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Abstract. Diffusion tensor magnetic resonance imaging (DT-MRI) is emerging
as an important tool in medical image analysis of the brain. However, relatively
little work has been done on producing statistics of diffusion tensors. A main dif-
ficulty is that the space of diffusion tensors, i.e., the space of symmetric, positive-
definite matrices, does not form a vector space. Therefore, standard linear statisti-
cal techniques do not apply. We show that the space of diffusion tensors is a type
of curved manifold known as a Riemannian symmetric space. We then develop
methods for producing statistics, namely averages and modes of variation, in this
space. In our previous work we introduced principal geodesic analysis, a gen-
eralization of principal component analysis, to compute the modes of variation
of data in Lie groups. In this work we expand the method of principal geodesic
analysis to symmetric spaces and apply it to the computation of the variability of
diffusion tensor data. We expect that these methods will be useful in the registra-
tion of diffusion tensor images, the production of statistical atlases from diffusion
tensor data, and the quantification of the anatomical variability caused by disease.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [2] produces a 3D diffusion
tensor, i.e., 8 x 3, symmetric, positive-definite matrix, at each voxel of an imaging
volume. This tensor is the covariance in a Brownian motion model of the diffusion of
water at that voxel. In brain imaging DT-MRI is used to track the white matter fibers,
which demonstrate higher diffusivity of water in the direction of the fiber. The aim of
this paper is to provide new methods for the statistical analysis of diffusion tensors.
Diffusion tensor imaging has shown promise in clinical studies of brain patholo-
gies, such as multiple sclerosis and stroke, and in the study of brain connectivity [4].
Several authors have addressed the problem of estimation and smoothing within a DT
image [6, 7, 14]. Further insights might be had from the use of diffusion tensor imaging
in intersubject studies. Statistical brain atlases have been used in the case of scalar im-
ages to quantify anatomical variability across patients. However, relatively little work
has been done towards constructing statistical brain atlases from diffusion tensor im-
ages. Alexandeet al.[1] describe a method for the registration of multiple DT images
into a common coordinate frame, however, they do not include a statistical analysis of
the diffusion tensor data. Previous attempts [3, 12] at statistical analysis of diffusion



tensors within a DT image are based on a Gaussian model of the linear tensor coeffi-
cients. In this paper we demonstrate that the space of diffusion tensors is more naturally
described as a Riemannian symmetric space, rather than a linear space. In our previ-
ous work we introducegrincipal geodesic analysi@PGA) as an analog of principal
component analysis for studying the statistical variability of Lie group data. Extending
these ideas to symmetric spaces, we develop new methods for computing averages and
describing the variability of diffusion tensor data. We show that these statistics preserve
natural properties of the diffusion tensors, most importantly the positive-definiteness,
that are not preserved by linear statistics. The framework presented in this paper thus
provides the statistical methods needed for constructing statistical atlases of diffusion
tensor images.

2 The Space of Diffusion Tensors

Recall that a reah x n matrix A is symmetric ifA = AT and positive-definite if
T Az > 0 for all nonzerox € R™. We denote the space of all x n symmetric,
positive-definite matrices aB(n). The tensors in DT-MRI are thus elementsi(f3).
The space”(n) forms a convex subset @"". One can define a linear average/of
positive-definite, symmetric matrices;,..., Ay asp = + Efil A;. This definition
minimizes the Euclidean metric dd"”. SinceP(n) is convex,u is lies within P(n),
however, linear averages do not interpolate natural properties. The linear average of ma-
trices of the same determinant can result in a matrix with a larger determinant. Second
order statistics are even more problematic. The standard principal component analysis
is invalid because the straight lines defined by the modes of variation do not stay within
the space”(n). In other words, linear PCA does not preserve the positive-definiteness
of diffusion tensors. The reason for such difficulties is that sga@e), although a sub-
set of a vector space, is not a vector space, e.g., the negation of a positive-definite matrix
is not positive-definite.

