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Preface

In recent years, computer vision, robotics, machine learning, and data science have been
some of the key areas that have contributed to major advances in technology. Anyone who
looks at papers or books in the above areas will be baffled by a strange jargon involving exotic
terms such as kernel PCA, ridge regression, lasso regression, support vector machines (SVM),
Lagrange multipliers, KK'T conditions, etc. Do support vector machines chase cattle to catch
them with some kind of super lasso? No! But one will quickly discover that behind the jargon
which always comes with a new field (perhaps to keep the outsiders out of the club), lies a
lot of “classical” linear algebra and techniques from optimization theory. And there comes
the main challenge: in order to understand and use tools from machine learning, computer
vision, and so on, one needs to have a firm background in linear algebra and optimization
theory. To be honest, some probability theory and statistics should also be included, but we
already have enough to contend with.

Many books on machine learning struggle with the above problem. How can one under-
stand what are the dual variables of a ridge regression problem if one doesn’t know about the
Lagrangian duality framework? Similarly, how is it possible to discuss the dual formulation
of SVM without a firm understanding of the Lagrangian framework?

The easy way out is to sweep these difficulties under the rug. If one is just a consumer
of the techniques we mentioned above, the cookbook recipe approach is probably adequate.
But this approach doesn’t work for someone who really wants to do serious research and
make significant contributions. To do so, we believe that one must have a solid background
in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and energy studying
these fields, but we believe that perseverance will be amply rewarded.

This second volume covers some elements of optimization theory and applications, espe-
cially to machine learning. This volume is divided in five parts:

1) Preliminaries of Optimization Theory.

2) Linear Optimization.

(

(2)

(3) Nonlinear Optimization.
(4)

Applications to Machine Learning.



(5) An appendix consisting of two chapers; one on Hilbert bases and the Riesz—Fischer
theorem, the other one containing Matlab code.

Part I is devoted to some preliminaries of optimization theory. The goal of most optimiza-
tion problems is to minimize (or maximize) some objective function J subject to equality
or inequality constraints. Therefore it is important to understand when a function J has
a minimum or a maximum (an optimum). In most optimization problems, we need to find
necessary conditions for a function J: {2 — R to have a local extremum with respect to a
subset U of Q2 (where € is open). This can be done in two cases:

(1) The set U is defined by a set of equations,
U={zeQfpi(zr)=0, 1<i<m},
where the functions ¢;: 2 — R are continuous (and usually differentiable).
(2) The set U is defined by a set of inequalities,
U={zeQ|g(r) <0, 1<i<m},
where the functions ¢;: £ — R are continuous (and usually differentiable).

The case of equality constraints is much easier to deal with and is treated in Chapter 4.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers.

Part II deals with the special case where the objective function is a linear form and the
constraints are affine inequality and equality constraints. This subject is known as linear
programming, and the next four chapters give an introduction to the subject.

Part IIT is devoted to nonlinear optimization, which is the case where the objective
function J is not linear and the constaints are inequality constraints. Since it is practically
impossible to say anything interesting if the constraints are not convex, we quickly consider
the convex case.

Chapter 13 is devoted to some general results of optimization theory. A main theme is
to find sufficient conditions that ensure that an objective function has a minimum which
is achieved. We define gradient descent methods (including Newton’s method), and discuss
their convergence.

Chapter 14 contains the most important results of nonlinear optimization theory. The-
orem 14.6 gives necessary conditions for a function J to have a minimum on a subset U
defined by convex inequality constraints in terms of the Karush—-Kuhn—Tucker conditions.
Furthermore, if J is also convex and if the KKT conditions hold, then J has a global mini-
mum.



We illustrate the KKT conditions on an interesting example from machine learning the
so-called hard margin support vector machine; see Sections 14.5 and 14.6. The problem is to
separate two disjoint sets of points, {u,};_, and {v;}{_,, using a hyperplane satisfying some
optimality property (to maximize the margin).

Section 14.7 contains the most important results of the chapter. The notion of Lagrangian
duality is presented and we discuss weak duality and strong duality.

In Chapter 15, we consider some deeper aspects of the theory of convex functions that are
not necessarily differentiable at every point of their domain. Some substitute for the gradient
is needed. Fortunately, for convex functions, there is such a notion, namely subgradients. A
major motivation for developing this more sophisticated theory of differentiation of convex
functions is to extend the Lagrangian framework to convex functions that are not necessarily
differentiable.

Chapter 16 is devoted to the presentation of one of the best methods known at the
present for solving optimization problems involving equality constraints, called ADMM (al-
ternating direction method of multipliers). In fact, this method can also handle more general
constraints, namely, membership in a convex set. It can also be used to solve lasso mini-
mazation.

In Section 16.4, we prove the convergence of ADMM under exactly the same assumptions
as in Boyd et al. [17]. It turns out that Assumption (2) in Boyd et al. [17] implies that the
matrices AT A and BT B are invertible (as we show after the proof of Theorem 16.1). This
allows us to prove a convergence result stronger than the convergence result proven in Boyd
et al. [17].

The next four chapters constitute Part IV, which covers some applications of optimization
theory (in particular Lagrangian duality) to machine learning.

Chapter 17 is an introduction to positive definite kernels and the use of kernel functions
in machine learning called a kernel function.

We illustrate the kernel methods on kernel PCA.

In Chapter 18 we return to the problem of separating two disjoint sets of points, {u;}?_;
and {v;}_;, but this time we do not assume that these two sets are separable. To cope with
nonseparability, we allow points to invade the safety zone around the separating hyperplane,
and even points on the wrong side of the hyperplane. Such a method is called soft margin
support vector machine (SVM). We discuss variations of this method, including v-SV classi-
fication. In each case we present a careful derivation of the dual. We prove rigorous results

about the existence of support vectors.

In Chapter 19, we discuss linear regression, ridge regression, lasso regression and elastic
net regression.

In Chapter 20 we present v-SV Regression. This method is designed in the same spirit as
soft margin SVM, in the sense that it allows a margin of error. Here the errors are penalized



in the ¢!'-sense. We present a careful derivation of the dual and discuss the existence of
support vectors.

The methods presented in Chapters 18, 19 and 20 have all been implemented in Matlab,
and much of this code is given in Appendix B. Remarkably, ADMM emerges as the main
engine for solving most of these optimization problems. Thus it is nice to see the continuum
spanning from theoretical considerations of convergence and correctness to practical matters
of implementation. It is fun to see how these abstract Lagrange multipliers yield concrete
results such as the weight vector w defining the desired hyperplane in regression or SVM.

Except for a few exceptions we provide complete proofs. We did so to make this book
self-contained, but also because we believe that no deep knowledge of this material can be
acquired without working out some proofs. However, our advice is to skip some of the proofs
upon first reading, especially if they are long and intricate.

The chapters or sections marked with the symbol ® contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.
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of inspiration. Special thanks to Steven Boyd. We learned a lot from his remarkable book on
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writings. The first author also wishes to express his deepest gratitute to Philippe G. Ciarlet
who was his teacher and mentor in 1970-1972 while he was a student at ENPC in Paris.
Professor Ciarlet was by far his best teacher. He also knew how to instill in his students the
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Chapter 1

Introduction

This second volume covers some elements of optimization theory and applications, especially
to machine learning. This volume is divided in five parts:

1) Preliminaries of Optimization Theory.

2) Linear Optimization.

4

(1)

(2)

(3) Nonlinear Optimization.

(4) Applications to Machine Learning.
(5)

5) An appendix consisting of two chapers; one on Hilbert bases and the Riesz—Fischer

theorem, the other one containing Matlab code.

Part I is devoted to some preliminaries of optimization theory. The goal of most optimiza-
tion problems is to minimize (or maximize) some objective function J subject to equality
or inequality constraints. Therefore it is important to understand when a function J has a
minimum or a maximum (an optimum). If the function J is sufficiently differentiable, then
a necessary condition for a function to have an optimum typically involves the derivative of
the function J, and if J is real-valued, its gradient V.J.

Thus it is desirable to review some basic notions of topology and calculus, in particular,
to have a firm grasp of the notion of derivative of a function between normed vector spaces.
Partial derivatives df/0A of functions whose range and domain are spaces of matrices tend
to be used casually, even though in most cases a correct definition is never provided. It is
possible, and simple, to define rigorously derivatives, gradients, and directional derivatives
of functions defined on matrices and to avoid these nonsensical partial derivatives.

Chapter 2 contains a review of basic topological notions used in analysis. We pay par-
ticular attention to complete metric spaces and complete normed vector spaces. In fact, we
provide a detailed construction of the completion of a metric space (and of a normed vector
space) using equivalence classes of Cauchy sequences. Chapter 3 is devoted to some notions

13



14 CHAPTER 1. INTRODUCTION

of differential calculus, in particular, directional derivatives, total derivatives, gradients, Hes-
sians, and the inverse function theorem.

Chapter 4 deals with extrema of real-valued functions. In most optimization problems,
we need to find necessary conditions for a function J: 2 — R to have a local extremum with
respect to a subset U of Q (where 2 is open). This can be done in two cases:

(1) The set U is defined by a set of equations,
U={xeQ|pi(zx)=0, 1<i<m},
where the functions ¢;: £ — R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,
U={zeQ]|gi(x) <0, 1<i<m},

where the functions ¢;: 2 — R are continuous (and usually differentiable).

In (1), the equations ;(x) = 0 are called equality constraints, and in (2), the inequalities
wi(x) < 0 are called inequality constraints. The case of equality constraints is much easier
to deal with and is treated in Chapter 4.

If the functions ; are convex and {2 is convex, then U is convex. This is a very important
case that we will discuss later. In particular, if the functions ¢; are affine, then the equality
constraints can be written as Ax = b, and the inequality constraints as Az < b, for some
m x n matrix A and some vector b € R™. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers. In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush—Kuhn—Tucker conditions. This will be discussed in
Chapter 14.

In Chapter 5 we discuss Newton’s method and some of its generalizations (the Newton—
Kantorovich theorem). These are methods to find the zeros of a function.

Chapter 6 covers the special case of determining when a quadratic function has a mini-
mum, subject to affine equality constraints. A complete answer is provided in terms of the
notion of symmetric positive semidefinite matrices.

The Schur complement is introduced in Chapter 7. We give a complete proof of a cri-
terion for a matrix to be positive definite (or positive semidefinite) stated in Boyd and
Vandenberghe [18] (Appendix B).

Part II deals with the special case where the objective function is a linear form and the
constraints are affine inequality and equality constraints. This subject is known as linear
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programming, and the next four chapters give an introduction to the subject. Although
linear programming has been supplanted by convex programming and its variants, it is still
a great workhorse. It is also a great warm up for the general treatment of Lagrangian duality.
We pay particular attention to versions of Farkas’ lemma, which is at the heart of duality in
linear programming.

Part III is devoted to nonlinear optimization, which is the case where the objective
function J is not linear and the constaints are inequality constraints. Since it is practically
impossible to say anything interesting if the constraints are not convex, we quickly consider
the convex case.

In optimization theory one often deals with function spaces of infinite dimension. Typ-
ically, these spaces either are Hilbert spaces or can be completed as Hilbert spaces. Thus
it is important to have some minimum knowledge about Hilbert spaces, and we feel that
this minimum knowledge includes the projection lemma, the fact that a closed subset has
an orthogonal complement, the Riesz representation theorem, and a version of the Farkas—
Minkowski lemma. Chapter 12 covers these topics. A more detailed introduction to Hilbert
spaces is given in Appendix A.

Chapter 13 is devoted to some general results of optimization theory. A main theme is
to find sufficient conditions that ensure that an objective function has a minimum which
is achieved. We define the notion of a coercive function. The most general result is The-
orem 13.2, which applies to a coercive convex function on a convex subset of a separable
Hilbert space. In the special case of a coercive quadratic functional, we obtain the Lions—
Stampacchia theorem (Theorem 13.6), and the Lax—Milgram theorem (Theorem 13.7). We
define elliptic functionals, which generalize quadratic functions defined by symmetric posi-
tive definite matrices. We define gradient descent methods, and discuss their convergence.
A gradient descent method looks for a descent direction and a stepsize parameter, which is
obtained either using an exact line search or a backtracking line search. A popular technique
to find the search direction is steepest descent. In addition to steepest descent for the Eu-
clidean norm, we discuss steepest descent for an arbitrary norm. We also consider a special
case of steepest descent, Newton’s method. This method converges faster than the other
gradient descent methods, but it is quite expensive since it requires computing and storing
Hessians. We also present the method of conjugate gradients and prove its correctness. We
briefly discuss the method of gradient projection and the penalty method in the case of
constrained optima.

Chapter 14 contains the most important results of nonlinear optimization theory. We
begin by defining the cone of feasible directions and then state a necessary condition for a
function to have local minimum on a set U that is not necessarily convex in terms of the
cone of feasible directions. The cone of feasible directions is not always convex, but it is if
the constraints are inequality constraints. An inequality constraint ¢(u) < 0 is said to be
active is ¢(u) = 0. One can also define the notion of qualified constraint. Theorem 14.5
gives necessary conditions for a function J to have a minimum on a subset U defined by
qualified inequality constraints in terms of the Karush-Kuhn-Tucker conditions (for short
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KKT conditions), which involve nonnegative Lagrange multipliers. The proof relies on a
version of the Farkas—-Minkowski lemma. Some of the KTT conditions assert that A\;¢;(u) =
0, where \; > 0 is the Lagrange multiplier associated with the constraint ¢; < 0. To some
extent, this implies that active constaints are more important than inactive constraints,
since if ;(u) < 0 is an inactive constraint, then A\; = 0. In general, the KKT conditions
are useless, unless the constraints are convex. In this case, there is a manageable notion of
qualified constraint given by Slater’s conditions. Theorem 14.6 gives necessary conditions
for a function J to have a minimum on a subset U defined by convex inequality constraints
in terms of the Karush—-Kuhn—Tucker conditions. Furthermore, if J is also convex and if the
KKT conditions hold, then J has a global minimum.

In Section 14.4, we apply Theorem 14.6 to the special case where the constraints are
equality constraints, which can be expressed as Az = b. In the special case where the convex
objective function J is a convex quadratic functional of the form

1
J(x) = §xTPx +q'z+r

where P is a n X n symmetric positive semidefinite matrix, the necessary and sufficient
conditions for having a minimum are expressed by a linear system involving a matrix called
the KKT matrix. We discuss conditions that guarantee that the KKT matrix is invertible,
and how to solve the KKT system. We also briefly discuss variants of Newton’s method
dealing with equality constraints.

We illustrate the KKT conditions on an interesting example, the so-called hard margin
support vector machine; see Sections 14.5 and 14.6. The problem is a classification problem,
or more accurately a separation problem. Suppose we have two nonempty disjoint finite sets
of p blue points {w;};_, and ¢ red points {v;}j_; in R". Our goal is to find a hyperplane
of equation w'z — b = 0 (where w € R" is a nonzero vector and b € R), such that all the
blue points u; are in one of the two open half-spaces determined by H, and all the red points
v; are in the other open half-space determined by H.

If the two sets are indeed separable, then in general there are infinitely many hyperplanes
separating them. Vapnik had the idea to find a hyperplane that maximizes the smallest
distance between the points and the hyperplane. Such a hyperplane is indeed unique and
is called a maximal hard margin hyperplane, or hard margin support vector machine. The
support vectors are those for which the constraints are active.

Section 14.7 contains the most important results of the chapter. The notion of Lagrangian
duality is presented. Given a primal optimization problem (P) consisting in minimizing an
objective function J(v) with respect to some inequality constraints p;(v) <0,i=1,...,m,
we define the dual function G(u) as the result of minimizing the Lagrangian

L(v,p) = J(v) + ZM%‘(U)
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with respect to v, with ¢ € R7’. The dual program (D) is then to maximize G(;) with
respect to p € R, It turns out that G is a concave function, and the dual program is an
unconstrained maximization. This is actually a misleading statement because G is generally
a partial function, so maximizing G(u) is equivalent to a constrained maximization problem
in which the constraints specify the domain of G, but in many cases, we obtain a dual
program simpler than the primal program. If d* is the optimal value of the dual program
and if p* is the optimal value of the primal program, we always have

d* S p*’

which is known as weak duality. Under certain conditions, d* = p*, that is, the duality gap
is zero, in which case we say that strong duality holds. Also, under certain conditions, a
solution of the dual yields a solution of the primal, and if the primal has an optimal solution,
then the dual has an optimal solution, but beware that the converse is generally false (see
Theorem 14.17). We also show how to deal with equality constraints, and discuss the use of
conjugate functions to find the dual function. Our coverage of Lagrangian duality is quite
thorough, but we do not discuss more general orderings such as the semidefinite ordering.
For these topics which belong to convex optimization, the reader is referred to Boyd and
Vandenberghe [18].

In Chapter 15, we consider some deeper aspects of the theory of convex functions that are
not necessarily differentiable at every point of their domain. Some substitute for the gradient
is needed. Fortunately, for convex functions, there is such a notion, namely subgradients.
Geometrically, given a (proper) convex function f, the subgradients at x are vectors normal
to supporting hyperplanes to the epigraph of the function at (x, f(z)). The subdifferential
Of (z) to f at x is the set of all subgradients at z. A crucial property is that f is differentiable
at x iff Of () = {V f.}, where Vf, is the gradient of f at z. Another important property is
that a (proper) convex function f attains its minimum at z iff 0 € df(x). A major motivation
for developing this more sophisticated theory of “differentiation” of convex functions is to
extend the Lagrangian framework to convex functions that are not necessarily differentiable.

Experience shows that the applicability of convex optimization is significantly increased
by considering extended real-valued functions, namely functions f: S — R U {—o00, 400},
where S is some subset of R” (usually convex). This is reminiscent of what happens in
measure theory, where it is natural to consider functions that take the value 4o0.

In Section 15.1, we introduce extended real-valued functions, which are functions that
may also take the values +o0o. In particular, we define proper convex functions, and the
closure of a convex function. Subgradients and subdifferentials are defined in Section 15.2.
We discuss some properties of subgradients in Section 15.3 and Section 15.4. In particular,
we relate subgradients to one-sided directional derivatives. In Section 15.5, we discuss the
problem of finding the minimum of a proper convex function and give some criteria in terms
of subdifferentials. In Section 15.6, we sketch the generalization of the results presented in
Chapter 14 about the Lagrangian framework to programs allowing an objective function and
inequality constraints which are convex but not necessarily differentiable.
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This chapter relies heavily on Rockafellar [61]. We tried to distill the body of results
needed to generalize the Lagrangian framework to convex but not necessarily differentiable
functions. Some of the results in this chapter are also discussed in Bertsekas [9, 12, 10].

Chapter 16 is devoted to the presentation of one of the best methods known at the
present for solving optimization problems involving equality constraints, called ADMM (al-
ternating direction method of multipliers). In fact, this method can also handle more general
constraints, namely, membership in a convex set. It can also be used to solve lasso mini-
mization.

In this chapter, we consider the problem of minimizing a convex function J (not neces-
sarily differentiable) under the equality constraints Ax = b. In Section 16.1, we discuss the
dual ascent method. It is essentially gradient descent applied to the dual function G, but
since G is maximized, gradient descent becomes gradient ascent.

In order to make the minimization step of the dual ascent method more robust, one can
use the trick of adding the penalty term (p/2) || Au — b||3 to the Lagrangian. We obtain the
augmented Lagrangian

Ly(u, \) = J(u) + AT (Au — b) + (p/2) || Au — b]|3,

with A € R™, and where p > 0 is called the penalty parameter. We obtain the minimization
Problem (P,),

minimize J(u) + (p/2) | Au — b||

subject to Au = b,
which is equivalent to the original problem.

The benefit of adding the penalty term (p/2) |Au — b||> is that by Proposition 15.37,
Problem (P,) has a unique optimal solution under mild conditions on A. Dual ascent applied
to the dual of (P,) is called the method of multipliers and is discussed in Section 16.2.

The new twist in ADMM is to split the function .J into two independent parts, as J(x, z) =
f(z) + g(2), and to consider the Minimization Problem (Piqmm),

minimize f(z) + g(2)
subject to Az 4+ Bz = ¢,

for some p x n matrix A, some p X m matrix B, and with z € R", z € R™, and ¢ € RP. We
also assume that f and ¢ are convex.

As in the method of multipliers, we form the augmented Lagrangian
Ly(2,2, ) = f(x) + 9(=) + A (Az + Bz — ¢) + (p/2) | Az + Bz — c|}2.

with A € R? and for some p > 0. The major difference with the method of multipliers is that
instead of performing a minimization step jointly over x and z, ADMM first performs an
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r-minimization step and then a z-minimization step. Thus z and z are updated in an alter-
nating or sequential fashion, which accounts for the term alternating direction. Because the
Lagrangian is augmented, some mild conditions on A and B imply that these minimization
steps are guaranteed to terminate. ADMM is presented in Section 16.3.

In Section 16.4, we prove the convergence of ADMM under exactly the same assumptions
as in Boyd et al. [17]. It turns out that Assumption (2) in Boyd et al. [17] implies that the
matrices AT A and BT B are invertible (as we show after the proof of Theorem 16.1). This
allows us to prove a convergence result stronger than the convergence result proven in Boyd
et al. [17]. In particular, we prove that all of the sequences (z*), (2*), and (\*) converge to
optimal solutions (7, 7), and \.

In Section 16.5, we discuss stopping criteria. In Section 16.6, we present some applications
of ADMM, in particular, minimization of a proper closed convex function f over a closed
convex set C' in R™ and quadratic programming. The second example provides one of the
best methods for solving quadratic problems, in particular, the SVM problems discussed in
Chapter 18. Section 16.8 gives applications of ADMM to ¢!-norm problems, in particular,
lasso regularization which plays an important role in machine learning.

The next four chapters constitute Part IV, which covers some applications of optimization
theory (in particular Lagrangian duality) to machine learning.

Chapter 17 is an introduction to positive definite kernels and the use of kernel functions
in machine learning.

Let X be a nonempty set. If the set X represents a set of highly nonlinear data, it
may be advantageous to map X into a space F' of much higher dimension called the feature
space, using a function ¢: X — F' called a feature map. This idea is that ¢ “unwinds” the
description of the objects in F' in an attempt to make it linear. The space F' is usually a
vector space equipped with an inner product (—, —). If F' is infinite dimensional, then we
assume that it is a Hilbert space.

Many algorithms that analyze or classify data make use of the inner products (¢(z), ¢(y)),
where z,y € X. These algorithms make use of the function x: X x X — C given by

K(r,y) = (p(), 0(y)),  z,y€X,

called a kernel function.

The kernel trick is to pretend that we have a feature embedding ¢: X — F' (actuallly
unknown), but to only use inner products (¢(x),¢(y)) that can be evaluated using the
original data through the known kernel function . It turns out that the functions of the
form k as above can be defined in terms of a condition which is reminiscent of positive
semidefinite matrices (see Definition 17.2). Furthermore, every function satisfying Definition
17.2 arises from a suitable feature map into a Hilbert space; see Theorem 17.8.

We illustrate the kernel methods on kernel PCA (see Section 17.4).
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In Chapter 18 we return to the problem of separating two disjoint sets of points, {u;}}_;
and {v;}7_,, but this time we do not assume that these two sets are separable. To cope with
nonseparability, we allow points to invade the safety zone around the separating hyperplane,
and even points on the wrong side of the hyperplane. Such a method is called soft margin
support vector machine. We discuss variations of this method, including v-SV classification.
In each case we present a careful derivation of the dual and we explain how to solve it using
ADMM. We prove rigorous results about the existence of support vectors.

In Chapter 19 we discuss linear regression. This problem can be cast as a learning
problem. We observe a sequence of (distinct) pairs ((z1,¥1), - .., (Tm, ym)) called a set of
training data, where x; € R™ and y; € R, viewed as input-output pairs of some unknown
function f that we are trying to infer. The simplest kind of function is a linear function
f(r) = 2Tw, where w € R" is a vector of coefficients usually called a weight vector. Since
the problem is overdetermined and since our observations may be subject to errors, we can’t
solve for w exactly as the solution of the system Xw = y, so instead we solve the least-
squares problem of minimizing || Xw — yHg, where X is the m x n matrix whose rows are the
row vectors z; . In general there are still infinitely many solutions so we add a regularizing
term. If we add the term K ||w|)3 to the objective function J(w) = || Xw — y||3, then we have
ridge regression. This problem is discussed in Section 19.1.

We derive the dual program. The dual has a unique solution which yields a solution of the
primal. However, the solution of the dual is given in terms of the matrix XX ' (whereas the
solution of the primal is given in terms of X " X), and since our data points z; are represented
by the rows of the matrix X, we see that this solution only involves inner products of the
x;. This observation is the core of the idea of kernel functions, which we introduce. We also
explain how to solve the problem of learning an affine function f(z) = 2w + b.

In general the vectors w produced by ridge regression have few zero entries. In practice it
is highly desirable to obtain sparse solutions, that is, vectors w with many components equal
to zero. This can be achieved by replacing the regularizing term K Hw||§ by the regularizing
term K ||wl;; that is, to use the ¢'-norm instead of the ¢*-norm; see Section 19.4. This
method has the exotic name of lasso regression. This time there is no closed-form solution,
but this is a convex optimization problem and there are efficient iterative methods to solve
it. We show that ADMM provides an efficient solution.

Lasso has some undesirable properties, in particular when the dimension of the data
is much larger than the number of data. In order to alleviate these problems, elastic net
regression penalizes w with both an (% regularizing term K Hw||§ and an ¢! regularizing term
7 ||w||;- The method of elastic net blends ridge regression and lasso and attempts to retain
their best properties; see Section 19.6. It can also be solved using ADMM but it appears to
be much slower than lasso when K is small and the dimension of the data is much larger
than the number of data.

In Chapter 20 we present v-SV Regression. This method is designed in the same spirit
as soft margin SVM, in the sense that it allows a margin of error. Here the errors are
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penalized in the ¢*-sense. We discuss several variations of the method and show how to solve
them using ADMM. We present a careful derivation of the dual and discuss the existence of
support vectors.



22

CHAPTER 1.

INTRODUCTION



Part 1

Preliminaries for Optimization Theory

23






Chapter 2

Topology

This chapter contains a review of basic topological concepts. First metric spaces are defined.
Next normed vector spaces are defined. Closed and open sets are defined, and their basic
properties are stated. The general concept of a topological space is defined. The closure and
the interior of a subset are defined. The subspace topology and the product topology are
defined. Continuous maps and homeomorphisms are defined. Limits of sequences are de-
fined. Continuous linear maps and multilinear maps are defined and studied briefly. Cauchy
sequences and complete metric spaces are defined. We prove that every metric space can
be embedded in a complete metric space called its completion. A complete normed vector
space is called a Banach space. We prove that every normed vector space can be embedded
in a complete normed vector space. We conclude with the contraction mapping theorem in
a complete metric space.

2.1 Metric Spaces and Normed Vector Spaces

Most spaces considered in this book have a topological structure given by a metric or a norm,
and we first review these notions. We begin with metric spaces. Recall that R, = {x € R |
x>0}

Definition 2.1. A metric space is a set E together with a function d: ' x E — R, called a
metric, or distance, assigning a nonnegative real number d(z, y) to any two points z,y € E,
and satisfying the following conditions for all x,y, 2z € E:

(D1) d(z, y) = d(y, x). (symmetry)
(D2) d(z, y) >0, and d(z, y) =0 iff x = y. (positivity)
(D3) d(z, z) < d(x, y) +d(y, 2). (triangle inequality)

Geometrically, Condition (D3) expresses the fact that in a triangle with vertices x,y, z,
the length of any side is bounded by the sum of the lengths of the other two sides. From
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(D3), we immediately get
‘d(l‘, y) - d<y7 Z)’ < d(l‘, Z)

Let us give some examples of metric spaces. Recall that the absolute value |z| of a real

number = € R is defined such that |z| = z if > 0, |z| = —z if x < 0, and for a complex
number = = a + ib, by |z| = Va? + b2
Example 2.1.

1. Let E =R, and d(x, y) = |x — y|, the absolute value of x — y. This is the so-called
natural metric on R.

2. Let E=R" (or E = C"). We have the Euclidean metric

N|=

d2(x> y) = (‘wl - y1’2 +t ’mn - yn’2) )
the distance between the points (zy,...,z,) and (y1,...,Yn)-

3. For every set E, we can define the discrete metric, defined such that d(z, y) = 1 iff
x # vy, and d(x, z) = 0.

4. For any a,b € R such that a < b, we define the following sets:
la,b] ={r € R|a <z <b}, (closed interval)
(a,b) ={x e R|a <z <b}, (open interval)
la,b) ={zx €R|a<xz<b}, (interval closed on the left, open on the right)
(a,b) ={x € R|a <z <b}, (interval open on the left, closed on the right)
Let E = [a,b], and d(z, y) = |x — y|. Then ([a, b], d) is a metric space.

We will need to define the notion of proximity in order to define convergence of limits
and continuity of functions. For this we introduce some standard “small neighborhoods.”

Definition 2.2. Given a metric space E with metric d, for every a € F, for every p € R,
with p > 0, the set
Ba,p) ={z € E | d(a, x) < p}

is called the closed ball of center a and radius p, the set
Bo(a,p) ={x € E | d(a, x) < p}

is called the open ball of center a and radius p, and the set
S(a, p) = {x € E]d(a, 2) = p}

is called the sphere of center a and radius p. It should be noted that p is finite (i.e., not
+00). A subset X of a metric space F is bounded if there is a closed ball B(a, p) such that
X C B(a, p).
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Clearly, B(a,p) = Bo(a, p) U S(a, p).
Example 2.2.

1. In E = R with the distance |z — y|, an open ball of center a and radius p is the open
interval (a — p,a + p).

2. In E = R? with the Euclidean metric, an open ball of center a and radius p is the set
of points inside the disk of center a and radius p, excluding the boundary points on
the circle.

3. In E = R? with the Euclidean metric, an open ball of center a and radius p is the set
of points inside the sphere of center a and radius p, excluding the boundary points on
the sphere.

One should be aware that intuition can be misleading in forming a geometric image of a
closed (or open) ball. For example, if d is the discrete metric, a closed ball of center a and
radius p < 1 consists only of its center a, and a closed ball of center a and radius p > 1
consists of the entire space!

@ If £ = [a,b], and d(z, y) = |r — y|, as in Example 2.1, an open ball By(a, p), with
p < b—a, is in fact the interval [a,a + p), which is closed on the left.

We now consider a very important special case of metric spaces, normed vector spaces.
Normed vector spaces have already been defined in Chapter 8 (Vol. I) (Definition 8.1 (Vol.
I)), but for the reader’s convenience we repeat the definition.

Definition 2.3. Let E be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function || ||: E — R, assigning
a nonnegative real number ||u|| to any vector u € F, and satisfying the following conditions
for all z,y € E:

(N1) [Jz|| >0, and [[z]| = 0 iff z = 0. (positivity)
(N2) [[Az[| = [A][J=]]. (homogeneity (or scaling))
(N3) [z +yll < [l=]| + [lyl|- (triangle inequality)

A vector space E together with a norm || || is called a normed vector space.

We showed in Chapter 8 (Vol. I), that
= [l = =]l

and from (N3), we get
[zl =yl < flz =yl
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Given a normed vector space F, if we define d such that

d(z, y) = [lz =y,

it is easily seen that d is a metric. Thus, every normed vector space is immediately a metric
space. Note that the metric associated with a norm is invariant under translation, that is,

d(z +u, y+u) =d(z, y).

For this reason we can restrict ourselves to open or closed balls of center 0.

Examples of normed vector spaces were given in Example 8.1 (Vol. I). We repeat the
most important examples.

Example 2.3. Let £ = R" (or £ = C"). There are three standard norms. For every
(x1,...,2,) € E, we have the norm ||z||;, defined such that,

[l = fa] + - -+ |2l

we have the Fuclidean norm ||z||2, defined such that,

lalla = (a2 + - + fal?)
and the sup-norm ||z||, defined such that,

[£]loe = max{ai| | 1 < <n}.
More generally, we define the ¢?-norm (for p > 1) by

Izl = (1l + - 4 |zaf?) 1.

We proved in Proposition 8.1 (Vol. I) that the -norms are indeed norms. The closed
unit balls centered at (0,0) for || |1, || ||z, and || ||, along with the containment relationships,
are shown in Figures 2.1 and 2.2. Figures 2.3 and 2.4 illustrate the situation in R3.

