middle: original 2D
image. Right: 4D lifting R(zs,7,0) (fixed radius r), ranging from —1 (black) to 1 (white).

The local detector R(z,r,6) is computed as a cross-correlation

R(l‘,?“,@) = gA(r,G) (MT,H('>7f(x + ))

where f(x + -) is the image translated by =, {4(f,g) is the normalized
cross-correlation between f and g over the domain A, defined by:

Julf = Do - 9)
VI = D2 alg - 972

where h = %, 1(A) = [, 1 being the area of A.

alf.g) = (3.18)

Figure 3.22 shows an example of this 4D lifting. The additional
angular dimension helps to disambiguate situations where vessels with
different orientations are crossing.

The metric is then defined as W (z,r,0) = p(R(x,r,0)) > 0, where p
is a decreasing function. Geodesics are then extracted in this lifted
space

v = (%) € & X [Pmins Tmax) X [0,7)

where the angular dimension [0,7) should be handled with periodic
boundary conditions. Domain € X [ryin,Tmax] X [0,7) can thus be seen
as a 4D cylinder, which could be embedded in a 4D Euclidean space.

Figure 3.23 shows centerlines 7, and radii obtained with this
method.



290 Geodesic Segmentation

Fig. 3.23 Centerline positions and radii extraction of vessels in a cortical image (top left),
in a satellite (top right) and in a retinal image (bottom). White square denotes the initial
points S = {zs}, while black squares are different ending points.

Anisotropic lifting. Benmansour and Cohen proposed in [23] to
reduce the numerical complexity of centerline extraction by building an
anisotropic Riemannian metric T}, for each space and scale location
(z,7) € Q X [Fmin, Tmax)-

The orientation selectivity of the metric replaces the orientation
dimension 6 € [0,7) in (3.3.2). This can be achieved by computing
for each (z,7), a metric Ty, € R**? such that, for all unit vectors
ng = (cos(0),sin(f)), the anisotropic potential |ng|r,, is close to a
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Fig. 3.24 Examples of minimal paths in the 2D+radius space for segmentation of vessels
and their centerlines. The metric based on the Optimal Oriented Flux is shown in the right.

Fig. 3.25 Examples of minimal paths in the 3D+radius space for segmentation of vessels
and their centerlines.

criterion W (x,r,0) similar to the one above. An alternative construction
based on multi-scale second order derivatives of Gaussian filtering was
proposed in [23] to efficiently compute the metric T} ,. The response
of the filter is designed to be maximal on the centerline of vessels, and
the tensor principal eigenvector corresponds to the estimated direction
of the vessel, see Figures 3.24 and 3.25.

3.4 Image Segmentation Using Geodesic Distances
3.4.1 Segmentation Using Geodesic Balls

Active contour by geodesic ball growing. In the active contour
model (3.3), the curve evolution (3.7) is allowed to move with positive or
negative speed. Furthermore, this speed 3 depends both on the position
of the curve, and on its orientation. If one imposes a simpler evolution



292  Geodesic Segmentation

model, where the evolution is performed with a strictly positive speed
W(z)>0

d

() = W () (s), (3.19)
then this evolution can be tracked using level sets of a single distance
function Ug,

{1(s)\ s €0,1]} = Bi(zs) = {z € Q\ Us(x) =t}, (3.20)

where the initial curve g at ¢ = 0 is the boundary of the starting points

95 = {r0(s) \ s € [0,1]}

and where Ug is the geodesic distance map to S for the isotropic metric
W (z), as defined in (1.22).

The curve ~; is thus the boundary of a geodesic ball of radius ¢. It
can thus be computed using the Fast Marching, and in fact, v can be
approximated by the front that the Fast Marching propagates during
the iterations.

As t increases, this ball +; inflates, and moves faster in region where
W is large. Malladi and Sethian [178] thus propose to use this evolution
to segment object in noisy images, using a metric W (x) that is low for
pixel = outside the object to detect, and using a radius ¢ chosen to
match the size of the object. See also [96, 181] for applications of this
method to medical imaging.

Figure 3.26 shows application of this method to segment a
medical image f using a pixel-based potential (3.11), and where the
initialization is performed with a single point S = {xs} located inside
the region to segment.

Front freezing. Geodesic balls have the tendency to extend beyond
the boundary of the object. This is especially the case for elongated
tubular structure such as vessels. To avoid this leaking artifact of the
front during the propagation, Deschamps and Cohen [79, 97] proposed
to freeze the propagation in regions where the front is moving slowly.
This modification improves the quality of the segmentation, although
the segmented region is not defined as a geodesic ball anymore.
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Fig. 3.26 Front propagation of the Fast Marching algorithm, the region indicates the
geodesic ball {x € Q\ Ug(z) < s}, for s increasing from left to right. The boundary of
this region corresponds to the curve ~s.

3.4.2 Segmentation Using Geodesic Voronoi Regions

To segment several regions, an approach consists in giving a set of seed
points {x;};, where each z; is supposed to be inside a region. One then
considers the segmentation of the image domain into Voronoi cells, as
defined in (1.18). As explained in Section 2.6.1, this segmentation can
be computed approximately during the Fast Marching propagation, or
during iterative schemes. See for instance [10, 172, 200, 262] for an
application of this method to perform image segmentation.

For this segmentation to be efficient, the front should move slowly
for pixels that are intended to be at the boundary between several
regions. For object separated by edge transition, this can be achieved
by using an edge stopping metric

W(z) = p(|V f(2)],
where p is an increasing function. Note that this potential is inverse to
the edge attracting criterion defined in (3.12) .
Figure 3.27 shows an example of segmentation using a contrast func-
tion p(a) = (¢ + a)®, for « =1 and a small € > 0.

Relation with watershed. If the geodesic distance map Ug
is approximated with morphological operators, as detailed in Sec-
tion 2.8.1, the Voronoi segmentation corresponds to the result of the
watershed algorithm initially proposed in [28] and extended for instance
in [188, 198, 283]. For the watershed algorithm, the set of initial points S
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Image f Metric W (zx) Segmentation

Fig. 3.27 Image segmentation using Voronoi regions. The colored curves in the left image
show the boundary of the Voronoi cells.

is usually chosen as the local minima of the map W (x), possibly after
some smoothing pre-processing.

The Fast Marching implementation of the Voronoi segmentation
tends to perform more precise segmentations since it does not suf-
fer from metrication caused by the discrete nature of the structured
element of mathematical morphology operators, see [189].

3.5 Shape Offsetting

Shape offsetting is an important issue, both in motion-planning and
CAD [243]. Starting from a set A C Q C [0,1]% or [0,1]% and a ball B of
radius r centered at 0, it consists in finding the set dpA={z +b |z €
A,b € B} described in Section 2.8.1 (see Figure 3.28).

When the boundary of A consists in segments or circular arcs,
exact methods have been developed in order to compute its offsetting
[243]. In the general case however, such methods are not available, and

Fig. 3.28 Illustration of shape offsetting. Starting from the black set A and the red ball B
(left), 6B A is constructed (middle and right.)
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one must rely on more general algorithms. Early methods are based
on level sets [149].

As explained in this section, this operation can be approximately
performed using mathematical morphology in O(n) time if €2 is convex.

If  is not convex, one can approximate the shape offsetting by
using the geodesic dilation of Section 2.8.1. However, a more precise
alternative consists in using the methods described in Section 2.2. The
starting set S is A. One thus has 0pA = {z € Q,Ug(x) <r}. This set
can be easily computed as the set of Computed points of the Fast-
Marching algorithm when the first point with distance greater than r
has been reached [153].

Notice that this easily extends to the case when B is elliptic. One
needs to apply an affinity f to B such that f(B) is a sphere. It is then
possible to prove that 6p(A) = f~1(6;5)(f(A))). In order to compute
dp(A), one thus deforms the space A through f, computes its offsetting
as explained before, and brings back the result in the initial space
through the application f~1.

3.6 Motion Planning

Computation of shortest paths inside a shape with Euclidean metric
has been thoroughly studied in motion planning [161]. Solving this
problem indeed allows to move a robot from one point to another in
an environment with obstacles, see Figure 3.29, left.

The methods detailed in Section 2 are rarely used in motion plan-
ning, mainly for three reasons: (1) one is interested in finding some
path between two points, not necessarily the shortest one. (2) In
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Fig. 3.29 Shortest path in a space with polygonal obstacles. A polygonal environment with
initial and ending points (left), the shortest-path-roadmap (middle), and the shortest path
between initial and ending points (right).
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robot-motion planning, the environment is often discovered progres-
sively while the robot moves, which makes it impossible to use a
geodesic method. (3) Since the space is Euclidean, taking into account
the possible shapes of the obstacles allows to design ad-hoc methods
to compute shortest paths. However, some examples exist where the
Fast-Marching algorithm is used in the context of motion planning —
e.g., to model crowd movements [273].

Punctual object. As an example, assume that one wants to compute
the optimal trajectory of a punctual object in a polygonal environ-
ment () (see Figure 3.29, left.) This corresponds to a specific case of
the problem described in Section 1.3.2. An efficient method exists to
compute an exact solution: one can compute the so-called shortest-
path road-map G [160], which is actually a peculiar graph linking the
obstacles vertices and the initial and ending points (see Figure 3.29,
middle). It is possible to show that the shortest path between the ini-
tial and ending points consists of edges of G (see Figure 3.29, right).
Computing the geodesic between two points thus boils down to com-
puting a path in the adjacency graph of the cells. The whole operation
can lead to the exact geodesic in O(n?Inn) time, where n stands for
the number of edges in the environment.

Spherical object. Shape offsetting (see Section 3.5) can be used
to compute trajectories of non-punctual objects in an environment
with obstacles. Assume that a circular object B, of radius r is to
be moved in an environment with obstacles (Figure 3.30, top). The

&>

Fig. 3.30 Illustration of shape offsetting. Assuming one wants to compute the trajectory
of a circular object in an environment Q with obstacles (top), one can grow the obstacles,
leading to a new environment Q' (middle), and the problem is thus reduced to computing
the trajectory of a point in the obtained space (right).
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problem is thus to find a trajectory v of the center of B, such that
0B, (7) C Q, where dp. corresponds to the dilation of the curve ~
defined in Section 2.8.1.

This problem can be reduced to the previous one by growing
the obstacles by a distance r. One defines Q' =dp,(Q2) (Figure 3.30,
middle.)

Computing B, trajectory in €2 is clearly equivalent to computing
the trajectory of a single point in € (Figure 3.30, right).

However, geodesic methods can be used to perform the offsetting
only when the object to move is circular or elliptic, which limits its
practical utility.

3.7 Shape From Shading

Shape from shading is a popular computer vision inverse problem, see
for instance [297] for a review on this subject. It corresponds to the
process of recovering a 3D surface from a shaded image of that surface.
In simplified settings, the surface is obtained by solving a non-linear
PDE, as first noticed by Horn [136]. Although it is not related to the
extraction of minimal path, in some cases, it can be cast in an Eikonal
equation, and can thus be solved using Fast Marching methods.

In a simple setting, one wants to recover a surface, represented as
height field u(z) € R for z = (x1,22) € [0,1]? from a 2D picture f(z).
A simplifying assumption is that the surface is Lambertian diffuse.
Ignoring self shading, for each point x in the image, the illumination
at a given point p, = (x1,x9,u(x1,22)) of the surface is computed as

y(pz) = max(0, (v(p), n(pz))) <1

where v(p) is the unit light vector at point p, n(p) = n(p)/|n(p)| is the
unit normal at point p, and n(p,;) = (—Vu(zx),1).

For an infinite light source, v(p;) =v € R? is constant and unit
normed. A further simplifying assumption is that the camera taking
the picture of the object performs an orthographic projection, which is
a valid assumption if the object is far away from the optical center. In
this case, the intensity f(z) of the image at a pixel x is equal to the
illumination y(p,) at the surface location p,.
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For a vertical light source v = (0,0, 1), putting together all these sim-
plifying assumptions, one obtains that v satisfies the following Eikonal
equation

[Vul = b(z) =4 /1 - (3.21)

fx)?
see for instance [175, 244]. This equation is not well defined at singular
points ¥ = {x \ f(z) = 1}, because b(x) tends to +oo. These singular
points X correspond to locations where the surface is facing the light

Acceptable reconstruction Bad reconstruction

Fig. 3.31 Bottom row, two examples of shape from shading reconstruction. The red point
z; indicates the location where the condition f(z;) = f; is enforced. The original surface is
taken from [297].
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direction. The equation can be regularized by replacing b(x) by b(z) =
min(b(z), bmax)-

The solution of the Eikonal shape from shading equation (3.21)
should be understood as the unique viscosity solution, subject to some
interpolating conditions f(x;) = f; for a set of fixed points z;. These
points can be set on the boundary of the object, or at the singular
points Y. This is a major bottleneck of this approach that necessitates
some prior knowledge about the object to recover.

Figure 3.31 shows two examples of shape from shading reconstruc-
tion using the Fast Marching to solve (3.21). This shows the impor-
tance of setting adequate interpolation condition to obtain a wvalid
reconstruction.

The non-uniqueness of shape from shading problem without proper
assumptions (such as viscosity solutions and fixed boundary points)
reflects the ill-posedness of the problem. These difficulties have been
deeply investigated in the literature, and are usually referred to as
concave/convex ambiguities, see for instance [18].

For an arbitrary point light source, and a generic perspective
camera, Prados and Faugeras have shown in [230] that the shape
from shading problem corresponds to solving a more general Hamilton—
Jacobi non-linear PDE, which can also be solved with generalized Fast
Marching methods.



4

Geodesic Sampling

In order to acquire discrete samples from a continuous Riemannian
manifold, or to reduce the number of samples of finely sampled man-
ifolds, it is important to be able to seed evenly a set of points on
a manifold. This is relevant in numerical analysis in order to have a
good accuracy in computational simulations, or in computer graphics
in order to display 3D models with a low number of polygons. In prac-
tice, one typically wants to enforce that the samples are approximately
at the same distance from each other according to a given metric. The
numerical computation of geodesic distances is thus a central tool, that
we are going to use both to produce the sampling and to estimate the
connectivity of a triangular mesh.

4.1 Geodesic Voronoi and Delaunay Tesselations

A sampling of a Riemannian manifold 2 is a set of IV points S =
{zi}icr C Q, where I ={0,...,N — 1}. One can compute several topo-
logical tesselations on top of this sampling. This section generalizes
the notions of Euclidean Voronoi and Delaunay diagrams to arbitrary
Riemannian manifolds. In the remaining part of this chapter, this
framework will be used to design efficient sampling schemes.

