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Abstract: We review the ideas, algorithms, and numerical performance of manifold-based machine learning and dimension 
reduction methods. The representative methods include locally linear embedding (LLE), ISOMAP, Laplacian 
eigenmaps, Hessian eigenmaps, local tangent space alignment (LTSA), and charting. We describe the insights from 
these developments, as well as new opportunities for both researchers and practitioners. Potential applications in 
image and sensor data are illustrated. This chapter is based on an invited survey presentation that was delivered by 
Huo at the 2004 INFORMS Annual Meeting, which was held in Denver, CO, USA. 
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1. INTRODUCTION 

Manifold-based learning is an emerging and promising approach in nonparametric dimension reduction. 
In this article, we review the state-of-the-art mathematical developments, as well as some interesting 
applications. 

A manifold is a topological space that is locally Euclidean (i.e., around every point, there is a 
neighborhood that is topologically the same as the open unit ball in ). A good example of a manifold is 
the Earth (Figure 1-1). Locally, at each point on the surface of the Earth, we have a 3-D coordinate system: 
two for location and the last one for the altitude. Globally, it is a 2-D sphere in a 3-D space. 

nℜ

Manifolds offer a powerful framework for dimension reduction. The key idea of dimension reduction is 
to find the most succinct low dimensional structure that is embedded in a higher dimensional space. 
Historically, Occam's razor has been used to justify dimension reduction. The key idea of Occam’s razor is 
to choose the simplest model from a set of equivalent models to explain a given phenomenon. It is easy to 
see that a manifold gives a dimension reduction. Moreover, if the data are indeed generated according to a 
manifold, then a manifold-based learning is, in some sense, optimal.  

This article is organized as follows. Section 2 surveys existing methods, including principal 
components analysis (PCA), multidimensional scaling (MDS), generative topological mapping (GTM), 
locally linear embedding (LLE), ISOMAP, Laplacian eigenmaps, Hessian eigenmaps, and local tangent 
space alignment (LTSA). Section 3 stresses an important common point among some recent methods: their 
numerical solutions are based on searching for null spaces under certain situations. We choose LLE and 
LTSA as our illustrative examples. Such a common point is likely to be the key to unifying the theoretical 
analysis of many manifold-based methods. Section 4 presents some desirable performance properties of a 
learning method. Some preliminary thoughts in problem formulations and properties are described. For 
example, we establish the consistency of LTSA in Section 4.3.2. Section 5 gives some examples and 
potential applications, including examples of feature extraction in Section 5.1, an example of clustering in 
Section 5.2, a potential application in image detection in Section 5.3, and an application in sensor 
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localization in Section 5.4. We provide some final thoughts on the future of the field in Section 6.  Some 
additional useful resources are described in the Appendix.  

 

Figure 1-1. An example of a manifold. 

Relation to enterprise data mining (DM). This chapter does not directly address the DM in enterprise 
database. However, it provides powerful nonlinear dimension reduction methods, which are essentially 
useful in enterprise DM. One possible link is as follows (which is pointed out by an anonymous referee). 
Sensors are often used to monitor process in a manufacturing enterprise. To inspect the product quality, 
images of the product are often captured and then processed to detect flaws. The image detection technique 
in Section 5.3 can potentially be applied. A second possible link is through the object recognition in 
enterprise. Manifold-based dimension reduction has potential to be applied there. The sensor location 
problem that is described in Section 5.4 is another potential application in enterprise.  

A generic `prescription?' This chapter provides a comprehensive survey on existing manifold learning 
methods. For readers who are looking for a quick (and possibly dirty) solution, we suggest to experiment 
with local tangent space alignment (LTSA), which in our experience gives the most satisfactory 
performance in many cases. There are numerous software packages, which realize LTSA and are available 
freely on the internet. We refer to the URLs in the end of this chapter. Scientifically speaking, each 
problem has to be analyzed before one can decide which method is optimal. Keeping this in mind, one 
should only take the above as a suggestion (not a rule) -- there are always situations under which a method 
outperforms every other method, as reflected in the following detailed survey.  

2. SURVEY OF EXISTING METHODS 

We organize our presentation of methodologies into five groups. 

a) Group 1: classical methods, including principal component analysis (PCA). We mention other 
methods that are related, such as factor analysis and other techniques in multivariate analysis. 

b) Group 2: semi-classical methods, including multidimensional scaling (MDS), as described in 
Kruskal (1964) and Borg and Groenen (1997).  
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c) Group 3: manifold searching methods, including generative topographic mapping (GTM), referring 

to Bishop, Svensen, and Williams (1998), local linear embedding (LLE), referring to Roweis and 
Saul (2000), and ISOMAP, referring to Tenenbaum, de Silva, and Langford (2000). 

d) Group 4: methods rooted in continuum spectral theory, including the Laplacian eigenmaps (Belkin 
and Niyogi, 2001) and Hessian eigenmaps (Donoho and Grimes, 2003), which are based on elegant 
theory in spectral analysis, and then discretize the results in the continuum to generate numerical 
approaches.  

e) Group 5: advanced manifold methods, including charting (Brand, 2003) and local tangent space 
alignment (Zhang and Zha, 2004). These methods are based on global alignment. The key insight in 
these methods is the realization that the global alignment can be achieved via an eigenvalue 
computation. 

Each group is described in its own subsection below.  

2.1 Group 1: Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is one of the most classical methods in dimensional reduction.  
PCA is also known as the Karhunen-Loève transform, or singular value decomposition (SVD).  The key 
idea of PCA is to find the low-dimensional linear subspace which captures the maximum proportion of the 
variation within the data. 

PCA considers the second order statistics of a random vector .  Let 1 , 2 , …, N  denote N 
samples from such a random vector.  Let 

nℜ∈X X X X
Ω  denote the variance-covariance matrix of the random vector 

, i.e., X { } Ω=−−= T)]XE()][E([E)Var( XXXX .  Assume the symmetric and positive-semidefinite 
matrix Ω  has the following eigen-decomposition: 
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The diagonal entries of D, 110 λλλ ≤≤≤≤ − Lnn , are the ordered eigenvalues of . The columns of U, 
, are the associated eigenvectors.  From the following matrix computation, we can see 

that 
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It is possible to prove that the projection  from  to  (k<n) keeps the greatest 
possible proportion of the variation in the data. 

XUUX T
k ]...,,[ 1→ nℜ kℜ

If only the samples are available, the variance-covariance matrix can be estimated as  
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 PCA gives a natural dimension reduction.  Consider an extreme case: if all the data lie in a low-
dimensional linear subspace of a very high dimensional space, then PCA will find such a linear subspace, 
because the variations in the directions that are orthogonal to the embedded linear subspace will be equal to 
zero. 

 An evident disadvantage of PCA is that the embedded subspace has to be linear.  For example, if the 
data are located on a circle in 3-D, PCA will not be able to identify such a structure. 

Mathematically speaking, PCA is a problem of finding the largest eigenvalues. We will demonstrate 
later that many algorithms ultimately lead to a matrix problem that is associated with eigenvalues, 
including MDS, LLE, Laplacian eigenmaps, and LTSA.  