Remark: In a normed vector space we define a closed ball or an open ball of radius p as a
closed ball or an open ball of center 0. We may use the notation B(p) for B(0, p) and By(p)
for By(0, p).

We will now define the crucial notions of open sets and closed sets within a metric space
Definition 2.4. Let E be a metric space with metric d. A subset U C FE is an open set in E

if either U = (), or for every a € U, there is some open ball By(a, p) such that, By(a, p) C U.!
A subset F' C FE is a closed set in E if its complement E — F is open in E. See Figure 2.5.

'Recall that p > 0.
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Figure 2.1: Figure a shows the diamond shaped closed ball associated with || ||;. Figure b
shows the closed unit disk associated with || ||2, while Figure ¢ illustrates the closed unit ball
associated with || ||so-

Figure 2.2: The relationship between the closed unit balls centered at (0, 0).
The set E itself is open, since for every a € E, every open ball of center a is contained in
E. In E =R", given n intervals [a;, b;], with a; < b;, it is easy to show that the open n-cube
{($1,...,$n) €E|az <xi<bi7 1§Z§TL}

is an open set. In fact, it is possible to find a metric for which such open n-cubes are open
balls! Similarly, we can define the closed n-cube

{(@1,. . zn) €E ai < < b, 1 <0 <n},

which is a closed set.

The open sets satisfy some important properties that lead to the definition of a topological
space.
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Figure 2.3: Figure a shows the octahedral shaped closed ball associated with || ||;. Figure
b shows the closed spherical associated with || ||a, while Figure ¢ illustrates the closed unit
ball associated with || ||oc.

Figure 2.4: The relationship between the closed unit balls centered at (0,0, 0).

Proposition 2.1. Given a metric space E with metric d, the family O of all open sets
defined in Definition 2./ satisfies the following properties:

(O1) For every finite family (U;)1<i<n of sets U; € O, we have Uy N ---NU, € O, i.e., O is
closed under finite intersections.

(02) For every arbitrary family (U;)icr of sets U; € O, we have | J,c; U; € O, i.e., O is closed
under arbitrary unions.

(03) D€ O, and E € O, i.e., ) and E belong to O.
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Figure 2.5: An open set U in E = R? under the standard Euclidean metric. Any point in
the peach set U is surrounded by a small raspberry open set which lies within U.

Furthermore, for any two distinct points a # b in E, there exist two open sets U, and U,
such that, a € U,, b € Uy, and U, N U, = 0.

Proof. 1t is straightforward. For the last point, letting p = d(a, b)/3 (in fact p = d(a, b)/2
works too), we can pick U, = By(a,p) and U, = By(b,p). By the triangle inequality, we
must have U, N U, = 0. O

The above proposition leads to the very general concept of a topological space.

@ One should be careful that, in general, the family of open sets is not closed under infinite
intersections. For example, in R under the metric |z — y|, letting U,, = (—=1/n, +1/n),
each U, is open, but [, U, = {0}, which is not open.

2.2 Topological Spaces

Motivated by Proposition 2.1, a topological space is defined in terms of a family of sets
satisfying the properties of open sets stated in that proposition.

Definition 2.5. Given a set E, a topology on E (or a topological structure on E), is defined
as a family O of subsets of F called open sets, and satisfying the following three properties:

(1) For every finite family (U;)1<i<, of sets U; € O, we have Uy N ---NU, € O, i.e., O is
closed under finite intersections.

(2) For every arbitrary family (U;)ies of sets U; € O, we have | J,.,; U; € O, i.e., O is closed
under arbitrary unions.

(3) D € O,and E € O, i.e., ) and E belong to O.

A set F together with a topology O on F is called a topological space. Given a topological
space (E,Q), a subset F of E is a closed set if F = FE — U for some open set U € O, i.e., F
is the complement of some open set.
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@ It is possible that an open set is also a closed set. For example, ) and E are both open
and closed.

Definition 2.6. When a topological space contains a proper nonempty subset U which is
both open and closed, the space E' is said to be disconnected.

By taking complements, we can state properties of the closed sets dual to those of Defi-
nition 2.5. If we denote the family of closed sets of £ as F = {F C E | E — F € O}, then
the closed sets satisfy the following properties:

(1) For every finite family (F})i<;<n, € F, we have FyU---UF, € F, i.e., F is closed under
finite unions.

(2) For every arbitrary family (F;);es of sets F; € F, we have (,.; F; € F, i.e., F is closed
under arbitrary intersections.

(3) e F,and E € F,ie., 0 and E belong to F.

One of the reasons why topological spaces are important is that the definition of a topol-
ogy only involves a certain family O of sets, and not how such family is generated from
a metric or a norm. For example, different metrics or different norms can define the same
family of open sets. Many topological properties only depend on the family O and not on
the specific metric or norm. But the fact that a topology is definable from a metric or a
norm is important, because it usually implies nice properties of a space. All our examples
will be spaces whose topology is defined by a metric or a norm.

Definition 2.7. A topological space (E, Q) is said to satisfy the Hausdorff separation axiom
(or Ty-separation axiom) if for any two distinct points a # b in E, there exist two open sets
U, and U, such that, a € U,, b € Uy, and U, N U, = (). When the Th-separation axiom is
satisfied, we also say that (F, Q) is a Hausdorff space.

As shown by Proposition 2.1, any metric space is a topological Hausdorff space, the family
of open sets being in fact the family of arbitrary unions of open balls. Similarly, any normed
vector space is a topological Hausdorff space, the family of open sets being the family of
arbitrary unions of open balls. The topology O consisting of all subsets of E is called the
discrete topology.

Remark: Most (if not all) spaces used in analysis are Hausdorff spaces. Intuitively, the
Hausdorff separation axiom says that there are enough “small” open sets. Without this
axiom, some counter-intuitive behaviors may arise. For example, a sequence may have more
than one limit point (or a compact set may not be closed). Nevertheless, non-Hausdorff
topological spaces arise naturally in algebraic geometry. But even there, some substitute for
separation is used.

It is also worth noting that the Hausdorff separation axiom implies the following property.
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Proposition 2.2. If a topological space (E, Q) is Hausdorff, then for every a € E, the set
{a} is closed.

Proof. 1t x € E — {a}, then z # a, and so there exist open sets U, and U, such that a € U,,
x € U,, and U, NU, = (. See Figure 2.6. Thus, for every x € E — {a}, there is an open set
U, containing x and contained in E — {a}, showing by (O3) that F — {a} is open, and thus
that the set {a} is closed. O

Figure 2.6: A schematic illustration of the Hausdorff separation property.

Given a topological space (E, Q), given any subset A of E, since E € O and FE is a closed
set, the family C4 = {F | A C F, F a closed set} of closed sets containing A is nonempty,
and since any arbitrary intersection of closed sets is a closed set, the intersection [C4 of
the sets in the family C4 is the smallest closed set containing A. By a similar reasoning, the
union of all the open subsets contained in A is the largest open set contained in A.

Definition 2.8. Given a topological space (E,0), given any subset A of F, the smallest
closed set containing A is denoted by A, and is called the closure, or adherence of A. See
Figure 2.7. A subset A of F is dense in FE if A = E. The largest open set contained in A is

denoted by ;1, and is called the interior of A. See Figure 2.8. Theset Fr A=A NE — A is
called the boundary (or frontier) of A. We also denote the boundary of A by 0A. See Figure
2.9.

Remark: The notation A for the closure of a subset A of E is somewhat unfortunate,
since A is often used to denote the set complement of A in E. Still, we prefer it to more
cumbersome notations such as clo(A), and we denote the complement of Ain F by F — A
(or sometimes, A°).

By definition, it is clear that a subset A of E is closed iff A = A. The set Q of rationals
is dense in R. It is easily shown that A = A UJA and A NJA = (.
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Figure 2.7: The topological space (E,O) is R? with topology induced by the Euclidean
metric. The subset A is the section By(1) in the first and fourth quadrants bound by the
lines y = x and y = —x. The closure of A is obtained by the intersection of A with the
closed unit ball.

an

o A

Figure 2.8: The topological space (F,O) is R? with topology induced by the Euclidean
metric. The subset A is the section By(1) in the first and fourth quadrants bound by the
lines y = x and y = —x. The interior of A is obtained by the covering A with small open
balls.

Another useful characterization of A is given by the following proposition.
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an (1,1)

an® A a-n" OA

Figure 2.9: The topological space (E,O) is R? with topology induced by the Euclidean
metric. The subset A is the section By(1) in the first and fourth quadrants bound by the

lines y = « and y = —z. The boundary of A is A — A.

Proposition 2.3. Given a topological space (E,0), given any subset A of E, the closure
A of A is the set of all points x € E such that for every open set U containing x, then
UNA#D. See Figure 2.10.

Figure 2.10: The topological space (E,Q) is R? with topology induced by the Euclidean
metric. The purple subset A is illustrated with three red points, each in its closure since the
open ball centered at each point has nontrivial intersection with A.

Proof. If A = (), since ) is closed, the proposition holds trivially. Thus assume that A # 0.
First assume that « € A. Let U be any open set such that € U. If UN A = (), since U is
open, then E — U is a closed set containing A, and since A is the intersection of all closed
sets containing A, we must have x € E — U, which is impossible. Conversely, assume that
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x € F is a point such that for every open set U containing z, UNA # (). Let F be any closed
subset containing A. If x ¢ F'| since F is closed, then U = E — F is an open set such that
x €U, and UNA = (), a contradiction. Thus, we have x € F for every closed set containing
A, that is, z € A. n

Often it is necessary to consider a subset A of a topological space F, and to view the
subset A as a topological space.

2.3 Subspace and Product Topologies

The following proposition shows how to define a topology on a subset.

Proposition 2.4. Given a topological space (E,O), given any subset A of E, let
U={UNA|UeO}

be the family of all subsets of A obtained as the intersection of any open set in O with A.
The following properties hold.

(1) The space (A,U) is a topological space.

(2) If E is a metric space with metric d, then the restriction da: A x A — R, of the
metric d to A defines a metric space. Furthermore, the topology induced by the metric
d4 agrees with the topology defined by U, as above.

Proof. Left as an exercise. O

Proposition 2.4 suggests the following definition.

Definition 2.9. Given a topological space (F,Q), given any subset A of E, the subspace
topology on A induced by O is the family U of open sets defined such that

U={UNA|Ue O}

is the family of all subsets of A obtained as the intersection of any open set in O with A.
We say that (A,U) has the subspace topology. If (E,d) is a metric space, the restriction
da: Ax A— Ry of the metric d to A is called the subspace metric.

For example, if £ = R"™ and d is the Euclidean metric, we obtain the subspace topology
on the closed n-cube

{(l’l,,l’n)€E|CLz§Q?Z§b“1SZ§n}

See Figure 2.11.
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A=(1,1,1)

B=(1,1,0

Figure 2.11: An example of an open set in the subspace topology for {(z,y,z) € R¥| -1 <

r<1,-1<y<1,-1<z<1}. The open set is the corner region ABCD and is obtained
by intersection the cube By((1,1,1),1).

@ One should realize that every open set U € O which is entirely contained in A is also in
the family U, but U may contain open sets that are not in O. For example, if £ = R
with |z —y|, and A = [a, b], then sets of the form [a, ¢), with a < ¢ < b belong to U, but they
are not open sets for R under |z — y|. However, there is agreement in the following situation.

Proposition 2.5. Given a topological space (E,O), given any subset A of E, if U is the
subspace topology, then the following properties hold.

(1) If A is an open set A € O, then every open set U € U is an open set U € O.

(2) If A is a closed set in E, then every closed set w.r.t. the subspace topology is a closed
set w.r.t. O.

Proof. Left as an exercise. O

The concept of product topology is also useful. We have the following proposition.
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Proposition 2.6. Given n topological spaces (E;, O;), let B be the family of subsets of
Ey x -+ x E, defined as follows:

B:{U1X"'XUn‘UiEOZ', 1§z§n},

and let P be the family consisting of arbitrary unions of sets in B, including 0. Then P is a
topology on Ey X --- X E,.

Proof. Left as an exercise. n

Definition 2.10. Given n topological spaces (F;, O;), the product topology on Ey X --- X E,
is the family P of subsets of F; x --- x E,, defined as follows: if

B:{U1XXU7L‘U1€O“1§Z§TL},

then P is the family consisting of arbitrary unions of sets in B, including (). See Figure 2.12.

Figure 2.12: Examples of open sets in the product topology for R? and R? induced by the
Euclidean metric.

If each (E;, dg,) is a metric space, there are three natural metrics that can be defined on
FEi x---x E,:

dy((w1, s wn), (Yo n)) = diy (21,91) + -+ + di, (T, Yn),

do((z1, s 2n), (Y1, Un)) = ((dEl (1, y1>>2 + -+ (dg, (Tn, yn))Q) )
dOO((x17 s 7mn)v (yla cee 7yn)) = max{dE1 (xla yl)a v 7dE7L(xna yn>}

[ SIS

Proposition 2.7. The following inequalities hold:

oo (z15 -y x0), (Y1, ooy yn)) < da((x1, ooy 20), Y1y - un) < di((z1y -5 20), (Y1, -+, Yn))
< ndoo (1, T0), (Y15, Yn)),

so these distances define the same topology, which is the product topology.
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If each (E;, || ||g,) is a normed vector space, there are three natural norms that can be
defined on F; X - -+ x E,:

(@1, .. z) |l = ||l + - + |2 &,

1
2
[@rsecswa)lla = (ol + -+ llzal, )
|1, @)oo = max{laalls,,- - lanlls, }

Proposition 2.8. The following inequalities hold:

(@1, mn)lloe < (21, am)lla < (l(2 20l < nfl(zrs - ) [l
so these norms define the same topology, which is the product topology.

It can also be verified that when E; = R, with the standard topology induced by |z — y],
the topology product on R" is the standard topology induced by the Euclidean norm.

Definition 2.11. Two metrics d; and ds on a space E are equivalent if they induce the same
topology O on E (i.e., they define the same family O of open sets). Similarly, two norms
| |1 and || ||2 on a space E are equivalent if they induce the same topology O on E.

Given a topological space (E,Q), it is often useful, as in Proposition 2.6, to define the
topology O in terms of a subfamily B of subsets of E.

Definition 2.12. Given a topological space (E,Q), we say that a family B of subsets of
E is a basis for the topology O, if B is a subset of O, and if every open set U in O can be
obtained as some union (possibly infinite) of sets in B (agreeing that the empty union is the
empty set).

For example, given any metric space (E,d), B = {By(a,p) | a € E,p > 0} is a basis for
the topology. In particular, if d = || ||2, the open intervals form a basis for R, while the open
disks form a basis for R%. The open rectangles also form a basis for R? with the standard
topology.

It is immediately verified that if a family B = (Uj;)es is a basis for the topology of (E, O),
then E = (J,; U;, and the intersection of any two sets U;, U; € B is the union of some sets in
the family B (again, agreeing that the empty union is the empty set). Conversely, a family
B with these properties is the basis of the topology obtained by forming arbitrary unions of
sets in B.

Definition 2.13. Given a topological space (E, O), a subbasis for O is a family S of subsets
of E, such that the family B of all finite intersections of sets in S (including F itself, in case
of the empty intersection) is a basis of O. See Figure 2.13.

The following proposition gives useful criteria for determining whether a family of open
subsets is a basis of a topological space.
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(ii.)

Figure 2.13: Figure (i.) shows that the set of infinite open intervals forms a subbasis for R.
Figure (4i.) shows that the infinite open strips form a subbasis for R

Proposition 2.9. Given a topological space (E, Q) and a family B of open subsets in O the
following properties hold:

(1) The family B is a basis for the topology O iff for every open set U € O and every
x € U, there is some B € B such that x € B and B C U. See Figure 2.14.

(2) The family B is a basis for the topology O iff

(a) For every x € E, there is some B € B such that © € B.

(b) For any two open subsets, By, By € B, for every x € E, if x € B1N By, then there
18 some B3 € B such that x € By and Bs C By N By. See Figure 2.15.

Figure 2.14: Given an open subset U of R? and x € U, there exists an open ball B containing
x with B C U. There also exists an open rectangle By containing x with B; C U.

We now consider the fundamental property of continuity.
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Figure 2.15: A schematic illustration of Condition (b) in Proposition 2.9.

2.4 Continuous Functions

Definition 2.14. Let (E,Og) and (F,Or) be topological spaces, and let f: E — F be a
function. For every a € E, we say that f is continuous at a, if for every open set V € Op
containing f(a), there is some open set U € Op containing a, such that, f(U) C V. See
Figure 2.16. We say that f is continuous if it is continuous at every a € F.

If (F,0g) and (F,Op) are topological spaces, and f: E — F is a function, for every
nonempty subset A C E of E, we say that f is continuous on A if the restriction of f to A
is continuous with respect to (A,U) and (F, Op), where U is the subspace topology induced
by O on A.

Ry

Soe
(VR a ./’ 4
N -7 ¢
= ". ‘
[ Ha);
| v
3 y

Figure 2.16: A schematic illustration of Definition 2.14.

Definition 2.15. Let (F,Og) be a topological space. Define a neighborhood of a € E as
any subset N of E containing some open set O € O such that a € O.

Now if f is continuous at a and N is any neighborhood of f(a), there is some open set
V' C N containing f(a), and since f is continuous at a, there is some open set U containing
a, such that f(U) C V. Since V C N, the open set U is a subset of f~*(N) containing a,
and f~!(N) is a neighborhood of a. Conversely, if f~'(NN) is a neighborhood of a whenever
N is any neighborhood of f(a), it is immediate that f is continuous at a. See Figure 2.17.

It is easy to see that Definition 2.14 is equivalent to the following statements.
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Figure 2.17: A schematic illustration of the neighborhood condition.

Proposition 2.10. Let (E,Og) and (F,OF) be topological spaces, and let f: E — F be a
function. For every a € E, the function f is continuous at a € E iff for every neighborhood
N of f(a) € F, then f~1(N) is a neighborhood of a. The function f is continuous on E iff
FH (V) is an open set in Og for every open set V € Op.

If £ and F' are metric spaces, Proposition 2.10 can be restated as follows.

Proposition 2.11. Let E and F' be metric spaces defined by metrics dy and do. The function
f: E — F is continuous at a € E iff for every e > 0, there is some n > 0 such that for every
r € F,

if di(a, x) <n, then do(f(a), f(x)) <e.

If E and F' are normed vector spaces, Proposition 2.10 can be restated as follows.

Proposition 2.12. Let E and F be normed vector spaces defined by norms || |1 and || ||2-
The function f: E — F is continuous at a € E iff for every e > 0, there is some n > 0 such
that for every x € F,

if lz = ally <n, then [|f(z) = fla)lls < e

It is worth noting that continuity is a topological notion, in the sense that equivalent
metrics (or equivalent norms) define exactly the same notion of continuity.

An important example of a continuous function is the distance function in a metric space.
One can show that in a metric space (E, d), the distance d: E'x E — R is continuous, where
E x E has the product topology. By the triangle inequality, we have

d(x,y) < d(x,z0) + d(x0, yo) + d(yo,y) = d(x0, o) + d(x0, ) + d(yo, y)
and
d(zo,y0) < d(wo, ) + d(x,y) + d(y, o) = d(z,y) + d(z0, ) + d(Yo, )

Consequently,
‘d(l’, y) - d(x()) yO)‘ < d(.ﬁl’,‘o, x) + d(y()? y)v
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which proves that d is continuous at (g, yo). In fact this shows that d is uniformly continuous;
see Definition 2.21.

Similarly, for a normed vector space (E,| ||), the norm || ||: £ — R is (uniformly)
continuous.

Another important example of a continuous function is the projection of a product space.
Given a product E; X --- x E, of topological spaces, as usual, we let m;: Fy; X --- X E, — E;
be the projection function such that, m;(xy, ..., z,) = z;. It is immediately verified that each
m; 18 continuous.

Definition 2.16. Given a topological space (E,Q), we say that a point a € FE is isolated if
{a} is an open set in O.

If (E,OF) and (F,Op) are topological spaces, any function f: £ — F is continuous at
every isolated point a € E. In the discrete topology, every point is isolated.

As the following proposition shows, isolated points do not occur in nontrivial metric
spaces.

Proposition 2.13. In a nontrivial normed vector space (E, || ||) (with E # {0}), no point
15 1solated.

Proof. To show this, we show that every open ball By(u, p,) contains some vectors different
from w. Indeed, since F is nontrivial, there is some v € FE such that v # 0, and thus
A= |v|| >0 (by (N1)). Let

w=u-+ V.

A+1
Since v # 0 and p > 0, we have w # u. Then,

p

Jw — u] P
w—ul| = ||—v|| = ——
A+ 1 A+l 0P

which shows that |jw — u| < p, for w # w. O

The following proposition shows that composition behaves well with respect to continuity:.

Proposition 2.14. Given topological spaces (E,Og), (F,OFr), and (G, Og), and two func-
tions f: E— F and g: F — G, if f is continuous at a € E and g is continuous at f(a) € F,
then go f: E — G is continuous at a € E. Given n topological spaces (F;,O;), for every
function f: E — F; x --- X F,, then f is continuous at a € E iff every fi: E — F; is
continuous at a, where f; = m; o f.

Given a function f: Fy x --- x E, — F, we can fix n — 1 of the arguments, say
A1y .y Qi 1, @11, - -, 0y, and view f as a function of the remaining argument,
€T; — f(al, ey A1, Ty Qg1 - - ,an),

where x; € F;. If f is continuous, it is clear that each f; is continuous.
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One should be careful that the converse is false! For example, consider the function
f: R xR — R, defined such that,

f(x,y)zj—b if (z,y) # (0,0), and f(0,0) = 0.

The function f is continuous on R x R — {(0,0)}, but on the line y = ma, with m # 0, we
have f(z,y) = 1%t # 0, and thus, on this line, f(z,y) does not approach 0 when (z,y)
approaches (0,0). See Figure 2.18.

Figure 2.18: The graph of f(z,y) = 2.5 for (x,y) # (0,0). The bottom of this graph,

2 +y?
which shows the approach along the line y = —x, does not have a z value of 0.

The following proposition is useful for showing that real-valued functions are continuous.

Proposition 2.15. If E is a topological space, and (R, |z — y|) the reals under the standard
topology, for any two functions f: E — R and g: E — R, for any a € E, for any A € R, if
f and g are continuous at a, then f+g, Af, f-g are continuous at a, and f/g is continuous

at a if g(a) # 0.

Proof. Left as an exercise. O]

Using Proposition 2.15, we can show easily that every real polynomial function is con-
tinuous.

The notion of isomorphism of topological spaces is defined as follows.
Definition 2.17. Let (F,Og) and (F,Or) be topological spaces, and let f: E — F be a

function. We say that f is a homeomorphism between E and F if f is bijective, and both
f: E— Fand f~': F — E are continuous.
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@ One should be careful that a bijective continuous function f: £ — F' is not necessarily
a homeomorphism. For example, if £ = R with the discrete topology, and F' = R with
the standard topology, the identity is not a homeomorphism. Another interesting example
involving a parametric curve is given below. Let L: R — R? be the function, defined such
that

t(1+t?)
Li(t) = T
t(1 —t?)
Loty =

If we think of (z(t),y(t)) = (L1(t), Lo(t)) as a geometric point in R?, the set of points
(x(t),y(t)) obtained by letting ¢ vary in R from —oo to +o00, defines a curve having the shape
of a “figure eight,” with self-intersection at the origin, called the “lemniscate of Bernoulli.”
See Figure 2.19. The map L is continuous, and in fact bijective, but its inverse L~! is not
continuous. Indeed, when we approach the origin on the branch of the curve in the upper left
quadrant (i.e., points such that, z < 0, y > 0), then ¢ goes to —oo, and when we approach
the origin on the branch of the curve in the lower right quadrant (i.e., points such that,
x>0,y <0), then ¢ goes to +o0.

Figure 2.19: The lemniscate of Bernoulli.

2.5 Limits and Continuity; Uniform Continuity

The definition of continuity utilizes open sets (or neighborhoods) to capture the notion of
“closeness.” Another way to quantify this notion of “closeness” is through the limit of a
sequence.

Definition 2.18. Given any set F, a sequence is any function z: N — FE| usually denoted
by (Zn)nen, or (Z5)n>0, Or even by ().

Definition 2.19. Given a topological space (E, O), we say that a sequence (x,,)nen converges
to some a € E if for every open set U containing a, there is some ng > 0, such that, z,, € U,
for all n > ng. We also say that a is a limit of (z,,)nen. See Figure 2.20.
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i

Figure 2.20: A schematic illustration of Definition 2.19.

When E is a metric space, Definition 2.19 is equivalent to the following proposition.
Proposition 2.16. Let E be a metric space with metric d. A sequence (x,)nen C E con-
verges to some a € E iff

for every € > 0, there is some ng > 0, such that, d(x,, a) < €, for all n > ny.

When F is a normed vector space, Definition 2.19 is equivalent to the following proposi-
tion.

Proposition 2.17. Let E be a normed vector space with norm || ||. A sequence (z,)neny C E
converges to some a € E iff

for every € > 0, there is some ng > 0, such that, ||z, — a|| <€, for all n > ny.

The following proposition shows the importance of the Hausdorff separation axiom.

Proposition 2.18. Given a topological space (E,Q), if the Hausdorff separation axiom
holds, then every sequence has at most one limit.

Proof. Left as an exercise. m

It is worth noting that the notion of limit is topological, in the sense that a sequence
converge to a limit b iff it converges to the same limit b in any equivalent metric (and similarly
for equivalent norms).

If F is a metric space and if A is a subset of F, there is a convenient way of showing that

a point z € E belongs to the closure A of A in terms of sequences.

Proposition 2.19. Given any metric space (E,d), for any subset A of E and any point
x € E, we have x € A iff there is a sequence (ay) of points a, € A converging to x.
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Proof. 1f the sequence (a,) of points a, € A converges to x, then for every open subset U
of E' containing z, there is some ng such that a, € U for all n > ng, so U N A # (), and
Proposition 2.3 implies that x € A.

Conversely, assume that = € A. Then for every n > 1, consider the open ball By(z,1/n).
By Proposition 2.3, we have By(z,1/n) N A # (), so we can pick some a, € By(z,1/n) N A.
This way, we define a sequence (a,,) of points in A, and by construction d(zx,a,) < 1/n for
all n > 1, so the sequence (a,) converges to x. O

Before stating continuity in terms of limits, we still need one more concept, that of limit
for functions.

Definition 2.20. Let (E, Og) and (F, OF) be topological spaces, let A be some nonempty
subset of F, and let f: A — F be a function. For any a € A and any b € F, we say that f(z)
approaches b as x approaches a with values in A if for every open set V' € Op containing
b, there is some open set U € Op containing a, such that, f(U N A) C V. See Figure 2.21.
This is denoted by

lim f(xz)=0.

r—a,x€A

Figure 2.21: A schematic illustration of Definition 2.20.

Note that by Proposition 2.3, since a € A, for every open set U containing a, we have
UNA# 0, and the definition is nontrivial. Also, even if a € A, the value f(a) of f at a
plays no role in this definition.

When E and F' are metric spaces, Definition 2.20 can be restated as follows.

Proposition 2.20. Let E and F be metric spaces with metrics dy c@d dy. Let A be some
nonempty subset of E, and let f: A — F be a function. For any a € A and any b € F, f(x)
approaches b as x approaches a with values in A iff

for every e > 0, there is some n > 0, such that, for every x € A,

if dyi(z, a) <n, then dy(f(x), b) <e.
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When E and F' are normed vector spaces, Definition 2.20 can be restated as follows.

Proposition 2.21. Let E and F' be normed vector spaces with norms || |1 and || ||o. Let A
be some nonempty subset of E, and let f: A — F be a function. For any a € A and any
be F, f(x) approaches b as x approaches a with values in A iff

for every € > 0, there is some n > 0, such that, for every x € A,
if |z —alls <n, then ||f(z) —bllz < e
We have the following result relating continuity at a point and the previous notion.

Proposition 2.22. Let (E,Og) and (F,Or) be two topological spaces, and let f: E — F be
a function. For any a € E, the function f is continuous at a iff f(x) approaches f(a) when
x approaches a (with values in E).

Proof. Left as a trivial exercise. O]

Another important proposition relating the notion of convergence of a sequence to con-
tinuity is stated without proof.

Proposition 2.23. Let (E,Og) and (F,OFp) be two topological spaces, and let f: E — F
be a function.

(1) If f is continuous, then for every sequence (x,)nen in E, if (z,) converges to a, then
(f(x,)) converges to f(a).

(2) If E is a metric space, and (f(x,)) converges to f(a) whenever (x,) converges to a,
for every sequence (x,)nen in E, then f is continuous.

A special case of Definition 2.20 will be used when E and F are (nontrivial) normed
vector spaces with norms || ||y and || ||o. Let U be any nonempty open subset of E. We
showed earlier that E has no isolated points and that every set {v} is closed, for every
v € E. Since F is nontrivial, for every v € U, there is a nontrivial open ball contained in U
(an open ball not reduced to its center). Then for every v € U, A = U — {v} is open and
nonempty, and clearly, v € A. For any v € U, if f(z) approaches b when x approaches v
with values in A = U — {v}, we say that f(z) approaches b when x approaches v with values
# v in U. This is denoted by

x%v,la}gll],xyév f($) =b

Remark: Variations of the above case show up in the following case: ' = R, and F' is some
arbitrary topological space. Let A be some nonempty subset of R, and let f: A — F be
some function. For any a € A, we say that f is continuous on the right at a if

lim - f(z) = f(a).

z—a,x€AN[a, +00)
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We can define continuity on the left at a in a similar fashion, namely

lim fe) = f(a)

z—a,x€AN(—00, a

For example, the function f: R — R

flz)=2 ifzx<l
flo)=2 ifz>1,

is continuous on the right at 1, but not continuous on the left at 1. See Figure 2.22.

(1,2)

(1)

Figure 2.22: The graph of the piecewise function f(x) =z when 2 < 1 and f(z) = 2 when
x> 1.

Let us consider another variation. Let A be some nonempty subset of R, and let f: A — F
be some function. For any a € A, we say that f has a discontinuity of the first kind at a if

lim f(z) = fla-)

r—a,x€AN (—o0,a)

and

lim f(x) = f(ay)

z—a,z€AN (a, +00)

both exist, and either f(a_) # f(a), or f(ay) # f(a). For example, the function f: R — R

flz)=2 ifx<l
flz)y=2 ifx>1,

has a discontinuity of the first kind at 1; both directional limits exits, namely

img qzean (—oo) f(2) = 1 and limy_yq zcan (o, +00) f(2) = 2, but f(1-) # f(1) = 2. See
Figure 2.22.
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Note that it is possible that f(a_) = f(ay), but f is still discontinuous at a if this
common value differs from f(a). Functions defined on a nonempty subset of R, and that are
continuous, except for some points of discontinuity of the first kind, play an important role
in analysis.

In a metric space there is another important notion of continuity, namely uniform conti-
nuity.

Definition 2.21. Given two metric spaces, (E,dg) and (F,dr), a function, f: E — F is
uniformly continuous if for every € > 0, there is some 1 > 0, such that for all a,b € FE,

if dg(a,b) <n then dgr(f(a),f(b)) <e.

See Figures 2.23 and 2.24.

100

60

40

0

R R T T |
0 200 400 600 800 1000
x

Figure 2.23: The real valued function f(z) = \/x is uniformly continuous over (0,00). Fix
€. If the x values lie within the rose colored 7 strip, the y values always lie within the peach
€ strip.

As we saw earlier, the metric on a metric space is uniformly continuous, and the norm
on a normed metric space is uniformly continuous.

Before considering differentials, we need to look at the continuity of linear maps.

2.6 Continuous Linear and Multilinear Maps

If F and F are normed vector spaces, we first characterize when a linear map f: E — F'is
continuous.

Proposition 2.24. Given two normed vector spaces E and F', for any linear map f: E — F,
the following conditions are equivalent:
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204

Figure 2.24: The real valued function f(z) = 1/z is not uniformly continuous over (0, 00).
Fix e. In order for the y values to lie within the peach epsilon strip, the widths of the eta
strips decrease as x — 0.

(1) The function f is continuous at 0.
(2) There is a constant k > 0 such that,

|f(w)| <k, for every u € E such that ||ul| < 1.

