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Abstract

HARDI (High Angular Resolution Diffusion Imaging) is a recent magnetic resonance imaging (MRI) technique
for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. In this ar-
ticle we study left-invariant diffusion on the group of 3D rigid body movements (i.e. 3D Euclidean motion
group) SE(3) and its application to crossing-preserving smoothing of HARDI images. The linear left-invariant
(convection-)diffusions are forward Kolmogorov equations of Brownian motions on the space of positions and
orientations in 3D embedded in SE(3) and can be solved by R3 o S2-convolution with the corresponding
Green’s functions. We provide analytic approximation formulas and explicit sharp Gaussian estimates for these
Green’s functions. In our design and analysis for appropriate (nonlinear) convection-diffusions on HARDI data
we explain the underlying differential geometry on SE(3). We write our left-invariant diffusions in covariant
derivatives on SE(3) using the Cartan connection. This Cartan connection has constant curvature and constant
torsion, and so have the exponential curves which are the auto-parallels along which our left-invariant diffu-
sion takes place. We provide experiments of our crossing-preserving Euclidean-invariant diffusions on artificial
HARDI data containing crossing-fibers.

Keywords: High Angular Resolution Diffusion Imaging (HARDI), Scale spaces, Lie groups, Partial differential equations.

1 Introduction
High Angular Resolution Diffusion Imaging (HARDI) is a recent magnetic resonance imaging technique for imag-
ing water diffusion processes in fibrous tissues such as brain white matter and muscles. HARDI provides for each
position in 3-space (i.e. R3) and for each orientation (antipodal pairs on the 2-sphere S2) an MRI signal atten-
uation profile, which can be related to the local diffusivity of water molecules in the corresponding direction. It
is generally believed that such profiles provide rich information in fibrous tissues. DTI (Diffusion Tensor Imag-
ing) is a related technique, producing a positive symmetric rank-2 tensor field. A DTI tensor (at each position in
3-space) can also be related to a distribution on the 2-sphere, albeit with limited angular resolution. DTI is inca-
pable of representing areas with complex multimodal diffusivity profiles, such as induced by crossing, “kissing”,
or bifurcating fibres. HARDI, on the other hand, does not suffer from this problem, because it is not restricted
to functions on the 2-sphere induced by a quadratic form, see Figure 1 where we used glyph visualizations as
defined in Definition 1. For the purpose of tractography (detection of biological fibers) and visualization, DTI
and HARDI data should be enhanced such that fiber junctions are maintained, while reducing high frequency
noise and small incoherent structures in the joined domain of positions and orientations. This crossing-preserving
enhancement/diffusion along fibers within distributions defined on the joined space of positions and orientations
(such as HARDI and DTI images) is the main objective of this article.
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Definition 1 A glyph of a distribution U : R3×S2 → R+ on positions and orientations is a surface Sµ(U)(x) =
{x + µU(x, n) n | n ∈ S2} ⊂ R3 for some x ∈ R3 and µ > 0. A glyph visualization of the distribution
U : R3 × S2 → R+ is a visualization of a field x 7→ Sµ(U)(x) of glyphs, where µ > 0 is a suitable constant.

fibertracking fibertracking

DTI HARDI

Figure 1: This figure shows glyph visualizations of HARDI and DTI-images of a 2D slice in the brain where neural
fibers in the corona radiata cross with neural fibers in the corpus callosum. In HARDI and DTI socalled “glyphs”
(i.e. angular diffusivity profiles) reflect, per position, the local diffusivity of water in all directions. More, precisely,
to a DTI tensor field x 7→ D(x) we associate a distribution on positions and orientations (x, n) 7→ nT D(x)n of
which a glyph visualization (according to Definition 1) is depicted on the left. The rank-2 limitation of a DTI
tensor constrains the corresponding glyph to be ellipsoidal, whereas no such constraint applies to HARDI.

Promising research has been done on constructing diffusion (or similar regularization) processes on the 2-
sphere defined at each spatial locus separately [14, 24, 25, 49] as an essential pre-processing step for robust fiber
tracking. In these approaches position and orientation space are decoupled, and diffusion is only performed over
the angular part, disregarding spatial context. Consequently, these methods are inadequate for spatial denoising
and enhancement, and tend to fail precisely at the interesting locations where fibres cross or bifurcate.

Therefore in this article we extend our recent work on enhancement of elongated structures in 2D greyscale
images [2, 17, 18, 20, 22, 23, 26, 27] to the genuinely 3D case of HARDI/DTI, since this approach has proven to
be capable of handling all aforementioned problems in various feasibility studies, see Figure 2. In contrast to
the previous works on diffusion of DTI/HARDI images [14, 24, 25, 41, 49], we consider both the spatial and the
orientational part to be included in the domain, so a HARDI dataset is considered as a function U : R3×S2 → R.
Furthermore, we explicitly employ the proper underlying group structure, that naturally arises by embedding the
coupled space of positions and orientations into the group SE(3) of 3D rigid motions. The relevance of group
theory in DTI/HARDI imaging has also been stressed in promising and well-founded recent works [30–32]. How-
ever, these works rely on bi-invariant Riemannian metrics on compact groups (such as SO(3)) and in our case the
group SE(3) is neither compact nor does it permit a bi-invariant metric [4], [20, part II]. In general the advantage
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original 2D image CED: standard approach CED-OS: our approach

Figure 2: Left-invariant diffusion on SE(2) = R2oS1 is the right approach to generically deal with crossings and
bifurcations in practice. Left column: original images. Middle column: result of standard coherence enhancing
diffusion applied directly in the image domain R2 (CED), cf. [51]. Right column: coherence enhancing diffusion
via the corresponding invertible orientation score (CED-OS) in the 2D Euclidean motion group SE(2), cf. [20,27].
Top row: 2-photon microscopy image of bone tissue. Second row: collagen fibers of the heart. Third row: artificial
noisy interference pattern. CED-OS of 2D grey value images is capable of handling crossings and bifurcations,
whereas CED produces spurious artifacts at such junctions. In the 3D case of HARDI images U : R3 o S2 → R,
we do not have to bother about invertibility of the transform between a grey-value image and its orientation score
as the input-data itself already gives rise to a function on the 3D Euclidean motion group SE(3). This is now
simply achieved by setting Ũ(x, R) = U(x, Rez), R ∈ SO(3), x ∈ R3, ez = (0, 0, 1)T and the challenge rises
to generalize our previous work on crossing preserving diffusion to 3D and to apply the left-invariant diffusion
directly on HARDI images.

of our approach on SE(3) is that we can enhance the original HARDI/DTI data using simultaneously orientational
and spatial neighborhood information, which potentially leads to improved enhancement and detection algorithms.
Figure 3 shows an example clarifying the structure of a HARDI image.

This paper is organized as follows. In Section 2 we will start with the introduction of the group structure
on the domain of a HARDI image. Here we will explain that the domain of a HARDI image of positions and
orientations carries a semi-direct product structure rather than a direct Cartesian product structure reflecting a
natural coupling between position and orientation. We embed the space of positions and orientations into the
group of positions and rotations in R3, which is commonly denoted by SE(3) = R3 o SO(3). As a result we
must write R3 o S2 := R3 o SO(3)/({0} × SO(2)) rather than R3 × S2 for the domain of a HARDI image.

In Section 3 we will discuss basic tools from group theory, which serve as key ingredients in our diffusions
on HARDI images later on. Within this section we also provide an example to embed a recent paper [8] by
Barmpoutis et al. on smoothing of DTI/HARDI data in our group theoretical framework. We show that their
kernel operator indeed is a correct left-invariant group convolution on R3 o S2. However, their kernel does not
satisfy the semigroup property and does not relate to diffusion or Tikhononov energy minimization on R3 o S2.

Subsequently, in Section 4 we will derive all linear left-invariant convection-diffusion equations on SE(3) and
R3oS2 (the actual domain of HARDI images) and show that the solutions of these convection-diffusion equations
are given by group-convolution with the corresponding Green’s functions, which we explicitly approximate later.
Furthermore, in Subsection 4.2, we put an explicit connection with probability theory and random walks in the
space of orientations and positions. This connection is established by the fact that the convection-diffusion equa-
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Figure 3: Visualization of a simple HARDI image (x, y, z, n(β, γ)) 7→ U(x, y, z, n(β, γ)) containing two crossing
straight lines, visualized using Q-ball glyphs in the DTI tool (see http://www.bmia.bmt.tue.nl/software/dtitool/)
from two different viewpoints. At each spatial position x a glyph (cf. Fig.1 and Definition 1) is displayed.

tions are Fokker-Planck (i.e. forward Kolmogorov) equations of stochastic processes (random walks) on the space
of orientations and positions. This in turn brings a connection to the actual measurements of water-molecules in
oriented fibrous tissues. Symmetry requirements for the linear diffusions on R3 o S2 yields the following cases:

1. the natural 3D generalizations of Mumford’s direction process on R2 o S1 [23, 39], which is a contour
completion process in the group SE(2) = R2 o S1 ≡ R2 o SO(2) of 2D-positions and orientations.

2. the natural 3D generalizations of a (horizontal) random walk on R2 o S1, cf. [20], corresponding to the
diffusions proposed by Citti and Sarti [13], which is a contour enhancement process in the group SE(2) =
R2 o S1 ≡ R2 o SO(2) of 2D-positions and orientations,

3. Gaussian scale space [3, 16, 35, 37] over position space, i.e. spatial linear diffusion,

4. Gaussian scale space over angular space (2-sphere) [14, 24, 25, 41, 49], i.e. angular linear diffusion,

or combinations of these four types of convection-diffusions. Previous approaches of HARDI-diffusions [14, 24,
41] fit in our framework (third and fourth item), but it is rather the first two cases that are challenging as they
involve a natural coupling between position and orientation space and thereby allow appropriate treatment of
crossing fibers. In Section 5 we will explore the underlying differential geometry of our diffusions on HARDI-
orientation scores. By means of the Cartan connection on SE(3) we put a useful relation to rigid body mechanics
expressed in moving frames of reference, providing geometrical intuition behind our left-invariant (convection-
)diffusions on HARDI data. Furthermore, we show that our (convection-)diffusion may be expressed in covariant
derivatives and we show that both convection and diffusion locally take place along the exponential curves in
SE(3), that are explicitly derived in subsection 5.1. In Section 6 we will derive suitable formulas and Gaussian
estimates for the Green’s functions of linear left-invariant convection-diffusions on HARDI images. These formu-
las are used in the subsequent section in our numerical convolution-schemes solving the left-invariant diffusions
on HARDI images.

Section 7 explains the basic numerics of our left-invariant PDE- and/or convolution schemes, which we use
in the subsequent experimental section. Section 8 contains preliminary results of linear left-invariant diffusion on
artificial HARDI datasets over the joined coupled domain of positions and orientations (i.e. over R3 o S2).

The final section of this paper provides the theory for nonlinear adaptive diffusion on HARDI images, which
is a generalization of our nonlinear adaptive diffusion schemes on the 2D Euclidean motion group [20, 27].

2 The Group Structure on the Domain of a HARDI Image:
The Embedding of R3 × S2 into SE(3)

In order to generalize our previous work on line/contour-enhancement via left-invariant diffusions on invertible
orientation scores of 2D-images we first investigate the group structure on the domain of a HARDI image. Just like
orientation scores are scalar-valued functions on the space of 2D-positions and orientations, i.e. the 2D-Euclidean
motion group, HARDI images are scalar-valued functions on the space of 3D-positions and orientations. This
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generalization involves some technicalities since the 2-sphere S2 = {x ∈ R3 | ‖x‖ = 1} is not a Lie-group
proper1 in contrast to the 1-sphere S1 = {x ∈ R2 | ‖x‖ = 1}. To overcome this problem we embed R3 × S2 into
SE(3) which is the group of 3D-rotations and translations (i.e. the group of 3D rigid motions). As a concatenation
of two rigid body movements is again a rigid body movement, the product on SE(3) is given by

(x, R) (x′, R′) = (Rx′ + x, RR′), R, R′ ∈ SO(3), x, x′ ∈ R3.

The group SE(3) is a semi-direct product of the translation group R3 and the rotation group SO(3), since it uses
an isomorphism R 7→ (x 7→ Rx) from the rotation group onto the automorphisms on R3. Therefore we write
R3 o SO(3) rather than R3 × SO(3) which would yield a direct product. The groups SE(3) and SO(3) are not
commutative. Throughout this article we will use Euler-angle parametrization for SO(3), i.e. we write a rotation
as a product of a rotation around the z-axis, a rotation around the y-axis and a rotation around the z-axis again.

R = Rez,γRey,βRez,α , (1)

where all rotations are counter-clockwise, where all rotations are counter-clockwise, i.e. :

Rez,γ =




cos γ −sin γ 0
sin γ cos γ 0

0 0 1


 and Rey,β =




cos β 0 sinβ
0 1 0

−sin β 0 cos β


.

The advantage of the Euler angle parametrization is that it directly parameterizes SO(3)/SO(2) ≡ S2 as well.
Here we recall that SO(3)/SO(2) denotes the partition of all left cosets which are equivalence classes [g] = {h ∈
SO(3) | h ∼ g} = g SO(2) under the equivalence relation g1 ∼ g2 ⇔ g−1

1 g2 ∈ SO(2) where we identified
SO(2) with rotations around the z-axis and we have

SO(3)/SO(2) 3 [Rez,γRey,β ] = {Rez,γRey,βRez,α | α ∈ [0, 2π)} ↔
n(β, γ) := (cos γ sin β, sin γ sin β, cos β)T = Rez,γRey,βRez,αez ∈ S2.

(2)

Like all parameterizations of SO(3)/SO(2), the Euler angle parametrization suffers from the problem that there
does not exists a global diffeomorphism from a sphere to a plane. In the Euler-angle parametrization the ambiguity
arises at the north and south-pole:

Rez ,γ Rey,β=0 Rez ,α = Rez,γ−δRey,β=0Rez ,α+δ, and Rez ,γ Rey ,β=π Rez,α = Rez ,γ+δ Rey ,β=π Rez,α+δ, for all δ ∈ [0, 2π) .
(3)

Consequently, we occasionally need a second chart to cover SO(3);

R = Rex,γ̃Rey,β̃Rez,α̃, (4)

which again parameterizes SO(3)/SO(2) ≡ S2 using different spherical coordinates β̃ ∈ [−π, π), γ̃ ∈ (−π
2 , π

2 ),

ñ(β̃, γ̃) = Rex,γ̃Rey,β̃ ez = (sin β̃,− cos β̃ sin γ̃, cos β̃ cos γ̃)T , (5)

but which has ambiguities at the intersection of the equator with the x-axis

Rex,γ̃Rey,β̃=±π
2
Rez,α̃ = Rex,γ̃−δRey,β̃=±π

2
Rez,α̃±δ, for all δ ∈ [0, 2π) . (6)

See Figure 4. Away from the intersection of the z- and x-axis with the sphere one can accomplish conversion
between the two charts by solving for for either (α̃, β̃, γ̃) or (α, β, γ) in Rex,γ̃Rey,β̃Rez,α̃ = Rez,γRey,βRez,α.

Now that we have explained the isomorphism n = Rez ∈ S2 ↔ SO(3)/SO(2) 3 [R] explicitly in charts,
we return to the domain of HARDI images. Considered as a set this domain equals the space of 3D-positions and
orientationsR3×S2. However, in order to stress the fundamental embedding of the HARDI domain in SE(3) and
the thereby induced (quotient) group-structure we write R3 o S2, which equals the following Lie-group quotient:

R3 o S2 := (R3 o SO(3))/({0} × SO(2)).

Here the equivalence relation on the group of rigid-motions SE(3) = R3 o SO(3) equals

(x, R) ∼ (x′, R′) ⇔ x = x′ and R−1R′ is a rotation around the z-axis

and the set of equivalence classes within SE(3) under this equivalence relation (i.e. left cosets) equals the space
of coupled orientations and positions and is denoted by R3 o S2.

1If S2 were a Lie-group then its left-invariant vector fields would be non-zero everywhere, contradicting Poincaré’s “hairy ball theorem”
(proven by Brouwer in 1912), or more generally the Poincaré-Hopf theorem (the Euler-characteristic of an even dimensional sphere S2n is 2).
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Figure 4: The two charts which together appropriately parameterize the sphere S2 ≡ SO(3)/SO(2) where the
rotation-parameters α and α̃ are free. The first chart (left-image) is the common Euler-angle parametrization (1),
the second chart is given by (4). The first chart has singularities at north and south-pole (inducing ill-defined
parametrization of the left-invariant vector fields (24) at the unity element) whereas the second chart has singular-
ities at (±1, 0, 0).

3 Tools From Group Theory
In this article we will consider convection-diffusion operators on the space of HARDI images. We shall model
the space of HARDI images by the space of quadratic integrable functions on the coupled space of positions and
orientations, i.e. L2(R3 o S2). We will first show that such operators should be left-invariant with respect to the
left-action of SE(3) onto the space of HARDI images. This left-action of SE(3) onto R3 o S2 is given by

g · (y, n) = (Ry + x, Rn), g = (x, R) ∈ SE(3), x, y ∈ R3, n ∈ S2, R ∈ SO(3)

and it induces the so-called left-regular action of the same group on the space of HARDI images similar to the
left-regular action on 3D images (for example orientation-marginals of HARDI images):

Definition 2 The left-regular actions of SE(3) onto L2(R3 o S2) respectively L2(R3) are given by

(Lg=(x,R)U)(y, n) = U(g−1 · (y, n)) = U(R−1(y− x), R−1n), x, y ∈ R3, n ∈ S2, U ∈ L2(R3 o S2),
(Ug=(x,R)f)(y) = f(R−1(y− x)) , R ∈ SO(3), x, y ∈ R3, f ∈ L2(R3).

Intuitively, Ug=(x,R) represents a rigid motion operator on images, whereas Lg=(x,R) represents a rigid motion on
HARDI images.

In order to explain the importance of left-invariance of processing HARDI images in general we need to define
the following operator.

