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ABSTRACT

Let A be an invertible linear operator on a finite dimensional complex Hilbert
space. We carry out a detailed study of the map A—»A ~!A*=®(A). It is shown that
the range of ® is exactly the set of all invertible operators T for which T~ is similar
to T*. In particular, unitaries and similarities of unitaries are in the range of ® and
we prove, among other things, the equivalence of the assertions: (i) T is similar to a
unitary, (i) every A€®Y(T) is congruent to a normal operator, (iii) there exists
B € ®~Y(T) whose field of values omits the origin of the complex plane. For general
T in the range of ®, we determine all A€S® Y(T) in terms of the self-adjoint

invertible operators fixed by the map X— T*XT. Many of the results contained in this

paper have known analogues for operators which are similar to their adjoints.

$
INTRODUCTION

On GL(n,C) the maps A>A~' and A—>A* are involutory and the
self-map ® of GL(n,C), defined by ®(A)=A ~'A*, intertwines these involu-
tions, that is ®(A*)=®(A)"". This paper is primarily a study of the intert-
wining map ®. In particular, we ’prove (Theorem 1) that the range of @ is
precisely the set of those TE€GL(n,C) for which T~! and T* are similar.
The representation of T by A “'A* is related to Hilbert’s Theorem 90 for the
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210 C. R. DEFRIMA AND C. R. JOHNSON

particular group GL(n,C) and has occurred in various contexts in recent
work, e.g., in [4, 7, 8, 10, 12, 13].

In view of Theorem 1, this paper may also be regarded as a study of those
T €GL(n,C) for which T ™! and T* are similar. In this respect, our work is
analogous to that of [1, 2, 10] where the set for which T and T* are similar is
studied. Actually these two sets may be mapped onto each other via
appropriate Cayley transforms (a fact which we do not exploit in the present
paper). Theorem 2 and 3 of §2, in which those T (and/or ®(A)) which are
similar to a unitary are characterized, are analogous to corresponding
characterizations in the above cited works of those T which are similar to a
self adjoint.

In §3 we investigate ® ~X(T) for particular T in the range of ®. This work
rests heavily on the construction of a specific square root of T (described in
§4) and on the behavior of the hermitian congruence map: S €GL(n,C)
— T*ST. Our results generally describe ®~}(T) in terms of the non-singular
hermitian matrices fixed by this map.

1. PRINCIPAL RESULTS

M, =M(n,C) denotes the algebra of all n X n matrices over the complex
tield. G,=GL(n,C) is the general linear group of all non-singular elements
of M. If TEM,,, T* denotes its adjoint (i.e., the transposed conjugate
matrix) and o(T) denotes the spectrum of T. o(T) is a finite subset of the
complex plane C consisting of at most n points.

Consider the map ®:G,—G,, defined by

B(A)=A"A*,  AEG, (1.1)

and let F designate the range of @, i.e. F,=®(G,). Hence F, is the subset
of G, whose elements are representable in the factored form A ~!A*. The
map  is readily seen to satisfy the following properties:

DA =B(A),  BA=d(AY. (1.2)
ad(A)=0(BA), laj]=1 and B !B =a. (1.3)
R'®(A)R=®(R*AR), RE€EG,. (1.4)

Consequently, in an obvious notation, F, =F*=F_'=qaF =R ~'F_R for all
a €C with |a|=1 and for all R €G,,. Moreover, a direct computation gives
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Prorosition’l. [4]. For AEG, the

(i) @(A)is
(ii) A is nor
(iii)  AP(A):

Let D, denote the set of T €G,, for w

D,={Te€G,|T*ST=§
For TEG, set

{ MT)=(S€G,]
A(T)={HeA\

Then T €D, if and only if A(T) is non v

{ A(T)=A(T V) = A(
AL(T)=Ay(TY)

Since P(AY*AD(A)=A forall AEG,,
so that F,CD,. In fact, we shall shov
constructing admissible factors for T€D,
each of which is a natural generalization o
[13] in the special instance when T is uni
However, we first give another charact
useful in what follows.

ProposiTioN 2. D, ={T€G,|A(T)~

Proof. For SEG, and z€C with |z
S.€G, if and only if —z z2¢&a(S718%)
there certainly exists z€C, |z|=1, with tl
then T*S*T=S* and T*S,T=S§,.

Taeorem 1. F =D,.

Proof. As noted above F,CD,. Henc
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ProrosiTioN 1. [4]. For AEG, the following assertions are equivalent:
(i)  ®(A) is unitary
(i) A is normal
(iii)  AP(A)=®(A)A.

3

Let D, denote the set of T €G,, for which T ™! is similar to T*, i.e.