(3) There is a constant k > 0 such that,

| fw)|| < E||ul|, for everyu € E.

(4) The function f is continuous at every point of E.

Proof. Assume (1). Then for every € > 0, there is some 1 > 0 such that, for every u € E, if
|lul]| < n, then ||f(u)|| < e. Pick e = 1, so that there is some 7 > 0 such that, if ||u|| < 7, then
[ ()]l < 1 If JJul] <1, then [lpull < nljul| <7, and so, |[f(qu)|| < 1, that is, n[[f(u)[| <1,
which implies || f(u)|] < n~!. Thus Condition (2) holds with k& = n~!.

Assume that (2) holds. If u = 0, then by linearity, f(0) = 0, and thus || f(0)] < k]|0]|
holds trivially for all k& > 0. If u # 0, then ||u|| > 0, and since

b ()l =+

u
[

-1

we have
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which implies that
()]l < Ellull.
Thus Condition (3) holds.

If (3) holds, then for all u,v € E, we have

1 () = F()l = [If (v = w)ll < kl[o = ul].

If £ =0, then f is the zero function, and continuity is obvious. Otherwise, if k£ > 0, for every

€>0,if |lv —ul < £, then [[f(v — u)|| < ¢, which shows continuity at every u € E. Finally

it is obvious that (4) implies (1). O

Among other things, Proposition 2.24 shows that a linear map is continuous iff the image
of the unit (closed) ball is bounded. Since a continuous linear map satisfies the condition
| f(w)]| < E|lu||l (for some k > 0), it is also uniformly continuous.

Definition 2.22. If F and F' are normed vector spaces, the set of all continuous linear maps
f: E — Fis denoted by L(E; F).

Using Proposition 2.24, we can define a norm on £(E; F') which makes it into a normed
vector space. This definition has already been given in Chapter 8 (Vol. I) (Definition 8.7
(Vol. T)) but for the reader’s convenience, we repeat it here.

Definition 2.23. Given two normed vector spaces F and F', for every continuous linear
map f: E — F, we define the norm || f|| of f as

IF] = inf {& > 0 [|[f(x)]| < Kjz]], for all 2 € E}
= sup {[|f(@)[| | l=] < 1}
= sup {[|f(@)[| | l=] = 1}

From Definition 2.23, for every continuous linear map f € L(F; F), we have

LF @< 1AM,

for every x € E. It is easy to verify that L(F; F) is a normed vector space under the norm
of Definition 2.23. Furthermore, if F, F,G are normed vector spaces, and f: F — I and
g: ' — G are continuous linear maps, we have

lg o fII < llgllllf1]-

We can now show that when £ = R" or F = C", with any of the norms || |1, || [|2, or
|| ||oo, then every linear map f: E — F' is continuous.

Proposition 2.25. If E =R" or E = C", with any of the norms || ||1, || |2, o7 || ||ec, and F
s any normed vector space, then every linear map f: E — F is continuous.
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Proof. Let (eq,...,e,) be the standard basis of R" (a similar proof applies to C"). In view
of Proposition 8.3 (Vol. 1), it is enough to prove the proposition for the norm

[#]loe = max{|z;| [ 1 <7 <n}.

We have

> (v —ui)fle)

1<i<n

Y

1) = F)ll = 1[f (v =)l = Hf( > (v —w)e;)

1<i<n

and so,
@) = sl < (32 17l ma o =il = (32 17l llo = ullec

By the argument used in Proposition 2.24 to prove that (3) implies (4), f is continuous. [

Actually, we proved in Theorem 8.5 (Vol. I) that if E is a vector space of finite dimension,
then any two norms are equivalent, so that they define the same topology. This fact together
with Proposition 2.25 prove the following.

Theorem 2.26. If E is a vector space of finite dimension (over R or C), then all norms are
equivalent (define the same topology). Furthermore, for any normed vector space F, every
linear map f: E — F s continuous.

@ If E/ is a normed vector space of infinite dimension, a linear map f: £ — I may not be
continuous.

As an example, let ' be the infinite vector space of all polynomials over R. Let
[P(X)|| = sup |P(z)|.
0<z<1

We leave as an exercise to show that this is indeed a norm. Let F' =R, and let f: £ — F
be the map defined such that, f(P(X)) = P(3). It is clear that f is linear. Consider the
sequence of polynomials

It is clear that || P,|| = (%) , and thus, the sequence P, has the null polynomial as a limit.

However, we have

and the sequence f(P,(X)) diverges to +00. Consequently, in view of Proposition 2.23 (1),
f is not continuous.

We now consider the continuity of multilinear maps. We treat explicitly bilinear maps,
the general case being a straightforward extension.
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Proposition 2.27. Given normed vector spaces E, F and G, for any bilinear map f: E X
F — G, the following conditions are equivalent:

(1) The function f is continuous at (0,0).
(2) There is a constant k > 0 such that,

Il f(u,v)|| <k, forallue E,ve F such that ||u|, ||v]] < 1.

(3) There is a constant k > 0 such that,

Lf (w, )| < Kl[ulll|v]l, for allu € E,v e F.

(4) The function f is continuous at every point of E X F.

Proof. 1t is similar to that of Proposition 2.24, with a small subtlety in proving that (3)
implies (4), namely that two different 7’s that are not independent are needed. ]

In contrast to continuous linear maps, which must be uniformly continuous, nonzero
continuous bilinear maps are not uniformly continuous. Let f: E'x F' — G be a continuous
bilinear map such that f(a,b) # 0 for some a € E and some b € F. Consider the sequences
(un) and (v,) (with n > 1) given by

Uy, = (T, Yn) = (na,nb)

on = (2 4) = ((mé) . (m%) b).

(lall + fl1),

Obviously

S|

[on — un| <

s0 limy, o0 [|Un — uy|| = 0. On the other hand

ettt = Sann) = (24 22 ) ),

and thus lim, oo || (2], y)) — f(Zn, yn)|| = 2| f(a,b)|| # 0, which shows that f is not uni-
formly continuous, because if this was the case, this limit would be zero.

Definition 2.24. If E, F', and G are normed vector spaces, we denote the set of all contin-
uous bilinear maps f: F x F' — G by Lo(E, F;G).

Using Proposition 2.27, we can define a norm on Ly(FE, F'; G) which makes it into a
normed vector space.
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Definition 2.25. Given normed vector spaces F, F', and G, for every continuous bilinear
map f: E x F — G, we define the norm || f|| of f as

I/l =inf {k =0 | [[f(z,y)l| < kllz[llyll, for all 2 € E,y € F'}

= sup {[|/ ()l [ llz]l, [lyl < 1}
= sup {[|f(z, )l [ =]l = llyll = 1}

From Definition 2.25, for every continuous bilinear map f € Lo(F, F'; G), we have

1 Gl < WAyl

for all z € E,y € F. It is easy to verify that Lo(F, F;G) is a normed vector space under
the norm of Definition 2.25.

Given a bilinear map f: F x F — G, for every u € E, we obtain a linear map denoted
fu: F'— G, defined such that, fu(v) = f(u,v). Furthermore, since

I1f Gz )l < Lzl

it is clear that fu is continuous. We can then consider the map ¢: E — L(F;G), defined
such that, p(u) = fu, for any u € E, or equivalently, such that,

p(u)(v) = f(u,v).

Actually, it is easy to show that ¢ is linear and continuous, and that ||¢|| = || f||. Thus, f — ¢
defines a map from Ly(E, F';G) to L(E; L(F;G)). We can also go back from L(E; L(F;G))
to Lo(E, F';G). We summarize all this in the following proposition.

Proposition 2.28. Let E, F,G be three normed vector spaces. The map f +— @, from
Lo(E,F;G) to L(E; L(F;G)), defined such that, for every f € Lo(E, F;G),

p(u)(v) = f(u,v),

is an isomorphism of vector spaces, and furthermore, ||¢|| = || f||-

As a corollary of Proposition 2.28, we get the following proposition which will be useful
when we define second-order derivatives.

Proposition 2.29. Let E and F be normed vector spaces. The map app from L(E; F) x E
to F, defined such that, for every f € L(E;F), for every u € F,

app(f,u) = f(u),

18 a continuous bilinear map.
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Remark: If £ and F' are nontrivial, it can be shown that ||app|| = 1. It can also be shown
that composition

o: L(E;F)x L(F;G) — L(E;G),
is bilinear and continuous.

The above propositions and definition generalize to arbitrary n-multilinear maps, with
n > 2. Proposition 2.27 extends in the obvious way to any n-multilinear map f: E; x - -+ X
E,, — F, but condition (3) becomes:

There is a constant k£ > 0 such that,

|f(ur, .. un)|l < El|ugl| - - ||un||, forall uy € Ey,... u, € E,.

Definition 2.25 also extends easily to

NIl =inf{k>0||f(x1,...,z)| < Ellz1]] - ||xa], for all x; € E;;1 <i<n}
=sup {|[f(x1, .-, xa)|| | [|21]l, - [Jall < 1}
=sup {|[f(z1, .., x)|| | [|21]| = - = [|wa]] = 1}.

Proposition 2.28 is also easily extended, and we get an isomorphism between continuous
n-multilinear maps in £, (Ey, ..., E,; F), and continuous linear maps in

L(Ev; L(E;...; L(Ey; F))).

An obvious extension of Proposition 2.29 also holds.

Complete metric spaces and complete normed vector spaces are important tools in anal-
ysis and optimization theory, so we include some sections covering the basics.

2.7 Complete Metric Spaces and Banach Spaces

Definition 2.26. Given a metric space, (F,d), a sequence, (Z,)nen, in E is a Cauchy
sequence if the following condition holds: for every € > 0, there is some p > 0, such that for

all m,n > p, then d(x,,, z,) < e.

If every Cauchy sequence in (F,d) converges we say that (E,d) is a complete metric
space. A normed vector space (F, || ||) over R (or C) which is a complete metric space for
the distance d(u,v) = ||v — ul|, is called a Banach space.

The standard example of a complete metric space is the set R of real numbers. As a
matter of fact, the set R can be defined as the “completion” of the set Q of rationals. The
spaces R™ and C™ under their standard topology are complete metric spaces.
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It can be shown that every normed vector space of finite dimension is a Banach space
(is complete). It can also be shown that if £ and F' are normed vector spaces, and F' is a
Banach space, then L£(E; F') is a Banach space. If E, F and G are normed vector spaces,
and G is a Banach space, then L£o(E, F'; ) is a Banach space.

An arbitrary metric space (F, d) is not necessarily complete, but there is a construction of
a metric space (E, c?) such that E is complete, and there is a continuous (injective) distance-
preserving map ¢: F — E such that ©(F) is dense in E. This is a generalization of the
construction of the set R of real numbers from the set Q of rational numbers in terms of
Cauchy sequences. This construction can be immediately adapted to a normed vector space
(E,|]]) to embed (E, || ||) into a complete normed vector space (E, || |lz) (a Banach space).
This construction is used heavily in integration theory where F is a set of functions.

2.8 Completion of a Metric Space

In order to prove a kind of uniqueness result for the completion (E , @ of a metric space
(E,d), we need the following result about extending a uniformly continuous function.

Recall that Fj is dense in E iff By = E. Since E is a metric space, by Proposition 2.19,
this means that for every x € F, there is some sequence (z,,) converging to z, with x, € Ey.

Theorem 2.30. Let E and F' be two metric spaces, let Ey be a dense subspace of E/, and let
fo: Ey — F be a continuous function. If fo is uniformly continuous and if F' is complete,
then there is a unique uniformly continuous function f: E — F extending fo.

Proof. We follow Schwartz’s proof; see Schwartz [68] (Chapter XI, Section 3, Theorem 1).

Step 1. We begin by constructing a function f: F — F extending fy. Since FEj is dense
in F, for every x € F, there is some sequence (x,,) converging to x, with x, € Ey. Then the
sequence (x,) is a Cauchy sequence in E. We claim that (fy(z,)) is a Cauchy sequence in
F.

Proof of the claim. For every e > 0, since fy is uniformly continuous, there is some n > 0
such that for all (y, z) € Ey, if d(y,z) < n, then d(fo(y), fo(z)) < €. Since (z,) is a Cauchy
sequence with z,, € Fy, there is some integer p > 0 such that if m,n > p, then d(z,, x,) < n,
thus d(fo(zm), fo(xn)) < €, which proves that (fo(x,)) is a Cauchy sequence in F'. O

Since F' is complete and (fy(z,)) is a Cauchy sequence in F, the sequence (fo(z,))
converges to some element of F'; denote this element by f(x).

Step 2. Let us now show that f(z) does not depend on the sequence (z,) converging to

x. Suppose that (z]) and (z!) are two sequences of elements in E, converging to x. Then

the mixed sequence

/ 2 / iz / 1
Ty Tjyy L7, X 5o oy Ty Ty e ey

) n’
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also converges to x. It follows that the sequence

fo(xé))a fO(xg)v fO(xll)a fO(:Clll)a s 7f0(x;1>7f0(xlri)a cey

is a Cauchy sequence in F', and since F' is complete, it converges to some element of F', which
implies that the sequences (fo(«,)) and (fo(x!))) converge to the same limit.

As a summary, we have defined a function f: £ — F by

f(z) = lim fo(z,),

N0

for any sequence (x,,) converging to z, with z,, € Fy. See Figure 2.25.

f(x)
foly) -0 0 S2Rey

»
F .

.fo(x1)

Figure 2.25: A schematic illustration of the construction of f: E — F where f(z) =
limy, 00 fo(,,) for any sequence (x,,) converging to z, with z,, € Ej.

Step 3. The function f extends fy,. Since every element z € FEj is the limit of the
constant sequence (z,) with z,, = x for all n > 0, by definition f(z) is the limit of the
sequence (fo(x,)), which is the constant sequence with value fy(z), so f(x) = fo(z); that is,
f extends fy.

Step 4. We now prove that f is uniformly continuous. Since fy is uniformly contin-
uous, for every e > 0, there is some n > 0 such that if a,b € Ey and d(a,b) < 7, then
d(fo(a), fo(b)) < e. Consider any two points x,y € E such that d(z,y) < n/2. We claim
that d(f(x), f(y)) < €, which shows that f is uniformly continuous.

Let (z,,) be a sequence of points in Fy converging to x, and let (y,) be a sequence of
points in Ej converging to y. By the triangle inequality,

(T, yn) < d(@n, ) +d(2,y) + Ay, yn) = d(x,y) + d(2n, ) + d(yn, y),
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and since (z,) converges to x and (y,) converges to y, there is some integer p > 0 such that
for all n > p, we have d(z,,z) < n/4 and d(y,,y) < n/4, and thus

A, y) < d(w,y) + 3.
Since we assumed that d(z,y) < n/2, we get d(z,,y,) < n for all n > p, and by uniform
continuity of fy, we get

d(fo(zn), folyn)) < €

for all n > p. Since the distance function on F' is also continuous, and since ( fo(z,,)) converges
to f(x) and (fo(y.)) converges to f(y), we deduce that the sequence (d(fo(xn), fo(yn)))
converges to d(f(x), f(y)). This implies that d(f(x), f(y)) < €, as desired.

Step 5. It remains to prove that f is unique. Since Fj is dense in F, for every x € F,
there is some sequence (z,) converging to x, with x, € Ey. Since f extends fy; and since f
is continuous, we get

f(x) = lim fo(z,),

n—0o0

which only depends on fy and x and shows that f is unique. m

Remark: It can be shown that the theorem no longer holds if we either omit the hypothesis
that F' is complete or omit that f; is uniformly continuous.

For example, if Fy # E and if we let F' = Ey and fy be the identity function, it is easy to
see that fy cannot be extended to a continuous function from F to Fy (for any z € E — Ej,
any continuous extension f of fy would satisfy f(z) = z, which is absurd since = ¢ Ej).

If fo is continuous but not uniformly continuous, a counter-example can be given by using
E =R =R U {co} made into a metric space, £y = R, ' =R, and fy the identity function;
for details, see Schwartz [68] (Chapter XI, Section 3, page 134).

Definition 2.27. If (E,dg) and (F,dfr) are two metric spaces, then a function f: £ — F
is distance-preserving, or an isometry, if

dr(f(x), fy)) = dg(z,y), forall forall z,y € E.

Observe that an isometry must be injective, because if f(x) = f(y), then dr(f(z), f(y)) =
0, and since dp(f(z), f(y)) = dr(z,y), we get dg(z,y) = 0, but dg(x,y) = 0 implies that
x = y. Also, an isometry is uniformly continuous (since we can pick 7 = € to satisfy the
condition of uniform continuity). However, an isometry is not necessarily surjective.

We now give a construction of the completion of a metric space. This construction is just
a generalization of the classical construction of R from Q using Cauchy sequences.
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Theorem 2.31. Let (E,d) be any metric space. There is a complete metric space (E,c/l\)
called a completion of (E,d), and a distance-preserving (uniformly continuous) map ¢: E —
E such that ©(E) is dense in E, and the following extension property holds: for every
complete metric space F and for every uniformly continuous function f: E — F', there is a
unique uniformly continuous function f: E — F such that

f=1Trog,
as illustrated in the following diagram.

E-*-F

BN

As a consequence, for any two completzons (El, dl) and (Eg, C/l\g) of (E,d), there is a unique
bijective isometry between (E, dl) and (Es, d2)

<

Proof. Consider the set £ of all Cauchy sequences (x,,) in E, and define the relation ~ on £
as follows:

(xn) ~ (yn) it lim d(z,,y,) = 0.

n—00

It is easy to check that ~ is an equivalence relation on &£, and let E=¢ / ~ be the quotient
set, that is, the set of equivalence classes modulo ~. Our goal is to show that we can endow
E with a distance that makes it into a complete metric space satisfying the conditions of the
theorem. We proceed in several steps.

Step 1. First let us construct the function ¢: F — E. For every a € E, we have the
constant sequence (a,) such that a,, = a for all n > 0, which is obviously a Cauchy sequence.
Let ¢(a) € E be the equivalence class [(a,)] of the constant sequence (a,) with a, = a for all
n. By definition of ~, the equivalence class ¢(a) is also the equivalence class of all sequences
converging to a. The map a — ¢(a) is injective because a metric space is Hausdorff, so
if a # b, then a sequence converging to a does not converge to b. After having defined a
distance on F, we will check that ¢ is an isometry.

Step 2. Let us now define a distance on E. Let o = [(a,)] and 8 = [(b,)] be two
equivalence classes of Cauchy sequences in E. The triangle inequality implies that

d(@m, b)) < d(am, an) + d(an, by) + d(bn, by) = d(ay, by) + d(am, a,) + d(by, by)
and
d(an, by) < d(an, am) + d(am, by) + d(bm, bp) = d(am, b)) + d(am, an) + d(by,, by),
which implies that
|d(@pm, b)) — d(an, bn)| < d(am, ar) + d(bm, by).
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Since (a,) and (b,) are Cauchy sequences, the above inequality shows that (d(a,,b,)) is a
Cauchy sequence of nonnegative reals. Since R is complete, the sequence (d(a,,b,)) has a

o~

limit, which we denote by d(«, ); that is, we set

d(ov, f) = lim d(an,b,), a=[(a,)], B =)

n—oo

See Figure 2.26.

~

Figure 2.26: A schematic illustration of d(a, #) from the Cauchy sequence (d(ay,b,)).

o~

Step 3. Let us check that d(«, 5) does not depend on the Cauchy sequences (a,) and
(b,) chosen in the equivalence classes o and (.

If (a,) ~ (a)) and (b,) ~ (b)), then lim,, o d(an,al,) = 0 and lim,, . d(by, b)) = 0, and

n
since

d(a,, b)) <d(a,,a,)+ d(an, b,) + d(b,, b)) = d(ay,,b,) + d(an, a,,) + d(b,, b,),

and
d(an, by) < d(an,al,) +d(al,, b)) +d,,b,) = d(a,, b)) + d(an, a,,) + d(b,, b)),
we have
|d(an> bn) - d(a:w b;z)l < d(am aiz) + d(bm b;z)v
so we have lim,, , d(a,, b)) = lim, . d(a,, b,) = A(oz, B). Therefore, c/i\(a, f) is indeed well
defined.

Step 4. Let us check that ¢ is indeed an isometry.
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Given any two elements ¢(a) and (b) in E, since they are the equivalence classes of
the constant sequences (a,) and (b,) such that a, = a and b, = b for all n, the constant
sequence (d(ay,by,)) with d(an,b,) = d(a,b) for all n converges to d(a,b), so by definition
a/l\(go(a), (b)) = im0 d(ap, b,) = d(a,b), which shows that ¢ is an isometry.

Step 5. Let us verify that d is a metric on E. By definition it is obvious that cf(a, B) =
g(ﬁ ,a). If v and B are two distinct equivalence classes, then for any Cauchy sequence (ay,)
in the equivalence class o and for any Cauchy sequence (b,,) in the equivalence class 3, the
sequences (a,) and (b,) are inequivalent, which means that lim,, . d(a,,b,) # 0, that is,
c/l\(a, B) # 0. Obviously, c/l\(a, a) = 0.

For any equivalence classes o = [(a,,)], 8 = [(bn)], and v = [(¢,)], we have the triangle
inequality
d(an, cz) < d(an, by) + d(by, cn),

so by continuity of the distance function, by passing to the limit, we obtain

-~ ~

d(e,7) < d(a, B) + d(B,7),

which is the triangle inequality for d. Therefore, d is a distance on E.
Step 6. Let us prove that ¢(E) is dense in E. For any a = [(a,)], let (2,,) be the constant
sequence such that z; = a, for all k£ > 0, so that ¢(a,) = [(z,)]. Then we have

g(a,gp(an)) = lim d(am,a,) < sup d(a,,a,).

el p,an
Since (a,) is a Cauchy sequence, sup, ,~, d(a,, a,) tends to 0 as n goes to infinity, so

lim d(a, p(a,)) =0,

n—oo

which means that the sequence (¢(ay)) converge to a, and ¢(E) is indeed dense in E.
Step 7. Finally let us prove that the metric space Eis complete.

Let (o) be a Cauchy sequence in E. Since ¢(E) is dense in E, for every n > 0, there
some a,, € F such that

owoto) < -
Since
d(p(am), p(an)) < d(p(an), am) + d(am, an) + d(an, 9(an)) < d(cm, an) + 1 + l,

m n

and since (ay,,) is a Cauchy sequence, so is (¢(a,)), and as ¢ is an isometry, the sequence
(a,) is a Cauchy sequence in E. Let o € E be the equivalence class of (a,). Since

c/i\(a, olay)) = lim d(amy,a,)

Mmoo
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and (a,) is a Cauchy sequence, we deduce that the sequence (¢(a,)) converges to «, and
since d(ay, ¢(a,)) < 1/n for all n > 0, the sequence («,) also converges to a.

Step 8. Let us prove the extension property. Let F' be any complete metric space and
let f: E — F be any uniformly continuous function. The function ¢: E — Eis an isometry
and a bijection between E and its image ¢(F), so its inverse ¢~ ': p(E) — E is also an
isometry, and thus is uniformly continuous. If we let ¢ = fo ™!, then g: ¢(E) — F is a
uniformly continuous function, and ¢(F) is dense in E , so by Theorem 2.30 there is a unique
uniformly continuous function J/‘\: E—F extending g = f o ¢~ !; see the diagram below:

E<<’;_1 o(F) C E

3

F

This means that

-~

flo(B) = fop™,
which implies that
(fle(E)) o v = f,

that is, f = J?o p, as illustrated in the diagram below:

.
N

If h: E — F is any other uniformly continuous function such that f = h o ¢, then
g= fop ' =hlp(E), so h is a uniformly continuous function extending g, and by Theorem

&)

E

-~
=)

!

2.30, we have have h = f, so fis indeed unique.
Step 9. Uniqueness of the completion (E , g) up to a bijective isometry.

Let (E, c?l) and (E, 6/1\2) be any two completions of (F,d). Then we have two uniformly
continuous isometries ¢1: E — El and @o: F — EAQ , s0 by the unique extension property,
there exist unique uniformly continuous maps py: F; — F, and ¢1: Es — E; such that the
following diagrams commute:
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Consequently we have the following commutative diagrams:

By E
L Lk
E-2 E, E-2- E,
Nk
By E.

However, idz and idg, are uniformly continuous functions making the following diagrams
commute

B El B E2
N
-/E\l -/E\Qv

so by the uniqueness of extensions we must have
Propy =idp  and Pyop; =idg,.
This proves that p; and @, are mutual inverses. Now since ¢, = Py 0 1, we have
Palpr(E) = g0 o7,
and since ;! and @, are isometries, so is 3¢ (E). But we showed in Step 8 that 5 is the

uniform continuous extension of ps|¢1(E) and ¢1(E) is dense in E, so for any two elements
a, B € By, if (a,) and (b,) are sequences in ¢;(F) converging to a and 3, we have

(@3l e1(E))(an), (@3l e1(E))(ba)) = di(n, bn),
and by passing to the limit we get
d>(@3(), 72(B)) = di(a, B),

which shows that s is an isometry (similarly, 7 is an isometry). O

Remarks:

1. Except for Step 8 and Step 9, the proof of Theorem 2.31 is the proof given in Schwartz
[68] (Chapter XI, Section 4, Theorem 1), and Kolmogorov and Fomin [45] (Chapter 2,
Section 7, Theorem 4).

2. The construction of E relies on the completeness of R, and so it cannot be used to
construct R from Q. However, this construction can be modified to yield a construction
of R from Q.

We show in Section 2.9 that Theorem 2.31 yields a construction of the completion of a
normed vector space.
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2.9 Completion of a Normed Vector Space

An easy corollary of Theorem 2.31 and Theorem 2.30 is that every normed vector space can
be embedded in a complete normed vector space, that is, a Banach space.

Theorem 2.32. If (E, || ||) is a normed vector space, then its completion (E, L/Z\) as a metric
space (where E is given the metric d(z,y) = || — y||) can be given a unique vector space
structure extending the vector space structure on E, and a norm || ||z, so that (E,|| lz) is a
Banach space, and the metric d is associated with the norm | lz- Furthermore, the isometry
p: B — E is a linear 1sometry.

Proof. The addition operation +: E x E — FE is uniformly continuous because
1w +v") = (u” + ") || < [Ju" = "] + [l = "]].

It is not hard to show that ExEisa complete metric space and that F x E is dense in
Ex E. Then by Theorem 2.30, the uniformly continuous function + has a unique continuous
extension +: ' X E — E.

The map -: R x £ — FE is not uniformly continuous, but for any fixed A € R, the
map Ly: F — E given by Ly(u) = X - u is uniformly continuous, so by Theorem 2.30 the
function Ly has a unique continuous extension Ly : E—>E , which we use to define the scalar
multiplication -: R x E' — E. It is easily checked that with the above addition and scalar
multiplication, E' is a vector space.

Since the norm || || on E is uniformly continuous, it has a unique continuous extension
| [|g: £ — Ry. The identities ||u 4+ v|| < [Ju|| + ||v|| and [[Au|| < |A]||u]| extend to E by
continuity. The equation

d(u,v) = [u = o]

also extends to £ by continuity and yields

which shows that || ||z is indeed a norm and that the metric d is associated to it. Finally, it
is easy to verify that the map ¢ is linear. The uniqueness of the structure of normed vector
space follows from the uniqueness of continuous extensions in Theorem 2.30. O

Theorem 2.32 and Theorem 2.30 will be used to show that every Hermitian space can be
embedded in a Hilbert space.

We refer the readers to the references cited at the end of this chapter for a discussion of
the concepts of compactness and connectedness. They are important, but of less immediate
concern.
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2.10 The Contraction Mapping Theorem

If (E,d) is a nonempty complete metric space, every map f: E — E, for which there is some
k such that 0 < k <1 and

d(f(x), fy)) < kd(x,y) foral x,y e E

has the very important property that it has a unique fixed point, that is, there is a unique,
a € E, such that f(a) = a.

Definition 2.28. Let (E,d) be a metric space. A map f: E — E is a contraction (or a
contraction mapping) if there is some real number k such that 0 < k < 1 and

d(f(u), f(v)) < kd(u,v) for all u,v € E.
The number k is often called a Lipschitz constant.

Furthermore, the fixed point of a contraction mapping can be computed as the limit of
a fast converging sequence.

The fixed point property of contraction mappings is used to show some important the-
orems of analysis, such as the implicit function theorem and the existence of solutions to
certain differential equations. It can also be used to show the existence of fractal sets de-
fined in terms of iterated function systems. Since the proof is quite simple, we prove the
fixed point property of contraction mappings. First observe that a contraction mapping is
(uniformly) continuous.

Theorem 2.33. (Contraction Mapping Theorem) If (E,d) is a nonempty complete metric
space, every contraction mapping, f: E — E, has a unique fized point. Furthermore, for
every xg € E, if we define the sequence (x,,)>o such that x,+1 = f(x,) for all n > 0, then
(Tn)n>0 converges to the unique fized point of f.

Proof. First we prove that f has at most one fixed point. Indeed, if f(a) = a and f(b) = b,
since

d(a,b) = d(f(a), f(b)) < kd(a, b)
and 0 < k < 1, we must have d(a,b) = 0, that is, a = b.
Next we prove that (z,,) is a Cauchy sequence. Observe that

d(l’z,(l)l) S k‘d(l’l,xo)7
d(.’lfg,xz) S kd(.ﬁlﬂ'g,fﬂl) S de(xlaxO)a

d(Tpi1,2n) < kd(Tn, 0,-1) < - <K, 20).
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Thus, we have

A(Tnyp, Tn) < d(Tnip, Trgp1) + A Tryp1, Tngp2) + -+ + d(Tpy1, Tn)
< (BP P4 kP2 4 k4 DR (21, 20)
k,n
< - d(x1,20).

We conclude that d(z,4,, z,) converges to 0 when n goes to infinity, which shows that (x,,)
is a Cauchy sequence. Since F is complete, the sequence (z,) has a limit, a. Since f is
continuous, the sequence (f(x,)) converges to f(a). But x,,1 = f(z,) converges to a and
so f(a) = a, the unique fixed point of f. O]

The above theorem is also called the Banach fixed point theorem. Note that no matter
how the starting point x of the sequence (x,,) is chosen, (z,) converges to the unique fixed
point of f. Also, the convergence is fast, since

kn
1—-k

d(zp,a) < d(xq,x0).

2.11 Further Readings

A thorough treatment of general topology can be found in Munkres [59, 58|, Dixmier [29],
Lang [50], Schwartz [69, 68|, Bredon [19], and the classic, Seifert and Threlfall [73].

2.12 Summary

The main concepts and results of this chapter are listed below:

Metric space, distance, metric.

FEuclidean metric, discrete metric.

Closed ball, open ball, sphere, bounded subset.
Normed vector space, norm.

Open and closed sets.

Topology, topological space.

Hausdorff separation axiom, Hausdorff space.
Discrete topology.

Closure, dense subset, interior, frontier or boundary.
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e Subspace topology.

e Product topology.

e Basis of a topology, subbasis of a topology.

e (Continuous functions.

e Neighborhood of a point.

e Homeomorphisms.

e Limits of sequences.

o Continuous linear maps.

e The norm of a continuous linear map.

o Continuous bilinear maps.

e The norm of a continuous bilinear map.

e The isomorphism between L(E, F'; G) and L(E, L(F; G)).
o Cauchy sequences

e Complete metric spaces and Banach spaces.

e Completion of a metric space or of a normed vector space.
e Contractions.

e The contraction mapping theorem.

2.13 Problems

Problem 2.1. Prove Proposition 2.1.

Problem 2.2. Give an example of a countably infinite family of closed sets whose union is
not closed.

Problem 2.3. Prove Proposition 2.4.
Problem 2.4. Prove Proposition 2.5.
Problem 2.5. Prove Proposition 2.6.

Problem 2.6. Prove Proposition 2.7.
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Problem 2.7. Prove Proposition 2.8.

Problem 2.8. Prove Proposition 2.9.

Problem 2.9. Prove Proposition 2.10.

Problem 2.10.
Problem 2.11.
Problem 2.12.
Problem 2.13.
Problem 2.14.
Problem 2.15.
Problem 2.16.

Problem 2.17.

Prove Proposition 2.11 and Proposition 2.12.

Prove Proposition 2.14.

Prove Proposition 2.15.

Prove Proposition 2.16 and Proposition 2.17.

