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PREFACE

This book gives a present-day account of Marston Morse’s theory of
the calculus of varlations in the large. However, there have been im-
portant developments during the past I'sw years which are not mentioned.
Let me describe thiree of Lhcse

R. Palais and S. OSmals have studied Morse theory for & real-valued
function on an infinite dimensional manifold and have given direct proofs
of the main theorems, without making any use of finite dimensionel ap-
proximations. The manif'olds in question must be locally diffeomorphic
to Hilbert space, and the function must satisfy a weak compactness con-
dition. As an example, to study paths on a finite dimensional manifold
M‘ one considers the Hilbert manifold consisting of all absolutely con-
tinuous paths w: [0,1] - M with squere integrable first derivative. Ac-

counts of this work are contained in R. Palais, Morse Theory on Hilbvert

Manifolds, Topolozy, Vol. 2 (1963), pp. 299-340; and in 3. Smele, Morse

Theory and a llon-linear Generallzation of the Dirichlet Problem, Annals

of Mathematics, Vol. 80 (1964), pp. 382-396.

The Bolt periodicity theorems were originally insplred by Morse
theory (see part IV). However, more elementary proofs, which do not in-
volve Morse theory at all, have recently been g_iven. See M. Atiyah and

£

R. Bott, On the Pericdicity Theorem for Complex Vector Bundles, Acta

Mathematica, Vol. 112 (196k), pp. 229-247, as well as R. Wood, Banach

Algebras and Eott Periodicity, Topology, 4 (1965-66), pp. 371-389.

Morse theory has provided the inspiration for exciting developments
in differential topology by S. Smale, A. Wallace, and others, including
1 dimensions. I

a proof of the generalized Polucaré hypothesis in !

have tried tc describe some of this work in Lectures on the h-cobordism

theorem, rotes by L. Siebenmann and J. Sondow, Princeton University Press,
1965,

Let me take this opportunity to clarify cne term which may cause con-

fusion. 1In §12 I use the word "energy" for the integral

v
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along a path o(t). V. Arnol’d points out to me

he past 200 years have called E the "actior'integrsl. This discrepancy

i

ot

in terminology is caused by the fact that the integral can be interpreted, PREFACE

in terms of a physical model, in more than one way. PART 1.

Think of a particle P which moves along a surface M during the time

interval 0 < t < 1.

‘e action of the particle during this time interval

is defined to be a certain constant times the integral E. no forces

act on P (except for the constraining forces which hold it within M), then

action'" asserts that E will be minimized withii

the "principle of leas

the class of all paths jeining w(0) to w(l), or at least thet the first
varigeticn or E will be zero. Hence P must traverse a gecdesic.

Think of a rubber

But & quite di hysical model is possible.

ko]
’]

band which is stretched between two points of a slippery curved surface.

If the band is described parametrically by the equation x = o(t), 0 <t PART TI.

< 1, then the potential energy arising from tension will be proportional

to our integral E (at least to & first order of approximation). For an

I

equilibrium position this energy must be minimized, and hence the rubber

band will describe & geodesic.
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The text which follows is ic

except for & few corrections. I am grateful to V. Arnol’d, D. Epstein 5

and W. B. Houston, Jr. for pointing out corrections. §

§13.
§1k,
§15.

§
§
§
§

Los Angeles, June 1968.
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PART I
1hg

NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFQID.

§1. Introduction.

In this section we will illustrate by a specific example the situ-

ation that we will investigate later for arbitrary manifolds. Iet us con-

glder a torus M, tangent to the plane V, as indicated in Diagram 1.

S

Diagram 1.

Let f: M= R (R always denotes the real numbers) be the height

above the V plane, and let M* be the set of all points x € M such that
f(x) < a. Then the following things are true:

(1) If a<o=~f(p), then M* is vacuous.
(2) If f(p) < a< f(q), then M* 1is homeomorphic to a 2-cell.

(3)" If f(q) < a< f(r), then M* is homeomorphic to a cylinder:

() If f(r) <ac< f(s), then M is homeomorphic to a compact
manifold of genus one having a circle as boundary:



NON-DEGENERATE FUNCTICONS

% is the full torus.

(5) If f(s) <a, then M
In order to describe the change in M* as a passes through one
of the points f(p),f(q),f(r),f(s) it is convenient to consider homotopy
type rather than homeomorphism type. In terms of homotopy types:
(1) = (2) 1is the operation of attaching a O-cell. For as far as

homotopy type is concerned, the space M*, f(p) < a < f(q), cannot be dis-

=

tinguished from a O-cell:

Here "=" means "is of the same homotopy type as.

