Control-Flow Analysis

Last time
– Undergraduate compilers in a day

Today
– Control-flow analysis
 – Building basic blocks
 – Building control-flow graphs
 – Loops

Context

Data-flow
– Flow of data values from defs to uses

Control-flow
– Sequencing of operations
 e.g., Evaluation of then-code and else-code depends on if-test
Representing Control-Flow

High-level representation
– Control flow is implicit in an AST

Low-level representation:
– Use a Control-flow graph (CFG)
 – Nodes represent statements (low-level linear IR)
 – Edges represent explicit flow of control

Other options
– Control dependences in program dependence graph (PDG) [Ferrante87]
– Dependences on explicit state in value dependence graph (VDG) [Weise 94]

What Is Control-Flow Analysis?

Control-flow analysis discovers the flow of control within a procedure (e.g., builds a CFG, identifies loops)

Example

1 a := 0
2 b := a * b
3 L1: c := b/d
4 if c < x goto L2
5 e := b / c
6 f := e + 1
7 L2: g := f
8 h := t - g
9 if e > 0 goto L3
10 goto L1
11 L3: return
Basic Blocks

Definition
– A basic block is a sequence of straight line code that can be entered only at the beginning and exited only at the end

Building basic blocks
– Identify leaders
 – The first instruction in a procedure, or
 – The target of any branch, or
 – An instruction immediately following a branch (implicit target)
– Gobble all subsequent instructions until the next leader

Algorithm for Building Basic Blocks

Input: List of n instructions (instr[i] = i^{th} instruction)
Output: Set of leaders & list of basic blocks
(block[x] is block with leader x)

leaders = {1} // First instruction is a leader
for i = 1 to n // Find all leaders
 if instr[i] is a branch
 leaders = leaders ∪ set of potential targets of instr[i]
 foreach x ∈ leaders
 block[x] = { x }
 i = x+1 // Fill out x’s basic block
 while i ≤ n and i ∉ leaders
 block[x] = block[x] ∪ { i }
 i = i + 1
Building Basic Blocks Example

Example

1. \(a := 0 \)
2. \(b := a \times b \)
3. \(L1: \ c := b/d \)
4. \(\text{if } c < x \text{ goto } L2 \)
5. \(e := b / c \)
6. \(f := e + 1 \)
7. \(L2: \ g := f \)
8. \(h := t - g \)
9. \(\text{if } e > 0 \text{ goto } L3 \)
10. \(\text{goto } L1 \)
11. \(L3: \text{return} \)

Leaders?
- \(\{1, 3, 5, 7, 10, 11\} \)

Blocks?
- \(\{1, 2\} \)
- \(\{3, 4\} \)
- \(\{5, 6\} \)
- \(\{7, 8, 9\} \)
- \(\{10\} \)
- \(\{11\} \)

Extended Basic Blocks

Extended basic blocks
- A maximal sequence of instructions that has no merge points in it (except perhaps in the leader)
- Single entry, multiple exits

How are these useful?
- Increases the scope of any local analysis or transformation that “flows forwards” (e.g., copy propagation, register renaming, instruction scheduling)

Reverse extended basic blocks
- Useful for “backward flow” problems
Building a CFG from Basic Blocks

Construction
- Each CFG node represents a basic block
- There is an edge from node i to j if
 - Last statement of block i branches to the first statement of j, or
 - Block i does not end with an unconditional branch and is immediately followed in program order by block j (fall through)

Input: A list of m basic blocks (block)
Output: A CFG where each node is a basic block

for i = 1 to m
 x = last instruction of block[i]
 if instr x is a branch
 for each target (to block j) of instr x
 create an edge from block i to block j
 if instr x is not an unconditional branch
 create an edge from block i to block i+1

Details

Multiple edges between two nodes
...
if (a<b) goto L2
L2: ...
- Combine these edges into one edge

Unreachable code
...
goto L1
L0: a = 10
L1: ...
- Perform DFS from entry node
- Mark each basic block as it is visited
- Unmarked blocks are unreachable
Challenges

When is CFG construction more challenging?

Languages where jump targets may be unknown
 – e.g., Executable code
    ```
    ld $8, 104($7)
    jmp $8
    ```

Languages with user-defined control structures
 – e.g., Cecil
    ```
    if ( &{x = 3}, &{a := a + 1}, &{a := a - 1} );
    ```

Loop Concepts

Loop: Strongly connected component of CFG
Loop entry edge: Source not in loop & target in loop
Loop exit edge: Source in loop & target not in loop
Loop header node: Target of loop entry edge
Natural loop: Loop with only a single loop header
Back edge: Target is loop header & source is in the loop
Loop tail node: Source of back edge
Loop preheader node: Single node that’s source of the loop entry edge
Nested loop: Loop whose header is inside another loop
Reducible flow graph: CFG whose loops are all natural loops
Picturing Loop Terminology

- **preheader**
- **head**
- **tail**
- **loop** (natural)
- **entry edge**
- **back edge**
- **exit edge**

The Value of Preheader Nodes

Not all loops have preheaders
- Sometimes it is useful to create them

Without preheader node
- There can be multiple entry edges

With single preheader node
- There is only one entry edge

Useful when moving code outside the loop
- Don’t have to replicate code for multiple entry edges
Identifying Loops

Why?
- Most execution time spent in loops, so optimizing loops will often give most benefit

