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Abstract. Diffusion tensor magnetic resonance imaging (DT-MRI) is emerging
as an important tool in medical image analysis of the brain. However, relatively
little work has been done on producing statistics of diffusion tensors. A main dif-
ficulty is that the space of diffusion tensors, i.e., the space of symmetric, positive-
definite matrices, does not form a vector space. Therefore, standard linear statisti-
cal techniques do not apply. We show that the space of diffusion tensors is a type
of curved manifold known as a Riemannian symmetric space. We then develop
methods for producing statistics, namely averages and modes of variation, in this
space. In our previous work we introduced principal geodesic analysis, a gen-
eralization of principal component analysis, to compute the modes of variation
of data in Lie groups. In this work we expand the method of principal geodesic
analysis to symmetric spaces and apply it to the computation of the variability of
diffusion tensor data. We expect that these methods will be useful in the registra-
tion of diffusion tensor images, the production of statistical atlases from diffusion
tensor data, and the quantification of the anatomical variability caused by disease.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [2] produces a 3D diffusion
tensor, i.e., a3 × 3, symmetric, positive-definite matrix, at each voxel of an imaging
volume. This tensor is the covariance in a Brownian motion model of the diffusion of
water at that voxel. In brain imaging DT-MRI is used to track the white matter fibers,
which demonstrate higher diffusivity of water in the direction of the fiber. The aim of
this paper is to provide new methods for the statistical analysis of diffusion tensors.

Diffusion tensor imaging has shown promise in clinical studies of brain patholo-
gies, such as multiple sclerosis and stroke, and in the study of brain connectivity [4].
Several authors have addressed the problem of estimation and smoothing within a DT
image [6, 7, 14]. Further insights might be had from the use of diffusion tensor imaging
in intersubject studies. Statistical brain atlases have been used in the case of scalar im-
ages to quantify anatomical variability across patients. However, relatively little work
has been done towards constructing statistical brain atlases from diffusion tensor im-
ages. Alexanderet al. [1] describe a method for the registration of multiple DT images
into a common coordinate frame, however, they do not include a statistical analysis of
the diffusion tensor data. Previous attempts [3, 12] at statistical analysis of diffusion



tensors within a DT image are based on a Gaussian model of the linear tensor coeffi-
cients. In this paper we demonstrate that the space of diffusion tensors is more naturally
described as a Riemannian symmetric space, rather than a linear space. In our previ-
ous work we introducedprincipal geodesic analysis(PGA) as an analog of principal
component analysis for studying the statistical variability of Lie group data. Extending
these ideas to symmetric spaces, we develop new methods for computing averages and
describing the variability of diffusion tensor data. We show that these statistics preserve
natural properties of the diffusion tensors, most importantly the positive-definiteness,
that are not preserved by linear statistics. The framework presented in this paper thus
provides the statistical methods needed for constructing statistical atlases of diffusion
tensor images.

2 The Space of Diffusion Tensors

Recall that a realn × n matrix A is symmetric ifA = AT and positive-definite if
xT Ax > 0 for all nonzerox ∈ Rn. We denote the space of alln × n symmetric,
positive-definite matrices asP (n). The tensors in DT-MRI are thus elements ofP (3).
The spaceP (n) forms a convex subset ofRn2

. One can define a linear average ofN

positive-definite, symmetric matricesA1, . . . , AN asµ = 1
N

∑N
i=1 Ai. This definition

minimizes the Euclidean metric onRn2
. SinceP (n) is convex,µ is lies withinP (n),

however, linear averages do not interpolate natural properties. The linear average of ma-
trices of the same determinant can result in a matrix with a larger determinant. Second
order statistics are even more problematic. The standard principal component analysis
is invalid because the straight lines defined by the modes of variation do not stay within
the spaceP (n). In other words, linear PCA does not preserve the positive-definiteness
of diffusion tensors. The reason for such difficulties is that spaceP (n), although a sub-
set of a vector space, is not a vector space, e.g., the negation of a positive-definite matrix
is not positive-definite.