(2) = (3) 1is the operation of attachinz a 1-cell:

=

— (4) 1is again the operation of attaching a 1-cell:

O ©

(k) = (5) 1s the operation of attaching a Z-cell.
The precise definition of "attaching a k-cell" can be given as

follows. Iet Y be any topological space, and let

k

e - xerF: Ixl <)

be the k-cell consisting of all vectors in Euclidean k-space with length <« 1.

§1. INTRODUCTION 3

The boundary

-k

e¥ - (x eRS x| = 1)

will be denoted by gk-1 If g sK"' 4y 1is a continuous map then

Y o ek

g
(Y with a k-cell attached by g) 1s obtained by first teking the topologl-

cal sun (= disjoint union) of Y and ek, and then 1ldentifying each

0

X € Sk_1 with g(x) € Y. To tale care of the case k = 0 let e  Dbe a

point and let &% o gl

be vacuous, so that Y with a 0-cell attached is
just the union of Y and a disjoint point.

As one might expect, the points p,q,r and s &t which the homo-

‘topy type of M changes, have a simple characterization in terms of f.

They are the critical points of the function. If we choose any coordinate

system (x,y) near these points, then the derivatives %; and %ﬁ are

2

both zero. At p we can choose (x,y) so that f = x + y , at s so

that f = constant —x2 - y2, and at ¢ and r so that f = constant +
2 2

X -y . Note that the number of minus signs in the expression for f at

each point is the dimension of the cell we must attach to go from M to
Mb, where a < f(point) < b. Our first theorems will generalize these

facts for any differentiable function on a manifold.

REFERENCES
For further information on Morse Theory, the following sources are
extremely useful.

M. Morse, "The calculus of variations in the large," American
Mathematical Society, New York, 193k,

H. Seifert and W. Threlfell, '"Variationsrechnung im Grossen,"
published in the United States by Chelsea, New York, 1951.

R. Bott, The stable homotopy of the classical groups, Annals of

Mathematics, Vol. 70 (1959), pp. 313-337.

R. Bott, Morse Theory and its application to homotopy theory,

Lecture notes by A. van de Ven (mimeographed), University of

Bonn, 1960.
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§2. Definitions and Lemmas.

The words "smooth" and "differentiable" will be used interchange-

ably to mean differentiable of class C”. The tangent space of a smooth

manifold M at a point p will be dencted by TMp. If g: M— N is a
smooth map with g(p) = q, then the induced linear map of tangent spaces
111 t H TN ..
will be denoted by g, TMp = Ty
Now let f be a smooth real valued function on a manifold M. A

point p € M 1is called a critical point of f if the induced map

for ™M, =TRg,

(x1,...,xn) in a neighborhood U of p this means that -
d

a—ﬂ(p) R LR
X

is zero. If we choose a local coordinate system

The real number f(p) 1s called a critical value of f.

We denote by M*  the set of all points x € M such that f(x) < a.

If a dis not a critical value of f then it follows from the implicit
function theorem that M* is a smooth manifold-with-boundary.
£7' (a)

The boundary
is a smooth submanifold of M.
A critical point p 1is called non-degenerate if and only if the

matrix .

82
( Bxiaij (p))

is non-singular. It can be checked directly that non-degeneracy does not
depend on the coordinate system. This will follow also from the following
intrinsic definition.

If p is a critical point of f we define a symmetric bilinear
on TM_,
then v and w have :itensions ¥ and ¥ to vector fields. We let
Lax (VW) = ¥ (WD),

this is symmetric and well-defined.

functional f,, called the Hessian of f at p. If v,w € TMp

where Vp is, of course, just v. We must show that

It is symmetric because

vp(mf)) - WD) = D) = o

is the Poisson bracket of V¥ and W

"

vhere [¥,%¥] , and where [¥,W]_(f) = 0

P

Here W(f) denotes the directional derivative of f in the direction .

§2. DEFINITIONS AND TEMMAS b}

since f has p as a critical polnt.