Definition 3 We define the operator M which maps a HARDI image U : R3 o S2 → R+ to its orientation
marginal MU : R3 → R+ as follows (where σ denotes the usual surface measure on S2):

(MU)(y) =
∫

S2
U(y, n)dσ(n).

If U : R3 o S2 → R+ is a probability density on positions and orientations then MU : R3 → R+ denotes the
corresponding probability density on position space only.

The marginal gives us an ordinary 3D image that is a “simplified” version of the HARDI image, containing less
information on the orientational structure. This is analogue to taking the trace of a DTI image. The following
theorem tells us that we get a Euclidean invariant operator on the marginal of HARDI images if the operator on
the HARDI image is left-invariant. This motivates our restriction to left-invariant operators, akin to our framework
of invertible orientation scores [2, 17, 18, 20, 22, 23, 26, 27].
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Theorem 1 Suppose Φ is an operator on the space of HARDI images to itself. The corresponding operator Y on
the orientation marginals given by Y(M(U)) = M(Φ(U)) is Euclidean invariant if operator Φ is left-invariant:

(Φ ◦ Lg = Lg ◦ Φ, for all g ∈ SE(3)) ⇒ Ug ◦ Y = Y ◦ Ug, for all g ∈ SE(3) .

Proof The result follows directly by the intertwining relation Ug ◦M = M◦Lg for all g ∈ SE(3). Regardless of
the fact if Φ is bounded or unbounded, linear or nonlinear, we have under assumption of left-invariance of Φ that

Y ◦ Ug ◦M = Y ◦M ◦ Lg = M◦ Φ ◦ Lg = M◦ Lg ◦ Φ = Ug ◦M ◦ Φ = Ug ◦ Y ◦M .¤

It follows by the Dunford-Pettis Theorem [11, p.113-114] that basically every reasonable linear operator in image
processing is a kernel operator. Therefore, we will classify all linear left-invariant kernel operators K on HARDI
images and we will provide an important probabilistic interpretation of these left-invariant kernel operators.

Lemma 1 LetK be a bounded linear operator from L2(R3oS2) into L∞(R3oS2) then there exists an integrable
kernel k : R3 o S2 ×R3 o S2 → C such that ‖K‖2 = sup

(y,n)∈R3oS2

∫
R3oS2

|k(y, n ; y′, n′)|2dy′dσ(n′) and we have

(KU)(y, n) =
∫

R3oS2
k(y, n ; y′, n′)U(y′, n′)dy′dσ(n′) , (7)

for almost every (y, n) ∈ R3oS2 and all U ∈ L2(R3oS2). Now Kk := K is left-invariant iff k is left-invariant:

∀g∈SE(3) : Lg ◦ Kk = Kk ◦ Lg ⇔ ∀g∈SE(3)∀y,y′∈R3∀n,n′∈S2 : k(g · (y, n) ; g · (y′, n′)) = k(y, n ; y′, n′). (8)

Proof The first part of the Lemma follows by the general Dunford-Pettis Theorem [11, p.113-114]. With respect
to the left-invariance we note that on the one hand we have

(KkLgU)(y, n) =
∫
S2

∫
R3

k(y, n ; y′′, n′′)U(R−1(y′′ − x), R−1n′′) dy′′ dσ(n′′)

=
∫
S2

∫
R3

k(y, n ; Ry′ + x, Rn′) U(y′, n′) dy′dσ(n′)

=
∫
S2

∫
R3

k(y, n ; g · (y′, n′))U(y′, n′) dy′dσ(n′)

whereas on the other hand (LgKkU)(y, n) =
∫
S2

∫
R3

k(g−1(y, n) ; y′, n′)U(y′, n′) dy′dσ(n′) , for all g ∈ SE(3),

U ∈ L2(R3 o S2), (x, n) ∈ R3 o S2. Now SE(3) acts transitively on R3 o S2 from which the result follows. ¤

From the invariance property, Eq. (8), we deduce that

k(y, n ; y′, n′) = k((Rez,γ′Rey,β′)T (y− y′), (Rez,γ′Rey,β′)T n ; 0, ez) ,
k(Rez,αy, Rez,αn ; 0, ez) = k(y, n ; 0, ez),

and consequently we obtain the following result :

Corollary 1 By the well-known Euler-angle parametrization of SO(3), we have SO(3)/SO(2) ≡ S2 via iso-
morphism [Rez,γRey,β ] = {Rez,γRey,βRez,α | α ∈ [0, 2π)} ↔ n(β, γ) = (sin β cos γ, sin β sin γ, cos β)T =
Rez,γRey,βez . To each positive left-invariant kernel k : R3oS2×R3oS2 → R+ with

∫
S2

∫
R3 k(0, ez ; y, n)dydσ(n) = 1

we associate a unique probability density p : R3 o S2 → R+ with the invariance property

p(y, n) = p(Rez,αy, Rez,αn), for all α ∈ [0, 2π), (9)

such that
k(y, n(β, γ) ; y′, n(β′, γ′)) = p((Rez,γ′Rey,β′)T (y− y′), (Rez,γ′Rey,β′)T n(β, γ))

with p(y, n) = k(y, n ; 0, ez). We can briefly rewrite [26, eq. 7.59] and Eq. (7), coordinate-independently, as

KkU(y, n) = (p ∗R3oS2 U)(y, n) =
∫

R3

∫

S2

p(RT
n′(y− y′), RT

n′n)U(y′, n′)dσ(n′)dy′, (10)

where σ denotes the surface measure on the sphere and where Rn′ is any rotation such that n′ = Rn′ez .
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By the invariance property (9), the convolution (10) on R3oS2 may be written as a (full) SE(3)-convolution. An
SE(3) convolution [12] of two functions p̃ : SE(3) → R, Ũ : SE(3) → R is given by:

(p̃ ∗SE(3) Ũ)(g) =
∫

SE(3)

p̃(h−1g)Ũ(h)dµSE(3)(h) , (11)

where Haar-measure dµSE(3)(x, R) = dx dµSO(3)(R) with dµSO(3)(Rez,γRey,βRez,α) = sin βdαdβdγ. If we
now set p̃(x, R) := p(x, Rez) and Ũ(x, R) := U(x, Rez), it follows by Eq. (9) that the following identity holds:

(p̃ ∗SE(3) Ũ)(x, R) = 2π (p ∗R3oS2 U)(x, Rez) .

Later on in this article (in Subsection 4.2 and Subsection 4.3) we will relate scale spaces on HARDI data and first
order Tikhonov regularization on HARDI data to Markov processes. But in order to provide a road map of how
the R3oS2-convolutions will appear in the more technical remainder of this article we provide some preliminary
explanations on probabilistic interpretation of R3 o S2-convolutions.

In particular we will restrict ourselves to conditional probabilities where p(y, n) = pt(y, n) represents the
probability density of finding an oriented random walker at position y with orientation n at time t > 0, given that
it started at (0, ez) at time t = 0. In such a case the probabilistic interpretation of the kernel operator is as follows.
The function (y, n) 7→ (KktU)(y, n) = (pt ∗R3oS2 U)(y, n) represents the probability density of finding some
oriented particle, starting from the initial distribution U : R3 o S2 → R+ at time t = 0, at location y ∈ R3 with
orientation n ∈ S2 at time t > 0. Furthermore, in a Markov process traveling time is memoryless, so in such
process traveling time is negatively exponentially distributed P (T = t) = λe−λt with expectation E(T ) = λ−1.
Consequently, the probability density pλ of finding an oriented random walker starting from (0, ez) at time t = 0,
regardless its traveling time equals

pλ(y, n) =

∞∫

0

pt(y, n) P (T = t)dt = λ

∞∫

0

pt(y, n)e−λtdt . (12)

Summarizing, we can always apply Laplace-transform with respect to time to map transition densities pt(g) given
a traveling time t > 0 to unconditional probability densities pλ(g). The same holds for the probability density
Pλ(y, n) of finding an oriented random walker at location y ∈ R3 with orientation n ∈ S2 starting from initial
distribution U (i.e. the HARDI data) regardless the traveling time, since

Pλ
U (y, n) = λ

∞∫

0

e−λt(pt ∗R3oS2 U)(y, n)dt = (pλ ∗R3oS2 U)(y, n). (13)

3.1 Relation of the Method Proposed by Barmpoutis et al. to R3 o S2-convolution
In [8] the authors propose2 the following practical decomposition for the kernel k :

kt,κ(y, n ; y′, n′) =
1
4π

kt
dist(‖y− y′‖)kκ

orient(n · n′)kκ
fiber

(
1

‖y− y′‖n · (−(y− y′))
)

, (14)

with kt
dist(‖y − y′‖) = 1

(4πt)
3
2
e−

‖y−y′‖2
4t and kκ

orient(cos φ) = kκ
fiber(cos φ) = eκ cos(φ)

2πJ0(iκ) with φ ∈ (−π, π] the angle,

respectively, between the vectors n and n′ and the angle between the vectors n and −(y − y′). So kκ
orient(cos φ)

denotes the von Mises distribution on the circle, which is indeed positive and
∫ π

−π
eκ cos(φ)

2πJ0(iκ)dφ = 1. The decompo-
sition (14) automatically implies that the corresponding kernel operator Kk is left-invariant, regardless the choice
of kdist, kκ

orient, kκ
fiber since

ks
dist(‖R−1(y− x)−R−1(y′ − x)‖)kκ

orient(R
−1n ·R−1n′)kκ

fiber(− 1
‖R−1(y−x)−R−1(y′−x)‖ (R

−1n′) ·R−1(y− x− (y′ − x)))

= kt
dist(‖y− y′‖)kκ

orient(n · n′)kκ
fiber

(
− 1
‖y−y′‖n · (y− y′)

)
⇔

kt,κ(g−1(y, n) ; g−1(y′, n′)) = kt,κ(y, n ; y′, n′), for all g = (x, R) ∈ SE(3).

2We used slightly different conventions as in the original paper to ensure L1-normalizations in Eq. (14).
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The corresponding probability kernel (which does satisfy Eq. (9)) reads

p(t,κ)(y, n) =
1
4π

kt
dist(‖y‖)kκ

orient(ez · n)kκ
fiber(−‖y‖−1n · y), y 6= 0. (15)

For a simple probabilistic interpretation we apply a spatial reflection3 and define p+
(t,κ)(y, n) = p(t,κ)(−y, n).

Now p+
(t,κ) should be interpreted as a probability density of finding an oriented particle at position y ∈ R3 with

orientation n ∈ S2 given that it started at position 0 with orientation ez . The practical rationale behind the
decomposition (14), is that two neighboring local orientations (y, n) ∈ R3 o S2 and (y′, n′) ∈ R3 o S2 are
supposed to strengthen each other if the distance between y and y′ is close (represented by the first kernel kdist), if
moreover the orientations n, n′ are similar (represented by kκ

orient), and finally if local orientation (y, n) is nicely
aligned according to some a priori fibre model with the local orientation (y′, n′), i.e. if the orientation of ‖y −
y′‖−1(y − y′) is close to the orientation n (represented by kκ

fiber). The decomposition allows a reduction of
computation via:

(Kkt,κU)(y, n) = (pt,κ ∗R3oS2 U)(y, n)

= 1
4π

∫
R3

kt
dist(‖y− y′‖)kκ

fiber(‖y− y′‖−1n · (y′ − y))

(
∫

S2
U(y′, n′)kκ

orient(n · n′)dσ(n′)

)
dy′ (16)

Despite the fact that the practical kernel in Eq. (14) gives rise to a reasonable connectivity measure between two
local orientations (y, n) and (y′, n′) ∈ R3 o S2 and that the associated kernel operator has the right covariance
properties, the associated kernel operator is not related to left-invariant diffusion and/or Tikhonov regularization
on R3 o S2, as was aimed for in the paper [8]. In this inspiring pioneering paper the authors consider a position
dependent energy and deal with the Euler-Lagrange equations in an unusual way (in particular [8, eq. 7]). The
kernel given by Eq. (15) involves two separate time parameters t, κ and the probability kernels given by Eq.
(14) are not related to Brownian motions and/or Markov-processes on R3 o S2, since they do not satisfy the
semigroup property. A disadvantage as we will explain next, however, is that the kernel is not entirely suited for
iteration unless combined with nonlinear operators such as nonlinear grey-value transformations. The function
y 7→ ‖y‖−1y · n within (15) is discontinuous at the origin. If the origin is approached by a straight-line along
n the limit-value is 1 and this seems to be a reasonable choice for evaluating the kernel at y = 0. The finite
maximum of the kernel is now obtained at y = 0 (and n = ez). Since the kernel is single-sided and does not have
a singularity at the origin convolution with itself will allow the maximum of the effective kernel to run away4 from
its center. See Figure 5, where we numerically R3 o S2-convolved the kernel given in Eq. (14) with itself by a
convolution algorithm that we will explain later in subsection 8.2. However, if the kernel would have satisfied the
semigroup-property such artifacts would not have occurred. For example the single-sided exact Green’s function
of Mumford’s direction process [23] (and its approximations [18, 23, 48]) on SE(2) = R2 o S1 has a natural
singularity at the origin.

Before we consider scale spaces on HARDI data whose solutions are given by R3oS2-convolution, Eq. (10),
with the corresponding Green’s functions (which do satisfy the semigroup-property) we provide, for the sake of
clarity, a quick review on scale spaces of periodic signals from a group theoretical PDE-point of view.

3.2 Introductory Example: Scale Space and Tikhonov Regularization on the Circle
The Gaussian scale space equation and corresponding resolvent equation (i.e. the solution of Tikhonov regular-
ization) on a circle T = {eiθ | θ ∈ [0, 2π)} ≡ S1 with group product eiθeiθ′ = ei(θ+θ′), are given by

{
∂tu(θ, t) = D11∂

2
θu(θ, t),

u(0, t) = u(2π, t) and u(θ, 0) = f(θ)
and pγ(θ) = γ(D11∂

2
θ − γI)−1f(θ), (17)

with θ ∈ [0, 2π) and D11 > 0 fixed, where we note that the function θ 7→ pγ(θ) = γ
∫∞
0

u(θ, t)e−γtdt is the
minimizer of the Tikhonov-energy

E(pγ) :=
∫ 2π

0

γ|pγ(θ)− f(θ)|2 + D11|p′γ(θ)|2dθ

3Later on in Subsection 8.2.1 we will return to the important practical consequences of this spatial reflection in full detail.
4Set a := 1

1+α
[. . . , 0, 1, α, 0, . . .], then for every n ∈ N the sequence an := a ∗(n−1) a ∈ `1(Z) has n + 1 non-zero coefficients:

ak
n = (1 + α)−nαk

(n
k

)
, k = 0, . . . , n. So the position of the maximum of an increases with n (if α = 1 it takes place at k = bn

2
c).
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Figure 5: Left: Glyph visualization (recall Definition 1) of the kernel p+
(t,κ) : R3 o S2 → R+ (15) as proposed

in [8], plotted in perspective with respect to indicated horizon (dashed line) and vanishing point. Right: Glyph
visualization of p+

(t,κ) ∗R3oS2 p+
(t,κ), i.e. the kernel numerically convolved with itself (kernels are sampled on a

3×3×3-grid with 162-orientations). Parameter settings are (t = 1
2 , κ = 4). The maximum moves away from the

origin by iteration: in the right image the second glyph on the z-axis has a larger radius than the glyph at 0. The
effective shape of the convolution kernel is destroyed by iteration, as the kernel in Eq. (15) does not satisfy the
semigroup property. This motivates our quest (in Section 6) for appropriate diffusion kernels (related to Brownian
motion on R3 o S2) on R3 o S2 that do satisfy the semigroup property pt ∗R3oS2 ps = ps+t.

under the periodicity condition pγ(0) = pγ(2π). By left-invariance the solutions are given by T-convolution with
their Green’s function, say GD11

t : T → R+ and RD11
γ : T → R+. Recall that the relation between Tikhonov

regularization and scale space theory is given by Laplace-transform with respect to time:

u(·, t) = et∆Tf := Gt ∗T f and pγ = RD11
γ ∗T f , with RD11

γ = γ

∫ ∞

0

GD11
t e−γtdt, (18)

where the T-convolution is given by (f ∗T g)(eiθ) =
∫ π

−π
f(ei(θ−θ′))g(eiθ′)dθ′. For explicit formulas of the

Green’s function GD11
t (basicly a sum of 2π-shifted Gaussians) and the Green’s function RD11

γ see [21, ch:3.2].
Now by es ∆T et ∆T = e(s+t) ∆T the heat-kernel on T satisfies the (for iterations) important semigroup property:

GD11
s ∗T GD11

t = GD11
s+t , for all s, t > 0.

The generator of a Gaussian scale space on the torus is given by D11∂
2
θ . Just like the solution operator (D11∂

2
θ −

λI)−1 of Tikhonov regularization, it is left-invariant on the group T and thereby the solutions (18) of a Gaussian
Scale Space and Tikhonov regularization are given by T-convolution. In order to generalize scale space represen-
tations of functions on a torus to scale space representations of HARDI data defined on R3 o S2 (embedded in
SE(3) = R3oSO(3)), we simply have to replace the left-invariant vector field ∂θ on T by the left-invariant vec-
tor fields on SE(3) (or rather R3 o S2) in the quadratic form which generates the scale space on the group, [17].
This motivates the technical derivations of the left-invariant vector fields on SE(3) in the next subsection.

3.3 Left-invariant Vector Fields on SE(3) and their Dual Elements
We will use the following basis for the tangent space Te(SE(3)) at the unity element e = (0, I) ∈ SE(3):

A1 = ∂x, A2 = ∂y, A3 = ∂z, A4 = ∂γ̃ , A5 = ∂β̃ , A6 = ∂α̃ , (19)

where we stress that at the unity element (0, R = I), we have β = 0 and here the tangent vectors ∂β and ∂γ are
not defined, which requires a description of the tangent vectors on the SO(3)-part by means of the second chart.

