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Definition

Gram–Schmidt Process:

The process of forming an orthogonal sequence {yk} from a
linearly independent sequence {xk} of members of an
inner-product space.

James and James, Mathematical Dictionary, 1949

This process and the related QR factorization is a fundamental
tool of numerical linear algebra.

The earliest linkage of the names Gram and Schmidt to
describe this process appears to be in a paper by Y. K. Wong,
An application of orthogonalization process to the theory of
least squares. Ann. Math. Statist., 6, 53-75, 1935.
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Early History

In 1907 Erhard Schmidt published an orthogonalization
algorithm which become popular and widely used.
Given n linearly independent elements a1,a2, . . . ,an in an
inner-product space. The algorithm computes an orthonormal
basis q1,q2, . . . ,qn, such that

ak = r1kq1 + r2kq2 + · · ·+ rkkqk , k = 1 : n.

The matrix interpretation is that A = (a1,a2, . . . ,an) is factored
into a product

A = (q1,q2, . . . ,qn)


r11 r12 · · · r1n

r22 · · · r2n
. . .

...
rnn

 ≡ QR.

R is upper triangular with positive diagonal entries. This
factorization is uniquely determined.



Early History

Schmidt used what is now known as the classical
Gram–Schmidt process.

Erhard Schmidt (1876–1959), studied in
Göttingen under Hilbert. In 1917 he
assumed a position at the University of
Berlin, where he started the famous
Institute of Applied Mathematics.

Zur Theorie der linearen und nichtlinearen Integralgleichungen.
I. Teil: Entwicklung willkürlicher Funktionen nach Systemen
vorgeschriebener. Math. Ann. 1907.



Early History

Schmidt acknowledged that the algorithm was essentially the
same as that previously used by Gram.

Jørgen Pedersen Gram (1850–1916),
Danish mathematician, Gram worked for
Hafnia Insurance Company and made
contributions to probability and numerical
analysis.

Ueber die Entwickelung reeller Funtionen in Reihen mittelst der
Methode der kleinsten Quadrate. J. Reine Angew. Math. 1883.



The Treatise of Laplace

The orthogonalization algorithm had been used much earlier by
other mathematicians, e.g., Laplace, Cauchy, and Bienayme!

Pierre-Simon, Marquis de Laplace
(1749–1827) professor at École Militaire,
Paris. Laplace was one of the most
influential scientists of his time and did
major work in probability and celestial
mechanics.

Théorie Analytique des Probabilités.Troisième Édition. Premier
Supplément. Sur l’application du calcul des probabilités à la
philosophie naturelle. Paris: Courcier, 1820. Earlier editions
1812 and 1814.



The Treatise of Laplace

Let A be an m × n matrix (m ≥ n) with linearly independent
columns and b an m-vector of observations with normally
distributed random errors. Laplace’s treats the statistical theory
of errors in linear least squares problems

min
x
‖Ax − b‖2.

The particular problem he wants to solve is to estimate the
mass of Jupiter and Saturn from astronomical data of 6 planets

The method which Laplace introduces consists in successively
projecting the system of equations orthogonally to a column of
the matrix A. Ultimately he is left with the residual vector.



The Treatise of Laplace

This is precisely the main idea behind the Gram–Schmidt
process. However, Laplace uses what is now known as the
modified Gram–Schmidt process.

Laplace used this to prove that the solution is uncorrelated with
the residual vector. For the numerical solution of his problem he
solved the corresponding 6× 6 normal equations.

A translation and modern interpretation of Laplace treatise by
Julien Langou is publsihed in Technical Report CCM 280, UC
Denver, Denver, Colorado, 2009
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Classical versus Modified Gram–Schmidt

In 1966 John Rice showed by experiments that the two different
versions of the Gram–Schmidt orthogonalization, classical
(CGS) and modified (MGS) have very different properties when
executed in finite precision arithmetic. Only for n = 2 are CGS
and MGS numerically equivalent:

r11 = ‖a1‖2 = (aT
1 a1)1/2, q1 = a1/r11.

Next a2 is orthogonalized against q1, giving

r12 = qT
1 a2, a(2)

2 = a2 − r12q1.