 

2.2 Group 2: Semi-Classical Method: Multidimensional Scaling (MDS) 

MDS is the name of a group of methods that have found a wide range of applications.  The key idea is 
to find a mapping from a high-dimensional space to a low-dimensional space, such that the pairwise 
distances between the observed points are preserved the best.  An intuitive example is to recover the 
relative positions of cities from the inter-city distances.  Imagine that the exact locations (coordinates) of N 
cities are lost.  However, we have the driving distances between pairs of them.  These distances form an 

 matrix.  Based on this matrix, MDS can recover a 2-D coordinate system that includes the locations 
of theses cities, subject to a rigid motion (a combination of rotation, shifting, and reflection), such that the 
distances among the points on this 2-D plane are close to the driving distances among those cities. 

NN ×

The above in fact gives an example of metric MDS (Torgerson, 1952; Young and Householder, 1938), 
which is related to nonmetric MDS (Kruskal, 1964; Shepard, 1962) that will be explained later. 

For metric MDS, consider some points  in a metric space iX Ω , Ω∈iX .  For Nml ≤≠≤1 , let 
 denote the distance between l  and m .  We want to find , ),( mld X X k
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 In metric MDS, the numerical values of the inter-distances are to be preserved.  Sometimes it makes 
more sense to preserve the order of these distances.  It is even possible that the available distances are 
ordinal data.  In order to map  to , in the case of ordinal data, the following optimization 
problem is adopted,  
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where f is a monotone increasing function.  For any fixed set of ’s, the f is specified.  The technical 
details can be found in Kruskal (1964) and Shepard (1962). 

iX

 MDS is a very useful tool when the inter-point distances need to be preserved.  In most existing MDS 
algorithms, a linear subspace is still the ultimate result.  In ISOMAP, which is a method that will be 
described later, MDS is applied to geodesic distances, which results in a nonlinear dimension reduction 
method.  We will give more details in Section 2.3.3. 

2.2.1 Solving MDS as an Eigenvalue Problem 

We present an eigenvalue-based approach to solving the MDS problem approximately.  Consider 
observations 1 , 2 , …, N , where N and D are two positive integers.  Let X=[ , , …, ].  
Without loss of generality, we assume that the i ’s are centered at the origin, i.e., D , where  
is the N-dimensional vector made by all ones, while  is the D-dimensional vector made by all zeroes.  It 
is easy to see that  
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Where I is an  identity matrix. NN ×

To find low-dimensional iY , i=1, 2, …, N, , d<D, such that the matrix d
iY ℜ∈ ( )

mll ,
 is a close 

approximation to E, we can find , such that 
mYY 2

2−
Nd

NYYY ×ℜ∈= ],...,[ 1 YY T  is close to XX T .  Note this 
approximately solves the original MDS problem, but not exactly.  Suppose the eigen-decomposition of 
matrix XX T  is 
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Where 021 ≥≥≥≥ Nλλλ L  are the eigenvalues of XX T  and  are the corresponding 
eigenvectors.  We can assign 

N
NUUU ℜ∈...,,, 21

( )[ ]Tdd UUUY ...,,...,,diag 2,11 λλ= . 

We can verify that YY T  is the best approximation to XX T .   
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2.3 Group 3: Manifold Searching Methods 

In this group, we review generative topological mapping (GTM), locally linear embedding (LLE), and 
ISOMAP. 

2.3.1 Generative Topological Mapping (GTM) 

Generative topological mapping (GTM) is an inspiring nonlinear dimension reduction method.  
Compared to the methods that will be introduced later, GTM does not contain the same sophisticated 
numerical approaches.  But its formulation highlights some key components in modern dimension 
reduction.   

Let x be a point in a latent space and t be a point in the data space.  Let  denote the observed 
points (realizations of t).  Point  is generated according to the following: 

Nttt ...,,, 21

it

1. First of all, there is a quantity i  associated with it  in the latent space.  Note that the ’s are not 
observable.  The latent space has a much lower dimension than the data space does. 

x ix

2. There is a mapping, , from the latent space to the data space.  This mapping is 
continuously differentiable and has full column rank in its Jacobian.  Notation W denotes the 
parameters of this mapping.  In fact, one can assume that the images y(x,W) for all x form a low-
dimensional manifold in the data space. 

),( Wxyx →

3. Suppose that the observation  is generated according to the model it

,);( iii Wxyt ε+=     i=1, 2, …, N, 

where iε  satisfies a multivariate normal distribution with zero mean and variance-covariance matrix 
β . 

Thus, GTM assumes the existence of an implicit manifold.  There are unknown parameters W and β .  
The latent variables  exist, but are also unknown.  ix

By assuming a special distribution for the i ’s and placing the problem in a Bayesian model estimation 
framework, the authors of GTM introduced an EM based method to estimate the above model (Bishop, 
Svensen, and Williams, 1998).  The dimension reduction is achieved by finding a maximum a posteriori 
(MAP) estimate. 

x

GTM considers a prior p(x) for the ’s.  This prior is a sum of a finite number of Dirac functions, i.e., ix

∑
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i
ixxxp

1

),()( δ  

where 1x , 2x , …, kx  are k given points in the latent space.  According to the previous way of generating 
i , there is a probability density function for t: t ),;|( βWxtp .  The density function on the data space is 

simply 

∫= xxpWxtpWtp d)(),,|(),|( ββ . 

Given that p(x) is a sum of k Dirac functions, we have 
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The principle of maximum likelihood estimation (MLE) is to find W and β  such that the log-likelihood 
function,  

∑
=

N

j
j Wtp

1

),|(ln β , 

is maximized.  The authors of GTM (Bishop, Svensen, and Williams, 1998) proposed an expectation-
maximization (EM) approach to estimate W and β .  Here we omit some of the technical details regarding 
how to choose the functional classes in the nonlinear mapping. 

 The numerical solution of GTM is based on a strong assumption on the prior. The application of the EM 
algorithm seems ad-hoc.  It is also hard to justify the performance of GTM.  As a matter of fact, GTM can 
only be established in some special cases, like clustering, as an alternative to self-organizing map (SOM).  
However, the probabilistic model is consistent with other models in data analysis.  

2.3.2 Locally Linear Embedding (LLE) 

Locally linear embedding (LLE) and ISOMAP comprise a new generation of dimension reduction 
methods.  They have been successfully applied to both synthetic and “real” data sets.  We review the LLE 
in this section, and ISOMAP in the next. 

Again, we consider a data space with a very high dimension D. Let iX
r

, i=1, 2, …, N, be N vectors in 
such a data space.  LLE starts with finding the k nearest neighbors (based on the Euclidean distance) for 
each vector i

r
, .  Let i  denote the indices of the k nearest neighbors of the vector i

r
.  LLE 

finds the optimal local convex combinations of the k-nearest neighbors to represent each original vector.  It 
is equivalent to minimizing the objective 
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where .  It can be shown that the above can be solved as a least-square problem.   ∑ =j ijW 1

Next, LLE considers a projection space.  A projection space plays a role similar to that of the latent 
space in GTM.  Let iY

r
 be the projection of iX

r
 in the projection space.  The projection space has  a 

dimension much smaller than D.  The projections iY
r

 are chosen such that the following objective function 
is minimized: 
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Note that the above is equivalent to finding a lower dimensional representation, such that the local convex 
representations are preserved.  It can be shown that with some additional conditions, which make the 
problem well defined, the minimization task can be accomplished by solving a sparse  eigenvector 
problem.  More specifically, the d eigenvectors associated with the d smallest non-zero eigenvalues 
provide an ordered set of orthogonal coordinates centered on the origin. 

NN ×
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We summarize the LLE algorithm in the following. 

Table 1-1. the LLE Algorithm 

LLE Algorithm 

1. Compute the k nearest neighbors of each point iX
r

. 