The tangent space at the unity element is a 6D Lie algebra equipped with Lie bracket

[A,B] = lim
t↓0

t−2
(
a(t)b(t)(a(t))−1(b(t))−1 − e

)
, (20)

where t 7→ a(t) resp. t 7→ b(t) are any smooth curves in SE(3) with a(0) = b(0) = e and a′(0) = A and
b′(0) = B, for explanation on the formula (20) which holds for general matrix Lie groups, see [19, App.G]. The
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Lie-brackets of the basis given in Eq. (19) are given by

[Ai, Aj ] =
6∑

k=1

ck
ijAk , (21)

where the non-zero structure constants for all three isomorphic Lie-algebras are given by

−ck
ji = ck

ij =
{

sgn perm{i− 3, j − 3, k − 3} if i, j, k ≥ 4, i 6= j 6= k,
sgn perm{i, j − 3, k} if i, k ≤ 3, j ≥ 4, i 6= j 6= k.

(22)

More explicitly, we have the following table of Lie-brackets:

([Ai, Aj ])
i=1,...6
j=1,...,6 =




0 0 0 0 A3 −A2

0 0 0 −A3 0 A1

0 0 0 A2 −A1 0
0 A3 −A2 0 A6 −A5

−A3 0 A1 −A6 0 A4

A2 −A1 0 A5 −A4 0




,

so for example c3
15 = 1, c3

14 = c2
15 = 0, c2

16 = −c2
61 = −1. The corresponding left-invariant vector fields {Ai}6i=1

are obtained by the push-forward of the left-multiplication Lgh = gh by Ai|g φ = (Lg)∗Aiφ = Ai(φ ◦ Lg) (for
all smooth φ : Ωg → R which are locally defined on some neighborhood Ωg of g) and they can be obtained by the
derivative of the right-regular representation:

Ai|g φ = (dR(Ai)φ)(g) = lim
t↓0

φ(g etAi )−φ(g)
t , with Rgφ(h) = φ(hg). (23)

Expressed in the first coordinate chart, Eq. (1), this renders for the left-invariant derivatives at position
g = (x, y, z, Rez,γRey,βRez,α) ∈ SE(3) (see also [12, Section 9.10])

A1 = (cos α cos β cos γ − sin α sin γ) ∂x + (sin α cos γ + cos α cos β sin γ) ∂y − cos α sin β ∂z,
A2 = (− sin α cos β cos γ − cos α sin γ) ∂x + (cos α cos γ − sin α cos β sin γ) ∂y + sin α sin β ∂z,
A3 = sin β cos γ ∂x + sin β sin γ ∂y + cos β ∂z,
A4 = cos α cot β ∂α + sin α ∂β − cos α

sin β
∂ γ ,

A5 = − sin α cot β ∂α + cos α ∂ β + sin α
sin β

∂γ ,

A6 = ∂α .
(24)

for β 6= 0 and β 6= π. The explicit formulae of the left-invariant vector fields (which are well-defined in north-
and south-pole) in the second chart, Eq. (4), are :

A1 = cos α̃ cos β̃ ∂x + (cos γ̃ sin α̃ + cos α̃ sin β̃ sin γ̃) ∂y

+(sin α̃ sin γ̃ − cos α̃ cos γ̃ sin β̃) ∂z,

A2 = − sin α̃ cos β̃ ∂x + (cos α̃ cos γ̃ − sin α̃ sin β̃ sin γ̃) ∂y

+(sin α̃ sin β̃ cos γ̃ + cos α̃ sin γ̃) ∂z,

A3 = sin β̃ ∂x − cos β̃ sin γ̃ ∂y + cos β̃ cos γ̃ ∂z,

A4 = − cos α̃ tan β̃ ∂α̃ + sin α̃ ∂β̃ + cos α̃

cos β̃
∂γ̃ ,

A5 = sin α̃ tan β̃ ∂α̃ + cos α̃ ∂β̃ − sin α̃

cos β̃
∂γ̃ ,

A6 = ∂α̃,
(25)

for β̃ 6= π
2 and β̃ 6= −π

2 . Note that dR is a Lie-algebra isomorphism, i.e.

[Ai, Aj ] =
6∑

k=1

ck
ijAk ⇔ [dR(Ai), dR(Aj)] =

6∑

k=1

ck
ijdR(Ak) ⇔ [Ai,Aj ] = AiAj −AjAi =

6∑

k=1

ck
ijAk .

These vector fields form a local moving coordinate frame of reference on SE(3), the corresponding dual frame
{dA1, . . . , dA6} ∈ (T (SE(3)))∗ is defined by

〈dAi,Aj〉 := dAi(Aj) = δi
j , i, j = 1, . . . , 6,

where δi
j = 1 if i = j and zero else. A brief computation yields the following dual frame (in both coordinate

charts):



dA1

dA2

dA3

dA4

dA5

dA6




=




(Rez ,γRey,βRez ,α)T 0

0 Mβ,α







dx
dy
dz
dα
dβ
dγ




=




(Rex,γ̃Rey,β̃Rez,α̃)T 0

0 M̃β̃,α̃







dx
dy
dz
dα̃

dβ̃
dγ̃




(26)
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where the 3× 3-zero matrix is denoted by 0 and where the 3× 3-matrices Mβ,γ , M̃β̃,α̃ are given by

Mβ,α =




0 sin α − cos α sin β
0 cos α sin α sin β
1 0 cos β


 , M̃β̃,α̃ =




− cos α̃ tan β̃ sin α̃ cos α̃

cos β̃

sin α̃ tan β̃ cos α̃ − sin α̃

cos β̃

1 0 0




−T

.

Finally, we note that by linearity the i-th dual vector filters out the i-th component of a vector field
∑6

j=1 vjAj

〈dAi,

6∑

j=1

vjAj〉 = vi , for all i, j = 1, . . . , 6.

4 Left-Invariant Diffusions on SE(3) = R3 o SO(3) and R3 o S2

In order to apply our general theory on diffusions on Lie groups, [17], to suitable (convection-)diffusions on
HARDI images, we naturally extend all functions U : R3 o S2 → R+ to functions Ũ : R3 o SO(3) → R+ by

Ũ(x, R) = U(x, Rez) or in Euler angles: Ũ(x, Rez,γRey,βRez,α) = U(x, n(β, γ)). (27)

Definition 4 We will call Ũ : R3 o SO(3) → R, given by Eq. (27), the HARDI-orientation score corresponding
to HARDI image U : R3 o S2 → R.

Here we note that the function Ũ in general is not equal to the wavelet transform of some image f : Rd → R,
in contrast to our previous works on invertible orientations of 2D images, [26], [2], [23], [20] and invertible
orientation scores of 3D images, [22].

We follow our general construction of scale space representations W̃ of functions Ũ defined on Lie groups,
[17], where we consider the special case SE(3) = R3 o SO(3):

{
∂tW̃ (g, t) = QD,a(A1,A2, . . . ,A6) W̃ (g, t) ,

lim
t↓0

W̃ (g, t) = Ũ(g) . (28)

which is generated by a quadratic form on the left-invariant vector fields:

QD,a(A1,A2, . . . ,A6) =
6∑

i=1

−aiAi +
6∑

i,j=1

AiDijAj (29)

Now the Hörmander requirement, [34], on the symmetric D = [Dij ] ∈ R6×6, D ≥ 0 and a, which guarantees
smooth non-singular scale spaces for SE(3), tells us that D need not be strictly positive definite. The Hörmander
requirement is that all included generators together with their commutators should span the full tangent space. To
this end for diagonal D one should consider the set

S = {i ∈ {1, . . . , 6} | Dii 6= 0 ∨ ai 6= 0} ,

now if for example 1 is not in here then 3 and 5 must be in S , or if 4 is not in S then 5 and 6 should be
in S . Following the general theory [17] we note that iff the Hörmander condition is satisfied the solutions of
the linear diffusions (i.e. D, a are constant) are given by SE(3)-convolution with a smooth probability kernel
p̃D,a

t : SE(3) → R+ such that

W̃ (g, t) = (p̃D,a
t ∗SE(3) Ũ)(g) =

∫
SE(3)

p̃D,a
t (h−1g)Ũ(h)dµSE(3)(h),

lim
t↓0

p̃D,a
t ∗SE(3) Ũ = Ũ , with p̃D,a

t > 0 and
∫

SE(3)
p̃D,a

t (g)dµSE(3)(g) = 1.

where the limit is taken in L2(SE(3))-sense.
The left-invariant diffusions on the group SE(3) also give rise to left-invariant scale spaces on the homoge-

neous space R3 o S2 ≡ SE(3)/({0} × SO(2)) within the group. There are however, two important issues to be
taken into account:
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1. If we apply the diffusions directly to HARDI-orientation scores we can as well delete the last direction in
our diffusions because clearlyA6 = ∂α vanishes on functions which are not dependent on α, i.e. ∂αŨ = 0.

2. In order to naturally relate the (convection-)diffusions on HARDI-orientation scores, to (convection-)diffusions
on HARDI images we have to make sure that the evolution equations are well defined on the cosets
SO(3)/SO(2), meaning that they do not depend on the choice of representant in the classes.

Next we formalize the second condition on diffusions on HARDI-orientation scores more explicitly. A movement
along the equivalence classes SO(3)/SO(2) is done by right multiplication with the subgroup Stab(ez) ≡ SO(2),
with Stab(ez) = {A ∈ SO(3) | Aez = ez}. Therefore our diffusion operator Φt which is the transform that maps
the HARDI-orientation score Ũ : R3oSO(3) → R+ to a diffused HARDI-orientation score Φt(Ũ) = etQD,a(A)Ũ ,
with stopping time t > 0, should satisfy

(Rh ◦ Φt)(Ũ) = (Φt ◦ Rh)(Ũ) = Φt(Ũ) (30)

for all h ∈ (0, Stab(ez)) ≡ SO(2), with RhŨ(g) = Ũ(gh). Now Eq. (30) is satisfied iff

R(0,Rez,α) ◦QD,a(A1, ..,A6) = QD,a(A1, ..,A6). (31)

Note that (30) and (31) are equivalent to

(QD,a(A)W̃ (·, ·, t))(g) = (QD,a(A)W̃ (·, ·, t))(gh)

for all g ∈ SE(3), t > 0, h = (0, Rez,α) where A = (A1, . . . ,A6)T and observe that AghŨ = ZαAgŨ where

Zα =




cos α sin α 0 0 0 0
− sin α cos α 0 0 0 0

0 0 1 0 0 0

0 0 0 cos α sin α 0
0 0 0 − sin α cos α 0
0 0 0 0 0 1




= Rez,−α ⊕Rez ,−α, Zα ∈ SO(6), Rez,−α ∈ SO(3). (32)

Hence for constant D and a (i.e. linear diffusion on the HARDI data) the requirement (31) simply reads

QD,a(A) = QD,a(Zα A) = Q(Zα)T D Zα,ZT
α a(A) ⇔ a = ZT

α a and D = ZαDZT
α , (33)

which by Schur’s lemma is the case if

a1 = a2 = a4 = a5 = a6 = 0 and D = diag{D11, D11, D33, D44, D44, D66 = 0}. (34)

Analogously, for adaptive nonlinear diffusions, that is D and a not constant but depending on the initial condition
Ũ , i.e. D(Ũ) : SE(3) → R6×6, with (D(Ũ))T = D(Ũ) > 0 and a(Ũ) the requirement (31) simply reads

a(Ũ)(gh) = ZT
α (a(Ũ))(g) and D(Ũ)(gh) = ZαD(Ũ)(g) ZT

α (35)

for all g ∈ SE(3) and all h = (0, Rez,α). Summarizing all these results we conclude on HARDI data whose
domain equals the homogeneous space R3 o S2 one has the following scale space representations:

{
∂tW (y, n, t) = QD(U),a(U)(A1,A2, . . . ,A5,A6) W (y, n, t) ,
W (y, n, 0) = U(y, n) .

(36)

with5 QD(U),a(U)(A1,A2, . . . ,A5,A6) =
∑5

i=1

(
−aiAi +

∑5
j=1AiDij(U)Aj

)
, where from now on we as-

sume that D(U) and a(U) satisfy Eq. (35). In the linear case where D(U) = D, a(U) = a this means that we shall
automatically assume Eq. (34). In this case the solutions of Eq. (36) are given by the following kernel operators
on R3 o S2:

W (y, n, t) = (pD,a
t ∗R3oS2 U)(y, n)

=
π∫
0

2π∫
0

∫
R3

pD,a
t ((Rez,γ′Rey,β′)T (y− y′), (Rez,γ′Rey,β′)T n)) U(y′, n(β′, γ′)) dy′ dσ(n(β′, γ′)),

(37)

5Since A6W (y, n, t) = 0 we set a6 = Di6 = 0 for i = 1, . . . , 6. Note that ∆LBW (y, n, t) = (((A4)2 + (A5)2)W )(y, n, t).
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where the surface measure on the sphere is given by dσ(n(β′, γ′)) = sin β′ dγ′dβ′ ≡ dσ(ñ(β̃, γ̃)) = | cos β̃| dβ̃dγ̃.
Now in particular in the linear case, since (R3, I) and (0, SO(3)) are subgroups of SE(3), we obtain the Laplace-
Beltrami operators on these subgroups by means of:

∆S2 = QD=diag{0,0,0,1,1,1},a=0 = (A4)2 + (A5)2 + (A6)2 = (∂β)2 + cot(β)∂β + sin−2(β)(∂γ)2 ,
∆R3 = QD=diag{1,1,1,0,0,0},a=0 = (A1)2 + (A2)2 + (A3)2 = (∂x)2 + (∂y)2 + (∂z)2 .

Remark: Recall that in the linear case we assumed Eq. (34) to ensure Eq. (31) so that Eq. (30) holds. It is not
difficult to show, [26, p.170], that this implies the required symmetry (9) on the convolution kernel.

4.1 Special Cases of Linear Left-invariant Diffusion on R3 o S2

If we consider the singular case D = diag{1, 1, 1, 0, 0, 0}, a = 0 (not satisfying the Hörmander condition) we get
the usual scale space in the position part only

W (y, n, t) = (et∆U(·, n))(y) = F−1
R3 [ω 7→ e−t‖ω‖2

(2π)
3
2
FR3f(ω)](y) = (Gt ∗f)(y), with Gt(y) = (4πt)−

3
2 e−

‖y‖2
4t

and consequently on R3 o S2 we have the singular distributional kernel pD,a
t (y, n) = Gt(y)δez (n), in Eq. (37).

If we consider the singular case D = diag{0, 0, 0, 1, 1, 1}, a = 0 we get the usual scale space on the sphere:

W (y, n(β, γ), t) = (et∆
S2 U(y, ·)(x) = et∆

S2
∞∑

l=0

l∑
m=−l

(Ylm, U)Ylm(β, γ) =
∞∑

l=0

l∑
m=−l

(Ylm, U)et∆
S2 Ylm(β, γ)

=
∞∑

l=0

l∑
m=−l

(Ylm, U)e−t(l(l+1))Ylm(β, γ).

where we note that the well-known spherical harmonics {Ylm}m=−l,...,l
l=0,...,∞ form an orthonormal basis of L2(S2)

and ∆S2Ylm = −l(l + 1)Ylm. Recall

Y m
l (β, γ) =

√
(2l + 1)(l − |m|)!

4π(l + |m|)! Pm
l (cos β)eimγ l ∈ N ,m = −l, . . . , l. (38)

Consequently, on R3 o S2 we have the singular distributional kernel pD,a
t (y, n) = gt(n)δ0(y), in Eq. (37), where

gt(n(β, γ)) =
∞∑

l=0

Ylm(β, γ)Ylm(β, γ)e−tl(l+1) =
∞∑

l=0

(Pm
l (cosβ))2

(2l + 1)(l − |m|)!
4π(l + |m|)! e−tl(l+1) .

Note that in the two cases mentioned above diffusion takes place either only along the spatial part or only along the
angular part, which is not desirable as one wants to include line-models which exploit a natural coupling between
position and orientation. Such a coupling is naturally included in a smooth way as long as the Hormander’s
condition is satisfied. In the two previous examples, the Hörmander condition is violated since both the span of
{A1,A2,A3} and the span of {A4,A5,A6} are closed Lie-algebras, i.e. all commutators are again contained in
the same 3-dimensional subspace of the 6-dimensional tangent space. Therefore we will consider more elaborate
left-invariant convection, diffusions on SE(3) with natural coupling between position and orientation. To explain
what we mean with natural coupling we shall need the next definitions.

Definition 5 A curve γ : R+ → R3 o S2 given by s 7→ γ(s) = (y(s), n(s)) is called horizontal if n(s) =
‖ẏ(s)‖−1ẏ(s). A tangent vector to a horizontal curve is called a horizontal tangent vector. A vector field A on
R3 o S2 is horizontal if for all (y, n) ∈ R3 o S2 the tangent vector A(y,n) is horizontal. The horizontal part
Hg of each tangent space is the vector-subspace of Tg(SE(3)) consisting of horizontal vector fields. Horizontal
diffusion is diffusion which only takes place along horizontal curves.

It is not difficult to see that the horizontal part Hg of each tangent space Tg(SE(3)) is spanned by {A3,A4,A5}.
So all horizontal left-invariant convection diffusions are given by Eq. (36) where one must set a1 = a2 = a6 = 0,
Dj2 = D2j = D1j = Dj1 = Dj6 = D6j = 0 for all j = 1, 2, . . . , 6. Now on a commutative group like R6

with commutative Lie-algebra {∂x1 , . . . , ∂x6} omitting 3-directions (say ∂x1 , ∂x2 , ∂x6) from each tangent space
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in the diffusion would yield no smoothing along the global x1, x2, x6-axes. In SE(3) it is different since the
commutators take care of indirect smoothing in the omitted directions {A1,A2,A6}, since

span {A3,A4,A5, [A3,A5] = A2, [A4,A5] = A6, [A5,A3] = A1} = T (SE(3))

Consider for example the SE(3)-analogues of the Forward-Kolmogorov (or Fokker-Planck) equations of the di-
rection process for contour-completion and the stochastic process for contour enhancement which we considered
in our previous works, [20], on SE(2). Here we shall first provide the resulting PDEs and explain the underlying
stochastic processes later in subsection 4.2. The Fokker-Planck equation for (horizontal) contour completion on
SE(3) is given by
{

∂tW (y, n, t) = (−A3 + D((A4)2 + (A5)2)) W (y, n, t) = (−A3 + D ∆S2) W (y, n, t) , D = 1
2σ2 > 0.

lim
t↓0

W (y, n, t) = U(y, n) .