Finally, the vector a(2)
2 is normalized, giving

r22 = ‖a(2)
2 ‖2, q2 = a(2)

2 /r22.



Classical versus Modified Gram–Schmidt

Classical Gram–Schmidt algorithm (CGS):

In step k of CGS, the vector ak is orthogonalized against
q1, . . . ,qk−1. The k th column of R is computed and only the
first k columns are operated on.

function [Q,R] = gschmidt(A);
[m,n] = size(A);
Q = A; R = zeros(n);
for k = 1:n

R(1:k-1,k) = Q(:,1:k-1)’*A(:,k);
Q(:,k) = A(:,k) - Q(:,1:k-1)*R(1:k-1,k);
R(k,k) = norm(Q(:,k));
Q(:,k) = Q(:,k)/R(k,k);

end



Classical versus Modified Gram–Schmidt

At step k in row-wise MGS applied to A = A(1) we have
computed

A(k) = (q1, . . . ,qk−1,a
(k)
k , . . . ,a(k)

n )

where a(k)
k , . . . ,a(k)

n , have been made orthogonal to
q1, . . . ,qk−1. In the next step we set

qk = a(k)
k /‖a(k)

k ‖2,

and orthogonalize a(k)
k+1, . . . ,a

(k)
n against qk . This gives the k th

row of R.



Classical versus Modified Gram–Schmidt

Modified Gram–Schmidt algorithm (MGS):

function [Q,R] = mgs(A);
[m,n] = size(A);
Q = A; R=zeros(n);
for k = 1:n

R(k,k) = norm(Q(:,k));
Q(:,k) = Q(:,k)/R(k,k);
R(k,k+1:n) = Q(:,k)’*Q(:,k+1:n);
Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k)*R(k,k+1:n);

end

Row-wise MGS has the advantage that a column pivoting
strategy can be used, giving an upper triangular matrix R with
non-increasing diagonal elements.



Classical versus Modified Gram–Schmidt

The vector qk is computed in CGS as

a(k)
k = (I −Qk−1QT

k−1)ak , Qk−1 = (q1, . . . ,qk−1)

and in MGS as

a(k)
k = (I − qk−1qT

k−1) · · · (I − q1qT
1 )ak .

The crucial difference is that in MGS the projections rkjqk are
subtracted from aj as soon as they are computed.
note that there is a column-wise version of MGS, but no
row-wise version of CGS.
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Loss of Orthogonality

The condition number of an m × n matrix A is¡

κ2(A) =
max‖x‖2=1 ‖Ax‖2
min‖x‖2=1 ‖Ax‖2

=
σ1

σn
,

Unless cκ2(A)u < 1, where u is the unit roundoff (IEEE double
precision u = 1.11 · 10−16) and c = c(m,n) > 1 is of moderate
size, the matrix A is numerically rank deficient.
The minimum distance from A to the set of matrices of rank
less than n is

dist 2(A)/‖A‖2 = σn/‖A‖2 = 1/κ2(A),

so this means that A is “close” to a matrix of exact rank less
than n. Then the column space of A is not “well defined”.



Loss of Orthogonality

Both CGS and MGS compute factors Q̄ and R̄ such that
Q̄R̄ ≈ A, but the orthogonality in Q̄ differ substantially.
MGS consistently produces vectors which are more
orthogonal than those generated by CGS.
For illustration we generated a 50 by 10 matrix

A = U DV T , D = diag(1,10−1, . . . ,10−9)

with U and V orthogonal matrices. In the table below the
condition number

κ(Ak ) = σ1(Ak )/σk (Ak ), Ak = (a1, . . . ,ak )

and the loss of orthogonality after k steps are shown.