In this paper we derive a more natural metric on the space of diffusion tensors,
P (n), by viewing it not simply as a subset ofRn2

, but rather as a Riemannian symmet-
ric space. Following Fŕechet [9], we define the average as the minimum mean squared
error estimator under this metric. We develop the method of principal geodesic anal-
ysis to describe the variability of diffusion tensor data. Principal geodesic analysis is
the generalization of principal component analysis to manifolds. In this framework the
modes of variation are represented as flows along geodesic curves, i.e., shortest paths
under the Riemannian metric. These geodesic curves, unlike the straight lines ofRn2

,
are completely contained withinP (n), that is, they preserve the positive-definiteness.
Principal component analysis generates lower-dimensional subspaces that maximize
the projected variance of the data. Thus the development of principal geodesic anal-
ysis requires that we generalize the concepts of variance and projection onto lower-
dimensional subspaces for data in symmetric spaces.

To illustrate these issues, consider the spaceP (2), the2 × 2 symmetric, positive-
definite matrices. A matrixA ∈ P (2) is of the form

A =
(

a b
b c

)
, ac− b2 > 0, a > 0.
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Fig. 1.The spaceP (2), showing the geodesicγ and the straight linel between the two pointsp0

andp1.

If we consider the matrixA as a point(a, b, c) ∈ R3, then the above conditions describe
the interior of a cone as shown in Fig. 1. The two labelled points arep0 = (1, 0, 7), p1 =
(7, 0, 1). The straight linel between the two points does not remain contained within
the spaceP (2). The curveγ is the geodesic between the two points whenP (2) is
considered as a Riemannian symmetric space. This geodesic lies completely within
P (2). We choseP (2) as an example since it can be easily visualized, but the same
phenomenon occurs for generalP (n), i.e.,n > 2.

3 The Geometry ofP (n)

In this section we show that the space of diffusion tensors,P (n), can be formulated
as a Riemannian symmetric space. This leads to equations for computing geodesics
that will be essential in defining the statistical methods for diffusion tensors. The dif-
ferential geometry of diffusion tensors has also been used in [6], where the diffusion
tensor smoothing was constrained along geodesic curves. A more thorough treatment
of symmetric spaces can be found in [5, 10].

A symmetric spaceis a connected Riemannian manifoldM such that for eachx ∈
M there is an isometryσx which (1) is involutive, i.e.,σ2

x = id, and (2) hasx as an
isolated fixed point, that is, there is a neighborhoodU of x whereσx leaves onlyx
fixed. It can be shown thatσx is the map that reverses all geodesics through the pointx.
Riemannian symmetric spaces, and the methods for computing geodesics and distances
on them, arise naturally from Lie group actions on manifolds.

3.1 Lie Group Actions

A Lie group is an algebraic groupG that also forms a differentiable manifold, where
the two group operations, multiplication and inversion, are smooth mappings. Many

3



common geometric transformations of Euclidean space form Lie groups. For exam-
ple, rotations, translations, and affine transformations ofRn all form Lie groups. More
generally, Lie groups can be used to describe transformations of smooth manifolds.

Given a manifoldM and a Lie groupG, a smooth group actionof G on M , or
smoothG-action on M , is a smooth mappingφ : G × M → M such that for all
g, h ∈ G, and allx ∈ M we haveφ(e, x) = x, andφ(g, φ(h, x)) = φ(gh, x), where
e is the identity element ofG. Consider the Lie group of alln × n real matrices with
positive determinant, denotedGL+(n). This group acts onP (n) via

φ : GL+(n)× P (n) → P (n)

φ(g, p) = gpgT . (1)

Theorbit underφ of a pointx ∈ M is defined asG(x) = {φ(g, x) : g ∈ G}. In
the case thatM consists of a single orbit, we callM ahomogeneous spaceand say that
theG-action istransitive. The spaceP (n) is a homogeneous space, as is easy to derive
from the fact that any matrixp ∈ P (n) can be decomposed asp = ggT = φ(g, In),
whereg ∈ GL+(n) andIn is then × n identity matrix. Theisotropy subgroupof x
is defined asGx = {g ∈ G : φ(g, x) = x}, i.e.,Gx is the subgroup ofG that leaves
the pointx fixed. ForP (n) the isotropy subgroup ofIn is SO(n) = {g ∈ GL+(n) :
φ(g, In) = ggT = In}, i.e., the space ofn× n rotation matrices.