2. Compute the weights  of a convex combination of the k nearest neighbors that best represent the point . ijW iX
r

3. Find a low-dimensional projection  such that the above local representations are best preserved. iY
r

 

The LLE authors suggest that k-b trees can be used to compute the k-nearest neighbors efficiently 
(Friedman, Bentley, and Finkel, 1977).  The sparse eigenvector problem can be solved by fast algorithms 
as well, e.g., Bai, Demmel, Dongarra, et al. (2000). 

Note that unlike GTM, LLE does not have a probabilistic model imposed on the data.  In fact, the 
authors of LLE predicted the integration of probabilistic models in their future research. 

One disadvantage of LLE is that it implicitly assumes that the manifold is convex.  The methods that 
will be described later can overcome such a disadvantage. 

2.3.3 ISOMAP 

ISOMAP is another nonlinear dimension reduction method.  It can be viewed as an extension of metric 
MDS, by replacing the Euclidean distance with another type of distance. 

ISOMAP works as follows.  Consider N points, iX
r

, i=1, 2, …, N, in the data space.  First of all, for 
each data point 

r
, consider its neighbors.  There are two possibilities: iX

1. k-nearest neighbors of each point ; or iX
r

2. an ε -neighborhood, which includes all the points that are no more than ε -distance away from iX
r

. 

Let  denote the index set of the points that are the neighbors of iN iX
r

.  We construct a graph, in which 
each i  is a vertex, and two vertices are connected if and only if jX

r
Ni∈  or iNj∈ .  Define the distance 

between two points, i
r

 and jX X
r

, to be the sum of the arc lengths of the shortest chain connecting iX
r

 and 
jX

r
.  The shortest chain can be computed via dynamic programming (e.g., Dijkstra, 1959).  The above is 

called a graphical distance.  The geodesic distance between two points on a manifold is the length of the 
shortest curve that is on the manifold and connects the two points. Bernstein, de Silva, Langford, and 
Tenenbaum (2000) show that the graphical distance is in some sense a good substitute for the geodesic 
distance.  Note that a graphical distance is computable from data, while the geodesic distance is not 
computable.  A low dimensional projection is then generated by calling a metric MDS. 

2.4 Group 4: Methods from Spectral Theory 

Both Laplacian eigenmaps (Belkin and Niyogi, 2001) and Hessian eigenmaps (Donoho and Grimes, 
2004) are motivated by spectral theory in the continuum. The numerical approaches are discretizations of 
the continuum theory.  
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2.4.1 Laplacian Eigenmaps 

Laplacian eigenmaps are proposed in Belkin and Niyogi (2001).  This work establishes both a  unified 
approach to dimension reduction and a new connection to spectral theory.  Laplacian eigenmaps are the 
predecessor of the next method -- Hessian eigenmaps, which overcome the convexity limitation. 

We first describe the Laplacian eigenmap for discrete data.  Its relevant theorem in the continuum will 
follow.  Again, we consider N points, 

r
, i=1, 2, …, N, in the D-dimensional data space. For each point 

i
r

, , suppose a neighbor set i  is computed.  A graph identical with the graph in ISOMAP can 
be defined.  For any pair of connected points 

iX
X Ni ≤≤1 N

iX
r

 and jX
r

, we define a weight function 

⎭
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⎨
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W
rr
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Let D denote a diagonal matrix such  that ∑= j jiii .  Let W denote the symmetric matrix with entries 
, .  Finally, let L denote the matrix L=D-W.  Consider the solutions to the problem: 

WD
ijW Nji ≤≤ ,1

,DfLf λ=  (2-1) 

where .  Let 0 , , …,  be the solution vectors with corresponding eigenvalues Nf ℜ∈ f 1f 1−kf
1100 −≤≤≤= kλλλ L ; i.e., 
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The eigenvectors associated with zeros eigenvectors is left out and the next m eigenvectors are used for the 
embedding in an m-dimensional Euclidean space 

))(...,),(),(( 21 ifififX mi →
r

. 

An intuitive justification for solving the eigenvalue and eigenvector problem (2-1) is to consider 
minimizing the objective, 

∑ −
ji

ijji Wyy
,

2)( , (2-2) 

where  consists of N maps from a point to )...,,,( 21 Nyyyy = ℜ .  It is shown in Belkin and Niyogi (2001) 
that (2-2) is equivalent to finding 

.1subject to

,argmin

=Dyy

Lyy
T

T

 

Minimizing the objective in (2-2) is equivalent to finding an optimal embedding.  By generalizing it to an 
embedding in , we have the described eigenvector and eigenvalue problem.  We refer the reader to 
Belkin and Niyogi (2001) for the details. 

mℜ
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The above approach uses the Laplacian of a graph, which is analogous to the Laplace Beltrami operator 

on manifolds.  Chung (1997) serves as a good reference.  Let M be a smooth, compact, m-dimensional 
Riemannian manifold.  Let f be a map from the manifold to ℜ .  Assume that  is twice 
differentiable.  Belkin and Niyogi (2001) explain how  

ℜ→Mf :

∫
f

ffL )(  

serves as the weighted sum in (2-1).  Suppose f∇  is the gradient of f and L(f) is the Laplace Beltrami 
operator.  It is known that the , which minimizes f̂

2
∫ ∇

M
f , is an eigenvector of the Laplace Beltrami 

operator. 

The spectrum of L on a compact manifold M is known to be discrete.  The rest of the dimension 
reduction is identical with the approach in the discrete case. 

The connection between spectral theory and dimension reduction, which is established in Laplacian 
eigenmaps, is very inspiring. 

2.4.2 Hessian Eigenmaps 

In all the aforementioned methods, it is required that the embedded manifold is sampled on a convex 
region.  Hessian eigenmaps, as proposed by Donoho and Grimes (2004), relax the convexity condition. 

We explain the motivation of Hessian eigenmaps (HLLE) in the continuum.  Recall that in Laplacian 
eigenmaps, the following functional  is considered: )(1 fH

∫= M
ffLfH )()(1 . 

In Hessian eigenmaps, the above functional is replaced with  

∫= M Ff mmHfH d)()(
2

2 , 

where  is the Hessian of the function f.   denotes the square of the Frobenius norm of a matrix.  
Donoho and Grimes prove that by minimizing , the convexity condition in the previous approaches 
can be relaxed. 

)(mH f
2|||| F⋅

)(2 fH

Donoho and Grimes (2004) then propose a discrete algorithm, which is based on a discrete 
approximation to the Hessian on a manifold. 

2.5 Group 5: Methods Based on Global Alignment 

We review the local tangent space alignment (LTSA) method that is proposed in Zhang and Zha (2004). 
There is another similar method, charting (Brand, 2003), which is not as well-developed mathematically. 

