A Whirlwind Tour of Computational Geometry

Author(s): Ron Graham and Frances Yao

Source: The American Mathematical Monthly, Vol. 97, No. 8, Special Geometry Issue (Oct.,
1990), pp. 687-701

Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2324575

Accessed: 17/06/2009 14:38

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
The American Mathematical Monthly.

http://www.jstor.org

http://www.jstor.org/stable/2324575?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=maa

A Whirlwind Tour of Computational Geometry
Ron Grauam, AT & T Bell Laboratories, Murray Hill, NJ 07974

FrRANCEs Yao, Xerox PARC, Palo Alto, CA 94304

Ron GraHaM, well known to our readers, has won numerous distinctions in

mathematics. He is a member of the National Academy of Sciences, has o7 \
received the Pélya prize in combinatorics, is an editor of numerous journals, # §¥
is a trustee of the AMS, etc. His research is in combinatorics, graph theory, g’ . e

number theory and algorithms.

FraNCEs Yao is now Principal Scientist and Manager of the Theoretical
Computer Science Area at Xerox Palo Alto Research Center. She received
her Ph.D. in mathematics from MIT in 1973 and has taught at several
universities, including Stanford (1976-1979). Her research interests span
theoretical computer science, with emphasis on computational geometry.

Computational geometry is concerned with finding efficient algorithms, or
computational procedures, for solving a wide spectrum of geometric problems.
Such problems can arise from computer graphics, robotics and motion planning,
computer-aided design and manufacturing, or one of the many other applied areas
where geometry comes into play. In spite of the practical flavor of these problems,
results from classical and modern geometry quite often can play key roles in the
design of efficient methods for solving them. Indeed, Euclidean geometry could be
thought of as perhaps the earliest systematic study of algorithms: the ruler-and-
compass constructions in Euclidean geometry are just algorithms based on a well
defined set of elementary operations. In this venerable subject also occur some of
the first provably unsolvable problems, such as squaring the circle, trisecting the
angle and doubling the cube, much in the same spirit as the more recent negative
solution of Hilbert’s tenth problem (implying the nonexistence of an algorithm for
solving general diophantine equations) [9] and the celebrated (but still unresolved)
P vs. NP question [13].

We begin our discussion of computational geometry with several basic concepts.

Voronoi Diagrams

Consider the following problem, known as the post office problem: We are given
a set S of n points in the plane (considered as post offices or sites). When an
arbitrary new point (x, y) (say, a residence) is given, we must find out which post
office is closest to (x, y).

687

688 RON GRAHAM AND FRANCES YAO [October

In the example above, one expects many queries, with different values of (x, y),
to be asked with respect to the same set of post offices. Thus it pays to
“preprocess” the set S, that is, to have some useful computation about S done in
advance, so that when a query arrives, the answer can be determined quickly. In
this particular case, precomputing a map of “postal regions” would seem to be a
good idea. For each post office p, the locus of points (x, y) that are closer to p
than to any other post office in S is a convex region V(p), called the Voronoi region
or Voronoi polygon associated with p. The n polygons V(p) form a partition of the
plane, called the Voronoi diagram of S, denoted by Vor(S). (Ficure 1(b).)

L] L]
L]
° []
« L, °
L]
(a) ® ()
A point set S Vor(S) DT(S)

Fic. 1

The earliest significant use of Voronoi regions seems to have occurred in the
work of Gauss, Dirichlet and Voronoi [29] in their investigations on the reducibility
of positive definite quadratic forms (see [21], [17] for a summary). However, the
same concept has evolved independently in a variety of other scientific disciplines.
For example, in crystallography, one simple model of crystal growth starts with a
fixed collection of sites in 2- or 3-space, and allows crystals to begin growing from
each site, spreading out at a uniform rate in all directions, until all space is filled
(see [14]). The “crystals” (called “Wirkungsbereiche” or “domains of action”) then
consist of all points nearest to a particular site, and consequently are just the
Voronoi regions for the original set of points (FIGURE 2).