300
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4.1.1 Voronoi Segmentation

The main geometrical and topological structure associated to a sam-
pling is the Voronoi segmentation, that is at the heart of the computa-
tion of the other geodesic tesselations.

Geodesic Voronoi Diagram. When S = {z;}ic; is finite, one
defines a segmentation of the manifold 2 into Voronoi cells as

V(S)={Ci}ier and Q=[]JCi (4.1)
i€l
as defined in (1.18). This segmentation can be represented using the

partition function ¢(z) defined in (1.19). Note that the Voronoi cells
overlap on their common boundaries.

Geodesic Medial Axis. The medial axis MedAxis(S), defined in
Section 1.4.2, is the set of points where the distance map Ug is singular.
For a dense enough discrete set of points S = {z;};cr, the medial axis
is the boundary of the Voronoi cells, see (1.21).

4.1.2 Delaunay Graph

Delaunay graph. The geodesic Delaunay graph D(S) of a sampling
S ={z;}ier C Qis defined by joining seed points with adjacent Voronoi
cells

D(S) = {(i,j) € I*\ 8C; N AC; # 0} . (4.2)
Note that a pair of indices (4,7) € D(S) is assumed to be unordered, so

that (j,7) denotes the same Delaunay edge.

Geometric realization. For each edge, one can consider its geodesic
geometric realization

V(i,7) € D(S), ;€ Plxi,xj) (4.3)

which is the geodesic curve joining x; and ;. For a 2D manifold €2, the
Delaunay graph D(S) is thus a planar graph for this curved realization,
which means that the curved edges ~; ; do not intersect. This is due to
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the fact that ~; ; C C; U C; — see Section 2.5.2 that makes use of this
fact to speed up minimal path extraction.

If the manifold is embedded in Euclidean space Q C R? for some
d > 0, the geodesic realization (4.3) should not be confused with the
Euclidean geometric realization ; ;, which is a straight line segment

Vit e [0, 1], ’?’i,j(t) = (1 - t)ZL‘@' + tx;. (44)

One should note that this straight line embedding of the graph is not
necessarily a valid planar embedding, since straight edges 7; ; might
intersect.

Double saddle points. FEach topological Delaunay edge (i,7) €
D(S) is associated to a dual geometric realization, that is a bound-
ary of Voronoi cells

V(l,j) S D(S), ’)/;ij =C N Cj.
This object is called a dual edge to the primal edge v; ;. It is a planar
curve for 2D manifolds.
A double point z;; lies at the intersection of v; ; and 7},
Tij = vij N7, = argmin d(z,z;), (4.5)
TEY

as already defined in (2.21). Figure 4.1 shows an example of primal and
dual Delaunay edges that intersect at a double point. Note that x; ; is
not necessarily the point on MedAxis({x;,x;}) that is the closest to z;
and z;, because the dual edge 77 ; is only a sub-set of Med Axis({z;,z;}).

Fig. 4.1 Schematic diagram of Geodesic and Delaunay.
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Double point computation. Double points z;; are computed by
processing the boundary of the Voronoi segmentation. This segmenta-
tion is computed as detailed in Section 2.6.1.

The geodesic Delaunay edge curve +; ; joining x; and x; is extracted
by solving two gradient descents to compute the two geodesics joining
x;j to z; and x;, as described in Section 2.5.2.

4.1.3 Delaunay Triangulation

For simplicity, we restrict ourselves to the setting of 2D manifolds, and
consider triangulations of the manifold 2. Although more difficult to
compute, the natural extension to manifolds of dimension d consists
of replacing triangles with simplices, which are convex hulls of d + 1
points.

Triple points. While D(S) indicates an edge structure based on
intersection of pairs of Voronoi cells, it is possible to define a face struc-
ture 7 (S) by looking at the intersection of three Voronoi cells

T(S) ={(,4,k) \Ci N C; NCi, # 0} (4.6)
Similarly to Delaunay edge, triple indices are not ordered, and permu-
tations of (7,7,k) denote the same face. For points in generic position,
a non-empty intersection of three cells is a triple point
V(i,j,k‘) € T(S), Tijk € Ci N Cj N Cp. (4.7)
For each (i,j,k) € T(S), the triple point x; ; ;, lies at the intersection
of three portions of mediatrix

Tigk = Vig N Yk O Ve
It thus corresponds to the geodesic extension of the classical notion of
circumcenter in Euclidean geometry.
The boundary of the open geodesic ball of center x; ; x thus contains
three sampling points

{zi,xj 2} C OBy (x;5%) where B.(z) ={y € Q\ d(z,y) <r}

for r = d(x;,2;%). The Delaunay triangulation possesses the empty
circumcircle property

Ve ¢ {iajvk}v Ty ¢ Br(xi,j,k)- (48)
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The natural extension of triple points to a manifold of dimension d
considers the intersection of d Voronoi cells. This is the geodesic gen-
eralization of the ortho-center of a d-dimensional simplex.

Triple point computation. Triple points x; ;; are computed as a
by-product of the extraction of the Voronoi segmentation detailed in
Section 2.6.1.

Triangulations. If the metric T, is a smooth function of x and if
the sampling S of ) is dense enough with respect to the curvature of
the manifold, one can prove that the Delaunay graph is equal to the
Delaunay triangulation, which means that

V(i,j) € D(S), Ik eI, (i,j,k) € T(9),

see [165]. The number of points needed for the Delaunay triangulation
to be valid depends on the geometry of the manifold, and in particular
on its curvature, see [205].

In particular, there are no isolated edges. If the manifold does not
have boundary, the Delaunay triangulation defines a valid triangulation
of the manifold using the geometric realization (4.3) of the edge.

One can also prove that if the sampling is dense enough, then the
straight line realization (4.4) also gives a valid triangulation in the
Euclidean space in which the manifold is embedded. This Euclidean
triangulation, whose edges are straight segments, is useful for many
applications as detailed in Sections 4.2.3, 4.3 and 4.5.

Delaunay/Voronoi geodesic duality. A primal edge v; ; links two
(primal) samples z;,x; € S, while the corresponding dual edge ’yg'i j links
(dual) triple points z; ;1 and ; ;. The set of triple points

S* ={xijr\ (i,5,k) € T(S)}

thus constitutes a dual sampling of the manifold 2. These points are
connected by dual edges to form polygons which are not necessarily
triangles.

Euclidean Voronoi and Delaunay. The special case of the
Euclidean metric T, = Ids in © = R? has been extensively studied. The
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Fig. 4.2 Example of Voronoi diagram (dashed) and Delaunay triangulation for the
Euclidean metric, with the circumcenter in light gray.

Delaunay triangulation [93] of a sampling S is a valid triangulation of
the convex hull of S. It is furthermore unique for points in generic posi-
tions. It is characterized by the fact that the circumcircle of a triangle
(xi,25,2) for (i,7,k) € T does not contain any other point, which cor-
responds to condition (4.8). There exist several iterative algorithms to
find the Delaunay triangulation of a set of N points in O(Nlog(NN))
operations, see for instance [90].

Figure 4.2 shows an example of Euclidean Delaunay triangulation.

4.2 Geodesic Sampling

The Riemannian metric 7T}, is used to control the quality of a sampling
{z;}icr € Q. Finding a sampling with high quality corresponds to find-
ing a sampling whose density and anisotropy conform to the metric, and
is useful in many applications, ranging from finite element simulations
to computer graphics.

4.2.1 Riemannian Sampling Constraint

Covering and packing sampling constraints. For a given sam-
pling distance € > 0, one looks for a sampling such that all pairs of
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neighboring points are approximately the same distance apart €. The
notion of neighbors is, however, difficult to define. Following [55], one
can replace it by looking at geodesic balls of radius e, already intro-
duced in Equation (3.20)

Be(x) = {y \ d(z,y) <e}.

A sampling S = {z;}ie;r C Q is an e-covering, for some & > 0 if

U B:(z:) =, (4.9)
el
which means that any point x € Q is at a geodesic distance less than e
from S, or equivalently that Ug < e. Figure 4.3, left, shows an example
of e-covering.
To forbid such an e-sampling to contain too many points, one
requires that it is an n-packing in the sense that

Vi,jel, i#j = d(z,x;)>n (4.10)

which means that balls of radius 1/2 centered at points in S do not
overlap. Figure 4.3, middle, shows an example of e-packing.

An e-net is a sampling that is both an e-covering and an e-packing.
Figure 4.3, right, shows an example of e-net. Those sets are also called
Delone sets in [69], and they can be shown to have optimality prop-
erties for the approximation of functions defined on 2. Searching for

e-covering e-packing
Fig. 4.3 Comparison of the packing and covering properties for a Euclidean square (dashed
lines). The light gray circle are Euclidean balls of radius £ while dark circle are balls of
radius e/2.
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an e-covering that is an n-packing for the largest n corresponds to
the problem of (geodesic) sphere packing, and is a deep mathematical
problem even in Euclidean space [81].

An efficient e-net should contain the smallest possible number N
of points. Finding a sampling that satisfies these conditions with the
smallest IV is a difficult problem. A simple greedy procedure to approx-
imate this problem, proposed originally in [126], constructs iteratively
an e-net {x;};cs. It starts by some random point xy € Q and then iter-
atively adds a new point at random that satisfies

k
Tpp1 € O\ Be(wy), (4.11)
i=0
until condition (4.9) is enforced.
Using a random choice in the greedy process (4.11) usually leads
to a poor sampling quality so that IV can be quite large. Section 4.2.2
details a non-random selection process that usually leads to a good
solution.

Distance conforming Riemannian sampling. A way to make
more explicit the control of the sampling by the metric is to use the
Delaunay graph (4.2) as a notion of neighborhood. The sampling is said
to be distance conforming to the metric if

V(i,j) € D(S), Cie <d(mi,x;) < Coe (4.12)

where ¢ is the sampling precision, and C; and Cy are constants inde-
pendent of N.

Note that if S is an e-net, and thus satisfies (4.10) and (4.9), then
(4.12) is satisfied for d(z;,z;) € [e,2¢].

Isotropic metric and density sampling. In the case of an
isotropic metric T, = W(x)%Idg in Q C R the sampling constraint
becomes

€
W(.%'z) ’
Under these conditions, in a Euclidean ball of radius r > 0 centered
at z, the number of samples should be proportional to r¢W (z)?. The

V(i,7) € D(Q),  lwi — zjll = (4.13)
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constraint thus corresponds to imposing that the sampling density is
proportional to W (z)?. In particular, regions of  where W is high are
constrained to use a dense sampling.

One should note that this density sampling requirement does not
correspond to drawing point at random according to the density
W (xz)/ [ W, since one wishes to have neighboring points which con-
form as much as possible to the metric, which random sampling usually
does not achieve.

In 1D, if Q = [0,1], the isotropic sampling problem is easily solved.
A perfect sampling conforming to the metric W (x) is defined as

1 T
z; = F7'(i/N) where F(z) = — / W(y)dy. (4.14)
Jo W Jo
Obtaining a good density sampling for 2D and higher dimensional
manifolds is difficult. A simple greedy procedure is the error diffusion

method [119] and extensions [210], which is mainly used for digital
halftoning [15]. This method operates on a uniform grid, and scans in
a given order the grid cells to reduce the sampling problem to a 1D
repartition problem, similarly to (4.14).

Other approaches, based on irregular planar tilings, offer better per-
formances without periodic artifacts [211, 212].

The following section details a greedy sampling procedure that
can produce a good sampling in practice, and can take into account
anisotropic Riemannian metrics.

Triangulation conforming Riemannian sampling. The sam-
pling condition (4.13) only constrains the length of the Delaunay edges.
For many applications, including the resolution of elliptic PDEs, and
the approximation of smooth images (see Section 4.3), it is also required
that Delaunay triangles in 7(S) are close to being equilateral, when
seen from the metric T,. Roughly speaking, if A € T is a triangle cen-
tered around zg € A, it should be enclosed in two concentric ellipsoids

{z\ ||z - zollz,, < Coe} cAc{z\ |z - zollz,, < Cie}  (4.15)

where e controls the number N of samples and Cy and C] are two
constants. Note that the distance constraint (4.13) does not ensure
that the triangles have approximately equal edges, as shown in
Figure 4.4, center.
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X

~ W

Triangulation conforming Distance conforming Non-conforming

Fig. 4.4 Shapes of triangles with distance and/or triangulation conforming to the Euclidean
constant metric.

4.2.2 Farthest Point Sampling

The farthest point sampling algorithm is a greedy strategy able to
produce quickly a good sampling which turns out to be an e-net. Instead
of performing a random choice in (4.11), it selects the farthest point
from the already selected points

Tpy1 = ar:%;l]ax Ogliiélk d(x;,x). (4.16)
This selection rule first appeared in [126] as a clustering method, see
also [89] for an analysis of clustering algorithms. This algorithm has
been introduced in image processing to perform image approximation
in [114]. Tt was used as well in [71] to perform perceptual grouping
through the iterative adding of key-points and detection of saddle
points (equivalent to the double saddle points above for the geodesic
distance). It was then extended in [220] together with geodesic Delau-
nay triangulation to do surface remeshing.

Figure 4.5 shows some iterations of this farthest point sampling
method for isotropic metrics on a square. One can see that this scheme
seeds more points in areas where the metric W is large. One can thus
control the sampling density by modifying the metric W. Algorithm 7
gives the detail of the algorithm.

Numerical complexity. Denoting
dk(x) = Oglzlgk d(xux) = U{xg,...,xk}(‘r)a
the selection rule (4.16) reads

Tpy1 = argmax di(z),
€
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Metric W (z) N=1 N=5 N =20

Fig. 4.5 Examples of farthest point sampling, the colormap indicates the distance
function Ug.

Algorithm 7: Farthest point sampling algorithm.

Initialization: set x¢ at random, do(x) = d(xo,x), k = 0.
while ¢, > ¢ do
Select point: x;1 = argmax di(x), €xr1 = di(Tr41)-
Distance update: Vz diy;(x) = min(dg(z),d(xg+1,7)).
Set k + k + 1.

while dj41 is computed from dy, as

di+1(2) = min(dg(2), d(Tg11,2)).
This update of the distance map is performed efficiently by a single

Fast Marching propagation, starting from zj1, and restricted to the
Voronoi region of xy11

Crt1={x € Q\ Vi <k, dxgs1,x) <d(zi,z)}.