The following derivation can be divided into two stages. In the first stage, a local parametrization is 
established for each data point. In the second stage, a global alignment is computed. Suppose that the ith 
observation is generated according to iii fx εθ += )( , where iθ  is a natural parameter of , and the ix iε 's 
are random and i.i.d. Let ji  denote the jth nearest neighbor of i . Similarly, we have x , x jijiji fx ,,, )( εθ += . 
We assume that iji θθ ≈, , because they are neighbors. Assume f is smooth enough so that 
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Here )(g if θ  is the gradient of function f whose variable is iθ . The above is merely a Taylor expansion. 
Let , where  are the k nearest neighbors of i , 

. Let .  Let i

kDT
kikiiii xxxxX ×ℜ∈−= 1],...,,[ ,2,1, kii xx ,1, ...,, x

kTT
k ℜ∈= )1,...,1,1(1 kD

ii fL ×ℜ∈= )(g θ α , 1,i , …,  denote the temporary local 
parameterizations of observations i , 1,i , …, ki . Similarly, let . If the i

α ki,α
x x x ,

T
kikiiiiA 1αααα −= ]...,,,[ ,2,1, ε 's 

satisfy a multivariate normal distribution with zero mean and constant variance, and if the second order 
term 

2

2, iji  is negligible, the local parameterization and the tangent space can be computed by solving 
the following optimization problem: 

αα −

2

,
min FiiiAL

ALX
ii

− . 

Note that in order to make the solution well defined, we impose the constraint di . The above is 
solved via a singular value decomposition (SVD).  i  is made by the singular vectors that are associated 
with the d largest singular values of .   is also computable, and is the only quantity that will be 
conveyed to the next stage. 

T
i ILL =

L
iX iA

In the second stage, a global parameterization that is locally identical to  up to a rigid transform is 
computed. Let 

iA

T
kikiiii 1θθθθ −=Θ ]...,,,[ ,2,1, . 

Let  be an orthogonal matrix. We solve dd
iT ×ℜ∈

∑
=

−Θ
N

i
FiiiT

AT
ii 1

2

s' s,' all
min
θ

. 

By following a derivation in Zhang and Zha (2004), it is possible to show that the problem eventually 
becomes that of finding the 2nd to the (k+1)st smallest eigenvalues and eigenvectors of an NN ×  matrix. 
Due to space limitations, the specific form of this matrix is omitted.  

3. UNIFICATION VIA NULL-SPACE METHODS 

We have presented a large set of methods, all having the flavor of finding the embedded geometric 
structure, i.e., a manifold.  Different methods are based on different ideas.  It seems like each method 
should be analyzed individually in order to determine its performance.  As a matter of fact, we will 
demonstrate in this section that many of them eventually become null-space searching algorithms. (Recall 
that null-spaces are spanned by the solutions of a system of linear equations corresponding to a 
predetermined matrix.) Hence, if we can characterize the behavior of null-spaces under uncertainty, we can 
provide a unified analysis of these methods.  We show that LLE and LTSA are null space-based methods 
in Section 3.1 and 3.2, respectively.  We describe the matrices that are used in these methods as a way to 
compare them on a common ground. 



12 Chapter 1

 
3.1 LLE as a Null-space-based Method 

The content of this subsection extends the description in Section 2.3.2.  

Recall that LLE contains two steps.  In the first step, a linear representation of each observation (point) 
based on its k-nearest-neighbors is computed.  In the second step, we compute a low-dimensional 
representation that best preserves these local linear representations. 

The first step is achieved by solving the following problem: 

2
2

1

min ω
ω
ω

ii MX
k

T

k
−

=
ℜ∈
1

, 

where , , are the observed points, i =  is formed by taking the k 
nearest neighbors of i  as its columns, and  is an all one vector..  It is shown in an online 
introduction of LLE (Saul and Roweis, 2001) that the above is equivalent to solving 

D
iX ℜ∈ Ni ,...,2,1= M ],,,[ 21 ikii XXX K

X k
k ℜ∈1

( ) ( )ωω
ω

i
T
ki

T
i

T
ki

T MXMX
k

T
−−

=
11

1 1
min . 

Let . Using a Lagrange multiplier approach, one can show that ( ) ( i
T
ki

T
i

T
kii MXMX −−=Ω 11 )

ki
T
k

ki
i 11

1
1

1

−

−

Ω
Ω=ω , 

provided that  is invertible. iΩ

As demonstrated in the original LLE paper, the second step can be achieved by solving 

∑ −
=

ℜ∈ ×
i

iii

IYY
Y

NY
d

T

Nd

2
2

min ω , (3-1) 

where d<D, , matrix , which is made by k iY ’s that correspond to the 
k nearest neighbors of .   is the d-by-d identity matrix.  The above objective function can be rewritten 
as 

]...,,,[ 21 NYYYY = ],...,,[ 21 ikiii YYYN =
iX dI

∑ −=
i

iii SeY 2
2)(obj(LLE) ω , 

where i  is a N-dimensional column vector taking one at the ith position and zeros elsewhere, i  is the 
selection matrix associated with the k nearest neighbors of , and 

e S
iX iω  is computed in the first step.  

Moreover, we have  

∑ −−=
i

iii
TT

iii SeYYSe )()(obj(LLE) ωω . 

Minimizing the above objective function with the constraints in (3-1) is equivalent to finding the 
eigenvectors associated with the 2nd to the (d+1)st smallest eigenvalues of the matrix 
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We can simplify M(LLE) as  

( )( T
NN WIWILLEM −−=)( ) . 

Note that M(LLE) is an NN ×  symmetric matrix. 

Because , , it is evident that the all one vector N1  belongs to the null space of matrix 
M(LLE).  The choice of the second to the (d+1)st smallest eigenvalues is to exclude such a special case. 

1=i
T
k ω1 i∀

3.2 LTSA as a Null-space-based Method 

We review LTSA, emphasizing that LTSA is another null-space method, and compare it with LLE.  
Recall LTSA includes two steps: local parameterization and global alignment. 

In the local parameterization step, the following is solved. 

2

2
min ii

IQQ

QPX
d

T

kd
i

Θ−
=
ℜ∈Θ ×

, 

where  is a matrix whose columns are the k nearest neighbors of the ith point including the ith 
point, 

kD
iX ×ℜ∈

)/( kIP T
kkk 11−= , which is a projection matrix projecting  to a k-1 dimensional linear subspace 

that is orthogonal to the all one vector ,  satisfies d , and we assume d< min(D, 
k).  Let 

kℜ
k

k ℜ∈1 dDQ ×ℜ∈ T IQQ =
∑= i

T
iiii vuPX λ  be the singular value decomposition of matrix PX i , where 

1λ ≥ 2λ ≥ 0),min( ≥≥ kDλL , column vectors  are the left singular vectors, and column vectors 
 are the right singular vectors.  Zhang and Zha (2004) demonstrate that the solutions are 

 and  

D
iu ℜ∈

k
iv ℜ∈

],...,,[ 21 duuuQ =

( ) .,...,,diag
1

21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

=Θ

T
d

T

d

i
T

i

v

v

PXQ

Mλλλ
 (3-2) 
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In the global alignment, Zhang and Zha (2004) show that the optimal low-dimensional representation is 

given by the eigenvectors associated with the d+1 smallest eigenvalues of the matrix 

TT SSWW=M(LTSA) , 

excluding the zero eigenvalue associated with a constant-valued eigenvector.  A detailed explanation can 
be found in Zhang and Zha (2004).  Here ],...,,[ 21 NSSSS = , where i  is a selection matrix associated 
with  that is defined in the foregoing subsection (Section 3.1).  Moreover,  

S
iX

( )nWWWW ,...,,diag 21= , 

where )( iiki IPW ΘΘ−= + , and  is the generalized inverse of matrix +Θi iΘ . 

Recalling (3-2), we have 

[ ]
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Letting , we have T
iii WWP =

[ ] P
v

v
vvIPP

T
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⎞
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⎛

⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡

−= ML
1

1 ,, , 

which is a projection matrix that projects to a 1),min( −− dkD  dimensional subspace of .  The 
subspace is spanned by the right singular vectors of 

kℜ
PX i  associated with the  smallest 

singular values and is orthogonal to vector .  It is easy to see that 
dkD −),min(

k1

TT SSBB=M(LTSA) , (3-3) 

where . ),...,,diag( 21 NPPPB =

Once again, LTSA is a null-space problem. 