Loss of Orthogonality

k κ(Ak ) ‖Ik − Q̄T
C Q̄C‖2 ‖Ik − Q̄T

MQ̄M‖2

1 1.000e+00 1.110e-16 1.110e-16
2 1.335e+01 2.880e-16 2.880e-16
3 1.676e+02 7.295e-15 8.108e-15
4 1.126e+03 2.835e-13 4.411e-14
5 4.853e+05 1.973e-09 2.911e-11
6 5.070e+05 5.951e-08 3.087e-11
7 1.713e+06 2.002e-07 1.084e-10
8 1.158e+07 1.682e-04 6.367e-10
9 1.013e+08 3.330e-02 8.779e-09

10 1.000e+09 5.446e-01 4.563e-08

The computed vectors qk from CGS depart from orthogonality
much more rapidly!



Loss of Orthogonality

Consider the orthogonalization of two vectors (a1,a2). of unit
length. Then q1 = a1. Denote by r̄12 = fl(qT

1 a2) the computed
scalar product. Using the standard model for floating point
computation, we get

|r̄12 − r12| < mu + O(u2).

The error in w̄2 = fl(a2 − fl(r̄12q1)) can be bounded by

‖w̄2 − w2‖2 < (m + 2)u + O(u2).

Since qT
1 w2 = 0, we have |qT

1 w̄2| . (m + 2)u. Assuming that
the normalization q̄2 = w̄2/r̄22, r̄22 = ‖w̄2‖2, is carried out
without error,

|qT
1 q̄2| < (m + 2)u/r̄22.



Loss of Orthogonality

If r̄22 is small, then cancellation has occurred in the
orthogonalization. Since ‖a2‖2 = 1, we have

|qT
1 q̄2| ≈

(m + 2)u
sin ∠(a1,a2)

.

This result is independent of the initial scaling of the vectors a1
and a2. (The GS algorithms are invariant under column scaling)

The loss of orthogonality in one step will be propagated and
possibly amplified in later steps. Further losses of orthogonality
may occur due to cancellations in the computation

a(k+1)
j = (I − qkqT

k )a(k)
j = a(k)

j − qk (qT
k a(k)

j ).

If ‖a(k+1)
j ‖2 � ‖a

(k)
j ‖2, then cancellation has occurred.



Loss of Orthogonality

In 1967 Björck 1967 proved the following error bounds for the
computed factors in MGS:

Theorem
Let Q̄1 and R̄ denote the factors computed by the MGS
algorithm in floating point arithmetic with unit roundoff u. Then
there are constants ci = ci(m,n), i = 1,2, depending on m and
n such that if c1κ(A)u < 1, then

‖A− Q̄R̄‖2 ≤ c2u‖A‖2. (1)

‖I − Q̄T Q̄‖2 ≤ c1uκ2(A)

1− c1uκ2(A)
. (2)



Loss of Orthogonality

A sharper upper bound can be obtained by using the invariance
of the MGS algorithm under column scaling. For κ2(A) we can
substitute κ̃2 = minD>0 κ2(AD), where D is a positive diagonal
matrix. Scaling A so that all columns in A have equal norm
approximately minimizes κ2(AD)

Theorem (van der Sluis, 1969)

Let A have full column rank and denote by D the set of positive
diagonal matrices. Then if all columns in A have equal 2-norm,
it holds that

κ2(A) ≤
√

n min
D>0

κ2(AD).
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Least Squares Problems

In 1801 Gauss predicted the orbit of the steroid Ceres using the
method of least squares. Since then, the principle of least
squares has been the standard procedures for the analysis of
scientific data.

Carl Friedrich Gauss (1777–1855), one
of the greatest mathematician of the
nineteenth century, spent most of his life
in Göttingen.

Gauss (1821, 1823) gave the method a theoretical basis in
Theoria combinationis observationum erroribus minimis
obnoxiae.



Least Squares Problems

The first publication of the method was in 1805 by A. M.
Legendre in Nouvelles méthodes pour la détermination des
orbites des comètes, Paris

Of all the principles that can be proposed, I think there
is none more general, more exact, and more easy of
application, than that which consists of rendering the
sum of the squares of the errors a minimum.

Gauss 1809 wrote, much to the annoyance of Legendre,

Our principle, which we have made use of since 1795,
has lately been published by Legendre.



Least Squares Problems

One of the most important applications of Gram–Schmidt
algorithms is for solving the linear least squares problem

min
x
‖Ax − b‖2,

It is assumed that the errors in b are independent and equally
distributed. The solution is characterized by r ⊥ R(A), where
r = b − Ax is the residual vector.