Similarly, the statistical analysis of meteorological data led to the formulation
(around 1910) of Voronoi regions under the name “Thiessen polygons.” The
reader is referred to [17] for a survey of these applications, and to [2] for a more
complete discussion of the uses of Voronoi regions in statistics, geography,
interpolation, physical chemistry, and many other fields.

The Voronoi diagram enjoys many interesting properties. First of all, the
straight-line dual of the Voronoi diagram is a triangulation of S, called the
Delaunay triangulation and denoted by DT(S) (Figure 1(c).) It is easy to see that:

P1. If p is a nearest neighbor of g, then polygons V(p) and V(q) are adjacent
in the Voronoi diagram. This means that p and g are connected by an edge in
DT(S).

P2. Points p, g, r form a triangle in DT(S) if and only if the circle through p,
g, and r has no point of S in its interior.

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 689

N oTo

L ® O
I ’ o 8@ o e“
: ®

(@) (b) (c)

(d) (e)

F1G. 2. Model of 2-dimensional crystal growth.

It follows from property P1 that, to find a closest pair of points occurring in S,”
we need only consider the O(n) pairs which are joined by edges in the Delaunay
triangulation for S.

Some further useful properties of these diagrams can be established without
much difficulty. For example, the Delaunay triangulation contains all minimum
spanning trees of the point set. A minimum spanning tree (MST) is a tree (i.e., a
connected graph with no cycles) that connects all points of V, such that the sum of
the edge lengths in the tree is as small as possible. The MST of a point set S may
not be unique, but any such tree must use only edges present in DT(S). We state
this as:)

P3. MST(S) c DT(S).

Proof. Let e = (p, q) € MST(S). If e & DT(S), then by property P2, the circle
with (p,) as diameter must contain some point of S, say r, in its interior. When
we remove the edge e from MST(S), the set S breaks up into two connected
components. But the two components can be rejoined by using one of the edges
(p, r) or (g, r); since either edge is shorter than the original edge (p, q), we have a
contradiction.

Property P3 implies that we can find a MST for a set of points by first
constructing its Delaunay triangulation DT'(S) and then, since the triangulation is
a planar graph, apply a particularly efficient (e.g., linear-time) MST algorithm for
planar graphs to DT(S).

For a set S of n points in the plane, there may be exponentially many different
triangulations. Depending on the application, one may be interested in triangula-

690 RON GRAHAM AND FRANCES YAO [October

tions that have certain special characteristics. Not surprisingly, the Delaunay
triangulation DT(S) satisfies a number of extremal properties, one of which is that
it maximizes the minimum angle among all triangulations of S. In other words,
DT(S) does the best possible job in avoiding triangles with small angles (see [11]
for a proof).

Construction of Voronoi Diagrams

How difficult is it to construct the Voronoi diagram Vor(S) from S§? A
straightforward approach is to compute the polygons V(p) one by one. Write
S ={py,...,p,) To find V(p,), say, we can compute, for successively larger values
of j, the polygon U; which is the locus of all points that are closer to p; than to any
point in {p,,..., p;}}. Once U; is known, we can obtain U, by intersecting the
convex polygon U; with the perpendicular bisector between p; and p; ;. This step
can be accomplished by a fast binary (or logarithmic) search, because the vertices
of a convex polygon admit a nice ordering (first increasing and then decreasing in
their x-coordinates), and a line can intersect this polygon in at most two places.
Thus, the polygon V(p,) = U, can be computed in O(n log n) steps, and therefore
the whole diagram Vor(S) in a total of O(n? log n) steps.

