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PREFACE 

Thi s book gives a present-day account of l~rston Morse's theory of 

thc ca l cul us of var1ations i n the l arge . However, ther e have been :i.!n

portant de velopments during :;he pas t f ew years whi .ch are not ment ioned. 

Let me describe 0hr ee of these 

R. Palais and S. 3male have s t udied Morse theory for a real-valued 

function on an infini te d.imensional manifold and have g iven direct proofs 

of the mai n t heorems, without making any use of finite dimensional ap

proxima t ions. The manifolds in question must be loc~lly dif f e omor phic 

t o Hi lbert space, and the func tion must s a tJ.s fy a ",eak c ompac t ness con

dit i on . As an example, to study paths on a f i.nite dimensional rr.anifold 

i'l one cons kde r s the Hi lbert manif old consis ting of all absol u t e ly con

tinuous paths w: [0,1 ) -> M with squa re im;egrabl e first derivative. Ac 

count s of this work are contained in R. Palais, Morse Theory on Hil!:>ert 

~lanifolds, 'ropology-, Vol. 2 (19 63 ), pp. 299-340; and in S. Smale , Morse 

Theory and a Non- linea r General i zat i on of t he Dirichle t Problem, Annals 

of Mathemat ics, Vol. 80 (19 64), pp. 382-396. 

The Bott periodicity theorems ",ere originally i nspi red by Morse 

theory ( s ee part IV). However , mor e e l ementary proofs, which do not in

volve Morse theory at all, have recer-tly been given. See M. At iyah and 

R. Bo~t , On the Peri od i city Theorem :for Complex Vectc!' Bundles, Ac t a 

Iviathematica, Vol. 112 (1964), pp. 229-247, as well as R. 1,[ood , Banach 

Algebras and Bott Periodicity, Topol ogy, 4 (1 965 -66), pp . 371-3 89. 

Mors e "heory has provided the inspira tion for exciting deve l opments 

in differen t i al topology by S. Smale , A. 1,lallace , and others, inc l uding 

a proof of the generalized Poincare hypothe sis i n high dime!1Ei ons. 

have tried to describe some of thi s 1,fork in Lectures on the h -cobordism 

theorem, notes by L. Siebenma.nn and J. Sandow, Pr i nceton Uni ve rsity Press, 

1965. 

Let me lake this opportunity to clarify one term which may cause con

fuSion. In §12 I use the word "ener gy " fo r the integral 

v 

I 

http:Siebenma.nn


vi 	 PREFACE 

dm 2E ~ Sl dtat II 
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? l ong a uatb m( t ). V. Arnol ' o points out to me th.9.t m& them8..1cialls fo r 

t. lle pas : 200 years have called E t he "ac t ion" i ntegra l . '7nis d iscrepa ncy 

in t er:ninology is caused by t he fac t that:. the i ntegral ca n be in t e l'j:we t ed , 

in · e r ms of a phys i ca l mode l , in more ~han one 'day . 

Think of a part :"c l e P 1,.rh :"ch moves a _ong a surfa.ce M dur l ng 1;he time 

interva l 0 < t < 1. .1.e ac tion of the par t i cle duri ng this time inter val 

is defined to be a c ertain c onstant times the integral E. If no f orces 

act on P ( exce pt f or lhe c ons train~ .:'oI'ces ·...rh,;, ch hol d it wi thin M), Lhell 

the "P~inc iple of leas t action" a sserts tha: E ..rill be minimized within1 

t he c l as s of a ll paths jcining m( O) t o m(l) , or 9.t l eas t tha ~ t he first 

varia t i on or' E \-1 111 be ze ro . He!'lce P mus t :;r a verse a geodesic. 

Btn. a qu:'..t e c: ':"ITerent phy s ical mode l is posS ':'bJe . 'm ink of a l'ubber 

ba nd ".,hich is s t r e t ched bet'.{een n ro poLl1t s of a s :"ippery cur ved surface . 