A related problem is the conditional least squares problem.

min
y
‖y − b‖22 subject to AT y = c.

A unified treatment of these two problems can be obtained as
follows:



Least Squares Problems

Theorem
Let the m by n matrix A have full column rank and consider the
augmented linear system of n + m equations(

I A
AT 0

)(
y
x

)
=

(
b
c

)
.

Then the system is nonsingular and gives the first order
conditions for two least squares problem:

min
x
‖Ax − b‖22 + 2cT x ,

min
y
‖y − b‖2, subject to AT y = c,

For c = 0, the first is the standard least squares problem; For
b = 0, the second is the minimum norm solution of AT y = c.



Perturbation Analysis

The augmented system was introduced by Lanczos in 1952. It
plays an important role, e.g., in the sensitivity analysis of least
squares problems

From the Schur–Banachiewicz formula it follows that the
inverse of the augmented matrix equals I A

AT 0

−1

=

 (I − A(ATA)−1AT ) A(ATA)−1

(ATA)−1AT −(ATA)−1


=

 P⊥A (A†)T

A† −(ATA)−1

 , (3)

where A† is the pseudoinverse of A and P⊥A the orthogonal
projection onto the nullspace of AT .



Perturbation Analysis

Assume that A + δA and b + δb are perturbed data, that
rank (A) = rank (A + δA) = n. Then the perturbed solution
x + δx and r + δr , satisfies (Björck 1967)

‖δx‖2 /
1
σn
‖δb‖2 +

1
σn
‖δA‖2

(
‖x‖2 +

1
σn
‖r‖2

)
,

‖δr‖2 / ‖δb‖2 + ‖δA‖2
(
‖x‖2 +

1
σn
‖r‖2

)
.

If x 6= 0 and δb = 0, then an upper bound for the normwise
relative perturbation is

‖δx‖2
‖x‖2

≤ κLS(A,b)
‖δA‖2
‖A‖2

, κLS = κ(A)
(

1 +
‖r‖2
σn‖x‖2

)
. (4)



Sensitivity Analysis

Note that κLS(A,b) depends not only on A, but also on the
residual r and hence on b.

If ‖r‖2 � σn‖x‖2, then κLS ≈ κ(A), but if ‖r‖2 > σn‖x‖2 the
second term dominates. This can be written as

κ2(A)
‖r‖2

‖A‖2‖x‖2
.

Hence, the square of the matrix condition number is to some
extent relevant to the least squares problem.
The estimates are sharp, to within a factor of

√
2. (Some

estimates in current literature can overestimate the error by a
factor of κ2(A); see Grcar 2009)!



Numerical Stability

A method for computing y = f (x) is backward stable if the
computed result ȳ equals f (x + ∆x), where ‖∆x‖ is small.
This does not guarantee that the forward error ȳ − y is small.
However, if (an upper bound for) the condition number of f is
known a bound for the forward error can be obtained.

A method is said to be forward stable if it can be shown to
produce forward errors of the same size as a backward stable
method.

Backward stability implies forward stability, but not vice versa.



Least Squares Algorithms

Apply MGS to (A, b), where the right-hand side b is taken as
(n + 1)st column. Skipping the normalization of the last column,
this gives (

A b
)

=
(

Q1 r
)( R z

0 1

)
.

Hence, r = b −Q1z, and further,

‖Ax − b‖2 =

∥∥∥∥ ( A b
)( x
−1

)∥∥∥∥
2

= |Q1(Rx − z)− r‖2.

From Pythagoras’ theorem follows that if QT
1 r = 0, then the

minimum of the last expression occurs when Rx = z.
This algorithm was proved to be forward stable by Björck 1967.
What about backward stability?
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The Householder Connection

In 1968 Charles Sheffield made the surprising observation that
the MGS QR factorization of A is equivalent to Householder QR
algorithm applied to A with a square matrix of zeros on top. The
equivalence holds also in finite precision.