If the manifold is discretized with Ny points and if the metric
T, does not vary too much, the size of Cp41 is roughly O(Ny/k).
Hence the complexity of each sampling step is O(No/klog(No)),
and the overall complexity of sampling N < Ny points is roughly
O(No log(No)log(NV)).
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Farthest sampling quality. The farthest point sampling {xo,...,
xN-_1} is an e-net for

€= max min d(x;,x;). 4.17

0<i<N 0<j<N (@i, ;) (4.17)
Note however that there is no simple control on the number of sam-
ples N required to achieve a given accuracy . We refer to [69] for
an in-depth study of the approximation power of this greedy sampling
scheme.

4.2.3 Farthest Point Meshing

This section considers the particular case of 2D manifolds Q C R2, or
2D surfaces embedded in Euclidean space. We also restrict ourself to
the case of manifolds without boundaries. Special care is required to
correctly approximate the boundary of the manifold, see Section 4.5.

Having computed a sampling {z;};c; C €2, one can define a triangu-
lation of the manifold €2 using the geodesic Delaunay faces T (S) defined
in (4.6). One can connect the samples using the geodesic curve realiza-
tion (4.3) or using the straight line realization (4.4) if the manifold is
embedded in Euclidean space.

The resulting mesh can be used to mesh a continuous domain or
re-mesh a densely sampled manifold as explained in [221]. Figure 4.6
shows the process of computing the sampling, the Voronoi regions, and
the Delaunay triangulation.

Sections 4.3, 4.4 and 4.5 show applications of this algorithm to the
meshing of images, surfaces and sub-domains.

Triangulation validity and metric gradation. The farthest point
sampling {zg,...,zny_1} is distance conforming, and (4.13) holds for
C1 =1,092=2 and ¢ defined in (4.17). For the sampling to be tri-
angulation conforming and satisfy (4.15), the metric T, should not
exhibit strong variations. For an isotropic metric T, = W (x)?Ids, the
sizing field W (z)~! should be 1-Lipshitz to ensure triangulation con-
formance, and this gradation condition extends to anisotropic metric,
see [158]. If the metric T, exhibits strong variations, it is mostly an
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Metric W (x) Sampling S Voronoi V(S5) Delaunay D(S)

Fig. 4.6 Examples of sampling and triangulations with an isotropic metric Ty, = W (z)21d>.
The sampling is denser in the regions where the metric is larger (dark).

open question how to smooth it so that the modified metric is graded,
although heuristics have been proposed, see for instance [7, 222] for
isotropic gradation and [4, 37, 170] for anisotropic gradation. To mesh
the interior of a domain, a valid graded metric can be defined from a
boundary metric using (4.48).

4.3 Image Meshing

In this section, we consider the case of a 2D manifold parameterized on
a square so that = [0,1]2. The goal is to use the Riemannian structure
to perform image sampling and triangulation.

It is possible to use a user defined metric T, to drive the sam-
pling, as shown in Section 4.3.1. One can also design the tensor field
to minimize the approximation error of an image f(x) using a spline
approximation on the geodesic triangulation. In this case, the eigen-
vectors e (x) defined in (1.16) should match the direction of edges and
textures in the image, while the anisotropy A(z), defined in (1.17),
should match the anisotropic regularity of f near x.
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N =10 N =20 N =30 N =300

Fig. 4.7 Examples of farthest point meshing for different isotropic metrics W(z) (shown in
background) and different values of the number of samples N.

4.3.1 Density Meshing of Images

A geodesic isotropic triangulation with 7}, = W (x)2Ids seeds points
according to a density function W (z)? for = € [0,1]2. Regions where
W (z) is larger get more samples.

Figure 4.7 shows triangulations obtained for several isotropic met-
rics. It shows how the triangulation is refined as the farthest point
algorithm inserts new samples.

4.3.2 Image Approximation with Triangulations

Adaptive image approximation is performed by computing a triangula-
tion 7 of the image and using a piecewise linear finite elements approx-
imation. This class of methods originates from the discretization of
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partial differential equations, where the design of the elements should
match the regularity one expects for the solutions, which might contain
shocks or boundary layers. Iterative adaptation allows to refine both
the solution of the equation and the shape of the elements [2, 239, 259].

The positions of the samples S = {x¢,...,zy_1} and the connec-
tivity of the triangulation 7 should be adapted to the features of
the image. Note that, in general, 7 is not necessarily a Euclidean or
geodesic Delaunay triangulation 7(S) of S. In the following, to ease
the explanations, we consider 7 as a collection of triangles ¢t € T, and
not as sets of indexes.

A piecewise affine function fy on the triangulation is defined as

In= Z aiPi,
i€l
where ; is the hat spline function, that is affine on each triangle and
such that ¢;(x;) =0 for i # j and ¢;(z;) = 1.
The efficiency of the approximation fn is measured using the L
norm on the domain, for 1 < p < +oo

I = Ity = [ 1F@) = Fu@)Pda (4.18)
and

15 = vl = ma [£(@) — (@)l (4.19)

It is possible to use an interpolation of the original image by defining
a; = f(xz;). If one measures the approximation error using the L? norm,
a better approximation is obtained by an orthogonal projection

fn= Zaigai where a = argmin || f — Zdi%”2~ (4.20)
i€l aeRw i

The coefficient a of this approximation fy is computed by solving a
sparse linear system

Viel, Z(%‘, wira; = (f, pi)-

J
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4.3.3 Greedy Schemes

Given a fixed number N of vertices, the goal is to design a triangula-
tion so that the approximation error ||f — fn| zr () is as low as possible.
Such an efficient triangulation is likely to be also efficient for applica-
tions to image compression and denoising, because it captures well the
geometry of the image.

Computing this optimal triangulation is in some sense NP-hard [1],
and one thus needs to rely on sub-obtimal greedy schemes. These
schemes generate a sequence of triangulations by either refinement
(increasing N) or coarsening (decreasing N, starting from a dense
sampling).

Refinement schemes. A greedy refinement scheme starts by a sim-
ple fixed triangulation (7p,So) of the squares [0,1]2, and iteratively adds
one or several vertices to Sj to obtain a triangulation (7j41,5;41) that
minimizes the approximation error.

The Delaunay refinement introduced by Ruppert [247] and
Chew [65], proceed by inserting a single point, which is a circumcen-
ter of one triangle. One also imposes that 7; = 7(S;) is a Delaunay
triangulation of S;. This constraint limits the domain of the optimiza-
tion and thus accelerates the search, and also leads to triangles with
provably good isotropic aspect ratio, which might be useful to compute
an approximation of the solution of an elliptic PDE on the mesh grid.
For image approximation, one however needs to design anisotropic tri-
angulations. This requires to modify the notion of circumcenter, using
an anisotropic metric [124]. Other refinements are possible, such as for
instance edge bisection [190], that reaches the optimal asymptotic error
decay for smooth convex functions.

Coarsening schemes. Triangulation coarsening algorithms start
with a fine scale triangulation (77,5;) of [0,1]?> and progressively
remove either a vertex, an edge or a face to increase the approxima-
tion error as slowly as possible until N vertices remain [112, 123, 135].
One can for instance remove a single vertex to go from S;11 to S, and
impose that 7; = 7(S;) is the Delaunay triangulation of S;. This can
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be shown experimentally to produce highly anisotropic meshes, which
can be used to perform compression, see [94].
4.3.4 Hessian Tensor Metric

In this section, we consider a uniformly smooth C? image defined on €.
We show how to design locally a metric Ty so that if the triangulation
conforms to this metric, || f — fn|zr(q) is as small as possible.

Local error optimization. Near a point = € €2, the error obtained

when approximating f with an affine function is governed by the
Hessian matrix H; of second derivatives :

82
Hy(x) = <8$i8ij (w))ogi’jgl. (4.21)

One can diagonalize this symmetric matrix field as follows

Hy(x) = M (z)er(x)er ()" + Aa(z)ea(z)ea ()T, (4.22)

where (ej,e2) are the orthogonal eigenvectors fields and |A1]| > A2 are
the eigenvalues fields.

In the following, we assume that Hy does not vary too much so
that it can be considered as constant inside each triangle t € 7. This
heuristic can be made rigorous, see for instance [190].

Performing a Taylor expansion of f near a vertex xj € t for a tri-
angle t € T of the triangulation leads to

[f(@) = fn(@)] < CIh(an)ll{e — 2k, er(an)? (4.23)
+ Ca(a) |z — i, ea (). (4.24)
where C'is a constant that does not depend on N. Denoting as Aj(zy)

and Ag(xy) the size of the triangle ¢ in each direction e (zx) and ea(zy),
one obtains the pointwise error bound

[f(z) = fn(2)| = O (Aa(@)|As(zr)® + Po(ar)|Az(zx)?) . (4.25)

Uniform triangulation. For a uniform triangulation, where all
the triangles t € T are approximately equilateral with the same size,
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one has
Aq(z) = Ag(z) =~ N~Y2,
so that the approximation error in (4.25) leads to

If = fnlle) < CllHf | o N (4.26)

where the LP norm of the Hessian field is
HHf”Izp(Q) = |A1(z)[Pd.
Q

Isotropic triangulation. An isotropic triangulation makes use of
triangles that are approximately equilateral, so that Aj(x)~ As(x),
and the error (4.25) leads on each triangle t € T to

1 1

If = fnllze@) < CllHyl Loy where 4 =1+ >
In order to reduce as much as possible the approximation error
|f — fnlzr(q) on the whole domain, a heuristic is to equidistribute the
approximation error on all the triangles. This heuristic can be shown to

be nearly optimal, see [190]. This criterion requires that for z € t € T,
| H oy = (61790 ()| & Ao () 1A ()| (4.27)

is approximately constant, where [t| is the area of the triangle. This
means that the triangle ¢ located near x; should have approximately
constant edge size, for the isotropic Riemannian metric 7T}, defined as

T, = W(z)?Idy where W (z)? = |\ (x)]%. (4.28)

For instance, if one measures the approximation error using the L*°
norm, then W(x)? = |A1(z)|. An adaptive isotropic triangulation con-
forming to the metric (4.28), so that (4.15) holds, gives rise to an
approximation error

_ 1 1
If = Inllzr@) < CllHflLo@N™"  where PR (4.29)
Since ¢ < p, note that the constant appearing in the isotropic approx-
imation (4.29) is much smaller than the constant in the constant size
approximation (4.26).
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Anisotropic triangulation. As detailed in [14], for a smooth func-
tion, one should use anisotropic triangles whose aspect ratio match the
anisotropy of the image. To reduce as much as possible the point-wise
error (4.23), the error along each axis e, ey should be approximately
equal, so that the anisotropy of the triangles should satisfy

Ai(z) _ [ra(2)]
NERR NG (4.30)

)
Under this anisotropy condition, the error (4.23) leads on each triangle
teT to

1f =l < CH‘/ [det(Hy)|

see [190]. Similarly to the isotropic case (4.27), the equidistribution of

1 1
, where — =1+ —,
La(¢) q p

error criterion leads to

| Iaentrty)

~ 9/ I (@) Aa ()| (4.31)

La(t)

~ (A1 (z) Do (@) VIV M () Ae(zr)| (4.32)

being approximately constant.
Conditions (4.30) and (4.31) show that a triangle of an optimal
triangulation for the LP norm should have its edges of equal length

when measured using the following Riemannian metric
T, = | det(Hy(2))| % |Hy ()] (4.33)
where the absolute value of the Hessian is
|[Hy (@) = [Ai(@)]er(w)er ()" + [Na(@)]ea(@)ea(w) "

For instance, when using the L> norm, the metric is T, = |Hs(x)]|.
Note that when p < co, the metric (4.33) is singular at points x where
det(Hs(x)) = 0. This can be avoided numerically by using

T, = (|det(Hp ()| + )7 |Hy ()|

for a small € > 0.
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An adaptive anisotropic triangulation conforming to the metric
(4.33), so that (4.15) holds, gives rise to an approximation error
1 1 1
I = Il < Cly/ 1At H @ N where = =1+ . (4.34)
Note that the constant appearing in the anisotropic approximation
(4.34) is much smaller than the constant in the isotropic approximation

(4.29).

Farthest point Hessian triangulation. Equations (4.28) and
(4.33) give, respectively, the optimal isotropic and anisotropic Rieman-
nian metric that should be used to design triangulations in order to
approximate smooth functions. One can thus use the farthest point
meshing algorithm detailed in Section 4.2.3 to compute an e-net that
conforms to this metric.

Figure 4.8 shows the evolution of the meshing algorithm for the
anisotropic metric (4.33) for the L*° norm. Figure 4.9 shows a compar-
ison of the isotropic and anisotropic metrics. One can see the improve-
ment brought by adaptivity and anisotropy.

4.3.5 Structure Tensor Metric

The optimal Hessian-based metrics (4.28) and (4.33) are restricted to
the approximation of smooth images. Furthermore, these metrics are
quite unstable since second order derivatives are difficult to estimate
on noisy images.

To approximate images with step edges, or noisy images, the com-
putation of the optimal metric requires a prior smoothing of the image,
and the amount of smoothing depends on the noise level and the num-
ber of samples V. Coarse approximation corresponding to a small value
of N or a large noise level requires a larger smoothing kernel.

An alternative method computes a robust estimation of both edges
and textures directions from first order derivatives using the so-called
structure tensor. There is no optimality result for approximation
using such first order metrics, but they show good results for image
approximation [39].
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Fig. 4.8 Geodesic image meshing with an increasing number of points N, for the curvature-
driven metric defined in (3.16). Top row, geodesic distance Ug; bottom row, geodesic Delau-
nay triangulation D(S).

Isotropic T, = |H¢(x)|Id2 Anisotropic T, = |H(x)|

Fig. 4.9 Comparison of isotropic and anisotropic triangulation of a C? image, with N = 800
points.
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Structure tensor. The local orientation of a feature around a pixel z
is given by the vector orthogonal to the gradient v(x) = V f(x), which
is computed numerically with finite differences. This local direction
information can be stored in a rank-1 tensor T'(z) = v(z)v(z)". In order
to evaluate the local anisotropy of the image, one needs to average this
tensor

T(z) =T x Gy(x) (4.35)

where the four entries of the tensor are smoothed against a gaussian
kernel G, of width ¢ > 0. The metric T corresponds to the so-called
structure tensor, see for instance [156]. This local tensor T' is able to
extract both the local direction of edges and the local direction of
textural patterns.