3.2.1 Comparison between LTSA and LLE 

Recall M(LLE)= , which is formally different from M(LTSA).  Supposing we want to 
write M(LLE) in a format that is similar to the expression of M(LTSA), we can take 

TWIWI ))(( −−

),...,,(diag],...,,[ 11
2

1
1

1

21
−−−

⎥
⎥
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⎦

⎤

⎢
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⎣

⎡

= N
T
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T

Nn ccc
S

S
SSSI M , 

where  is the number of times that point ic iX
r

 is included in a k nearest neighbor set.  One can verify that  
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TSSTT TM(LLE) = , 
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),...,,(diag . 

Comparing with (3-3), we find that TTT  is no longer a block diagonal matrix.  Such a difference between 
LTSA and LLE may lead to different performance.  The detailed analysis is left as a future research topic. 

4. PRINCIPLES GUIDING THE METHODOLOGICAL DEVELOPMENTS 

4.1 Sufficient Dimension Reduction 

We review the general principle of dimension reduction. We start with the concept of sufficiency in 
classical mathematical statistics. Let  denote an observation. Imagine another quantity , 
which is an implicit (simpler) representation of x. For example, 

Dx ℜ∈ dℜ∈θ
θ  could be a parameter in classical 

mathematical statistics. Let ),( θxp  denote their joint distribution. The parameter θ  can be thought as the 
meaningful part of x. If there exists a function of x, denoted as )(xφ , such that 

)()),((),( 21 xpxpxp ⋅= θφθ , then )(xφ  is a sufficient statistic of θ . Here  and  are two 
functions. We assume that 

)(1 ⋅p )(2 ⋅p
θ  resides on one (or a few) simple manifold(s), and )),((1 θφ xp  is 

approximately )(3 θp , a distribution of θ , if and only if )(xφ  is close to θ . It is easy to see that when the 
previous factorization holds, the conditional probability ))(|( xxp φ  does not depend on θ . We say that 

)(xφ  is an ideal dimension reduction of x. The idealness is based on the fact that this data description takes 
the simplest possible form. 

The above describes an abstract principle. A lot of specifications are needed to make it concrete. There 
are many existing works in dimension reduction, both for supervised learning (Globerson and Tishby, 
2003; Fukumizu et al., 2004) and unsupervised learning. We described an unsupervised learning 
framework. We will describe a manifold-based dimension reduction framework with assumptions on the 
conditional distribution of )(| xx φ .  

4.2 Desired Statistical Properties 

There are more criteria that are commonly adopted in evaluating the fundamental performance of 
dimension reduction algorithms.  Note that nearly all of them take an asymptotic perspective (i.e., 
assuming the sample size n goes to ). ∞

4.2.1 Consistency 

For any estimate, the first requirement typically is statistical consistency. In our case, assume that each 
time course i  is a combination of a structural component x )( if τ  and i.i.d. random errors iε , where 

, and ini ...,,2,1= τ  is a natural parameterization of a compact manifold, or a concatenation of several 
compact manifolds.  Let x denote all the available data: }...,,{ 1 nxxx = . The estimated parameter value at 
point  is denoted by . An estimate  is consistent if and only if the following holds: ix );(ˆ xxinφ nφ̂

, as),();(ˆ ∞→⇒ nTxx iin τφ  
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where T is a 1-1 rigid transform. In words, a consistent estimate gives the theoretically true estimate when 
the sample size goes to infinity. 

4.2.2 Rate of Convergence 

There could be many estimates that are statistically consistent. The rate of convergence is a quantity to 
further evaluate them. Let  denote the standard deviation of an estimate. Let ♣  denote 
that constant.  There exists a constant 

)std(⋅ )(1 nf )(2 nf
=

∞→
)(/)(lim 21 nfnf

n
0>ρ  such that  

)ˆ(std nφ ♣ . ρ−n

When 2/1=ρ , n  is φ̂ n -consistent.  If ρ−  achieves the smallest possible value, the optimal rate of 
convergence is achieved. The optimal rate of convergence can be computed via Fisher information -- a 
well-established technique in statistics. 

4.2.3 Exhaustiveness 

We hope to have . It is possible that  converges to a function (not invertible) 
of 

)();(ˆ
iin Txx τφ ⇒ );(ˆ xxinφ

)( iT τ .  On the other hand, it might be possible that )( iT τ  is a function of the limit of . In both 
cases, estimate n  does not converge to the true natural parameterization. When  converges 
exactly to a 

);(ˆ xxinφ
φ̂ );(ˆ xxinφ
)( iT τ , the estimate n  is called exhaustive. This concept has been developed in statistics, such 

as searching for central subspaces in regression. See the Introduction of Li et al. (2004) for more related 
information. Examining whether a manifold learning algorithm leads to an exhaustive estimate is a future 
task. 

φ̂

4.2.4 Robustness 

The last requirement is robustness -- namely, if the data are generated according to the model 
iii fx ετ += )( , except for a small proportion of them, one should still expect that a robust manifold 

learning algorithm will recover the embedded structure f. The threshold of the proportion that can mislead 
a manifold learning algorithm is called the breakdown point of this method. This is an indicator of the 
robustness of a learning algorithm. Calculating the robustness properties of some manifold learning 
algorithms will be a future task. 

4.3 Initial Results  

4.3.1 Formulation and Related Open Questions 

We propose a framework to analyze the consistency of a dimension reduction method, especially for 
those methods that are intended to learn an embedded manifold.  The solution to this problem and the 
technical details will appear in a future publication.  We propose this framework to illustrate the necessary 
components for a theoretical analysis. 

We consider a compact subset  in the Euclidean space , .  Let 1Ω dℜ dℜ⊂Ω μ  denote a probability 
measure on .  We assume Ω 0)(1 >xμ , Ω∈∀x , i.e., 1μ  is always positive.  We assume that there is an 
isometric mapping , where Df ℜ→Ω: Dd < , and , i.e., f has continuous (partial) derivatives.  It 
is easy to see that  is a manifold in  with intrinsic dimension d.  More specifically, 

2Cf ∈
)(Ωf Dℜ )(Ωf  is a 

chart, and x (as in ) is a parameterization of this manifold. )(xf

Now we consider a sample version.  Assume points 1 , 2 , …,  are i.i.d. sampled from X X NX Ω  
according to 1μ .   Because f is an isometric mapping, we have ))(),(d(|||| jiEji XfXfXX =− , where 
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Eji  is the Euclidean distance between points  and j , and  is the geodesic 
distance on the manifold between points  and .  We can consider the following questions: 

XX |||| − iX X ))(),(d( ji XfXf
)( iXf )( jXf

– Question 1: Given the observed points )( ii XfY = , Ni ,...,2,1= , as ∞→N , can we use a manifold 
learning method to recover the ’s up to a rigid motion? iX

If we consider sampling noise, we may ask the following question: 

– Question 2: Given the observed points iii XfY ε+= )( , Ni ,...,2,1= , where 2 , as 
...

