Learning Theory: Why ML Works
Computational Learning Theory

Entire subfield devoted to the mathematical analysis of machine learning algorithms

Has led to several practical methods:

• PAC (probably approximately correct) learning \(\rightarrow\) boosting

• VC (Vapnik–Chervonenkis) theory
 \(\rightarrow\) support vector machines

Annual conference: Conference on Learning Theory (COLT)
Computational Learning Theory

Fundamental Question: What general laws constrain inductive learning?

Seeks theory to relate:
• Probability of successful learning
• Number of training examples
• Complexity of hypothesis space
• Accuracy to which target function is approximated
• Manner in which training examples should be presented

Based on slide by Tom Mitchell
Sample Complexity

Assume that \(f : \mathcal{X} \mapsto \{0, 1\} \) is the target concept

How many training examples are sufficient to learn the target concept \(f \)?

1. If learner proposed instances as queries to teacher
 - Learner proposes instance \(x \), teacher provides \(f(x) \)

2. If teacher (who knows \(f \)) provides training examples
 - Teacher provides labeled examples in form \(\langle x, f(x) \rangle \)

3. If some random process (e.g., nature) proposes instances
 - Instance \(x \) generated randomly, teacher provides \(f(x) \)
Function Approximation: The Big Picture

Instance Space \(\mathcal{X} = \{0, 1\}^d \)

\[\mathbf{x} = \langle x_1, x_2, \ldots, x_d \rangle \in \mathcal{X} \]

Hypothesis Space

\[H = \{ h | h : \mathcal{X} \mapsto \{0, 1\} \} \]

If \(d = 20 \), \(|\mathcal{X}| = 2^{20} \)

\[|h| = 2^{|\mathcal{X}|} = 2^{2^{20}} \]

- How many labeled instances are needed to determine which of the \(2^{2^{20}} \) hypotheses are correct?
 - All \(2^{20} \) instances in \(\mathcal{X} \) must be labeled!

- Generalizing beyond the training data (inductive inference) is impossible unless we add more assumptions (e.g., priors over \(H \))

- There is no free lunch!

Based on example by Tom Mitchell
Bias-Variance Decomposition of Squared Error

• Assume that \(y = f(x) + \epsilon \)

 – Noise \(\epsilon \) is sampled from a normal distribution with 0 mean and variance \(\sigma^2 \): \(\epsilon \sim N(0, \sigma^2) \)

 – Noise lower-bounds the performance we can achieve

• Recall the following objective function:

\[
J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - h_\theta \left(x^{(i)} \right) \right)^2
\]

• We can re-write this as the expected value of the squared error: \(E \left(y - h_\theta \left(x \right) \right)^2 \)
Bias-Variance Decomposition of Squared Error

\[
E[(y - h_\theta(x))^2] = E[(y - f(x) + f(x) - h_\theta(x))^2]
= E[(y - f(x))^2] + E[(f(x) - h_\theta(x))^2]
+ 2 E[(f(x) - h_\theta(x))(y - f(x))]
= E[(y - f(x))^2] + E[(f(x) - h_\theta(x))^2]
+ 2 (E[f(x)h_\theta(x)] + E[yf(x)] - E[yh_\theta(x)] - E[f(x)^2])
\]

Therefore,

\[
E[(y - h_\theta(x))^2] = E[(y - f(x))^2] + E[(f(x) - h_\theta(x))^2]
= E[\epsilon^2] + E[(f(x) - h_\theta(x))^2]
\]

Aside:
Definition of Variance
\[
\text{var}(z) = E[(z - E[z])^2]
\]

This is actually \(\text{var}(\epsilon)\), since mean is 0
Bias-Variance Decomposition of Squared Error

\[E[(y - h_\theta(x))^2] = \text{var}(\epsilon) + E[(f(x) - h_\theta(x))^2] \]

\[= \text{var}(\epsilon) + E[(f(x) - E[h_\theta(x)] + E[h_\theta(x)] - h_\theta(x))^2] \]

\[= \text{var}(\epsilon) + E[(f(x) - E[h_\theta(x)])^2] + E[(E[h_\theta(x)] - h_\theta(x))^2] \]

\[+ 2E[(E[h_\theta(x)] - h_\theta(x))(f(x) - E[h_\theta(x)])] \]

\[= \text{var}(\epsilon) + E[(f(x) - E[h_\theta(x)])^2] + E[(E[h_\theta(x)] - h_\theta(x))^2] \]

\[+ 2(E[f(x)E[h_\theta(x)]] - E[E[h_\theta(x)]^2] - E[f(x)h_\theta(x)] + E[h_\theta(x)E[h_\theta(x)]] \]