To compute Vor(S) more efficiently, we must try to construct several polygons
V(p,;) simultaneously. Here we can invoke a general principle, called the sweep
technique, which is often useful in the design of geometric algorithms. Imagine that
a horizontal line is being swept up the plane from y = —o to y = +o. Any
cross-section of the two-dimensional diagram Vor(S) as defined by the sweep-line
is a simple one-dimensional configuration. Furthermore, the configuration under-
goes essential (i.e., topological) changes rather infrequently—only when the
sweep-line first enters some new region V(p;) , or has just left such a region; in
either case, the change is local. The difficult part, of course, is in knowing when a
change should occur, since the sweep-line will enter a region V(p,) before it
actually encounters the point p;. It turns out that this difficulty can be overcome by
a clever idea due to Fortune [12]. One first performs a non-linear transformation T
of the plane, with T depending on the set S. Under this transformation, the new
diagram T(Vor(S)) has the property that the lowest point of the Voronoi region
T(V(p,) is always at the site T(p,) itself (FiGURE 3). Thus, we will create a
Voronoi region only when the sweep-line reaches a new site, and delete that
region when its topmost point is reached. Finally, the real Voronoi diagram can be
easily reconstructed from its transformed image. The total running time of this
algorithm is O(n log n), since each insertion/deletion operation can be done in
O(log n) steps with a standard one-dimensional search structure.

(a) (b)

Fic. 3. Fortune’s transformation.

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 691

The transformation used by Fortune maps a point r in the region V(p) to
r + (0, y) where y = d(r, p), the distance from r to p; thus, lines are transformed
into hyperbolic arcs. This transformation can be intuitively understood as follows.
Think of the ordinary Voronoi diagram as being generated by a physical process in
which an obstacle is placed at each site, and an expandable disk is moved around
so that at any instant, the disk has the maximum possible radius permitted by the
obstacles. The locus of the center of the disk, then, defines the Voronoi diagram.
If, instead of tracing the center, we trace out the locus of the topmost point of the
disk at all times, the result would be precisely the transformed Voronoi diagram
defined above.

Convex Hulls

It is known that the Voronoi diagram for a finite convex planar set, that is, a set
of n points forming the vertices of a convex polygon, can be computed in only
O(n) time [1]. Indeed, convexity is a strong geometric condition that often leads to
particularly efficient solutions to computational problems. Consequently, a com-
mon strategy used in practice for solving problems on a general point set may
involve either first decomposing the set into convex pieces, or approximating the
set with its convex hull, i.e., the smallest convex set containing the given set. This
makes the construction of the convex hull of a set a basic problem in computa-
tional geometry.

The first O(n log n) convex hull algorithm in two dimensions is due to Graham
[15]. The algorithm first sorts the points by polar angle about an interior point, and
then scans the sorted list to discard any point that would cause a reflex angle to
occur (FIGURE 4(a)). Note that one may occasionally have to back up a long way
and discard many points in order to restore convexity. However, as can be easily
argued, the overall cost of the scanning step is still only linear in the total number
of points. The convex hull can also be constructed by a divide-and-conquer
algorithm ([25)]). In this approach, we partition the points into two equal subsets P,
and Py by a vertical line, find their convex hulls recursively, and merge them to
form the desired convex hull. The merging step is accomplished by finding the
upper bridge b, and the lower bridge b, between P, and Py (FiGure 4(b)). To find
the upper bridge, we take the line segment / connecting the rightmost point p of
P, and the leftmost point g of Py, and move its endpoints upward iteratively along
the boundaries of. P, and Py, until / reaches the highest possible position, which
now defines b,. The lower bridge b, is found analogously. The time T(n) required
satisfies T(n) < 2T(n/2) + O(n) which implies T(n) = O(n log n). If the input
points are sorted, or more generally, form the (ordered) vertices of a simple
polygon (i.e., a polygon without self-intersections), the convex hull can in fact be
found in lmear time (Graham and Yao [16], Lee [20]).

How fast can we compute the convex hull of a set in three dimensions? The
divide-and-conquer algorithm described above, as it turns out, can be made to
work in three dimensions within the same time bound O(n log n). In the crucial
merging step of the algorithm, the hull of the union of two non-intersecting
polyhedra can be formed by “gift wrapping” the two objects in one package, so to
speak. The merging cost is proportional to the total size of the incidence graphs of
the two polyhedra (i.e., the graphs induced by the vertices and edges of the
polyhedra), and is O(n) since these incidence graphs are planar [24].