~ με
dii

i ∞→N , 
what are the necessary and sufficient conditions on 2μ , under which a manifold learning algorithm will 
recover the ’s up to a rigid motion? iX

Moreover, in the above setting, we can consider the rate of convergence to the true parameterization as 
. ∞→N

Our formulation is different from the consistency that has been addressed by the authors of ISOMAP 
(Tenenbaum, de Silva, and Langford, 2000).  They show that as the sample density goes to zero, the 
graphical distance converges to the geodesic distance.  It follows that a subsequent application of MDS 
will recover the true parameterization (i.e., the true values of ).  Their approach is different from a 
traditional way of data analysis. 

iX

Laplacian and Hessian eigenmaps in some sense address the problem of consistency.  Both Laplacian 
eigenmaps and Hessian eigenmaps are discrete approximations of the algorithms that have proven 
consistency in the continuum.  Given that a discrete algorithm converges to the continuum version 
asymptotically, they will have the same property.  It is easy to see that this approach cannot provide an 
analysis of the rate of convergence. 

Comprehensive error analysis is given in Zhang and Zha (2004) regarding LTSA.  Their pioneering 
work is very inspiring to us.  However, their analysis focuses on an upper bound, which is equivalent to a 
worst-case study.  Our formulation can lead to a more statistical analysis, which we believe in many 
situations is more meaningful than the worst case study. 

4.3.2 Consistency of LTSA 

In this section, we establish the consistency of the LTSA algorithm under some mild conditions.  The 
purpose of doing so is to demonstrate some key ingredients in the theoretical analysis.   

Recall that Ω is a subset of the feature space .  The function f maps dℜ Ω  into the data space , with 
, i.e., .  When f satisfies some regularity conditions, the range  forms a manifold.  

We assume that Ω is bounded, which is formalized in the following: 

Dℜ
Dd < Df ℜ→Ω: )(Ωf

– Condition 1:  The domain Ω is bounded, i.e., ∞<Ω , where Ω  is the Lebesgue measure of Ω in . dℜ

The following notation is needed later.  For Ω∈0x , an ε -neighborhood of , denoted by , 
is defined as  

0x )( 0xNε

}{ εε <−Ω∈=
200 ,:)( xxxxxN . 

A function  can be written as Df ℜ→Ω:

1
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⎥
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⎥
⎥
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⎤
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where each  is a real-valued function of d variables.  The Jacobian of f at the point 

 is 
),,,()( 21 dii xxxfxf K=
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The Hessian of Difi ≤≤1, , is 

}{ dts
xx
xf

xf
ts

i
tsi ≤≤

∂∂
∂

= ,1,
)(

)(H 0
2

,0 . 

Another regularity condition on f is the assumption that its Hessians are bounded: 

– Condition 2:  There exists a constant  such that for any 1C s≤1 , dt ≤ , Di ≤≤1 , and , we 
have 

Ω∈0x
{ } 1,0 )(H Cxf tsi < . 

The next condition assumes that the mapping f is locally isometric. 
– Condition 3:  For any  and Ω∈0x )( 00 xNx ε∈ , 00 →− xx  implies that  

( )2
200200200 )()( xxOxxxfxf −+−=− . 

Recall is a quantity that has the same asymptotic order as )(xO x when x goes to the positive infinity. 

The following argument demonstrates that when f is locally isometric, its Jacobian  has to be 
orthonormal for every 

)(J 0xf
Ω∈0x .  To see this, we consider the Taylor expansion at the point .  For 0x

)( 00 xNx ε∈ , we have 

( )2
20000000 ))((J)()( xxOxxxfxfxf −+−+= . 

If f is locally isometric, we have 

))((J)(( 00000200 xxxfxfxfxx −=−=− . 

The above is true for any )( 00 xNx ε∈ .  Hence  is made by a subset of columns of an 
orthogonal matrix, i.e.,  is orthonormal.  Mathematically, we can write 

)(J 0xf
)(J 0xf

d
T Ixfxf =)]([J)]([J 00 . 
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In LTSA, it is assumed that the k nearest neighbors in the data space correspond to the k nearest 

neighbors in the feature space.  The following introduces a sufficient condition for this neighbor-preserving 
property.  Consider points  that are sampled in NXXX ,...,, 21 Ω .  Their images in the data space are 

.  For each , )(,),(),( 21 NXfXfXf K )( tXf Nt ≤≤1 , let  denote the k 
nearest neighbors of  in .  The following is a neighbor-preserving condition: 

)(,),(),( ,2,1, kttt XfXfXf K
)( tXf Dℜ

– Condition 4:  For any 0>δ , there exist integers )(δN  and )(δK  such that for any t, , Nt ≤≤1
).(,,2,1),(, δδ KkjXNX tjt ==∈ K  

In fact, the reader may verify that if exists and is absolutely continuous, and if the distribution of 
random points is dense everywhere on , then Condition 4 holds. 

1−f
)(Ωf

Under Conditions 1, 2, 3, and 4, we show that the LTSA algorithm provides a consistent estimate.  
Recall that LTSA solves the following optimization problem: 

∑ ∑
= =≤≤

−−−
N
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k

j
tjtttjt

nt
XLX

XfXfXLXX
kNtt 1 1

2

2,,
1

)(,
)]()()[(11min , 

where  is a  orthonormal matrix, i.e., d .  Recall that   Note 
that the objective function, which is also the objective function in LTSA, is nonnegative.  Under conditions 
1, 2, 3, and 4, we will show that by taking the original parameterization of the manifold, the above 
objective goes to zero, which is the smallest possible value of the objective function.  Moreover, 
considering the local solution, for , we have 

)( tXL Dd × T
tt IXLXL =)]()[( d

jtt XX ℜ∈,, .

Nt ≤≤1

0)]()()[(
2

2,, ≈−−− tjtttjt XfXfXLXX . 

We can see that the solution is unique up to a rigid motion, i.e., is another solution if and 
only if U is a  orthogonal matrix and V is a d-dimensional vector.  Combining the above two, the 
consistency of LTSA is proved. 

VUXX tt +='

dd ×

We now show that the value of the objective function of LTSA goes to zero under the above four 
conditions.  Recall that for Nt ≤≤1  and kj ≤≤1 , we have 
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The above is derived directly from the Taylor expansion at the .  Moreover, we have tX
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From the above, it is easy to see that the value of the objective function of LTSA is less than or equal to 
, where 2  is a constant.  In fact, we can take 2

2 δ×C C 2
12 2/1 dDCC = .  When 0→δ , the objective of 

LTSA converges to zero.  From all of the above, we have established the consistency of LTSA. 
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5. EXAMPLES AND POTENTIAL APPLICATIONS 

5.1 Successes of Manifold Based Methods on Synthetic Data 

We give some numerical examples to demonstrate the effectiveness of manifold learning approaches. 

5.1.1 Examples of LTSA Recovering Implicit Parameterization 

 

Figure 5-1. Examples of LTSA recovering the intrinsic parameters from (a) noiseless and (b) noisy data. 

The following examples show that LTSA can successfully recover hidden low dimensional 
parameterization from high dimensional data sets. In Figure 5-1 (a, top), data points are sampled from a 1-
D curve in a 2-D (or 3-D) space. For each curve, starting from one end of it, its distance to any point on the 
curve gives a natural parameterization. Obviously, these data sets are intrinsically one-dimensional. In 
Figure 5-1 (a, bottom), the recovered parameter values are plotted against the true distance parameter 
values (mentioned above). When the recovered values are consistent with the true parameterization, the 
bottom figures should be diagonals (i.e., xy = or xy −= ). Such a pattern is clearly observed. 