D,={T€G,|T*ST=S forsome SEG,). (1.5)
For TEG,, set

{ A(T)={S€G,|T*ST=S5) (16)
A(T)={HEMNT)H=H*}.
Then T €D, if and only if A(T) is non void. It is easy to verify that
(An=sir sty sir 0
AL(T)=A,(T Y =A,(T%) ", '

Since ®(A)*AD(A)=A for all AEG,, we see that A(D(A)) is not empty,
so that F,CD,. In fact, we shall show in Theorem 1 that F,=D, by
constructing admissible factors for T €D,. We do this in two different ways,
each of which is a natural generalization of the factors mentioned by Taussky
[13] in the special instance when T is unitary (unitaries are obviously in D).
However, we first give another characterization of D, which will prove
useful in what follows.

ProrosiTion 2. D, ={T €G,|A(T)+ d}.

Proof. For SE€G, and 2EC with jz|=1, set S,=2z5+25*=S* Then
S.€G, if and only if —z7"2¢6(S ~!$*)=¢(®(S)). Since o(P(S)) is finite,
there certainly exists zEC, |z|=1, with the required property. If T*ST=§,
then T*S*T=S* and T*S,T=S,. n

Turorem 1. F =D, .

Proof.  As noted above F, CD,. Hence, for given T €D, we need only
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construct A €G,, for which T=®(A). We proceed to give two such construc-
tions.

(a) Assume T*HT=H=H*€G,. As o(T) is finite, there exists a €C,
|a|=1, such that a € ¢(T) and hence @& o(T*). Let 8 €C with 8" B8=a

and set

A=if(1-aT*)H.! (1.8)

A€G, and AT=if(1—aT*)HT=iBH(T— a)= —ifaH(l1—aT)= —iB(1—
aT)=A*. Hence T=A"'A* so that TEF,.

(b) The second construction is based on the existence of a particular
square root of T€D,. The relevant facts are contained in the following
lemma whose proof is given in §4.

Lemma 1. Let TE€G, . There exists a unique fEGn satisfying

() T2=7T, (i) -—%<arga(7~')<

>

o3

(i) TC=CT=TC=CT.
Moreover A(T)=A(1~").
Again, assume that T*HT=H=H*€G,, then T*HT=H. Set
B=T*H, : (1.9)
then B €G, and BT = T*HT = T*HTT = HT= B*. Hence T=®(B)= B ~'B*.

If U is unitary, U is called cramped if o(U) lies on an open arc of the
unit circle of length 7. We may then state

Cororrary 1.1. [12]. If V is unitary, then V=<IJ(‘7*) where V* is a
cramped unitary.

Proof. Since V*V=1, V*V =1, where V is the square root of V given by
Lemma 1. Thus V is unitary, cramped, and V=®(V*)= V2, ]

If TED,, T ' is similar to T*, so that o(T) is carried into itself by
reflection in the unit circle. In other words, if T€D,, then necessarily
A E o(T) implies A~ € o(T). However, this condition is clearly not sufficient
for membership in D,,. A necessary and sufficient condition is given by

1Throughout we write A —z for A—2zI, where AEM,,, z€C, and I is the identity in M,,.

‘9
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ProposiTioN 3. Let TEG,, then T €

- B
dimker(T—A)" =dimker(T—X""),
(ker denotes kernel or null space and din

Proof. Since A, BEM, are similar i
canonical Jordan representations, it folloy
if

dimker(A — z)" =dimker(B— z)

Thus, if TEG,, T is similar to T*
=dimker(T* —2)*, z€C\{0}, p=1, 2,
=ker(T—2z""* and dimker (T*—2)*=¢
obtained by setting A=2"",

In view of (1.10) of Proposition 3, any
unit circle belongs to P,,. Hence by Thec

CoroLLarY 1.2, If TEM, and o(T)

2. UNITARIES AND THEIR SIMILAF

Proposition 1 and Corollary 1.1 assert |
normal elements of G, is precisely the su
we show among other things that the ra;
non-singular hermitian congruences of th
of all similarities of the unitary group.
Theorem 3 and Corollary 3.1.

Recall that the numerical range (field

W(A)={x*Ax|x*:

W(A) is a compact convex subset of C w
W(aA+ BB)CaW(A)+ SW(B) and R
ZA¥). W(V*AV)= W(A) if V is unitary.
only if 0& W(A). AEM,, is called conve
hull of 6(A)). Normals are convexoid. W/
W(A)>0 if and only if A>0 (A is posit
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ProrosiTion 3. Let TEG,, then T €D, if and only if

dimker(T—A)' =dimker(T—-X"'), A€C—{0}, p=1,2,.... (L10)

(ker denotes kernel or null space and dim is (complex) dimension).