Prove Proposition 2.18.

Prove Proposition 2.20 and Proposition 2.21.

Prove Proposition 2.22.

Prove Proposition 2.23.
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Chapter 3

Differential Calculus

This chapter contains a review of basic notions of differential calculus. First we review the
definition of the derivative of a function f: R — R. Next we define directional derivatives and
the total derivative of a function f: E — F between normed vector spaces. Basic properties
of derivatives are shown, including the chain rule. We show how derivatives are represented
by Jacobian matrices. The mean value theorem is stated, as well as the implicit function
theorem and the inverse function theorem. Diffeomorphisms and local diffeomorphisms are
defined. Higher-order derivatives are defined, as well as the Hessian. Schwarz’s lemma (about
the commutativity of partials) is stated. Several versions of Taylor’s formula are stated, and
a famous formula due to Faa di Bruno’s is given.

3.1 Directional Derivatives, Total Derivatives

We first review the notion of the derivative of a real-valued function whose domain is an
open subset of R.

Let f: A — R, where A is a nonempty open subset of R, and consider any a € A.
The main idea behind the concept of the derivative of f at a, denoted by f’(a), is that
locally around a (that is, in some small open set U C A containing a), the function f is
approximated linearly! by the map

z v f(a)+ f'(a)(z — a).

As pointed out by Dieudonné in the early 1960s, it is an “unfortunate accident” that if
V' is vector space of dimension one, then there is a bijection between the space V* of linear
forms defined on V' and the field of scalars. As a consequence, the derivative of a real-valued
function f defined on an open subset A of the reals can be defined as the scalar f’'(a) (for
any a € A). But as soon as f is a function of several arguments, the scalar interpretation of
the derivative breaks down.

! Actually, the approximation is affine, but everybody commits this abuse of language.

71
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Part of the difficulty in extending the idea of derivative to more complex spaces is to give
an adequate notion of linear approximation. The key idea is to use linear maps. This could
be carried out in terms of matrices but it turns out that this neither shortens nor simplifies
proofs. In fact, this is often the opposite.

We admit that the more intrinsic definition of the notion of derivative f! at a point a of
a function f: F — F between two normed vector spaces F and F' as a linear map requires
a greater effort to be grasped, but we feel that the advantages of this definition outweigh its
degree of abstraction. In particular, it yields a clear notion of the derivative of a function
f: M (R) — M, (R) defined from m x m matrices to n x n matrices (many definitions make
use of partial derivatives with respect to matrices that do not make any sense). But more
importantly, the definition of the derivative as a linear map makes it clear that whether
the space E or the space F' is infinite dimensional does not matter. This is important in
optimization theory where the natural space of solutions of the problem is often an infinite
dimensional function space. Of course, to carry out computations one need to pick finite
bases and to use Jacobian matrices, but this is a different matter.

Let us now review the formal definition of the derivative of a real-valued function.

Definition 3.1. Let A be any nonempty open subset of R, and let a € A. For any function
f: A— R, the deriative of f at a € A is the limit (if it exists)

)= Hath) =@

h—0, heU h ’

where U ={h € R|a+ h € A, h # 0}. This limit is denoted by f’(a), or Df(a), or %(a).

If f'(a) exists for every a € A, we say that f is differentiable on A. In this case, the map
a— f'(a) is denoted by f’, or Df, or %.

Note that since A is assumed to be open, A — {a} is also open, and since the function
h + a + h is continuous and U is the inverse image of A — {a} under this function, U is
indeed open and the definition makes sense.

We can also define f'(a) as follows: there is some function e, such that,
Fla+h) = f(a) + F'a) - h+e(h)h,
whenever a + h € A, where €(h) is defined for all h such that a + h € A, and
lim e(h)=0.

h—0,heU

Remark: We can also define the notion of derivative of f at a on the left, and derivative
of f at a on the right. For example, we say that the derivative of f at a on the left is the
limit f'(a_) (if it exists)

o)~ Hath =@

h—0, heU h ’
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where U ={he€R|a+he A h <0}

If a function f as in Definition 3.1 has a derivative f'(a) at a, then it is continuous at
a. If f is differentiable on A, then f is continuous on A. The composition of differentiable
functions is differentiable.

Remark: A function f has a derivative f’(a) at a iff the derivative of f on the left at a and
the derivative of f on the right at a exist and if they are equal. Also, if the derivative of f
on the left at a exists, then f is continuous on the left at a (and similarly on the right).

We would like to extend the notion of derivative to functions f: A — F', where E and F
are normed vector spaces, and A is some nonempty open subset of E. The first difficulty is
to make sense of the quotient

fla+h)— f(a)
h

if £ has dimension greater than 1.

Since F' is a normed vector space, f(a + h) — f(a) makes sense. But how do we define
the quotient by a vector? Well, we don’t!

A first possibility is to consider the directional derivative with respect to a vector u # 0
in F. We can consider the vector f(a + tu) — f(a), where t € R. Now,

fla+tu) = f(a)
t

makes sense.

The idea is that in E, the points of the form a+ tu for ¢ in some small interval [—¢, +¢| in
R form a line segment [r, s] in A containing a, and that the image of this line segment defines
a small curve segment on f(A). This curve segment is defined by the map ¢t — f(a + tu),
from [r,s] to F', and the directional derivative D, f(a) defines the direction of the tangent
line at a to this curve; see Figure 3.1. This leads us to the following definition.

Definition 3.2. Let E and F' be two normed vector spaces, let A be a nonempty open subset
of £, and let f: A — F be any function. For any a € A, for any u # 0 in E, the directional
derivative of f at a w.r.t. the vector u, denoted by D, f(a), is the limit (if it exists)

Duf(a) — i et =@

t—0,teU t ’

where U={teR|a+tuc A, t#0} (or U={teCla+tuec A, t+#0}).

Since the map t — a + tu is continuous, and since A — {a} is open, the inverse image
U of A—{a} under the above map is open, and the definition of the limit in Definition 3.2
makes sense. The directional derivative is sometimes called the Gateaux derivative.
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Figure 3.1: Let f: R? — R. The graph of f is the peach surface in R? and ¢t — f(a + tu) is
the embedded orange curve connecting f(a) to f(a + tu). Then D, f(a) is the slope of the
pink tangent line in the direction of w.

Remark: Since the notion of limit is purely topological, the existence and value of a di-
rectional derivative is independent of the choice of norms in £ and F', as long as they are
equivalent norms.

In the special case where £ = R and F' = R, and we let u = 1 (i.e., the real number 1,
viewed as a vector), it is immediately verified that Dy f(a) = f’(a), in the sense of Definition
3.1. When £ =R (or £ = C) and F' is any normed vector space, the derivative Dy f(a), also
denoted by f’(a), provides a suitable generalization of the notion of derivative.

However, when E has dimension > 2, directional derivatives present a serious problem,
which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe
that the directional derivatives w.r.t. all nonnull vectors u share something in common. As
a consequence, a function can have all directional derivatives at a, and yet not be continuous
at a. Two functions may have all directional derivatives in some open sets, and yet their
composition may not.

Example 3.1. Let f: R? — R be the function given by

2

[ i ay) £ (0,0)
fle.y) = {0 if (2,y) = (0,0).

The graph of f(z,y) is illustrated in Figure 3.2.
For any u # 0, letting u = (Z), we have

FO+tu)— f0)  h2%
t 2R kY
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Figure 3.2: The graph of the function from Example 3.1. Note that f is not continuous at
(0,0), despite the existence of D, f(0,0) for all u # 0.

so that

2

h .
Du 0,0 — e 1fk750
#10.0) {0 it k=0.

Thus, D, f(0,0) exists for all u # 0.

On the other hand, if Df(0,0) existed, it would be a linear map Df(0,0): R? — R
represented by a row matrix (a /), and we would have D, f(0,0) = Df(0,0)(u) = ah + Bk,
but the explicit formula for D, f(0,0) is not linear. As a matter of fact, the function f is
not continuous at (0,0). For example, on the parabola y = 22, f(z,y) = L, and when we

29
approach the origin on this parabola, the limit is %, but f(0,0) = 0.

To avoid the problems arising with directional derivatives we introduce a more uniform
notion.

Given two normed spaces F and F', recall that a linear map f: E — F' is continuous iff
there is some constant C' > 0 such that

|f(w)]] < Clul|| forallue E.

Definition 3.3. Let E and F' be two normed vector spaces, let A be a nonempty open subset
of E, and let f: A — F be any function. For any a € A, we say that f is differentiable at
a € A if there is a continuous linear map L: E — F and a function h +— €(h), such that

fla+h) = fla) + L(h) + e(h)[[n]]
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for every a + h € A, where €(h) is defined for every h such that a + h € A, and

lim e(h) =0,
h—0, heU
where U = {h € E'|a+ h € A, h # 0}. The linear map L is denoted by Df(a), or Df,, or
df (a), or df,, or f'(a), and it is called the Fréchet derivative, or derivative, or total derivative,
or total differential, or differential of f at a; see Figure 3.3.

f(a) % l
‘L(h) ! fa+h) - f(a)

. '
f(a+h)

///'N\

Figure 3.3: Let f: R? — R. The graph of f is the green surface in R3. The linear map
L = Df(a) is the pink tangent plane. For any vector h € R?, L(h) is approximately equal
to f(a+ h) — f(a). Note that L(h) is also the direction tangent to the curve t — f(a + th).

Since the map h — a+h from F to F is continuous, and since A is open in F, the inverse
image U of A — {a} under the above map is open in F, and it makes sense to say that

lim ¢(h)=0.

h—0, heU

Note that for every h € U, since h # 0, €(h) is uniquely determined since

 flath) — fa) - L(R)
lh) = Tl ’

and that the value €(0) plays absolutely no role in this definition. The condition for f to be
differentiable at a amounts to the fact that

)~ fa) — L)
hi—0 1Al

=0 (1)
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as h # 0 approaches 0, when a + h € A. However, it does no harm to assume that €(0) = 0,
and we will assume this from now on.

Again, we note that the derivative D f(a) of f at a provides an affine approximation of
f, locally around a.

If E=F =R, alinear map L: R — R is uniquely determined by some fixed real number
¢ € R and we have
L(u) =cu, wueR.
Since

[fla+h) = fla) —ch| _|flath)—fla)
|€<h)|: |h| = h —C|,

if Df, exists, |e(h)| tends to zero if |h| tends to zero, and we deduce that

c= f'(a),
so our new notion of derivative agrees with the old (standard) notion of derivative, as it

should.

Remarks:

(1) Since the notion of limit is purely topological, the existence and value of a derivative is
independent of the choice of norms in £ and F', as long as they are equivalent norms.
(2) If h: (—a,a) — R is a real-valued function defined on some open interval containing
0, we say that h is o(t) for t — 0, and we write h(t) = o(t), if
h(t
lim Q =0.
t—0,t£0

With this notation (the little o notation), the function f is differentiable at a iff
fla+h) = fa) = L(h) = o(||A]),

which is also written as

fla+h) = f(a) + L(h) + o(|[n])-

The following proposition shows that our new definition is consistent with the definition
of the directional derivative and that the continuous linear map L is unique, if it exists.

Proposition 3.1. Let E and F be two normed spaces, let A be a nonempty open subset of E,
and let f: A — F be any function. For any a € A, if Df(a) is defined, then f is continuous
at a and f has a directional derivative D, f(a) for every uw # 0 in E. Furthermore,

D.f(a) = Df(a)(w),
which can also be written as
D.f(a) = Dfa(u),
and thus, Df(a) is uniquely defined.



78 CHAPTER 3. DIFFERENTIAL CALCULUS

Proof. If L = Df(a) exists, then for any nonzero vector u € E, because A is open, for any
t € R—{0} (or t € C—{0}) small enough, a + tu € A, so

fla+tu) = f(a)+ L(tu) + e(tu)||tul|
fla) +tL(u) + [t|e(tw)ull

which implies that
fla+tu) — f(a t
pwy = 1O =IO Wy,

and since limy, o €(tu) = 0, we deduce that

L(u) = Df(a)(u) = Duf(a).

Because

fla+h) = fla) + L(h) + e(h)[[n]]
for all h such that ||| is small enough, L is continuous, and limy g €(h)||h|| = 0, we have
limpo f(a+ h) = f(a), that is, f is continuous at a. O

When F is of finite dimension, every linear map is continuous (see Proposition 8.8 (Vol.
I) or Theorem 2.26), and this assumption is then redundant.

Observe that in the equation

Duf(a> = Dfa(u)7

the directional derivative D, f(a) is a vector, and D f,(u) is the result of evaluating the linear
map Df, on the vector u. The linear map D f, “knows” about all the directional derivatives,
it is a global object. So after all, the derivative D f, of a function f at a is not a number or
a vector, it is a linear map.

Although this may not be immediately obvious, the reason for requiring the linear map
Df, to be continuous is to ensure that if a function f is differentiable at a, then it is
continuous at a. This is certainly a desirable property of a differentiable function. In finite
dimension this holds, but in infinite dimension this is not the case. The following proposition
shows that if Df, exists at a and if f is continuous at a, then Df, must be a continuous
map. So if a function is differentiable at a, then it is continuous iff the linear map Df, is
continuous. We chose to include the second condition rather that the first in the definition
of a differentiable function.

Proposition 3.2. Let E and F be two normed spaces, let A be a nonempty open subset of
E, and let f: A — F be any function. For any a € A, if Df, is defined, then f is continuous
at a iff Df, is a continuous linear map.
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Proof. Proposition 3.1 shows that if Df, is defined and continuous then f is continuous at
a. Conversely, assume that D f, exists and that f is continuous at a. Since f is continuous
at a and since D f, exists, for any n > 0 there is some p with 0 < p < 1 such that if ||a|| < p
then

|f(a+h) = fla)] < 3.

and
[ F(a+h) = f(a) = Da(W)| < 3 [11]) < .
so we have
IDu(B)]| = IDu(h) = (F(a+h) = f(@) + fla+h) — f(@)]
< llfla+h) = f(a) = Da(W)]| + | f(a+ k) = f(a)]
§g+g:m

which proves that Df, is continuous at 0. By Proposition 2.24, D f, is a continuous linear
map. ]

In practice, to find the linear map L = Df, = df,, we try to expand f(a + h) — f(a) as
a function of h and to isolate the part of f(a + h) — f(a) which is linear in h. For functions
on matrices, this is typically not too hard. Then we need to show that the error term e(h)
tends to zero as ||h|| tends to zero, which relies on suitable properties of the norms involved
and may be quite challenging.

Example 3.2. Consider the map f: M,(R) — M, (R) given by
f(A> = ATA - [7

where M,,(R) denotes the vector space of all n x n matrices with real entries equipped
with any matrix norm, since they are all equivalent; for example, pick the Frobenius norm
|A|l = /tr(ATA). We claim that

Df(AYH)=A"TH+H"A, forall Aand H in M,(R).
We have

fAA+H) - f(A)—(ATH+H ' A)=(A+H) (A+H) - - (ATA-1)-ATH-H"A
=A"A+ATH+H' A+ H' H-A"TA-A"H-H'A
= H'H.
It follows that
dm:fM+H%jM%{NH+HUU:HU{
[H ] [H|
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and since our norm is the Frobenius norm,

- <
[H] [H]

= || H"|| =],

SO

lim e(H) =0,
H—0

and we conclude that
Df(A)YH)=ATH + H'A.

Definition 3.4. If the derivative D f, of a function f: A — F exists for every a € A, we get
amap Df: A — L(E; F), called the derivative of f on A, also denoted by df. Here L(E; F)
denotes the vector space of continuous linear maps from E to F.

Note that according to the old notion of the derivative of a function f: A — R, the
derivative f’ of f is the map f': A — R given by a — f’(a). But the “right” notion is that
the derivative D f of f is a map from A to the space L(F; F) of continuous linear maps from
E to F. When E = F = R, there is an accidental isomorphism between £(R;R) and R.

We now consider a number of standard results about derivatives.

3.2 Properties of Derivatives

A function f: E — F is said to be affine if there is some linear map ?: E — F and some
fixed vector ¢ € F', such that

%
flw)= fu)+c
for all u € E. We call ? the linear map associated with f.

Proposition 3.3. Given two normed spaces E and F, if f: E — F is a constant function,

then Df(a) = 0, for every a € E (here, 0 denotes the linear map from E to F whose value is
%

0€F forallue E). If f: E— F is a continuous affine map, then Df(a) = [, for every

%
a € E, where [ denotes the linear map associated with f. In particular, if f: E — F is a
continuous linear map, then Df(a) = f for alla € E.

Proof. 1f f: E — F is the constant function such that f(u) = ¢ for all u € E for some fixed
c € F, then

flat+h)=fla)=c—c=0=0]nhl,
so €(h) = 0 for all h € E, and by definition, D f(a)(h) =0 for all a,h € E.

If f: F — F is a continuous affine map, since ? is linear, we have

fla+h)—fl@)= Fla+h)+c—(F@+c)= Fla)+ F (R +c—(F(a)+0)
%

=Ty =T +o|nl,
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so €(h) =0 for all h € E, and by definition, Df(a) = ? forall a € E. O
Example 3.3. Consider the function f: R™ — My ,,(R) given by

o) =(Cv—d)", veR",
where C' is an m x n matrix and d € R™. Since transposition is linear,
p(v) = (Cv)" —d'
is an affine map with linear part given by v — (Cv)T, so by Proposition 3.3,
Dy, (w) = (Cw)", v,w e R".

Proposition 3.4. Given a normed space E and a normed vector space F', for any two
functions f,g: E — F, for every a € E, if Df(a) and Dg(a) exist, then D(f + g)(a) and
D(A\f)(a) exist, and

D(f + g)(a) = Df(a) + Dg(a),
D(Af)(a) = ADf(a).

Given two normed vector spaces (Ey, | ||;) and (Es, || ||,), there are three natural and
equivalent norms that can be used to make E; X Fs into a normed vector space:

L[, wo)ly = flually + [lusll,-

2 2
2. [I(ur, u)lly = (Jually + lluzl3) 2.
3. [ (ur, uz)l| o = max(ffunly , [luall,)-

We usually pick the first norm. If £, F>, and F are three normed vector spaces, recall that
a bilinear map f: E; X Ey — F'is continuous iff there is some constant C' > 0 such that

| f(ur,u2)|| < Clually [Jus|l, for all uy € Ey and all us € Es.

Proposition 3.5. Given three normed vector spaces Ei, Es, and F', for any continuous
bilinear map f: Ey X Ey — F, for every (a,b) € Ey x Ey, Df(a,b) exists, and for every
u € E and v € Es,

Df(a,b)(u,v) = f(u,b) + f(a,v).
Proof. Since f is bilinear, a simple computation implies that
f((a;b) + (u,v)) = f(a,b) = (f(u,b) + f(a,v)) = fla+u,b+v) = f(a,b) — f(u,b) — f(a,v)
(a+u,b) + fla+u,v) = fla,b) = f(u,b) = f(a,v)
(a,0) + f(u,b) + fa,v) + f(u,v) = f(a,b) — f(u,b) — f(a,v)
(

u,v).

f
f
f
f
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We define
f((a,b) + (u,v)) = fla,b) — (f(u,b) + f(a,v))

I, )l ’

e(u,v) =
and observe that the continuity of f implies

1/ ((a,0) + (u,v)) = f(a,b) = (f(u,b) + f(a, )| = || f (u, )]
< Cllully o]l < O (lully + llvll,)*

Hence
Fo) | IFww)ll _ C (lull, + lloll,)?
He(u,v)lle _ < Gy + Ol g, + J1elly) = € s )1
T ol | = Tewol, <, + ol
which in turn implies
lim ¢e(u,v) =0.
(u,v)—(0,0)

Example 3.4. Consider the function f: R” x R™ — R given by
fo,\)=ATCvo=v"C"\, veR" \eR™,

where C'is an m xn matrix. Since the function f is bilinear, by Proposition 3.5, its derivative
is given by

dfw oy (w, ) = fw, X) + f(v,p) = AT Cw + p" Co = (CTX) Tw + (Cv) ',

with w € R", p € R™.

We now state the very useful chain rule.

Theorem 3.6. Given three normed spaces E, F, and G, let A be an open set in E, and let
B an open set in F. For any functions f: A — F and g: B — G, such that f(A) C B, for
any a € A, if Df(a) exists and Dg(f(a)) exists, then D(go f)(a) exists, and

D(g o f)(a) = Dg(f(a)) o Df(a),

which can also be written as

D(gof)a:Dgf(a)ona or d(gof)a:dgf(a)odfa'

Proof. Since f is differentiable at a and g is differentiable at b = f(a), for every n such that
0 < n < 1 there is some p > 0 such that for all s,, if ||s|| < p and [|t|| < p then

fla+s) = f(a) + Dfu(s) + ei(s)
g(b+1t) = g(b) + Dgs(t) + ea(t),
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with [[e1(s)|| < ns|]| and ||ea(t)|| < n]|t]|. Since Df, and Dg, are continuous, we have
IDfa(s)[ < Dfall sl and  [[Dge@)]| < [[Dgs[l 2]l
which, since [[e1(s)|| < n|s|| and n < 1, implies that
IDfa(s) + ex(s)l| < (DSl Isll + llex(s) | < IDSalll[sll +n sl < (Dfall + 1) Is]] -
Consequently, if ||s]| < p/(||Dfa]| + 1), we have

le2(Dfa(s) +ex(s)) | < n((IDfall + 1) [Is]] (*1)

and
IDgs(e1(s))]] < [[Dgsll llex(s)l] < n{[Dgsll [|s]] - (*2)
Then since b = f(a), using the above we have

(gof)la+s)=g(f(a+s)) =g(b+Dfu(s)+els))
= 9(b) + Dgo(Dfa(s) + €1(s)) + €2(Dfals) + €1(s))
= g(b) + (Dgy 0 Dfa)(s) + Dgs(€1(s)) + €2(D fa(s) + €1(s)).
Now by (1) and (x3) we have
IDas(er(9) + a(DL(s) + (s < [Dgofer (D] + lealDels) + ()]
< 0 [Dgyll lIsll + n([[Dfall + 1) lIs]
= n(IDfall + [[Dgsll + 1) lIs]l
so if we write e3(s) = Dgy(e1(s)) + e2(D fo(s) + €1(s)) we proved that

(go f)la+s)=g(b)+ (Dgy 0 Dfa)(s) + es(s)

with e3(s) < n(||[Dfall + [|[Dgs|| + 1) ||s||, which proves that Dg, o Df, is the derivative of go f
at a. Since Df, and Dg, are continuous, so is Dg; o D f,, which proves our proposition. [J

In the special case where £ = F = G = R and A and B are open subsets of R such that
f(A) C B, the chain rule gives us back the standard version of the chain rule for functions
f:A—Rand g: B— R, namely for any a € A,

(go f)(a) =g'(f(a))- f'(a),
the product of the real numbers ¢'(f(a)) and f'(a).

This is because for any a € A and b € B, Df, is the linear map given by D f,(u) = f'(a)u
and Dg, is the linear map given by Dg,(v) = ¢'(b)v, with u,v € R, so the chain rule with
b= f(a) and v = f'(a)u says that

D(g o f)a(u) = Dgja)(Dfa(u)) = ¢'(f(a))(f'(a)u) = (¢'(f(a)) f'(a))u,
so indeed
(go f)(a)=4g'(f(a))f (a).

Theorem 3.6 has many interesting consequences. We mention two corollaries.
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Proposition 3.7. Given three normed vector spaces E, F, and G, for any open subset A in
E, foranya € A, let f: A — F such that Df(a) exists, and let g: F — G be a continuous
affine map. Then D(go f)(a) exists, and

D(go f)(a) = g oDf(a),

where 7 15 the linear map associated with the affine map g.

Proposition 3.8. Given two normed vector spaces E and F, let A be some open subset in
E, let B be some open subset in F, let f: A — B be a bijection from A to B, and assume
that Df exists on A and that Df~1 exists on B. Then for every a € A,

Df ' (f(a)) = (Df(a))~".

Proposition 3.8 has the remarkable consequence that the two vector spaces E and F' have
the same dimension. In other words, a local property, the existence of a bijection f between
an open set A of E and an open set B of F, such that f is differentiable on A and f~! is
differentiable on B, implies a global property, that the two vector spaces £ and F' have the
same dimension.

Let us mention two more rules about derivatives that are used all the time.

Let ¢: GL(n,C) — M,,(C) be the function (inversion) defined on invertible n x n matrices
by
L(A) = A1
Observe that GL(n,C) is indeed an open subset of the normed vector space M, (C) of

complex n X n matrices, since its complement is the closed set of matrices A € M, (C)
satisfying det(A) = 0. Then we have

dia(H) = —A"HA™,

for all A € GL(n,C) and for all H € M,,(C).

To prove the preceding line observe that for H with sufficiently small norm, we have

A+H) ' — AT+ ATHATT

WA+ H)—1(A)+ AT HA™ = )

A+H) M — (A+ H)A™ + (A+ H)ATHA™Y
-
-

A+H) ' I —1-HA'+ HA '+ HAT'HA™]
'HATTHA™.

o~ o~ o~

A+ H

Consequently, we get

A+ H)—1(A)+ATHA™Y (A+H)'HA'HA™!
o(H) = 1] - 1] ’
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and since

[(A+ H) ' HAT HA™Y < | HIP[|A7Y] |[(A+ H) !
it is clear that limy, .o €(H) = 0, which proves that

Y

dia(H) = —A""HA™,

In particular, if A =1, then di;(H) = —H.

Next, if f: M,,(C) — M, (C) and g: M, (C) — M,,(C) are differentiable matrix functions,
then

d(fg)a(B) = dfa(B)g(A) + f(A)dga(B),
for all A, B € M,,(C). This is known as the product rule.

In preparation for the next section on Jacobian matrices and the section on the implicit
function theorem we need the following definitions.

When F is of finite dimension n, for any basis (ui,...,u,) of E, we can define the
directional derivatives with respect to the vectors in the basis (uq,...,u,) (actually, we can
also do it for an infinite basis). This way we obtain the definition of partial derivatives as
follows:

Definition 3.5. For any two normed spaces F and F, if E is of finite dimension n, for
every basis (uq,...,u,) for E, for every a € FE, for every function f: E — F, the directional
derivatives Dy, f(a) (if they exist) are called the partial derivatives of f with respect to the

basis (u1,...,u,). The partial derivative D, f(a) is also denoted by 9, f(a), or g—f(a).
L

0
The notation a—f(a) for a partial derivative, although customary and going back to
Zj
Leibniz, is a “logical obscenity.” Indeed, the variable x; really has nothing to do with the
formal definition. This is just another of these situations where tradition is just too hard to

overthrow!

More generally we now consider the situation where F is a finite direct sum. Given a
normed vector space F = E;®---@ F, and a normed vector space F', given any open subset
A of E, for any ¢ = (¢q,...,¢,) € A, we define the continuous functions i: B — F, such
that

Zj(l’) = (Cl, ey G, X, Gy, - - ,Cn).

For any function f: A — F, we have functions f oi: E; — F defined on (i)~ (A), which

contains c;.

Definition 3.6. If D(f oi$)(c;) exists, we call it the partial derivative of f w.r.t. its jth
0

argument, at c. We also denote this derivative by D;f(c) of —f(c) Note that D, f(c) €

35(,’]'
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This notion is a generalization of the notion defined in Definition 3.5. In fact, when E is
of dimension n, and a basis (uy, . .., u,) has been chosen, we can write £ = Ku; & - - - & Ku,,
(with K =R or K = C), and then

D;f(e)(Au;) = Ad;f(c),
: : : . Of .
and the two notions are consistent. We will use freely the notation 8—(0) instead of D; f(c).
Lj
The notion 0; f(c) introduced in Definition 3.5 is really that of the vector derivative,

0

whereas D; f(c) (: a—f(c)) is the corresponding linear map. The following proposition
Lj

holds.

Proposition 3.9. Giwen a normed vector space E = E1 & --- @ E,, and a normed vector
space F', given any open subset A of E, for any function f: A — F, for every ¢ € A, if
Df(c) exists, then each a—(c) exists, and
Zj
of of

Df(e)(u, .- un) = a—xj(C)(ul) +oe a_xj(c)(“”)’

for every u; € E;, 1 <1 <n. The same result holds for the finite product Fy x --- X E,.

Proof. If i;: E; — E is the linear map given by
ij(x) =(0,...,0,2,0,...,0),

then

Z;(ZL‘) = (Cl, ce 7Cj—17070j+17 ce ,Cn) + ij(l’),

which shows that ¢ is affine, so Dif(x) = i;. The proposition is then a simple application of
Theorem 3.6. L

In the special case where F' is a normed vector space of finite dimension m, for any basis
(v1,...,v,) of | every vector x € F' can be expressed uniquely as

T =101 + - + Ty,

where (z1,...,2,) € K™, the coordinates of x in the basis (v,...,v,) (where K = R or
K = C). Thus, letting F; be the standard normed vector space K with its natural structure,
we note that F' is isomorphic to the direct sum F' = K @ --- & K. Then every function
f: E — F is represented by m functions (f1,..., fm), where f;: E — K (where K = R or
K =C), and

flz) = filx)vy + - + frn(@) 0,

for every x € E. The following proposition is easily shown.
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Proposition 3.10. For any two normed vector spaces E and F', if F' is of finite dimension
m, for any basis (vi,...,vn) of F, a function f: E — F is differentiable at a iff each f; is
differentiable at a, and

Df(a)(u) =Dfi(a)(w)or + - + D finla)(w)om,

for every u € E.

3.3 Jacobian Matrices

If both £ and F' are of finite dimension, for any basis (ug,...,u,) of E and any basis
(v1,...,v,) of F, every function f: F — F' is determined by m functions f;: £ — R (or
fi: E— C), where

flz) = filx)vy + - + fr() 0,

for every x € E. From Proposition 3.1, we have
Df(a)(u;) = Dy, f(a) = 0;f(a),
and from Proposition 3.10, we have

Df(a)(u;) = Dfi(a)(uz)or + - -- + Dfia)(u;)vi + - - - + D fm(a) () vm,

that is,
Df(a)(u;) = 0 fila)vr + -+ + 05 fi(a)vi + - - - + 0; frm(a) V.
Since the j-th column of the m x n-matrix representing D f(a) w.r.t. the bases (uy, ..., u,)
and (vy, ..., vp) is equal to the components of the vector D f(a)(u;) over the basis (vq,. .. ,v,),
the linear map D f(a) is determined by the m x n-matrix J(f)(a) = (0;fi(a)), (or J(f)(a) =

(0fi/9x;)(a)):
Ofila) Opfi(a) ... Onfi(a)
Orfo(a)  Oafe(a) ... Onfaa)

J(f)(a) = : : . :
a1fm(a) a2fm(a) s 8nfm(a)
. df1 df1 df1
3_x1(a) 8_x2(a) " B (a)
Oy O O
J(F)a) = axl.( ) 81:2.( ) 3xn( )

O Ofm . Ofn
8—m(a) 8_1:2(a) axn(a)
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Definition 3.7. The matrix J(f)(a) is called the Jacobian matriz of Df at a. When m = n,
the determinant, det(J(f)(a)), of J(f)(a) is called the Jacobian of Df(a).

From a standard fact of linear algebra, we know that this determinant in fact only depends
on Df(a), and not on specific bases. However, partial derivatives give a means for computing
it.

When E = R” and F' = R™, for any function f: R" — R™ it is easy to compute the
partial derivatives (0f;/0x;)(a). We simply treat the function f;: R” — R as a function of
its j-th argument, leaving the others fixed, and compute the derivative as in Definition 3.1,
that is, the usual derivative.

Example 3.5. For example, consider the function f: R? — R2, defined such that
f(r,0) = (rcos(f),rsin(0)).

Then we have

In the case where E = R (or E = C), for any function f: R — F (or f: C — F), the
Jacobian matrix of Df(a) is a column vector. In fact, this column vector is just D;f(a).
Then for every A € R (or A € C),

Df(a)(A) = AD1f(a).
This case is sufficiently important to warrant a definition.

Definition 3.8. Given a function f: R — F (or f: C — F'), where F' is a normed vector
space, the vector

Df(a)(1) = D1f(a)
is called the wvector derivative or velocity vector (in the real case) at a. We usually identify

D f(a) with its Jacobian matrix D; f(a), which is the column vector corresponding to Dy f(a).
By abuse of notation, we also let D f(a) denote the vector Df(a)(1) = Dy f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve that is
the trajectory of some particle moving in R™ as a function of time, and the vector Dy f(a)
is the velocity of the moving particle f(t) at t = a; see Figure 3.4.