Charles Sheffield (1935–2002) got his
PhD in theoretical physics from
Cambridge, UK. He later became an
award-winning science fiction author.
Many of his books (Cold as Ice, The
amazing doctor Darwin, Georgia on my
Mind) remain in print.



The Householder Connection

The Householder QR factorization of A is

Pn · · ·P2P1A =

(
R
O

)
,

where R is upper triangular and

Pk = I − 2
ukuT

k

uT
k uk

, k = 1 : n.

are orthogonal Householder transformations (plane reflections).
The factorization can be written

A = Q
(

R
O

)
= Q

(
In
O

)
R = Q1R,

The matrix Q = P1P2 · · ·Pn, is implicitly defined by the
Householder vectors uk , k = 1 : n.



The Householder Connection

The (normwise) backward stability of Householder QR was
proved by J. H. Wilkinson 1965. Note that Q in the theorem is
not computed by the algorithm.

Theorem
Let R̄ denote the upper triangular matrix computed by the
Householder QR algorithm for A. Then there exists an exactly
orthogonal m ×m matrix Q such that

A+∆A = Q
 R̄

0

 , ‖∆aj‖2 ≤
c(m,n)u

1− c(m,n)u
‖aj‖2, j = 1 : n.

Here Q = (P1P2 · · ·Pn)T , where Pk is the Householder matrix
that corresponds to the exact application of the kth step of the
algorithm to the computed fl(Pk−1 · · ·P1A).



The Householder Connection

Sheffield’s observation is that for MGS

Ã =

(
O
A

)
= Q̃R, Q = P1P2 · · ·Pn,

where Pk = I − vkvT
k , The Householder vectors are given by

vk =

(
−ek

qk

)
, ‖vk‖2 = 2, k = 1 : n,

where qk is the k th column in the MGS factor Q.
Björck and Paige 1992 used this equivalence to derive
backward stable MGS least squares algorithms.
The matrix R̄ computed by MGS satisfies

A + E = QR̄, ‖E‖2 ≤ cu‖A‖2.

where Q is an exactly orthogonal matrix (not computed).



Least Squares Algorithms

A backward stable MGS algorithm for x and r in the least
squares problem. If only the norm of r is needed, the last loop,
which is new, can be deleted.

function [x,r,rho] = mgss(Q,R,b);
[m,n] = size(Q);
z = zeros(n,1);
for k = 1:n

z(k) = Q(:,k)’*b;
b = b - z(k)*Q(:,k);

end
x = R\z; r = b;
for k = n:-1:1

w = Q(:,k)’*r;
r = r - w*Q(:,k);

end
rho = norm(r);



Least Squares Algorithms

A special case of the conditional least squares problem is when
b = 0

min ‖y‖2 subject to AT y = c.

If MGS has computed R and Q1 = (q1, . . . ,qn), then the
solution satisfies

z = R−T c, y = Q
(

z
0

)
= Q1z.

An MGS algorithm to compute y goes as follows: Solve
RT z = c for z = (ζ1, . . . , ζn)T . Set yn = 0, and compute

yk−1 = yk + qk (ζk − wk ), wk = qT
k yk , k = n,n − 1, . . . ,1.

to compute y = y0.The corrections wk compensate for the lack
of orthogonality in Q.



Least Squares Algorithms

A backward stable MGS algorithm for the conditional least
squares problem.

function [y,rho] = mgsc(Q,R,b,c);
[m,n] = size(Q);
h = b; z = R’\c;
for k = 1:n

d = Q(:,k)’*h;
h = h - d*Q(:,k);

end
for k = n:-1:1

w = Q(:,k)’*h;
h = h + (z(k) - w)*Q(:,k);

end
y = h; rho = norm(y - b);



Software

A multiple purpose orthonormalizing code in 1954 at the
National Bureau of Standards (NBS) is described by Davis and
Rabinowitz. This used CGS (with a twist). An Algol
implementation named ORTHO by Walsh 1962 includes
reorthogonalization and was much used.

In the late 1950th many computer codes for solving least
squares problems used MGS with column pivoting.
Björck 1968 published two Algol subroutines for the solution of
linear least squares problems based on MGS. They used
column pivoting and handled the more general least squares
problem with (consistent) linear equality constraints

min
x
‖A2x − b2‖2 subject to A1x = b1.