LetH be a closed Lie subgroup of the Lie groupG. Then theleft cosetof an element
g ∈ G is defined asgH = {gh : h ∈ H}. The space of all such cosets is denotedG/H
and is a smooth manifold. There is a natural bijectionG(x) ∼= G/Gx given by the
mappingg ·x 7→ gGx. Therefore, we can consider the space of diffusion tensors,P (n),
as the coset spaceGL+(n)/SO(n). An intuitive way to view this is to think of the polar
decomposition, which decomposes a matrixg ∈ GL+(n) asg = pu, wherep ∈ P (n)
andu ∈ SO(n). Thus, the diffusion tensor spaceP (n) ∼= GL+(n)/SO(n) comes
from “dividing out” the rotational component in the polar decomposition ofGL+(n).

3.2 Invariant Metrics

A Riemannian metricon a manifoldM smoothly assigns to each pointx ∈ M an inner
product〈·, ·〉x on TxM , the tangent space toM at x. If φ is a smoothG-action onM ,
a metric onM is calledG-invariant if for eachg ∈ G the mapφg : x 7→ φ(g, x) is an
isometry, i.e.,φg preserves distances onM . The space of diffusion tensors,P (n), has
a metric that is invariant under theGL+(n) action, which follows from the fact that the
isotropy subgroupSO(n) is connected and compact (see [5], Theorem 9.1).

The tangent space ofP (n) at the identity matrix can be identified with the space of
n × n symmetric matrices,Sym(n). Since the group actionφg : s 7→ gsgT is linear,
its derivative map, denoteddφg, is given bydφg(X) = gXgT . If X ∈ Sym(n), it is
easy to see thatdφg(X) is again a symmetric matrix. Thus the tangent space at any
pointp ∈ P (n) is also equivalent toSym(n). If X, Y ∈ Sym(n) represent two tangent
vectors atp ∈ P (n), wherep = ggT , g ∈ GL+(n), then the Riemannian metric atp is
given by the inner product

〈X, Y 〉p = tr(g−1Xp−1Y (g−1)T ).
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Finally, the mappingσIn
(p) = p−1 is an isometry that reverses geodesics ofP (n) at

the identity, and this turnsP (n) into a symmetric space.

3.3 Computing Geodesics

Geodesics on a symmetric space are easily derived via the group action (see [10] for de-
tails). Letp be a point onP (n) andX a tangent vector atp. There is a unique geodesic,
γ, with initial point γ(0) = p and tangent vectorγ′(0) = X. To derive an equation for
such a geodesic, we begin with the special case where the initial pointp is then × n
identity matrix,In, and the tangent vectorX is diagonal. Then the geodesic is given by

γ(t) = exp(tX),

whereexp is the matrix exponential map given by the infinite series

exp(X) =
∞∑

k=0

1
k!

Xk.

For the diagonal matrixX with entriesxi, the matrix exponential is simply the diagonal
matrix with entriesexi .