(39)
where we note that (A6)2(W (y, n(β, γ), s)) = 0. This equation arises from Eq. (36) by setting D44 = D55 = D
and a3 = 1 and all other parameters to zero. The Fokker-Planck equation for (horizontal) contour enhancement is

{
∂tW (y, n, t) = (D33(A3)2 + D44((A4)2+(A5)2)) W (y, n, t) = (D33(A3)2 + D ∆S2) W (y, n, t) ,
lim
t↓0

W (y, n, t) = U(y, n) .

(40)
The solutions of the left-invariant diffusions on R3 o S2 given by (36) (with in particular (39) and (40)) are again
given by convolution product (37) with a probability kernel pD,a

t on R3 o S2.

4.2 Brownian Motions on SE(3) = R3 o SO(3) and on R3 o S2

Next we formulate a left-invariant discrete Brownian motion on SE(3) (expressed in the moving frame of refer-
ence). The left-invariant vector fields {A1, . . . ,A6} form a moving frame of reference to the group. Here we note
that there are two ways of considering vector fields. Either one considers them as differential operators on smooth
locally defined functions, or one considers them as tangent vectors to equivalent classes of curves. These two
viewpoints are equivalent, for formal proof see [5, Prop. 2.4]. Throughout this article we mainly use the first way
of considering vector fields, but in this section we prefer to use the second way. We will write {e1(g), . . . , e6(g)}
for the left-invariant vector fields (as tangent vectors to equivalence classes of curves) rather than the differential
operators {A1|g , . . . , A6|g}. We obtain the tangent vector ei from Ai by replacing

∂x ↔ (1, 0, 0, 0, 0, 0),
∂y ↔ (0, 1, 0, 0, 0, 0),
∂z ↔ (0, 0, 1, 0, 0, 0),

∂β ↔ (0, 0, 0, α cos β cos γ, α cos β sin γ,−α sin β),
∂γ ↔ (0, 0, 0, α cos γ, α sin γ, 0),
∂α ↔ (0, 0, 0, cos γ sin β, sin γ sin β, cos β),

(41)

where we identified SO(3) with a ball with radius 2π whose outer-sphere is identified with the origin, using Euler
angles Rez,γRey,βRez,α ↔ αn(β, γ) ∈ B0,2π . Next we formulate left-invariant discrete random walks on SE(3)
expressed in the moving frame of reference {ei}6i=1 given by Eq. (24) and (41):

(Yn+1, Nn+1) = (Yn, Nn) + ∆s
5∑

i=1

ai ei|(Yn,Nn) +
√

∆s
5∑

i=1

εi,n+1

5∑
j=1

σji ej |(Yn,nn) for all n = 0, . . . , N − 1,

(Y0, n0) ∼ UD,

with random variable (Y0, n0) is distributed by UD, where UD are the discretely sampled HARDI data (equidis-
tant sampling in position and second order tessalation of the sphere) and where the random variables (Yn, Nn)
are recursively determined using the independently normally distributed random variables {εi,n+1}n=0,...,N−1

i=1,...,5 ,
εi,n+1 ∼ N (0, 1) and with stepsize ∆s = s

N and where a :=
∑5

i=1 aiei denotes an apriori spatial velocity vector
having constant coefficients ai with respect to the moving frame of reference {ei}5i=1 (just like in Eq. (29)). Now
if we apply recursion and let N →∞ we get the following continuous Brownian motion processes on SE(3):

Y (t) = Y (0) +
t∫
0

(
3∑

i=1

ai ei|(Y (τ),N(τ)) + 1
2τ−

1
2 εi

3∑
j=1

σji ej |(Y (τ),N(τ))

)
dτ ,

N(t) = N(0) +
t∫
0

(
5∑

i=4

ai ei|(Y (τ),N(τ)) + 1
2τ−

1
2 εi

5∑
j=4

σji ej |(Y (τ),N(τ))

)
dτ ,

(42)
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with εi ∼ N (0, 1) and (X(0), N(0)) ∼ U and where σ =
√

2D ∈ R6×6, σ > 0. Note that d
√

τ = 1
2τ−

1
2 dτ .

Now if we set U = δ0,ez
(i.e. at time zero ) then suitable averaging of infinitely many random walks of this

process yields the transition probability (y, n) 7→ pD,a
t (y, n) which is the Green’s function of the left-invariant

evolution equations (36) on R3 o S2. In general the PDEs (36) are the Forward Kolmogorov equation of the
general stochastic process (42). This follows by Ito-calculus and in particular Ito’s formula for formulas on a
stochastic process, see [12] and see [2, app.A] where one should consistently replace the left-invariant vector
fields of Rn by the left-invariant vector fields on R3 o S2.

In particular we have now formulated the direction process for contour completion in R3 o S2 (i.e. non-
zero parameters in (42) are D44 = D55 > 0, a3 > 0 with Fokker-Planck equation given by Eq. (39)), and the
(horizontal) Brownian motion for contour-enhancement in R3oS2 (i.e. non-zero parameters in (42) are D33 > 0,
D44 = D55 > 0 with Fokker-Planck equation given by Eq. (40)).

4.3 Tikhonov-Regularization of HARDI Images
In the previous subsection we have formulated the Brownian-motions (42) underlying all linear left-invariant
convection-diffusion equations on HARDI data, with in particular the direction process for contour completion
and (horizontal) Brownian motion for contour-enhancement. However, we only considered the time dependent
stochastic processes and as mentioned before in Markov-processes traveling time is memoryless and thereby
negatively exponentially distributed T ∼ NE(λ), i.e. P (T = t) = λe−λt with expectation E(T ) = λ−1, for
some λ > 0. Recall our observations (12) and (13) and thereby by means of Laplace-transform with respect to
time we relate the Fokker-Planck equations to their resolvent equations, as at least formally we have

W (y, n, t) = (et(QD,a(A))U)(y, n) and Pγ(y, n, t) = λ

∫ ∞

0

e−tλ(et(QD,a(A))U)(y, n) = λ(λI−QD,a(A))−1U(y, n),

for t, λ > 0 and all y ∈ R3, n ∈ S2, where the negative definite generator QD,a is given by (29) and again
with AU = (A1U, . . . ,A6U)T . This is similar to our introductory example on the torus in Subsection 3.2. The
resolvent operator λ(λI −QD=diag(Dii),a=0(A))−1 occurs in a first order Tikhonov regularization as we show in
the next theorem.

Theorem 2 Let U ∈ L2(R3 o S2) and λ, D33 > 0, D44 = D55 > 0, D11 = D22 > 0. Then the unique solution
of the variational problem

arg min
P∈H1(R3oS2)

∫

R3oS2

λ

2
(P (y, n)− U(y, n))2 +

5∑

k=1

Dkk|AkP (y, n)|2dydσ(n) (43)

is given by Pλ
U (y, n) = (RD

λ ∗R3oS2 U)(y, n), where the Green’s function RD
λ : R3 o S2 → R+ is the Laplace-

transform of the heat-kernel with respect to time: RD
λ(y, n) = λ

∞∫
0

pD,a=0
t (y, n)e−tλ dt with D = diag{D11, . . . , D55, 0}.

Pλ
U (y, n) equals the probability of finding a random walker in R3 o S2 regardless its traveling time at position

y ∈ R3 with orientation n ∈ S2 starting from initial distribution U at time t = 0.

For a proof we refer to our technical report [21, Ch.4.3].

5 Differential Geometry: The underlying Cartan-Connection on SE(3)
and the Auto-Parallels in SE(3)

Now that we have constructed all left-invariant scale space representations on HARDI images, generated by means
of a quadratic form (29) on the left-invariant vector fields on SE(3). The question rises what is the underlying
differential geometry for these evolutions ?

For example, as the left-invariant vector fields clearly vary per position in the group yielding a moving frame
of reference attached to luminosity particles (random walkers inR3oS2 embedded in SE(3)) with both a position
and an orientation, the question rises along which trajectories in R3 o S2 do these particles move ? Furthermore,
as the left-invariant vector fields are obtained by the push-forward of the left-multiplication on the group,

Ag = (Lg)∗Ae, i.e. Agφ̃ = Ae(φ̃ ◦ Lg), where Lgh = gh, g, h ∈ SE(3), φ̃ : SE(3) → R smooth ,
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the question rises whether this defines a connection between all tangent spaces, such that these trajectories are
auto-parallel with respect to this connection ? Finally, we need a connection to rigid body mechanics described in
a moving frame of reference, to get some physical intuition in the choice of the fundamental constants6 {ai}6i=1

and {Dij}6i,j=1 within our generators (29).
In order to get some first physical intuition on analysis and differential geometry along the moving frame

{A1, . . . ,A6} and its dual frame {dA1, . . . , dA6}, we will make some preliminary remarks on the well-known
theory of rigid body movements described in moving coordinate systems. Imagine a curve in R3 described in the
moving frame of reference (embedded in the spatial part of the group SE(3)), describing a rigid body movement
with constant spatial velocity ĉ(1) and constant angular velocity ĉ(2) and parameterized by arc-length s > 0.
Suppose the curve is given by

y(s) =
3∑

i=1

αi(s) Ai|y(s) where αi ∈ C2([0, L],R),

such that ĉ(1) =
∑3

i=1 α̇i(s) Ai|y(s) for all s > 0. Now if we differentiate twice with respect to the arc-length

parameter and keep in mind that d
ds Ai|y(s) = ĉ(2) × Ai|y(s), we get

ÿ(s) = 0 + 2ĉ(2) × ĉ(1) + ĉ(2) × (ĉ(2) × y(s)) .

In words: The absolute acceleration equals the relative acceleration (which is zero, since ĉ(1) is constant) plus the
Coriolis acceleration 2ĉ(2) × ĉ(1) and the centrifugal acceleration ĉ(2) × (ĉ(2) × y(s)). Now in case of uniform
circular motion the speed is constant but the velocity is always tangent to the orbit of acceleration and the accel-
eration has constant magnitude and always points to the center of rotation. In this case, the total sum of Coriolis
acceleration and centrifugal acceleration add up to the well-known centripetal acceleration,

ÿ(s) = 2ĉ(2) × (−ĉ(2) ×Rr(s)) + ĉ2 × (ĉ(2) ×Rr(s)) = −‖ĉ(2)‖2Rr(s) = −‖ĉ1‖2
R

r(s),

where R is the radius of the circular orbit y(s) = m + R r(s), ‖r(s)‖ = 1). The centripetal acceleration equals
half the Coriolis acceleration, i.e. ÿ(s) = ĉ(2) × ĉ(1).

In our previous work [20, part II] on contour-enhancement and completion via left-invariant diffusions on
invertible orientation scores (complex-valued functions on SE(2)) we put a lot of emphasis on the underlying
differential geometry in SE(2). All results straightforwardly generalize to the case of HARDI images, which can
be considered as functions on R3 o S2 embedded in SE(3). These rather technical results are summarized in
Theorem 3, which answers all questions raised in the beginning of this section. Unfortunately, this theorem re-
quires general differential geometrical concepts such as principal fiber bundles, associated vector bundles, tangent
bundles, frame-bundles and the Cartan-Ehresmann connection defined on them. These concepts are explained in
full detail in [46] (with a very nice overview on p.386 ).

The reader who is not familiar with these technicalities from differential geometry can skip the first part of
the theorem while accepting the formula of the covariant derivatives given in Eq. (48), where the anti-symmetric
Christoffel symbols are equal to minus the structure constants ck

ij = −ck
ji (recall Eq. (22)) of the Lie-algebra.

Here we stress that we follow the Cartan viewpoint on differential geometry, where connections are expressed in
moving coordinate frames (we use the frame of left-invariant vector fields {A1, . . . ,A6} derived in Subsection 3.3
for this purpose) and thereby we have non-vanishing torsion.7 This is different from the Levi-Civita connection
for differential geometry on Riemannian manifolds, which is much more common in image analysis. The Levi-
Civita connection is the unique torsion free metric compatible connection on a Riemannian manifold and because
of this vanishing torsion of the Levi-Civita connection ∇ there is a 1-to-1 relation8 to the Christoffel symbols
(required for covariant derivatives ∇iv

j = ∂iv
j + Γk

ij∂kvj ) and the derivatives of the metric tensor. In the more
general Cartan connection outlined below, however, one can have non-vanishing torsion and the Christoffels are
not necessarily related to a metric tensor, nor need they be symmetric.

6Or later in Subsection 9 to get some intuition in the choice of functions {ai}6i=1 and {Dij}6i,j=1.
7The torsion tensor T∇ of a connection ∇ is given by T∇[X, Y ] = ∇XY − ∇Y X − [X, Y ]. The torsion-tensor T∇ of a Levi-Civita

connection vanishes, whereas the torsion-tensor of our Cartan connection∇ on SE(3) is given by T∇ = 3
∑6

i,j,k=1 ck
ijdAi ⊗ dAj ⊗Ak .

8In a Levi-Civita connection one has Γi
kl = Γi

lk = 1
2

∑
m gim(gmk,l + gml,k − gkl,m) with respect to a holonomic basis.
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Theorem 3 The Maurer-Cartan form ω on SE(3) is given by

ωg(Xg) =
6∑

i=1

〈dAi
∣∣
g
, Xg〉Ai, Xg ∈ Tg(SE(3)), (44)

where the dual vectors {dAi}6i=1 are given by (26) and Ai = Ai|e. It is a Cartan Ehresmann connection form on
the principal fiber bundle P = (SE(3), e, SE(3),L(SE(3))), where π(g) = e, Rgu = ug, u, g ∈ SE(3). Let
Ad denote the adjoint action of SE(3) on its own Lie-algebra Te(SE(3)), i.e. Ad(g) = (Rg−1Lg)∗, i.e. the push-
forward of conjugation. Then the adjoint representation of SE(3) on the vector space L(SE(3)) of left-invariant
vector fields is given by

Ãd(g) = dR ◦ Ad(g) ◦ ω. (45)

This adjoint representation gives rise to the associated vector bundle SE(3) ×Ãd L(SE(3)). The corresponding
connection form on this vector bundle is given by

ω̃ =
6∑

j=1

ãd(Aj)⊗ dAj =
6∑

i,j,k=1

ck
ij Ak ⊗ dAi ⊗ dAj , (46)

with ãd = (Ãd)∗, i.e. ãd(Aj) =
6∑

i=1

[Ai,Aj ]⊗ dAi, [36, p.265]. Then ω̃ yields the following 6 × 6-matrix valued

1-form
ω̃k

j (·) := −ω̃(dAk, ·,Aj) k, j = 1, 2, 3. (47)

on the frame bundle, [46, p.353,p.359], where the sections are moving frames [46, p.354]. Let {µk}6k=1 denote
the sections in the tangent bundle E := (SE(3), T (SE(3))) which coincide with the left-invariant vector fields
{Ak}6k=1. Then the matrix-valued 1-form given by Eq. (47) yields the Cartan connection given by the covariant
derivatives

DX|γ(t)
(µ(γ(t))) := Dµ(γ(t))(X|γ(t))

=
6∑

k=1

ȧk(t)µk(γ(t)) +
6∑

k=1

ak(γ(t))
6∑

j=1

ω̃j
k(X|γ(t)) µj(γ(t))

=
6∑

k=1

ȧk(t)µk(γ(t)) +
6∑

i,j,k=1

γ̇i(t) ak(γ(t)) Γj
ik µj(γ(t))

(48)

with ȧk(t) =
6∑

i=1

γ̇i(t) (Ai|γ(t) ak), for all tangent vectors X|γ(t) =
6∑

i=1

γ̇i(t) Ai|γ(t) along a curve t 7→ γ(t) ∈

SE(2) and all sections µ(γ(t)) =
6∑

k=1

ak(γ(t)) µk(γ(t)). The Christoffel symbols in (48) are constant Γj
ik =

−cj
ik, with cj

ik the structure constants of Lie-algebra Te(SE(3)). Consequently, the connection D has constant
curvature and constant torsion and the left-invariant evolution equations given in Eq. (28) can be rewritten in
covariant derivatives (using short notation ∇j := DAj ):





∂tW (g, t) =
6∑

i=1

−ai(W )AiW (g, t) +
6∑

i,j=1

Ai ( (Dij(W ))(g, t)AjW )(g, t)

=
6∑

i=1

−ai(W )∇iW (g, t) +
6∑

i,j=1

∇i ((Dij(W ))(g, t)∇jW )(g, t)

W (g, 0) = Ũ(g) , for all g ∈ SE(3), t > 0.

(49)

Both convection and diffusion in the left-invariant evolution equations (28) take place along the exponential

curves γc,g(t) = g · e
t

6∑
i=1

ciAi

in SE(3) which are the covariantly constant curves (i.e. auto-parallels) with
respect to the Cartan connection. In particular, if ai(W ) = ci constant and if Dij(W ) = 0 (convection case) then
the solutions are

W (g, t) = Ũ(g · e−t
6∑

i=1
ciAi

) . (50)
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The spatial projections PR3γ of these of the auto-parallel/exponential curves γ are circular spirals with constant
curvature and constant torsion. The curvature magnitude equals ‖ĉ(1)‖−1‖ĉ(2) × ĉ(1)‖ and the curvature vector
equals

κ(t) =
1

‖ĉ(1)‖

(
cos(t ‖ĉ(2)‖) ĉ(2) × ĉ(1) +

sin(t ‖ĉ(2)‖)
‖ĉ(2)‖

ĉ(2) × ĉ(2) × ĉ(1)

)
, (51)

where c = (c1, c2, c3 ; c4, c5, c6) = (ĉ(1) ; ĉ(2)). The torsion vector equals τ (t) = |ĉ1 · ĉ2| κ(t).