It is often useful to consider functions f: [a,b] — F from a closed interval [a,b] C R to a
normed vector space F', and its derivative D f(a) on [a,b], even though [a, b] is not open. In
this case, as in the case of a real-valued function, we define the right derivative Dy f(ay) at
a, and the left derivative D1 f(b_) at b, and we assume their existence.
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Example 3.6.

1. When A = (0,1) and F = R3, a function f: (0,1) — R? defines a (parametric) curve
in R3. If f = (f1, fo, f3), its Jacobian matrix at a € R is

dfr
E(a)

)@= | 22

dfs
W(a)

See Figure 3.4.

Figure 3.4: The red space curve f(t) = (cos(t), sin(t),t).

— sin(t)
The velocity vectors J(f)(a) = | cos(t) | are represented by the blue arrows.
1

2. When £ = R? and F' = R?, a function ¢: R? — R? defines a parametric surface.
Letting ¢ = (f, g, h), its Jacobian matrix at a € R? is

af af
%(a) %(a)
dg dg
%(a) %(a)

oh oh
%(a) %(a)

J(¢)(a) =

1 0
See Figure 3.5. The Jacobian matrix is J(f)(a) = [ 0 1 |. The first column is the
2u 2v
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/

Figure 3.5: The parametric surface x = u,y = v, 2 = u* + v
vector tangent to the pink w-direction curve, while the second column is the vector
tangent to the blue v-direction curve.

3. When £ = R? and F = R, for a function f: R® — R, the Jacobian matrix at a € R3 is

1@ = (G S Fo),

Definition 3.9. More generally, when f: R"™ — R, the Jacobian matrix at a € R" is the
row vector

1@ = (@ - hw).

Its transpose is a column vector called the gradient of f at a, denoted by gradf(a) or V f(a).
Then given any v € R", note that
of

Df(a)(v) = 8—371((1)111 + -

of
ox,,

(a) vn = gradf(a) - v,

the scalar product of gradf(a) and v.
Example 3.7. Consider the function f: R” x R™ — R from Example 3.4 given by
f,\)=ATCv=v"C"\, veER", XcR™,

where C' is an m x n matrix. We showed that its derivative is given by

Bo(w) = © N0+ (CTu= (A Co)” (§)),
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CTA
vf(v)\) = ( Cv ) .

Example 3.8. Consider the quadratic function f: R™ — R given by

so the gradient of f at (v, \) is

f(z)=2"Az, z€R",
where A is a real n X n symmetric matrix. We claim that
dfy(h) = 2u" Ah  for all u,h € R".
Since A is symmetric, we have

flut+h)=(u" +h")A(u+h)
=u'Au+u"Ah+ h"Au+ h" Ah
=u' Au+2u"Ah + h'" Ah,

so we have
flu+h)— f(u) —2u" Ah = h' Ah.
If we write T AR
e(h) =
Al

for h ¢ 0 where || || is the 2-norm, by Cauchy—Schwarz we have

IRl IARI _ (11" Al
le(h)] < < = [[n[IIA]l
7] 7]

which shows that limy, ,qe(h) = 0. Therefore,
dfy(h) = 2u" Ah  for all u,h € R",
as claimed. This formula shows that the gradient V f, of f at u is given by
V f. = 2Au.

As a first corollary we obtain the gradient of a function of the form

flx) = %xTAa: — b,

where A is a symmetric n X n matrix and b is some vector b € R™. Since the derivative of a
linear function is itself, we obtain

dfy(h) =u" Ah —b"h,
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and the gradient of f(z) = %xTAx —b'z, is given by

Vfu=Au—b.
As a second corollary we obtain the gradient of the function
f(2) = Az — b2 = (Ax — )T (Az — b) = («TAT —bT)(Az — )

which is the function to minimize in a least squares problem, where A is an m x n matrix.
We have

fla)=2"ATAz —2TATb—b" Az + b b=a" AT Az — 20" Az + b',

and since the derivative of a constant function is 0 and the derivative of a linear function is
itself, we get

df,(h) = 2u" AT Ah — 2b" Ah.
Consequently, the gradient of f(z) = ||Az — b||; is given by
Vf,=2AT Au—2A7b.
These two results will be heavily used in quadratic optimization.

Example 3.9. In Example 4.3 from Section 4.1, we need to find the gradient of the function
1
L(v,\) = §UTAU —vTb+ 0 CTA=d" ),

where A is an n X n symmetric matrix and C' is an m x n matrix of rank m. From Example
3.7 and Example 3.8, we have

[(Av—b CTA 0\  [Av—b+CTA
v = (M) (@)« ()= (Ve

When E, F', and G have finite dimensions, and (uq, ..., u,) is a basis for E, (v1,...,v,)
is a basis for F, and (wy,...,w,,) is a basis for G, if A is an open subset of £, B is an
open subset of F', for any functions f: A — F and ¢g: B — G, such that f(A) C B, for any
a € A, letting b = f(a), and h = go f, if Df(a) exists and Dg(b) exists, by Theorem 3.6,
the Jacobian matrix J(h)(a) = J(g o f)(a) w.r.t. the bases (u1,...,u,) and (wq, ..., wy,) is
the product of the Jacobian matrices J(g)(b) w.r.t. the bases (vy,...,v,) and (wy, ..., wy,),
and J(f)(a) w.r.t. the bases (uy,...,u,) and (vq,...,v,):

Agi(b)  Oagi(b) ... Ongi(b) ofila) Oufi(a) ... Opfi(a)

81217 622b 6n2b 81261, 822(1 angL
J(h)(a) = g‘() 9‘() . 9‘() f‘() f‘() . f‘()

Drgm(®) Oagm(®) .. Bugm(®)) \Orfula) Bofula) ... Bypfula)
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or
991 g1 g1 of df1 df1
a—yl(b) s b) ... 8_yn(b) 8x1( a) axQ( a) ... axp( a)
992 992 992 9fs 9fs Of2
J(h)(a) = | O Q 9ys - (9yn(b) 8x1< 2 8x2< a - (%p( 2
O Om Ogm | | Ok, 08 of,
6_y1<b> D b) ... 0 (b) 8x1< a) 8x2< a) ... (‘3xp< a)

Thus, we have the familiar formula

895] ayk 895]

Given two normed vector spaces E and F of finite dimension, given an open subset A of
E, if a function f: A — F is differentiable at a € A, then its Jacobian matrix is well defined.

@ One should be warned that the converse is false. As evidenced by Example 3.1, there are
functions such that all the partial derivatives exist at some a € A, but yet, the function is
not differentiable at a, and not even continuous at a. However, there are sufficient conditions
on the partial derivatives for D f(a) to exist, namely, continuity of the partial derivatives.

If f is differentiable on A, then f defines a function Df: A — L(E; F'). It turns out that
the continuity of the partial derivatives on A is a necessary and sufficient condition for D f
to exist and to be continuous on A.

If f:]a,b] — R is a function which is continuous on [a,b] and differentiable on (a,b),
then there is some ¢ with a < ¢ < b such that

f(b) = fla) = (b—a)f'(c).

This result is known as the mean value theorem and is a generalization of Rolle’s theorem,
which corresponds to the case where f(a) = f(b).

Unfortunately, the mean value theorem fails for vector-valued functions. For example,
the function f: [0,27] — R? given by

f(t) = (cost,sint)

is such that f(27) — f(0) = (0,0), yet its derivative f’'(t) = (—sint, cost) does not vanish in
(0,2m7).

A suitable generalization of the mean value theorem to vector-valued functions is possible
if we consider an inequality (an upper bound) instead of an equality. This generalized version
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of the mean value theorem plays an important role in the proof of several major results of
differential calculus.

If F is a vector space (over R or C), given any two points a,b € E, the closed segment
la, b] is the set of all points a + A(b — a), where 0 < A < 1, A € R, and the open segment
(a,b) is the set of all points a + A(b — a), where 0 < A < 1, A € R.

Proposition 3.11. Let E and F be two normed vector spaces, let A be an open subset of
E, and let f: A — F be a continuous function on A. Given any a € A and any h # 0 in
E, if the closed segment [a,a + h] is contained in A, if f: A — F is differentiable at every
point of the open segment (a,a + h), and

sup  [[Df(x)[| < M,
z€(a,a+h)

for some M > 0, then
1f(a+h) = fla)]l < Ml|n]].

As a corollary, if L: E — F is a continuous linear map, then
If(a+h) = f(a) = L(h)[| < M|,
where M = sup,e(qarny [Df(z) = L.

b

The above proposition is sometimes called the “mean value theorem.” Propostion 3.11

can be used to show the following important result.

Theorem 3.12. Given two normed vector spaces E and F, where E is of finite dimension
n, and where (uy, ..., u,) is a basis of E, given any open subset A of E, given any function
f: A — F, the derivative Df: A — L(E;F) is defined and continuous on A iff every

0
partial derivative 0;f (or —f) s defined and continuous on A, for all j, 1 < j < n. As

al'j
a corollary, if F is of finite dimension m, and (vi,...,v,) is a basis of F, the derivative
dfi
Df: A— L(E;F) is defined and continuous on A iff every partial derivative 0, f; (or 8f )
Lj

is defined and continuous on A, for alli,j, 1 <i<m, 1<j<n.

Theorem 3.12 gives a necessary and sufficient condition for the existence and continuity
of the derivative of a function on an open set. It should be noted that a more general version
of Theorem 3.12 holds, assuming that £ = FE, & --- @ E,, or F = F; X --- x E,, and using
the more general partial derivatives D; f introduced before Proposition 3.9.

Definition 3.10. Given two normed vector spaces E and F', and an open subset A of £, we
say that a function f: A — F is of class C° on A or a C°-function on A if f is continuous
on A. We say that f: A — Fis of class C' on A or a C'-function on A if Df exists and is

continuous on A.
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Since the existence of the derivative on an open set implies continuity, a C!'-function is of
course a C'-function. Theorem 3.12 gives a necessary and sufficient condition for a function
f to be a C'-function (when E is of finite dimension). It is easy to show that the composition
of C'-functions (on appropriate open sets) is a C'-function.

3.4 The Implicit and The Inverse Function Theorems

Given three normed vector spaces F, F', and G, given a function f: F x F' — G, given any
¢ € GG, it may happen that the equation

flx,y) =c

has the property that for some open sets A C E and B C F, there is a function g: A — B,
such that

flz g(x)) =c,
for all x € A. Such a situation is usually very rare, but if some solution (a,b) € E x F

such that f(a,b) = ¢ is known, under certain conditions, for some small open sets A C E
containing ¢ and B C F containing b, the existence of a unique g: A — B such that

f(z,9(x)) = c,

for all z € A, can be shown. Under certain conditions, it can also be shown that g is
continuous and differentiable. Such a theorem, known as the implicit function theorem, can
be proven.

Example 3.10. Let E=R? F =G =R, Q=R2xR=R? f: R2xR — R given b
y
f((xlaxQ)yx?)) — LE% + Qj’% +LU§ - ]-7

a = (vV3/(2v2),V3/(2v2)), b = 1/2, and ¢ = 0. The set of vectors (z1, 22, 23) € R? such
that

f((z1,22),23) =23 + 23 +25—1=0
is the unit sphere in R®. The vector (a,b) belongs to the unit sphere since |jal|3 4+ 5> — 1 = 0.
The function ¢g: R? — R given by

g(xy,m9) = 4/1 — 23 — 23

satisfies the equation
f(@1, 22, 9(21,22)) = 0

all for (z1,79) in the open disk {(z1,79) € R* | 22 + 23 < 1}, and g(a) = b. Observe that if
we had picked b = —1/2, then we would need to consider the function

g(w1,2) = —\/1 —af — a3.
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We now state a very general version of the implicit function theorem. The proof of
this theorem is fairly involved and uses a fixed-point theorem for contracting mappings in
complete metric spaces; it is given in Schwartz [70].

Theorem 3.13. Let E, F', and G be normed vector spaces, let Q2 be an open subset of E X F,
let f: Q — G be a function defined on , let (a,b) € §Q, let ¢ € G, and assume that
f(a,b) = c. If the following assumptions hold:

(1) The function f: Q — G is continuous on §2;

(2) F is a complete normed vector space;

(3) ?(x,y) exists for every (z,y) € Q and g—f: Q — L(F;G) is continuous, where
Y Y

0
a—‘;(x, y) 1s defined as in Definition 3.6;

-1
4 ﬁ a,b) is a bijection of L(F';G), and % a,b € L(G; F); this hypothesis implies
Ay dy
that G is also a complete normed vector space;
then the following properties hold:

(a) There exist some open subset A C E containing a and some open subset B C F
containing b, such that A x B C Q, and for every x € A, the equation f(x,y) = c¢ has
a single solution y = g(x), and thus there is a unique function g: A — B such that
fz,g(x)) =c, for all x € A;

(b) The function g: A — B is conlinuous.
If we also assume that
(5) The derivative Df(a,b) exists;
then

(¢) The derivative Dg(a) exists, and

Dgfa) = (S 0.0)) " o a1

and if in addition

(6) ?: Q — L(E;G) is also continuous (and thus, in view of (3), f is C* on Q);
T

then
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(d) The derivative Dg: A — L(E; F) is continuous, and

Dy(s) = - (5 (w.(0))) o 5z g(a)

for all x € A.

Example 3.11. Going back to Example 3.10, write x = (z1,x2) and y = x3, so that the
partial derivatives 0 f/0x and 0f /0y are given in terms of their Jacobian matrices by

%(m,y) = (221 2a»)
g—g(x,y) = 213.

If 0 < [b| <1 and ||a]2 +b* — 1 = 0, then Conditions (3) and (4) are satisfied. Conditions
(1) and (2) obviously hold. Since df,s) is given by its Jacobian matrix as

dfap) = (2a1 2as 2b),

Condition (5) holds, and clearly, Condition (6) also holds.

Theorem 3.13 implies that there is some open subset A of R? containing @, some open
subset B of R containing b, and a unique function g: A — B such that

f(x, 9(x)) =0

for all x € A. In fact, we can pick A to be the open unit disk in R, B = (0,2), and if
0<b<1, then

g(xy,29) = /1 — 22 — a3,
else if —1 < b < 0, then
g(x1,29) = —/1 — 22 — 23

Assuming 0 < b < 1, We have

of

%(1’:9(95)) = (221 2m2),

and

of - 1
(Fwan) = —

so according to the theorem,

dg, = —————= (71 72),
1—x%—x%( )
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which matches the derivative of g computed directly.

Observe that the functions (z1,2z2) — /1 — 22 — 23 and (1, 22) — —+/1 — 23 — 23 are

two differentiable parametrizations of the sphere, but the union of their ranges does not cover
the entire sphere. Since b # 0, none of the points on the unit circle in the (1, x2)-plane are
covered. Our function f views b as lying on the x3-axis. In order to cover the entire sphere
using this method, we need four more maps, which correspond to b lying on the z;-axis or
on the zy axis. Then we get the additional (implicit) maps (2, z3) — £4/1 — 23 — 2% and
(w1, 23) > /1 — 23 — 23.

The implicit function theorem plays an important role in the calculus of variations.
We now consider another very important notion, that of a (local) diffeomorphism.

Definition 3.11. Given two topological spaces E and F and an open subset A of E, we
say that a function f: A — F is a local homeomorphism from A to F if for every a € A,
there is an open set U C A containing a and an open set V' containing f(a) such that f is a
homeomorphism from U to V' = f(U). If B is an open subset of F', we say that f: A — F
is a (global) homeomorphism from A to B if f is a homeomorphism from A to B = f(A). If
E and F' are normed vector spaces, we say that f: A — F is a local diffeomorphism from
A to F if for every a € A, there is an open set U C A containing a and an open set V'
containing f(a) such that f is a bijection from U to V, f is a C''-function on U, and f~!
is a Cl-function on V = f(U). We say that f: A — F is a (global) diffeomorphism from A
to B if f is a homeomorphism from A to B = f(A), f is a C'-function on A, and f~!is a
C'-function on B.

Note that a local diffeomorphism is a local homeomorphism. Also, as a consequence of
Proposition 3.8, if f is a diffecomorphism on A, then Df(a) is a bijection for every a € A.
The following theorem can be shown. In fact, there is a fairly simple proof using Theorem
3.13.

Theorem 3.14. (Inverse Function Theorem) Let E and F be complete normed spaces, let A
be an open subset of E, and let f: A — F be a C*-function on A. The following properties
hold:

(1) For every a € A, if Df(a) is a linear isomorphism (which means that both Df(a)
and (Df(a))™" are linear and continuous),® then there exist some open subset U C A

containing a, and some open subset V of F containing f(a), such that f is a diffeo-
morphism from U to V = f(U). Furthermore,

Df~!(f(a)) = (Df(a))~".

For every neighborhood N of a, the image f(N) of N is a neighborhood of f(a), and
for every open ball U C A of center a, the image f(U) of U contains some open ball

of center f(a).

2 Actually, since E and F are Banach spaces, by the open mapping theorem, it is sufficient to assume that
Df(a) is continuous and bijective; see Lang [49].
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(2) If Df(a) is invertible for every a € A, then B = f(A) is an open subset of F, and
f is a local diffeomorphism from A to B. Furthermore, if [ is injective, then f is a
diffeomorphism from A to B.

Proofs of the inverse function theorem can be found in Schwartz [70], Lang [49], Abraham
and Marsden [1], and Cartan [21].

The idea of Schwartz’s proof is that if we define the function f;: F' x 2 — F by

fily,2) = f(2) -,

then an inverse ¢ = f~! of f is an implicit solution of the equation fi(y,z) = 0, since
fi(y,9(y)) = f(g9(y)) —y = 0. Observe that the roles of E and F are switched, but this is
not a problem since F' is complete. The proof consists in checking that the conditions of
Theorem 3.13 apply.

Part (1) of Theorem 3.14 is often referred to as the “(local) inverse function theorem.”
It plays an important role in the study of manifolds and (ordinary) differential equations.

If £ and F are both of finite dimension, and some bases have been chosen, the invertibility
of Df(a) is equivalent to the fact that the Jacobian determinant det(.J(f)(a)) is nonnull. The
case where D f(a) is just injective or just surjective is also important for defining manifolds,
using implicit definitions.

Definition 3.12. Let F and F be normed vector spaces, where E and F are of finite
dimension (or both E and F' are complete), and let A be an open subset of E. For any
a € A, a Cl-function f: A — F is an immersion at a if Df(a) is injective. A C'-function
f: A — F is a submersion at a if Df(a) is surjective. A Cl-function f: A — F is an
immersion on A (resp. a submersion on A) if D f(a) is injective (resp. surjective) for every
ac A

When E and F are finite dimensional with dim(E) = n and dim(F) = m, if m > n,
then f is an immersion iff the Jacobian matrix, J(f)(a), has full rank n for all a € E, and
if n > m, then f is a submersion iff the Jacobian matrix, J(f)(a), has full rank m for all
ackb.

Example 3.12. For example, f: R — R? defined by f(t) = (cos(t),sin(t)) is an immersion

since J(f)(t) = (_Czlsr(lg)) has rank 1 for all £. On the other hand, f: R — R? defined by

f(t) = (t*,1%) is not an immersion since J(f)(t) = (gi) vanishes at t = 0. See Figure 3.6.

An example of a submersion is given by the projection map f: R? — R, where f(z,y) = =,
since J(f)(z,y) = (1 0).

The following results can be shown.
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0.5

-0.5

(ii) 10

Figure 3.6: Figure (i.) is the immersion of R into R? given by f(t) = (cos(t),sin(t)). Figure
(ii.), the parametric curve f(t) = (¢2,?), is not an immersion since the tangent vanishes at
the origin.

Proposition 3.15. Let A be an open subset of R™, and let f: A — R™ be a function.
For everya € A, f: A — R™ is a submersion at a iff there exists an open subset U of A
containing a, an open subset W C R"™™  and a diffeomorphism ¢: U — f(U) x W, such
that,

f =T 09,
where m1: f(U) x W — f(U) is the first projection. Equivalently,

(fogpfl)(ylj,,,’ym’,“’yn) = (ylw"?ym)-

UCA—"~ fU)xW
S
fU) cR™
Furthermore, the image of every open subset of A under f is an open subset of F. (The
same result holds for C* and C™). See Figure 3.7.

Proposition 3.16. Let A be an open subset of R, and let f: A — R™ be a function. For
every a € A, f: A — R™ is an immersion at a iff there exists an open subset U of A
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W= (01)

v f(U)

Figure 3.7: Let n = 3 and m = 2. The submersion maps the solid lavender egg in R? onto
the bottom pink circular face of the solid cylinder f(U) x W.

containing a, an open subset V' containing f(a) such that f(U) C V, an open subset W
containing 0 such that W C R™™™  and a diffeomorphism ¢:V — U x W, such that,

po f=in,
where iny: U — U x W is the injection map such that ini(u) = (u,0), or equivalently,

(po f)x1,...,xn) = (21,...,2,,0,...,0).

UvcAt- fycv

) lw
ini

UxW
(The same result holds for C* and C™). See Figure 3.8.

We now briefly consider second-order and higher-order derivatives.

3.5 Second-Order and Higher-Order Derivatives

Given two normed vector spaces E and F', and some open subset A of E, if D f(a) is defined
for every a € A, then we have a mapping Df: A — L(F; F). Since L(FE; F) is a normed
vector space, if D f exists on an open subset U of A containing a, we can consider taking the
derivative of Df at some a € A.
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Figure 3.8: Let n = 2 and m = 3. The immersion maps the purple circular base of the
cylinder U x W to circular cup on the surface of the solid purple gourd.

Definition 3.13. Given a function f: A — F defined on some open subset A of E such
that Df(a) is defined for every a € A, if D(Df)(a) exists for every a € A, we get a mapping
D%f: A — L(E;L(E; F)) called the second derivative of f on A, where D?f(a) = D(Df)(a),
for every a € A.

As in the case of the first derivative Df, where Df,(u) = D, f(a), where D, f(a) is the
directional derivative of f at a in the direction u, it would be useful to express D?f(a)(u)(v)
in terms of two directional derivatives. This can indeed be done. If D?f(a) exists, then for

every u € I,
D*f(a)(u) = D(Df)(a)(u) = Du(Df)(a) € L(E; F).

We have the following result.
Proposition 3.17. If D?f(a) exists, then D,(D,f)(a) exists and
D2/ (a)(u)(v) = Du(Duf)(a), for all u,v € E.

Proof. Recall from Proposition 2.29, that the map app from L(E; F) x E to F, defined such
that for every L € L(FE; F), for every v € F,

app(L, v) = L(v),
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is a continuous bilinear map. Thus, in particular, given a fixed v € FE, the linear map
app,: L(E; F) — F, defined such that app,(L) = L(v), is a continuous map.

Also recall from Proposition 3.7, that if h: A — G is a function such that Dh(a) exits,
and k: G — H is a continuous linear map, then, D(k o h)(a) exists, and

k(Dh(a)(u)) = D(k o h)(a)(u),

that is,
k(Duh(a)) = Dy(k o h)(a),

Applying these two facts to h = Df, and to k = app,,, we have

app, (Du(Df)(a)) = Du(Df)(a)(v) = Du(app, o Df)(a).

But (app, o Df)(z) = Df(z)(v) = D, f(x), for every x € A, that is, app, o Df = D, f on A.
So we have

D.(Df)(a)(v) = Du(Dy f)(a),
and since D?f(a)(u) = D,(Df)(a), we get

D*f(a)(u)(v) = Du(Dy f)(a). O
Definition 3.14. We denote D, (D, f)(a) by D2 , f(a) (or D,D, f(a)).
Recall from Proposition 2.28, that the map from Lo(FE, E; F) to L(E; L(FE; F)) defined
such that g — ¢ iff for every g € Lo(E, E; F),
p(u)(v) = g(u,v),

is an isomorphism of vector spaces. Thus, we will consider D*f(a) € L(E;L(E;F)) as a
continuous bilinear map in Lo(E, E; F), and we write D? f(a)(u,v), instead of D*f(a)(u)(v).

Then the above discussion can be summarized by saying that when D?f(a) is defined,
we have

D?f(a)(u,v) = DD, f(a).
Definition 3.15. When F has finite dimension and (e, ..., e,) is a basis for £, we denote

0% f o, *f
D.,D., f(a) by amam((z), when ¢ # j, and we denote D, D,, f(a) by W(a).
% 7 )

The following important result attributed to Schwarz can be shown using Proposition
3.11. Given a bilinear map h: E X E — F, recall that h is symmetric if

h(u,v) = h(v,u),

for all u,v € E.
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Proposition 3.18. (Schwarz’s lemma) Given two normed vector spaces E and F, given
any open subset A of E, given any f: A — F, for every a € A, if D*>f(a) emists, then
D%f(a) € Lo(E, E; F) is a continuous symmetric bilinear map. As a corollary, if E is of
finite dimension n, and (eq, ..., e,) is a basis for E, we have

O*f 0*f
00\ = G
O0x;0x; Oz ;0x;

(a).

Remark: There is a variation of the above result which does not assume the existence of
D?f(a), but instead assumes that D,D,f and D,D,f exist on an open subset containing
a and are continuous at a, and concludes that D,D, f(a) = D,D,f(a). This is a different
result which does not imply Proposition 3.18 and is not a consequence of Proposition 3.18.

il (a) and el
0y Oyox

When E = R2, the existence of
existence of D?f(a).

(a) is not sufficient to ensure the

When FE is of finite dimension n and (ey,...,e,) is a basis for E, if D?f(a) exists, for
every u = uye; + -+ + upe, and v = vie; + -+ + vpe, in E, since D?f(a) is a symmetric
bilinear form, we have

D*f(a)(u,v) = > uw;D*f(a)(e;,e;) Z uivjDe, De, f(a) Z “”Ja:c ax] (@)

i=1,5=1 i=1,5=1 i=1,j=1

which can be written in matrix form as:

Pr O s
0x? “ 0x107 A 0x10z,, “
P ) D) Lty
D2f(a)(u,v) = U" | 0v10x, O3 T Oxy0xy, v,
) 2 #1 o
02107, Dm0z, T 922

where U is the column matrix representing u, and V' is the column matrix representing v,
over the basis (eg, ..., e,). Note that the entries in this matrix are vectors in F', so the above
expression is an abuse of notation, but since the u; and v; are scalars, the above expression
makes sense since it is a bilinear combination. In the special case where m = 1, that is,
F =R or F' = C, the Hessian matrix is an n X n matrix with scalar entries.

Definition 3.16. The above symmetric matrix is called the Hessian of f at a.
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Example 3.13. Consider the function f defined on real invertible 2 x 2 matrices such that
ad — bc > 0 given by
f(a,b,¢,d) =log(ad — be).

We immediately verify that the Jacobian matrix of f is given by

1
ad — be

dfa,b,c,d: (d —c —b (Z).

It is easily checked that if

then

dfa(X) = tr(A7X) = adl—bctr(<—dc _ab) (i; iz»

Computing second-order derivatives, we find that the Hessian matrix of f is given by

—d?>  cd bd —bc

1 cd —c* —ad ac
Hf(A) o (ad — bc)2 bd —ad —b* ab
—bc ac ab —a?

Using the formula for the derivative of the inversion map and the chain rule we can show
that

D?f(A) (X1, X3) = —tr(AT' X1 A71X),

and so

Hf(A) (le XQ) = —tr(AileAil,XPQ),
a formula which is far from obvious.

The function f can be generalized to matrices A € GL™ (n,R), that is, n xn real invertible
matrices of positive determinants, as

f(A) = logdet(A).
It can be shown that the formulae

dfa(X) = tr(A™'X)
D?f(A) (X, X5) = —tr(AT' X1 A7 X,)

also hold.
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Example 3.14. If we restrict the function of Example 3.13 to symmetric positive definite
matrices we obtain the function g defined by

g(a,b,c) = log(ac — b*).

We immediately verify that the Jacobian matrix of ¢ is given by

1
dga,b,c = m (C —2b CL) .

Computing second-order derivatives, we find that the Hessian matrix of g is given by

1 —c? 2bc —b?
Hg(a,b,c) = ———55 | 2bc —2(b* +ac) 2ab
(ac =027 \ 2 2ab —a?

Although this is not obvious, it can be shown that if ac — > > 0 and a,c > 0, then the
matrix —Hg(a, b, ¢) is symmetric positive definite.

We now indicate briefly how higher-order derivatives are defined. Let m > 2. Given
a function f: A — I as before, for any a € A, if the derivatives D’f exist on A for all
i, 1 < i < m — 1, by induction, D™~!f can be considered to be a continuous function

D™l f:r A— L, 1 (E™LF).
Definition 3.17. Define D" f(a), the m-th derivative of f at a, as
D" f(a) = D(D"" f)(a).

Then D™ f(a) can be identified with a continuous m-multilinear map in L,,(E™; F). We
can then show (as we did before) that if D™ f(a) is defined, then

D™ f(a)(u1, .- Um) =Dy, ... Dy, f(a).
Definition 3.18. When F if of finite dimension n and (eq, ..., e,) is a basis for £, if D" f(a)
exists, for every ji,...,jm € {1,...,n}, we denote D, ...D,, f(a) by
o
8le . 8a:jm

().

Example 3.15. Going back to the function f of Example 3.13 given by f(A) = logdet(A),
using the formula for the derivative of the inversion map, the chain rule and the product
rule, we can show that

D™ f(A)(X1, . X)) = (=)™ > (AT X AT Xy A Ko - A Xo(mo)+1)

c€EC 1

for any m > 1, where A € GL*(n,R) and X, ... X,, are any n X n real matrices.
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Given a m-multilinear map h € L,,(E™; F), recall that h is symmetric if

h(uﬂ'(l)7 o 7u7r(m)) = h<u17 R 7um)7

for all uy,...,u, € E, and all permutations 7 on {1,...,m}. Then the following general-
ization of Schwarz’s lemma holds.

Proposition 3.19. Given two normed vector spaces E and F, given any open subset A
of E, given any f: A — F, for every a € A, for every m > 1, if D™ f(a) ewists, then
D™ f(a) € L, (E™; F) is a continuous symmetric m-multilinear map. As a corollary, if E is
of finite dimension n, and (e1,...,e,) is a basis for E, we have

A I S E—)

8le .. aZL‘jm n 8x7r(jl) ce. al’w(jm)

for every ji,...,Jm € {1,...,n}, and for every permutation m on {1,...,m}.

Because the trace function is invariant under permutation of its arguments (tr(XY) =
tr(Y X)), we see that the m-th derivatives in Example 3.15 are indeed symmetric multilinear
maps.

If F is of finite dimension n, and (eq,...,e,) is a basis for £, D" f(a) is a symmetric
m~multilinear map, and we have

o f
D™ WZE Uy, :
f(a)<u17 , U ) - 1,5, Um,jm axh o ax]m (CL)
where j ranges over all functions j: {1,...,m} — {1,...,n}, for any m vectors

Uj = Uj1€1 + -+ Ujpen.

The concept of C!-function is generalized to the concept of C™-function, and Theorem
3.12 can also be generalized.

Definition 3.19. Given two normed vector spaces F and F', and an open subset A of F,
for any m > 1, we say that a function f: A — F is of class C"™ on A or a C™-function on
A if DFf exists and is continuous on A for every k, 1 < k < m. We say that f: A — F
is of class C* on A or a C™®-function on A if D* f exists and is continuous on A for every
k> 1. A C*-function (on A) is also called a smooth function (on A). A C™-diffeomorphism
f: A — B between A and B (where A is an open subset of £ and B is an open subset
of B) is a bijection between A and B = f(A), such that both f: A — B and its inverse
f~t: B — A are C™-functions.

Equivalently, f is a C™-function on A if f is a C'-function on A and Df is a C™ 1
function on A.