Therefore fy, 1s symmetric. It is now clearly well-defined since

?p(ﬁ(f)) = v(W(f)) 1is independent of the extension ¥ of v, while
Gp(?(f)) is independent of W.
If (x’,...,xn) is a local coordinate system and v = T a; _§T o
X
v =2hb. 9. we can take W = T b, - wvhere b, now denotes a con-
J axJ|P I 3xd J
stant function. Then
fex(v,1) = V(WD) (P) = v(Zb, D) = T & b —ig—fj (p) ;
Jaxdt 1 I axtax
3°r
so the matrix ( - (p)) represents the bilinear function fy, with
X JX
respect to the basis _éT - 9 .
. ax' [P’ T x| P

We can now talk about the index and the mullity of the bilinear
functional f,, on TMpf The index of a bilinear functional H, on a vec-
tor space V, 1is defined to be the maximal dimension of a subspace of V
on wvhich H 1s negative definite; the nullity is the dimension of the null-
space, i.e., the subspace consisting of all v € V such that H(v,w) = 0
for every w € V. The point p 1is obviously a non-degenerate critical
point of f if and only if f,, on TMp has nullity equal to 0. The
index of f,y on TMp will be referred to simply as the index of f at p.
The Lemma of Morse shows that the behaviour of f at p can be completely
described by this index. Before stating this lemme we first prove the

following:

IEMMA 2.1. Iet f be a C® function in a convex neigh-
borhood V of 0 1in Rn, with f(0) = 0. Then
n
(X, 00,Xy) = zg X318 (X, 00 ,%))
i=1
for some suitable C™ functions & defined in V, with

81(0) = & ().

PROOF': ] o o AN
B(xy, .00 ,%) =f #—dt:fz%'(txw...,txn)-xi dt .
0 0i=1
1
Therefore we can let g;(X,,. of

couXy) = 3%, (txy,...,tx,) dt .
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LEMMA 2.2 (Lemma of Morse). Iet p be a non-degenerate

Therefore, applying 2.1 to the gj we have
critical point for f. Then there 1s a local coordinate

n
n - ]
system (y .,¥) in a neighborhood U of p with gj(x1"" zz %, ij ""Xn)
yi(p) = 0 for all 1 and such that the identity R
1,2 A2 At+1y2 2
£ - f(p) - (y)°- S HE e e
e ¥ v v for certain smooth functions hij It follows that

holds throughout U, where » 1is the index of f at p.

n
£(Xy,00e,%,) = Z xlihlJ(x e Ky)

PROOF: We first show that if there is any such expression for f, 1,3=1
then *» must be the index of f at p. For any coordinate system We can assume that hy; = hy;, since we canwrite By, = %(hij+ hys),
(21’.",Zn}, ir and then have Eij = Ej and f = T x4x 3 iJ . Moreover the matrix (Eij(o))
f£(a) = £(p) - (' (@)% ... - (@)% + (@) + (2a)?

1 3%r )

is equal to and hence is non-singular.
2 i ij

then we have

-2 if 1= j < : There is a non-singular transformation of the cocrdinate functions
=<, . .
dr ) = 2 if 1= 3> : which gives us the desired expression for f, 1in a perhaps smaller neigh-
1 j - - ’
oz oz 0 otherwise borhood of 0. To see this we just imitate the usual diagonalization proof

2

for quadratic forms. (See for example, Birkhoff and Maclane, "A survey of

how hat th i i i
which shows t the matrix representing fy, with respect to the basis modern algebra," p. 271.) The key step can be described as follows.

S%T prrr g%ﬁ D s Suppose by induction that there exist coordinates Uy,...,u, In
-2, & neighborhood U] of 0 so that
_22 f = i_(u1)2 F el ® (ur_1)2 & jg uiujHij(u1""’un)
i,j>r
2 throughout U]; where the matrices (Hij(u1,...,un)) are symmetric. After
Therefore there is a subspace of TMp of dimension » where f,, 1is nega- a linear change in the last n-r+1 coordinates we may assume that H}r(o) £ 0.
tive definite, and a subspace V of dimension n-» where f,, is positive Let g(u,,...,u) denote the square root of IHfr(u],...,un)l. This will
definite. If there were a subspace of TMp of dimension greater than X be a smooth, non-zero function of u;,...,u, throughout some smaller neigh-
on which f,, were negative definite then this subspace would intersect V, borhood U, C U, of 0. Now introduce new coordinates Vigeee, Vg by
which is clearly impossible. Therefore X 1s the index of f**.n | Vo= for i 4 r
We now show that a suitable coordinate system (y ,...,y ) exists.
Obviously we can assume that p 1s the origin of R™ and that f(p) = £(0) - Vr(u1,...,un) = g(u1,...,un)[ur + }: ugH; L ( 1""’un)/Hfr ...,un)].
By 2.1 we can write i>r
f(x1’.‘.,xn) ] ii it mrm It follows from the inverse function theorem that Vi,eee,V, will serve as
52 3= ’’n Coordinate functions within some sufficlently small neighborhood Us of o.