Proof The proof is a straightforward generalization from our previous results [20, Part II, Thm 3.8 and Thm 3.9]
on the SE(2)-case to the case SE(3). The formulas of the constant torsion and curvature of the spatial part of
the auto-parallel curves (which are the exponential curves) follow by the formula (54) for (the spatial part x(s) of)
the exponential curves, which we will derive in Section 5.1. Here we stress that s(t) = t

√
(c1)2 + (c2)2 + (c3)2

is the arc-length of the spatial part of the exponential curve and where we recall that κ(s) = ẍ(s) and τ (s) =
d
ds (ẋ(s)× ẍ(s)). Note that both the formula (54) for the exponential curves in the next section and the formulas
for torsion and curvature are simplifications of our earlier formulas [26, p.175-177]. In the special case of only
convection the solution (50) follows by etdR(A)Ũ(g) = RetAŨ(g), with A = −∑6

i=1 ciAi and dR(A) =
−∑6

i=1 ciAi with Ai = dR(Ai).

5.1 The Exponential Curves and the Logarithmic Map explicitly in Euler Angles
Next we compute the exponential curves in SE(3) by an isomorphism of the group SE(3) to matrix group SE(3)

SE(3) 3 (x, Rγ,β,α) ↔
(

Rγ,β,α x
0 1

)
∈ SE(3) with Rγ,β,α = Rez,γRey,βRez,α,

This isomorphism induces the following isomorphism between the respective Lie-algebras

6∑

i=1

ciAi ∈ L(SE(3)) ↔ Te(SE(3)) 3
6∑

i=1

ciAi ↔
6∑

i=1

ciXi ∈ R4×4 .

where {ci}6i=1 ∈ R6 and with matrices {Xi}6i=1 ∈ R4×4 are given by

X1 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , X2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 , X3 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ,

X4 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 , X5 =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 , X6 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 .

(52)

Note that Ai ↔ Ai ↔ Xi ⇒ [Ai, Aj ] ↔ [Ai,Aj ] ↔ [Xi, Xj ] and indeed direct computation yields:

6∑

k=1

ck
ijAk = [Ai,Aj ] ↔ [Xi, Xj ] =

6∑

k=1

ck
ijXk with commutator table




0 0 0 0 X3 −X2

0 0 0 −X3 0 X1

0 0 0 X2 −X1 0
0 X3 −X2 0 X6 −X5

−X3 0 X1 −X6 0 X4

X2 −X1 0 X5 −X4 0




,

(53)
where i enumerates vertically and j horizontally and [Ai,Aj ] = AiAj −AjAi and [Xi, Xj ] = XiXj −XjXi.

Each element in the Lie-algebra of the matrix group SE(3) can be written

A =
6∑

i=1

ciXi =
(

Ω ĉ(1)

0 0

)
, Ω =

(
0 −c6 c5

c6 0 −c4

−c5 c4 0

)
∈ so(3), ĉ(2) = (c1, c2, c3) ∈ R3,
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with so(3) = {A ∈ R3×3 | AT = −A}. Note that exp(so(3)) = SO(3) and Ωx = ĉ(2) × x and set q̃ = ‖ĉ(2)‖ =√
(c4)2 + (c5)2 + (c6)2 so that Ω3 = −q̃2Ω and therefore

Ak =
(

Ωk Ωk−1ĉ(1)

0 0

)
⇒ etA =

∞∑
k=1

tk

k! A
k =


 etΩ t

(
1∫
0

et s Ωds

)
ĉ(1)

0 1


 =

(
R x
0 1

)
∈ SE(3),

with
∫ 1

0
etsΩds =

∞∑
k=0

(tsΩ)k

(k+1)! = I + 1
t

1−cos(q̃t)
q̃2 Ω + q̃−t−1 sin(q̃t)

q̃3 Ω2 ,

and R = etΩ = I + sin(q̃t)
q̃ Ω + 1−cos(q̃t)

q̃2 Ω2.

so that the exponential curves are given by

γc(t) = e
t

6∑
i=1

ciAi

=

{
(c1t, c2t, c3t , I) if ĉ(2) = 0 ,

(tĉ(1) + 1−cos(q̃t)

q̃2 Ωĉ(1) + (tq̃−2 − sin(q̃t)

q̃3 ) Ω2ĉ(1) , I + sin(q̃t)
q̃

Ω + (1−cos(q̃t))

q̃2 Ω2) else.
(54)

As the exponential map is surjective we are also interested in the logarithmic map. This means we have to solve
for ĉ(1) ∈ R3 and Ω ∈ so(3), given a group element g = (x, Rγ,β,α) ∈ SE(3). Note that ΩT = −Ω, (Ω2)T = Ω2

so that R−RT = 2 sin(q̃t)
q̃ Ω from which the logarithmic map Ω = logSO(3) R, R = Rγ,β,α follows explicitly:

c4 = c4
γ,β,α := q̃

2 sin q̃ sin β(sinα− sin γ) , c5 = c5
γ,β,α := q̃

2 sin q̃ sin β(cos α + cos γ) ,

c6 = c6
γ,β,α := q̃

2 sin q̃ (2 cos2
(

β
2

)
sin(α + γ)) .

(55)

and thereby q̃ =
√

(c4)2 + (c5)2 + (c6)2 = q̃γ,β,α = arcsin
√

cos2
(

α+γ
2

)
sin2 β + cos4

(
β
2

)
sin2(α + γ). So it

remains to express ĉ(1) = (c1, c2, c3)T in Euler angles (γ, β, α). Now Ω3 = −q̃2Ω implies that
(
I + q̃−2(1− cos q̃)Ω + q̃−3(q̃ − sin q̃)Ω2

)
ĉ(1) = x ⇔

ĉ(1) = ĉ(1)
x,γ,β,α :=

(
I − 1

2Ωγ,β,α + q̃−2
γ,β,α(1− q̃γ,β,α

2 cot
(

q̃γ,β,α

2

)
)(Ωγ,β,α)2

)
x.

(56)

Now equality (55) and (56) provide the explicit logarithmic mapping on SE(3):

logSE(3)(x, Rγ,β,α) =
3∑

i=1

ci
x,γ,β,αAi +

6∑

i=4

ci
γ,β,αAi. (57)

Remark: It can be shown that ‖ d
dt PR3γc(t)‖ =

√
(c1)2 + (c2)2 + (c3)2. Consequently the arc-length

parameter s > 0 is expressed in t by means of s(t) = t
√

(c1)2 + (c2)2 + (c3)2. If we want to impose
spatial arc-length parameterizations of curves in SE(3) we must rescale all ci → ci√

(c1)2+(c2)2+(c3)2
so that

‖ĉ(1)‖ =
√

(c1)2 + (c2)2 + (c3)2 = 1.

Remark: The group SE(3) is isomorphic to the group of rigid motions in R3 well-known in mechanics. The
vector ĉ(1) denotes constant velocity in the moving coordinate frame {Ai}3i=1 whereas ĉ(2) denotes constant an-
gular velocity with respect to the same moving coordinate frame attached to a particle on a moving rigid body
inR3. Note that κ(0) equals the centripetal acceleration at the moving frame of reference {A1,A2,A3}|γc(0)=e =
{A1, A2, A3}, whereas κ(s) equals the centripetal acceleration at the moving frame of reference {A1,A2,A3}|γc(s)

,
but again expressed in the global coordinate system {A1, A2, A3} = {∂x, ∂y, ∂z} of the spatial part ≡ R3 of
the group, which is for s > 0 no longer aligned with the moving frame of reference. To re-express κ(s) in
{A1, A2, A3} one must rotate κ(0) over an angle of s‖ĉ(2)‖ around the angular velocity ĉ2, which explains (51).

6 Analysis of the Convolution Kernels of Scale Spaces on HARDI images

It is a notorious problem to find explicit formulas for the exact Green’s functions pD,a
t : R3 o S2 → R+ of the

left-invariant diffusions, Eq. (36), on R3 o S2. Explicit, tangible and exact formulas for heat-kernels on SE(3)
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do not seem to exist in literature. Nevertheless, there does exist a nice general theory overlapping the fields of
functional analysis and group theory, see for example [40, 47], which at least provides Gaussian estimates for
Green’s functions of left-invariant diffusions on Lie groups, generated by subcoercive operators. In the remainder
of this section we will employ this general theory to our special case where R3oS2 is embedded into SE(3) and
we will derive new explicit and useful approximation formulas for these Green’s functions. Within this section
we always use the second coordinate chart, Eq. (4), as it is highly preferable over the more common Euler angle
parametrization, Eq. (1), since we rather avoid singularities at the unity element of SE(3). We refer to [21, App.A]
for an accurate approximation to the exact Green’s functions for the direction process 39 (a contour-completion
process) in R3 o S2, likewise [23], where we managed to derive the exact Green’s functions of the direction
process in SE(2). However, unlike the SE(2)-case, we do have to apply a reasonable approximation in the
generator in order to get tangible approximation formulas. These approximations are valid for 4tD44 small and
are nearly exact in a sharp cone around the z-axis where the Green’s function is concentrated.

We shall first carry out the method of contraction. This method typically relates the group of positions and
rotations to a (nilpotent) group positions and velocities and serves as an essential pre-requisite for our Gaussian
estimates and approximation kernels later on. The reader who is not so much interested in the detailed analysis
can skip this section and continue with the numerics explained in Chapter 7.

6.1 Local Approximation of SE(3) by a Nilpotent Group via Contraction
The group SE(3) is not nilpotent. This makes it hard to get tangible explicit formulae for the heat-kernels.
Therefore we shall generalize our Heisenberg approximations of the Green’s functions on SE(2), [23], [48], [2],
to the case SE(3). Again we will follow the general work by ter Elst and Robinson [47] on semigroups on Lie
groups generated by weighted subcoercive operators. In their general work we consider a particular case by setting
the Hilbert space L2(SE(3)), the group SE(3) and the right-regular representation R. Furthermore we consider
the algebraic basis {A3,A4,A5} leading to the following filtration of the Lie algebra

g1 = span{A3,A4,A5} ⊂ g2 = span{A1,A2,A3,A4,A5,A6} = L(SE(3)) . (58)

Now that we have this filtration we have to assign weights to the generators

w3 = w4 = w5 = 1 and w1 = w2 = w6 = 2. (59)

For example w3 = 1 since A3 already occurs in g1, w6 = 2 since A6 is within in g2 and not in g1. Now that we
have these weights we define the following dilations on the Lie-algebra Te(SE(3)) (recall Ai = Ai|e):

γq(
6∑

i=1

ci Ai) =
6∑

i=1

qwi ci Ai, for all ci ∈ R,

γ̃q(x, y, z, Rγ̃,β̃,α̃) =
(

x
qw1 , y

qw2 , z
qw3 , R γ̃

qw4 , β̃
qw5 , α̃

qw6

)
, q > 0,

and for 0 < q ≤ 1 we define the Lie product [A, B]q = γ−1
q [γq(A), γq(B)]. Now let (SE(3))q be the simply

connected Lie group generated by the Lie algebra (Te(SE(3)), [·, ·]q). This Lie group is isomorphic to the matrix
group with group product:

(x, R̃γ̃,β̃,α̃) ·q (x′, R̃γ̃′,β̃′,α̃′) = ( x + Sq · R̃γ̃q,β̃q,α̃q2 · Sq−1 x′ , R̃γ̃,β̃,α̃ · R̃γ̃′,β̃′,α̃′ ) (60)

where Sq := diag{1, 1, q} ∈ R3×3 and we used short-notation R̃γ̃,β̃,α̃ = Rex,γ̃Rey,β̃Rez,α̃, i.e. our elements of
SO(3) are expressed in the second coordinate chart, Eq. (4). Now the left-invariant vector fields on the group
(SE(3))q are given by Aq

i |g = (γ̃−1
q ◦ Lg ◦ γ̃q)∗Ai, i = 1, . . . , 6. Straightforward (but intense) calculations

yield (for each g = (x, R̃γ̃,β̃,α̃) ∈ (SE(3))q ):

Aq
1|g = cos(q2α̃) cos(qβ̃) ∂x + (cos(γ̃q) sin(α̃q2) + cos(α̃q2) sin(β̃q) sin(γ̃q)) ∂y+

+q(sin(α̃q2) sin(γ̃q)− cos(α̃q2) cos(γ̃q) sin(β̃q)) ∂z

Aq
2|g = − sin(α̃q2) cos(β̃q) ∂x + (cos(q2α̃) cos(γ̃q)− sin(α̃q2) sin(β̃q) sin(γ̃q)) ∂y+

+q(sin(α̃q2) sin(β̃q) cos(β̃q) + cos(α̃q2) sin(γ̃q)) ∂z

Aq
3|g = q−1 sin(β̃q) ∂x − q−1 cos(β̃q) sin(γ̃q) ∂y + cos(β̃q) cos(γ̃q) ∂z

Aq
4|g = −q−1 cos(α̃q2) tan(β̃q) ∂α̃ + sin(α̃q) ∂β̃ + cos(α̃q2)

cos(β̃q)
∂γ̃

Aq
5|g = q−1 sin(α̃q2) tan(β̃q) ∂α̃ + cos(α̃q2) ∂β̃ − sin(q2α̃)

cos(qβ̃)
∂γ̃

Aq
6|g = ∂α̃.
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Note that [Ai, Aj ]q = γ−1
q [γq(Ai), γq(Aj)] = γ−1

q qwi+wj [Ai, Aj ] =
6∑

k=1

qwi+wj−wkck
ijAk and thereby

[A4, A5]q = A6, [A4, A6]q = −q2A5, [A5, A6]q = q2A4, [A4, A3]q = −A2,
[A4, A2]q = q2A3, [A5, A1]q = −q2A3, [A5, A3]q = A1, [A6, A1]q = q2A2 and [A6, A2]q = −q2A1.

(61)

Analogously to the case q = 1, (SE(3))q=1 = SE(3) we have an isomorphism of the common Lie-algebra at
the unity element Te(SE(3)) = Te((SE(3))q) and left-invariant vector fields on the group (SE(3))q :

(Ai ↔ Aq
i and Aj ↔ Aq

j) ⇒ [Ai, Aj ]q ↔ [Aq
i ,Aq

j ] .

It can be verified that the left-invariant vector fields Aq
i satisfy the same commutation relations given in Eq. (61).

Now let us consider the case q ↓ 0, then we get a nilpotent-group (SE(3))0 with left-invariant vector fields

A0
1 = ∂x, A0

2 = ∂y, A0
3 = β̃∂x − γ̃∂y + ∂z, A0

4 = −β̃∂α̃ + ∂γ̃ , A0
5 = ∂β̃ , A0

6 = ∂α̃ . (62)

6.1.1 The Heisenberg-approximation of the Contour Completion Kernel

Recall that the generator of contour completion diffusion equals−A3+D44((A4)2+(A5)2). So let us replace the
true left-invariant vector fields {Ai}5i=3 on SE(3) = (SE(3))q=1 by their Heisenberg-approximations {A0

i }5i=3

that are given by Eq. (62) and compute the Green’s function pa3=1,D44=D55
t on (SE(3))0 (i.e. the convolution

kernel which yields the solutions of contour completion on (SE(3))0 by group convolution on (SE(3))0). For
0 < D44 ¿ 1 this kernel is a local approximation of the true contour completion kernel pa3=1,D44=D55

t , on
R3 o S2:

pa3=1,D44=D55
t := et(−A0

3+D44((A0
4)

2+(A0
5)

2))δx
0 ⊗ δy

0 ⊗ δz
0 ⊗ δγ̃

0 ⊗ δβ̃
0 ⇒

pa3=1,D44=D55
t (x, y, z, ñ(β̃, γ̃)) = δ(t− z) (et(−β̃∂x+D44(∂β̃)2)δx

0 ⊗ δβ̃
0 )(x, β̃) (et(γ̃∂y+D44(∂γ̃)2)δy

0 ⊗ δγ̃
0 )(y, γ̃)

= δ(t− z) 3
4(D44πz2)2 e

− 12(x−(1/2)zβ̃)2+z2β̃2

4z3D44 e
− 12(y+(1/2)zγ̃)2+z2γ̃2

4z3D44 ,

(63)
where ñ(β̃, γ̃) = Rex,γ̃Rey,β̃ez = (sin β̃,− sin γ̃ cos β̃, cos γ̃ cos β̃)T . The corresponding resolvent kernel on the
group (SE(3))0 is now directly obtained by Laplace transform with respect to time

R
a3=1,D44=D55
λ (x, y, z, ñ(β̃, γ̃)) =





3
4(D44πz2)2

λ e−λz e
− 12(x−(1/2)zβ̃)2+z2β̃2

4z3D44 e
− 12(y+(1/2)zγ̃)2+z2γ̃2

4z3D44 if z > 0

0 if z ≤ 0 and (x, y) 6= (0, 0).
(64)

So we make a remarkable observation: The Heisenberg-approximation, Eq. (63), of the contour completion kernel
in (SE(3)) is a direct product of two Heisenberg approximations of contour completion kernels in SE(2), [23],

p
a3,D44=D55 ; (SE(3))0
t (x, y, z, ñ(β̃, γ̃)) = p

a3,D44 ; (SE(2))0
t (z, x, β̃) · pa3,D44 ; (SE(2))0

t (z,−y, γ̃) . (65)

Now since the Heisenberg approximation kernel p
D33,D44 ; (SE(2))0
t is for reasonable parameter settings (that is

0 < D44
D33

¿ 1) close to the exact kernel p
D33,D44 ; (SE(2))
t we heuristically propose for these reasonable parameter

settings the same direct-product approximation for the exact contour-enhancement kernels on R3 o S2:

pa3,D44=D55 ; R3oS2

t (x, y, z, ñ(β̃, γ̃)) ≈ p
a3,D44 ; SE(2)
t (z, x, β̃) · pa3,D44 ; SE(2)

t (z,−y, γ̃) , (66)

where the exact kernels p
a3,D44 ; SE(2)
t : SE(2) → R+ for contour completion in SE(2) can be found in [23].