We have the following theorem giving a necessary and sufficient condition for f to a
C™-function on A.
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Theorem 3.20. Given two normed vector spaces E and F, where E is of finite dimension
n, and where (uy, ..., u,) is a basis of E, given any open subset A of E, given any function
f: A —= F, for any m > 1, the derivative D™ f is a C™-function on A iff every partial
oF f
Oz, ...0x;,
1 <k<m, and all ji,...,jx € {1,...,n}. As a corollary, if F is of finite dimension p,
and (vy,...,v,) s a basis of F, the derivative D™ f is defined and continuous on A iff every
0" fi
Oxj, ...0x,,

k, 1<k<m, foralli,1 <i<p, andall j1,...,5% € {1,...,n}.

derivative Dy, ...Dy, [ (or (a)) is defined and continuous on A, for all k,

partial derwative Dy, ... Dy, fi (or (a)) is defined and continuous on A, for all

Definition 3.20. When £ =R (or £ = C), for any a € E, D" f(a)(1,...,1) is a vector in
F, called the mth-order vector derivative. As in the case m = 1, we will usually identify the
multilinear map D™ f(a) with the vector D™ f(a)(1,...,1).

Some notational conventions can also be introduced to simplify the notation of higher-
order derivatives, and we discuss such conventions very briefly.

Recall that when E is of finite dimension n, and (e, ..., e,) is a basis for E, D" f(a) is
a symmetric m-multilinear map, and we have

amf
D™ est) = 3 gy ety ,
f(a)(uh )y U ) - U1, U, jm 81:]1 o axjm (a)
where j ranges over all functions j: {1,...,m} — {1,...,n}, for any m vectors

Uj = U,j71€1 + e —f- uj,nen-

We can then group the various occurrences of dz;, corresponding to the same variable z;,,
and this leads to the notation

()" )" (@) "

where oy + a9 + - -+ + o, = M.

If we denote (o, ..., q,) simply by «, then we denote

()" )" (@)

by
0\«
o, (-) .
J, or o /
Ifa=(a,...,an), welet o =g +as+ - -+, al =ai!- ), and if h = (hy,..., hy),

we denote h{"'---hi™ by h®.

In the next section we survey various versions of Taylor’s formula.
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3.6 Taylor’s Formula, Faa di Bruno’s Formula

We discuss, without proofs, several versions of Taylor’s formula. The hypotheses required in
each version become increasingly stronger. The first version can be viewed as a generalization
of the notion of derivative. Given an m-linear map f: K™ — F, for any vector h € E, we
abbreviate

by f(h"™). The version of Taylor’s formula given next is sometimes referred to as the formula
of Taylor—Young.

Theorem 3.21. (Taylor-Young) Given two normed vector spaces E and F, for any open
subset A C E, for any function f: A — F, for any a € A, if D*f exists in A for all k,
1<k<m-—1, and if D™ f(a) exists, then we have:

1 1
fla+h) = f(a)+ ﬁle(a)(h) +o b DT f(a) (B + [|R]|e(R),
for any h such that a +h € A, and where limy,_,o p0 €(h) = 0.

The above version of Taylor’s formula has applications to the study of relative maxima
(or minima) of real-valued functions. It is also used to study the local properties of curves
and surfaces.

The next version of Taylor’s formula can be viewed as a generalization of Proposition
3.11. It is sometimes called the Taylor formula with Lagrange remainder or generalized mean
value theorem.

Theorem 3.22. (Generalized mean value theorem) Let E and F be two normed vector
spaces, let A be an open subset of E, and let f: A — F be a function on A. Given any
a € A and any h # 0 in E, if the closed segment [a,a + h] is contained in A, D*f exists in
A forallk, 1 <k <m, D" f(x) exists at every point x of the open segment (a,a+h), and

+1
e, [P @) = M,

for some M > 0, then

fla+h)—f(a) - (lle(a)(h) ot LDmf(a)(hm)> < p
1! m! = m+ )
As a corollary, if L: E™ — F is a continuous (m + 1)-linear map, then

Hf(a+h)—f(a)— (%le(a)(h)+...+%Dmf( v + hm+1 H ||h||m+1

where M = max,e(qatn) |D™f(z) — L.
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The above theorem is sometimes stated under the slightly stronger assumption that f is
a C"™-function on A. If f: A — R is a real-valued function, Theorem 3.22 can be refined a
little bit. This version is often called the formula of Taylor—Maclaurin.

Theorem 3.23. (Taylor-Maclaurin) Let E be a normed vector space, let A be an open subset
of E, and let f: A — R be a real-valued function on A. Given any a € A and any h # 0 in
E, if the closed segment [a,a+ h] is contained in A, if D*f exists in A for all k, 1 < k <m,
and D™ f(x) exists at every point x of the open segment (a,a + h), then there is some
0 eR, with 0 <0 <1, such that

1

1 1 1 m m
flath) = f(a)+ gD @) + -+ HD" )W) + ey

D™ f(a + Oh)(R™).
Example 3.16. Going back to the function f of Example 3.13 given by f(A) = logdet(A),
we know from Example 3.15 that

D™ f(A) (X1, X)) = (D)™ Y (AT XA Ny A X ner) (%)

c€Gm—_1

for all m > 1, with A € GL™(n,R). If we make the stronger assumption that A is symmetric
positive definite, then for any other symmetric positive definite matrix B, since the symmetric
positive definite matrices form a convex set, the matrices A +6(B — A) = (1 — 0)A+ 6B
are also symmetric positive definite for # € [0, 1]. Theorem 3.23 applies with H = B — A (a
symmetric matrix), and using (*), we obtain

(-1

logdet(A + H) = logdet(A) + tr (AIH — %(AlH)2 +o (A~TH)™

+(_1)m((A+0H)‘1H)m+1) ,

m—+ 1
for some € such that 0 < # < 1. In particular, if A = I, for any symmetric matrix H such

that I + H is symmetric positive definite, we obtain

1 —1)m-t
logdet(/ + H) = tr (H— §H2 +--+ LHm
m

<_1)m -1 m+1
+m+1((l+8H) H) )

for some 6 such that 0 < 6 < 1. In the special case when n = 1, we have I = 1, H is a real
such that 1 + H > 0 and the trace function is the identity, so we recognize the partial sum
of the series for x — log(1 + z),

(-

1
log(1+H):H—§H2+-~-+ H™

m

—1)™
+ ( ) (1 +9H)_(m+1)Hm+1.
m+1
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We also mention for “mathematical culture,” a version with integral remainder, in the
case of a real-valued function. This is usually called Taylor’s formula with integral remainder.

Theorem 3.24. (Taylor’s formula with integral remainder) Let E be a normed vector space,
let A be an open subset of E, and let f: A — R be a real-valued function on A. Given any
a € A and any h # 0 in E, if the closed segment [a,a + h] is contained in A, and if f is a
C™ L _function on A, then we have

Flat h) = f(@) + 5D F(@)(h) + -+ D" f(a) (")

+ /1 a-o" [Dm“f(a + th)(hm“)] dt.

m)!

The advantage of the above formula is that it gives an explicit remainder.

We now examine briefly the situation where E' is of finite dimension n, and (eq,...,e,)
is a basis for E. In this case we get a more explicit expression for the expression

k=m 1
> P @)

involved in all versions of Taylor’s formula, where by convention, D°f(a)(h®) = f(a). If
h = hiey + - -- 4+ hye,, then we have

k=

ot - () () )

kit thn<m

3

Eod

which, using the abbreviated notation introduced at the end of Section 3.5, can also be
written as
=2 he
k k\ fe
D Ha)(hh) = > 07 f(a).
0

k= |a|<m

The advantage of the above notation is that it is the same as the notation used when
n =1, i.e., when £ = R (or £ = C). Indeed, in this case, the Taylor-Maclaurin formula
reads as:

flat 1) = fla@) + 2D @) - o e ¢ D a1 )

a = fla) + = a)+ -+ — a)+ — a
1! m! (m+1)! ’
for some 0 € R, with 0 < § < 1, where D*f(a) is the value of the k-th derivative of f at
a (and thus, as we have already said several times, this is the kth-order vector derivative,
which is just a scalar, since F' = R).

In the above formula, the assumptions are that f: [a,a + h] — R is a C"™-function on
la,a + h], and that D™ f(z) exists for every = € (a,a + h).
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Taylor’s formula is useful to study the local properties of curves and surfaces. In the case
of a curve, we consider a function f: [r,s] — F from a closed interval [r,s] of R to some
vector space F, the derivatives D¥ f(a)(h*) correspond to vectors h*D¥ f(a), where D* f(a) is
the kth vector derivative of f at a (which is really D*f(a)(1,...,1)), and for any a € (r, s),
Theorem 3.21 yields the following formula:

h hm
flath) = fla)+ 3D f(a) + -+ + =D f(a) + h™e(h),
for any h such that a + h € (r, s), and where limj,_, 20 €(h) = 0.

In the case of functions f: R®™ — R, it is convenient to have formulae for the Taylor—
Young formula and the Taylor—-Maclaurin formula in terms of the gradient and the Hessian.
Recall that the gradient Vf(a) of f at a € R™ is the column vector

of
8—901(@)

o,
Vf(a) = ‘9~”‘f2_<> ,

of
oz,

(a)

and that

f'(a)(u) =Df(a)(u) = Vf(a) - u,
for any u € R™ (where - means inner product). The above equation shows that the direction
of the gradient V f(a) is the direction of mazimal increase of the function f at a and that
|V f(a)|| is the rate of change of f in its direction of mazimal increase. This is the reason
why methods of “gradient descent” pick the direction opposite to the gradient (we are trying
to minimize f).

The Hessian matriz V*f(a) of f at a € R™ is the n X n symmetric matrix

o*f 0% f o*f
8_x%(a) 011075 @ 0110, (a
o*f 0*f o*f
V%f(a) = | Ox10z9 (a) 8_9[:%(a) T Qa0 “ :
o*f 0*f o*f
dmomn Y Gmpon @ 5z (@

and we have

D?f(a)(u,v) = u' V2f(a)v =u- V*f(a)v = Vif(a)u - v,
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for all u,v € R™. This is the special case of Definition 3.16 where £ = R™ and F' = R. Then
we have the following three formulations of the formula of Taylor—Young of order 2:

fla+h)= f(a) +Df(a)(h)+ %D2f<a>(h, h) + ||h]|* e(h)
fla+h)= f(a)+Vf(a)-h+ %(h -V2f(a)h) + (h - h)e(h)
fla+h)= f(a)+ (Vf(a) h+ %(hTVZf (a) h) + (h"h)e(h),

with limy,,oe(h) = 0.

One should keep in mind that only the first formula is intrinsic (i.e., does not depend on
the choice of a basis), whereas the other two depend on the basis and the inner product chosen
on R™. As an exercise, the reader should write similar formulae for the Taylor—-Maclaurin
formula of order 2.

Another application of Taylor’s formula is the derivation of a formula which gives the m-
th derivative of the composition of two functions, usually known as “Faa di Bruno’s formula.”
This formula is useful when dealing with geometric continuity of splines curves and surfaces.

Proposition 3.25. Given any normed vector space E, for any function f: R — R and any
function g: R — E, for any a € R, letting b = f(a), fP(a) = D'f(a), and g (b) = Dig(b),
for anym > 1, if fD(a) and g (b) exist for alli, 1 < i < m, then (gof)™(a) = D™(gof)(a)
exists and is given by the following formula:

(o ™M@= ¥ #}im!gm(b)(f“l)f@)“...(f(”;jbfa))"”,

0<j<m  i1tisttim=j
i1 +222++mzm:m
11,42, ,im 20

When m = 1, the above simplifies to the familiar formula

(9o f)(a) =g'(b)f (a),
and for m = 2, we have

(90 f)P(a) = 9P 0)(fV(a)* + gV (6) fP (a).

3.7 Further Readings

A thorough treatment of differential calculus can be found in Munkres [58], Lang [50],
Schwartz [70], Cartan [21], and Avez [5]. The techniques of differential calculus have many
applications, especially to the geometry of curves and surfaces and to differential geometry
in general. For this, we recommend do Carmo [30, 31] (two beautiful classics on the subject),
Kreyszig [46], Stoker [75], Gray [38], Berger and Gostiaux [8], Milnor [56], Lang [48], Warner
[82] and Choquet-Bruhat [23].
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3.8 Summary
The main concepts and results of this chapter are listed below:
e Directional deriative (D, f(a)).

o Total derivative, Fréchet derivative, derivative, total differential, differential

(df (a), dfa).
e Partial derivatives.
e Affine functions.
e The chain rule.
e Jacobian matrices (J(f)(a)), Jacobians.
e Gradient of a function (grad f(a), Vf(a)).
o Mean value theorem.
o O°-functions, C'-functions.
e The tmplicit function theorem.
e Local homeomorphisms, local diffeomorphisms, diffeomorphisms.
e The wnverse function theorem.
e Immersions, submersions.
e Second-order derivatives.
e Schwarz’s lemma.
o Hessian matriz.
o C-functions, smooth functions.
o Taylor—Young’s formula.
e Generalized mean value theorem.
o Tuylor—MacLaurin’s formula.
o Tuylor’s formula with integral remainder.

e Faa di Bruno’s formula.
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3.9 Problems

Problem 3.1. Let f: M,(R) — M, (R) be the function defined on n X n matrices by
f(A) = A%

Prove that
Dfa(H)=AH + HA,

for all A, H € M,,(R).
Problem 3.2. Let f: M,(R) — M, (R) be the function defined on n x n matrices by
f(A) = A3

Prove that
Dfs(H) = A’H + AHA + HA?,

for all A, H € M,,(R).

Problem 3.3. If f: M,(R) — M,(R) and g: M,(R) — M, (R) are differentiable matrix
functions, prove that

d(fg)a(B) = dfa(B)g(A) + f(A)dga(B),
for all A, B € M,,(R).

Problem 3.4. Recall that so(3) denotes the vector space of real skew-symmetric n x n
matrices (BT = —B). Let C: so(n) — M,(R) be the function given by

C(B)=(I-B)I+B)"

(1) Prove that if B is skew-symmetric, then I — B and I + B are invertible, and so C'is
well-defined. Prove that

(2) Prove that

dO(B)(A)=-[I+(I-B)I+B) AU +B)"' = —2(I+B)'A(I+B)™"

(3) Prove that dC'(B) is injective for every skew-symmetric matrix B.
Problem 3.5. Prove that

d"Cp(Hy,. .. Hy)
=2(=1)" Y (I +B) " Hey(I + B) ' Hypy(I + B) ™'+ (I + B) ™ Houy (I + B) ™.

7T€6m
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Problem 3.6. Consider the function g defined for all A € GL(n,R), that is, all n x n real
invertible matrices, given by
g(A) = det(A).

(1) Prove that
dga(X) = det(A)tr(A™'X),

for all n x n real matrices X.

(2) Consider the function f defined for all A € GL™(n,R), that is, n x n real invertible
matrices of positive determinants, given by

f(A) =logg(A) = logdet(A).
Prove that

df4(X) = tr(A71X)
D?f(A) (X1, Xy) = —tr(AT' X1 A71X),

for all n x n real matrices X, X7, Xs.

(3) Prove that

D" f(A) (X, X)) = (1) Y (AT X AT Xy AT Koyt - A7 Xo(no1)41)

0€EG -1

for any m > 1, where X1, ... X,, are any n X n real matrices.



Chapter 4

Extrema of Real-Valued Functions

This chapter deals with extrema of real-valued functions. In most optimization problems,
we need to find necessary conditions for a function J: 2 — R to have a local extremum with
respect to a subset U of Q (where €2 is open). This can be done in two cases:

(1) The set U is defined by a set of equations,
U={ze9|ple)=0, 1<i<ml,
where the functions ¢;: Q@ — R are continuous (and usually differentiable).
(2) The set U is defined by a set of inequalities,
U={zeQ]p(z)<0, 1<i<m},

where the functions ¢;: £ — R are continuous (and usually differentiable).

In (1), the equations ¢;(x) = 0 are called equality constraints, and in (2), the inequalities
wi(z) < 0 are called inequality constraints. The case of equality constraints is much easier
to deal with and is treated in this chapter.

If the functions ; are convex and {2 is convex, then U is convex. This is a very important
case that we discuss later. In particular, if the functions ¢; are affine, then the equality
constraints can be written as Ar = b, and the inequality constraints as Ax < b, for some
m X n matrix A and some vector b € R™. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers. In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush—Kuhn—Tucker conditions. This will be discussed in
Chapter 14.

117
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4.1 Local Extrema, Constrained Local Extrema, and
Lagrange Multipliers

Let J: E — R be a real-valued function defined on a normed vector space E (or more
generally, any topological space). Ideally we would like to find where the function J reaches
a minimum or a maximum value, at least locally. In this chapter we will usually use the
notations dJ(u) or J'(u) (or dJ, or J.) for the derivative of J at u, instead of D.J(u). Our
presentation follows very closely that of Ciarlet [25] (Chapter 7), which we find to be one of
the clearest.

Definition 4.1. If J: F — R is a real-valued function defined on a normed vector space F,
we say that J has a local minimum (or relative minimum) at the point u € E if there is
some open subset W C FE containing u such that

J(u) < J(w) for allwe W.

Similarly, we say that J has a local mazximum (or relative maximum) at the point u € E if
there is some open subset W C E containing u such that

J(u) > J(w) forallwe W.

In either case, we say that J has a local extremum (or relative extremum) at u. We say
that J has a strict local minimum (resp. strict local maximum) at the point u € E if there
is some open subset W C E containing u such that

J(u) < J(w) for all w e W —{u}

(resp.
J(u) > J(w) forallwe W — {u}).

By abuse of language, we often say that the point u itself “is a local minimum” or a
“local maximum,” even though, strictly speaking, this does not make sense.

We begin with a well-known necessary condition for a local extremum.
Proposition 4.1. Let E be a normed vector space and let J: €2 — R be a function, with €}
some open subset of E. If the function J has a local extremum at some point u € Q and if

J s differentiable at u, then
dJ,=J (u)=0.

Proof. Pick any v € E. Since € is open, for ¢ small enough we have u + tv € €, so there is
an open interval I C R such that the function ¢ given by

o(t) = J(u+tv)
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for all ¢ € I is well-defined. By applying the chain rule, we see that ¢ is differentiable at

t =0, and we get
'(0) = dJu(v).

Without loss of generality, assume that u is a local minimum. Then we have

J(0) = Tim () ; 20)

t—0_
and

t—04 t -

which shows that ¢'(0) = dJ,(v) = 0. As v € E is arbitrary, we conclude that dJ, =0. [
Definition 4.2. A point u €  such that J'(u) = 0 is called a critical point of J.

If £ =R", then the condition dJ, = 0 is equivalent to the system

oJ
a—ml(ul,...,un) =0
aJ
ULy .oy Uy) = 0.
(9xn< ! 2
@ The condition of Proposition 4.1 is only a mecessary condition for the existence of an
extremum, but not a sufficient condition.

Here are some counter-examples. If f: R — R is the function given by f(z) = 23, since
f'(z) = 3z, we have f’(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced

by the graph shown in Figure 4.1.

1000

500

-1000

Figure 4.1: The graph of f(z) = 23. Note that x = 0 is a saddle point and not a local
extremum.
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If g: R? — R is the function given by g(z,y) = 2* — y?, then g[, ) = (22 — 2y), so
Yi0.0) = (0 0), yet near (0,0) the function g takes negative and positive values. See Figure
4.2.

Figure 4.2: The graph of g(z,y) = 2? — y?. Note that (0, 0) is a saddle point and not a local
extremum.

@ It is very important to note that the hypothesis that €2 is open is crucial for the validity
of Proposition 4.1.

For example, if J is the identity function on R and U = [0, 1], a closed subset, then
J'(x) = 1for all z € [0, 1], even though J has a minimum at z = 0 and a maximum at = = 1.

In many practical situations, we need to look for local extrema of a function J under
additional constraints. This situation can be formalized conveniently as follows. We have a
function J: €2 — R defined on some open subset {2 of a normed vector space, but we also
have some subset U of €2, and we are looking for the local extrema of J with respect to the
set U.

The elements u € U are often called feasible solutions of the optimization problem con-
sisting in finding the local extrema of some objective function J with respect to some subset
U of Q defined by a set of constraints. Note that in most cases, U is not open. In fact, U is
usually closed.

Definition 4.3. If J: 2 — R is a real-valued function defined on some open subset €2 of a
normed vector space E and if U is some subset of €, we say that J has a local minimum (or
relative minimum) at the point u € U with respect to U if there is some open subset W C )
containing u such that

J(u) < J(w) forallweUnNW.
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Similarly, we say that J has a local maximum (or relative mazimum) at the point u € U
with respect to U if there is some open subset W C 2 containing u such that

J(u) > J(w) forallweUNW.

In either case, we say that J has a local extremum at u with respect to U.

In order to find necessary conditions for a function J: {2 — R to have a local extremum
with respect to a subset U of Q (where Q is open), we need to somehow incorporate the
definition of U into these conditions. This can be done in two cases:

(1) The set U is defined by a set of equations,
U={ze€Q|pi(x)=0, 1<i<m},
where the functions ¢;: 2 — R are continuous (and usually differentiable).
(2) The set U is defined by a set of inequalities,
U={ze€Q]p(zr)<0, 1<i<m},

where the functions ¢;: 2 — R are continuous (and usually differentiable).

In (1), the equations ¢;(x) = 0 are called equality constraints, and in (2), the inequalities
wi(x) < 0 are called inequality constraints.

An inequality constraint of the form ¢;(x) > 0 is equivalent to the inequality constraint
—@.(z) < 0. An equality constraint ¢;(z) = 0 is equivalent to the conjunction of the
two inequality constraints ¢;(z) < 0 and —¢;(z) < 0, so the case of inequality constraints
subsumes the case of equality constraints. However, the case of equality constraints is easier
to deal with, and in this chapter we will restrict our attention to this case.

If the functions ; are convex and {2 is convex, then U is convex. This is a very important
case that we will discuss later. In particular, if the functions ; are affine, then the equality
constraints can be written as Arx = b, and the inequality constraints as Az < b, for some
m X n matrix A and some vector b € R™. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers. In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush—Kuhn—Tucker conditions. This will be discussed in
Chapter 14.

We begin by considering the case where 2 C E; X Fs is an open subset of a product of
normed vector spaces and where U is the zero locus of some continuous function ¢: Q2 — Fs,
which means that

U = {(ug,uz) € Q| ¢(uy,us) = 0}.
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For the sake of brevity, we say that J has a constrained local extremum at u instead of saying
that J has a local extremum at the point u € U with respect to U.

In most applications, we have £; = R"™™ and Fy = R™ for some integers m, n such that
1 < m < n, Qis an open subset of R”, J: 2 — R, and we have m functions ¢;: 2 - R
defining the subset
U={veQ|pv)=0,1<i<m}.

Fortunately, there is a necessary condition for constrained local extrema in terms of
Lagrange multipliers.

Theorem 4.2. (Necessary condition for a constrained extremum in terms of Lagrange multi-
pliers) Let Q2 be an open subset of R", consider m C-functions p;: Q@ — R (with1 < m < n),
let

U={veQ|pi(v)=0,1<i<m},

and letw € U be a point such that the derivatives dy;(u) € L(R™;R) are linearly independent;
equivalently, assume that the m X n matrix ((8gpi/8xj)(u)) has rank m. If J: Q — R is a
function which is differentiable at w € U and if J has a local constrained extremum at u,
then there exist m numbers \;(u) € R, uniquely defined, such that

dJ(u) + A (u)dpr(u) + - + Ap(w)dpp(u) = 0;

equivalently,

VJ(u) + M (w)Ver(u) + -+ + A (w) Vo (u) = 0.

Theorem 4.2 will be proven as a corollary of Theorem 4.4, which gives a more general
formulation that applies to the situation where F; is an infinite-dimensional Banach space.
To simplify the exposition we postpone a discussion of this theorem until we have presented
several examples illustrating the method of Lagrange multipliers.

Definition 4.4. The numbers \;(u) involved in Theorem 4.2 are called the Lagrange multipli-
ers associated with the constrained extremum u (again, with some minor abuse of language).

The linear independence of the linear forms dp;(u) is equivalent to the fact that the
Jacobian matrix ((9p;/0z;)(u)) of ¢ = (¢1,...,¢m) at u has rank m. If m = 1, the linear
independence of the dg;(u) reduces to the condition Vi (u) # 0.

A fruitful way to reformulate the use of Lagrange multipliers is to introduce the notion
of the Lagrangian associated with our constrained extremum problem.

Definition 4.5. The Lagrangian associated with our constrained extremum problem is the
function L: Q x R™ — R given by

L(v,A) = J(v) + Aip1(v) + - + Ao (v),

with A = (A1, .., Am).
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We have the following simple but important proposition.
Proposition 4.3. There exists some = (1, - .., ftm) and some u € U such that
dJ(u) + prdpr(w) + - - + pmdpm(u) =0

if and only iof
dL(u,pn) =0,

or equivalently

VL(u, p) = 0;

that is, iff (u,p) is a critical point of the Lagrangian L.

Proof. Indeed dL(u, ) = 0 is equivalent to

oL
oL
a_/\l(ua p) =0
oL
%(U, p) =0,
and since
oL
5y (W p) = dJ(u) + pdpr(u) + - - + tindpm (u)
and
oL
6_>\2-(u’ M) = %(u)7
we get
dJ(u) + padpi(u) + -+ - + pndpm(u) = 0
and

pr(u) == om(u) =0,

that is, w € U. The converse is proven in a similar fashion (essentially by reversing the
argument). O

If we write out explicitly the condition

dJ(u) + Mdpr(u) + -+ - + Apdpm(u) =0,
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we get the n X m system

0J 0py OPm B
oJ 01 0P _

and it is important to note that the matrix of this system is the transpose of the Jacobian
matrix of ¢ at u. If we write Jac(yp)(u) = ((0p;/0z;)(u)) for the Jacobian matrix of ¢ (at
u), then the above system is written in matrix form as

VJ(u) + (Jac(p)(u)) "X =0,
where \ is viewed as a column vector, and the Lagrangian is equal to

Lu, A) = J(u) + (@1(u), - - om(u)) A

The beauty of the Lagrangian is that the constraints {¢;(v) = 0} have been incorporated
into the function L(v, \), and that the necessary condition for the existence of a constrained
local extremum of J is reduced to the necessary condition for the existence of a local ex-
tremum of the unconstrained L.

However, one should be careful to check that the assumptions of Theorem 4.2 are satisfied
(in particular, the linear independence of the linear forms dyp;).

Example 4.1. For example, let J: R* — R be given by

J(z,y,2) =z +y+2°
and g: R — R by

g(x,y,2) = 2> +y*.
Since g(z,y,2) =0 iff z =y =0, we have U = {(0,0, 2) | z € R} and the restriction of J to
U is given by
J(0,0,2) = 2%,

which has a minimum for z = 0. However, a “blind” use of Lagrange multipliers would
require that there is some A so that

oJ 0y oJ B @ g B @
e (0,0,2) = )\am(0,0,z), o (0,0,z2) = )\ay(0,0,z), P (0,0,z2) = )\82(0, 0, z),
and since
dg

dg dg
8{];‘ ($7 y7 Z) x? ay (x7 y? Z) y? az (07 07 Z) 07



4.1. LOCAL EXTREMA AND LAGRANGE MULTIPLIERS 125

the partial derivatives above all vanish for x = y = 0, so at a local extremum we should also
have

oJ o0J o0J

%(0,0,z) =0, 6_y(0’0’z> =0, 5(0,0,2) =0,
but this is absurd since

oJ oJ oJ

%(x,y, z) =1, @—y(ac,y,z) =1, &(x,y,z) = 22.
The reader should enjoy finding the reason for the flaw in the argument.

One should also keep in mind that Theorem 4.2 gives only a necessary condition. The
(u, \) may not correspond to local extrema! Thus, it is always necessary to analyze the local
behavior of J near a critical point u. This is generally difficult, but in the case where J is
affine or quadratic and the constraints are affine or quadratic, this is possible (although not
always easy).

Example 4.2. Let us apply the above method to the following example in which £} = R,
E, =R, Q =R? and

J($1,i€2) = 22

(1, T9) = 23 + 23 — 1.

Observe that
U= {(x1,22) € R? | x%—l—x% =1}

Vip(r1,22) = (2:151) :

21’2

is the unit circle, and since

it is clear that V(z1,x9) # 0 for every point = (21, x2) on the unit circle. If we form the
Lagrangian
L(zy,79,\) = —x9 + AN2? + 23 — 1),

Theorem 4.2 says that a necessary condition for J to have a constrained local extremum is
that VL(z1, 22, A) = 0, so the following equations must hold:

2)\[12'1 =0

2, .2 _
r]+ a5 =1.

The second equation implies that A\ # 0, and then the first yields x; = 0, so the third yields
ro = %1, and we get two solutions:

A== (z1,22) = (0,1)

A= a5 (xllaxIZ) - (07 _1>
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We can check immediately that the first solution is a minimum and the second is a maximum.
The reader should look for a geometric interpretation of this problem.

Example 4.3. Let us now consider the case in which J is a quadratic function of the form
1
J(v) = §UTA’U —v'b,

where A is an n X n symmetric matrix, b € R", and the constraints are given by a linear
system of the form
Cv =d,

where C' is an m x n matrix with m < n and d € R™. We also assume that C has rank m.
In this case, the function ¢ is given by

p(v) = (Cv—d)’,
because we view ¢(v) as a row vector (and v as a column vector), and by Example 3.3,
dip(u)(w) = (Cw),

so the condition that the Jacobian matrix of ¢ at u have rank m is satisfied because the
range of dy(u) is spanned by the row vectors transpose of the columns of C', which form a
matrix of rank m. The Lagrangian of this problem is

1 1
L(v,\) = EUTAU —vTb+ (Cvo—d)" )= avTAv —v'b+v CTA—d"\

where A is viewed as a column vector. Now recall that because A is a symmetric matrix, it
was shown in Example 3.9 that

Av—b+CTA
Vi = ( o d )

Therefore, the necessary condition for constrained local extrema is

Av+CTA=b
Cv=d,

which can be expressed in matrix form as

ED0-0)

where the matrix of the system is a symmetric matrix. We should not be surprised to find the
system discussed later in Chapter 6, except for some renaming of the matrices and vectors
involved. As we will show in Section 6.2, the function J has a minimum iff A is positive
definite, so in general, if A is only a symmetric matrix, the critical points of the Lagrangian
do not correspond to extrema of J.
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Remark: If the Jacobian matrix Jac(p)(v) = ((0p;/0z;)(v)) has rank m for all v € U
(which is equivalent to the linear independence of the linear forms dp;(v)), then we say that
0 € R™ is a regular value of . In this case, it is known that

U={ve| ) =0}

is a smooth submanifold of dimension n —m of R". Furthermore, the set

T,U ={w eR" | dp;(v)(w) =0, 1 <i<m} = mKer dp;(v)

=1

is the tangent space to U at v (a vector space of dimension n — m). Then, the condition
dJ(v) + mdpi(v) + - - + pmdpm(v) = 0

implies that d.J(v) vanishes on the tangent space T,U. Conversely, if dJ(v)(w) = 0 for all
w € T,U, this means that d.J(v) is orthogonal (in the sense of Definition 10.3 (Vol. I)) to
T,U. Since (by Theorem 10.4(b) (Vol. 1)) the orthogonal of T,U is the space of linear forms
spanned by dy;(v), ..., dpn,(v), it follows that dJ(v) must be a linear combination of the
dp;(v). Therefore, when 0 is a regular value of ¢, Theorem 4.2 asserts that if u € U is a

local extremum of J, then d.J(u) must vanish on the tangent space T,,U. We can say even
more. The subset Z(.J(u)) of Q given by

Z(J(u)) ={ve Q] J(v) = J(u)}

(the level set of level J(u)) is a hypersurface in Q, and if dJ(u) # 0, the zero locus of d.J(u)
is the tangent space T,,Z(J(u)) to Z(J(u)) at u (a vector space of dimension n — 1), where

T.Z(J(u)) = {w € R" | dJ(u)(w) = 0}.
Consequently, Theorem 4.2 asserts that
T.U CT,Z(J(u));

this is a geometric condition.

We now return to the general situation where F; and F, may be infinite-dimensional
normed vector spaces (with E; a Banach space) and we state and prove the following general
result about the method of Lagrange multipliers.