For dimensions d > 4, the situation becomes more complex since a d-polytope
with n vertices can have as many as Cn'?/?! faces ((17]). There are two types of

692 RON GRAHAM AND FRANCES YAO [October

START

Vertex p, is eliminated
because £ p,p,p; is reflex;
then p, is eliminated because
LD P3P, is reflex.

(a)

Graham’s scan

(b)

Divide and conquer

Fic. 4

convex hull algorithms, depending on whether the algorithm only enumerates the
facets, i.e., the (d — 1)-faces, of the convex hull or produces the complete facial
lattice, i.e., a description of all faces and incidence relationships of the convex
polytope. Studies of these convex hull algorithms can be found in Chand and
Kapur [6] and Seidel [26]. We note that, through duality, the problem of enumerat-
ing the facets of the convex hull of a point set is equivalent to the problem of
enumerating the vertices of a polytope defined by a set of linear inequalities; in the
latter form this problem has also been widely explored in the optimization
literature (see Dyer [10] for a survey).

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 693

Connection between Voronoi Diagrams and Convex Hulls

Brown [5] was the first to observe that, through an appropriate transform the
Voronoi diagram of a set § in R corresponds to the convex hull of
the transformed set in R?*!. We illustrate this for the simple case d = 2. Consider
the mapping

a:(x,y) = (x,y,x2+y?)

which “lifts” a point (x, y) in the plane onto the paraboloid z = x? + y2. Note that
cocircular points in the plane are mapped by a into coplanar points in space
(Ficure 5(a)). Given n sites S in the plane, their image points under « form the
vertices of a convex polyhedron P (since the paraboloid is convex). This means, for
any “downward-looking” face f of the polyhedron P, its defining plane must lie
“below” all other vertices of P. Therefore, by our earlier observation, the projec-
tion of f corresponds to a circle with no points of § in its interior. This implies
that the projection of all the downward-looking faces of the polyhedron P gives
precisely the faces of the Delaunay triangulation of the planar set S (FiGURE 5(b)).
This relationship readily generalizes to higher dimensions, and enables one to use
convex hull algorithms in d + 1 dimensions to obtain Voronoi diagrams in d
dimensions!

il g

SN L5
SNy /

(a) Q)

Fic. 5. Voronoi diagrams and convex hulls.

Combinatorial Geometry

The analysis of geometric algorithms often requires detailed combinatorial
knowledge of the geometric structures involved. The book by Edelsbrunner [11]
discusses many topics which overlap both computational and combinatorial geome-
try. We give one such example here.

Many algorithms in computational geometry involve calculation of the lower
envelope (i.e., pointwise minimum) of a collection of functions. For example,
suppose we are to render the 2-dimensional image of a 3-dimensional terrain,
which is a polyhedral surface with the property that any line parallel to the z-axis
intersects the surface at most once. From any viewpoint », the “upper rim” (also
called the silhouette) of the terrain as seen from » can be expressed as the lower
envelope of a set of line segments in two dimensions (FIGURE 6).

694 RON GRAHAM AND FRANCES YAO [October

Fic. 6. The lower envelope of a set of line segments.

Lower envelopes are closely related to Davenport-Schinzel sequences (or DS
sequences, for short). Specifically, an (n, s)-Davenport-Schinzel sequence is a
sequence composed of n symbols satisfying: (i) no two adjacent elements are equal,
and (ii) the sequence does not contain as a (not necessarily consecutive) subse-
quence of length s + 2 any alternation of two distinct symbols. The parameter s is
called the order of the DS sequence. In the above example, the lower envelope of
a set of n segments {/,,...,/,} in the plane is a DS sequence of order 3, since no
alternation of the form --- 4 -+ -+l -+~ 1 -+ [--- can occur in the
lower envelope. It has recently been shown that the maximum length A,(n) of an
(n,3)-DS sequence is Ay(n) = @(na(n)), where a(n) is the extremely slowly
growing functional inverse of the Ackermann function ([19]). In fact, this maximum
value can be realized by a rather intricate arrangement of n line segments [30].
Thus the silhouette of a general polyhedral surface has complexity ®@(na(n)), and
can be computed in O(na(n)log n) time [8]. Other geometric problems where
Davenport-Schinzel sequences naturally arise include the calculation of Euclidean
shortest paths in 3-space amidst polyhedral obstacles, hidden-surface removal from
a varying viewpoint, and the computation of other time-varying geometric configu-
rations ([4], [27].

