
CIS 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier

Project 4: Hard Margin Support Vector Machine

The purpose of this project is to implement the hard margin support vector machine
(version h2).

Recall that we would like to solve the following optimization problem:

Hard margin SVM (SVMh2):

minimize
1

2
‖w‖2

subject to

w>ui − b ≥ 1 i = 1, . . . , p

− w>vj + b ≥ 1 j = 1, . . . , q,

where {u1, . . . , up} is a set of p blue points and {v1, . . . , vq} is a set of q red points in Rn (here,
n = 2). We assume that these two sets of points are separable. Figure 1 shows examples of
points and separating planes, while figure 2 shows an example of the separating plane with
the margins.

w
 x - b = 0

u

u
u

u

1

2

3

p

v

v

v

v

v1

2

3

4

T

w x - b = 0
T

up
u3

u1

u2

v
1

q

qv

v
2

v3

Figure 1: Examples of points and separating planes.

The problem is to find a separating hyperplane Hw,b of equation w>x − b = 0 which
maximizes the smallest distance δ from these data points, called the margin.

The margin is δ = 1/ ‖w‖. The margin hyperplanes are the hyperplanes Hw,b+1 (the
blue hyperplane) of equation w>x− b− 1 = 0 and Hw,b−1 (the red hyperplane) of equation
w>x− b+ 1 = 0. In order to solve the above problem, we solve the dual program. The dual
program is the following program:

1

vv

v

12

j

v

v

v

3

4

5

w x - b
 = 0

w x - b
 + 1 = 0

T

T

w x - b
 - 1

 = 0

T

u

u

u

u

u1

2

3
4

i

Figure 2: Examples of margins.

Dual of the Hard margin SVM (SVMh2):

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

λ ≥ 0, µ ≥ 0,

where X is the n× (p+ q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
,

a matrix whose columns are the ui and the vj.

Then w is determined as follows:

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj.

To solve the dual using ADMM we need to determine the matrices P, q A and c. We
have

P = X>X, q = −1p+q,
and since the only constraint is

p∑
i=1

λi −
q∑
j=1

µj = 0,

the matrix A is the 1× (p+ q) row vector

A =
(
1>p −1>q

)
,

2

and the right-hand side c is the scalar
c = 0.

Obviously the matrix A has rank 1.

We obtain b using any i0 such that λi0 > 0 and any j0 such that µj0 > 0. Since the
corresponding constraints are active, we have

w>ui0 − b = 1, −w>vj0 + b = 1,

so we obtain
b = w>(ui0 + vj0)/2.

For improved numerical stability, we can average over the sets of indices defined as Iλ>0 =
{i ∈ {1, . . . , p} | λi > 0} and Iµ>0 = {j ∈ {1, . . . , q} | µj > 0}. We obtain

b = w>

(∑
i∈Iλ>0

ui

)
/|Iλ>0|+

(∑
j∈Iµ>0

vj

)
/|Iµ>0|

 /2.

The number |Iλ>0| of strictly positive λi is denoted in the Matlab program by numsvl1

and the number |Iµ>0| of strictly positive µj is denoted by numsvm1.

In order to cope with floating-point arithmetric, you should use a tolerance parameters
tol to test whether a number is > 0. This means that you will declare that λ > 0 iff λ > tol.
Please use tol = 10−10 with the autograder.

(50 points) Write a Matlab program that implements the above method and solve for
w and b. The Euclidean norm of w is denoted by nw. The ADMM optimizer is already
implemented in SVMhard2 in your project zip file.

The functions buildhardSVM2, qsolve1, showdata, showSVMs2 and makeline (which
is needed for solveSVM2) are given in the file folder Matlabcode4.

The parameter ρ is used by the function qsolve1 that solve the optimization program
using ADMM. We suggest using ρ = 10.

A difficulty that arises is to tune the tolerance parameters needed to deal with floating-
point arithmetric. We suggested some tolerance parameters for you, but you are welcome to
experiment.

Run your program on the following sets of data points:

v1 = [1 2 3 1 1 3 -1 -3;-1 0 -2 -0.5 -4 -3 -3 -3];

u1 = [-1 -1 0 1 -3 -4 0.5 3 0.5;0 1 2 3 0 -2 2 2.5 2.5];

To ensure that we can check your results, it is crucial that you set the seed of the random
number generator by using the command

rng(14175332)

before running the following code.

3

u2 = 10.1*randn(2,20)+15;

v2 = -10.1*randn(2,20)-15;

u3 = 10.1*randn(2,20)+10;

v3 = -10.1*randn(2,20)-10;

u4 = 10.1*randn(2,50)+18;

v4 = -10.1*randn(2,50)-18;

If you want to suppress printing lamb and mu, call the function using

[~, ~, w, b] = SVMhard2(rho,u,v)

What do you observe when you run hard SVM on the data set (u3, v3)? Write your
answer in the report. Also try running these programs with several different random seeds
and report the results. Try varying rho - what behavior do you notice? Are there choices of
ρ where the program breaks?

4