Now for the general case consider the geodesicγ starting at an arbitrary pointp ∈
P (n) with arbitrary tangent vectorX ∈ Sym(n). We will use the group action to map
this configuration into the special case described above, i.e., with initial point at the
identity and a diagonal tangent vector. Since the group action is an isometry, geodesics
and distances are preserved. Letp = ggT , whereg ∈ GL+(n). Then the actionφg−1

mapsp to In. The tangent vector is mapped via the corresponding tangent map toY =
dφg−1(X) = g−1X(g−1)T . Now we may writeY = vΣvT , wherev is a rotation
matrix andΣ is diagonal. The group actionφv−1 diagonalizes the tangent vector while
leavingIn fixed. We can now use the procedure above to compute the geodesicγ̃ with
initial point γ̃(0) = In and tangent vector̃γ′(0) = Σ. Finally, the result is mapped
back to the original configuration by the inverse group action,φgv. That is,

γ(t) = φgv(γ̃(t)) = (gv) exp(tΣ)(gv)T .

If we flow to t = 1 along the geodesicγ we get the Riemannian exponential map at
p (denotedExpp, and not to be confused with the matrix exponential map), that is,

Expp(X) = γ(1).

In summary we have

Algorithm 1: Riemannian Exponential Map
Input: Initial pointp ∈ P (n).

Tangent vectorX ∈ Sym(n).
Output:Expp(X)

Let p = uΛuT (u ∈ SO(n), Λ diagonal)
g = u

√
Λ

Y = g−1X(g−1)T

Let Y = vΣvT (v ∈ SO(n), Σ diagonal)
Expp(X) = (gv) exp(Σ)(gv)T
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An important property of the geodesics inP (n) under this metric is that they are in-
finitely extendible, i.e., the geodesicγ(t) is defined for−∞ < t < ∞. A manifold with
this property is calledcomplete. Again, Fig. 1 demonstrates that the symmetric space
geodesicγ remains withinP (2) for all t. In contrast the straight linel quickly leaves
the spaceP (2).

The mapExpp has an inverse, called the Riemannian log map and denotedLogp.
It maps a pointx ∈ P (n) to the unique tangent vector atp that is the initial velocity
of the unique geodesicγ with γ(0) = p andγ(1) = x. Using a similar diagonalization
procedure, the log map is computed by

Algorithm 2: Riemannian Log Map
Input: Initial pointp ∈ P (n).

End pointx ∈ P (n).
Output:Logp(x)

Let p = uΛuT (u ∈ SO(n), Λ diagonal)
g = u

√
Λ

y = g−1x(g−1)T

Let y = vΣvT (v ∈ SO(n), Σ diagonal)
Logp(x) = (gv) log(Σ)(gv)T

Using the notation of Algorithm 2, geodesic distance between the diffusion tensors
p, x ∈ P (n) is computed byd(p, x) = ||Logp(x)||p = tr(log(Σ)2).

4 Statistics of Diffusion Tensors

Having formulated the geometry of diffusion tensors as a symmetric space, we now
develop methods for computing statistics in this nonlinear space.

4.1 Averages of Diffusion Tensors

To define an average of diffusion tensors we follow Fréchet [9], who defines the mean
of a random variable in an arbitrary metric space as the point that minimizes the ex-
pected value of the sum-of-squared distance function. Consider a set of pointsA =
{x1, . . . , xN} on a Riemannian manifoldM . Then we will be concerned with the sum-
of-squared distance function

ρA(x) =
1

2N

N∑
i=1

d(µ, xi)2,

whered is geodesic distance onM . Theintrinsic meanof the points inA is defined as
a minimum ofρA, that is,

µ = arg min
x∈M

ρA(x). (2)

The properties of the intrinsic mean have been studied by Karcher [11], and Pennec
[13] describes a gradient descent algorithm to compute the mean. Since the mean is
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given by the minimization problem (2), we must verify that such a minimum exists
and is unique. Karcher shows that for a manifold with non-positive sectional curvature
the mean is uniquely defined. In fact, the spaceP (n) does have non-positive sectional
curvature, and, thus, the mean is uniquely defined. Also, the gradient ofρA is given by

∇ρA(x) = − 1
N

N∑
i=1

Logx(xi)

Thus the intrinsic mean of a collection of diffusion tensors is computed by the following
gradient descent algorithm:

Algorithm 3: Intrinsic Mean of Diffusion Tensors
Input:p1, . . . , pN ∈ P (n)
Output:µ ∈ P (n), the intrinsic mean

µ0 = I
Do

Xi = 1
N

∑N
k=1 Logµi

(pk)
µi+1 = Expµi

(Xi)
While ||Xi|| > ε.