Space Partitions and Range Search

The post office problem mentioned earlier belongs to a class of problems
studied in computational geometry known as “range search problems”. In the most
general setting, the database S to be searched may contain higher order objects
than points, and the queries can be of a more complex nature. Still, let us confine
our discussion here to the case when S is a set of points in RY. An important type
of query is the “half-space” query, in which an arbitrary linear inequality is
specified, and all the points in S that satisfy the inequality should be identified
quickly. As an example of a half-space query, consider a database where the first
two coordinates contain, respectively, the income and the number of children of a
household, and a query asks for all households with monthly income exceeding
$1000 plus $200 for each child. .

The first nontrivial solution to this problem was proposed by Willard [31]. It
makes use of the following well-known fact: a density function over a bounded
region can be partitioned by two straight lines /,, /, into four quadrants with equal

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 695

mass. Translating this result into the discrete case, it says that a set S of n points
in the plane can be partitioned by two lines into four (open) quadrants such that at
most n/4 points are contained in the interior of each quadrant. One can then
further partition the points in each quadrant, and repeat this process until all
points are separated. This gives a tree structure for representing the set S (see
FiGure 7). For a query half-plane Q, since the line defining Q can intersect at
most three of the four quadrants in each partition, one of the quadrants is either
entirely inside or outside of Q, and hence can be exempted from further search.
The search time T'(n) thus satisfies a recurrence relation T(n) = 3T(n/4) + O(1),
which yields T(n) = O(n*) with a = log, 3 = 0.774.

Can we extend such 4-partitions in R? to 8-partitions in R>? The answer turns
out to be yes. Given a set S of n points in R> one can always find three planes

110

(a)
A 4-partition for 14 points

(b)

The corresponding tree structure

Fic. 7

696 RON GRAHAM AND FRANCES YAO [October

that form an 8-partition in the sense that at most n /8 points of S lie in each of the
eight open regions. Thus, we can represent a point set in R> by recursive
8-partitions. Since an arbitrary plane in R® can intersect at most seven of the eight
open regions defined by an 8-partition, this leads to a retrieval time of O(n®) with
a = logg 7 = 0.936 for half-space queries.

The 8-partition proposition stated above is considerably more difficult to prove
than the two-dimensional analogue [34]. However, we note that a weaker version
of it actually suffices to guarantee the same query time O(n!°®¢7). In this version,
the partition consists of a bisecting plane H for S, together with two separate
4-partitions for the sets S*, S~ above and below H, with the condition that the
half-axes of the two partitions are lined up exactly (FIGURE 8).

A

S+

Fic. 8. An 8-partition with axis A4 and center C.

To show that such a partition exists, we invoke the well known Borsuk-Ulam
theorem.

THEOREM (Bc;rsuk-Ulam, [23])). Let f: S¢ — R? be a continuous, antipodal map,
i.e., f(—v) = —f(v)for v € S the unit d-sphere. Then there is a point v € S such
that f(v) = 0.

To obtain the desired partition, consider p,(S™*), the projection of S* onto H
along direction v, where v is any vector in the southern hemisphere of 52. We find
a (unique) 4-partition (L,, L,) for the planar set p,(S*) with the constraint that
L, is parallel to the x-axis. Call the intersection point of L, and L, the center of
p,(S7), denoted by C(v). Similarly define the center C'(v) for p_,(S7), which is
the projection of S~ along the direction —v. Applying the Borsuk-Ulam theorem
for d = 2, it follows that the function f(v) = C(v) — C'(¥) must vanish for some
vector v,. This gives us what we want: separate 4-partitions for S* and S~ which
share a common axis 4, where A has direction v, and goes through the point
C(vy) = C'(vy). See [32] for complete details.