In this paper we derive a more natural metric on the space of diffusion tensors,
P(n), by viewing it not simply as a subsetBf*”, but rather as a Riemannian symmet-
ric space. Following Fechet [9], we define the average as the minimum mean squared
error estimator under this metric. We develop the method of principal geodesic anal-
ysis to describe the variability of diffusion tensor data. Principal geodesic analysis is
the generalization of principal component analysis to manifolds. In this framework the
modes of variation are represented as flows along geodesic curves, i.e., shortest paths
under the Riemannian metric. These geodesic curves, unlike the straight liR&S, of
are completely contained withiR(n), that is, they preserve the positive-definiteness.
Principal component analysis generates lower-dimensional subspaces that maximize
the projected variance of the data. Thus the development of principal geodesic anal-
ysis requires that we generalize the concepts of variance and projection onto lower-
dimensional subspaces for data in symmetric spaces.

To illustrate these issues, consider the sp&¢2), the2 x 2 symmetric, positive-
definite matrices. A matri¥l € P(2) is of the form

A:(ab>, ac—b>>0, a>0.
be
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Fig. 1. The spaceP(2), showing the geodesigand the straight liné between the two pointsy
andp;.

If we consider the matrixl as a poin{a, b, c) € R3, then the above conditions describe

the interior of a cone as shown in Fig. 1. The two labelled pointgaee (1,0,7),p1 =
(7,0,1). The straight lind between the two points does not remain contained within
the spaceP(2). The curvey is the geodesic between the two points whef2) is
considered as a Riemannian symmetric space. This geodesic lies completely within
P(2). We choseP(2) as an example since it can be easily visualized, but the same
phenomenon occurs for genefd(n), i.e.,n > 2.

3 The Geometry of P(n)

In this section we show that the space of diffusion tensBis,), can be formulated
as a Riemannian symmetric space. This leads to equations for computing geodesics
that will be essential in defining the statistical methods for diffusion tensors. The dif-
ferential geometry of diffusion tensors has also been used in [6], where the diffusion
tensor smoothing was constrained along geodesic curves. A more thorough treatment
of symmetric spaces can be found in [5, 10].

A symmetric spacis a connected Riemannian manifdld such that for each €
M there is an isometry, which (1) is involutive, i.e.p2 = id, and (2) hasr as an
isolated fixed point, that is, there is a neighborh@daf = whereo, leaves onlyx
fixed. It can be shown that, is the map that reverses all geodesics through the point
Riemannian symmetric spaces, and the methods for computing geodesics and distances
on them, arise naturally from Lie group actions on manifolds.

3.1 Lie Group Actions

A Lie groupis an algebraic grougr that also forms a differentiable manifold, where
the two group operations, multiplication and inversion, are smooth mappings. Many



common geometric transformations of Euclidean space form Lie groups. For exam-

ple, rotations, translations, and affine transformatioriR’o#ll form Lie groups. More

generally, Lie groups can be used to describe transformations of smooth manifolds.
Given a manifoldM and a Lie group&, a smooth group actiof G on M, or

smoothG-action on M, is a smooth mapping : G x M — M such that for all

g,h € G, and allz € M we haveg(e, z) = z, and¢(g, p(h,x)) = ¢(gh,z), where

e is the identity element of;. Consider the Lie group of all x n real matrices with

positive determinant, denot€dZ* (n). This group acts o (n) via

¢ : GL*(n) x P(n) — P(n)
¢(9,p) = gpg”". (1)

The orbit under¢ of a pointz € M is defined as7(x) = {¢(g,z) : g € G}. In
the case thad/ consists of a single orbit, we call ahomogeneous spaead say that
the G-action istransitive The spacd’(n) is a homogeneous space, as is easy to derive
from the fact that any matrix € P(n) can be decomposed as= gg” = ¢(g, I,,),
whereg € GL™(n) andI, is then x n identity matrix. Theisotropy subgroumf z
is defined a7, = {g € G : ¢(g,x) = =z}, i.e.,G, is the subgroup of7 that leaves
the pointx fixed. For P(n) the isotropy subgroup af, is SO(n) = {g € GL™(n) :
#(g,1,) = gg* = I,,}, i.e., the space of x n rotation matrices.

Let H be a closed Lie subgroup of the Lie gro@pThen thdeft cosebf an element
g € Gisdefined agH = {gh : h € H}. The space of all such cosets is denatgd?
and is a smooth manifold. There is a natural bijecti®fx) = G/G, given by the
mappingg - = — ¢gG... Therefore, we can consider the space of diffusion tengt{rs),
as the coset spaceL* (n)/SO(n). An intuitive way to view this is to think of the polar
decomposition, which decomposes a matrik GL*(n) asg = pu, wherep € P(n)
andu € SO(n). Thus, the diffusion tensor spad&n) = GLT(n)/SO(n) comes
from “dividing out” the rotational component in the polar decompositio@f" ().