Proof. Since A, BEM, are similar if and only if they possess identical
canonical Jordan representations, it follows that A is similar to B if and only
if

dimker(A —z)" =dimker(B—2)", z€C, u=1,2,....

Thus, if TEG,, T is similar to 7* if and only if dimker(T ~!-z)*
=dimker(T* - z)*, 2€C\{0}, p=1, 2,.... But for 2#0 ker(T ~'—2z)*
=ker(T—2z"")* and dimker (T* — z)* =dimker (T—Z)*. The proposition is
obtained by setting A=2"". [ ]

In view of (1.10) of Proposition 3, any T €M, whose spectrum lies on the
unit circle belongs to D,. Hence by Theorem 1 we have

CoroLLARY 1.2, If TEM, and o(T)C{2€C||z|=1}, then TEF,.

2. UNITARIES AND THEIR SIMILARITIES

Proposition 1 and Corollary 1.1 assert that the range of ® restricted to the
normal elements of G, is precisely the subgroup of unitaries. In this section,
we show among other things that the range of ® restricted to the set of all
non-singular hermitian congruences of the normal elements of G, is the set
of all similarities of the unitary group. The relevant facts are contained in
Theorem 3 and Corollary 3.1.

Recall that the numerical range (field of values) of A €M, is defined as

W(A)=Fx*Ax|x*x=1,x€C"}. (2.1)

W(A) is a compact convex subset of C which contains 6(A). For a, 8, 2€C,
W(aA + BB)CaW(A)+ SW(B) and RezW(A)= W(RezA)=1/2W(ZA +
2A*). W(V*AV)= W(A) if V is unitary. For R €G,, 0& W(R*AR) if and
only if 0¢& W(A). AEM,, is called convexoid if W(A)=coo(A) (the convex
hull of 6(A)). Normals are convexoid. W(A) is real if and only if A=A* and
W(A) >0 if and only if A>0 (A is positive definite).
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ProrosiTioN 4. Let T €G,, then T*ST=S with 0& W(S) if and only if
T*QT=Q for some Q >0.

Proof. Since Q >0 implies 0¢& W(Q) we need only consider T*ST=S§
with 0 & W(S). By virtue of the convexity of W(S), there exists z€C, [z]|=1,
such that RezZW(S)= W(RezS)>0. Hence S,=zS+25* >0 for such z. But
T*ST=S implies T*S,T=S§,. [ ]

Tueorem 2. Let TEG,, then the following assertions are equivalent:

a) T is similar to a unitary

) T*QT=Q for some Q>0

) T*ST=S for some S with 0& W(S)
) T=X7'Y with X*X=Y*Y.

Proof. Suppose V=RTR ~! with RE€G, and V unitary, then I=V*V
=R*"'T*R*RTR ~'. Hence 0< R*R €A(T) and (a) implies (b). If (b) is
assumed to hold, set X=(Q'/% the positive square root of Q >0, then
T=X YXT) and X*X=Q= T*QT=(XT)*(XT) so that (b) implies (d). On
the other hand, if (d) is assumed then X*X = Y*Y implies YX ~'= YTY ~' is
unitary and (a) follows. Since Proposition 4 gives the equivalence of (b) and
(c¢), the theorem is proved. ]

TueoreM 3. Let A€G,, then the following assertions are equivalent

(@) ®(A) is similar to a unitary.
(b")  QAQ is normal for some Q >0.
(¢) S*AS is normal for some S €G,,.
(d) ®(A)=D(B) with 0& W(B).

Proof. By (1.4) S T'®(A)S=®(S*AS). Hence, by Proposition 1, (a’) holds
if and only if (¢) holds. (b") implies (c’) trivially. Assume (c’) and let $* = VQ
be a polar decomposition of S*€G, with V unitary and Q=(S5*)1/2>0,
Since V(QAQ)V* is normal and V is unitary, it follows that QAQ is normal.
Thus (a'), (b'), and (c) are equivalent. If (d') holds, B €A(®(A)) with
0¢ W(B) so that by Theorem 2 ®(A) is similar to a unitary and (") follows.
On the other hand, if QAQ is normal, then ®(QAQ)=Q ~'®(A)Q=V is
unitary by Proposition 1. By Corollary 1.1 V=®(V*) with V* a cramped
unitary so that 0& W(V*). Hence, ®(A)=Q®(V*)Q "'=d(B) with B
=Q "'V*Q ! and, by a remark following (2.1), 0 & W(B). [ ]