4.2 Principal Geodesic Analysis

Principal component analysis (PCA) is a useful method for describing the variability
of Euclidean data. In our previous work [8] we introducedprincipal geodesic analysis
(PGA) as a generalization of PCA to study the variability of data in a Lie group. In
this section we review the method of principal geodesic analysis and apply it to the
symmetric space of diffusion tensors. We begin with a review of PCA in Euclidean
space. Consider a set of pointsx1, . . . , xN ∈ Rd with zero mean. Principal component
analysis seeks a sequence of linear subspaces that best represent the variability of the
data. To be more precise, the intent is to find a orthonormal basis{v1, . . . , vd} of Rd,
which satisfies the recursive relationship

v1 = arg max
||v||=1

N∑
i=1

〈v, xi〉2, (3)

vk = arg max
||v||=1

N∑
i=1

k−1∑
j=1

〈vj , xi〉2 + 〈v, xi〉2. (4)

In other words, the subspaceVk = span({v1, . . . , vk}) is thek-dimensional subspace
that maximizes the variance of the data projected to that subspace. The basis{vk} is
computed as the set of eigenvectors of the sample covariance matrix of the data.

Now turning to manifolds, consider a set of pointsp1, . . . , pN on a Riemannian
manifoldM . Our goal is to describe the variability of thepi in a way that is analogous
to PCA. Thus we will project the data onto lower-dimensional subspaces that best rep-
resent the variability of the data. This requires first extending three important concepts
of PCA into the manifold setting:
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– Variance.Following the work of Fŕechet, we define the sample variance of the data
as the expected value of the squared Riemannian distance from the mean.

– Geodesic subspaces.The lower-dimensional subspaces in PCA are linear sub-
spaces. For manifolds we extend the concept of a linear subspace to that of a
geodesic submanifold.

– Projection. In PCA the data is projected onto linear subspaces. We define a pro-
jection operator for geodesic submanifolds, and show how it may be efficiently
approximated.

We now develop each of these concepts in detail.

Variance The varianceσ2 of a real-valued random variablex with meanµ is given by
the formulaσ2 = E[(x − µ)2], whereE denotes expectation. It measures the expected
localization of the variablex about the mean. The definition of variance we use comes
from Fŕechet [9], who defines the variance of a random variable in a metric space as the
expected value of the squared distance from the mean. That is, for a random variablex
in a metric space with intrinsic meanµ, the variance is given by

σ2 = E[d(µ, x)2].

Thus in the manifold case, given data pointsp1, . . . , pN ∈ M with meanµ, we define
the sample variance of the data as

σ2 =
N∑

i=1

d(µ, pi)2 =
N∑

i=1

||Logµ(pi)||2. (5)

Notice that ifM is Rn, then the variance definition in (5) is given by the trace of
the sample covariance matrix, i.e., the sum of its eigenvalues. It is in this sense that this
definition captures the total variation of the data.

Geodesic SubmanifoldsThe next step in generalizing PCA to manifolds is to gener-
alize the notion of a linear subspace. A geodesic is a curve that is locally the shortest
path between points. In this way a geodesic is the generalization of a straight line. Thus
it is natural to use a geodesic curve as the one-dimensional subspace, i.e., the analog of
the first principal direction in PCA.