At each pixel location x, the structure tensor field can be diagonal-
ized in an orthogonal basis (e1,e2)

T(z) = m(2)er(z)er(z) + pa(w)ea(w)ea ()", (4.36)

where p; > po > 0. In order to turn the structure tensor 7T'(x) into a
Riemannian metric T,,, one can modify the eigenvalues using increasing

mappings v,

Tp = r(pu(@))er(@)er(z) + Ya(uz(z))ea(@)es(x) " (4.37)

for instance v;(a) = (¢ + a)? for a small value of ¢ and some 3 > 0.
The parameter ¢ controls the isotropic adaptivity of the metric, while
controls the overall anisotropy. A well chosen set of parameters (g, ()
allows one to enhance the resulting image approximation scheme.

Figure 4.10 shows an example of Fast Marching propagation using
an anisotropic metric T, computed using the structure tensor.

Anisotropic geodesic meshing for image compression. It is
possible to use anisotropic triangulations to perform image compres-
sion. This requires to quantize and code the positions of the vertices
{zi}icr and the value of {fn(x;)}icr. Optimizing the distortion rate
of the resulting code is difficult because of the lack of orthogonality



322  Geodesic Sampling

H’J

Fig. 4.10 Examples of anisotropic front propagation (from nine starting points). The col-
ormap indicates the values of the distance functions at a given iteration of the algorithm.
The metric is computed using the structure tensor, Equation (4.35), of the texture f shown
in the background.
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Fig. 4.11 Comparison of the adapted triangulation scheme [39] with JPEG-2000, for the
same number of bits, for N = 200 (top) and N = 600 (bottom) vertices.

of the spline approximation, so one has to use heuristics to derive
quantization rules.

Figure 4.11 shows an example of image coding with a geodesic tri-
angulation, see [39] for more details about the coding process.
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4.4 Surface Meshing

The farthest point sampling algorithm can be used on a surface S C R?
represented by a discrete 3D mesh that is densely sampled. The method
thus performs a sub-sampling followed by a geodesic remeshing of the
original triangulated surface.

The density and anisotropy of the final mesh is controlled by a met-
ric T3 defined on the tangent plane 7z of the surface S, as introduced
in Section 2.4.1. The resulting adaptive mesh can be tuned by the user
using a metric computed from a texture map or from the curvature
tensor.

4.4.1 Density Meshing of Surfaces

A geodesic isotropic triangulation with T3 = W (#)2Ids seeds points
according to a density function W (Z)? for € S.

Figure 4.12 shows an example of uniform remeshing of a surface
S € R? acquired from medical imaging with an increasing number of
points, with a constant metric W (z) =1 for z € S.

Figure 4.13 shows an example of uniform remeshing of the David
surface, where the original input surface was obtained by range scan-
ning [166].

As explained in Section 3.2.4, one can define a varying density W (z)
on the surface. This allows to obtain an adaptive isotropic remeshing
of the surface. Figure 4.14 shows how a varying metric (bottom row)
W (Z) is able to modify the sampling.

The weight W (Z) that modulates the metric of the 3D surface can
be computed using a texture map. One can use a gradient-based metric
as defined in (3.12), in order to put more samples in regions of large
variation in the texture, see also Figure 3.12. Figure 4.15 shows an
application of this idea to the adaptive remeshing of 3D faces.

We note that many alternative algorithms have been proposed
for isotropic remeshing of surface according to a density field, see
the review [5]. It is, for instance, possible to use a planar parame-
terization of the surface and to use techniques from isotropic image
sampling [8].
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N = 1000 samples Triangulation

N = 10000 samples Triangulation

Fig. 4.12 Geodesic remeshing with an increasing number of points.

4.4.2 Error-driven Surface Meshing

We denote by Sy the piecewise linear surface obtained from a
triangulation 7. Instead of using a user defined metric T; for € S, it is
possible to design the metric to minimize the approximation error of S
using Sy . This problem extends the design of optimal triangulations to
approximate images as exposed in Section 4.3.2. Indeed approximating
an image f(x1,x2) corresponds to the approximation of a parametric
surface

(:L‘l,l‘Q) S [0,1]2 — (l’l,xg,f(l‘l,l'g)) € R3. (4.38)
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Original, 10% vertices Remeshed, 10 vertices Zoom

Fig. 4.13 Uniform remeshing of the 3D David surface.

Measuring distortion between surfaces is more difficult than mea-
suring distances between functions as done in (4.18) and (4.19), because
the set of surfaces is not a vector space, so that one cannot use classical
functional norms.

The natural extension of the LP distances to surfaces is the LP
Hausdorff distances

5p(81,82) = maX(Sp(Sl,Sz),Sp(SQ,Sl)) (4.39)

where the non-symmetric distance is

5,(S1,52)? :/ min [z — y[Pde
S1 YES2

and

000 (81,82) = max min |z — y.
TES] YES2
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N = 300

Fig. 4.14 Adaptive remeshing with a constant density (top) and a density linearly decreasing
from left to right (bottom).

Several algorithms perform fast approximate computations of these dis-
tances between meshes, see for instance [13, 67, 265], with applications
to collision queries between surfaces [173].

Greedy schemes. Computing the optimized triangulated surface Sy
to minimize §(S,Sy) given some N > 0 is a difficult problem. One has
to use sub-optimal greedy schemes that extend the methods detailed
in Section 4.3.3 to the setting of surfaces. Popular algorithms include
coarsening schemes that start from a dense triangulation of the sur-
face [123, 135] and curve tracing methods that follow the curvature
principal direction [6].
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Texture f(Z) Metric W ()

p(W) =1 p(W) =3 p(W) =10

Fig. 4.15 Adaptive remeshing with a density given by a texture. The adaptivity ratio
p(W) = max W/ minW is increasing from left to right.

Since the Hausdorff metric (4.39) is significantly more difficult to
compute and optimize than LP norms, one has to use approximate
metrics computed using various heuristics [135] or quadratic approxi-
mations [123].

Curvature-based isotropic metrics. Following the approach
derived in Section 4.3.4 for functions, adapted approximations should
follow the second order geometry of a smooth surface, and the Hessian
matrix Hy defined in (4.21) is replaced by the second fundamental form
J, defined in (3.14), where ¢ is a local parameterization. Indeed, for
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the special case of an altitude field (4.38), these two tensor fields are
the same.

The extension of the isotropic metric (4.28) to surfaces makes use
of the norm of the second fundamental form

W (2)? = |J,(x)| where & = p(x). (4.40)
One can prove that an isotropic triangulation conforming to this metric
leads to an asymptotic optimal approximation of C? surfaces for ..
Note that this isotropic metric is optimized for approximation, and is
in some sense the inverse of the metric (3.16) that is designed to force
geodesic curves to follow salient features.

Figure 4.16, middle, shows such an example of curvature-adapted
remeshing that improves the reconstruction of sharp features with
respect to a uniform sampling, because more points are allocated in
regions of high curvature.

Curvature-based anisotropic metrics. The quality of the approx-
imation is further improved by making use of anisotropic triangulations.
The extension of the anisotropic metric (4.33) to surfaces is the absolute
value of the second fundamental form

Ts = |Jp(2)] = [ (@)er(z)er(z) + |pa(@)|ea(z)ea(z)”,  (4.41)

T = 1dz 15 = |Jp()|1d2 15 = |Jp(2)]

Fig. 4.16 Comparison of constant, isotropic and anisotropic surface remeshing, with N =
3200 points.



4.5 Domain Meshing 329

where the eigen-decomposition of the fundamental form is introduced
in (3.15). One can prove that an anisotropic triangulation conforming
to this metric leads to an asymptotic optimal approximation of C?
surfaces for d [69, 129, 130].

Figure 4.16 shows a comparison of surface remeshing using a con-
stant metric, and metrics (4.40) and (4.41).

4.5 Domain Meshing

This section considers the meshing of a manifold with boundaries,
which has important applications for numerical simulations with finite
elements. We restrict ourselves to 2D manifolds with boundaries.
Extension to higher dimensional manifolds makes use of the same line
of ideas, but it is significantly more difficult to maintain mesh elements
with good quality.

Section 4.5.1 presents a generalization of the farthest point sampling
strategy, while Section 4.5.2 details the constraints that impose the
meshing of the boundary of the manifold. Section 4.5.3 puts everything
together and details the extension of the farthest point meshing to
handle boundaries.

4.5.1 Delaunay Refinement

The farthest point method automatically selects at each step the best
point so that the sampling conforms to the Riemannian metric and is
evenly spread over the domain according to the geodesic distance. It
does not take into account the shape of the triangles, which is however
important for some applications. For instance, for the numerical sim-
ulation of elliptic PDEs, it is necessary to have triangles that are as
equilateral as possible. For other applications, triangles are allowed to
have small angles, but should not have large angles, see [259]. It is pos-
sible to generalize the farthest point strategy using another selection
rule among the set of local distance minimizers, which are the triple
points defined in (4.7).

Triple point refinement. Except maybe during the first few iter-
ations of the farthest point seeding, one notes that the farthest point
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selected by the algorithm is a triple point x; ;¢ for (i,7,k) € T(S), as
defined in (4.7), or possibly a point located along the boundary. A gen-
eralization of this scheme inserts an arbitrary triple point at each step
x; j i according to some quality measure p(i, 7, k). The greedy insertion
rule (4.16) is replaced by

Thi1 = Tj» j* j»  Where (i%,5%,k%) = argmax p(i,7,k). (4.42)
(i,,k)ET(S)

The farthest point refinement corresponds to the quality measure

p(Z,],k‘) = d(xivmi,j,k) = US(mi,j,k’)' (443)

In the Euclidean case T, = Idy, one can prove that this generates uni-
form triangles with good quality, so that triangles do not have small
angles [64].

A popular insertion rule, that also maintains triangles of good qual-
ity, but generates less triangles, selects a triangle (7,7,k) € T(S) with
the largest ratio of the circumradius to the shortest edge:

d(:ci’j’k,a;i)

p(i7j7k) - min(d(mi,xj),d(xj,xk),d(xk,xi))' (4.44)

This quantity can be computed for each triple point in parallel to the
Fast Marching propagation.

In the Euclidean domain, a triangle (z;,x;,x)) with a large value of
p(i,7,k) is badly shaped since its smallest angle is close to 0, as shown
in Figure 4.17. The selection rule (4.42) with the measure (4.44) thus

Low p(27], k) Large p(lv.]v k)

Fig. 4.17 Examples of triangles with low (left) and large (right) aspect ratio.
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tends to replace a badly shaped triangle by several smaller triangles
of smaller size. It can be shown that similarly to the farthest point
measure (4.43), the measure (4.44) leads to a triangulation without
small angles [63, 247, 258].

As explained in [158], this property extends to an anisotropic metric
T, if angles are measured using the inner product defined by T,. One
should note that the measure (4.44) does not produce adapted trian-
gulations that conform to the metric T, since the length of the edges
is not monitored.

Euclidean Delaunay refinement. In the Euclidean setting, these
methods were introduced by Ruppert [247] and Chew [63, 64], see
also [258] for an in-depth analysis of these approaches, and [25] for a
review of the methods. These methods choose at each iteration a triple
point, which is a circumcenter of the Delaunay triangulation, while
taking into account the boundary as explained in Section 4.5.2. These
methods have been extended to build anisotropic meshes with a vary-
ing density using a local modification of the metric [36] or anisotropic
elastic forces [38] and bubble packing [292].

4.5.2 Constrained Delaunay triangulation

For now we have either considered Riemannian manifolds without
boundaries, or did not care about the reconstruction of the bound-
ary. However, in some applications such as numerical simulation of
PDEs, it is important that the meshing conforms to the boundary of
the domain. In particular, the boundary of the discrete mesh should
precisely approximate the boundary of the continuous manifold.

Manifold with boundary. In the following, we denote i <> j to indi-
cate that z;,x; € S N 0N) are consecutive along the boundary (no other
points zj € I is between them).

To simplify the notations, we treat the outside of the shape as a
Voronoi cell ¢ = Cz associated to a virtual vertex x=, and consider
the set of indices I ={Z,0,...,N — 1}. This allows us to extend the
notion of triple points (4.7) and Delaunay faces (4.6). This extension
thus creates virtual exterior faces (Z,4,7) € 7(S) which indicates that
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two Voronoi cells C; and C; intersect at the boundary of the manifold.
The associated triple point z=; ; thus lies along the boundary.

Constrained triangulation. To mesh correctly the boundary 02 of
the manifold, we require that it is part of the Delaunay graph D(S),
which means that

Vi §, (i,§) € D(S).

This corresponds to a Delaunay triangulation constrained by the con-
nections defined by the boundary.

This requirement is quite strong, since it might happen for an
arbitrary geodesic Delaunay triangulation that a third point z € S
encroaches the edge i <> 7, which means that

(2,4,k) € T(S) or (Z,5,k)€T(9).

In this situation 7 <> j is not part of the Delaunay graph.

Figure 4.18, left, shows a valid situation where i <> j is part of the
Delaunay graph. Figure 4.18, right, shows a situation where xy, is close
to the boundary 0f) and hence encroaches the edge i <+ j.

4.5.3 Geodesic Delaunay refinement

It is possible to use the farthest point sampling algorithm, Algorithm 7,
to mesh a manifold with boundary. Some care should be made in the
algorithm so that the boundary of the domain is included in the Delau-
nay triangulation.

T2, T2k TEjk

Fig. 4.18 Left: the vertex xj, does not encroach the boundary curve i <+ j because (z;,z;)
is a Delaunay edge. Right: the vertex zj encroaches the boundary curve i < j.
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Encroaching vertex fixing. It might happen that a newly inserted
farthest point z; encroaches a boundary Delaunay edge i <> j. In this
case, it is necessary to add to S a new boundary vertex Z;; € 0f)
between x; and x;, that is selected at the same geodesic distance from
the two boundary point

."Z‘i’j € 0f) where d(:l?@',i‘i,j) = d($j,£i’ijj). (4.45)

Note that ; ; is not necessary equal to the double point z; ; defined in
(4.5), since a double point is not constrained to lie on the boundary.