There is an analogue to Theorem 2, in case the set D,, is replaced by the
set of all T € G, for which T is similar to T*. This theorem appears in [2] and

2y
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[10] and may be stated as: For TEG,, T i
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with 0& W(S), then, since T is normal
TISTS "'=(T*T)"! and T~! commute:
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hypothesis T normal by the weaker hypot
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if T is convexoid, W(T) is real, and T-
slightly more complicated. We have

Cororrary 2.2. If TEG, and one o
Theorem 2 holds, then T convexoid implie

Proof.  Assume (a), i.e., T is similar to
able and o(T)={aj,...,0;} lies on the ui
W(T) is contained in the unit disk, so tl
W(T). Consequently ker(T— a,) =ker(T*
232). Hence, these subspaces are mutual
diagonalizable, it follows that they reduc
unitarily equivalent to a diagonal unitary 1

We now consider a result which bears
which the hypothesis on T is dropped, bu
on A(T), namely

Cororrary 2.3. Let T€D, and st
cramped unitary, then T is unitary.

Proof. If VEA(T) and is unitary, the
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[10] and may be stated as: For T €G,,, T is similar to a selfadjoint if and only
if T*S= ST with 0 W(S) if and only if T*Q = QT with Q >0. Taussky [11]
proves a corollary, namely: If T*S= ST with 0 W(S) and if T is normal,
then T= T*. The analogous corollary in our situation is

CoroLLARY 2.1.  Let T €G,, and let one of the assertions (a) through (d)
of Theorem 2 hold, then T normal implies T unitary.

Proof.  Since T is normal, it is unitarily equivalent to a diagonal matrix D
which must be unitary if (a) is assumed. Hence T is unitary. ]

It is interesting to note that a proof of the preceding corollary may also be
modelled on that of Taussky [11], in which the Marcus-Thompson extension
[9] of the Frobenius group commutator theorem is applied. Assume T*ST=§
with 0¢ W(S), then, since T is normal, so are T~! and (T*T)"'. But
TISTS '=(T*T)"! and T ™' commutes with (T*T)’. An application of
the Marcus-Thompson theorem yields (T*T)"'=1, i.e., T is unitary.

Actually better results are possible in both instances by replacing the
hypothesis T normal by the weaker hypothesis T convexoid. In the Taussky
situation, T is similar to a self adjoint and therefore has real spectrum, so that
if T is convexoid, W(T) is real, and T=T*. In our situation matters are
slightly more complicated. We have

Cororrary 2.2. If TG, and one of the assertions (a) through (d) of
Theorem 2 holds, then T convexoid implies T unitary.

Proof. Assume (a), i.e., T is similar to a unitary. Hence T is diagonaliz-
able and o(T)={ay,...,0;} lies on the unit circle. Because T is convexoid,
W(T) is contained in the unit disk, so that the o; lie on the boundary of
W(T). Consequently ker(T— o) =ker(T*— &), j=1,....k, (see e.g., [6], pg.
232). Hence, these subspaces are mutually orthogonal in C" and, as T is
diagonalizable, it follows that they reduce T and span C". Therefore, T is
unitarily equivalent to a diagonal unitary matrix and so is, in fact, unitary. B

We now consider a result which bears a resemblance to Corollary 2.1, in
which the hypothesis on T is dropped, but a stronger hypothesis is imposed
on A(T), namely

CororLLarY 2.3. Let TED, and suppose VEA(T), where V is a
cramped unitary, then T is unitary.

Proof. 1f VEA(T) and is unitary, then (1.7) implies V €A(T*). Hence




216 C. R. DEPRIMA AND C. R. JOHNSON

T*VI=V and TVT*=V so that TT*VTT*=V. Since TT* is normal and
0¢& W(V), Corollary 2.1 implies TT* is unitary. But TT* >0. Consequently
o(TT*)={1} so that TT*=1 and T is unitary. [ ]

Corollary 2.3 has an alternate proof which does not make use of Theorem
2. Let V be a cramped unitary in A(T), then for |a|=1, aV has the same
property. Thus we may assume that — o /2 <arga(V) < 7/2. Consequently,
in virtue of the uniqueness of the square root of V2 constructed in Lemma 1,
we have V= V2 On the other hand by (1.7) T* VT= V= TVT*, from which
it follows that TV®=V2T. Hence by (iii) of Lemma 1, TV= VT so that
™T=1

We remark that an entirely similar proof with obvious modifications
yields a result due to Berberian [1]: If T is invertible and unitarily equivalent
to T* via a cramped unitary, then T=T*,

We conclude this section with some corollaries to Theorem 3. For this
purpose we say that A €M, is conjunctive with BE€M_ if A= S*BS for some
S €G,. The relation of conjunctivity is obviously symmetric.