If the ':Jand is de s c r::'oed pa rametri cal:'y by t rle equa :ion x = m( t), 0 :s. t 

:s. 1, then t he potential energy arising from tension ,Till be proportional 

to our integral E (a t l eas t to a first order of approximat i on ). For an 

equili briwTl pos i tio,'! thi s energy mus t be mi .nimized , and henc o the rubber 

band \-! ill describe a geodes ic . 

The t exL '.oIhich f ollows i s ~dentical 111tl; tha t of t he f irs t pr i nt ing 

exc epL for a fe'.~ c ON'ect ions . I am g r a t eful to V. Arn :J1'd, D . Epste i n 

and y[. B. Hous con, Jr. for pointing out correc t i.on s . 

J . i.J .M. 

Los P~eles, June 1968 . 
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NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD. 

§1. Introduction. 

In this section we will illustrate by a specific example the situ

ation that we will investigate later for arbitrary manifolds. Let us con

sider a torus M, tangent to the plane V, as indicated in Diagram 1 . 

s 

Diagram 1. 

Let f: M - R (R always denotes the real numbers) be the height 

above the V plane, and let ~ be the set of all pOints x E M such that 
f(x) < a. Then the following things are true: 

(1) If a < 0 = f(p), then ~ is vacuous. 

(2) If f(p) < a < f(q), then ~ is homeomorphic to a 2-cell. 

(3)· If f(q) < a < f(r), then ~ is homeomorphic to a cylinder: 

~ 

viii 

( 4) If f ( r) < a < f ( s), then r-r is homeomorphic to a compact 
manifold of genus one having a circle as boundary: 
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® 

(5) If f (s) < a, then ~ is the full t orus. 


I n order to describe the change in ~ as a passes through one 


of the points f (p) , f(q) ,fer ) ,f(s) it is convenient to consider homotopy 

t ype rather than homeomorphism t~~e. In terms of homotopy types: 

( 1 ) 	 - (2) is the operation of attaching a O-cell. For as far as 

Mahomot opy type i s concerned , the space , f(p) < a < f( q ) , cannot be dis

tinguished from a O-cell : 

9 
!I IIHere means "is of the same homotopy type as." 

(2) 	- (3) is the operation of attaching a l-cell: 

g o 
(3) 	- (4) is again the operation of attaching a l- cell : 

(4 ) ..... (5) i s the operati on of attaching a 2- cell. 

The preci se definition of "attaching a k-cell" can be given as 

follows . Let Y be any t opol ogical space, and let 

e k (x E R k Ilx II < 1) 

The boundary 
·k e (x E Rk Ilxll 1) 

will be denoted by Sk-l. If g: Sk-l - Y is a continuous map then 

kY eu 
g 

(Y with a k-cell attached by g) is obtained by first taking the topologi
kcal sum (= disjoint union) of Y and e , and then i dentifying each 

x E Sk-l with g(x) E Y. To taLe care of the case k = 0 l et eO be a 

point and let eO = S-l be vacuous, so that Y with a o- cell attached is 

jus t the union of Y 	 and a disjoint pOint. 

As one might expect, the pOints p,q,r and s at which the homo

'topy type of ~ changes, have a simple characterization in terms of f. 

They are the critical pOints of the functi on. I f we choose any coordinate 

system (x,y) near these points, then the derivatives %£ and 
of areOJ 

both zero. At p we 	 can choose (x,y) so that f = x 2 
+ y, 2 

at s so 
2 2that f constant -x - Y , and at q and r so that f constant + 

2 
x _ y2. Note that the number of minus signs in the expressi on for f at 

each point i s the dimension of the cell we must attach t o go from ~ to 
bM , where a < f(point ) < b. Our first theorems will generalize these 

facts for any differentiable functi on on a manifold. 
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§2. Definitions and Lennnas. 

The words "smooth" and "differentiable" will be used interchange 

ably to mean differentiable of class Coo. The tangent space of a smooth 

manifold M at a point p will be denoted by T~. If g: M--+ N is a 

smooth map with g(p) = q, then the induced linear map of tangent spaces 

will be denoted by ~: T~ --+ TNq . 