Theorem 4.4. (Necessary condition for a constrained extremum) Let Q@ C Ey X Ey be an
open subset of a product of normed vector spaces, with FEy a Banach space (Ey is complete),
let o: Q — Ey be a C'-function (which means that do(w) exists and is continuous for all
w e Q) and let

U = {(uy,uz) € Q| ¢(uy,u) = 0}.
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Moreover, let u = (uy,us) € U be a point such that

9 0 B
8_;02(“1’“2>6£(E2;E2) and (3_;02(%’“2)) € L(Ey; Es),

and let J: 0 — R be a function which is differentiable at w. If J has a constrained local
extremum at u, then there is a continuous linear form A(u) € L(Es;R) such that

dJ(u) + A(u) o dp(u) = 0.

Proof. The plan of attack is to use the implicit function theorem; Theorem 3.13. Observe
that the assumptions of Theorem 3.13 are indeed met. Therefore, there exist some open
subsets U; C Fy, Uy C Es, and a continuous function g: Uy — Uy with (uq,uz) € Uy xUy C Q
and such that

p(v,g(v1)) =0

for all v; € U;. Moreover, ¢ is differentiable at u; € U; and

dglur) = - (§i<u>) 0 22 (),

It follows that the restriction of J to (U; x Us) N U yields a function G of a single variable,
with

G(v1) = J(v1,9(v1))
for all v; € U;. Now the function G is differentiable at u; and it has a local extremum at u;
on Uy, so Proposition 4.1 implies that

By the chain rule,
oJ aJ
dG(ur) = 8_:5-1(“) + 8_352(u) o dg(u1)
_ 9T 9 e a_@(u 7108_"0(11)
- Ony 0xo 014 dxy
From dG(uy) = 0, we deduce
9 =9 8_90<u 7108_90(@
Ory  Oxs Oy Ozy
and since we also have
9T =9 o 8_90u) 7108_90(11)
81‘2 N 8x2 8$2 6902 7
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if we let .
oJ Oy -
M) = 52w e (52w
then we get
oJ oJ

_aJ D A D

= 8_952(u) ° (8_@(@) ° <a—$1(u) + 8_:52(u)
which yields dJ(u) + A(u) o dp(u) = 0, as claimed. O

Finally, we prove Theorem 4.2.

Proof of Theorem 4.2. The linear independence of the m linear forms dyp;(u) is equivalent to
the fact that the m x n matrix A = ((¢;/0z;)(u)) has rank m. By reordering the columns,
we may assume that the first m columns are linearly independent. To conform to the set-up
of Theorem 4.4 we define E; and E5 as

E, = { Z Vi€ | (Um+17...,vn) S ]Rn—m}, Ey = {Zviei | (Ula'-.,Um) c Rm}_
i=m+1 Py

If we let ¢b: Q@ — R™ be the function defined by

V(Vmaty -y Uny U1y« Um) = (01(0), 0o, om(V))

for all (Vyy1y.. s Un, U1, ..oy Uy) € Q, with v = (vq,...,v,), then we see that 0v/0xs(u) is
invertible and both 0¢/0xs(u) and its inverse are continuous, so that Theorem 4.4 applies,
and there is some (continuous) linear form A(u) € L(R™;R) such that

dJ(u) + A(w) 0 d(Upmaty -« oy Upy Uty ooy Upy) = 0,

namely

dJ(u) + A(u) o dp(u) = 0.

However, A(u) is defined by some m-tuple (Aj(u),...,An(u)) € R™ and in view of the
definition of ¢, the above equation is equivalent to

dJ(u) + A (u)dpr (u) + - - - + A (w)dey, (u) = 0.

The uniqueness of the \;(u) is a consequence of the linear independence of the dp;(u). O

We now investigate conditions for the existence of extrema involving the second derivative
of J.
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4.2 Using Second Derivatives to Find Extrema

For the sake of brevity, we consider only the case of local minima; analogous results are
obtained for local maxima (replace J by —J, since max, J(u) = —min, —J(u)). We begin
with a necessary condition for an unconstrained local minimum.

Proposition 4.5. Let E be a normed vector space and let J: €2 — R be a function, with )
some open subset of E. If the function J is differentiable in ), if J has a second derivative
D2J(u) at some point u € Q, and if J has a local minimum at u, then

D?J(u)(w,w) >0 for allw € E.

Proof. Pick any nonzero vector w € E. Since {2 is open, for ¢ small enough, u + tw € €2 and
J(u+ tw) > J(u), so there is some open interval I C R such that

u+tweQ and J(u+tw)> J(u)

for all t € I. Using the Taylor-Young formula and the fact that we must have d.J(u) = 0
since J has a local minimum at u, we get

0 < J(u+tw) — J(u) = %Dzj(u)(w,w) + 22 ||w e(tw),

with limy, 0 €(fw) = 0, which implies that
D?J (u)(w,w) > 0.

Since the argument holds for all w € E (trivially if w = 0), the proposition is proven. m

One should be cautioned that there is no converse to the previous proposition. For exam-
ple, the function f: x — 23 has no local minimum at 0, yet df(0) = 0 and D?f(0)(u, v) = 0.
Similarly, the reader should check that the function f: R? — R given by

fla,y) =a" =3y’

has no local minimum at (0,0); yet df(0,0) = 0 since df (z,y) = (2x,—9%?), and for u =
(uy,us), D2f(0,0)(u,u) = 2u? > 0 since

D w () (%)

See Figure 4.3.

When E = R", Proposition 4.5 says that a necessary condition for having a local mini-
mum is that the Hessian V2.J(u) be positive semidefinite (it is always symmetric).

We now give sufficient conditions for the existence of a local minimum.
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Figure 4.3: The graph of f(z,y) = z* — 3y>. Note that (0,0) not a local extremum despite
the fact that df(0,0) = 0.

Theorem 4.6. Let E be a normed vector space, let J:  — R be a function with ) some
open subset of E, and assume that J is differentiable in Q0 and that dJ(u) = 0 at some point
u € Q). The following properties hold:

(1) If D*J(u) exists and if there is some number o € R such that o > 0 and
D2J(u)(w,w) > o |w||*  for allw € E,
then J has a strict local minimum at u.

(2) If D*J(v) ewists for all v € Q and if there is a ball B C Q centered at u such that
D?J(v)(w,w) >0 forallv € B and all w € E,

then J has a local minimum at u.
Proof. (1) Using the formula of Taylor-Young, for every vector w small enough, we can write

T w) = J(u) = ST w) (w, w) + o] )

with lim,, o €(w) = 0. Consequently if we pick » > 0 small enough that |e(w)| < /2 for all
w with [|w|| <7, then J(u+w) > J(u) for all u+w € B, where B is the open ball of center
u and radius r. This proves that J has a local strict minimum at w.
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(2) The formula of Taylor-Maclaurin shows that for all u + w € B, we have

Tt w) = () + 52T (w)(w,w) > T(u),

for some v € (u, u+w) (recall that (u, u+w) = {(1=N)(uv+w)+Aut+w) |0 <A< 1}). O

There are no converses of the two assertions of Theorem 4.6. However, there is a condition
on D?J(u) that implies the condition of Part (1). Since this condition is easier to state when
E = R", we begin with this case.

Recall that a nxn symmetric matrix A is positive definiteif " Az > 0 for all z € R"—{0}.
In particular, A must be invertible.

Proposition 4.7. For any symmetric matriz A, if A is positive definite, then there is some
a > 0 such that
e Az > al|z|®  for all z € R™.

Proof. Pick any norm in R™ (recall that all norms on R" are equivalent). Since the unit

sphere S"t = {z € R" | ||z|| = 1} is compact and since the function f(z) = 2" Az is never
zero on S™ 1, the function f has a minimum o > 0 on S™~!. Using the usual trick that
x = ||z|| (z/ ||x||) for every nonzero vector x € R"™ and the fact that the inequality of the

proposition is trivial for x = 0, from
z" Az > a for all z with ||z|| = 1,

we get
e" Az > a|z||®  for all x € R,

as claimed. n

We can combine Theorem 4.6 and Proposition 4.7 to obtain a useful sufficient condition
for the existence of a strict local minimum. First let us introduce some terminology.

Definition 4.6. Given a function J: 2 — R as before, say that a point u € €0 is a nonde-
generate critical point if dJ(u) = 0 and if the Hessian matrix V?J(u) is invertible.

Proposition 4.8. Let J: 0 — R be a function defined on some open subset 2 C R". If
J 1is differentiable in Q and if some point u € ) is a nondegenerate critical point such that
V2J(u) is positive definite, then J has a strict local minimum at u.

Remark: It is possible to generalize Proposition 4.8 to infinite-dimensional spaces by finding
a suitable generalization of the notion of a nondegenerate critical point. Firstly, we assume
that E is a Banach space (a complete normed vector space). Then we define the dual £’ of
E as the set of continuous linear forms on E, so that £’ = L(E;R). Following Lang, we use
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the notation E’ for the space of continuous linear forms to avoid confusion with the space
E* = Hom(FE, R) of all linear maps from E to R. A continuous bilinear map ¢: E x E — R
in Lo(F, E;R) yields a map ® from E to E’ given by

(I)(u) = Pu,

where ¢, € E’ is the linear form defined by

pu(v) = o(u,v).

It is easy to check that ¢, is continuous and that the map ® is continuous. Then we say
that ¢ is nondegenerate iff ®: E — FE’ is an isomorphism of Banach spaces, which means
that ® is invertible and that both ® and ®~! are continuous linear maps. Given a function
J: Q — R differentiable on Q as before (where 2 is an open subset of E), if D*J(u) exists
for some u € Q, we say that u is a nondegenerate critical point if dJ(u) = 0 and if D*J(u) is
nondegenerate. Of course, D?.J(u) is positive definite if D?J(u)(w,w) > 0 for allw € E—{0}.

Using the above definition, Proposition 4.7 can be generalized to a nondegenerate positive
definite bilinear form (on a Banach space) and Theorem 4.8 can also be generalized to the
situation where J: €2 — R is defined on an open subset of a Banach space. For details and
proofs, see Cartan [21] (Part I Chapter 8) and Avez [5] (Chapter 8 and Chapter 10).

In the next section we make use of convexity; both on the domain €2 and on the function
J itself.

4.3 Using Convexity to Find Extrema

We begin by reviewing the definition of a convex set and of a convex function.

Definition 4.7. Given any real vector space E, we say that a subset C' of E is convez if
either C' = () or if for every pair of points u,v € C, the line segment connecting u and v is
contained in C| i.e.,

(1=XNu+ v eC forall A € Rsuch that 0 < A < 1.
Given any two points u,v € E, the line segment [u,v] is the set
[u, o] ={(1=MNu+weE|AeR, 0< A< 1}

Clearly, a nonempty set C' is convex iff [u,v] C C' whenever u,v € C. See Figure 4.4 for an
example of a convex set.
Definition 4.8. If C' is a nonempty convex subset of F, a function f: C' — R is convez (on

() if for every pair of points u,v € C,

FUI=XNu+ M) < (1 —=X)f(u) +Af(v) forall A € Rsuch that 0 <\ <1;
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Figure 4.4: Figure (a) shows that a sphere is not convex in R? since the dashed green line
does not lie on its surface. Figure (b) shows that a solid ball is convex in R.

the function f is strictly convex (on C) if for every pair of distinct points u,v € C' (u # v),
FUI=Nu+ ) < (1 —=X)f(u)+Af(v) for all A € R such that 0 < A < 1;

see Figure 4.5. The epigraph' epi(f) of a function f: A — R defined on some subset A of
R" is the subset of R"™! defined as

epi(f) = {(z,y) ER" | f(z) <y, z € A},

A function f: C' — R defined on a convex subset C' is concave (resp. strictly concave) if
(—f) is convex (resp. strictly convex).

It is obvious that a function f is convex iff its epigraph epi(f) is a convex subset of R™*.

Example 4.4. Here are some common examples of convex sets.

e Subspaces V' C FE of a vector space E are convex.

o Affine subspaces, that is, sets of the form u+ V', where V' is a subspace of F and u € F,
are convex.

e Balls (open or closed) are convex. Given any linear form ¢: E — R, for any scalar
c € R, the closed half-spaces

Hi ={ue Elp(u)>c},  H,.={ueE|pu)<c}

®,c

are convex.

L “Epi” means above.
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f
u v

(@)

1= (1-Nf(u) + Af(v)

f
(b)

Figure 4.5: Figures (a) and (b) are the graphs of real valued functions. Figure (a) is the
graph of convex function since the blue line lies above the graph of f. Figure (b) shows the
graph of a function which is not convex.

e Any intersection of half-spaces is convex.

e More generally, any intersection of convex sets is convex.

Example 4.5. Here are some common examples of convex and concave functions.

e Linear forms are convex functions (but not strictly convex).

Any norm || || : E — R, is a convex function.

The max function,
max(xy,...,&,) = max{xy,..., Ty}

is convex on R™.

The exponential z — e is strictly convex for any ¢ # 0 (c € R).

The logarithm function is concave on Ry — {0}.

The log-determinant function log det is concave on the set of symmetric positive definite
matrices. This function plays an important role in convex optimization.

An excellent exposition of convexity and its applications to optimization can be found in
Boyd [18].
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Here is a necessary condition for a function to have a local minimum with respect to a
convex subset U.

Theorem 4.9. (Necessary condition for a local minimum on a convex subset) Let J: Q@ — R
be a function defined on some open subset ) of a normed vector space E and let U C Q be
a nonempty convex subset. Given any uw € U, if dJ(u) exists and if J has a local minimum
i u with respect to U, then

dJ(u)(v—u) >0 forallvel.

Proof. Let v = u+ w be an arbitrary point in U. Since U is convex, we have u + tw € U for
all ¢ such that 0 <t < 1. Since dJ(u) exists, we can write

J(u+ tw) — J(u) = dJ(u)(tw) + |[tw]] e(tw)
with limy, g €(tw) = 0. However, because 0 < ¢,
J(u+tw) = J(u) = t(dJ (u)(w) + [lw]| e(tw))
and since u is a local minimum with respect to U, we have J(u + tw) — J(u) > 0, so we get
t(dJ(u)(w) + [[w] e(tw)) = 0.

The above implies that dJ(u)(w) > 0, because otherwise we could pick ¢t > 0 small enough
so that
dJ(u)(w) + ||lw| e(tw) < 0,

a contradiction. Since the argument holds for all v = v+ w € U, the theorem is proven. []

Observe that the convexity of U is a substitute for the use of Lagrange multipliers, but
we now have to deal with an inequality instead of an equality.

In the special case where U is a subspace of E we have the following result.

Corollary 4.10. With the same assumptions as in Theorem 4.9, if U is a subspace of E, if
dJ(u) exists and if J has a local minimum in u with respect to U, then

dJ(u)(w) =0 forallweU.

Proof. In this case since u € U we have 2u € U, and for any u + w € U, we must have
2u—(u4w) = u—w € U. The previous theorem implies that dJ(u)(w) > 0 and dJ(u)(—w) >
0, that is, dJ(u)(w) <0, so dJ(u) = 0. Since the argument holds for w € U (because U is a
subspace, if u,w € U, then u +w € U), we conclude that

dJ(u)(w) =0 forall weU. O

We will now characterize convex functions when they have a first derivative or a second
derivative.
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Proposition 4.11. (Convezity and first derivative) Let f: Q — R be a function differen-
tiable on some open subset ) of a normed vector space E and let U C € be a nonempty
convex subset.

(1) The function f is convex on U iff
f(v) > f(u) +df(u)(v —u) for allu,v € U.

(2) The function f is strictly convex on U iff
f) > f(u)+df(u)(v—u) for all u,v € U with u # v.

See Figure 4.6.

y =f(u) + df(u)(v-u)

Figure 4.6: An illustration of a convex valued function f. Since f is convex it always lies
above its tangent line.

Proof. Let u,v € U be any two distinct points and pick A € R with 0 < A < 1. If the
function f is convex, then

JI(=Nu+ ) < (1= A)f(u) + Af(v),
which yields

It follows that

df (u) (v — u) = lim LI =N+ X0) = (W)

A—0 A

< f(v) = f(uw).
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If f is strictly convex, the above reasoning does not work, because a strict inequality is not
necessarily preserved by “passing to the limit.” We have recourse to the following trick: for
any w such that 0 < w < 1, observe that

w— A

(I=Nu+Iv=u+ANv—u)=
w

u+ %(u—l—w(v —u)).

If we assume that 0 < A < w, the convexity of f yields

pusrw=w) = £ ((1-3 ) ut 2= 0)) < “220+ 2 kol - ),
If we subtract f(u) to both sides, we get

flut AMv—w) = fu) _ flutwv—u) - f(u)
A - w '
Now since 0 < w < 1 and f is strictly convex,

flutw=u)=f((1-wutw)<(l-w)flu)+wf(v),

which implies that

flutw(v—u)) = f(u)

w

< f(v) = f(u),
and thus we get

flut Mo —w) = f(u) _ flutw(v—u)) - f(u)

\ < - < 1) - flw).
If we let A go to 0, by passing to the limit we get
() —w < LT =D TS ) ),

w

which yields the desired strict inequality.

Let us now consider the converse of (1); that is, assume that
f) > flu) +df(u)(v—u) forall u,veU.
For any two distinct points u,v € U and for any A with 0 < A < 1, we get
f() > flo+ AMu—v)) = Mdf(v+ AMu—v))(u—v)
f(u) = fo+Au—=w0)+ (1= N)df (v+ Au = v))(u—v),

and if we multiply the first inequality by 1 — A and the second inequality by A and them add
up the resulting inequalities, we get

(L=Nf() +Af(u) = f(v+Au—v)) = f((1 = A)v+ Au),
which proves that f is convex.

The proof of the converse of (2) is similar, except that the inequalities are replaced by
strict inequalities. O
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We now establish a convexity criterion using the second derivative of f. This criterion is
often easier to check than the previous one.

Proposition 4.12. (Convezity and second derivative) Let f: Q — R be a function twice
differentiable on some open subset € of a normed vector space E and let U C € be a
nonempty convex subset.

(1) The function f is convex on U iff
D?f(u)(v —u,v —u) >0 for all u,v € U.
(2) 1If
D?f(u)(v —u,v —u) >0 for all u,v € U with u # v,
then f is strictly convex.

Proof. First assume that the inequality in Condition (1) is satisfied. For any two distinct
points u,v € U, the formula of Taylor-Maclaurin yields

F(0) ~ F(u) — df(u)(v — ) = SD*F(w)(v — w0 — )
= %DQf(w)(v —w, v — w),

for some w = (1 = Nu+ A =u+ AMv —u) with 0 < A < 1, and with p = 1/(1 — \) > 0,
so that v — u = p(v — w). Since D?f(w)(v — w,v —w) > 0 for all u,w € U, we conclude by
applying Proposition 4.11(1).

Similarly, if (2) holds, the above reasoning and Proposition 4.11(2) imply that f is strictly
convex.

To prove the necessary condition in (1), define g: 2 — R by
g9(v) = f(v) = df (u)(v),

where u € U is any point considered fixed. If f is convex, since

g9() = g(u) = f(v) = f(u) —df (u)(v — ),

Proposition 4.11 implies that f(v) — f(u) — df (u)(v — u) > 0, which implies that ¢g has a
local minimum at u with respect to all v € U. Therefore, we have dg(u) = 0. Observe that
g is twice differentiable in Q and D%g(u) = D?f(u), so the formula of Taylor—Young yields
for every v =u+w € U and all t with 0 <t <1,

0 <g(u+tw)—gu) = EDQf(u)(tw,tw) + |ltw|)? e(tw)
= S (D () w,w) + 2w (wt)),

with limy, €(wt) = 0, and for ¢ small enough, we must have D? f (u)(w,w) > 0, as claimed.
[
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The converse of Proposition 4.12 (2) is false as we see by considering the strictly convex
function f given by f(z) = 2* and its second derivative at z = 0.

Example 4.6. On the other hand, if f is a quadratic function of the form

1
flu) = §uTAu —u'b

where A is a symmetric matrix, we know that
df (u)(v) = v' (Au - D),

SO

f) = fu) —df(u)(v—u) = %UTAU —v'b— %UTAU +u'b— (v—u)" (Au — b)

1 1
= EUTAU — éuTAu — (v —u)" Au
1 1
= 0 Av+ —u' Au—v'" Au
2 2
1
= §(U —u)" A(v — u).

Therefore, Proposition 4.11 implies that A is positive semidefinite iff f is convex and A is
positive definite iff f is strictly convex.

We conclude this section by applying our previous theorems to convex functions defined
on convex subsets. In this case local minima (resp. local maxima) are global minima (resp.
global maxima). The next definition is the special case of Definition 4.1 in which W = E
but it does not hurt to state it explicitly.

Definition 4.9. Let f: E — R be any function defined on some normed vector space (or
more generally, any set). For any u € E, we say that f has a minimum in u (resp. mazimum
in u) if

f(u) < f(v) (resp. f(u) > f(v)) forallve E.

We say that f has a strict minimum in u (resp. strict mazimum in ) if

f(u) < f(v) (resp. f(u) > f(v)) forallve E — {u}.

If U C F is a subset of £ and w € U, we say that f has a minimum in u (resp. strict
minimum in u) with respect to U if

flu) < f(v) forallveU (resp. f(u) < f(v) forallveU—{u}),

and similarly for a maximum in u (resp. strict mazimum in u) with respect to U with <
changed to > and < to >.
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Sometimes, we say global maximum (or minimum) to stress that a maximum (or a min-
imum) is not simply a local maximum (or minimum).

Theorem 4.13. Given any normed vector space E, let U be any nonempty convex subset of
E.

(1) For any convex function J: U — R, for any uw € U, if J has a local minimum at u in
U, then J has a (global) minimum at u in U.

(2) Any strict convez function J: U — R has at most one minimum (in U ), and if it does,
then it is a strict minimum (in U ).

(8) Let J: Q — R be any function defined on some open subset Q0 of E with U C Q and
assume that J is convex on U. For any point uw € U, if dJ(u) exists, then J has a
minimum in u with respect to U iff

dJ(u)(v—u) >0 forallvel.

(4) If the convex subset U in (3) is open, then the above condition is equivalent to

dJ(u) = 0.

Proof. (1) Let v = u + w be any arbitrary point in U. Since J is convex, for all ¢ with
0 <t <1, we have

Ju+tw)=Ju+tv—u))=J(1—-t)u+tv) < (1—t)J(u)+tJ(v),
which yields
J(u+tw) — J(u) < t(J(v) — J(u)).

Because J has a local minimum at wu, there is some ¢y with 0 < ¢y < 1 such that
0 < J(u+tow) — J(u) <to(J(v) — J(u)),

which implies that J(v) — J(u) > 0.

(2) If J is strictly convex, the above reasoning with w # 0 shows that there is some t
with 0 < ¢35 < 1 such that

which shows that u is a strict global minimum (in U), and thus that it is unique.

(3) We already know from Theorem 4.9 that the condition dJ(u)(v—wu) > 0 for all v € U
is necessary (even if J is not convex). Conversely, because J is convex, careful inspection of
the proof of Part (1) of Proposition 4.11 shows that only the fact that d.J(u) exists is needed

to prove that
J() = J(u) > dJ(u)(v—u) forallvel,
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and if

dJ(u)(v—u) >0 foralvel,
then

J()—J(u) >0 forallveU,
as claimed.

(4) If U is open, then for every u € U we can find an open ball B centered at u of radius
e small enough so that B C U. Then for any w # 0 such that |w| < €, we have both
v=u+w € Band v =u—w € B, so Condition (3) implies that

dJ(u)(w) >0 and dJ(u)(—w) >0,

which yields

dJ(u)(w) = 0.
Since the above holds for all w # 0 such such that ||w| < € and since d.J(u) is linear, we
leave it to the reader to fill in the details of the proof that dJ(u) = 0. O

Example 4.7. Theorem 4.13 can be used to rederive the fact that the least squares solutions
of a linear system Az = b (where A is an m X n matrix) are given by the normal equation

AT Az = ATb.
For this, we consider the quadratic function
1 I T
Tw) = 5 4w = bl3 = 3 b1,

and our least squares problem is equivalent to finding the minima of .J on R”. A computation
reveals that

J(v) = Sl Av — b2 — L b2
2 2
1

T2
= %(UTAT —b")(Av —b) — %bTb

1
= §UTATAU — v ATD,

(Av —b)" (Av —b) — %bTb

and so
dJ(u) = AT Au— ATb.

Since AT A is positive semidefinite, the function J is convex, and Theorem 4.13(4) implies
that the minima of J are the solutions of the equation

ATAu—ATb=0.
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The considerations in this chapter reveal the need to find methods for finding the zeros
of the derivative map

dj: QO — F,

where (2 is some open subset of a normed vector space E and E’ is the space of all continuous
linear forms on E (a subspace of E*). Generalizations of Newton’s method yield such methods
and they are the object of the next chapter.

4.4 Summary

The main concepts and results of this chapter are listed below:

Local minimum, local maximum, local extremum, strict local minimum, strict local
maximum.

Necessary condition for a local extremum involving the derivative; critical point.

Local minimum with respect to a subset U, local maximum with respect to a subset
U, local extremum with respect to a subset U.

Constrained local extremum.

Necessary condition for a constrained extremum.

Necessary condition for a constrained extremum in terms of Lagrange multipliers.
Lagrangian.

Critical points of a Lagrangian.

Necessary condition of an unconstrained local minimum involving the second-order
derivative.

Sufficient condition for a local minimum involving the second-order derivative.
A sufficient condition involving nondegenerate critical points.

Convex sets, convex functions, concave functions, strictly convex functions, strictly
concave functions.

Necessary condition for a local minimum on a convex set involving the derivative.
Convexity of a function involving a condition on its first derivative.
Convexity of a function involving a condition on its second derivative.

Minima of convex functions on convex sets.
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4.5 Problems

Problem 4.1. Find the extrema of the function J(vy,v9) = v3 on the subset U given by
U={(v,v2) €ER* | v? +v5 —1=0}.

Problem 4.2. Find the extrema of the function J(vi,vs) = v + (v — 1)? on the subset U
given by
U= {(v,v5) € R* | v} =0}.

Problem 4.3. Let A be an n x n real symmetric matrix, B an n X n symmetric positive
definite matrix, and let b € R™.

(1) Prove that a necessary condition for the function J given by

1
J(v) = EUTAU — b

to have an extremum at v € U, with U defined by
U={veR"|v Bv=1},
is that there is some A € R such that
Au — b= A\Bu.

(2) Prove that there is a symmetric positive definite matrix S such that B = S?. Prove
that if b = 0, then \ is an eigenvalue of the symmetric matrix St AS!.

(3) Prove that for all (u,\) € U x R, if Au — b = ABu, then

J(0) = J(u) = %(v —w)T(A=AB)(v—w)

for all v € U. Deduce that without additional assumptions, it is not possible to conclude
that u is an extremum of J on U.

Problem 4.4. Let E be a normed vector space, and let U be a subset of E such that for
all u,v € U, we have (1/2)(u+v) € U.

(1) Prove that if U is closed, then U is convex.
Hint. Every real § € (0,1) can be written as

0= Z 27",

n>1

with «,, € {0,1}.
(2) Does the result in (1) hold if U is not closed?
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Problem 4.5. Prove that the function f with domain dom(f) =R — {0} given by f(z) =
1/2? has the property that f”(x) > 0 for all x € dom(f), but it is not convex. Why isn’t
Proposition 4.12 applicable?

Problem 4.6. (1) Prove that the function z — ¢* (on R) is convex for any a € R.

(2) Prove that the function x — x® is convex on {z € R | z > 0}, for all a € R such that
a<Qora>1.

Problem 4.7. (1) Prove that the function = — |z|P is convex on R for all p > 1.
(2) Prove that the function z — logz is concave on {x € R | z > 0}.

(3) Prove that the function z — xlogx is convex on {x € R | x > 0}.

Problem 4.8. (1) Prove that the function f given by f(x1,...,2,) = max{zy,...,z,} is
convex on R".

(2) Prove that the function g given by g(x1,...,z,) = log(e™ + -+ + e*) is convex on
R™.
Prove that
max{zy,..., T} < g(x1,...,2,) <max{wry,...,x,} + logn.
Problem 4.9. In Problem 3.6, it was shown that
dfa(X) = tr(A71X)
D?f(A) (X1, Xy) = —tr(A' X1 A7 X)),

for all n x n real matrices X, X1, X5, where f is the function defined on GL*(n,R) (the
n X n real invertible matrices of positive determinants), given by

f(A) =logdet(A).
Assume that A is symmetric positive definite and that X is symmetric.

(1) Prove that the eigenvalues of A™'X are real (even though A~'X may not be sym-
metric).

Hint. Since A is symmetric positive definite, then so is A™!, so we can write A~! = S? for
some symmetric positive definite matrix S, and then

ATIX = $2X = S5(SXS)S .
(2) Prove that the eigenvalues of (A~'X)? are nonnegative. Deduce that
D*f(A)(X, X) = —tr((A7'X)?) <0

for all nonzero symmetric matrices X and SPD matrices A. Conclude that the function
X — logdet X is strictly concave on the set of symmetric positive definite matrices.
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Chapter 5

Newton’s Method and Its
Generalizations

In Chapter 4 we investigated the problem of determining when a function J: €2 — R defined
on some open subset {2 of a normed vector space E has a local extremum. Proposition 4.1
gives a necessary condition when J is differentiable: if J has a local extremum at u € €2,
then we must have

J' (u) = 0.
Thus we are led to the problem of finding the zeros of the derivative
J:Q— FE,
where E' = L(E;R) is the set of linear continuous functions from F to R; that is, the dual
of E. as defined in the remark after Proposition 4.8.

This leads us to consider the problem in a more general form, namely, given a function
f:Q — Y from an open subset €2 of a normed vector space X to a normed vector space Y,
find

(i) Sufficient conditions which guarantee the ezxistence of a zero of the function f; that is,
an element a €  such that f(a) = 0.

(ii) An algorithm for approximating such an a, that is, a sequence (xy) of points of 2 whose
limit is a.
In this chapter we discuss Newton’s method and some of it generalizations to give (partial)
answers to Problems (i) and (ii).

5.1 Newton’s Method for Real Functions of a Real Ar-
gument

When X =Y =R, we can use Newton’s method to find a zero of a function f: Q — R. We
pick some initial element o € R “close enough” to a zero a of f, and we define the sequence

147
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(zr) by
f(iUk)

SR TTENE

for all k£ > 0, provided that f'(zy) # 0. The idea is to define xj, as the intersection of the
x-axis with the tangent line to the graph of the function « — f(x) at the point (x, f(xy)).
Indeed, the equation of this tangent line is

y — f(z) = f'(zp) (@ — 23),
and its intersection with the z-axis is obtained for y = 0, which yields

_ f(xr)
k Fi(zn)’

r =X

as claimed. See Figure 5.1.

Xk42 /Xk+1 X

Figure 5.1: The construction of two stages in Newton’s method.

Example 5.1. If a > 0 and f(z) = 2% — «, Newton’s method yields the sequence

1 o
Thy1 = 7 | Tk + —
2 Tk

to compute the square root y/a of . It can be shown that the method converges to \/a for
any xg > 0; see Problem 5.1. Actually, the method also converges when zy < 0! Find out
what is the limit.
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The case of a real function suggests the following method for finding the zeros of a
function f: Q — Y, with Q C X given a starting point xy € €2, the sequence (xy) is defined
by

a1 = o — (f'(20) 7 (f(2n) (%)
for all £ > 0.

For the above to make sense, it must be ensured that
(1) All the points xj remain within 2.
(2) The function f is differentiable within €.
(3) The derivative f'(x) is a bijection from X to Y for all z € Q.

These are rather demanding conditions but there are sufficient conditions that guarantee
that they are met. Another practical issue is that it may be very costly to compute (f’(x;)) ™!
at every iteration step. In the next section we investigate generalizations of Newton’s method
which address the issues that we just discussed.

5.2 Generalizations of Newton’s Method

Suppose that f: 2 — R" is given by n functions f;: 2 — R, where 2 C R". In this case,
finding a zero a of f is equivalent to solving the system

fl(al...,an) :0
cyan) =0
fnlar ..., a,) =0.

In the standard Newton method, the iteration step is given by (%), namely

rer = o — (f'(2)) 7 (f (@),

and if we define Az, as Az = 1511 — xg, we see that Axy, = —(f'(zx)) " (f(x1)), so Axy, is
obtained by solving the equation

[ (n)Ary = — f (1),

and then we set x5, = xx + Axy.
The generalization is as follows.