6.1.2 The Heisenberg-approximation of the Contour Enhancement Kernel

Recall that the generator of contour completion diffusion equals D33(A3)2 + D44((A4)2 + (A5)2). So let us
replace the true left-invariant vector fields {Ai}5i=3 on SE(3) = (SE(3))q=1 by their Heisenberg-approximations
{A0

i }5i=3 given by Eq. (62) and consider the Green’s function pD33,D44=D55
t on (SE(3))0:

pa3=1,D44=D55
t := et(D33(A0

3)
2+D44((A0

4)
2+(A0

5)
2))δx

0 ⊗ δy
0 ⊗ δz

0 ⊗ δγ̃
0 ⊗ δβ̃

0 , (67)

22



which is not easy to compute. However we follow the same approach as we applied previously [20] to the
diffusion kernels on the 2D Euclidean motion group (SE(2))0, which follows the coordinate substitutions as
proposed by Citti and Sarti [13]. The group (SE(3))0 however is not (entirely) a direct product of two H3 groups
and application of the coordinate-transformation

x′1 = x′2 =
z

2
√

2D44

, ω1 =
β̃√

2D44

and ω′2 =
γ̃√

2D44

, t′1 =
2(x− β̃z

4 )√
D44D33

, t′2 =
−2(y + γ̃z

4 )√
D33D44

,

expressed the generator into

(D33(A0
3)

2 + D44((A0
4)

2 + (A0
5)

2)) = 1
2
(∂ω′1 − 2x′1∂t′1)

2 + 1
2
(∂ω′2 − 2x′2∂t′2)

2 + 1
2
(∂x′2 + 2ω′2∂t′2)

2

+ 1
2
(∂x′1 + 2ω′1∂t′1)

2 + (∂′ω1 − 2x′1∂t′1)(∂
′
ω2 − 2x′2∂t′1) =: 1

2
∆K + Â2Â4 ,

where ∆K = (1/2)((Â2)2 + (Â3)2 + (Â3)2 + (Â4)2) equals the Kohn’s Laplacian, [28], on the group H5,
which is a sum of the four horizontal left-invariant vector fields on H5, [19, 28]. Note that ∆K is also the Kohn’s
Laplacian on the group H3 ×H3 (with extra imposed identification x′1 = x′2). If we neglect the cross-term Â2Â4

in the generator we get the following approximation

pD33,D44=D55 ; R3oS2

t (x, y, z, ñ(β̃, γ̃)) ≈ p
D33,D44=D55 ; (SE(2))0
t (z/2, x, β̃)·pD33,D44=D55 ; (SE(2))0

t (z/2,−y, γ̃) . (68)

So similar to the contour-completion kernel on R3 o S2 derived in the previous section, recall Eq. (65), the
Heisenberg-approximation kernel on R3 o S2 is a direct product of two Heisenberg-approximation kernels on
(SE(2))0.

Now since the Heisenberg approximation kernel p
D33,D44 ; (SE(2))0
t is for reasonable parameter settings (that is

0 < D44
D33

¿ 1) close to the exact kernel p
D33,D44 ; (SE(2))
t we heuristically propose for these reasonable parameter

settings the same direct-product approximation for the exact contour-enhancement kernels on R3 o S2:

pD33,D44=D55 ; R3oS2

t (x, y, z, ñ(β̃, γ̃)) ≈
N(D33, D44, t) · p

D33,D44 ; (SE(2))
t (z/2, x, β̃) · pD33,D44 ; (SE(2))

t (z/2,−y, γ̃) ,
(69)

where N(D33, D44, t) ≈ 8√
2

√
πt
√

tD33

√
D33D44 takes care of L1(R3 o S2)-normalization. In [13, 20] one can

find the exact solutions of the Green’s function p
D33,D44 ; (SE(2))0
t related to the Green’s function [28] on H(3)

by means of a coordinate transform, but these exact formulae are not as tangible as the following asymptotical
formulas :

pD33,D44
t (x, y, θ) ≡ 1

32πt2c4D44D33
e
− 1

4t c2

√(
x2

D33
+ θ2

D44

)2
+
|y− xθ

2 |2
D44D33 ,

pD33,D44
t (x, y, θ) ≡





1
32πt2c4D44D33

e
− 1

4t c2

√(
θ2

D44
+

θ2(y−(−x sin θ+y cos θ))2

4(1−cos(θ))2D33

)2
+ 1

D44D33
| θ((x cos θ+y sin θ)−x)

2(1−cos θ) |2
, if θ 6= 0,

1
32πt2c4D44D33

e
− 1

4t c2

√(
x2

D33

)2
+

|y|2
D44D33 , if θ = 0

(70)
which are globally sharp estimates, with 1

2 ≤ c ≤ 4
√

2, for details see [20, ch 5.4]. For the purpose of numerical
computation, we simplify pD33,D44

t (x, y, θ) in Eq. (70) to

pD33,D44
t (x, y, θ) =

1

32πt2c4D44D33
e

− 1
4t c2

√√√√√√


 θ2

D44
+

(
θy
2 + θ/2

tan(θ/2) x

)2

D33




2

+ 1
D44D33

(−xθ
2 +

θ/2
tan(θ/2) y

)2

where one can use the estimate θ/2
tan(θ/2) ≈ cos(θ/2)

1−(θ2/24) for |θ| < π
10 to avoid numerical errors.

6.2 Gaussian Estimates for the Heat-kernels on SE(3)

According to the general theory [47] the heat-kernels p
SE(3);q,D=diag{0,0,D33,D44,D55,0}
t : (SE(3))q → R+

(i.e. kernels for contour enhancement whose convolutions yield horizontal9 diffusion on (SE(3))q) on the

9Horizontal diffusion in SE(3) is diffusion which takes place along horizontal curves in R3 o S2 ↪→ SE(3). Recall Definition 5.
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parameterized class of groups (SE(3))q , q ∈ [0, 1] in between SE(3) and its nilpotent Heisenberg approxi-
mation (SE(3))0 satisfy the following Gaussian estimates (for D isomorphic to the 3 × 3 identity matrix I3,
D = diag{0, 0, 1, 1, 1, 0})

C1e
−C2 ‖g‖2q

4t ≤ p
SE(3);q,D≡I3
t (g) ≤ C3e

−C4 ‖g‖2q
4t ,

with 0 < C1 < C3 and 0 < C4 < C2, where the norm ‖ · ‖q : (SE(3))q → R+ is given by

‖g‖q = | log(SE(3))q
(g)|q ,

where log(SE(3))q
: (SE(3))q → Te((SE(3))q) is the logarithmic mapping on (SE(3))q (which we computed

explicitly for (SE(3))q=1 = SE(3) in Section 5.1 and which we will compute for q = 0 as well) and where the
weighted modulus, [47], in our special case of interest is given by

|
6∑

i=1

ci
qA

q
i |q =

√
|c1

q|+ |c2
q|+ |c6

q|+ |c3
q|2 + |c4

q|2 + |c5
q|2 ,

where ci
q ∈ R and where we recall our weighting given in Eq. (59). However, similar to our work [20, ch:5.4] on

estimating heat-kernels on SE(2), we estimate the weighted modulus by an equivalent differentiable modulus:

|
6∑

i=1

ci
qA

q
i |q = 4

√
|c1

q|2 + |c2
q|2 + |c6

q|2 + (|c3
q|2 + |c4

q|2 + |c5
q|2)2 ,

where we note that 4
√

6|g|q ≥ |g|q ≥ |g|q for all g ∈ (SE(3))q , q ∈ [0, 1].
Now suppose (c1

q, . . . , c
6
q) = (c1

q(g), . . . , c6
q(g)) := log(SE(3))q

(g), then there exist constants 0 < C̃1 < C̃3

and 0 < C̃4 < C̃2 such that the following Gaussian estimates hold:

C̃1e
−

C̃2
√
|c1q|2+|c2q|2+|c6q|2+(|c3q|2+|c4q|2+|c5q|2)2

4t ≤ p
SE(3);q,D≡I3
t (g) ≤ C̃3e

−
C̃4
√
|c1q|2+|c2q|2+|c6q|2+(|c3q|2+|c4q|2+|c5q|2)2

4t ,
(71)

where we again use short notation ci
q = ci

q(g), i = 1, . . . , 6. Now, from the applied point of view D =
diag{0, 0, 1, 1, 1, 0} is an un-realistic situation and only for q = 0 there exist dilations on the group (SE(3))q

so that we can easily generalize the estimates to the diagonal case D = diag{0, 0, D33, D44, D55, 0}.
Since (SE(3))0 is a nilpotent Lie-group isomorphic to the matrix group given by Eq. (60) (where we take the

limit q ↓ 0) it is not difficult (this is much easier than the case q = 1, recall Section 5.1) to compute the exponent
(recall Eq. (61)):

exp




0 −c6
0 c5

0 c1
0

0 0 −c4
0 c2

0

0 0 0 c3
0

0 0 0 0


 =




1 −c6
0 c5

0 + 1
2
c4
0c

6
0 c1

0 + 1
2
(c3

0c
5
0 − c2

0c
6
0) + 1

6
c3
0c

4
0c

6
0

0 1 −c4
0 c2

0 − 1
2
c3
0c

4
0

0 0 1 c3
0

0 0 0 1


 =




1 −α̃ β̃ x
0 1 −γ̃ y
0 0 1 z
0 0 0 1




and inverting these relations we find the simple formulas for the functions ci
0 that we use in our estimates (73)

c1
0(g) = x + 1

2yα̃− 1
2zβ̃ + 1

3zα̃γ̃ ,
c2
0(g) = y + 1

2zγ̃ ,
c3
0(g) = z ,

c4
0(g) = γ̃ ,

c5
0(g) = β̃ − 1

2 α̃γ̃ ,
c6
0(g) = α̃ .

(72)

defined for all g = (x, y, z,
(

1 α̃ −β̃
0 1 γ̃
0 0 1

)
) ∈ (SE(3))0. By our embedding R3 o S2 into SE(3), we must set

c6
0 = α̃ = 0. Consequently, for the Heisenberg aproximations of the diffusion kernels we have

C̃1e−
C̃2

√
|x− 1

2 zβ̃|2+|y+ 1
2 zγ̃|2+(|z|2+|γ̃|2+|β̃|2)2

4t ≤ pt(x, y, z, ñ(β̃, γ̃)) ≤ C̃3e−
C̃4

√
|x− 1

2 zβ̃|2+|y+ 1
2 zγ̃|2+(|z|2+|γ̃|2+|β̃|2)2

4t ,
(73)

where we used short notation pt = p
(SE(3))0,D≡I3
t : R3 × S2 → R+ for the Heisenberg approximation q = 0 of

the contour enhancement kernel with D33 = D44 = D55 = 1. Now by application of the following dilation:

z′ =
z√
D33

, x′ =
x√

D33D44

, β̃′ =
β̃√
D44

, y′ =
y√

D33D44

, γ̃′ =
γ̃√
D44
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the generator of the corresponding diffusion onR3oS2 for the general case where D = diag{0, 0, D33, D44, D55 =
D44, 0} relates to the diffusion generator for the case D = diag{0, 0, 1, 1, 1, 0}, recall Eq. (62):

5∑

i=3

Dii(A0
i )

2 = D33(β̃∂x − γ̃∂y + ∂z)2 + D44(∂β̃)2 + D44(∂β̃)2 ↔ (β̃′∂′x − γ̃′∂′y + ∂′z)
2 + (∂β̃′)

2 + (∂β̃′)
2 ,

consequently, we find the following estimates for the general Heisenberg approximation kernels

C̃1e
−

C̃3

√√√√ |c10|2+|c20|2
D33D44

+

(
(c30)2

D33
+
|c40|2+|c50|2

D44

)2

4t ≤ pD,q=0
t (x, ñ(β̃, γ̃)) ≤ C̃2e

−
C̃4

√√√√ |c10|2+|c20|2
D33D44

+

(
(c30)2

D33
+
|c40|2+|c50|2

D44

)2

4t ,
(74)

where we used short notation ck
0 = ck

0(x, Rγ̃,β̃,0), k = 1, . . . , 5, x = (x, y, z)T ∈ R3, recall Eq. (72).
In fact in [21, ch:6.2] it is shown that the constants C̃3, C̃4 are very close and that a reasonably sharp approxi-

mation and upperbound of the horizontal diffusion kernel on R3 o S2 is given by

p
D=diag{0,0,D33,D44,D55,0}
t (x, ñ(β̃, γ̃)) ≈ 1

(4πt2D33D44)2
e−

√
|c1|2+|c2|2

D33D44
+ |c

6|2
D44

+
(

(c3)2
D33

+ |c
4|2+|c5|2

D44

)2

4t ,
(75)

where we again use short notation ck := ck
q=1(x, Rγ̃,β̃,0), k = 1, . . . , 6. Recall from Section 5.1 that these

constants are computed by the logarithm, Eq. (57), on SE(3) or more explicitly by Eq. (55) and (56). The latter
two equalities are analogously expressed in the second coordinate chart yielding formulas for the functions ck in
(75):

q̃ = arcsin
√

cos4(γ̃/2) sin2(β̃) + cos2(β̃/2) sin2(γ̃) ,

c(2) = (c4, c5, c6)T = q̃
sin(q̃) ( sin γ̃ cos2( β̃

2 ) , sin β̃ cos2( γ̃
2 ) , 1

2 sin γ̃ sin β̃ )T ,

c(1) = (c1, c2, c3)T = x− 1
2 c(2) × x + q̃−2(1− ( q̃

2 ) cot( q̃
2 )) c(2) × (c(2) × x).

(76)

These functions ck (the case q = 1) are indeed consistent with the functions ck
0 (the case q = 0) in the sense that

lim
q↓0

q−wk ck(x qw1 , y qw2 , z qw3 , ñ(qw4 β̃, qw5 β̃)) = ck
0(x, y, z, β̃, γ̃), where we recall Eq. (59) for k = 1, 2 . . . , 5.

7 Implementation of the Left-Invariant Derivatives andR3×S2-Diffusion

In our implementations we do not use the two charts (among which the Euler-angles parametrization) of S2

because this would involve cumbersome and expensive bookkeeping of mapping the coordinates from one chart
to the other (which becomes necessary each time the singularities (3) and (6) are reached). Instead we recall
that the left-invariant vector fields on HARDI-orientation scores Ũ : SE(3) → R, which by definition (recall
Definition 4) automatically satisfy

Ũ(y, RRez,α) = Ũ(y, R), for ally ∈ R3, (77)

are constructed by the derivative of the right-regular representation

AiŨ(g) = (dR(Ai)Ũ)(g) = lim
t↓0

Ũ(g et Ai)− Ũ(g)
t

= lim
t↓0

Ũ(g et Ai)− Ũ(g e−t Ai)
2t

,

where in the numerics we can take finite step-sizes in the righthand side. Now in order to avoid a redundant
computation we can also avoid taking the de-tour via HARDI-orientation scores and actually work with the left-
invariant vector fields on the HARDI data itself. To this end we need the consistent right-action R of SE(3)
acting on the space of HARDI images L2(R3 o S2). Let H denote the space of HARDI-orientation scores, i.e.
H is the space of quadratic integrable functions on the group SE(3) which satisfy Eq. (77). To construct this
consistent right-action on H we first define S : L2(R3 o S2) → H , by

(S U)(x, R) = Ũ(x, R) = U(x, Rez).
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This mapping is injective and its left-inverse is given by (S−1Ũ)(x, n) = Ũ(x, Rn), where again Rn ∈ SO(3)
is some rotation such that Rnez = n. Now the consistent right-action R : SE(3) → B(L2(R3 o S2)), where
B(L2(R3 o S2)) stands for all bounded linear operators on the space of HARDI images, is given by

(R(x,R)U)(y, n) = (S−1 ◦ R(x,R) ◦ S U)(y, n) = U(Rnx + y, RnRez).

This yields the left-invariant vector fields (directly) on sufficiently smooth HARDI images:

AiU(y, n) = (dR(Ai)U)(y, n) = lim
h↓0

(Reh Ai U)(y, n)− U(y, n)
h

= lim
h↓0

(Reh Ai U)(y, n)− (Re−h Ai U)(y, n)
2h

.

Now in our algorithms we take finite step-sizes and elementary computations (using the exponent given by Eq.
(54)) yield the following simple expressions for the (horizontal) left-invariant vector fields:

A1U(y, n) ≈ U(y+h Rnex , n)−U(y−h Rnex , n)
2h ,

A2U(y, n) ≈ U(y+h Rney , n)−U(y−h Rney , n)
2h ,

A3U(y, n) ≈ U(y+h Rnez , n)−U(y−h Rnez , n)
2h ,

A4U(y, n) ≈ U(y , Rn Rex,h ez)−U(y , Rn Rex,−h ez)
2h ,

A5U(y, n) ≈ U(y , Rn Rey,h ez)−U(y , Rn Rey,−h ez)

2h .
(78)

The left-invariant vector fields {A1,A2,A4,A5} clearly depend on the choice of Rn ∈ SO(3) which maps
Rnez = n. Now functions in the space H are α-right invariant, so thereby we may assume that R can be written
as R = Rex,γ̃Rey,β̃ , now if we choose Rn again such that Rn = Rñ(β̃,γ̃) = Rex,γ̃Rey,β̃Rez,α̃=α0=0 then we take
consistent sections in SO(3)/SO(2) and we get full invertibility S−1 ◦ S = S ◦ S−1 = I.

In our diffusion schemes, however, the choice of representant Rn is irrelevant, because we impose α-right
invariance (31) on the diffusion generator (which in the linear case boils down to Eq. (34)) and as a result we
have D44 = D55, D11 = D22. The thereby obtained operators (A4)2 + (A5)2 = ∆S2 |H and D11 = D22 and
(A4)2 + (A5)2 are invariant under transformations of the type A 7→ Zα0A for all α0 ∈ [0, 2π), recall Eq. (32).