We would also like to see how LTSA behaves with noise. In Figure 5-1 (b, top), data are sampled with 
noise around 1-D curves. In Figure 5-1 (b, bottom), we see that LTSA still reliably recovers the implicit 
parameterization, because of the observable diagonal patterns.  

More real-world applications can be found in Zhang and Zha (2004). 

5.1.2 Example of Locally Linear Projection (LLP) in Denoising 

An LLP (Huo, 2003; Huo and Chen, 2002) can be applied to extract the local low-dimensional 
structure. In the first step, neighbor observations are identified. In the second step, singular value 
decomposition (SVD) or principal components analysis (PCA) is used to estimate the local linear subspace. 
Finally, the observation is projected into this subspace. An illustration of LLP in 2-D with local dimension 
1 (i.e., linear) and 15 nearest neighbors is provided in Figure 5-2.  A detailed description of the algorithm is 
given in the following. 

________________________________________________________________________________ 

ALGORITHM: LLP 
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for each observation , Niyi ,...,3,2,1, =

a) Find the K-nearest neighbors of . The neighboring points are denoted by iy 1
~y , 2

~y , …, Ky~ . 
b) Use PCA or SVD to identify the linear subspace that contains most of the information in the 

vectors 1
~y , 2

~y , …, Ky~ .  Suppose the linear subspace is iΑ , and let 
iΑ  denote the projection 

of a vector x into this subspace.  Let 0k  denote the assumed dimension of the embedded manifold.  
Then subspace i can be viewed as a linear subspace spanned by the vectors associated with the 
first  singular values. 

)(xP

Α
0k

c) Project  into the linear subspace iy iΑ and let denote  this projection: . iŷ )(ˆ xPy
ii Α=

end. 

________________________________________________________________________________ 

 

Figure 5-2. An illustration of Local Linear Projection in a 2-D space with local dimension 1 and 15 nearest neighbors. 

In Figure 5-3 a denoising example via LLP is provided. The noisy data are presented in the left panel, 
while the denoised data are presented in the right panel. It is clear that the LLP reveals the true underlying 
structure in the data set. 
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Figure 5-3. Denoising via LLP 

5.2 Curve Clustering 

Clustering is an important technique in data processing. We consider a data set containing 512=N  
time series. Each series has dimension 64=p . The time series are generated according to the following 
rule: 
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Figure 5-4. Noisy Time Series Data Set 

 

Figure 5-5. Denoised Time Series via LLP 

In words, there are 4 trigonometric time series with different phases. One quarter of these time series 
belong to each type. Figure 5-4 provides an illustration of all the time series. Each plot contains 128 time 
series belonging to one of the four types. The result of LLP-based denoising is shown in Figure 5-5.  Note 
that the information on how the time series are generated is not used in applying LLP. One can observe that 
the LLP recovers the underlying patterns of this set of data. 
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5.3 Image Detection 

We now consider the detection of inhomogeneous regions in a homogeneous background (e.g., 
textures). The underlying assumption is that the samples from the homogeneous background reside on an 
underlying manifold, while the samples that intersect with the embedded object (i.e., the inhomogeneous 
region) are ‘away’ from this manifold. The empirical distance from each sample to the manifold is a 
quantity to determine the likelihood of a sample’s overlapping with an embedded object. This result can 
consequently be integrated with the ‘Significance Run Algorithm’ to predict the presence of the embedded 
structures. A ‘local projection’ algorithm is designed to estimate the distances between the samples and the 
manifold. Simulation results for the features embedded in the textural images show promise. This work can 
be extended to a formal theoretical framework for underlying feature detection. It is particularly well-
suited to textural images. 

 
We consider detecting objects in a homogeneous background. The objects are the regions within which 

the distributional properties of these image pixels are different from those in the rest of the image. Two 
example cases are given in Figure 5-6 and 5-7.  In each case, there is a textural image, a trigonometric-
function-shaped slim region with contents different from the texture, and a combination of both of them. 
The detection problem is (1) to determine the presence of an object region, and furthermore (2) to infer the 
location and the shape of the object region. 

This problem is a fundamental one in many applications, such as target recognition, satellite image 
processing, and so on. 

 

Figure 5-6. Example of an object (shaped like a trigonometric function, with its own textural distribution, as depicted in (b)) that is 
embedded in a textural image ((a)). Panel (c) is a combination: (c)=(a)+(b). 
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We explore the following idea: (1) the background makes the majority of an image, while an object 

region is the ‘minority’; (2) In addition, the majority of the images (from the homogeneous background), if 
appropriately sampled, are located on a low-dimensional manifold; (3) The samples that overlap with the 
embedded region are ‘far’ from the manifold. Given that the above three conjectures are true, the distance 
from a sampled patch to the underlying manifold gives the probability that the sample overlaps with the 
embedded object. If all the high probability samples are relatively concentrated, then one has evidence for 
the presence of an embedded object; otherwise there may not be an embedded object. An illustration of an 
underlying manifold for samples (e.g., patches) from a homogeneous background is given in Figure 5-8. 

A previously developed framework named significance run algorithm (Arias-Castro, Donoho, and Huo, 
2003; Huo, Chen, and Donoho, 2003a, b) can be used to process the patterns of the high probability 
samples. The distance from a sample to an underlying manifold can be estimated by LLP.  Simulations 
demonstrate the effectiveness of this approach, which will be shown in Section 5.3.5. 

The rest of this subsection is organized as follows. In Section 5.3.1, the formulation of the problem is 
given. In Section 5.3.2, the distance to a manifold is defined. Section 5.3.3 describes the Significance Run 
Algorithm (SRA). In Section 5.3.4, some issues in parameter estimation are discussed. In Section 5.3.5, we 
present the simulation results. Some conclusions are presented in Section 5.3.6.  

 

Figure 5-7. Another example of an embedded object. 
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Figure 5-8. Illustration of an underlying manifold. 

5.3.1 Formulation 

For an  image, let , denote all of the 8 by 8 sampled patches with two diagonal corners 
being (4a+1,4b+1) and (4a+8,4b+8), where 

NN × Ι∈iyi ,
4/)8(,0 −≤≤ Nba . The patch size  is chosen for 

computational convenience. We assume that if patch  is sampled in the background, then  
88×

iy

,,)( Ι∈+= itfy iii ε   

where  is a locally smooth function that determines the underlying manifold, the ’s denote the 
underlying parameters for the manifold, and the 

)(⋅f it
iε ’s are random errors. 

5.3.2 Distance to Manifold 

For any patch , the distance from this patch to its original image on the manifold  is iy )( itf

2)( ii tfy − . 

As explained earlier, this distance measures how likely the patch is in the background. The larger the above 
distance is, the less likely this patch is on the background. 

An illustration of the distance from a patch to the manifold is given in Figure 5-9. Note that the 
function  is not available. )(⋅f

 

Figure 5-9. Illustration of the distance from an observed patch to the manifold. 

The distance between ,  and  can be estimated by iy Ι∈i )( itf
2

ˆii yy − , as described in Section 5.1.2. 
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5.3.3 SRA: Significance Run Algorithm 

Even though the distance to a manifold can be estimated, it still remains unclear when the distance is 
significantly large. Instead of studying the distribution of the distances themselves, we study their spatial 
patterns by using SRA, which was introduced in Arias-Castro, Donoho, and Huo (2003), and was later 
used in Huo, Chen, and Donoho (2003a) and Huo, Chen, and Donoho (2003b). 