Software

The Householder QR least squares algorithm was published by
G. H. Golub in1965. This is slightly more economical, and more
flexible than MGS.

G. Peters and J. H. Wilkinson 1970 wrote:
Evidence is accumulating that the modified
Gram–Schmidt method gives better results than
Householder. The reasons for this phenomenon
appear not to have been elucidated yet.

The Algol codes of Björck were translated 1979 by Wampler at
NBS into Fortran routines L2A and L2B. They were extended to
allow for diagonal weighting of equations and in addition
compute the covariance matrix.
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Krylov Subspace Methods

Given a matrix A and an initial vector u0, the Krylov subspace
of order k is

Kk (A,u0) = span{u0,Au0,A2u0, . . . ,Ak−1u0}.

Krylov subspace methods (due to Alexei N. Krylov 1931) are
used extensively for

1. Computing approximate solutions of large systems of
linear equations.

2. Approximating a subset of the eigenvalues and
eigenvectors of a large matrix.

As the Krylov subspace vectors are not a good basis for
numerical computations. This has contributed significantly to
the revival of interest in the Gram-Schmidt process.



The Arnoldi Method

The CGS or column-wise MGS algorithm can be used to
compute an orthogonal basis.

Kk+1(A,u0) = span{q0,q1, . . . ,qk} = span{Qk}

In the next step the vector Aku0 is to be orthogonalized to
produce the vector qk+1.
In the Arnoldi process the vector Aku0 is replaced by Aqk .
The orthogonalization step becomes

hk+1,kqk+1 = Aqk −
k∑

i=1

hikqi .

The MGS–Arnoldi process computes the factorization

AQk = Qk+1H̃k , k = 0,1,2, . . . ,

where H̃k is the (k + 1)× k Hessenberg matrix formed by the
elements hij , i = 1 : k , j ≥ i and hk+1,k



The Arnoldi Method

For solving a large, sparse unsymmetric linear system Ax = b,
the Arnoldi process is used with the unit starting vector
q0 = b/‖b‖2. We seek an approximate solution of the form

xk = Qkyk ∈ Kk (A,b),

In the GMRES (Generalized Minimum Residual) method, yk is
taken as the solution to the least squares problem

min
yk
‖β1e1 − H̃kyk‖2, k = 0,1,2, . . . .

In exact arithmetic this also minimizes ‖b − Axk‖2 and the
residual norms will not increase.
Paige et al. (2006) have shown that MGS–GMRES produces a
backward stable approximate solution and the loss of
orthogonality does not affect the convergence.



The Arnoldi Method

The Arnoldi process is also used to find approximate eigenpairs
of an unsymmetric matrix A. Let Qk = (q1, . . . ,qk ) be the
orthogonal basis computed at step k . Then the k × k
Hessenberg matrix

Hk = QH
k (AQk )

is the orthogonal projection of A onto span(Qk ). Compute the k
eigenvalues and eigenvectors of Hk ,

Hkzi = θizi , i = 1, . . . , k .

The Ritz values θi and Ritz vectors yi = Qkzi then are
approximate eigenpairs of A.

In this method orthogonality to working precision must be
enforced, since otherwise Hk = QH

k AQk is not a similarity
transformation. This is achieved by reorthogonalization.



Reorthogonalization

If A has full numerical column rank, then one reorthogonaliza-
tion step suffices for CGS and MGS to achieve orthogonality to
roundoff levels. That twice is enough was proved for MGS and
CGS and arbitrary n by Giraud et al. 2005.

The algorithm CGS2 applied to A proceeds as follows.
Let Qk−1 = (q1, . . . ,qk−1) be computed basis vectors.
Then a(0)

k = ak = Aek is orthogonalized twice

a(i)
k = a(i−1)

k −Qk−1(QT
k−1a(i−1)

k ), i = 1,2.

The new basis vector is then

qk = a(2)
k /‖a(2)

k ‖2.

MGS2 is similar, but the column-wise version uses vector
operations and is slower.
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