In general ifN is a submanifold of a manifoldM , geodesics ofN are not necessar-
ily geodesics ofM . For instance the sphereS2 is a submanifold ofR3, but its geodesics
are great circles, while geodesics ofR3 are straight lines. A submanifoldH of M is said
to begeodesic atx ∈ H if all geodesics ofH passing throughx are also geodesics of
M . For example, a linear subspace ofRd is a submanifold geodesic at0. Submanifolds
geodesic atx preserve distances tox. This is an essential property for PGA because
variance is defined by squared distance to the mean. Thus submanifolds geodesic at the
mean will be the generalization of the linear subspaces of PCA.
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Projection The projection of a pointx ∈ M onto a geodesic submanifoldH of M is
defined as the point onH that is nearest tox in Riemannian distance. Thus we define
the projection operatorπH : M → H as

πH(x) = arg min
y∈H

d(x, y)2.

Since projection is defined by a minimization, there is no guarantee that the projection
of a point exists or that it is unique. However, becauseP (n) has non-positive curvature
and no conjugate points, projection onto geodesic submanifolds is unique in this case.

Projection onto a geodesic submanifold atµ can be approximated in the tangent
space to the mean,TµM . If v1, . . . , vk is an orthonormal basis forTµH, then the pro-
jection operator can be approximated by the formula

Logµ (πH(x)) ≈
k∑

i=1

〈vi,Logµ(x)〉µ. (6)

4.3 Computing Principal Geodesic Analysis

We are now ready to define principal geodesic analysis for datap1, . . . , pN on a con-
nected Riemannian manifoldM . Our goal, analogous to PCA, is to find a sequence of
nested geodesic submanifolds that maximize the projected variance of the data. These
submanifolds are called theprincipal geodesic submanifolds.

The principal geodesic submanifolds are defined by first constructing an orthonor-
mal basis of tangent vectorsv1, . . . , vd that span the tangent spaceTµM . These vectors
are then used to form a sequence of nested subspacesVk = span({v1, . . . , vk}). The
principal geodesic submanifolds are the images of theVk under the exponential map:
Hk = Expµ(Vk). The first principal direction is chosen to maximize the projected
variance along the corresponding geodesic:

v1 = arg max
||v||=1

N∑
i=1

||Logµ(πH(pi))||2, (7)

where H = exp(span({v})).

The remaining principal directions are then defined recursively as

vk = arg max
||v||=1

N∑
i=1

||Logµ(πH(pi))||2, (8)

where H = exp(span({v1, . . . , vk−1, v})).

If we use (6) to approximate the projection operatorπH in (7) and (8), we get

v1 ≈ arg max
||v||=1

N∑
i=1

〈v,Logµ(pi)〉2µ,

vk ≈ arg max
||v||=1

N∑
i=1

k−1∑
j=1

〈vj ,Logµ(pi)〉2µ + 〈v,Logµ(pi)〉2µ.
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The above minimization problem is simply the standard principal component analysis
in TµM of the vectorsLogµ(pi), which can be seen by comparing the approximations
above to the PCA equations, (3) and (4). Applying these ideas toP (n), we have the
following algorithm for approximating the PGA of diffusion tensor data:

Algorithm 4: PGA of Diffusion Tensors
Input:p1, . . . , pN ∈ P (n)
Output: Principal directions,vk ∈ Sym(n)

Variances,λk ∈ R
µ = intrinsic mean of{pi} (Algorithm 3)
xi = Logµ(pi)
S = 1

N

∑N
i=1 xix

T
i (treating thexi as column vectors)

{vk, λk} = eigenvectors/eigenvalues ofS.

A new diffusion tensorp can now be generated from the PGA by the formulap =
Expµ

(∑d
k=1 αkvk

)
, where theαk ∈ R are the coefficients of the modes of variation.

5 Properties of PGA onP (n)

We now demonstrate that PGA on the symmetric spaceP (n) preserves certain impor-
tant properties of the diffusion tensor data, namely the properties of positive-definiteness,
determinant, and orientation. This makes the symmetric space formulation an attrac-
tive approach for the statistical analysis of diffusion tensor images. We have already
mentioned that, in contrast to linear PCA, symmetric space PGA preserves positive-
definiteness. That is, the principal geodesics are completely contained withinP (n),
and any matrix generated by the principal geodesics will be positive-definite.