It is easily verified that f can be expressed as
for (x1,.‘.,xn) in some neighborhood of 0. Since 0 is assumed to be a

= 25 ViVJHiJ(V1""’Vn)

critical point: f = zg + (vi)e +
< i,j>r
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8 I. NON-DEGENERATE FUNCTIONS

throughout U3. This completes the induction; and proves Lemma 2.2.
COROLLARY 2.3 Non-degenerate critical points are isolated.

Examples of degenerate critical points (for functions on R and

RQ) are given below, together with pictures of their graphs.

(8) f(x,y) = x?. The set of critical points, all of which

5 2
are degenerate, i1s the x axis, which is a sub-manifold of R%.

N

(a) f(x) = x>, The origin (b) F(x) = e'T/XesinQ(l/x)

is a degenerate critical point. The origin is a degenerate, and

non-isolated, critical point.

(e) f(x,y) = x2y2. The set of critical points, all of which are

degenerate, consists of the union of the x and y axis, which is

not even a sub-manifold of Re.

We conclude this section with a discussion of 1-parameter groups of

diffeomorphisms. The reader is referred to K. Nomizu,"Lie Groups and Differ-

ential Geometry)' for more details.

A 1-parameter group of diffeomorphisms of a manifold M 1s & c”

map
() f£(x,y) = x3 - 3xy2 = Real part of (x + iy)3.
p: RxM =M

(0.0) 1s a degenerate critical point (a "monkey saddle").
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such thsat

1) for each t € R the map o M — M defined by

wt(q) = o(t,q) 1is a diffecmorphism of M onto itself,

2) for all t,s € R we have Piyg = 1

Given a 1-parameter group ¢ of diffeomorphisms of M

a vector field X on M as follows. Tor every smooth real valued function

£ let

“tnq)

o S

1 flog(@) - £a)

Xq(f) “h—o0 h

This vector iel¢ X 1is said to generate the group o.

LEMMA 2.4, A smooth vector field on M

which vanishes

outside of a compact set K C M generates a unique 1-

parameter group of diffecmorphisms of M.

PRCCH':  Gilven any smooth curve

t —c(t) el

it is convenient to define the velocity vector

dc
aE € TMc(t)

by the ldentity () - M folteh)-fo(t)

Compare §8.) Now let

P

be a 1-parameter group of diffecmorphisms, generated by the vector field

Then Tor each fixed q the curve

t— o ()
satisfics the differential equation
i Am [
‘*Wt_)\‘:l)
€ = Ko () o

with initial condition 7d(q) = q. This is true

4@ 1 (@) - fog)

at “h-o h = h=0— & — =%

wvhere p = @t(q). But it is well known that such a differential equation,

since

flon(p)) - £(p)
h

we define

X.

locally, has a unique solution which depends smoothly on the initial condi-

tion. (Compare Graves, "

iflote that, in terms of local coordinates u1,...,u

tion takes on the more femiliar form: Si - i, .. .

asn v

The Theory of Functions of Real Variables)' p.

n

166.

the differential equa-

§2. DEFINITIONS AND TEMMAS 1

Thus for each point of M there exists a neighborhood U and a

number € > 0 so that the differential equation

do (a)

—gax - X¢t(q), @O(Q) =q
has a unique smooth solution for q € U, |t]| < e.

The compact set K can be covered by a finite number of such
neighborhoods U. Let €y, > 0 denote the smallest of the corresponding
nurmbers €. Setting ¢.(q) = q for g ¢ K, it follows that this differen-
tial equation has a unique solution @t(q) for Jt| < €6 and for all
q € M. This solution is smooth as a function of both variables. Further-

more, it is clear that o = 9, o 9_ providing that |t],|s|,|t+s] <e..
* t+s t S 2 o]

Therefore each such i is a diffeomorphism.

It only remains to define o, for |t| > e,. Any number t cen
be expressed as a multiple of 50/2 plus a remainder r with |r| < eo/2 .

If t=k(ey/2) + ¢ with k> 0, set
P, =09 ° @ S .. 0 Q ° P
t 80/2 50/2 50/2 T

where the transformation P /o 1s iterated k times. If k<0 it is
o]
only necessary to replace % /o by e /2 iterated -k times. Thus 9
0 0
is defined for all values of t. It is not difficult to verify that 9 is
well defined, smooth, and satisfies the condition Pp,g = P ° P - This

completes the proof of Lemma 2.4

REMARK: The hypothesis that X vanishes outside of a compact set
cannot be omitted. For example let M be the open unit interval (0,1) CR,
and let X be the standard vector field é% on M. Then X does not

generate any 1-parameter group of diffeomorphisms of M.