CoroLLarY 3.1. A €G, is conjunctive with a diagonal unitary matrix if
and only if any one of the assertions (a’) through (d’) of Theorem 3 holds.

Proof. If D is a diagonal unitary and A=S*DS with SEG,, then
®(A)=S ~'D**S. Since D*? is unitary, (a’) of Theorem 3 holds. To prove the
converse, observe first of all that any non-singular normal matrix is conjunc-
tive with a diagonal unitary. This is readily seen by using a polar decomposi-
tion. Hence if (b") of Theorem 3 is assumed, QAQ is a normal matrix in G,
with Q >0. It then follows that A is conjunctive with a diagonal unitary. |

Cororrary 3.2. {AEM,|0E W(A))={(S*VS|SEG, and V cramped
unitary }.

Proof. 1f A is conjunctive with a cramped unitary V, then 0¢& W(V)
and, by a remark following (2.1), 0 W(A). Conversely, if 0% W(A) then,
A€G, and (d') of Theorem 3 is satisfied. Hence by Corollary 3.1, A is
conjunctive with a unitary V. Since 0¢& W(A), 0&€ W(V) so that V is
cramped. [ ]

3. F~YT)

We now treat the problem of determining all A€G, for which A ~!A*

<
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=T for a given T €F,. A principal result
Tueorem 4. If TEF,, then @~ Y(T)=

Proof. _ By the second construction in t
implies T*H €®~YT). Conversely, sup
=A(T), and we _need only show that
(T*AT)T=T*AT)T= T*AT=T*A*=(A
Ay (T).

In particular, if T=V is unitary, then |
with H=H* €G, . Therefore, we have

CoroLLARY 4.1. For V unitary &~
=VH).

We may also characterize & XT) fo
simplicity we assume 1& o(T).

CoroLLary 4.2. If TEF, and 1¢
={i(1-T*YH|H €A (T)}.

Proof. By Theorem 4, we need
T*)"'T*H €AL(T) whenever HEA(T).
where H €A,(T) so that S EA(T)=A(T). ]
that S~ '=iH "'T* {1— T*)=iTH ~\(1 -
Hence, S=S*€A,(T) as was to be verifie

In [12] it is observed that if V is unita
BA ™! is similar to its adjoint via both A* ¢
its adjoint via both B™! and B*~!. By a
that BA ™' and A ~'B may each be written
self-adjoint matrices. In the general case
description of F~'(T) in terms of any fixed

TuEOREM 5. Let A€® YT) and B¢
there exist H,€A,(T), i=1,2, such tf
= H,H, .

Proof. If T=A‘1A*~=B -ip*, then
H,€A,(T), such that A=T*H, and B=T
BAT'=A(AT'B)A'= T*H,H 'T*'=
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IT*VIT*=V. Since TT* is normal and
['T* is unitary. But TT* >0. Consequently
T is unitary. [ ]

broof which does not make use of Theorem
A(T), then for |a|=1, aV has the same

t —x/2<arga(V)< 7/2. Consequently,

quare root of V2 constructed in Lemma 1,

d by (1.7) T*VT'= V= TVT*, from which

e by (ili) of Lemma 1, TV=VT so that

similar proof with obvious modifications
§: If Tis invertible and unitarily equivalent
T=T*
some corollaries to Theorem 3. For this
junctive with B EM,, if A = $*BS for some
ity is obviously symmetric.

junctive with a diagonal unitary matrix if
[Jons (@) through (d') of Theorem 3 holds.

pitary and A=S5*DS with SEG,, then
ary, (a) of Theorem 3 holds. To prove the
poy non-singular normal matrix is conjunc-
s readily seen by using a polar decomposi-
s assumed, QAQ is a normal matrix in G,
is conjunctive with a diagonal unitary. |

W(A)}={S*VS|SE€G, and V cramped

Jth a cramped unitary V, then 0¢ W(V)
0¢& W(A). Conversely, if 0¢& W(A) then,
satistied. Hence by Corollary 3.1, A is
fince 0¢ W(A), 0&W(V) so that V is
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determining all AE€G,, for which A ~'A*
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=T for a given T €F,,. A principal result is
Treorem 4. If TEF,, then ®~Y(T)={T*H|H €A,(T)).