Now l et f be a smooth real valued function on a manifold M. A 

point p E M is called a critical point of f if the induced map 

f*: T~ --+T Rf(p) is zero. If we choose a local coordinate system 

(x1, ... ,xn) in a neighborhood U of p this means that 

dfdf (p) ~n(p) 01 oX •dX 

The real number f(p) is called a critical value of f. 

We denote by ~ the set of all points X E M such that f(x) < a. 

If a is not a critical value of f then it follows from the implicit 

function theorem that ~ is a smooth manifold-with-boundary. The boundary 

f- 1(a) is a smooth submanifold of M. 

A critical point p is called non-degenerate if and only if the 

matrix 

(~. (p)) 

is non-singular. It can be checked directly that non-degeneracy does not 

depend on the coordinate system. This will follow also from the following 

intrinsic definition. 

If P is a cri tical point of f we define a synnnetric bilinear 

functional f** on T~, called the Hessian of f at p. If v,w E T~ 

then v and w have extensions v and w to vector fields. 1;[e let * 

f**(v,w) = vp(w(f)), 	 where vp is, of course, just v. We must show that 

this is symmetric and 	well-defined. It is symmetric because 

vp(W(f)) - wp(v(f)) [v,W)p(f) o 

~where [v,iJl is the Poisson bracket of v and w , and where [v,wlp(f) = 0 

* Here w(f) denotes the directional derivative of f in the direction w. 
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since f has p as a critical pOint. 

Therefore f** is synnnetric. It is now clearly well-defined since 

V (w(f)) = v(w (f)) is independent of the extension v of v, while 
p 

W(v(f)) is independent of W. 
p 

If (xl, ... ,xn) is a 	 local coordinate system and I -;'Ip'v = a i dX 
w = I ~I we can take w = I b. ~j where now denotes a con-b j 	 b jdXJ p 	 J dX 
stant function. Then 

2 
f**(v,w) v(w(f)) (p) v(I b.~) I a b d f 

J dX j i j i j dXldX j (p) 

2 
so the matrix (~(P)) represents the bilinear function f** with 

dXldXJ 

respect to the basis 	 ~Ip, . .. , ~Ip
dX dX 

vie can now talk about 	the index and the nullity of the bilinear 

functional f** on T~' The index of a bilinear functional H, on a vec 

tor space V, is defined to be the maximal dimension of a subspace of V 

on which H is negative definite; the nullity is the dimension of the null 

space, i.e., the subspace consisting of all v E V such that H(v, w) = 0 

for every w E V. The point p is obviously a non-degenerate critical 

point of f if and only if on T~ has nullity equal to o. Thef** 

index of on T~ will be referred to simply as the index of f at p.f** 

The Lemma of Morse shows that the behaviour of f at p can be completely 

described by this index. Before stating this l ennna we first prove the 

f ollowing: 

LEMMA 2. 1. Let f be a COO function in a convex neigh
borhood V of 0 in Rn, with f(O) = O. Then 

n 

f(x 1,··· ,xn) = L xi~ (xl"" ,~) 
1=1 

for some suitable COO functions ~ defined in V, with 
df

~(o) = Oxi(O). 

PROOF : 
1 	 1 n ' 

~ J df(tx1,···, t~) J '\ df 
I(X" ... ,~) = dt dt = L Ox.(tx1, .. ·,t~)·xi dt 

o 	 0 i= 1 l 

1 
dfTherefor e we can l et 	 ~(X1""'~) =J Ox (tx1,··., txn ) dt . 

1 
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LEMMA 2.2 (Lemma of t'lorse). Let p be a non-degenerate 
critical point for f. Then there is a local coordinate 
system (y1 

, .•. , yn) in a neighborhood U of p Hi th 
yi(p) = 0 for all i and such thB.t the identity 

1 2 A 2 A+ 1 2 _Jl 2f = f(p) - (y ) - ... - (y) + (y ) + ... + (.Y ) 

holds throughout U, "There A is the index of f at p. 