Isolated vertex fixing. As already noticed in Section 4.1.3, the
Delaunay graph might not be a valid triangulation of the manifold.
This is the case when a vertex z; such that (i,7) € D(S) is isolated,
which means that it is not part of the triangulation

VEk, (i,4.k) & T(S).
In this case, it is necessary to add a new vertex Z; ; € () located in the
Voronoi boundary between x; and x;, such as for instance

z;; = argmax d(z;, ), (4.46)
xECiﬂCj

although other choices are possible.

Pseudo-geodesic Delaunay refinement. In order to incorporate
global constraints within a provably correct Delaunay refinement
scheme, Labelle and Shewchuk [158] make use of a Riemannian metric
T, and use the pseudo-distance

d(z,y)* = (x — y) Tu(z — y). (4.47)

Note that d is not equal to the geodesic distance d(z,y) unless T, is
constant. In particular it is not symmetric and does not satisfy the tri-
angular inequality. For instance, Voronoi regions according to d might
have several connected components, which makes them more difficult
to handle.

If one considers close enough points z and y, d(x,y) is however a
good approximation of the geodesic distance, and is easier to manip-

ulate numerically. Labelle and Shewchuk [158] generalize Delaunay
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refinement using this pseudo-geodesic metric cz, and they prove that
for a large enough number of points, this algorithm produces a correct
triangulation conforming to the metric field.

This algorithm is extended in 3D by [32, 33] and to domains with
curves by [294]. This pseudo-geodesic distance d has also been applied
to image sampling [116] and surface remeshing [278].

Geodesic Delaunay refinement. It is possible to truly extend
the Delaunay refinement to the manifold setting by generalizing the
geodesic farthest point sampling and meshing [40]. This necessitates to
compute geodesic distances on a fine grid using the numerical schemes
detailed in Section 2, but creates a high quality mesh even if the number
of samples is quite low, because the geodesic distance d(x,y) integrates
better the variations and the anisotropy of the metric 7, than the
pseudo-distance d(z,y) does.

A geodesic domain meshing algorithm is proposed in [40], which
generalizes the approach of [158] by making use of the true geodesic
distance inside the domain. It iteratively inserts the triple point wx; ;
with the largest aspect ratio p(i,j,k). During the iterations, bound-
ary middle points Z; ; defined in (4.45) and isolation fixing points Z; ;
defined in (4.46) are added. This maintains the geodesic Delaunay tri-
angulation as a valid planar constrained triangulation of €.

A bound 7, on p enforces the refinement to reach some quality
criterion, while a bound ny on Ug enforces a uniform refinement to
match some desired triangle density.

Algorithm 8 details this algorithm. Note that this algorithm only
requires a local update of the distance map Ug and the Voronoi seg-
mentation when a new point is added, so its complexity is similar to
the complexity of the farthest point algorithm.

Similarly to the meshing method [158] with the pseudo geodesic
distance (4.47), one can prove that this algorithm provides a valid tri-
angulation of the domain if the metric does not have large variations.

4.5.4 Examples of Geodesic Domain Meshing

Isotropic Geodesic Refinement Examples. Figure 4.19, left,
shows an example of uniform domain meshing using a constant metric
T, = Ids together with this modified farthest point method.
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Algorithm 8: Geodesic planar domain meshing algorithm.
Initialization: set S so that 0 is covered by D(S).

repeat
Boundary enforcement: while it exists ¢ <> j encroached,

add S+ SU {i@j}.
Triangulation enforcement: while it exists (i,5) € D(S)
with x; isolated, add S < S U {z; ;}.

Select point: (i*,5*,k*) = argmax p(i,j,k). Add it:
(i,,k)ET(S)

S <— S U {xi*,j*,k*}'
until p(i*, 7%, k*) <n, and Us(zix j« 1) < U ;

N =100 N =200 N =400

Fig. 4.19 Uniform shape meshing with an increasing number of points, with T = Ids.

It is possible to make use of an isotropic metric T, = W (x)?Ids to
modulate the sampling density. One can define

W (2)? = p(d(z,0%)),
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where 1) is a decaying function and d(x,0Q) is the distance to the
boundary, which is the distance transform defined in Section 2.7. This
metric tends to seed more points on the boundary of the shape 2.

Another popular choice makes use of the local feature size, which is
the distance to the medial axis of the boundary

VeeQ, ~(z)=d(z,MedAxis(0Q)).

The local feature size of the boundary is extended into the interior of
the domain as a K-Lipschitz regular function

W(@)™! = min Kllz = ]+ (). (4.43)

see for instance [7]. The rationale is that W (x) is large in regions where
the boundary has a large curvature, and inside thin elongated part of
the shape 2, where small equilateral triangles are required.

This K-Lipschitz sizing field f(x) = W(x)~! defined in (4.48) is the
solution of an Eikonal equation

Vee, [Vf(@)]l=K and VyedQf(y)=(y).

Its solution can thus be approximated on a dense regular grid using
the Fast Marching algorithm described in Section 2.3, using the value
of v(y) as non-zero initial values on the boundary.

Example of Anisotropic Geodesic Refinement. Figure 4.20
shows an example of anisotropic meshing, obtained by the farthest
point selection measure (4.43). The user controls the shape of the tri-
angles by designing the tensor field 7. In this example, the anisotropy
of the metric is fixed, and the orientation of the tensor is defined by
diffusing the orientation of the tangent to 952 inside the domain.

4.6 Centroidal Relaxation

Greedy sampling methods do not modify the location of an already
seeded vertex. It is possible to enhance the quality of a greedy sampling
by some global relaxation scheme, that moves points in .S to minimize
some energy E(S). This energy depends on the problem the sampling is
intended to solve. This section considers a quantization energy popular
in applications ranging from clustering to numerical integration.
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Fig. 4.20 Example of anisotropic domain meshing.
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A general rule to design an energy is to look for a sampling S that
minimizes a weighted LP norm over M of the geodesic distance map
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Usg to S

E(S) = /( Us(y)Pdy = ernel}lp d(zi,y)Pdy, (4.50)

where p(y) > 0 is a weighting function. Introducing the Voronoi seg-
mentation V(S) defined in (4.1), this energy is re-written as

= > / d(zs,y)Pdy.

C;iev(s

This minimization (4.49) corresponds to finding an optimal discrete
sampling to approximate the continuous manifold €2, and is referred to
as an optimal quantization problem [130].

Optimal sets for the quadratic quantization cost (p=2) can be
shown to be asymptotically (when N is large) e-nets, in the sense that
they satisfy (4.9) and (4.10) for some e that depends on N and the
curvature of the manifold, see [69] and also [129, 130].

When the manifold is Euclidean = R?, the optimization of (4.50)
becomes

i i ; — y|[Pdy. 4.51
min [ plymin o — ylPdy (151)

This corresponds to the problem of vector quantization in coding [177].
This is also related to the problem of approximating a probability den-
sity p by a discrete density composed of Diracs at locations {x; };cr, and
to the search for optimal cubature rules for numerical integration [109].

4.6.2 Lloyd Algorithm

The energy E is highly non-convex, and finding an optimal set of N
points that minimizes F is difficult. One has to use an iterative scheme
that converges to some local minimum of F. A good initialization is thus
important for these schemes to be efficient, and one can for instance
use an initial configuration computed with the farthest point algorithm
detailed in Section 4.2.2.

Joint minimization. The minimization (4.49) on the points is
replaced by a joint optimization on both the points and their associated
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regions
in E(S)= : E(S — d(z;,y)Pd
i BlS) = o in, o E5Y) Z/cip (y)d(wi;y)*dy

C; ey
where Py () is the set of partitions of the manifold © in N non-
overlapping regions, so that V € Py () is equivalent to

Jci=9 and Vi#j ¢ne=acnac.
C; ey

Lloyd coordinate descent. Lloyd algorithm [177], originally
designed to solve the Euclidean problem (4.51), minimizes alternatively
E(S,V) on the sampling point S and on the regions V. It alterna-
tively computes the Voronoi cells of the sampling, and then updates
the sampling to be centroids of the cells. Algorithm 9 describes the
Lloyd algorithm, and the next two paragraphs detail more precisely
the two update steps that are iterated.

Region update. For a fixed sampling S = {z;};cs, one can see that
the minimizer V* of E(S,V) with respect to V is the Voronoi segmen-
tation

V* = argmin E(S,V) = V(9). (4.52)
VGPN(S)

Sample update. For a fixed tessellation V = {C; };cr € Pn(Q) of the
manifold, the minimizer of E(S,V) with respect to S is

argmin E(S,V) = {cy(Ci) }ier,
|S|=N

Algorithm 9: Lloyd algorithm.

Initialization: set S(© at random, £ < 0.
repeat

Region update: V(1) = P(50),
(e+1) cp(ci(é-i-l))'

)

Sample update: Vi e I, x

Set £ < ¢+ 1.
until |S©) — SED| < n;
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where the p-centroid ¢,(C) of a region C is

¢p(C) = argmin Fe(z) = /p(y)d(a;,y)pdy. (4.53)
x€Q) c

If p > 1, this minimum is unique if C is small enough.

Convergence of the algorithm. The energy E(S)) decays with ¢
during the iterations of the Lloyd algorithm. One can show that this
algorithm converges to some final sampling S* under some restrictive
hypothesis on the manifold [108]. The final sampling S* is a local mini-
mizer of the energy F, and is a so-called centroidal Voronoi tessellation,
because the samples are the centroids of the voronoi cells,

S* ={cp(C) Yier where {C}'}; = V(5%) (4.54)
where the centroid is defined in (4.53). Centroidal Voronoi tessellations
find many applications, see for instance the review paper [109].

The functional E can be shown to be piecewise smooth [176]. It is

thus possible to use more efficient optimization methods to converge
faster to a local minimum, see for instance [107, 176].

Euclidean Lloyd. In the case of a Euclidean manifold Q = R? with a
Euclidean metric T, = Idg, d(x,y) = || — y||, the minimization (4.53) is

() = argmin Ee(z) = [ p(o)le —ylPdy.  (159)
z€R4 C
For p = 2, it corresponds to the center of gravity (average)
1
(€)= m(@) = [ plwwdy. (4.56)
Jer Je

For p > 1, the functional E¢ to minimize is smooth, and ¢,(C) can thus
be found by gradient or Newton descent.

Figure 4.21 shows an example of iterations of the Euclidean Lloyd
algorithm for p =2. The computation is performed inside a square
Q C R?, so that Voronoi cells are clipped to constrain them to lie inside
Q.

For p <1, E¢ is not smooth, and ¢,(C) can be approximated by
re-weighted least squares

1
(k+1) — i / (k+1) — yl?dy = / (k+1) d
& argmin [ p T p ,
xge i e ] yl~dy fc k1) J, (y)ydy
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(=0 =1 ¢ =100

Fig. 4.21 Iterations of Lloyd algorithm on a square with Euclidean metric, for a constant
density p =1 (top) and a varying density p(x) larger for z in the middle of the square
(bottom). Blue segments depict the Voronoi cells boundaries, and red segments represent
the Delaunay triangulation.

where the weights at iteration k are

P (y) = ply) D — g2,
For p =1, ¢;(C) is a multi-dimensional median of the set C, that extends
to arbitrary dimension the 1D median.

Relation to clustering. This algorithm is related to the K-means
clustering algorithm [139] to cluster a large set of points {y;}jcs C R,
K-means restricts the computation to discrete points in Euclidean
space, so that (4.51) is replaced by

E(S) = j;}rglelp pillzi = ;[P
Step (4.52) corresponds to the computation of a nearest neighbor for
each point y;

VjeJ, k:j(.@) = a,rgnllin ngg) -yl
S
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In the case p = 2, step (4.53) is replaced by an average

) 1
T, = - E : PiY;-

4.6.3 Centroidal Tessellation on Manifolds

The update of the Voronoi cells (4.52) can be computed on arbitrary
discrete manifolds as detailed in Section 2.6.1.

The computation of the centroid ¢, in (4.53) is more difficult. When
p = 2, it corresponds to an intrinsic center of gravity, also called Karcher
or Frechet mean [143]. Such an intrinsic mean is popular in com-
puter vision to perform mean and other statistical operations over high
dimensional manifolds of shapes [154], see for instance [163].

Approximation by projection. If the manifold is embedded in a
Euclidean space, so that Q C R? for some d, it is possible to replace the
geodesic distance d(z,y) by the Euclidean one ||z — y| in R? in (4.53),
to obtain

&,(C) = argmin Be(z) = / sl — ylPdy
e C

which is called a constrained centroid [111].

For the case p = 2, it is shown in [111] that if é3(C) is a local min-
imizer of Eg, then &(C) — m(C) is orthogonal to the surface at &(C),
where m(C) is defined in (4.56).

One can thus compute a constrained centroid as the projection of
the Euclidean center of mass

¢2(C) = Projo(m(C)) where Proje(x) = argmin ||z — y||.
yeC
If the Voronoi cells are small with respect to the curvature of the man-
ifold, one can show that ¢3(C) is an accurate approximation of co(C).
This constrained centroid method can be used to perform grid
generation on surfaces, see [110].

Approximation by weighted centroid. For a Riemannian mani-
fold over a parameterized domain  C R?, it is possible to approximate
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the anisotropic metric T, by an isotropic metric T, = W (z)?Idy, for
instance using the average of the eigenvalues of the tensors

W (z)? = Trace(T})/d

and replacing the geodesic distance by a Euclidean one

d(z,y) =~ W(y)|z -y,

which is accurate if x and y are close and if T}, is not too anisotropic.
The original minimization (4.53) is then replaced by a weighted center
of mass computation

1
fc pW

This method has been used for isotropic surface remeshing in [8]. In

argmin / pW)W () z — yldy =
r€RY C

/c p(y)W (y)ydy.

this setting, the manifold is two-dimensional and corresponds to a 2D
parameterization of a surface in R3.

Computation by gradient descent. When p =2, if C is small
enough, the function E¢ is smooth, and its gradient can be computed as

vEw) = [ ptan) 2D gy @57)
c 172, (0)]
where 7., € P(z,y) is the geodesic joining z and y such that

Yay(0) = .

A local minimizer of E¢ for p =2 can be obtained by gradient
descent, as proposed in [162, 291]. The computation of the gradient
(4.57) is implemented numerically by performing a Fast Marching prop-
agation starting from x, as detailed in Section 2.2.2, and then extract-
ing geodesic curves v, , for discretized locations y € C as detailed in
Section 2.5.1.