3.2 Invariant Metrics

A Riemannian metrion a manifoldd smoothly assigns to each pointe M an inner
product(-,-), onT, M, the tangent space f atz. If ¢ is a smoothG-action on}/,
a metric onM is calledG-invariantif for eachg € G the mapg, :  — ¢(g,z) is an
isometry, i.e.p, preserves distances dd. The space of diffusion tensorB(n), has
a metric that is invariant under tl@L* (n) action, which follows from the fact that the
isotropy subgroug'O(n) is connected and compact (see [5], Theorem 9.1).

The tangent space @f(n) at the identity matrix can be identified with the space of
n x n symmetric matricesSym(n). Since the group actiog, : s — gsg?’ is linear,
its derivative map, denotedt,, is given bydg,(X) = gXgT. If X € Sym(n), itis
easy to see thatp,(X) is again a symmetric matrix. Thus the tangent space at any
pointp € P(n) is also equivalent t8ym(n). If X, Y € Sym(n) represent two tangent
vectors ap € P(n), wherep = gg*', g € GL*(n), then the Riemannian metric ais
given by the inner product

(X,Y), =tr(g ' Xp~ 'V (g~ H)7).
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Finally, the mappingr;, (p) = p~! is an isometry that reverses geodesics’¢f) at
the identity, and this turn®(n) into a symmetric space.

3.3 Computing Geodesics

Geodesics on a symmetric space are easily derived via the group action (see [10] for de-
tails). Letp be a point onP(n) andX a tangent vector at There is a unique geodesic,

~, with initial point+(0) = p and tangent vectoy’(0) = X. To derive an equation for

such a geodesic, we begin with the special case where the initial pa@rthen x n
identity matrix,Z,,, and the tangent vectdf is diagonal. Then the geodesic is given by

V(t) = exp(tX),
whereexp is the matrix exponential map given by the infinite series

=1
exp(X):ZEXk.
k=0

For the diagonal matriX with entriesz;, the matrix exponential is simply the diagonal
matrix with entriese™:.

Now for the general case consider the geodesstarting at an arbitrary point €
P(n) with arbitrary tangent vectak € Sym(n). We will use the group action to map
this configuration into the special case described above, i.e., with initial point at the
identity and a diagonal tangent vector. Since the group action is an isometry, geodesics
and distances are preserved. pet gg”, whereg € GL™(n). Then the actiom,
mapsp to I,,. The tangent vector is mapped via the corresponding tangent map-to
dg,—1(X) = g7 'X(¢g7)T. Now we may writeY = vXv”, wherev is a rotation
matrix andX is diagonal. The group actiafy,-: diagonalizes the tangent vector while
leaving I, fixed. We can now use the procedure above to compute the geddedit
initial point 4(0) = I,, and tangent vecto}’(0) = X. Finally, the result is mapped
back to the original configuration by the inverse group actigp, That is,

() = bgo(3(1)) = (gv) exp(t2)(gv)"

If we flow to ¢ = 1 along the geodesig we get the Riemannian exponential map at
p (denotedtxp,,, and not to be confused with the matrix exponential map), that is,

Exp, (X) =~(1).
In summary we have

Algorithm 1: Riemannian Exponential Map
Input: Initial pointp € P(n).
Tangent vectoX € Sym(n).

Output:Exp,,(X)

Letp = udu® (u € SO(n), A diagonal)

g=uVvA

Y =g'X(g )"

LetY = vXv” (v € SO(n), ¥ diagonal)

Exp,(X) = (gv) exp(Z)(gv)"




An important property of the geodesics if(n) under this metric is that they are in-
finitely extendible, i.e., the geodesj¢t) is defined for-co < ¢ < co. A manifold with
this property is calledomplete Again, Fig. 1 demonstrates that the symmetric space
geodesicy remains withinP(2) for all ¢. In contrast the straight linequickly leaves
the spaceP(2).