PROOF: We first show that if there is any such expression for f, 

then A must be the index of f at p. For any coordinate system 

(z', ... ,ZD), if 

f(q) = f(p) _ (z'(q))2_ ... _ (zA(q))2 + (zA+1(q))2 + ... + (zn(q))2 

then we have 

if i ~ A 

02f 
ioz~(p) r: if > A 

o otherwise 

which ShOHS that the matrix representing f H . Vlith respect to the basis 

o I I0 .--, p"'" -----n p lSOZ OZ 
-2 

-2 
2 

2 

Therefore there is a subspace of T~ of dimension A where is negaf** 

tive definite, and a subspace V of dimension n-A where f** is positive 

definite. If there were a subspace of T~ of dimension greater than A 

on which f** were negative definite then this subspace would intersect V, 

which is clearly impossible. Therefore A is the index of f**. 

We now show that a suitable coordinate system (y' , ... ,yn) exists. 

RnObviously we can assume that p is the origin of and that f(p) = fro) 

By 2.' ve can vrite 
n 

f(x" ... ,~) = L xjgj (x" ... ,xn) 
j = , 

for (x" ... ,~) in some neighborhood of O. Since o is assumed to be a 

critical point: 
ofgj(O) ~(O) o . 

§2. DEFINITIONS AND LEMMAS 

Therefore, applying 2.' to the gj we have 

n 

gj (x, ,00 . ,xn) L xihij (x" ... ,~) 
1=, 

for certain smooth functions · It follows thathij 
n 

f(X" ... ,~) L XiXjhij(X"""~)' 
i, j=' 

We can assume that since we can vrite = ~(hij+ hji ),hij h ji , fiij 

and then have ~j fiji and f L xixjfiij . Moreover the matrix (fiij(O)) 

is equal to ( ' o2f (0)), and hence is non-singular.
"2 ox1 dXJ 

There is a non-singular transformation of the coordinate functions 

which gives us th~desired expression for f, in a perhaps smaller neigh

borhood of o. To see this He just imitate the usual diagonalization proof 

for quadratic forms. (See for example, Birkhoff and MacLane, "A survey of 

mo:l.ern algebra," p. 27'.) The key step can be described as follows. 

Suppose by induction that there exist coordinates u, , ... ,~ in 

a neighborhood U, of 0 so that 

2f + (u1 ) .::. '::'(U _,)2+ I uiujHij(u" ... ,~)r 
i,j~r 

throughout u1; Vlhere the matrices (l\j(U1""'U )) are symmetric. Aftern
a linear change in the last n-r+' coordinates we may assume that ~r(O) I o. 

Let g(u, , ... ,~) denote the square root of I~r(u" ... ,~) I. This will 

be a smooth, non-zero function of u" ... ,un throughout some smaller neigh

borhood U2 C U, of O. No,/ introduce new coordinates v" ... ,v byn 

Vi = for i I rui 

vr(u"oo.,un ) g(Ul'oo.,Un)[~ + L ui Hir (u1,··· ,~) /~r(u1' ... ,~) J. 
i> r 

It fOllows from the inverse function theorem that v" ... ,v will serve asn 
coordinate functions Hi thin some sufficiently small neighborhood U of o.

3 
It is easily verified that f can be expressed as 

'\' 2 '\'f L ..:!:. (vi) + L ViVjH~j(v" ... ,vn) 
i<r i,j>r 



9 8 	 I. NON-DEGENERATE FUNCTIONS 

throughout U3 . This completes the induction; and proves Lemma 2.2. 

COROLLARY 2.3 Non-degenerate critical pOints are isolated. 

Examples of degenerate critical pOints (for functions on R and 

R2) are given below, together with pictures of their graphs. 

, ' 

3	 1 /x2
(a) f (x) x . The origin 	 (b) F(x) e- sin2( l /X) 

is 	a degenerate critical pOint. The origin is a degenerate, and 

non-isolated, critical point. 

3(c) f(x,y ) = x - 3xy2 = Real part of (x + iy)3. 

(0.0) is a degenerate critical pOint (a "monkey saddle"). 

§ 2 . DEFINITIONS AND LEi,mS 

2(d) f(x, y) = x The set of critical pOints, all of which 

are degenerate, is the x axis, which is a sub-manifold of R2 

(e) f(x,y) x2y2. The set of critical pOints, all of which are 

degenerate, consists of the union of the x and y axis, which is 

not even a sub-manifold of R2 . 