This method has been used in [219] to perform segmentation on 3D
surfaces. Figure 4.22 shows examples of the geodesic Lloyd algorithm
on a square for an isotropic metric. Note that in this case, it gives
results similar to the weighted Euclidean Lloyd, Figure 4.21, for a dense
sampling. Figure 4.23 shows examples of iterations of the geodesic Lloyd
algorithm on surfaces.
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........

£=30

Fig. 4.22 Tterations of Lloyd algorithm on a square with an isotropic metric Ty, = W (z)21d>.
Top row: constant metric W (z) =1 (Euclidean case); bottom row: varying metric W(z),
that is larger in the center.

4.7 Perceptual Grouping

Perceptual grouping is a curve reconstruction problem where one wants
to extract a curve from an image containing a sparse set of curves
embedded in noise. This problem is relevant both to model good con-
tinuation perception laws [117, 289] and to develop efficient edge detec-
tion methods. In this paper, we restrict ourselves to the detection of a
set of non-intersecting open or closed curves, although other kinds of
topological or regularity constraints could be enforced.

The idea of using anisotropic information to perform perceptual
grouping was introduced in [131] where the completed contours are local
minimizers of a saliency field. Many variational definitions of perceptual
contours have been proposed using local regularity assumptions, for
instance with the elastica model of Mumford [196], or good continuation
principles [99].
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=0 (=2 =20

Fig. 4.23 Tterations of Lloyd algorithm on surfaces.

Riemannian grouping. The grouping problem can be formulated
as finding curves to join in a meaningful way a sparse set of points
S = {z;}ier while taking into account the information of a 2D image
f(x) for x € Q = [0,1]2. The regularity and anisotropy of f can be taken
into account by designing a Riemannian metric 7, so that the set of
curves are geodesics.

Cohen first proposed in [71] an isotropic metric T, = W (x)?Ida,
where W (z) is a saliency field similar to those considered in Section 3.2
for active contours. This was extended to grouping of components in 2D
and 3D images in [77, 78, 98]. This method was extended by Bougleux
et al. [40] by designing a Riemannian metric T, that propagates the
anisotropy of the sparse curves to the whole domain. This anisotropic
metric helps to disambiguate difficult situations where some curves are
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close to each other. This allows a better reconstruction with less user

intervention.

The metric T, is computed using the structure tensor as detailed in

Section 4.3.5. The value of the structure tensor is retained only in areas

where its anisotropy A(z) defined in (1.17), is large, and the resulting

tensor field is interpolated in the remaining part of the image, where no

directional information is available. Figure 4.24 shows an example of

anisotropic metric computed from an image representing a noisy curve.

This idea of interpolation of local orientation is similar to the

computation of good continuation fields, as studied, for instance, in

stochastic completion fields [289] or tensor voting [183].

Distance anisotropic

Distance, isotropic

Reconstruction, anisotropic

Reconstruction, isotropic

Fig. 4.24 Peceptual grouping using isotropic metric (left) and anisotropic metric (right).



4.7 Perceptual Grouping 347

Algorithm 10: Anisotropic perceptual grouping algorithm.
Initialization: D(S) « 0, Il « D(S), Vi e I,8; = 0.
while II # () do

Select edge: (i*,j*) +— argmin d(z;,x;).

(i,5)ell
Remove edge: II + IT — {(i*,5%)}.
Check topology: if §; <2 and J; < 2 then
D(S) < D(S) U {(zi,z;)}
5]'(—5]‘ + 1 and 51(—5]‘ + 1.

Grouping by geodesic Delaunay pruning. The grouping algo-
rithm proceeds by computing a perceptual graph @(S ) of a set of points
S provided by the user. This perceptual graph is a sub-graph of the
Delaunay graph D(S) € D(S). The graph is obtained by selecting in a
greedy manner the shortest Delaunay edges. This algorithm is designed
to extract curves without crossing, and the valence §; of vertices z; in
the perceptual graph is constrained to §; < 2.

Algorithm 10 gives the details of the method. It is possible to extend
this algorithm to add topological constraints on the curves to detect,
or to allow several curves to meet at a crossing point.

This algorithm can be seen as a geodesic extension of methods
for curve reconstruction that makes use of the Euclidean Delaunay
graph [101]. Popular curve reconstruction methods [9, 102] connect
points along combinatorial graphs derived from the Delaunay graph of
the point set.

Figure 4.24 compares the results of perceptual grouping using an
isotropic metric as in [71] and using an anisotropic metric 7}, as in [40].
The isotropic method fails because closed curves are connected regard-
less of their relative orientation. In contrast, the anisotropic metric
enables a correct grouping of curves that obey a good continuation

property.
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Geodesic Analysis of Shape and Surface

This chapter explores the use of geodesic distances to analyze the global
structure of shapes and surfaces. This can be useful to perform dimen-
sionality reduction by flattening the manifold on a flat Euclidean space,
as detailed in Section 5.1. This flattening finds applications in mapping
planar textures onto a surface, or in computing signatures that are
invariant to non-rigid bendings. Correspondences between manifolds
that respect the geodesic structure can be used to compare shapes and
surfaces as shown in Section 5.2. To speed up applications of geodesic
distances in shape retrieval, Section 5.3 designs compact histogram sig-
natures.

The subject of non-rigid shape and surface matching, and in par-
ticular the use of geodesic distances, is exposed in much more detail in
the book [42].

5.1 Geodesic Dimensionality Reduction

Dimensionality reduction corresponds to mapping a manifold €2 of
dimension d, possibly embedded in a high dimensional space 2 C R",
n > d, into a Euclidean space R* of small dimension d < k < n. This

348
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reduction is performed using a mapping ¢:Q — R¥, which is not nec-
essarily bijective.

In the case where d = k = 2,n = 3, this allows to perform the flat-
tening of a 3D surface onto a plane. In the case where d = 2 and n = d,
this can also be used to replace a manifold €2 by a transformed one
(), so that p(2) = p(RQ) for a family R € R of deformations. Using
©(€) instead of € for shape comparison leads to invariance to R of the
method.

5.1.1 Multi-dimensional Scaling

To maintain geodesic distances during the mapping, one wishes to find
©0: Q) — R¥ so that

Va,y €Q, da(z,y) = |e(z) — ()l (5.1)
where dg is the geodesic distance on manifold 2, as defined in (1.15).
Figure 5.1, left and center, shows examples of such a mapping that
approximately maintains distances between pairs of points.

#l -) 4 (P(gci)ﬂso(wj)

Flattening Bending invariant GMDS
p(Q) CR? p(Q2) CR? P(Q) C ™

Fig. 5.1 Overview of MDS and GMDS to compute embedding while conserving the pairwise
distances. Top row: original manifold Q C R3, bottom row: mapped manifold ().
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This problem is solved numerically by considering a set of points
{z; fi*ol C ) discretizing the manifold, and by computing the position
of z; = p(&;) such that

V0 <1,7 <N, H.’L’Z *.’E]’”%dQ(i‘i,i’j):di’j.

This corresponds to the Multi-dimensional Scaling (MDS) problem
[34, 157].

Projection on Euclidean Matrices. The positions {z;}; are
obtained by minimizing a given loss criterion. One can find the dis-
crete mapping z; = ¢(Z;) by computing

?xlln Z 5(di7ja ||5U2 - l’j”), (5'2)
T 0<i, <N
where 6(a,b) is a given loss function. Each loss function ¢ leads to a
different MDS method.
Denoting as X € R¥*Y the matrix whose columns are the positions
x; € R¥ of the points, one can rewrite this minimization as

D; ;i =d?.
X* € argmin §(D(X),D) where { SN (5.3)
Xee, D(X)ij = i — ],

where § is extended to matrices as

5(A,B) = Z 0(Aij, Bij),

0<i,j <N

and where Cy, is the set of centered points clouds
Cr ={X\ XI=0}

where I € RY is the constant vector of value 1.

The minimization (5.3) corresponds to the computation of the pro-
jection of the squared geodesic distance matrix D on the set & =
{D(X) \ X €Ci} of squared k-dimensional Euclidean distance matri-
ces, according to the distance § between matrices.

The set & is non-convex, and a whole family of valid projections
can be deduced from a single one. They are obtained from some X* by
applying rigid transformations in R* (translation, rotation and sym-
metries). Indeed, applying such a transform to X* does not change the
distance matrix D(X™).
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Classical MDS approximation. For §(a,b) = |a — b|?, the problem
(5.3) corresponds to the Euclidean projection on the set of Euclidean
distance matrices

X* € argmin |D(X) — D|. (5.4)
XeCy

Unfortunately, the set & is non-convex, and computing the projection
(5.4) is difficult.
In the following, we denote the centering operator as

1
J=Tdy — N]I]IT € RVXN, (5.5)
where I = (1,.. .,1)T € RV is the constant vector, and IIT is the con-

stant matrix filled with ones. It maps X € R¥*¥ to a centered set of
points XJ € Cy.

This centering operator allows to define another loss criterion called
strain to replace the projection (5.4) by

Jnin [|7(D(X) = D)J| (5.6)

It turns out that one can find the global minimizer of the strain with an
explicit formula, that we now detail. This corresponds to the so-called
classical MDS [34].

Using the expansion

D(X)=dI" +1d — 2X"X, where d = (|Jz;]*); € RV,
and the fact that JT =0 and X = XJ for X € C, one obtains
1
VX € C, —QJD(X)J =X'X.
And thus (5.6) is re-written as
min | XTX + JDJ/2|. (5.7)
XecCy
The solution X™* to this problem is in general unique (up to a rotation

and symmetry of the points) and computed by first diagonalizing the
symmetric matrix K = —JD.J/2

A = diag(Ao,. .-, AN—_1),

K=U"A h
U AU where {)\ZAE/\Z‘+1
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and then retaining only the first k£ leading eigenvectors

Uk = (UO uk_l)T
X* = /AU, h R ’ 5.8
REk - WRETe {Ak:diag(/\Or--;)\kl)a (5:8)

where u; is an eigenvector of K, Ku; = A\u;.

The decay of eigenvalues \; indicates the dimensionality of the man-
ifold. In particular, if A\; = 0 for ¢ > k = 2, it means that the (discrete)
manifold €2 is isometric to the Euclidean plane, and that the classical
MDS finds a correct embedding of the manifold.

Figure 5.3, middle column, shows example of mappings ¢:Q — RF
for k=2 (top) and k =3 (bottom) computed using classical MDS.

Local minimization using SMACOF. The approximation that
replaces the matrix projection (5.3) by the strain minimization (5.6)
is only used for computational simplicity, and does not come from a
geometrical or physical motivation. In particular, the matrix J signif-
icantly changes the L? norm used to compute the projection, which
might lead to a dimension reduction of poor quality.

To compare non-squared distances one defines the loss d(a,b) =
|\v/a — v/b|%. Using (5.2) for this loss function, the dimensionality reduc-
tion is achieved by minimizing

min S(X) = z; — x| — dii]% 5.9

iin 5(X) OS;d\[ll! i — gl — dijl (5.9)
The functional S in (5.9) is called the stress function. It is a smooth
non-linear function at configurations such that x; # z; for all ¢ # j,
which can be optimized using gradient descent to converge to a local
minimum [157].

The SMACOF (scaling by majoring a complicated function)
method [91] is a fast algorithm to solve this equation. It replaces the
non-convex minimization problem (5.9) by a series of simple convex
problems. This algorithm computes iteratively X) € R¥ x N with a
multiplicative update rule
dz}]

XD = xOB(X®)/N, where B(X);; = [
Ti — Ty

(5.10)

Note that this multiplicative iteration is equivalent to a gradient
descent with a fixed step size [52]. One can prove that X converges
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(=0 =1 (=5 ¢ =50

Fig. 5.2 Iterations of the SMACOF algorithm.

to a local minimum of the original one, see [91]. Since S is not convex,
minimization with such an iterative method requires a good initializa-
tion X(©. This method can be accelerated using multi-grid computa-
tions [52] and vector extrapolation [241].

Figure 5.2, top row, shows the iteration of the SMACOF algorithm
to compute a mapping ¢:Q — R? where Q is a 2D planar shape, as
described in Section 1.3.2. Bottom row shows the SMACOF algorithm
on a 3D surface ), to compute a mapping :Q — R3.

Landmark acceleration. To speed up computation, one can use
a set of Landmark points {xz}f\fo_ Ve {351 of the fully discretized
manifold. One then only uses Ny Fast Marching or Dijkstra propaga-
tions to compute the set of N x Ny distances

VO§i<N0, VO§]<N, diyj:dg(l‘i,l’j).

The goal is then to compute the embedding ¢(x;) for all 0 <i < N
from the partial distances d; ;.

A first class of methods consists in applying any MDS method to
find an embedding of the landmarks points alone, so that

V0 <i,j <No, o) = elz;)| ~ llzi — 4

Then, one needs to interpolate the mapping ¢ to the remaining N — Ny
points, using various interpolation formula, see for instance [45]. For
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classical scaling, it is possible to use the eigenvector relationship, which
corresponds to a Nistrom extrapolation, see [92].
For stress minimization, it is possible to minimize a partial stress

N—1Np—1

min > Y |diy — [l — 2 (5.11)
{.’L’i}i:() i=0 ]:0
for which an extended SMACOF algorithm can be used, that extends
the multiplicative update rule (5.10) and requires the resolution of a
linear system at each iteration.

5.1.2 Bending Invariants

Invariant signatures. To perform shape and surface recognition in
a way that is invariant to isometric deformations, one can replace a
manifold Q by its bending invariant ¢(€2) as defined in [113]. The map-
ping ¢:Q — R¥ is computed by solving the MDS problem, using either
the classical scaling solution (5.8) or the stress minimization (5.9).

The bending invariant is originally designed to replace a 3D sur-
face Q C R3 by a signature ¢(Q) C R? in the same embedding space.
Figure 5.3, top row, shows an example of such an invariant signature.

It can also be applied to a binary shape  C R? that is a compact
planar set, as described in Section 1.3.2. In this case, p(2) C R? is a
deformed shape, as shown in Figure 5.3, bottom row.