Many approaches
- Interval analysis
 - Exploit the natural hierarchical structure of programs
 - Decompose the program into nested regions called intervals
- Structural analysis: a generalization of interval analysis
- Identify dominators to discover loops

We'll look at the dominator-based approach

Dominator Terminology

Dominator
- \(d \text{ dom } i \) if all paths from entry to node \(i \) include \(d \)

Strict dominator
- \(d \text{ sdom } i \) if \(d \text{ dom } i \) and \(d \neq i \)

Immediate dominator
- \(a \text{ idom } b \) if \(a \text{ sdom } b \) and there does not exist a node \(c \) such that \(c \neq a, c \neq b, a \text{ dom } c, \) and \(c \text{ dom } b \)

Post dominator
- \(p \text{ pdom } i \) if every possible path from \(i \) to exit includes \(p \) (\(p \text{ dom } i \) in the flow graph whose arcs are reversed and entry and exit are interchanged)
Identifying Natural Loops with Dominators

Back edges
A back edge of a natural loop is one whose target dominates its source.

Natural loop
The natural loop of a back edge \((m \rightarrow n)\), where \(n\) dominates \(m\), is the set of nodes \(x\) such that \(n\) dominates \(x\) and there is a path from \(x\) to \(m\) not containing \(n\).

Example
This loop has two entry points, \(c\) and \(d\). The target, \(c\), of the edge \((d \rightarrow c)\) does not dominate its source, \(d\), so \((d \rightarrow c)\) does not define a natural loop.

Computing Dominators

Input: Set of nodes \(N\) (in CFG) and an entry node \(s\)

Output: \(\text{Dom}[i] = \text{set of all nodes that dominate node } i\)

- \(\text{Dom}(s) = \{s\}\)
- **for each** \(n \in N - \{s\}\)
 - \(\text{Dom}[n] = N\)
- **repeat**
 - change = false
 - **for each** \(n \in N - \{s\}\)
 - \(D = \{n\} \cup (\cap_{p \in \text{pred}(n)} \text{Dom}[p])\)
 - if \(D \neq \text{Dom}[n]\)
 - change = true
 - \(\text{Dom}[n] = D\)
- **until** !change

\(x \in \text{Dom}(p_1) \land x \in \text{Dom}(p_2) \land x \in \text{Dom}(p_3) \Rightarrow x \in \text{Dom}(n)\)

Key Idea
If a node dominates all predecessors of node \(n\), then it also dominates node \(n\).
Computing Dominators (example)

Input: Set of nodes \(N \) and an entry node \(s \)

Output: \(\text{Dom}[i] = \) set of all nodes that dominate node \(i \)

\[
\begin{align*}
\text{Dom}(s) &= \{s\} \\
\text{for each } n \in N - \{s\} & \quad \text{Dom}[n] = N \\
\text{repeat} & \\
\text{change} &= \text{false} \\
\text{for each } n \in N - \{s\} & \quad D = \{n\} \cup (\cap_{p \in \text{pred}(n)} \text{Dom}[p]) \\
\text{if } D \neq \text{Dom}[n] & \quad \text{change} = \text{true} \\
& \quad \text{Dom}[n] = D \\
\text{until} \text{ change}
\end{align*}
\]

Initially

\[
\begin{align*}
\text{Dom}[s] &= \{s\} \\
\text{Dom}[q] &= \{n, p, q, r, s\} \ldots
\end{align*}
\]

Finally

\[
\begin{align*}
\text{Dom}[q] &= \{q, s\} \\
\text{Dom}[r] &= \{r, s\} \\
\text{Dom}[p] &= \{p, s\} \\
\text{Dom}[n] &= \{n, p, s\}
\end{align*}
\]

Reducibility

Definition

- A CFG is **reducible** (well-structured) if we can partition its edges into two disjoint sets, the **forward** edges and the **back** edges, such that
 - The forward edges form an acyclic graph in which every node can be reached from the entry node
 - The back edges consist only of edges whose targets dominate their sources
- Non-natural loops \(\iff \) irreducibility

Structured control-flow constructs give rise to reducible CFGs

Value of reducibility

- Dominance useful in identifying loops
- Simplifies code transformations (every loop has a single header)
- Permits interval analysis
Handling Irreducible CFG’s

Node splitting
– Can turn irreducible CFGs into reducible CFGs

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d’</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

General idea
– Reduce graph (iteratively rem. self edges, merge nodes with single pred)
– More than one node => irreducible
 – Split any multi-parent node and start over

Why Go To All This Trouble?

Modern languages provide structured control flow
– Shouldn’t the compiler remember this information rather than throw it away and then re-compute it?

Answers?
– We may want to work on the binary code in which case such information is unavailable
– Most modern languages still provide a goto statement
– Languages typically provide multiple types of loops. This analysis lets us treat them all uniformly
– We may want a compiler with multiple front ends for multiple languages; rather than translate each language to a CFG, translate each language to a canonical LIR, and translate that representation once to a CFG
Concepts

Control-flow analysis
Basic blocks
– Computing basic blocks
– Extended basic blocks
Control-flow graph (CFG)
Loop terminology
Identifying loops
Dominators
Reducibility

Next Time

Discussion
– “Binary Translation” by Sites et al.
– Discussion questions online
– Come prepared

After that: lecture
– Introduction to data-flow analysis