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 697

It is easy to see that the resulting 8-partition does have the property that any
query plane can intersect at most 7 out of the 8 regions. Furthermore, this version
can be generalized to higher dimensions by an inductive argument, thus allowing
us to solve half-space queries in any number of dimensions.

It is an interesting open question whether the (strong) 8-partition proposition
can be generalized to four dimensions; that is, given a density function over a
bounded region in four dimensions, whether it can always be partitioned by 4
hyperplanes into 16 orthants with equal mass. However, it is not hard to show that
(strong) 2¢-partitions are not always possible in dimensions d > 5. For example,
take thirteen small balls of equal mass in R>, and let the balls be in general
position, so that no hyperplane can intersect more than five of them. Then, in any
23-partition, each ball must be cut by at least two hyperplanes, since otherwise
some orthant would contain at least half of a ball, and thus at least 1/26 of the
total mass, which is more than the required fraction 1/32. Therefore, for all
thirteen balls, at least 26 instances of hyperplane-ball intersections are needed.
Since the balls are in general position, five hyperplanes can provide at most 25
such instances and we have a contradiction.

Lower Bounds

An important, and often difficult, challenge in algorithm design is to know
whether an algorithm can still be improved upon, or in fact one has already found
the fastest algorithm possible. To resolve such questions,-we must establish lower
bounds to the computational complexity of a problem in some fairly general model.

For geometric problems, a natural model for studying computational complexity
is the algebraic computation tree model. In this model, an algorithm can in one step
either perform an arithmetic operation, or make a comparison and then branch
according to the result of the comparison. (Thus, each comparison in fact corrre-
sponds to a polynomial test of arbitrary degree evaluated at the input.) FIGURE 9
gives an example of an algebraic computation tree for testing whether a point
(x, y) lies in the region

W={(x,y)lay>1, =25 <x +y <3}

Let us consider the problem of finding a closest pair among » points in the plane.
As we saw before, this problem can be solved in O(n log n) time by first construct-
ing the Voronoi diagram and then performing a search in linear time. It turns out
that Q(n log n) is alsp a lower bound for this problem in the algebraic computa-
tion tree model. In fact, the simpler problem of deciding whether the input set
contains a repeated point, i.e., whether p; =p; for some i +# j, has complexity
Q(n log n) even in one dimension! This result is due to Ben-Or [3], and the main
idea of the proof is the following. The upper bound follows simply by sorting the n
points and testing adjacent pairs for equality. The lower bound is obtained by
mapping the polynomial inequalities to a suitable algebraic variety and then
associating the number of computational steps with the Betti numbers of the
algebraic variety. Let x = (x;, x,, ..., x,,) € R" denote the input, and let T be an
algebraic computation tree that decides whether x € W where W is defined by

W= {(xl,xz,...,xn) I_I(xi—xj) #0} C R".

i#j

698 RON GRAHAM AND FRANCES YAO [October

Zy < X*y

no

no

no no yes

Fic. 9. An algebraic computation tree for testing “Is (x, y) € W.”

It is easy to see that W has n! connected components. At the same time, by
invoking a theorem of Milnor-Thom ([22], [28]), one can show that the algebraic
variety V associated with a leaf of T has at most 3”** components, if the path to
that leaf involves & operations. For a leaf associated with a “yes” answer, each
connected component of V' must be completely contained in some connected
component of W. We thus conclude that the maximum path length 4 has to satisfy
3#37+h > n!, which implies & = Q(n log n).

Common Techniques

As we have seen, computational geometry uses concepts and results from
classical geometry, topology, combinatorics, as well as standard algorithmic tech-
niques such as sorting and searching, graph manipulations, and linear program-

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 699

ming. In addition, certain special techniques and paradigms have emerged and
found repeated application in computational geometry. We briefly summarize
some of the most common ones below. Much more comprehensive surveys can be
found in [11], [25] and [33].