Extrinsic comparison of signatures. Given two manifolds 25 and
1, one can compare shapes up to isometric deformations by compar-
ing their bending invariant ;(€2;). In this way, it is possible to define
a distance between manifolds that is invariant to isometries such as
bendings or articulations

A(Qo,) = Ref%i(%k) 3(20($20), Rp1($21))), (5.12)

where R(R¥) is the set of Euclidean isometries of R¥ (rotations, trans-
lations and symmetries), and ¢ is a distortion measure between subsets
of R¥, such as for instance the Hausdorff distance, defined in (5.13)

5(A1,A2) :maX(S(Al,Ag),S(AQ,Al)), (513)
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Original Qg Classical MDS SMACOF

Fig. 5.3 Examples of bending invariance computed using classical MDS and SMACOF, 2D
shape (top row) and for a 3D surface (bottom row).

where the non-symmetric distance is

6(A1,Ay) = max min ||z — zo|.
T1€A1 T2€A2
Computing A exactly is difficult, but one can resort to approximate

iterative algorithms such as iterative closest points [27, 62].

5.1.3 Surface Flattening and Parameterization

Geodesic surface flattening. Surface flattening computes a map
©: Q) — R? where € is a 2D manifold, typically embedded into 3D space
R™ = R3. This corresponds to a particular case of dimensionality reduc-
tion. One can thus use the MDS methods to compute such a flattening
that maps the geodesic distances on €2 to Euclidean distances.

This approach was originally proposed by [250] to perform the flat-
tening of the cortical surface. It was also applied in [302] to perform
texture mapping.

Figure 5.4(b) shows an example of such a geodesic surface flattening.
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(a) Surface Q (b) Flattening ()

(¢) Laplacian eigenmaps (d) Laplacian parameterization

Fig. 5.4 Examples of surface flattening and parameterization using spectral methods (b,c)
and linear system resolution (d).

Differential surface flattening. Many other approaches for surface
flattening have been proposed, for instance, by minimizing the devia-
tion from conformality or area conservation. This leads to the com-
putation of the mapping ¢ using eigen-vectors of certain differential
operators, such as the Laplace-Beltrami second order derivative. This
can be computed numerically, as detailed in the Laplacian eigen-maps
framework [19].

Figure 5.4(c) shows an example of such a Laplacian Eigen-maps
flattening, where the X and Y coordinates of the embedding are the
second and third eigenvectors of a discretized Laplacian. Various dis-
cretizations exist, with the most popular being the cotangent weights,
see for instance [118, 257] and references therein.
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Differential surface parameterization. Other approaches flatten
a 2D manifold € with the topology of a disk by imposing that the
boundary 92 is mapped onto a closed convex curve in R?. The mini-
mization of differential distortion such as the deviation from conformal-
ity leads to a mapping ¢ that can be shown to be bijective [277]. This
is useful to parameterize a surface for texture mapping application.

The X and Y coordinates of the embedding () of a discretized
triangulated surface €2 are then both solution of a linear system whose
left-hand side is a discrete Laplacian, and right-hand side incorporates
the fixed location of the boundary. These two systems can be efficiently
solved using a sparse linear solver. See [118, 257] for surveys about mesh
parameterization methods.

Figure 5.4(d) shows an example of such a Laplacian parameteriza-
tion, where the boundary of 2 is mapped by ¢ on a circle.

5.1.4 Manifold Learning

The application of MDS to geodesic distances is used in the Isomap
algorithm [270] to perform manifold learning. In this setting, the man-
ifold is estimated from a point cloud {z;}; C R™ using a nearest neigh-
bor graph, and the geodesic distances are estimated using the Dijkstra
algorithm detailed in Section 2.2.3.

The graph adjacency relationship can be defined in different ways.
The simpler one is obtained by thresholding the Euclidean distance
in R™, and the graph metric is defined as

i = x5, if o — 2] <e,
400, otherwise.

i =

Figure 5.5 shows an example of application of Isomap to a simple 3D
point cloud that is sampled on a surface isometric to a planar rectangle.
Figure 5.6 shows iterations of the SMACOF algorithm (5.10) on the
same dataset. To overcome the numerical complexity of computing all
pairwise distances, local spectral methods that enforce a local smooth-
ness of the mapping ¢ have also been proposed, based on local tangent
plane estimation [245], Laplacian [19] or Hessian operator [104]. These
methods suffer from difficulties to handle a manifold with a complicated
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Fig. 5.5 Example of dimensionality reduction using Isomap with classical MDS.

Fig. 5.6 Iterations of SMACOF algorithm to compute the Isomap embedding.

topology, but it is possible to enforce topological constraints during the
learning [242].

Manifold learning can be used to recover the low dimensional geom-
etry of a database of images, such as for instance binary digits or images
representing an object under varying lighting and camera view. In prac-
tice though, this method works for relatively simple manifold with a
simple topology, see [105] for a theoretical analysis of the geodesic geom-
etry of image datasets.

5.2 Geodesic Shape and Surface Correspondence

Shape and surface comparison can be performed by matching two man-
ifolds Qg and €24. This can be achieved by mapping one manifold onto
the other.
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A correspondence map is a function between the manifolds
@: QO — Ql.

Depending on the application, one usually restricts the set of allow-
able ¢, such as for instance mappings respecting some invariance. By
computing an optimal map that minimizes some distortion, one gains
access to a measure of similarity between manifolds to perform retrieval
(the distortion) and an explicit mapping (the optimal map itself) that
can be used for several applications such as texture mapping.

Finding a mapping ¢ between two manifolds generalizes the dimen-
sionality reduction problem (5.1) to the case where the second manifold
is not Euclidean.

5.2.1 Mapping Between Manifolds and Distortion

The bending invariant distance (5.12) requires the use of an interme-
diate Euclidean space RF to measure the similarity between two dif-
ferent manifolds 2y and €2;. This approach can be simplified by map-
ping directly one manifold onto the other, in a way that preserves the
geodesic distances.

In the following, dg, is the geodesic distance on the manifold defined
in (1.15).

Similarities between manifolds. A measure of similarity A(g,;)
between two manifolds takes into account some important features of
the surface, and on the contrary discards other meaningless features to
gain invariance in shape recognition.

One usually would like this measure to be a valid metric among the
space of shapes, and in particular it should be symmetric and satisfy
the triangular inequality

A(Q0,21) < A(Q0,Q) + A(Q,1). (5.14)
This desirable property implies that if both €2; are approximated by
discretized manifolds at precision €, meaning A(€;,Q5) <e¢, then the
discrete measure of similarity is within precision 2¢ from the true one
|A(Q0,21) — A(Q5,027)] < 2e.
The condition (5.14) is however not satisfied by many useful similarity
measures.
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Correspondence and similarities. An optimal correspondence is
selected by minimizing some distortion criteria d(¢) in a restricted class
of mapping. For some applications, one also wishes ¢ to be injective so
that it does not map two different points of {2y to the same location.

The measure of similarity A between manifolds is then computed
as the distortion of this optimal map

A(Q,21) = min_ ().
p:Qo—N

One should note that this similarity measure is non-symmetric, and
does not, in general, satisfy the triangular inequality (5.14).

5.2.2 As Isometric as Possible Correspondence.

To compare shapes according to their intrinsic geometry, one wishes to
use a correspondence that maintains, as much as possible, the geodesic
distance along the manifold.

Gromov—Hausdorf framework. The Gromov-Hausdorfl measure
[563, 128], particularized to the case of Riemannian manifolds, is a metric
between metric spaces that measures the joint distortion of pairs of
mappings (¢o,1,%1,0) between two manifolds

gDiijQi — Qj.

The distortion of the pair (¢o,1,¢1,0) is measured using the maximum
distortion of each map
(i) = max |do,(z,y) — do, (vi;(2),9i;(Y))l,
"Evyegi
and a joint distortion
6(po,1,p1,0) = max [da,(z,1,0()) — do, (wo,1(2),y)]-
z€Q0,yEM

The Gromov-Hausdorff distance between the two manifolds is then
defined as

A(Q0,) = max (6(¢0),0(1),(¢0, 1)) (5.15)

min
cpo:Qo—>Ql,Lp1:§21—>Q()
One can show that this similarity measure A is a metric among mani-
folds, and in particular it satisfies the triangular inequality (5.14).
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This Gromov-Hausdorff distance was introduced in computer vision
by Memoli and Sapiro [187]. For discretized spaces Qg = {x;}~ ;" and
Q1 = {yi}1'5", where we have used the same number N of points, and
if one restricts its attention to bijective mappings : {2y — {21, one can
approximate the Gromov-Hausdorff distance (5.15) by a permutation
distance

A(Q, ) = J?iz% o nax do, (24, 75) — day (To,,To;)|, (5.16)

where X is the set of permutation of N numbers. This distance can
be shown to be a faithful approximation of (5.15) for randomized sam-
pling, see [187].

Computing the distance (5.16) is computationally prohibitive, since
it requires to check all possible permutations. A fast approximate
algorithm was developed in [187] and has been applied to compari-
son and retrieval [185]. The minimization (5.16) can be recasted as
a binary graph labeling problem [272], which is NP-hard in the gen-
eral case, and can be approximated using fast algorithms [285]. The
Gromov—Hausdorff distance has been relaxed to a probabilistic set-
ting [185, 186], where each manifold point is associated to a probability
to take into account for imperfect measurements and partial matching.
This defines a family of Gromov-Wasserstein distances that can be
computed numerically by solving a non-convex optimization problem.

GMDS framework. The maximum error in the Hausdorff distance
(5.15) is difficult to manipulate and optimize numerically. One usually
prefers an average notion of geodesic deviation, such as for instance a
mean square distortion

50 = [[ oy o) = doy(pla) oo Pody, (a7

introduced by Bronstein, Bronstein and Kimmel in the Generalized
Multi-dimensional Scaling (GMDS) shape matching framework [51].
Figure 5.1, right, shows a schematic example of this approximate con-
servation of pairwise geodesic distances between two surfaces.

In this setting, the integration measure dz refers to the area volume
element |det(7,)| defined on the manifold €; from the Riemannian
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metric. In the usual case where the manifolds are embedded in RY, it
corresponds to the usual area element in R

This mapping distortion (5.17) defines a non-symmetric distortion
on the set of manifolds

A(Qo, ) = 4.05622191 5(¢).

One should be careful that, on the contrary to the Gromov—Hausdorff
distance (5.15), A is not symmetric and does not satisfy the triangular
inequality (5.14). It does not define a distance among manifolds.

The distortion (5.17) is computed numerically on a discretized man-
ifold {x;}N 5" and the set of points y; = (x;) € Q1 that minimizes

A(Q0, ) =min §({y;};) =min Y |do,(zi,25) — da, (vi,y;)]?
{vi}i Viti 0isen

The GMDS algorithm [51] finds a local minima of this complicated non-

convex energy by gradient descent. It requires a proper interpolation

of the geodesic distance dg, on €2; that is usually pre-computed on

a discrete set of points, whereas the optimized location {y;}; varies

continuously.

The distance A(€p,1) can be applied to surface [51] and shape
retrieval [43] using nearest neighbors or more advanced classifiers.
The partial stress (5.11) can be extended to the GMDS framework to
take into account embedding of a manifold into a subset of another
manifold. GMDS can be further extended to allow for partial match-
ing [44]. GMDS has been extended to take into account photometric
information [271].

The optimal mapping ¢* computed with GMDS, which is a local
minima of §(¢p), is also relevant to perform shape comparison and pro-
cessing. A 3D facial surface Qg is embedded as ¢*(€g) into a sphere €,
with minimal distortion by finding the optimal sphere radius. The
resulting nearly isometric signature ¢*(€29) can then be used to perform
3D face recognition [47]. This optimal mapping ¢* can also be used to
perform texture mapping of animated surfaces [46].

5.2.3 2D Shape Matching

Matching 2D shapes represented as closed contours is simpler than
matching higher dimensional manifolds. In particular, it can be solved
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with fast algorithms. The analysis and retrieval of 2D closed curves
has received considerable attention, both because it is computationally
tractable, and because of its relevance for human vision [195], which is
highly sensitive to contours in images.

The structure of non-intersecting curves. In this setting, one
considers a 2D planar shape €2, and focuses on its contour 0f2, which
is assumed to be a closed non-intersecting curve ~:[0,1] — [0, 1]%. This
curve is closed and 1-periodic, meaning v(0) = v(1).

The set of non-intersecting closed curves has a very special struc-
ture [163], that can be represented as an infinite-dimensional Rieman-
nian space [163]. The resulting space of curves can be manipulated to
define various operations such as shape averaging [217].

Finding a correspondence between shapes can be thought as finding
a path connecting two curves on this high dimensional space of curves.
Taking into account this structure is however too complicated, and in
practice one sets up ad hoc optimization problems that require finding
shortest paths, as we detail next.

Matching between curves. We consider two shapes g and €y,
represented using their contour curves vy and -1, respectively. A bijec-
tive matching between two curves g and ~y; can be represented as a
bijective map ¢ between the parameter spaces. Since these parameter
domains are periodic, this corresponds to find some n € [0,1] and a
non-decreasing map

©:[0,1] = [n,1 + 7],

such that the local geometry around 7o(t) € € matches in some sense
the local geometry around 1 (p(t)) € Q1.

Local differential features. For each point x € 9€;, for i = 0,1, one
considers a local feature p;(x) € R®, that is a low dimensional vector,
intended to represent the geometry of €2; around x. To perform a recog-
nition that is invariant to a class of deformations R, one needs to build
features that are invariant under R. It means that if Qp = R(€;) for
R € R, then

vt e[0,1], po(r0(t) =pi(n(e(?))).
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The vector p;(x) € R* usually gives a multi-scale local representation of
Q; around x, and makes use of s different resolutions. A popular choice
is the curvature of v; at various scales {0} }j;(l)

VO<j<s, (pi(x))j=r(vi*Go;t), (5.18)

where 7; * G, denotes the component-by-component convolution of
the curve with a Gaussian kernel of variance o2, and & is the curvature
as defined in (3.5)

O nd (o) = (s ()
B e A P

Using a continuous set of scales defines a curvature scale space [193].
Figure 5.7 shows an example of multiscale curvature descriptor. In prac-
tice, scales are often sampled according to o; = opa’ for some a > 1.

An alternative local set of features is computed by local integration
over the shape domain [180]. For instance, one can use an averaging of
the indicator function of the shape

VO<j<s, (pi(z));=(Gqs; x1g,)(x) (5.19)

Sampling locations x; Descriptors p,,

Fig. 5.7 Examples of multi-scale curvature descriptors ps; as defined in (5.18) for three
different locations z; € 912.
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where

lo(z) = 1, ifxeq,
o= 0, otherwise

see [180] for the connection between differential features such as (5.18)
and integral features such as (5.19).