In the computation of Eq. (78) one would have liked to work with discrete subgroups of SO(3) acting on S2

in order to avoid interpolations, but unfortunately the platonic solid with the largest amount of vertices (only 20)
is the dodecahedron and the platonic solid with the largest amount of faces (again only 20) is the icosahedron.
Nevertheless, we would like to sample the 2-sphere such that the distance between sampling points should be as
equal as possible and simultaneously the area around each sample point should be as equal as possible. Therefore
we follow the common approach by regular triangulations (i.e. each triangle is regularly divided into (o + 1)2

triangles) of the icosahedron, followed by a projection on the sphere. This leads to No = 2 + 10(o + 1)2 vertices.
We typically considered o = 1, 2, 3, for further details on uniform spherical sampling, see [26, ch.7.8.1].

For the required interpolations to compute (78) within our spherical sampling there are two simple options.
Either one uses a triangular interpolation of using the three closest sampling points, or one uses a discrete spherical
harmonic interpolation. The disadvantage of the first and simplest approach is that it introduces additional blurring,
whereas the second approach can lead to overshoots and undershoots. In the latter approach a π-symmetric
function on the sphere only requires even values for l ∈ {0, 2, 4, . . . , L} in which case the total amount of spherical
harmonics is nSH = 1

2 (L + 1)(L + 2). Although, there exist more efficient and accurate algorithms for discrete
harmonic transforms (DSHT), [15, 38], we next give a brief explanation of the basic algorithm we used. To this
end we first recall that the continuous spherical Harmonic transform is given by

(SHT (f))(l, m) = (Y l
m, f)L2(S2) =

∫ 2π

0

∫ π

0

Y l
m(β, γ)f(n(β, γ)) sinβ dβdγ. (79)

The spherical harmonics (38) form a complete orthonormal basis in L2(S2), so the inverse is given by

f(n(β, γ)) =
∞∑

l=0

l∑

m=−l

(SHT (f))(l, m)Y l
m(β, γ) (80)

for almost every β ∈ [0, π) and almost every γ ∈ [0, 2π). As mentioned before (in Subsection 4.1) the function f
becomes a regular smooth function (which is defined everywhere) if we apply a slight diffusion on the 2-sphere :

etreg∆S2 f(n(β, γ)) =
∞∑

l=0

l∑

m=−l

e−treg(l+1)l(SHT (f))(l, m)Y l
m(β, γ) , (81)

with 0 < treg ¿ 1. Next we explain two basic discrete versions of the SHT-transform. Both can be used in a
finite difference scheme requiring discretization of for example ∆S2 = (A4)2 + (A5)2

∣∣
H

.

26



7.1 DSHT and DISHT
There exist two basic approaches to discretize the continuous spherical harmonic transform. Either one considers
Eq. (79) as a starting point and approximates the integral by a Riemann sum taking care of the surface measure,
yielding the DSHT-transform and its pseudo-inverse. Or one considers Eq. (80) as a starting point yielding
the DISHT-transform and its pseudoinverse. The first approach is exact on the grid if the number of spherical
harmonics is larger than the number of samples nSH ≥ No, whereas the second approach is exact on the grid if
nSH ≤ No.

The pseudoinverse Q+ of a matrix Q ∈ Rm×n is defined by Q+x = limδ↓0(Q†Q + δI)−1Q†x, with Q† =
QT . Iff the columns of Q are linearly independent, then Q+ = (Q†Q)−1Q† and Q+Q = I.

Consider a “uniform” spherical sampling {nk}No

k=1 ⊂ S2 such that the associated a nSH ×No-matrix

M = [M j
k ] = [

1√
C

Y
l(j)
m(j)(nk)], with l(j) = b

√
j − 1c and m(j) = j − (l(j))2 − l(j)− 1

and C =
∑nSH

j=1 |Y l(j)
m(j)(0, 0)|2 (chosen to ensure that M†M has 1 on the diagonal), has linearly independent

columns (so No ≤ nSH ). Then the DSHT and its pseudo-inverse are given by

DSHT[f] = MΛ f ,
DSHT+[s] = ((MΛ)†MΛ)−1(MΛ)† s , nSH ≥ No,

(82)

where the matrix Λ = diag{δS2(n1), . . . , δS2(nNo)} contains discrete surface measures δS2(nk) given by

δS2(nk) =
1
6

∑

i 6=k,j 6=k,i 6=j,i∼j∼k

A(ni, nj , nk) , (83)

where i ∼ j means that ni and nj are part of a locally smallest triangle in say the second order tessellation of an
icosahedron and where the surface measure of the spherical projection of such a triangle is given by

A(ni, nj , nk) = 4 arctan(
√

tan(sijk/2) tan((sijk − sij)/2) tan((sijk − sik)/2) tan((sijk − sjk)/2)) ,
with sijk = 1

2 (sij + sik + sjk) and sij = arccos(ni · nj).

The DISHT (which follows by sampling of Eq. (80)) and its pseudo-inverse DISHT+ are given by

DISHT[s] = MT s
(DISHT)+[f] = (MMT )−1(M) f , nSH ≤ No.

(84)

The pseudo-inverse DISHT+ is commonly used in HARDI-DTI imaging (on separate glyphs) as initiated by [14]
where the authors include a Tikhonov-type of regularization (MMT + γ2diag{l(j)(l(j) + 1)})−1(M) f, γ > 0,
within the transform DISHT+. This destroys (well-posed) invertibility on the grid but clearly it stabilizes the
acquisition of low order spherical harmonic coefficients from in practice often incomplete spherical samplings.
However, in our framework we would like to return from the spherical harmonic coefficients to the spherical
sampling on say a 2nd order tessellation of an icosahedron. Moreover, we would like to include the weighting
factors δS2(nk) (which satisfy

∑No

k=1 δS2(nk) = 4π) that compensate for differences in the surrounding areas of
the sampling points. So we have two options for computing the left-invariant Laplacian on S2:

∆S2W (y, nk, t) =
∞∑

l=0

l∑
m=−l

l(l + 1) (SHT(f))(l,m)Yl,m(nk)

≈ [
DSHT+ [j 7→ l(j)(l(j) + 1) e−treg(l(j)+1)l(j) · DSHT[k′ 7→ W (y, n′k, t)](j) ]

]
[k],

≈ 1
δS2 (nk) [DISHT [j 7→ l(j)(l(j) + 1) e−treg(l(j)+1)l(j) · DSHT[k′ 7→ W (y, n′k, t)](j) ]

]
[k]

(85)

with regularizing parameter 0 < treg ¿ 1. In order to stay close to the continuous setting we have applied the
second option in our discrete experiments, although the second option would act entirely in the discrete setting
(where DSHT+ ◦ DSHT = I if nSH ≥ No). The two methods converge to each other if nSH →∞, since

(M†M → I as nSH →∞) ⇒ (DSHT+ → Λ−1MT = Λ−1DISHT as nSH →∞).

See Figure 6. In practice one must be careful since if nSH becomes too large aliasing artifacts arise and
a potential decrease of numerical instability arises. Therefore we included a regularization parameter treg to
guarantee stability. Typically treg > 0 should be chosen very small, but not too small as the function j 7→
l(j)(l(j) + 1) e−treg(l(j)+1)(l(j)) DSHT[k′ 7→ W (y, n′k, t)](j) should nearly vanish at j ≥ No to avoid aliasing.
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Figure 6: Effect of increasing spherical harmonic bandwidth L on the net operator matrix M†M = MT M for the
case No = 32 (1st order tessellation of dodecahedron). If one takes higher order spherical harmonics than strictly
required, reconstruction of the sampled function on the sphere improves. Note that M†M → I as nSH →∞.

7.2 Finite Difference Scheme for Linear R3 o S2 Diffusion
The linear diffusion system on R3 o S2 can be rewritten as

{
∂tW (y, n, t) =

(
D11((A1)2 + (A2)2) + D33(A3)2 + D44∆S2

)
W (y, n, t)

W (y, n, 0) = U(y, n) ,
(86)

This system is the Fokker-Planck equation of horizontal Brownian motion on R3 o S2 if D11 = 0. Spatially, we
take second order centered finite differences for (A1)2, (A2)2 and (A3)2, i.e. we applied the discrete operators in
the righthand side of Eq. (78) twice (where we replaced 2h 7→ h to ensure direct-neighbors interaction), e.g. we
have

((A3)2W )(y, n, t) ≈ W (y + hRnez, n, t)− 2 W (y, n, t) + W (y− hRnez, n, t)
h2

, (87)

where one can either apply the earlier mentioned interpolation methods (2nd order B-spline or Eq. (81)) or (as
we did in our experiments) one first computes all second order finite differences on the cubic spatial grid and
rotates them back to the spatial part of the moving frame of reference, Eq. (24), attached to (y, n). The spherical
Laplacian ∆LB is computed by means of Eq. (85) (second approximation). For efficiency, the chain of operators,
DSHT-diag{l(l+1)e−tregl(l+1)}-DISHT, is stored in a single No×No-matrix, so that calculation of ∆S2 consists
of a simple matrix-vector multiplication. In our algorithm we apply a first order approximation in time

∂tW (y, n, t) ≈ W (y, n, t + ∆t)−W (y, n, t)
∆t

, (88)

where we choose ∆t small enough such that the algorithm is stable. As we have shown in [21, ch:7.2, App.B]
sharp upper bounds on ∆t which guarantee stability are given by

∆t ≤ h2

4D11+2D33+D44h2 L(L+1)

2 e
tregL(L+1)

if treg · L(L + 1) ≤ 1 ,

∆t ≤ h2

4D11+2D33+D44h2 1
2e treg

if treg · L(L + 1) > 1
(89)

where h denotes spatial step size and L = b√nSH − 1c. An increase of spatial diffusivity and angular diffusivity
yields a decrease in the maximum time step, whereas an increase of the regularity parameter treg allows a larger
time step. We also recognize a turning point if treg ·(L(L+1)) = 1. The multiplier l(j)(l(j)+1)e−tregl(j)(l(j)+1)

attains its maximum at j < nSH if treg > (L(L + 1))−1. This is desirable since the multiplier is supposed to
vanish at j = nSH ≈ No. In the experiment of Figure 10, we have set h = 10−1, no = 162, L = 18 (restricting l
to even order), treg = 0.01, D33 = 1, D11 = 10−2, D44 = 10−4 and ∆t = 0.005.

7.3 Convolution Schemes for Linear R3 o S2-Diffusion
Instead of a finite difference scheme one can use the theoretical fact that the solutions of the linear diffusions, Eq.
(36), are given by R3 o S2-convolution, Eq. (37), with the corresponding Green’s function pD,a

t that we derived
analytically in Section 6. The convolution scheme is a relatively straightforward discretization of W (y, n, t) =
(pD,a

t ∗R3oS2 U)(y, n) given by Eq. (10), where the integrals are usually replaced by sums using the mid-point
rule (unless one has to deal with the singularity at the origin of the contour-completion kernel). We will consider
specific practical implementation issues later in subsection 8.2. In this subsection we restrict ourselves to an
overview of options for the computation of the Green’s functions.
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Figure 7: Glyph visualization of the analytic approximations (for 0 < D44/D33 ¿ 1) , Eq. (69), using asymptotical
formula (70) of the Green’s function pD33,D44;R3oS2

t for contour enhancement, satisfying the semigroup property:
pD33,D44;R3oS2

t+s = pD33,D44;R3oS2

s ∗R3oS2 pD33,D44;R3oS2

t and consequently there arise no artefacts (such as in
Figure 5) in the iterative diffusion. We normalized stretching parameter D33 = 1 and the values of D44 and t are
depicted on top. The size of the kernel is controlled by t > 0 and D44 controls the bending of the kernel.

We propose the following options to evaluate the Green’s function for contour enhancement (i.e. non-zero
parameters are D33 > 0, D44 = D55 > 0 and D11 = D22 ≥ 0) in Eq. (37):

1. Use the finite difference scheme to numerically approximate the Green’s function. Disadvantage: This
requires interpolation. For small time steps ∆t ¿ 1 this numeric approximation is very accurate.

2. if D11 = D22 = 0 we can use the analytic approximation formulae for the contour enhancement kernel.
Here one can either use Eq. (75) where the functions (x, n) 7→ ck(x, n) are computed by means of the
algorithm (76), or one may use the simpler but less accurate formula (69) using the asymptotical formula
(70). In case D44/D33 ¿ 1 one may want to use the fast Heisenberg approximation kernel, Eq. (68),
together with Eq. (70).

For the contour-completion case where the non-zero parameters are a3 = 1, D44 = D55 > 0 generalizations
of the finite difference scheme of the previous section are questionable due to the trade-off between accuracy of
convection and stability of diffusion. Alternation of convection and diffusion with very small time steps (like
described in [52] for the SE(2)-case) is probably preferable here. To avoid these technical issues we propose
kernel-implementations for the contour completion case, where we distinguish between the following options:

1. For the resolvent of the contour-completion process use analytic formula (64) (accurate if 4λD44 ¿ 1).

2. For the time-dependent contour completion process use analytical formula (65) (accurate if 4tD44 ¿ 1).

Figure 7 shows HARDI glyph visualizations of several contour enhancement kernels and Figure 8 shows HARDI
glyph visualizations of a contour completion kernel.

8 Experiments of Linear Crossing-preserving Diffusion on R3 o S2

In the previous section we have discussed two different kinds of implementations of crossing-preserving diffusion
on HARDI images, namely left-invariance finite difference schemes and left-invariant convolution schemes. In
this section we will show some experiments of these approaches and furthermore we discuss some practical issues
that come along with these approaches.
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Figure 8: Left: Glyph visualization of the analytic approximations (accurate for 0 < 4λD44 ¿ 1) given by Eq.
(64) of the Green’s function pλ,D44;R3oS2

for contour completion. Top right: HARDI glyphs at (0, 0, z) with from
left to right z = 0.1, 0.5, 1, 1.5. The contour completion kernel is single-sided (i.e. pλ,D44;R3oS2

(x, y, z, n) = 0
for z < 0), in contrast to the contour enhancement kernel depicted in Figure 7. The positive probability density
kernel pλ,D44;R3oS2

is L1-normalized but has a singularity at the origin, akin to its 2D-equivalent [23, 39].

Before we will consider the different practical properties of the two approaches, we briefly comment on their
analogies. Firstly, each step in the finite difference schemes is a linear kernel operator and thereby in prin-
ciple (due to Corollary 1) a R3 o S2-convolution with a small kernel which is non-zero on the discretization
stencil). Secondly, the computational order of the algorithms is comparable. The R3 o S2-convolutions are of
order O(NsN0KsKo) and the finite difference schemes are of order O(NsNoNitNst), where Ns, No respectively
stands for the total number of spatial and orientation samples of the HARDI image, Ks,Ko respectively stand for
the number of spatial samples and average number of orientation samples of the convolution kernel and Nit stands
for number of iteration with a discretization stencil of length Nst. Thirdly, both approaches are very well suited
for parallel implementation.

8.1 Experiments Finite Difference Scheme
We implemented linear, left-invariant diffusion on HARDI data with diagonal diffusion matrix D = diag(Dii) with
D11 = D22, D44 = D55 (and D66 = 0) using an explicit numerical scheme as explained in Subsubsection 7.2.
Figure 9 and 10 show results of the linear diffusion process. In these examples an artificial three-dimensional
HARDI dataset is created, to which Rician noise is added, meaning that we applied the transformation

( (y, n) 7→ U(y, n) ) 7→ ( (y, n) 7→
√

(U(y, n) cos(η1) + η2)2 + (U(y, n) sin(η1) + η3)2 ) (90)

where η2, η3 ∼ N (0, σ) normally distributed and η1 uniformly distributed over [0, 2π).
Next, we applied two different R3 o S2-diffusions on both the noise-free and the noisy dataset. To visualize

our results we used the DTI tool (see http://www.bmia.bmt.tue.nl/software/dtitool/ ) which can visualize HARDI
glyphs using the Q-ball visualization method [14]. In the results, all glyphs are scaled equivalently. The isotropic
diffusion (D33 = D22 = D11) does not preserve the anisotropy of the glyphs well; especially in the noisy case
we observe that we get almost isotropic glyphs. With anisotropic diffusion, the anisotropy of the HARDI glyphs
is preserved much better and in the noisy case the noise is clearly reduced. See Figures 9 and 10. The resulting
glyphs are, however, less directed than in the noise-free input image. This would improve when using nonlinear
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diffusion. The basic theoretical PDE-framework for nonlinear diffusions, is the subject of the last section. As
an alternative to nonlinear adaptive diffusion, we are currently investigating the inclusion of sharpening steps by
means of left-invariant erosions (solutions of left-invariant Hamilton-Jacobi PDEs on HARDI data). Practical
properties of the left-invariant finite difference schemes are:

++ It is relatively easy to adapt and generalize to nonlinear (adaptive) diffusion schemes.
−− The explicit finite difference scheme is only stable for sufficiently small time steps.
− The algorithm includes extra numerical blur, which does not accurately follow the continuous PDE-theory.
− If the DSHT-coefficients of the HARDI image quickly decay, best results are obtained with small treg > 0.

But often for those values of treg the corresponding impulse response contains aliasing artefacts.

8.2 Implementation and Experiments Convolution Schemes
In Subsection 7.3 we have provided an overview of options for computing the Green’s functions of contour en-
hancement and contour completion. Now suppose we have chosen an analytic approximation formula p(y, n) for
the Green’s function p : R3 o S2 → R+, then we can rewrite Eq. (37) in L2-inner product form

(p ∗R3oS2 U)(y, n) = (L(y,Rn)p̌, U)L2(R3oS2), (91)

where we recall Definition 2 of L and where we define p̌(y′, n′) := p(−RT
n′y′, RT

n′ez). Note that

p̌(y′, n′) = k(0, ez ; y′, n′) and p(y, n) = k(y, n ; 0, ez), for all (y, n), (y′, n′) ∈ R3 o S2.