The mapExp, has an inverse, called the Riemannian log map and de
It maps a point: € P(n) to the unique tangent vector atthat is the initial velocity
of the unique geodesig with (0) = p andv(1) = z. Using a similar diagonalization
procedure, the log map is computed by

Algorithm 2: Riemannian Log Map
Input: Initial pointp € P(n).
End pointz € P(n).
Output:Log,, ()
Letp = udu® (u € SO(n), A diagonal)
g=uVvA
y=g 'a(g™)"
Lety = vXvT (v € SO(n), ¥ diagonal)
Log,(z) = (gv) log(X)(gv)"

Using the notation of Algorithm 2, geodesic distance between the diffusion tensors
p,z € P(n) is computed byl(p, z) = || Log, (z)|, = tr(log(X)?).

4 Statistics of Diffusion Tensors

Having formulated the geometry of diffusion tensors as a symmetric space, we now
develop methods for computing statistics in this nonlinear space.

4.1 Averages of Diffusion Tensors

To define an average of diffusion tensors we follovedtret [9], who defines the mean

of a random variable in an arbitrary metric space as the point that minimizes the ex-
pected value of the sum-of-squared distance function. Consider a set of doiats
{z1,...,2zy} on a Riemannian manifold/. Then we will be concerned with the sum-
of-squared distance function

N
_ 2
palz) = 5N ;:1 d(p, x)°,

whered is geodesic distance aif. Theintrinsic meanof the points inA is defined as
a minimum ofp 4, that is,
= arg min p4(x). 2
zeM
The properties of the intrinsic mean have been studied by Karcher [11], and Pennec
[13] describes a gradient descent algorithm to compute the mean. Since the mean is



given by the minimization problem (2), we must verify that such a minimum exists
and is unique. Karcher shows that for a manifold with non-positive sectional curvature
the mean is uniquely defined. In fact, the sp&fe) does have non-positive sectional
curvature, and, thus, the mean is uniguely defined. Also, the gradigntisfgiven by

N
1
Vpa(e) =~ Y Log,(x)
i=1

Thus the intrinsic mean of a collection of diffusion tensors is computed by the following
gradient descent algorithm:

Algorithm 3: Intrinsic Mean of Diffusion Tensors
Input:py,...,pn € P(n)
Output:pe € P(n), the intrinsic mean
po =1
Do v
X;= % D k=1 Log,,, (Pr)
pi+1 = Exp,,, (X5)
While || X;|| > e.

4.2 Principal Geodesic Analysis

Principal component analysis (PCA) is a useful method for describing the variability

of Euclidean data. In our previous work [8] we introdugethcipal geodesic analysis

(PGA) as a generalization of PCA to study the variability of data in a Lie group. In
this section we review the method of principal geodesic analysis and apply it to the
symmetric space of diffusion tensors. We begin with a review of PCA in Euclidean
space. Consider a set of points . .., zy € R? with zero mean. Principal component
analysis seeks a sequence of linear subspaces that best represent the variability of the
data. To be more precise, the intent is to find a orthonormal Basis. . , v, } of R¢,

which satisfies the recursive relationship

N
U] = arg max Z(v, )2, 3)
[lv]|=1 i=1
N k-1
v = arg maxz Z(vj,xi>2 + (v, z5)2. (4)
[lvl=1 ;55 j=1
In other words, the subspa®& = span({v1,...,v;}) is thek-dimensional subspace

that maximizes the variance of the data projected to that subspace. Thedgsis
computed as the set of eigenvectors of the sample covariance matrix of the data.

Now turning to manifolds, consider a set of points ..., py On a Riemannian
manifold M. Our goal is to describe the variability of thein a way that is analogous
to PCA. Thus we will project the data onto lower-dimensional subspaces that best rep-
resent the variability of the data. This requires first extending three important concepts
of PCA into the manifold setting:



— Variance.Following the work of Fechet, we define the sample variance of the data
as the expected value of the squared Riemannian distance from the mean.

— Geodesic subspaced.he lower-dimensional subspaces in PCA are linear sub-
spaces. For manifolds we extend the concept of a linear subspace to that of a
geodesic submanifald

— Projection. In PCA the data is projected onto linear subspaces. We define a pro-
jection operator for geodesic submanifolds, and show how it may be efficiently
approximated.

We now develop each of these concepts in detail.

Variance The variancer? of a real-valued random variabiewith meany is given by

the formulac? = &[(z — u)?], where€ denotes expectation. It measures the expected
localization of the variable: about the mean. The definition of variance we use comes
from Fréechet [9], who defines the variance of a random variable in a metric space as the
expected value of the squared distance from the mean. That is, for a random variable
in a metric space with intrinsic mean the variance is given by

o? = &[d(p, x)?].