1. Divide and conquer. The basic idea is to divide the problem into two or
more subproblems, solve them recursively and then merge the results to obtain a
solution to the original problem. Although this technique is common in algorithm
design, it seems particularly well suited for solving geometric problems: the
dividing step can naturally be accomplished by splitting along a line (or a hyper-
plane in d dimensions), and the merging step can take advantage of reduced
problem complexity across the dividing hyperplane. The convex hull algorithms in
two and three dimensions are good examples.

2. The sweep technique. This is a technique designed to reduce the dimension
of a (static) geometric problem at the cost of changing its mode from static to
dynamic. For example, in the construction of Voronoi diagrams, the sweep-line
induces one-dimensional cross-sections which change dynamically (but only locally)
when the sweep-line moves from one (discrete) position to the next. The sweep
technique is also quite useful in higher dimensions.

3. Geometric transformations. Through a geometric transformation, one can
often state a given problem in an alternative form which, though equivalent, may
shed new light on the problem. One of the transforms used most often in
computational geometry is the dual transform between points and hyperplanes.
Other examples include the hyperbolic transform of Fortune for Voronoi diagrams
and the correspondence between Voronoi diagrams and convex hulls (both dis-
cussed earlier), the use of Plicker coordinates to represent a line in three
dimensions as a point in five dimensions, and the skewed projection determined by
a pair of lines in three dimensions.

4. The locus approach. This approach applies to geometric query problems and
it works as follows. We interpret the query as a point in some space (through an
initial transformation, if necessary), and then partition that space into a set of
non-overlapping regions so that the answer is invariant for all query points that fall
in the same region. Several ingredients are involved in this approach: transforma-
tion of the query into a point, definition and construction of a suitable space
partition, and an algorithm for point-location. Using the Voronoi diagram to solve
the nearest-neighbor query is a basic example of this approach.

5. Random sampling. The idea is to use random sampling of the input objects
to carry out divide-and-conquer efficiently, that is, to split up the original problem
into subproblems each guaranteed to be of small size [7]. The expected perfor-
mance of the resulting algorithm is with respect to the built-in randomization
process, and does not depend on any assumption about the input distribution. This
technique often yields simple algorithms with good expected performance.

Conclusion

We have tried here to give a brief sketch of some of the main ideas underlying
the dynamically growing field of computational geometry. It is the natural conver-
gence of ideas from many areas of mathematics such as topology, combinatorics,

700 RON GRAHAM AND FRANCES YAO [October

algebra, probability and, of course, geometry, with those from computer science,
such as graph algorithms, data structures, and optimization. We feel confident that
the current trend of studying computational questions on geometric objects will
continue to suggest new classes of problems which in turn will enrich and become
a permanent part of the glorious tradition of geometry.

REFERENCES

1. A. Aggarwal, L. J. Guibas, J. Saxe and P. Shor, A linear time algorithm for computing the Voronoi
diagram of a convex polygon, Proc. 19th Ann. ACM Symp. Theory Comput., (1987) 39-45.

2. F. Aurenhammer, Voronoi diagrams—a survey, Inst. for Inf. Prc., Graz Tech. Univ. Tech. report,
1988.

3. M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th Ann. Symp. Theory Comput.,
(1983) 80-86.

4. M. Bern, D. Dobkin, D. Eppstein and R. Grossman, Visibility with a moving point of view, Proc.
1st Ann. ACM-SIAM Symposium on Discrete Algorithms (1990) 107-117.

5. K. Q. Brown, Voronoi diagrams from convex hulls, Inform. Process. Lett., 9 (1979) 223-228.

6. D.R. Chand and S. S. Kapur, An algorithm for convex polytopes, J. ACM, 17 (1970) 78-86.

7. K. L. Clarkson, New applications of random sampling in computational geometry, Discrete and
Comput. Geometry, 2 (1987) 195-222.

8. R. Cole and M. Sharir, Visibility problems for polyhedral terrains, J. Symbolic Computation, 7
(1989) 11-30.

9. M. Davis, Y. Matijasevi¢ and J. Robinson, Hilbert’s Tenth Problem. Diophantine Equations:
Positive aspects of a negative solution, in Mathematical developments arising from Hilbert
Problems (F. Browder, ed.), Proc. Symp. Pure Math 28, part 2, (1976), 323-378.