We conclude this section with a discussion of l-parameter groups of 

diffeomorphisms. The reader is referred to K. Nomizu, "Lie Groups and Differ

ential Geometry," for more details. 

A l-parameter group of dlffeomorphisms of a manifold M is a COO 

lllap 

cp: RxM -M 
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such that 

1 ) for each t E R the map ~t : M ~ M defined by 

'Pt(q) = 'P(t,q) is a (l..iffeomorp~sm of I'll onto itself, 

2) for all t,s E R ',Ie have 'l>t+s = 'llt ' 'Ps 

Given a 1-parameter group cp of diffeomorphisms of M He define 

a vector field X on M as follows. For every smooth real va lued function 

f l et 
lim f('Ph(q)) - f(q) 

Xq(f) h- 0 h 

This vector ;'1 el(: X is said to generate the group cp. 

LEM¥~ 2.4. A smooth vector field on M which vanishes 
outside of a compact set K C M generates a unique 1
parameter group of diffeomorphisms of M. 

FRoe',>: Given any smooth curve 

t - cit) E M 

it is convenient to define the velocity vector 

dc 
"(ff E TMc(t) 

l i m f c (t+h)-fc(t)by the ident ity ~(f) (Compare § 8 . ) Now let 'Ph - o h 

be a 1-parameter group of di ffeomorphisms, gen~rated by the vector fie ld X, 

Then for each fixed q the curve 

t - CPt(q) 

satisfi~ s the differential equation 

d'l't(q) 
----a:r;- X'l> t (q) , 

with init~al condi tion cpo (q) q. This is true since 


dCPt(q) lim f(cpt+ h (q) ) - f «(\'t(q)) 11m f( 'Ph( P)) - f(p) 

----a:r;-(f) h- 0 h h-o h = ~( f), 


' 7here p = 'Pt(q) . But it is \le ll known that such a differential equation, 


locally, has a unique solution which depends smoothly on the initial condi 


tion. (Compare Grave s, "The Theory of F'unc t ions of Real Variab les," p. 166. 

1Hote that, in t erms of local coordi nates u , ... ,un, the di f"fe r e:1tial equa 

· dui i 1 n i )tion takes on t he more f amil~ar f orm : en; = x (u ," .,u), = 1, .. . ,n. 
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Thus for each point of M there exists a neighborhood U and a 


number E > 0 so that the differential equation 


dCPt(q) 
'Po(q) = q~ = XCPt(q), 

has a unique smooth solution for q E U, It I < E. 

The compact set K can be covered by a finite number of such 

neighborhoods U. Let EO > 0 denote the smallest of the corresponding 

numbers E. Setting CPt(q) = q for q ~ K, it follows that this differen

tial equation has a unique solution 'l>t(q) for It I < EO and for all 

q E M. This solution i s smooth as a function of both variab les. Further

more , it is clear that CP t+s = 'Pt 0 'Ps providing that Itl, lsi, It+sl < £0' 

,Therefore each such 'Pt is a diffeomorphism. 

It only remains to define 'Pt for It I ~ £0' Any number t can 

be expressed as a multiple of £0 / 2 plus a remainder r with Irl < £0/2 

If t = k(£0/2) + r with k ~ 0 , set 

CPt CP£ /2 'PE /2 o CP£ /2 CPr 
o 

0 

0 
0 

o 
0 

where the transformation is iterated k times. If . k < 0 it isCPE 0/2 

only necessary to replace CPE / 2 by iterated -k times. Thus 


o CP- E O/ 2 CPt 

is defined for all values of t. It is not difficult to verify that is'i't 

well defined, smooth, and satisfies the conditi on CPt+s CPt CPs . This0 

completes the proof of Lemma 2.4 

REriJARK: The hypothesis that X vanishes outside of a compact set 

cannot be omitted. For example let M be the open unit interval (0,1) C R, 

and let X be the standard vector field on M. Then X does not ai 
generate any l-parameter group of diffeomorphisms of M. 