Proof. _ By the second construction in the proof of Theorem 1, H €A,(T)
implies T*H €9~ X(T). Conversely, suppose T=A_'A*, then AEA(T)
=A(T), and we_need only show that T*“'A=AT€A (T). But AT=
(T*AT)T=T*(AT)T=T*AT=T*A*=(AT)* Hence AT={AT)* €A, (T)=
A(T). =

In particular, if T=V is unitary, then H €A,(V) if and only if VH=HV
with H=H* €G,,. Therefore, we have

CoroLLarYy 4.1, For V unitary (D‘I(V)={‘7*H|H=H*EG" and HV
=VH}.

We may also characterize ®~X(T) for T€F, in terms of (1.8). For
simplicity we assume 1€ o(T).

CoroLLary 4.2. If TEF, and 1¢0o(T), then @ YT)
= (i(1—- T*YH|H €A(T)}.

Proof. By Theorem 4, we need only verify that S= —i(l—
T*)7'T*H €A,(T) whenever H €A,(T). But T*ST=—iT*(1- T*)~'H=S§
where H €A,(T) so that S EA(T)=A(T). By (1.7) H "' €A, (T*)=A,(T*) so
that § '=iH 'T* " Y(1-T*)=iTH Y1-T*)=—i(1-T)T "'H '=8§*"1
Hence, S=S*€A,(T) as was to be verified. n

In [12] it is observed that if V is unitary and V=A "!A*=B ~!B* then
BA ™! is similar to its adjoint via both A* and A and that A ~!B is similar to
its adjoint via both B~! and B*~'. By a theorem of Carlson [2] it follows
that BA~! and A ~'B may each be written as a product of two non-singular
self-adjoint matrices. In the general case of F,, we obtain the following
description of F~!(T) in terms of any fixed A €®~Y(T):

*»

Tueorem 5. Let AE® YT) and BEG,. BEDXT) if and only if
there exist H,€EA(T), i=1,2, such that A 'B=H'H, and BA~!
= HH[ .

Proof. 1f T=A"'A*=B!B* then, by Theorem 5, there exist
H,€A4(T), such that A=T*H, and B=T*H,. Clearly A~'B=H, 'H, and

BA '=A(A7'B)A ™ '=T*H,H 'T* 1= H,T~'H'T*~'= H,H, ! since
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H,EA,(T). On the other hand, if B= H,H, A= AH, 'H, with H,EA(T)
then B ~'B*=A"'H H, 'H,H'A*=A"A. [ |

We remark that when H,EA,(T), i=1,2, T commutes with H,"'H,. In
fact it follows readily from (1.7) that if T€D, and S,€A(T), i=1,2, then
S,7'S, commutes with T and S,S,” commutes with T*,

Theorem 5 yields some necessary conditions for ®(A)=®(B) which are in
general not sufficient. For example,

CoroLLARrY 5.1, If ®(A)=®(B), the following hold

i[AT,B]=i(A7'B— BA ™) is self-adjoint. (3.1)
A7IB2A>0. (3.2)
i[A, B*] is self-adjoint. (3.3)

Since Theorem 4 reveals an intimate relationship between ®}(T) and
A(T), it seems appropriate to conclude this section with some remarks on
the structure of A, (T) for T€D,. We shall confine our comments to the
case in which T is diagonalizable, i.e., when there exists R €G, and a
diagonal matrix Dy for which TR = RD;. Other facts pertaining to A(T) are
contained in [13].

For T €D,, we have already observed that (1.7) holds. An easy computa-
tion shows that T €D, if and only if R ~'TR €D, for all R €G,; moreover,

A.(R7TR)=R*A,(T)R. (3.4)

If T,eD, and T,€D, with n=n,+n, then the direct sum T=T,®
T,€D, and if in addition o(T;)N 0(T,)=0, it is not hard to see that

AT, ®T,) =04(T)) BA(Ty). (3.5)

A description of A4(T) is readily obtainable in terms of any fixed element H,
of A.(T):

A4(T)={H,C|C€G,,TC= CT,H,C= C*H,). (3.6)
Let us now assume T €D, is diagonalizable. In view of Proposition 3,

there exists R €G,, such that

R™'TR=D,®L,® - ®L, (3.7)

A

——————————————————
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where D, is a unitary diagonal matrix in |
L’ = ’\IIi

0 |

with Af, j=1,...,s, the distinct eigenval

identity matrix in M,, with m; =dimker(

With these facts and notation we may no

Tueorem 6. If T €D, and is diagona
A(T)=S*"DDK,4

where D is any self adjoint diagonal matr

0
|
B,.*

j=1,....s, with B; arbitrary elements of G

Proof. In view of (3.4), (3.5), and (3.7
and A,.,(L’.), j=1,...,s. Consider the latter

0 I
H,=( ’)e
L 0

From the representation (3.6), it follows th
the form asserted in the theorem. To com;
applied to yield A.(Dy)={H=H*€
=D*€G,; and is diagonal, U’ is unitar
U=U'®I,,, 2m=n—k, we see that U is
Dy so that R €G,, diagonalizes T if and
theorem now follows from (3.7).