Thus in the manifold case, given data poipts. ..,py € M with meany, we define
the sample variance of the data as

N

N
o= Zd(/ﬁ,pi)g = Z || Log,, (p:)|[>. (5)
=1

=1

Notice that if M is R™, then the variance definition in (5) is given by the trace of
the sample covariance matrix, i.e., the sum of its eigenvalues. Itis in this sense that this
definition captures the total variation of the data.

Geodesic SubmanifoldsThe next step in generalizing PCA to manifolds is to gener-
alize the notion of a linear subspace. A geodesic is a curve that is locally the shortest
path between points. In this way a geodesic is the generalization of a straight line. Thus
it is natural to use a geodesic curve as the one-dimensional subspace, i.e., the analog of
the first principal direction in PCA.

In general ifV is a submanifold of a manifold/, geodesics oiV are not necessar-
ily geodesics ofV/. For instance the sphef is a submanifold oR?, but its geodesics
are great circles, while geodesicsiof are straight lines. A submanifold of M is said
to begeodesic atr € H if all geodesics off passing through are also geodesics of
M. For example, a linear subspaceRsfis a submanifold geodesic @t Submanifolds
geodesic at: preserve distances ta This is an essential property for PGA because
variance is defined by squared distance to the mean. Thus submanifolds geodesic at the
mean will be the generalization of the linear subspaces of PCA.



Projection The projection of a point € M onto a geodesic submanifold of M is
defined as the point oA that is nearest ta in Riemannian distance. Thus we define
the projection operatary : M — H as
mr(r) = arg mind(z,y)?%.
yeEH

Since projection is defined by a minimization, there is no guarantee that the projection
of a point exists or that it is unique. However, becab’§e) has non-positive curvature
and no conjugate points, projection onto geodesic submanifolds is unique in this case.

Projection onto a geodesic submanifoldiatan be approximated in the tangent
space to the meaf,, M. If vq, ..., v; is an orthonormal basis fdF, H, then the pro-
jection operator can be approximated by the formula

k

Log,, (mu(z)) ~ > _(vi,Log,(x)) - (6)
=1

4.3 Computing Principal Geodesic Analysis

We are now ready to define principal geodesic analysis for giata ., py on a con-
nected Riemannian manifoltf. Our goal, analogous to PCA, is to find a sequence of
nested geodesic submanifolds that maximize the projected variance of the data. These
submanifolds are called thgincipal geodesic submanifolds

The principal geodesic submanifolds are defined by first constructing an orthonor-
mal basis of tangent vectors, . . ., vq that span the tangent spdfgl . These vectors
are then used to form a sequence of nested subspacesspan({vy,...,v}). The
principal geodesic submanifolds are the images oflithender the exponential map:
Hjy, = Exp,(Vk). The first principal direction is chosen to maximize the projected
variance along the corresponding geodesic:

N

vy = a‘r‘gﬁnaxz Il Logu(7TH(pi))H27 (7
vl|=1 ;¢

where H = exp(span({v})).

The remaining principal directions are then defined recursively as

N
v = arg maxz I Logu(ﬂH(pi))||2, (8)

llvll=1 =5

where H = exp(span({vy,...,v5_1,0})).

If we use (6) to approximate the projection operatgrin (7) and (8), we get
N
V] & arg max Z(v, Logu(pi)ﬁ”
[lvll=1 ;54
N k-1
v A arg maxz Z(vj, Logu(pi)ﬁ + (v, Logu(pi»i.

llvll=1 =7 =1



The above minimization problem is simply the standard principal component analysis
in T, M of the vectord.og,, (p;), which can be seen by comparing the approximations
above to the PCA equations, (3) and (4). Applying these ided3(t9, we have the
following algorithm for approximating the PGA of diffusion tensor data:

Algorithm 4: PGA of Diffusion Tensors
Input:py,...,pn € P(n)
Output: Principal directions;, € Sym(n)
Variances)\, € R
p = intrinsic mean of p; } (Algorithm 3)
z; = Log,,(pi)
S =L >N z27 (treating ther; as column vectors)
{vr, A\x } = eigenvectors/eigenvalues $f

A new diffusion tensop can now be generated from the PGA by the formula-
Exp,, (ZZ:1 akvk), where they,, € R are the coefficients of the modes of variation.