10. M. E. Dyer, The complexity of vertex enumeration methods, Math. Oper. Res., 8 (1983) 381-402.

11. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Germany,
1987.

12. S. J. Fortune, A sweepline algorithm for Voronoi diagrams, Proc. 2nd Ann. ACM Symp. Comput.
Geom. (1986) 313-322.

13. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman and Co., San Francisco, 1979.

14. E. N. Gilbert, Random subdivisions of space into crystals, Annals of Math. Stat., 33 (1962)
958-972.

15. R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,
Inform. Process. Lett., 1 (1972) 132-133.

16. R. L. Graham and F. F. Yao, Finding the convex hull of a simple polygon, J. Algorithms, 4 (1983)
324-331.

17. B. Griinbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman and Co., New York,
1987.

18. L. J. Guibas and J. Stolfi, Ruler, compass and computer: The design and analysis of geometric
algorithms, DEC Sys. Res. Center Tech. Dep. 37 (1989), 55 pp.

19. H. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path
compression schemes, Combinatorica, 6 (1986) 151-177.

20. D.T. Lee, On finding the convex hull of a simple polygon, Int. J. Comput. Inform. Sci., 12 (1983)
87-98.

21. C. G. Lekkerkerker, Geometry of Numbers, Wiley Interscience, New York, 1969.

22. J. Milnor, On the Betti numbers of real algebraic varieties, Proc. AMS, 15 (1964) 275-280.

23. J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Reading, MA, 1984.

24. F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions,
Comm. ACM, 2 (1977) 87-93.

25. F. P. Preparata and M. I. Shams, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

26. R. Seidel, A convex hull algorithm optimal for point sets in even dimensions, Univ. of B.C., CS
Tech Rep. 81-14, 1981.

27. J. T. Schwartz, M. Sharir and J. Hopcroft, Planning, Geometry and Complexity of Robot Motion,
Ablex, Norwood, NJ, 1986.

1990] A WHIRLWIND TOUR OF COMPUTATIONAL GEOMETRY 701

28.

29.

30.

31

32.

33.

34

R. Thom, Sur ’homologie des variétés algébriques réelles. Differential and Combinatorial Topol-
ogy (ed., S. S. Cairns), Princeton Univ. Press, 1965.

M. G. Voronoi, Nouvelles applications des parametres continus a la théorie des formes quadra-
tiques, J. Reine u. Agnew. Math., 134 (1908) 198-287.

A. Wiernik and M. Sharir, Planar realizations of nonlinear Davenport-Schinzel sequences,
Discrete and Comput. Geometry 3 (1988), 15-48.

D. E. Willard, New data structures for orthogonal range queries, SIAM J. Computing, 14 (1985)
232-253.

A. C. Yao and F. F. Yao, A general appraoch to d-dimensional geometric queries, Proc. 17th
Ann. ACM Symp. on Theory of Computing, 1985, 163-168.

F. F. Yao, Computational Geometry (to appear as a chapter in Handbook of Theoretical
Computer Science, North Holland, Amsterdam, 1990).

F. F. Yao, D. P. Dobkin, H. Edelsbrunner and M. S. Paterson, Partitioning space for range
queries, SIAM J. Computing, 18 (1989) 371-384.

	Article Contents
	p. 687
	p. 688
	p. 689
	p. 690
	p. 691
	p. 692
	p. 693
	p. 694
	p. 695
	p. 696
	p. 697
	p. 698
	p. 699
	p. 700
	p. 701

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 649-773
	Front Matter
	[Introduction] [p. 649]
	Convexity [pp. 650-678]
	What Is Geometry? [pp. 679-686]
	A Whirlwind Tour of Computational Geometry [pp. 687-701]
	Minimal Surfaces Based on the Catenoid [pp. 702-730]
	Curvature in the Eighties [pp. 731-756]
	Conway's Tiling Groups [pp. 757-773]
	Back Matter