4. SQUARE ROOTS.

The existence of square roots of a non
(e.g., [5], pp. 231-234). However, the part

which possesses the property that A(T) =
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3=H,H,'A=AH 'H, with H,EA(T)
=A"A. [ ]

F), i=1,2, T commutes with H"'H,. In
atif T€D, and S,€A(T), i=1,2, then
commutes with 7%,

¥ conditions for ®(A)=®(B) which are in

. the following hold

+—BA™Y) is self-adjoint. (3.1)
1824 >0, (3.2)
is self-adjoint. (33)

jimate relationship between ®~Y(T) and
rlude this section with some remarks on
We shall confine our comments to the

i ie., when there exists R €G, and a
{RD;. Other facts pertaining to A(T) are

prved that (1.7) holds. An easy computa-
f R™'TR €D,, for all R €G_; moreover,

)= R*A,(T)R. (3.4)

ny+n,, then the direct sum T=T,®
T,)=0, it is not hard to see that

FAAT)BAL(T). (3.5)

ainable in terms of any fixed element H,
w IC=CT,H)C=C*H,}. (3.6)

iagonalizable. In view of Proposition 3,

OLO - DL, (3.7)
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where D, is a unitary diagonal matrix in M,,

o2

0 AT

with A, j=1,....s, the distinct eigenvalues of T with I}\’|<1 and I the
identity matrix in M, with m;=dimker(T—A). Note that n=k+23_m,
With these facts and notation we may now prove

Tueorem 6. If T €D, and is diagonalizable, then

AT)=S*"Y(DOK,®--- ®K,)S 7}, (3.8)

where D is any self adjoint diagonal matrix in G,,

B* 0
j=1,....s, with B; arbitrary elements of G,,, and S €G, diagonalizes T.

Proof. In view of (3.4), (3.5), and (3.7) we need only determine A, (D,)
and A*(L’.), i=1,...,s. Consider the latter first and note that

H,=( 04 )EA,.(L,).

L 0

From the representation (3.6), it follows that K, € A4(L,) if and only if K; has
the form asserted in the theorem. To compute A(D,), Corollary 4.1 may be
applied to yield Ay (Dg)={H=H*€G,|D,H=HD,}={U'DU'*|D
=D*€G; and is diagonal, U’ is unitary in G,, U’'Dy=D,U’}. Setting
U=U'®I,,, 2m=n—k, we see that U is unitary in M, and commutes with
Dy so that R €G, diagonalizes T if and only if RU diagonalizes T. The

theorem now follows from (3.7). [ ]

4. SQUARE ROOTS.

The existence of square roots of a non-singular matrix T is well known
(e.g., [5], pp. 231-234). However, the particular square root we need is one

which possesses the property that A(T)=A(’f) if T2=T. For this reason we
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have stated Lemma 1 in §1. Since we find it difficult to quote a particular
reference in this matter and since the lemma as stated may be of indepen-
dent interest, we proceed to prove it.

For TEG, and AEa(T) let us agree to set A=|A\|e? with —77<9
For — 7 <argz <, set z'/2=|z|'/%exp(4argz). Then the function f(3)
is holomorphic for |argz| < 7. For convenience, we restate the lemma

1/2

Lemma 1. Let T €G,,. There exists a unique T €G, satisfying
() T2=T. (i) - <argo(1~")<—;—,

(iiiy TC=CT=TC=CT.

Moreover A(T)= A(f‘)

Proof.  First the uniqueness. Suppose both T and B satisfy (i), (ii), (iii). By (i)
both are non-singular, by (iii) the fact that [T,T]=0 implies [T,B]=0.
Consequently 0=T2— B2=(T—B)(T+B) and T=B if T+B€EG,, ie., if
—1¢6(TB Y Co(T)/a(B) since [T,B]=0. But from (ii) we see that 7 ¢&
arga(T ) argo( ). Hence —1¢o(T)/o(B) so that —1¢& o (TB").

There are several possible constructions for T. We find the representation
as a Cauchy integral convenient. Assume first that 7 argo(T). Let I be the
oriented Jordan curve consisting of circular arcs and line segments shown in

the figure and containing o(T) in its interior domain A [Fig. 1). Set
T L 1/2(

-1
P dz.