Global geodesic features. In order to be invariant to non-rigid
bending R € R, that is nearly isometric with respect to the geodesic
structure of the shape

do,(z,y) ~ dpo,) (R(z), R(y)),

one needs to use more global features based on geodesic distances.
Indeed, complicated bendings might change significantly local curva-
ture indicators such as (5.18).

This can be achieved by defining p;(x) as the histogram of the
geodesic distance {dq,(z,y)}y to the point z, see (5.34).

Variational matching. For each 7€ [0,1], an optimal matching
Yy:[0,1] = [, + 1] minimizes a weighted length

1
min L(y) = /0 WA+ [ ORAL  (5.20)

7(0)=n,7(1)=n+1

where the optimization should be restricted to strictly increasing map-
pings. The weight W takes into account the matching between the
features

W(t,s) = p(llpo(t) — pr(s)]) >0

where p is an increasing function. In this way, the optimal matching
tries to link together parameter ¢t and s = ~y(t) having similar features
po(t) and pi(s).

The final match v* between the parameters is the shortest match

7" = argmin L(vy,). (5.21)
n€l0,1]
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Dynamic programming for matching. The minimization of a dis-
cretized version of the energy (5.20) can be performed using dynamic
programming, see for instance [159, 180, 251, 274]. One discretizes [0, 1]?
on a square regular grid

VO<i,j <N, (tis;)=@/Nn+j/N) (5.22)
of N? points. A directed graph is defined as
i'>J
(i,5) ~ (i) < mod (i — j',N) < N/2,
i —jl < n

where mod (i, N) € {0,...,N — 1} is the usual modulo operator, and
1 > 1 controls the width of the connection. Increasing the values of
and N makes the discrete optimization problem more precise.

A graph metric is then defined on each edge as

Ve=((6,4) ~ (i",5), We=(W(ti,s;) + W(tir,s55))/2.

The discrete geodesic 7, between the points (0,0) and (N — 1, N — 1)
of the graph is obtained using the Dijkstra algorithm detailed in
Section 2.2.3.

The search for the final match that solves (5.21) is performed by
testing several values of 7, and it can be accelerated by using heuristics.

Fast Marching for matching. As suggested in [122], one can relax
the condition that the mapping ~ is strictly increasing. This allows
the use of the Fast Marching algorithm to compute a precise sub-pixel
matching.

One replaces the variational problem (5.20) by a geodesic length
minimization inside the square €2, = [0,1] x [n,n + 1]

1
min L(v) = W (~(r "(r)|dr, 5.23
O () /0 (NI ()]l (5.23)

where 7:[0,1] — €, is a planar curve.

Finding the shortest curve vy, that solves (5.23) is obtained by using
the isotropic Fast Marching on the discrete grid (5.22), as detailed in
Section 2.2.2, and then performing a gradient descent as detailed in
Section 2.5.1.
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Metric W(t, s) and geodesic curve v*(r) Matching of the curves

Fig. 5.8 Example of geodesic curve in [0,1]2 and the corresponding matching of the curves.

Similarly to (5.21), the final matching v*(r) = (¢*(r),s*(r)) is the
one that minimizes L(v,) by varying 7. The resulting matching is
obtained by linking t*(r) <+ s*(r) for a varying r. One should note that
this matching is not necessarily one to one.

Figure 5.8 shows an example of matching between two curves
obtained with this method.

5.3 Surface and Shape Retrieval Using
Geodesic Descriptors

Content based 2D shape and 3D surface retrieval is an important prob-
lem in computer vision. It requires to design similarity measures A to
discriminate shapes from different classes, while being invariant to cer-
tain deformations.

5.3.1 Feature-based Shape Retrieval

Computing correspondences between shapes, as detailed in Section 5.2,
is computationally too intensive for fast retrieval applications. Fast
similarity measures A are computed by extracting global or local fea-
tures, and then performing some comparison between the features. An
important goal in designing a similarity measure is to achieve invariance



368  Geodesic Analysis of Shape and Surface

to some class R of deformations
VRER, AQ) = AR(), R(S)). (5.24)

There is a large amount of literature on content-based retrieval using
similarity measures. One should refer to the review papers on 2D shapes
[281, 296] and 3D surfaces [54, 266] retrieval.

Global descriptors. Fast approaches to shape comparisons use a
low dimensional manifold descriptor ¢(€2) that is usually a vector
©(Q) € R¥. To achieve invariance (5.24), one requires that the descrip-
tors are invariant with respect to a family R of deformations

VRER, @(R(Q)=p(Q). (5.25)

A descriptor is a single point in a low dimensional space. It is usually
faster to compute than the full embedding of the manifold ¢(Q) C R¥
using a dimensionality reduction method of Section 5.1.

Simple global features are computed using polynomial moments
[171, 267, 268], or Fourier transform [295], see [233] for a review.

The spectrum of the Laplace—Beltrami operator defines a descriptor
invariant to rigid motion and to simple bendings [237]. Spectral dimen-
sionality reduction [19] allows one to define spectral distances between
manifolds that requires the computation of a few eigenvectors of the
Laplace—Beltrami operator, see for instance [49, 50, 186]. Shape distri-
butions [206] compute descriptors as histogram of the distribution of
Euclidean distance between points on the manifold. This is extended
to bending invariant descriptors in [21, 137, 138] using geodesic dis-
tances. It is possible to replace the geodesic distance by a diffusion
distance [127] computed by solving a linear Poisson PDE, which might
be advantageous for some applications.

Similarities by matching local descriptors. Many other shape
and surface representations do not make use of a single descriptor. They
rather compute similarities by matching points of interest for which
local descriptors are defined. Local shape contexts [20] are local 2D
histogram of contours around points of interest. Geodesic shape context
makes use of geodesic curves to gain bending invariance [174]. Local
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tomographic projection on tangent plane (spin images) [142] defines a
set of local descriptors.

5.3.2 Similarity Measures

Once the descriptor map ¢ has been computed for the manifolds of
interest, a similarity measure between manifolds is obtained by com-
paring the descriptors

A(Q0,21) = 6(0(Q0), (1)),

where § is a metric between vectors of R¥. This ensures that the trian-
gular inequality (5.14) is satisfied.

In the following, we detail only the most popular metrics. The choice
of a particular metric 6 depends on the targeted application, and on
the specificities of the manifolds of interest. See [280] for a comparison
of various metric for 2D shape comparison.

(P similarity measures. The most classical measures are the P
norms
k—1

8(a,b)P = la; — bil?. (5.26)

1=0

Kullback—Leiber divergence. A popular way to define a descriptor
©(Q) € R¥ is by computing a discrete histogram with k bins of some
set of values that depend on the geometry of 2. Such a histogram
descriptor a = ¢o(€2) satisfies the constraints

Vi, a; >0, and Zaizl.
i

Under these conditions, one can consider the Kullback—Leiber diver-
gence,

0(a,b) = Zailogg(ai/bi), (5.27)

which is non-symmetric and does not satisfy the triangular inequal-
ity, so (5.14) does not hold. The resulting distance between shapes is
however, quite popular because of its simplicity.
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Wassersein distance. Similarities (5.26) and (5.27) compare inde-
pendently each entry of the descriptors. In particular, shuffling in
the same manner the entries of both descriptors does not change the
similarity. In order to take into account the position of the index in
the descriptors, one can use the Wasserstein distance, also called the
earth mover’s distance [246] which is more complicated to compute.
The ¢ Wasserstein distance is defined as a minimization among matri-
ces P € RF*k

d(a,b)P = min i — j|PP; ;. 5.28
(@0 = Ly B, g 11— PP (5:29

One can prove that d(a,b) is a distance on probability distributions,
see [282].

In this section, we consider only integer indexes (4,7), and the dis-
tance can be expressed using the inverse of the cumulative distribution

§(a,b)P = |C (i) = C N (B)[P where Co(i) =) ¢ (5.29)
i j<i
where C, ! is the inverse function of C,,. Some care is required to com-
pute it if C, is not strictly increasing, which is the case if a; =0 for
some .

The Wasserstein distance extends for indices 7 in any dimension (not
necessarily integers), and computing (5.28) requires the resolution of a
linear program. It has been used in conjunction with geodesic distances
to perform shape retrieval [235].

5.3.3 Geodesic Descriptors

One can design a family of global descriptors by considering the his-
togram of some functions defined on the manifold.

Euclidean shape distributions. Shape distributions [206] build
global descriptors from a set of Euclidean distances

V0 <i,7 <N, di,j = ||I‘Z — .’L’j”, (530)

where {z;}; is a discrete uniform sampling of the manifold.
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One builds from these distances real valued mappings, such as
for instance the mean, median, maximum and minimum value of the
distances to a fixed point, for all 0 <i < N

min . max
1 — min d; ! — max d; . 5.31
Ji 0<j<N Ji 0<j<N 7 (5:31)
= S dg s mediandy. (5.32)
A 0<j<N
0<j<N

One can then define global descriptors by considering the histograms
of these mappings

0(Q2) = H{ fi Fo<icn) (5.33)
where x is any of {min, max, mean, median}. The histogram h = H(Y) €
R” of a set of values Y C R, assumed to be rescaled in [0, 1], is defined as

card({y € Y\ £/k <y < (£ +1)/k})
- card(Y)
The resulting global descriptors ¢(Q2) are invariant to rigid deforma-
tions, meaning that (5.25) holds for the set R of rigid motions.

Iy

Geodesic shape distributions. It is possible to extend these shape
distribution descriptors (5.33) by replacing the Euclidean distance || - ||
by the geodesic distance dg.

One can, for instance, consider the geodesic distance inside a planar
shape Q C R?, inside a volumetric shape Q C R3, or on the boundary of
a surface embedded in R3. They are all treated within the same geodesic
framework. The planar and volumetric shapes correspond to the restric-
tion of the identity metric T, = Id; to a sub-domain, as detailed in
Section 1.3.2, while surfaces correspond to an anisotropic metric 1., as
detailed in Section 1.1.2.

One thus replaces (5.30) by the following pairwise measures

dij = do(wi, ),
where dq is the length of the shortest path inside 2 linking x; to z;.
Figure (5.9) shows some examples of such shortest paths.
The geodesic distance map Uy, (z) = dq(z;,z) differs significantly
from the Euclidean distance map ||z; — x| when the shapes are non-
convex. Figure 5.10 shows an example of comparison.
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Fig. 5.9 Geodesics inside a 2D shape.

Fig. 5.10 Comparison of Euclidean and geodesic distances inside a 2D shape (from the
red point).

The shape distribution has been extended to the geodesic setting
on 3D meshes using the distribution of the mean f™" [21] and to 2D
shapes [138], volumetric shapes, and 3D surfaces [137] by considering
the distribution of the maximum distance f™&*.

Figure 5.11 shows the examples of the maximum, minimum, mean
and median geodesic distance to all the points within a given planar
shape Q C R2.

The resulting global descriptors ¢(£2) = H(f*) are invariant to iso-
metric deformations. More generally, p(20) = ¢(21) for Q1 = R(€y) if
the deformation does not modify too much the geodesic distance, as
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Fig. 5.11 Example of several functions of the geodesic distances.

measured for instance using 6(R) defined in (5.17). This is the case for
bending deformation and articulation, see [174].

Geodesic eccentricity. The maximum distance f™# is also known
as the geodesic eccentricity of the manifold, see [137, 138]. For a con-
tinuous sampling of the manifold, it is defined as

max — d .
F4(w) = mas do(a.y)
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This function has many interesting properties, in particular it can be
computed from the distance to the boundary points

max — d
[ (@) max a(z,y),

which allows for a fast evaluation using a few fast marching
propagation.

Figure 5.12 shows some examples of eccentricity function on shapes
and surfaces.

Starting from a shape library {€y,...,€2,}, one can use the eccen-
tricity shape descriptor ¢(£2) to do shape retrieval using, for instance, a
nearest neighbor classifier. More complex signatures can be constructed
out of geodesic distances, and un-supervised recognition can also be
considered. We refer to [137, 138] for a detailed study of the perfor-
mance of shape recognition with eccentricity histograms. Figure 5.13
shows examples of typical shape retrievals using this approach.

Fig. 5.12 Top row: eccentricity function f™2* on a planar shape (left and center, the red
point corresponds to the minimum value) and on a 3D surface (right). Bottom row: his-
tograms ¢(§2) corresponding to these eccentricity functions.
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Fig. 5.13 Example of shape retrieval using geodesic eccentricity, see [138] for details. The
query shape is the leftmost shape of each row. The left part of the figure shows

Sampling locations x; Descriptors p,

Fig. 5.14 Examples of local geodesic descriptors pg,; as defined in (5.34) for three different
locations xz; € €.

Local geodesic descriptors. Another way to describe these
geodesic shape distributions is to use local descriptors p, that are the
histogram of the geodesic distance to x

Pz = H({da(z,y)}yea) € R, (5.34)

This descriptor is an indicator of the geometry of € seen from the
point x.
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One can see that the functions f* defined in (5.31) corresponds
to the application of some particular statistical estimators (maximum,
minimum, mean or median values). This gives a recipe to build descrip-
tors using statistical measures.

It can be used to compute a matching v between the boundaries
of two planar shapes, as a replacement for the differential or integral
descriptors defined in (5.18) and (5.19).

Figure 5.14 shows an example of local geodesic descriptor for several
locations in a planar shape.



Conclusion

This monograph has reviewed fundamental and computational aspects
of Riemannian manifolds, as well as applications in the fields of
computer graphics and vision. Riemannian metrics bring together the
concepts of spacial adaptivity, anisotropy and orientation within a
mathematically sound formulation. They also offer fast computational
algorithms that are suitable for large scale applications. These two
important features work hand in hand to offer practical solutions to
three important classes of shape and surface processing problems: seg-
mentation, sampling and recognition.

Many exciting areas of research on geodesic methods are currently
under investigation, or should deserve more attention. Faster algo-
rithms, which offer good performances for highly anisotropic met-
rics, are desirable. Accelerating the computation of geodesic curves
through efficient heuristics with theoretical guarantees is also relevant
for many applications requiring real time performances. Deriving better
geodesic sampling schemes with theoretical guarantees could improve
the state of the art in surface remeshing and image compression. The
problem of fast and accurate matching of shapes with bending invari-
ance is mostly open, since solving high dimensional multi-dimensional

377
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scaling is computationally too demanding for interactive retrieval appli-
cations. Finally, many other problems in vision and graphics that
require handling datasets with strong anisotropy could certainly benefit
from advances in geodesic methods.
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