 

Figure 5-10. An illustration of Significance Graph and a Significance Run. 

A summary of SRA is as follows. Each patch is associated with a node. Because patches are equally 
spaced, they form a table as in Figure 5-10. There is an edge between two nodes if and only if the 
corresponding patches are spatially connected. A node is significant if and only if the corresponding 
distance 

2ii is above a prescribed threshold (denoted by 1ŷy − Τ ).  A significance run is a chain of  the 
connected significant nodes. The length of the longest significance run is the test statistic: an embedded 
object is claimed to be present if and only if this length is above a constant (denoted by 2Τ ). It has been 
shown (e.g., Arias-Castro, Donoho, and Huo (2003); Huo, Chen, and Donoho (2003b)) that SRA leads to a 
powerful test. 

Note that both 1Τ  and 2Τ can be determined numerically. 1Τ  can be a given percentile of the empirical 
estimates of the distances: 

2
ˆii yy − , and  can be derived from simulations. 2Τ

5.3.4 Parameter Estimation 

In LLP, one needs to specify the number of the nearest neighbors and the local dimension. This can be 
done by studying the empirical distribution of the distances and the total residual sum of squares. 

5.3.4.1 Number of Nearest Neighbors 
An illustration of the percentiles of the distances to the nearest neighbors is given in Figure 5-11.  We 

choose 50 nearest neighbors, because it is approximately a kink point in this figure. It is possible to choose 
the number of the nearest neighbors by studying the distances to the nearest neighbors. Here we do not 
pursue this problem further. 
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Figure 5-11. Percentiles of the distances from the nearest neighbors. 

5.3.4.2 Local Dimension 
The problem of estimating the local dimension has been analyzed in Roweis and Saul (2000) and 

Tenenbaum, de Silva, and Langford (2000). There are follow-up works in this line. Due to space 
limitations, we omit the details. Figure 5-12 gives the plot of the residual sum of squares ∑ Ι∈i ii 2  
versus the local dimension (as 0  in the LLP).  An approximate kink point is at , which is our 
choice of the local dimension in the simulations. 

− yy 2ˆ
k 150 =k

 

Figure 5-12. Residual sum of squares versus local dimension. 

5.3.5 Simulations 

We apply the above approach to the two figures in Figure 5-6 (c) and Figure 5-7 (c). The positions of 
the significant patches are displayed in Figure 5-13 (for the water image) and in Figure 5-14 (for the wood 
image), respectively.  In both cases, the constant 1Τ  is chosen to be the 95th percentile of the squared 
distances: 2

2ii , ŷy − Ι∈∀i . Obviously, the significant patches are concentrated around the embedded 
object, which is the trigonometric shape. Hence SRA will unveil the presence of the object. 
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Figure 5-13. Pattern of significant patches for the water image. Northwestern corners of the significant patches are marked by dark 
dots. 

For comparison, Figure 5-15 gives the patterns of significant patches when there is no embedded 
object. 

 

 

Figure 5-14. Pattern of significant patches for the wood image. Northwestern corners of the significant patches are again marked 
by dark dots. 
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Figure 5-15. Pattern of significant patches for water and wood images when there is no embedded object. 

5.3.6 Discussion 

By modifying the structure of the significance graph, the above approach can be applied to more 
general objects, e.g., instead of graphs, one can consider curves, or even non-filamentary objects. We leave 
this as a future research topic. 

If the background is non-homogeneous, which is true in many cases, the above approach will fail. The 
proposed framework can be used to derive a general theory on when an embedded object is detectable, and 
when it is not. This will be another topic for future research. 

5.4 Applications in Localization of Sensor Networks 

One area in which manifold-based learning methods can be applied is sensor positioning in wireless 
networks.  This type of application is of interest in, for example, military surveillance.  We typically 
assume that there are a large number of sensors randomly deployed over an area.  Each sensor contains a 
simple radio transmitter, and from this we know the pairwise distances between the sensors.  Based on this 
information, we would like to compute the relative positions of all the sensors.  Furthermore, we may know 
the true global positions of a few sensors (called “anchor nodes”), and based on this we may wish to 
compute the global positions of all the sensors.  An example of the situation, in which we may need to 
compute the global positions, is given in Figure 5-16. 
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Figure 5-16. Illustration of the sensor localization problem. 

 

The solution to the first problem depends on whether we have all the pairwise distances available.  Of 
course this may or may not be true in practice.  If all the distances are available, the method is known as 
classical multidimensional scaling (MDS), which as mentioned earlier is a variation on the idea of principal 
components.  Let 2  be the matrix of the true locations of the set of n sensor nodes in the 2-
dimensional Euclidean space, and let  denote the true distance between sensors i and j.  We assume 
that we know the true distances .  Then the classical MDS algorithm is as follows: 

][ ×= nijtT
)(Tdij

ijd

1. Compute the matrix of squared distances , where 2D nnijdD ×= ][ . 

2. Compute the matrix J with 
n

IJ 11
−=

T

, where )1...,,1,1(=1 . 

3. Apply double centering to this matrix: JJDH 2

2
1

−= . 

4. Compute the eigen-decomposition . TUVUH =

5. To recover the solution in i dimensions, the coordinate matrix is 2
ii VUX =
1

, where iU is formed by 
the first i columns of U, and  is the diagonal matrix containing the largest i eigenvalues of H. iV

If there are missing distances, we can use a more complicated iterative MDS optimization algorithm to 
minimize the sum of residual errors of our estimated positions.  Such a solution has been presented in Ji 
and Zha (2004). 

The second case is more interesting. Recall that the relative positions of the sensors are assumed to be 
known, and we wish to compute the global positions based on some knowledge of the exact positions of a 
few sensors.  Intuitively, since the relative positions that are computed will be unaltered under rigid 
motions, the problem is to find the optimal isometric mapping of the local positions to match the known 
global positions of the anchors.  In this sense it can be thought of as a variant of the Local Tangent Space 
Alignment (LTSA) idea presented above.  For simplicity we assume that our measured pairwise distances 
are all equal to the corresponding true distances to ensure that a solution exists.  As it turns out, we need to 
know the exact global positions of at least 3 anchor nodes in order to have a feasible problem.  The 
requirement that we need at least 3 anchor nodes is also intuitively explained by viewing the optimal 
isometry as 3 separate functions – a shifting, a rotation, and a reflection.  Then the first anchor node can be 
thought of as determining the optimal shift, the second determines the optimal rotation, and the third 
determines the reflection. 
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6. CONCLUSION 

We have given a broad survey of manifold-based learning methods, emphasizing their mathematical 
formulations.  By doing so, we hope to give new insight into the similarities between the various methods, 
and their underlying unified theoretical framework, which we believe will be the focus of future research in 
this area.  It is our hope that this article will attract more researchers to work in this area and stimulate a 
new direction for work in the theoretical analysis of manifold-based methods and related applied problems.  

APPENDIX: SOME RELATED AND USEFUL URLS 

The following websites provided useful information to us while we were preparing for this document. 
• MSU: http://www.cse.msu.edu/~lawhiu/manifold/ 

• MIT: http://www.ai.mit.edu/courses/6.899/doneClasses.html 

• UBC: http://www.cs.ubc.ca/~mwill/dimreduct.htm 

• Penn: http://www.seas.upenn.edu/%7Ekilianw/workpage/drg/ 
• Fudan, China: http://www.iipl.fudan.edu.cn/people/zhangjp/literatures/MLF/INDEX.HTM 
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