The next two properties we consider are the determinant and orientation. Consider
a collection of diffusion tensors that all have the same determinantD. We wish to show
that the resulting average and any tensor generated by the principal geodesic analy-
sis will also have determinantD. To show this we first look at the subset ofP (n) of
matrices with determinantD, that is, the subsetPD = {p ∈ P (n) : det(p) = D}.
This subset is atotally geodesic submanifold, meaning that any geodesic withinPD is
a geodesic of the full spaceP (n). Notice the difference from the definition of a sub-
manifold geodesic at a point; totally geodesic submanifolds are geodesic ateverypoint.
Now, the fact thatPD is totally geodesic implies that the averaging process in Algo-
rithm 3 will remain inPD if all the data lies inPD. Also, the principal directionsvk in
the PGA will lie in the tangent subspaceTµPD. Thus any diffusion tensor generated by
the principal geodesics will remain in the spacePD.

The same argument may be applied to show that symmetric space averaging and
PGA preserve the orientation of diffusion tensors. In fact, the subset of all diffusion
tensors having the same orientation is also a totally geodesic submanifold, and the
same reasoning applies. Unlike the positive-definiteness and determinant, orientations
are also preserved by linear averaging and PCA.

To demonstrate these properties, we simulated random3D diffusion tensors and
computed both their linear and symmetric space statistics. We first tested the determi-
nant preservation by generating100 random3D diffusion tensors with determinant1.
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Fig. 2. The first two modes of variation of the simulated data: (left) using the symmetric space
PGA, and (right) using linear PCA. Units are in standard deviations. The boxes labelled “Not
Valid” indicate that the tensor was not positive-definite, i.e., it had negative eigenvalues.

To do this we first generated100 random3 × 3 symmetric matrices, with entries dis-
tributed according to a normal distribution,N(0, 1

2 ). Then, we took the matrix exponen-
tial of these random symmetric matrices, thus making them positive-definite diffusion
tensors. Finally, we normalized the random diffusion tensors to have determinant1 by
dividing each tensor by the cube root of its determinant. We then computed the linear
average and PCA and symmetric space average and PGA of the simulated tensors. The
results are shown in Fig. 2 as the diffusion tensors generated by the first two modes of
variation. The linear PCA generated invalid diffusion tensors, i.e., tensors with negative
eigenvalues, at+2 standard deviations in both the first and second modes. All of the dif-
fusion tensors generated by the symmetric space PGA have determinant1. The linear
mean demonstrates the “swelling” effect of linear averaging. It has determinant2.70,
and the linear PCA tensors within±2 standard deviations have determinants ranging
from −2.80 to 2.82. The negative determinants came from the tensors that were not
positive-definite. Therefore, we see that the symmetric space PGA has preserved the
positive-definiteness and the determinant, while the linear PCA has preserved neither.

Next we tested the orientation preservation by generating100 random, axis-aligned,
3D diffusion tensors. This was done by generating3 random eigenvalues for each ma-
trix, corresponding to thex, y, andz axes. The eigenvalues were chosen from a log-
normal distribution with log mean0 and log standard deviation0.5. Next we generated
a random orientationu ∈ SO(3) and applied it to all of the axis-aligned matrices by
the mapp 7→ upuT . Thus each of the diffusion tensors in our test set had eigenvectors
equal to the columns of the rotation matrixu. We computed both the symmetric space
and linear statistics of the data. As was expected, both methods preserved the orienta-
tions. However, the linear PCA again generated tensors that were not positive-definite.
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6 Conclusion

We have presented a framework for the statistical analysis of diffusion tensor images.
The methods rely on regarding the space of diffusion tensors as a Riemannian symmet-
ric space. We developed algorithms for computing averages and modes of variation of
diffusion tensor data by extending statistical methods to the symmetric space setting.
The methods presented in this paper lay the groundwork for statistical studies of the
variability of diffusion tensor images across patients.
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