Now p(y, n) denotes the probability density of finding a random walker at (y, n) given that it started at (0, ez),
so that p̌(y, n) = p(−RT

n y, RT
n ez) denotes the probability density of finding a random walker at (−RT

n y, RT
n ez)

given that it started at (0, ez), which is by left-invariance of the stochastic process the same as the probability
density of finding a random walker at (0, ez) given that it started at (y, n).

The main advantage of formula (91) is that in practice we can pre-compute/sample all rotated versions and
translated versions {L(y,Rn)p̌ | y ∈ R3, n ∈ S2} of the check-kernel p̌, so that the remainder of the algorithm
just consists of computing L2-inner products which can be done in parallel. In contrast to the finite difference
schemes, the convolution schemes are unconditionally stable. In fact, we even have

‖p ∗R3oS2 U‖L1(R3oS2) = ‖p‖L1(R3oS2)‖U‖L1(R3oS2) = 1 · ‖U‖L1(R3oS2) ,
‖p ∗R3oS2 U‖L∞(R3oS2) = sup

(y,n)
|p ∗R3oS2 U(y, n)| ≤ ‖L(y,Rn)p̌‖L2(R3oS2)‖U‖L2(R3oS2) ≤ ‖p‖L2(R3oS2)‖U‖L2(R3oS2).

i.e. preservation of mass (which also holds on the discrete grid if the discretely sampled versions of L(y,Rn)p̌ are
`1-normalized on the grid) and a small L2-perturbation on the input yields a small L∞-perturbation on the output.

Finally, formula (91) provides the following fast discrete approximation/truncation:

(p ∗R3oS2 U)(y, n) ≈
∑

y′∈R3, ‖y′−y‖∞≤R

K(y′,y,n)∑

k=1

(Ly,Rn p̌)(y′, n′k)U(y′, n′k)∆y′ δS2(n′k), (92)

with spatial step size ∆y = (∆y′1,∆y′2, ∆y′3) and where we truncated the spatial integration to a cube ‖y′−y‖∞ =
sup

i=1,2,3
|y′i−yi| ≤ R, R > 0, where we recall Eq. (83) and where {n′k}No

k=1 := {n′k(y′, y, n)}No

k=1, forms an a priori

defined lookup table by sorting the points {n′k}No

k=1 such that

L(y,Rn)p̌(y′, n′k+1) < L(y,Rn)p̌(y′, n′k)

and where K(y′, y, n) = max{k ∈ {1, . . . , No} | L(y,Rn)p̌(y′, nk) ≤ ε}, with tolerance ε > 0. We usually set
R ∈ {1, 2, 3, 4} (see for example Figure 11 where we even set R = 1) for the spatial truncation and ε = 10−5

for angular truncation. The gain in speed mostly lies in the angular truncation, as the convolution kernels are for
reasonable parameter settings of D33, D44, t, λ rather orientation-selective, recall Figure 7 and Figure 8.

Summarizing we have the following practical properties of the left-invariant convolution schemes:

+ The convolution kernels can be pre-computed and truncated.
+ The algorithm does not suffer from the typical numerical blur of finite difference schemes.

+ + The algorithm is unconditionally stable.
+ For single sided kernels (completion) one can include reflections, as we will see in Subsection 8.2.1.

+ + The algorithm is easily extended to left-invariant dilations/erosions on HARDI images by replacing the
(+, ·)-algebra by the (max, +)-algebra in the convolution, akin to previous work on regular images [9, 10].

- - Generalization to nonlinear adaptive diffusions: Adapting the kernel to the data locally is no longer
a convolution and the relation to left-invariant PDEs is no longer clear.
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(a) t = 0, no noise (b) t = 0, added noise

(c) t = 1, µ-isotropic, no noise (d) t = 1, µ-isotropic, added noise

(e) t = 1, anisotropic, no noise (f) t = 1, anisotropic, added noise

Figure 9: Result of R3 o S2-diffusion (computed by the finite difference scheme, section 7.2) on an artificial
HARDI dataset of two crossing straight lines, with and without added Rician noise (90) with σ = 0.17 (signal
amplitude 1). Image size: 10× 10× 10 spatial and 162 orientations. Parameters of the isotropic diffusion process:
D11 = D22 = D33 = 1, D44 = D55 = 0.01. Parameters of the anisotropic diffusion process: D11 = D22 =
0.01, D33 = 1, D44 = D55 = 10−4. In both cases we have set treg = 0.01 in Eq. (81).
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(a) t = 0 no noise (b) t = 0 added noise

(c) t = 1 no noise (d) t = 1 added noise

Figure 10: Result of R3 o S2-diffusion (computed by the finite difference scheme, section 7.2) on an artificial
HARDI dataset of two crossing lines where one of the lines is curved, with and without added Rician noise, see
Eq. (90), with σ = 0.17 (signal amplitude 1). We have magnified the crossing areas on the top-right of the figures
before and after the linear anisotropic diffusion. Image size: 10× 10× 10 spatial and 162 orientations. Parameters
of the linear anisotropic diffusion process: D11 = D22 = 0.01, D33 = 1, D44 = D55 = 10−4, treg = 0.01 in Eq.
(81).
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For further experiments of convolution schemes solving diffusion (combined with basic grey-value transforma-
tions, such as squaring U(y, n) 7→ (U(y, n))2) on medical HARDI and DTI datasets, see the recent works [43,44],
where the first author of this article collaborated with P. Rodrigues and V. Prčkovska et al.

8.2.1 Spherical Reflection Symmetries: Preservation of Reflection Symmetry in Contour Enhancement
and including Glyph-attraction in Contour Completion

The big difference between the stochastic processes for contour completion and contour enhancement is that
contour completion kernels are single-sided, whereas contour enhancement kernels are double-sided. Compare
Figure 7 to Figure 8. This change in reflection symmetry has two consequences:

1. The initial HARDI data are usually invariant under spherical reflections, i.e. U(y, n) = (rS2U)(y, n) :=
U(y,−n). In contrast to contour completion, contour enhancement preserves this symmetry during the
evolution, as can be seen in Figure 9 and Figure 10. This directly follows by the fact that the generator of
contour completion −A3 + ∆S2 and the generator of contour enhancement (A3)2 + ∆S2 satisfy

(−A3 + ∆S2) ◦ rS2 = rS2 ◦ (+A3 + ∆S2) ,
((A3)2 + ∆S2) ◦ rS2 = rS2 ◦ ((A3)2 + ∆S2) .

(93)

2. It allows a relevant extension of our contour completion processes, where we replace theR3oS2-convolutions
by (R3oO(3))/({0}×SO(2)) convolutions as we will explain next. Here O(3)={M ∈ R3×3|MT = M−1}
denotes the group of orthogonal matrices on R3 which includes both rotations det M = +1 and reflections
detM = −1. The practical advantage of these (R3 o O(3))/({0} × SO(2))-convolution is that it allows
us to include attraction of glyphs, rather than continuation of glyphs. See Figure 11 and compare the two
images in the middle. To achieve this extension we need a different kind of reflections, namely spatial reflec-
tions given by rR3U(y, n) := U(−y, n). These spatial reflections rR2 intertwine the contour enhancement
and completion generators in the same way as the angular reflections rS2 :

(−A3 + ∆S2) ◦ rR3 = rR3 ◦ (+A3 + ∆S2) ,
((A3)2 + ∆S2) ◦ rR3 = rR3 ◦ ((A3)2 + ∆S2) .

(94)

Now indeed Eq. (94) is analogous to Eq. (93) but the crucial difference between these two types of reflec-
tions is:

rR3δe = δe and rS2δe 6= δe and rR3U 6= U and rS2U = U . (95)

Now Eq. (95) and Eq. (94) directly imply the spatial reflection symmetry of the contour enhancement kernel
as can be seen in Figure 7. Clearly the contour completion kernel does not admit such a symmetry and we
arrive at the following three possible choices of (R3 oO(3))/({0} × SO(2))-convolutions:

(pλ,D44 ∗(R3oO(3))/({0}×SO(2)) U)(y, n) =
∑

ε′∈{−1,1}
qab(ε

′)
∫

S2

∫
R3

pλ,D44(ε′RT
n′(y− y′), RT

n′n) U(y′, n′) dy′dσ(n′)

with qab(ε
′) = 1

2
(a δε′ 1 + b δ−ε′ 1) , a, b ∈ {0, 1}, ab 6= 0.

(96)

These two issues are illustrated in Figure 11 for a simple example of a HARDI image induced by a DTI image, i.e.
U(y, n) = nT D(y)n. In Figure 11 we have set rotation matrices S(y) such that D(y) = (S(y))−1diag{0.1, 0.1, 1}S(y).
Furthermore, we applied Rician noise on the HARDI data, recall Eq. (90). The particular case a = b = 1 in Eq.
(96) yields results that are similar to convolution with contour enhancement kernels (recall Figure 7) for suitable
choice of D33 and D44. The difference in practice is that the sum of two spatially reflected contour completion
kernels yields a double sided kernel that is typically sharper kernel at the center than a contour enhancement
kernel.

9 Nonlinear, Adaptive, Left-Invariant Diffusions on HARDI images
So far we have considered linear left-invariant diffusions, whose solutions are given by convolution with a fixed
Green’s function reflecting an a priori probability model for fiber-extension. In many applications however, it is
important to adapt the fiber-extension model to the data, where we can include adaptive curvature and adaptive
torsion. Now by Theorem 3, it follows that in order to include adaptive torsion and curvature we must re-align

34



Figure 11: Left: Plane in artificial 3D DTI input data (outside the plane the DTI tensor field is set to 0). We
added Rician noise, Eq. (90), σ = 0.2. Right: squared output of convolution algorithm (96) and (92) (with
R = 1, tol = 10−5) applying respectively, from left to right, a contour completion kernel (a = 1, b = 0), a
spatially reflected completion kernel (a = 0, b = 1), and the sum of a reflected and non-reflected completion
kernel (a = 1, b = 1). All kernels are sampled on a 3 × 3 × 3 × 162 grid, whereas input (left) is sampled on a
10× 10× 10× 162-grid.

the left-invariant local coordinate frame {A1, . . . ,A5} by means of a locally optimally fitting exponential curve,
where we recall (51)).

Our first aim is to determine the exponential curve, recall Eq. (54), that optimally fits the distribution (y, n) 7→
U(y, n) ∈ R+ at each position (y, n) ∈ R3 o S2. Recall that such a distribution gives rise to a probability
distribution (x, R) 7→ Ũ(x, R) on SE(3) by means of (27). To achieve our goal, we follow the same approach as in
our previous works on nonlinear diffusions on invertible orientation scores (of 2D-images) defined on SE(2) [26,
p.118-120], [20, part II, ch:3.4], [27, ch:5.2]. We again formulate a minimization problem that minimizes over
the “iso-contours” of the left-invariant gradient vector at (y, n) ∈ R3 o S2, yielding optimal tangent vector
c∗(y, n) = (c1

∗(y, n), . . . , c5
∗(y, n), 0)T :

c∗(y, n) = arg min
c(y,n)





∥∥∥∥∥
d
dt

(∇Ũ(g etc(y,n)))

∣∣∣∣∣
t=0

∥∥∥∥∥

2

µ

∣∣∣∣ ‖c(y, n)‖µ = 1



 , (97)

with g = (y, Rn) and where the left-invariant gradient

dŨ(g) =
5∑

i=1

(Ai(Ũ))(g) dAi
∣∣
g

, g ∈ SE(3),

a co-vector field, is represented by a row-vector given by ∇Ũ(g) = (A1Ũ(g), . . . ,A5Ũ(g), 0) and where ‖ · ‖µ

denotes both the norm on a vector in tangent space Tg(SE(3)) and the dual norm on a covector in the dual
tangent space T ∗g (SE(3)). We represent tangent vectors c(y, n) =

∑5
i=1 ci(y, n) Ai|g=(y,Rn)

as column-vector
c(y, n) = (c1

∗(y, n), . . . , c5
∗(y, n), 0)T and their norm is defined by ‖c‖µ :=

√
(c, c)µ with the inner product

(c, c)µ := µ2
(∑3

j=1 cjcj
)

+
∑6

j=4 cjcj . where parameter10 µ ensures that all components of the inner product
are dimensionless. The value of the parameter determines how the distance in the spatial dimensions relates to
distance in the orientation dimension. Implicitly, this also defines the norm on covectors by ‖ĉ‖µ =

√
(ĉ, ĉ)µ,

(ĉ, ĉ)µ = 〈ĉ, G−1
µ ĉ〉 = µ−2(

∑3
j=1 cjcj) +

∑6
j=4 cjcj . By means of the calculus of variations it follows that the

minimizer c∗(y, n) satisfies

(MµHŨ(g)Mµ)T (MµHŨ(g)Mµ) c̃∗(y, n) = λ c̃∗(y, n), (98)

with Mµ := diag(1/µ, 1/µ, 1/µ, 1, 1, 1), c̃∗ = M−1
µ c∗ and where the 6× 6 Hessian of Ũ on R3 o S2 equals

HŨ(g) = [AjAiU(g)]i row-index
j column index, g = (y, R) ∈ SE(3).

where the last row contains of zeros only. This amounts to eigensystem analysis of the symmetric 6 × 6 matrix-
valued function g 7→ (MµHŨ(g)Mµ)T (MµHŨ(g)Mµ), where one of the three eigenvectors gives c̃∗(y, n). The

10In some of our previous works on SE(2) we denoted this fundamental parameter by β−1 > 0, but here we use µ > 0 to avoid confusion
with Euler-angle β > 0 in SO(3). The left-invariant Riemannian metric on SE(3) is given by

∑3
i=1 µ2dAi⊗ dAi +

∑6
j=4 dAj ⊗ dAj .
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eigenvector with the smallest corresponding eigenvalue is selected as tangent vector c̃∗(y, n), and the desired
tangent vector c∗(y, n) is then given by c∗(y, n) = Mµ c̃∗(y, n).

Now that we have computed the optimal tangent vector c(y, n) at (y, n) 7→ U(y, n) (and thereby the best fitting
exponential curve t 7→ g e

∑5
i=1 ciAi in R3 o S2) we construct the nonlinear adaptive diffusion function:

D(U)(y, n) = c∗(y, n) c(y, n)T µ2(1−Da(U)(y, n))
‖c(y, n)‖2µ

+ Da(U)(y, n)
(

I3 0
0 µ2I3

)
,

where Da(U)(y, n) is a locally adaptive anisotropy factor. Finally, we note that the conditions (35) are satisfied
so our final well-defined nonlinear diffusion system on the HARDI data are:





∂tW (y, n, t) =
6∑

i,j=1

(Ai [D(U)(y, n)]ij Aj W )(y, n, t) ,

lim
t↓0

W (y, n, t) = U(y, n) .
(99)

10 Conclusion
For the purpose of tractography (detection of biological fibers) and visualization, DTI and HARDI data should
be enhanced such that fiber junctions are maintained, while reducing high frequency noise in the joined domain
R3 o S2 of positions and orientations. Therefore we have considered diffusions on HARDI and DTI induced by
fundamental stochastic processes on R3 o S2 embedded in the group manifold SE(3) of 3D rigid body motions.
We have shown that the processing must be left-invariant and we have classified all linear left-invariant diffusions
on HARDI images. We presented two novel diffusion approaches which take place simultaneously over both po-
sitions and orientations. These two approaches do allow enhancement of fibres while preserving crossings and/or
bifurcations. These two diffusions are Fokker-Planck equations of stochastic processes (random walks) for respec-
tively contour enhancement and contour completion. In a contour completion process a random walker always
proceeds forward in space along its prescribed random direction, whereas in a contour enhancement process the
random walker randomly moves forward and backward in its prescribed random orientation. As a result the con-
tour completion process is generated by −A3 + D44∆S2 whereas the contour enhancement process is generated
by the sub-Laplacian +D33(A3)2 + D44∆S2 , with D33, D44 > 0 and ∆S2 |H = A2

4 +A2
5 the Laplace-Beltrami

operator on the sphere and where Ai-denotes the i-th left-invariant vector field on R3 o S2. Consequently, the
contour enhancement process preserves the angular reflection symmetry of HARDI data, whereas the contour
completion process allows a choice between attraction or continuation of glyphs.

As the solutions of linear left-invariant diffusion equations are given byR3oS2-convolution with their Green’s
functions, we arrive at two types of implementations: Convolution schemes and finite difference schemes. Practi-
cal advantages of convolution schemes over finite difference schemes for linear diffusions are: they are uncondi-
tionally stable and do not involve the typical numerical blurring of a finite difference scheme. However, the finite
difference schemes with sufficiently small time steps do provide crossing preserving diffusion as well, and they
are preferable for our extensions to nonlinear adaptive diffusions proposed in Section 9.

The crucial theoretical observations in our framework lie in the fact that the left-invariant evolution equations
are expressed by a quadratic form in the left-invariant vector fields {Ai}6i=1 onR3oS2 embedded in SE(3), which
form a moving frame of reference consisting of a spatial velocity part {A1,A2,A3} and an angular velocity part
{A4,A5,A6}. This moving frame of reference requires the Cartan connection viewpoint11 on the underlying
differential geometry and by expressing the left-invariant diffusions in covariant derivatives we see that even the
adaptive nonlinear left-invariant evolutions locally take place along the covariantly constant curves, which coincide
with the exponential curves in SE(3). The spatial part of the exponential curves are circular spirals, i.e. curves in
R3 with constant curvature and constant torsion. As a result our nonlinear adaptive diffusion schemes allow local
adaptation for curvature and torsion, which we will further investigate and implement in future work.

Furthermore, in future work, we will apply our techniques to medical DTI-data sets and investigate whether
we can create suitable orientation density distributions (to avoid expensive HARDI acquisitions) at crossings by
means of R3 o S2-diffusion. Finally, we will consider natural extensions of our scale spaces on R3 o S2, such as
the combination of left-invariant diffusion and left-invariant Hamilton-Jacobi equations (erosions, [9]) in a single
evolution on R3 o S2.

11Rather than the torsion free Levi-Civita connection on the Riemannian manifold (SE(3), (diag(µ2, µ2, µ2, 1, 1, 1))ij dAi ⊗ dAj).
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