-T) (4.1)

Referring to [14] (pg. 287&) itisa 51mple matter to verify (i) and a stronger
version of (ii), namely (i) —#/2<argo(T <'rr/2, since z'/2— {#0 for

Re{ <0 and z€A. From this it also follows that T€G,. Since TC=CT
implies (z— T)"'C=C(z—T)~! for z€T, (4.1) shows TC=CT. Clearly
A(I:)QA(T) since T2=T. On the other hand, if T*ST=S$ €G,, then o(T)
=g(T*™ ") and S(z—T) '=(z— T*"")7!S. But (4.1) with T replaced by
T*~! defines (T* ') so that ST=(T*"')S. It is easy to check that both
(?ﬁ) and T*7! satisfy (i), (ii),

uniqueness it follows that ( T*~ T* 1 )=

(iti) of the lemma relative to T*~'. By
T*~! and T*ST=S. Hence A(T)=A(T).

Finally, to remove the restriction = argo(T), we need only observe for
sufficiently small positive € that T,=e 2T satisfies 7 Zarga(T,) and — 7
<argo(T)—2e=argg(T,) <. Therefore T, satisfies (i), (ii)’, (iii) relative to
T,. Consequently &*T, satisfies (i), (ii), (iii), relative to T. Define T by e*T..
Since A(aT)=A(T) for laj=1, it follows that A(T)=A(T,)=A(T,)=A(T).
This completes the proof of the lemma.

‘2
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_ A _few observations may be made. If V
V*IV=1= V*V so that V is a cramped uni
Q= Q2 the positive square root of Q. If
(iii) TT* = T*T. Hence TT*=T*T and ag;
normal. For H=H*€G,, H=H, —H_
=H_H_=0. Therefore H H1/2+ iHY

Actually, all square_roots of TEG m;
principal square root T, namely

ProrosiTioN 5. Let T,CEG,, then
some ] EM_ with J?=1 and TI=]T.

Proof. If C= JT for such J, then JT-
C?=T. On the other hand if C*= T, then.
1, TC= CT; therefore (CT Y =7 and TC
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For convenience, we restate the lemma.
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i) —T T <
(i) 3 <argo(T) 7

IC=CT=>TC=CT.
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')=T*"'and T*ST=S. Hence A(T)=A(T).
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A _few observations may be made. If V is unitary, I EA(V) and therefore
V* IV=1I=V*Vso that Visa cramped unitary. If Q >0, then by uniqueness
Q= Q2, the positive square root of Q. If T is normal and inyertible then by
(iii) TT*=T*T. Hence TT*= T*T and again by (iii) TT*=T*T so that T is
normal. For H=H*€G,, H=H,—-H_ with H>0, H_>0, and H H_
=H_H_=0. Therefore H=Hi/2+iHl/2.

Actually, all square_roots of T €G, may be determined in terms of the
principal square root T, namely

ProrosiTion 5. Let T,C€G,, then C*=T if and only if c=JT for
some ] EM, with J*=1 and TJ=]T.

Proof. If C= JT for such J, then JT=TJ by (iii) of Lemma 1, so that
C?=T. On the other hand if C*= T, then clearly TC= CT. By (iii) of Lemma
1, TC= CT; therefore (CT ~"®=1 and TCT ~'= TC=CT ~'T. [ ]

We should like to express our gratitude to Professor O. Taussky for her

useful comments and suggestions during the preparation of this paper.

Note. After this paper was accepted for publication, the authors were
informed that M. D. Choi independently found and proved Theorem 1.
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AppENDUM:  After we had submitted this paper, there appeared a
paper by U. N. Singh and K. Mangla: “Operators with inverses similar to
their adjoints”, PAMS 38, 258-260 (1973). There is an overlap between
§2 of our paper and their paper. In particular, our Proposition 4 is
related to their Theorem 1. In addition, the equivalence of assertions (a)
and (c) of our Theorem 2 (finite dimensionality is clearly not involved in
our proof) coincides with their Corollary 2, as does our Corollary 2.3
with their Theorem 2.
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ABSTRACT

For a square complex matrix A with p
(A — A*)/2i, this paper studies: Hermitian co
lues {a;} of A7A* relative to a line in the c
the arguments, real parts and imaginary pa
terminants and singular values.

1. INTRODUCTION

By a strictly dissipative matrix we mea
that its imaginary component (2i)" (A —.
have seen that certain properties of a stri
necessarily invertible) are closely related
A “'A* which is similar to a unitary matr
A, we study in the present paper: the mat
distribution of the eigenvalues of A !A*
plane, arguments, real parts and imagi
A~'A*, and certain inequalities for deterr

2. THE MATRIX A "'A*

The fact that for every strictly dissipati
unitary matrix [5], can be given the follow
statement.
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