Therefore,

\[E[(y - h_\theta(x))^2] = \text{var}(\epsilon) + E[(f(x) - E[h_\theta(x)])^2] + E[(E[h_\theta(x)] - h_\theta(x))^2] \]

\[= \text{var}(\epsilon) + E[(f(x) - E[h_\theta(x)])^2] + \text{var}(h_\theta(x)) + \sigma^2 \]
Illustration of Bias-Variance

- **Bias**
 - High
 - Low

- **Variance**
 - High
 - Low

Figures provided by Max Welling
Illustration of Bias-Variance

- Training error drives down bias, but ignores variance
A Way to Choose the Best Model

- It would be really helpful if we could get a guarantee of the following form:

\[
\text{testingError} \leq \text{trainingError} + f(n, h, p)
\]

- Then, we could choose the model complexity that minimizes the bound on the test error.

We need \(p \) to allow for really unlucky test sets.
A Measure of Model Complexity

- Suppose that we pick n data points and assign labels of + or – to them at random.
- If our model class (e.g., a decision tree, polynomial regression of a particular degree, etc.) can learn any association of labels with data, it is too powerful!

More power: can model more complex functions, but may overfit
Less power: won’t overfit, but limited in what it can represent

- Idea: characterize the power of a model class by asking how many data points it can learn perfectly for all possible assignments of labels
 - This number of data points is called the Vapnik-Chervonenkis (VC) dimension
VC Dimension

• A measure of the power of a particular class of models
 – It does not depend on the choice of training set

• The VC dimension of a model class is the maximum
 number of points that can be arranged so that the
 class of models can shatter

Definition: a model class can shatter a set of points \(x^{(1)}, x^{(2)}, \ldots, x^{(r)} \)
if for every possible labeling over those points, there exists a model in that class that obtains zero training error
An Example of VC Dimension

- Suppose our model class is a hyperplane
- Consider all labelings over three points in \mathbb{R}^2

In \mathbb{R}^2, we can find a plane (i.e., a line) to capture any labeling of 3 points. A 2D hyperplane shatters 3 points
An Example of VC Dimension

• But, a 2D hyperplane cannot deal with some labelings of four points:

 Connect all pairs of points; two lines will always cross

 Can’t separate points if the pairs that cross are the same class

• Therefore, a 2D hyperplane cannot shatter 4 points
Some Examples of VC Dimension

• The VC dimension of a hyperplane in 2D is 3.
 – In d dimensions it is $d+1$
 • It’s just a coincidence that the VC dimension of a hyperplane is almost identical to the # parameters needed to define a hyperplane

• A sine wave has infinite VC dimension and only 2 parameters!
 – By choosing the phase & period carefully we can shatter any random set of 1D data points (except for nasty special cases)

\[h(x) = a \sin(bx) \]
Assumptions

• Given some model class (which defines the hypothesis space H)
• Assume all training points were drawn i.i.d from distribution \mathcal{D}
• Assume all future test points will be drawn from \mathcal{D}

Definitions:

\[
R(\theta) = \text{testError}(\theta) = E \left[\frac{1}{2} |y - h_\theta(x)| \right]
\]

\[
R^{\text{emp}}(\theta) = \text{trainError}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \left| y^{(i)} - h_\theta(x^{(i)}) \right|
\]

"official" notation
notation we’ll use
probability of misclassification

Based on Andrew Moore’s tutorial slides
A Probabilistic Guarantee of Generalization Performance

Vapnik showed that with probability (1 – \(\eta \)):

\[
\text{testError}(\theta) \leq \text{trainError}(\theta) + \sqrt{\frac{h(\log(2n/h) + 1) - \log(\eta/4)}{n}}
\]

- \(n = \) size of training set
- \(h = \) VC dimension of model class
- \(\eta = \) the probability that this bound fails

- So, we should pick the model with the complexity that minimizes this bound
 - Actually, this is only sensible if we think the bound is fairly tight, which it usually isn’t
 - The theory provides insight, but in practice we still need some magic

Based on slides by Geoff Hinton
Take Away Lesson

Suppose we find a model with a low training error...

• If hypothesis space H is very big (relative to the size of the training data n), then we most likely got lucky

• If the following holds:
 – H is sufficiently constrained in size
 – and/or the size of the training data set n is large, then low training error is likely to be evidence of low generalization error