5 Properties of PGA onP(n)

We now demonstrate that PGA on the symmetric sgaee) preserves certain impor-

tant properties of the diffusion tensor data, namely the properties of positive-definiteness,
determinant, and orientation. This makes the symmetric space formulation an attrac-
tive approach for the statistical analysis of diffusion tensor images. We have already

mentioned that, in contrast to linear PCA, symmetric space PGA preserves positive-

definiteness. That is, the principal geodesics are completely contained Within

and any matrix generated by the principal geodesics will be positive-definite.

The next two properties we consider are the determinant and orientation. Consider
a collection of diffusion tensors that all have the same determibakite wish to show
that the resulting average and any tensor generated by the principal geodesic analy-
sis will also have determinar®. To show this we first look at the subset Bfn) of
matrices with determinanb, that is, the subsePp = {p € P(n) : det(p) = D}.

This subset is #otally geodesic submanifgldneaning that any geodesic withi?y, is

a geodesic of the full spade(n). Notice the difference from the definition of a sub-
manifold geodesic at a point; totally geodesic submanifolds are geodesiergpoint.
Now, the fact thatPp, is totally geodesic implies that the averaging process in Algo-
rithm 3 will remain in Py, if all the data lies inPp. Also, the principal directionsy, in

the PGA will lie in the tangent subspagg Pp. Thus any diffusion tensor generated by
the principal geodesics will remain in the spdég.

The same argument may be applied to show that symmetric space averaging and
PGA preserve the orientation of diffusion tensors. In fact, the subset of all diffusion
tensors having the same orientation is also a totally geodesic submanifold, and the
same reasoning applies. Unlike the positive-definiteness and determinant, orientations
are also preserved by linear averaging and PCA.

To demonstrate these properties, we simulated rangidndiffusion tensors and
computed both their linear and symmetric space statistics. We first tested the determi-
nant preservation by generatin0 random3D diffusion tensors with determinart
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Symmetric Space PGA Linear PCA

Fig. 2. The first two modes of variation of the simulated data: (left) using the symmetric space
PGA, and (right) using linear PCA. Units are in standard deviations. The boxes labelled “Not
Valid” indicate that the tensor was not positive-definite, i.e., it had negative eigenvalues.

To do this we first generated)0 random3 x 3 symmetric matrices, with entries dis-
tributed according to a normal distributiaN(0, 7). Then, we took the matrix exponen-

tial of these random symmetric matrices, thus making them positive-definite diffusion
tensors. Finally, we normalized the random diffusion tensors to have determibgnt
dividing each tensor by the cube root of its determinant. We then computed the linear
average and PCA and symmetric space average and PGA of the simulated tensors. The
results are shown in Fig. 2 as the diffusion tensors generated by the first two modes of
variation. The linear PCA generated invalid diffusion tensors, i.e., tensors with negative
eigenvalues, at 2 standard deviations in both the first and second modes. All of the dif-
fusion tensors generated by the symmetric space PGA have determirfdr linear

mean demonstrates the “swelling” effect of linear averaging. It has deterntirnt

and the linear PCA tensors withih2 standard deviations have determinants ranging
from —2.80 to 2.82. The negative determinants came from the tensors that were not
positive-definite. Therefore, we see that the symmetric space PGA has preserved the
positive-definiteness and the determinant, while the linear PCA has preserved neither.

Next we tested the orientation preservation by generatingandom, axis-aligned,
3D diffusion tensors. This was done by generatingndom eigenvalues for each ma-
trix, corresponding to the, y, and z axes. The eigenvalues were chosen from a log-
normal distribution with log mea6 and log standard deviatidn5. Next we generated
a random orientatiom € SO(3) and applied it to all of the axis-aligned matrices by
the mapp — upu”. Thus each of the diffusion tensors in our test set had eigenvectors
equal to the columns of the rotation matrixWe computed both the symmetric space
and linear statistics of the data. As was expected, both methods preserved the orienta-
tions. However, the linear PCA again generated tensors that were not positive-definite.
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6 Conclusion

We have presented a framework for the statistical analysis of diffusion tensor images.
The methods rely on regarding the space of diffusion tensors as a Riemannian symmet-
ric space. We developed algorithms for computing averages and modes of variation of
diffusion tensor data by extending statistical methods to the symmetric space setting.
The methods presented in this paper lay the groundwork for statistical studies of the
variability of diffusion tensor images across patients.
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