Variant 1. A single iteration of Newton’s method consists in solving the linear system

(J(f)(zr)) Azp = —f (1),
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and then setting
Tpp1 = T + Axy,

where J(f)(zx) = (gi: (a:k)> is the Jacobian matrix of f at .

In general it is very costly to compute J(f)(xy) at each iteration and then to solve the
corresponding linear system. If the method converges, the consecutive vectors x; should
differ only a little, as also the corresponding matrices J(f)(xy). Thus, we are led to several
variants of Newton’s method.

Variant 2. This variant consists in keeping the same matrix for p consecutive steps (where
p is some fixed integer > 2):

T = 2k — (f'(20)) 7 (f (1), O0<k<p-1
T = 2 — (' (7)) 7 (f ), p<k<2p—-1
T = ok — (f'(20)) 7 (f (1), rp<k<(r+1l)p-1

Variant 3. Set p = oo, that is, use the same matriz f'(xo) for all iterations, which leads
to iterations of the form

Tht1 = Tgp — (f’(mo))_l(f(:ck)), k>0,

Variant 4. Replace f'(zo) by a particular matrix Ay which is easy to invert:
LT+1 = T — Aglf($k), k Z 0.
In the last two cases, if possible, we use an LU factorization of f’(xy) or Ay to speed up the

method. In some cases, it may even possible to set Ag = I.

The above considerations lead us to the definition of a generalized Newton method, as in
Ciarlet [25] (Chapter 7). Recall that a linear map f € L(F; F) is called an isomorphism iff
f is continuous, bijective, and f~! is also continuous.

Definition 5.1. If X and Y are two normed vector spaces and if f: 2 — Y is a function
from some open subset € of X, a generalized Newton method for finding zeros of f consists
of

(1) A sequence of families (Ax(z)) of linear isomorphisms from X to Y, for all x € © and
all integers k > 0;

(2) Some starting point x¢ € €;
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(3) A sequence (xy) of points of 2 defined by

i1 = 2k — (Ax(z0) " (f(zr)), k>0, ()
where for every integer k£ > 0, the integer ¢ satisfies the condition
0<¢<Ek.

With Azy = xp1 — 2, Equation (xx) is equivalent to solving the equation

A (o) (Azy) = — f(24)

and setting zy,1 = xx + Azxy. The function Ay (x) usually depends on f’.

Definition 5.1 gives us enough flexibility to capture all the situations that we have previ-
ously discussed:

Function Index
Variant 1: Ag(x) = f'(2), =k
Variant 2: Ap(z) = f'(2), ¢=min{rp,k}, frp<k<(r+1)p—1,r>0
Variant 3: Ap(z) = f'(2), =0

Variant 4: Ag(x) = Ay,

where Ay is a linear isomorphism from X to Y. Note that in Variant 2, ¢ is defined more
concisely as ¢ = |k/p|p. The first case corresponds to Newton’s original method and the
others to the variants that we just discussed. We could also have Ay(x) = Ay, a fixed linear
isomorphism independent of x € ().

Example 5.2. Consider the matrix function f given by
f(X) =A- X717

with A and X invertible n x n matrices. If we apply Variant 1 of Newton’s method starting
with any n x n matrix Xj, since the derivative of the function g given by g(X) = X! is
dgx(Y) = —-X"'Y X~ we have

fx¥)=X"Y X,
SO
(fo) 1Y) = XY X
and the Newton step is
X1 = Xie — (f3,) ' (f(Xp)) = Xi — Xi(A = X1 X,
which yields the sequence (X}) with
Xpo1 = Xo(2I — AX}), k>0,

In Problem 5.5, it is shown that Newton’s method converges to A~! iff the spectral radius
of I — XA is strictly smaller than 1, that is, p(I — XoA) < 1.
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The following theorem inspired by the Newton—Kantorovich theorem gives sufficient con-
ditions that guarantee that the sequence (z}) constructed by a generalized Newton method
converges to a zero of f close to xy. Although quite technical, these conditions are not very

surprising.

Theorem 5.1. Let X be a Banach space, let f: Q — Y be differentiable on the open subset
Q) C X, and assume that there are constants r, M, 3 > 0 such that if we let

B={reX|[r—mxl<r}cQ,

then

g B
supsup |4, (@) |y ) < M.

(2) <1 and

s
sup sup |(x) — Ax(a)| gy < 7
k>0 z,2’'€B

(3) ,
7o)l < 101~ ).

Then the sequence (xy) defined by
Tpy1 = Tp — A,;l(xg)(f(l'k)); 0<(<k

1s entirely contained within B and converges to a zero a of f, which is the only zero of f in
B. Furthermore, the convergence is geometric, which means that

|21 — 20|

1=p
Proof. We follow Ciarlet [25] (Theorem 7.5.1, Section 7.5). The proof has three steps.

g,

lex = af| <

Step 1. We establish the following inequalities for all £ > 1.

ek =zl < M| f (2] (a)

[k — ol <7 (21 € B) (b)
B

1F @l < 7 llzk = 2] ()

We proceed by induction on k, starting with the base case k = 1. Since

T1 = To — A61($0)<f(x0>>7
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we have 2, — z9 = — Ay (20)(f(20)), so by (1) and (3) and since 0 < 3 < 1, we have

|71 — ol < M ||f(zo)|| <r(1-58) <,

establishing (a) and (b) for £ = 1. We also have f(z9) = —Ao(zo)(x1 — 20), SO
—f(z0) — Ao(xo) (21 — 29) = 0 and thus

f(x1) = f(21) — f(@o) — Ao(wo)(21 — o).

By the mean value theorem (Proposition 3.11) applied to the function x — f(x)— Ag(xo)(x),
by (2), we get

1f (@)l < sup || f'(x) — Ao(wo) | [lz1 — 2ol < % 21 — ol ,
zeB

which is (¢) for £ = 1. We now establish the induction step.
Since by definition
ap — apo1 = — A () (f (1)), 0<0<k—1,
by (1) and the fact that by the induction hypothesis for (b), x, € B, we get
[r = zpall < M| f(ze-1)Il,

which proves (a) for k. As a consequence, since by the induction hypothesis for (c),

B
1f @)l < 37 k-1 — za-2ll,

we get
lzr — 2pal| < M || f(p-1)|| < Bllzr—1 — zr—2ll, (1)

and by repeating this step,
2, — apa]l < B a1 — a0l - (*2)

Using (*2) and (3), we obtain

k k
k= zoll <D Ny — 2]l < (Z ﬁj_1> |21 — ol

=1 =1
||I1—JIOH M

< <
<o < o)l <

which proves that z;, € B, which is (b) for k.

Since

x — Tt = — A (@) (f (2-1))
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we also have f(zr_1) = —Ar_1(x¢)(xr — T_1), SO we have

(o) = far) — for-1) — Ap—1(ze) (21 — 2821),
and as in the base case, applying the mean value theorem (Proposition 3.11) to the function
x> f(x) — Ar_1(x¢)(x), by (2), we obtain

p
1f (@)l < sup [|f'(z) — A1 (@o)|| [on — zp—a || < - llon — 2|
zeB M

proving (c) for k.
Step 2. Prove that f has a zero in B.

To do this we prove that (z) is a Cauchy sequence. This is because, using (*2), we have

j—1 Jj—1
s — ol <D Nenrin — il < B (Z 5z> 21 — 2ol
=0 =0
Bk
< 1_6H1‘1—I0||,

for all £ > 0 and all j > 0, proving that (z) is a Cauchy sequence. Since B is a closed ball
in a complete normed vector space, B is complete and the Cauchy sequence (xy) converges
to a limit @ € B. Since f is continuous on 2 (because it is differentiable), by (c¢) we obtain

. B _
@)l = Jim || (o)) < = Tim oy — 2] =0,

which yields f(a) = 0.

Since i
s = @l < 7= 3 [l = oll,
if we let j tend to infinity, we obtain the inequality
k
lzx = all = lla — @l < 7= 5 1 — ol

which is the last statement of the theorem.
Step 3. Prove that f has a unique zero in B.
Suppose f(a) = f(b) = 0 with a,b € B. Since A" (z0)(Ao(z0)(b —a)) = b — a, we have

b—a=—Ay"(20)(f(b) — f(a) — Ao(wo)(b — a)),
which by (1) and (2) and the mean value theorem implies that

I all < 145" )| sup 17/ (@) ~ Ao(za)| [0~ all < 56~ all.

Since 0 < 8 < 1, the inequality ||b — a|| < B ||b — al| is only possible if a = b. O
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It should be observed that the conditions of Theorem 5.1 are typically quite stringent.
It can be shown that Theorem 5.1 applies to the function f of Example 5.1 given by f(z) =
2% — a with o > 0, for any x¢ > 0 such that

aﬁx%ﬁ a,

~|
ot O

with 8 =2/5,r = (1/6)xg, M = 3/(5x¢). Such values of zq are quite close to y/a.

If we assume that we already know that some element a € €) is a zero of f, the next
theorem gives sufficient conditions for a special version of a generalized Newton method to
converge. For this special method the linear isomorphisms A (z) are independent of x € €.

Theorem 5.2. Let X be a Banach space and let f: Q — Y be differentiable on the open
subset Q C X. If a € Q is a point such that f(a) =0, if f'(a) is a linear isomorphism, and
if there is some A\ with 0 < X\ < 1/2 such that

A

! Hﬁ(Y;X)

up |4 = £'(@)leen) < Ty

)

then there is a closed ball B of center a such that for every xo € B, the sequence (xy) defined
by
Try1 =z — A (fzy)), k>0,

15 entirely contained within B and converges to a, which is the only zero of f in B. Further-
more, the convergence is geometric, which means that

lzx — all < 8% ||z — all,

for some B < 1.

A proof of Theorem 5.2 can be found in Ciarlet [25] (Section 7.5).

For the sake of completeness, we state a version of the Newton—Kantorovich theorem
which corresponds to the case where Ax(x) = f/'(z). In this instance, a stronger result can
be obtained especially regarding upper bounds, and we state a version due to Gragg and
Tapia which appears in Problem 7.5-4 of Ciarlet [25].

Theorem 5.3. (Newton-Kantorovich) Let X be a Banach space, and let f: Q — Y be
differentiable on the open subset Q C X. Assume that there exist three positive constants
A, i, voand a point xg € ) such that

0<Auv <

N —
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and if we let

1 =1=2M\uv

P = ,uz/
ot = 14+ /1 =2 v
11%

B={reX|[|z—wzl<p}
O ={z € Q| [lz —zol| <p'},

then B C Q, f'(x0) is an isomorphism of L(X;Y), and
[(F (o)) | < s

(£ (20)) "  F(mo) || < A,
suwp 1(z) - £ < vl — gl

z,yeQt

Then f'(x) is isomorphism of L(X;Y) for all x € B, and the sequence defined by

Tppr = 2p — (f(2e) " (fla), k>0

1s entirely contained within the ball B and converges to a zero a of f which is the only zero
of fin Qt. Finally, if we write 0 = p~ /p™, then we have the following bounds:

21 =2 \uv 6%k _ 1
|xp — al| < v g ||x1 — 20| if \uv < 3
|21 — o , 1
ka__a“ < ok—1 if AMV:: 57

and
2 [|zgq1 — |

14 /(14 462 (1 + 62F)-2)

< |l — all < 0% lag — 2| -

We can now specialize Theorems 5.1 and 5.2 to the search of zeros of the derivative
J':Q — FE', of a function J: Q@ — R, with Q@ C E. The second derivative J” of J is
a continuous bilinear form J”: F x E — R, but is is convenient to view it as a linear
map in L(FE, E’); the continuous linear form J”(u) is given by J”(u)(v) = J"(u,v). In our
next theorem, which follows immediately from Theorem 5.1, we assume that the Ag(x) are
isomorphisms in L(E, E').

Theorem 5.4. Let ¥ be a Banach space, let J: 0 — R be twice differentiable on the open
subset 2 C E, and assume that there are constants v, M, 3 > 0 such that if we let

B={x € E||z -z <r} CQ,

then
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(1)
sup sup HA,;l <M

k>0 z€B

Y

(z) HE(E’;E)

(2) p <1 and

s
sup sup [17(2) — A gy < 2
k>0 z,x’'€B

) T
| J" (o) || < M(l - B).

Then the sequence (xy) defined by
Tppr = o — AN () (S (), 0<L<k

is entirely contained within B and converges to a zero a of J', which is the only zero of J'
in B. Furthermore, the convergence is geometric, which means that

||1‘1 - 900||

1-3 B

[ax = al| <

In the next theorem, which follows immediately from Theorem 5.2, we assume that the
Ag(z) are isomorphisms in L(E, E') that are independent of x € Q.

Theorem 5.5. Let E be a Banach space and let J: Q2 — R be twice differentiable on the
open subset Q C E. Ifa € Q is a point such that J'(a) =0, if J"(a) is a linear isomorphism,
and if there is some X\ with 0 < A < 1/2 such that

A
J"(a))~! ||£(E’;E) 7

then there is a closed ball B of center a such that for every xy € B, the sequence (xy) defined
by

sup || Ay, — J//<a)||L(E;E’) <
k>0 IS

T4l = T — A];I(J/(l’k)), k Z 07

is entirely contained within B and converges to a, which is the only zero of J' in B. Fur-
thermore, the convergence is geometric, which means that

lzx — all < B* ||z — all,

for some B < 1.
When E = R", the Newton method given by Theorem 5.4 yields an iteration step of the

form
Tpp1 = ap — A () VI (2), 0< <k,
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where V.J(zy) is the gradient of J at xp (here, we identify £’ with R™). In particular,
Newton’s original method picks A, = J”, and the iteration step is of the form

T = ap — (V2J(20)) 'V I (2r), k>0,
where V2.J () is the Hessian of J at .

Example 5.3. Let us apply Newton’s original method to the function J given by J(x) =
52% — 4z, We have J'(z) = 2> — 4 and J"(z) = 2z, so the Newton step is given by

ri—4 1 4
Tht1 = T — 9rs =5 xk+x_k :

This is the sequence of Example 5.1 to compute the square root of 4. Starting with any
xp > 0 it converges very quickly to 2.

As remarked in Ciarlet [25] (Section 7.5), generalized Newton methods have a very wide
range of applicability. For example, various versions of gradient descent methods can be
viewed as instances of Newton method. See Section 13.9 for an example.

Newton’s method also plays an important role in convex optimization, in particular,
interior-point methods. A variant of Newton’s method dealing with equality constraints has
been developed. We refer the reader to Boyd and Vandenberghe [18], Chapters 10 and 11,
for a comprehensive exposition of these topics.

5.3 Summary

The main concepts and results of this chapter are listed below:
e Newton’s method for functions f: R — R.
e Generalized Newton methods.

e The Newton-Kantorovich theorem.

5.4 Problems

Problem 5.1. If a > 0 and f(z) = 2? — a, Newton’s method yields the sequence

1 «
Tkr1 = 5 | Tk + —
2 Tk

to compute the square root v/« of a.
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(1) Prove that if zy > 0, then z; > 0 and

1
Thir — Va = Q_Jik(xk - Va)’
1
Thy2 — Thy1 = 2pet (o — 9‘5z+1>

for all k¥ > 0. Deduce that Newton’s method converges to y/a for any zg > 0.
(2) Prove that if o < 0, then Newton’s method converges to —+/a.

Problem 5.2. (1) If & > 0 and f(z) = 2> — «, show that the conditions of Theorem 5.1 are
satisfied by any 5 € (0,1) and any x such that

|2 a|§4ﬁ(1_5)2

RGP
with 5 542
_|_
= M = .
"T 2" 1z
(2) Prove that the maximum of the function defined on [0, 1] by
4p(1 - B)
H _
SRR

has a maximum for § = 2/5. For this value of 3, check that r = (1/6)x¢, M = 3/(5x¢), and

9 < 12 < 9

-0 S5 < o

Problem 5.3. Consider generalizing Problem 5.1 to the matrix function f given by f(X) =
X? — O, where X and C are two real n x n matrices with C' symmetric positive definite.
The first step is to determine for which A does the inverse dfgl exist. Let g be the function
given by g(X) = X?2. From Problem 3.1 we know that the derivative at A of the function
g is dga(X) = AX + XA, and obviously dfs4 = dga. Thus we are led to figure out when
the linear matrix map X +— AX + X A is invertible. This can be done using the Kronecker
product.

Given an m x n matrix A = (a;;) and a p x ¢ matrix B = (b;;), the Kronecker product
(or tensor product) A ® B of A and B is the mp X ng matrix

apnB  apB - a,B
CLQlB a22B s (IgnB

amlB amgB amnB
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It can be shown (and you may use these facts without proof) that ® is associative and that

(A® B)(C® D)= AC ® BD
(A B)" =AT ® BT,
whenever AC and BD are well defined.

Given any n X n matrix X, let vec(X) be the vector in R™ obtained by concatenating
the rows of X.

(1) Prove that AX =Y iff
(A® I,)vec(X) = vec(Y)

and XA =Y iff
(I, ® AT )vec(X) = vec(Y).

Deduce that AX + XA =Y iff
(A® I,) + (I, ® AT))vec(X) = vec(Y).

In the case where n = 2 and if we write

check that
2a c b 0

b a+d 0 b
0 a+d c
0 c b 2d

A®12+IQ®AT:

The problem is to determine when the matrix (4 ® I,,) + (I, ® AT) is invertible.

Remark: The equation AX + XA =Y is a special case of the equation AX + XB = C
(sometimes written AX — XB = (), called the Sylvester equation, where A is an m X m
matrix, B is an n x n matrix, and X, C' are m x n matrices; see Higham [42] (Appendix B).

(2) In the case where n = 2, prove that

det(A® Iy + I, ® AT) = 4(a + d)*(ad — be).

(3) Let A and B be any two n xn complex matrices. Use Schur factorizations A = UT,U*
and B = VT,V* (where U and V' are unitary and T}, T5 are upper-triangular) to prove that
if A1, ..., \, are the eigenvalues of A and p1, ..., u, are the eigenvalues of B, then the scalars
Aift; are the eigenvalues of A® B, for 4,5 =1,...,n.

Hint. Check that U ® V is unitary and that 77 ® 75 is upper triangular.
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(4) Prove that the eigenvalues of (A ® I,,) + (I, ® B) are the scalars \; + p;, for i,j =
1,...,n. Deduce that the eigenvalues of (A®I,,) + (I, ® A7) are \; + A, fori,j =1,...,n.
Thus (A®I,) + (I, ® AT) is invertible iff A\, +\; # 0, for 4, j = 1,..., n. In particular, prove
that if A is symmetric positive definite, then so is (A® I,,) + (I, ® AT).

Hint. Use (3).

(5) Prove that if A and B are symmetric and (A® I,,) + (I, ® A") is invertible, then the

unique solution X of the equation AX + XA = B is symmetric.

(6) Starting with a symmetric positive definite matrix X, the general step of Newton’s

method is
Xpp1 = Xp — (fS(k)_l(Xlg —0) =X}, — (QS(J_I(XI? - 0),

and since g, is linear, this is equivalent to
Xir = X — (gh,)” (XD) + (g4,) ().
But since X}, is SPD, (g%, )~ (X}) is the unique solution of
XY +Y X, =X}

whose solution is obviously Y = (1/2)X}. Therefore the Newton step is

Xinn = Xi— (ghe) " (X2) 4 (0,)7(0) = Xi = 3 X5+ (6le)™(O) = £X + (9, (O),

so we have ]
Xt = 5%+ () 7€) = () (X2 + O

Prove that if X and C are symmetric positive definite, then (g, )~"(C) is symmetric

positive definite, and if C' is symmetric positive semidefinite, then (g, )~'(C) is symmetric

positive semidefinite.

Hint. By (5) the unique solution Z of the equation XyZ+ Z X}, = C (where C' is symmetric)
is symmetric so it can be diagonalized as Z = QDQT with @ orthogonal and D a real
diagonal matrix. Prove that

Q' XxQD + DQ"X,Q = Q" CQ,
and solve the system using the diagonal elements.

Deduce that if X and C' are SPD, then X, is SPD.

Since C = PXPT is SPD, it has an SPD square root (in fact unique) C'/? = PXY/2PT,
Prove that
Xiyr — CV2 = (gh) 71Xy, — C'2)2

Prove that .

A S
5™l = 5y
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Open problem: Does Theorem 5.1 apply for some suitable r, M, 37

(7) Prove that if C' and Xy commute, provided that the equation X;Z 4+ ZX} = C has
a unique solution for all k£, then X} and C' commute for all £ and Z is given by

1 1

Deduce that 1 ]
This is the matrix analog of the formula given in Problem 5.1(1).

Prove that if C' and X, have positive eigenvalues and C' and Xy commute, then Xj,; has
positive eigenvalues for all £ > 0 and thus the sequence (Xj) is defined.

Hint. Because X}, and C' commute, X, l'and C commute, and obviously X and X & L com-
mute. By Proposition 22.15 of Vol. 1, X}, Xk_l, and C' are triangulable in a common basis,
so there is some orthogonal matrix P and some upper-triangular matrices 77,75 such that

Xy =PIPT, X.'=PI'P", C=PLP".
It follows that .
Xpy1 = 5P(T1 +T7'T)PT.
Also recall that the diagonal entries of an upper-triangular matrix are the eigenvalues of that
matrix.

We conjecture that if C' has positive eigenvalues, then the Newton sequence converges
starting with any X, of the form Xy = ul,, with g > 0.

(8) Implement the above method in Matlab (there is a command kron(A, B) to form the
Kronecker product of A and B). Test your program on diagonalizable and nondiagonalizable
matrices, including

107 8 7 5 411

7 5 6 5 45 1 1

W=135 610 9ol 4=|114 2|

7 5 9 10 112 4

and

1 0 0 0 1111 1 -1 0 0
~1 001 O 0 0111 1 1 0 0
A= _0 70 400 w0l “=loo1 1] M=o o 1 -1
—1 —1 =100 100 000 1 0 0 1 1

What happens with
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The problem of determining when square roots of matrices exist and procedures for
finding them are thoroughly investigated in Higham [42] (Chapter 6).

Problem 5.4. (1) Show that Newton’s method applied to the function

flw)=a--

x
with a # 0 and = € R — {0} yields the sequence (x}) with
Tpy1 = (2 — axyg), k>0.
(2) If we let r, = 1 — axy, prove that ryq = r,% for all £ > 0. Deduce that Newton’s
method converges to 1/a if 0 < azg < 2.
Problem 5.5. (1) Show that Newton’s method applied to the matrix function
X)) =A- X,

with A and X invertible n X n matrices and started with any n x n matrix X, yields the
sequence (Xj) with
Xir1 = Xp(2] — AXy), k>0.

(2) If we let R, = I — AXj, prove that
Ry =1 — (I = Ry)(I + Ry) = R,

for all & > 0. Deduce that Newton’s method converges to A~! iff the spectral radius of
I — AXy is strictly smaller than 1, that is, p(I — AXy) < 1.

(3) Assume that A is symmetric positive definite and let Xy = pl. Prove that the
condition p(I — AXj) < 1 is equivalent to

9
0<p<——.
p(A)

(4) Write a Matlab program implementing Newton’s method specified in (1). Test your
program with the n X n matrix

2 -1 0 0
-1 2 -1 0
Ap = ;
0 -1 2 -1
0 0 -1 2

and with X = ul,, for various values of n, including n = 8,10, 20, and various values of u
such that 0 < u < 1/2. Find some p > 1/2 causing divergence.
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Problem 5.6. A method for computing the nth root '/ of a positive real number z € R,
with n € N a positive integer n > 2, proceeds as follows: define the sequence (zy), where
is any chosen positive real, and

1 T
Tpi1 = — ((n—l)xk—i— nl) , k>0.

(1) Implement the above method in Matlab and test it for various input values of z, z,
and of n > 2, by running successively your program for m = 2,3,...,100 iterations. Have
your program plot the points (i, ;) to watch how quickly the sequence converges.

Experiment with various choices of xy. One of these choices should be zy = x. Compare
your answers with the result of applying the of Matlab function x — z'/".

In some case, when xg is small, the number of iterations has to be at least 1000. Exhibit
this behavior.

Problem 5.7. Refer to Problem 5.6 for the definition of the sequence (zy).

(1) Define the relative error € as

€ = xl/n 3 k>0
Prove that (1—1/n) ( ) .
M (n—1xp nxy
€ptr1 = $Z_1 ( - ) + 1) )
and then that
€hil = N (ek(ek + 1" 2(n—Dep +(n—2)) +1— (e + 1)”_2) ,
n(ex + 1)1
for all kK > 0.
(2) Since
€r + 1= _xl/n’

and since we assumed xg,x > 0, we have ¢y + 1 > 0. We would like to prove that
€, >0, forall k>1.
For this consider the variations of the function f given by
f(u) = (n - Du™ — nazt/™u"' 4 2,

for u € R.
Use the above to prove that f(u) > 0 for all v > 0. Conclude that

€, >0, forall k>1.
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(3) Prove that if n = 2, then

2
€k

0<é€pp1 = —"—,
< €kl 2er + 1)
else if n > 3, then
-1
0<eér41 < (n )€k7
n
1/n

Prove that the sequence (xy) converges to x

for all

for all

(4) When n = 2, we saw in Problem 5.7(3) that

2
€

0<é€p41 = 77—,
S €kt en+ 1)

For n = 3, prove that
2€2(3/2 + €x)

€r+1 = —3<€k 1) )
and for n = 4, prove that

3er
T Y+ 1)° (

Let p3 and py be the functions given by

3

ps(a) = 5 Ta

for all

for all

24 (8/3)er + €7)

8
pa(a) =2+ 3¢ + a?,

so that if n = 3, then

2¢j,p3(ex)
="~~~ forall
and if n = 4, then
Beipialer)
= for all
KT L
Prove that
aps(a) < (a+1)* =1, for all
and
aps(a) < (a+1)* =1, for all

Let 3 = ps(er)er, when n = 3, and 14 = pa(er)er, when n = 4. Prove that

2
N3 jetr1 < gnik, for all

k>0,

k> 1.

for every initial value z¢ > 0.

k> 0.

k>0,

for all

k>0,

k> 0.

a >0,

a > 0.

k>,
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and 5
Naksr1 < Znik’ forall k>1.

Deduce from the above that the rate of convergence of 7 is very fast, for i = 3,4 (and
k>1).

Remark: If we let us(a) = a for all @ and 7y = €, we then proved that

1
Mk+1 < 57);,{, for all k> 1.

Problem 5.8. This is a continuation of Problem 5.7.

(1) Prove that for all n > 2, we have

n—1\ €ipn(er)
= forall k>0
o < n ) (a+ - RS

where p,, is given by

o= St v 1) - (13))

-2
n(” >&n—3 4 an—2‘
n—1
Furthermore, prove that u, can be expressed as
n—4
1 (j+1)n n—1\ ;, nn-=2) 5
Mn(a)—2n+ a+§j+2 n—1)<j+1>a+ — a " 4a "

(2) Prove that for every j, with 1 < j < n — 1, the coefficient of @’ in aj,(a) is less than
or equal to the coefficient of a/ in (a +1)"~! — 1, and thus

apin(a) < (a+1)""1 =1, for all a>0,

with strict inequality if n > 3. In fact, prove that if n > 3, then for every j, with 3 < j <
n — 2, the coefficient of a’ in au,(a) is strictly less than the coefficient of @’ in (a+1)""1 —1,
and if n > 4, this also holds for j = 2.

Let 1, = pin(€1)€x (n > 2). Prove that

n—1

Mkl < ( )772,197 for all k> 1.



Chapter 6

Quadratic Optimization Problems

In this chapter we consider two classes of quadratic optimization problems that appear
frequently in engineering and in computer science (especially in computer vision):
1. Minimizing
Qz) = %xTAx —z'b
over all x € R™, or subject to linear or affine constraints.
2. Minimizing
Qz) = %xTAx —z'b
over the unit sphere.

In both cases, A is a symmetric matrix. We also seek necessary and sufficient conditions for
(@ to have a global minimum.

6.1 Quadratic Optimization: The Positive
Definite Case

Many problems in physics and engineering can be stated as the minimization of some energy
function, with or without constraints. Indeed, it is a fundamental principle of mechanics
that nature acts so as to minimize energy. Furthermore, if a physical system is in a stable
state of equilibrium, then the energy in that state should be minimal. For example, a small
ball placed on top of a sphere is in an unstable equilibrium position. A small motion causes
the ball to roll down. On the other hand, a ball placed inside and at the bottom of a sphere
is in a stable equilibrium position because the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such functions can be
conveniently defined in the form

Qz) =2 Ax — 20,
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where A is a symmetric n X n matrix and z, b, are vectors in R”, viewed as column vectors.
Actually, for reasons that will be clear shortly, it is preferable to put a factor % in front of

the quadratic term, so that

1
Qx) = §SETA[E —z'D.

The question is, under what conditions (on A) does Q(x) have a global minimum, prefer-
ably unique?

We give a complete answer to the above question in two stages:

1. In this section we show that if A is symmetric positive definite, then @(x) has a unique
global minimum precisely when

Az =b.

2. In Section 6.2 we give necessary and sufficient conditions in the general case, in terms
of the pseudo-inverse of A.

We begin with the matrix version of Definition 20.2 (Vol. I).

Definition 6.1. A symmetric positive definite matriz is a matrix whose eigenvalues are
strictly positive, and a symmetric positive semidefinite matriz is a matrix whose eigenvalues
are nonnegative.

Equivalent criteria are given in the following proposition.

Proposition 6.1. Given any Euclidean space E of dimension n, the following properties
hold:

(1) Every self-adjoint linear map f: E — E is positive definite iff
(f(z),z) >0
for all x € E with x # 0.
(2) Every self-adjoint linear map f: E — E is positive semidefinite iff
(f(z),z) =20
forallz € F.

Proof. (1) First assume that f is positive definite. Recall that every self-adjoint linear map
has an orthonormal basis (e, ..., e,) of eigenvectors, and let Aq, ..., A, be the corresponding
eigenvalues. With respect to this basis, for every x = xye; + - -+ 4+ x,e, # 0, we have

(f(x),x) = <f<il’i€i>7ixz’€i> = <i/\ixi€i7ixiei> = i/\ﬂ?,



6.1. QUADRATIC OPTIMIZATION: THE POSITIVE DEFINITE CASE 169

which is strictly positive, since \; > 0 for i = 1,...,n, and ? > 0 for some i, since = # 0.
Conversely, assume that
(f(z),z) >0
for all x # 0. Then for z = ¢;, we get
(fle),e) = (Nies, €3) = Ai,
and thus \;, >0 foralli=1,...,n.
(2) As in (1), we have

(F@)a) =k,

and since \; > 0 for ¢ = 1,...,n because f is positive semidefinite, we have (f(z),z) >0, as
claimed. The converse is as in (1) except that we get only A\; > 0 since (f(e;),e;) > 0. O

Some special notation is customary (especially in the field of convex optimization) to
express that a symmetric matrix is positive definite or positive semidefinite.

Definition 6.2. Given any n X n symmetric matrix A we write A > 0 if A is positive
semidefinite and we write A > 0 if A is positive definite.

Remark: It should be noted that we can define the relation
A= B

between any two n X n matrices (symmetric or not) iff A — B is symmetric positive semidef-
inite. It is easy to check that this relation is actually a partial order on matrices, called the
positive semidefinite cone ordering; for details, see Boyd and Vandenberghe [18], Section 2.4.

If A is symmetric positive definite, it is easily checked that A~! is also symmetric positive
definite. Also, if C'is a symmetric positive definite m x m matrix and A is an m X n matrix of
rank n (and so m > n and the map x — Az is injective), then ATCA is symmetric positive
definite.

We can now prove that

Q(zx) = %xTAx —z'b

has a global minimum when A is symmetric positive definite.

Proposition 6.2. Given a quadratic function
1
Q(z) = §xTAx — 2D,

if A is symmetric positive definite, then Q(x) has a unique global minimum for the solution
1o = A7 of the linear system Az = b. The minimum value of Q(z) is

Q(A™'D) = —%bTA‘lb.
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Proof. Since A is positive definite, it is invertible since its eigenvalues are all strictly positive.
Let zp = A™'b, and compute Q(y) — Q(zo) for any y € R™. Since Azy = b, we get

1 1
Qy) = Qlwo) = 5y Ay —y b — Zag Aro + g b
1 1
= 5y Ay =y Az + Srg Ao
1
= é(y - xO)TA(y — o).

Since A is positive definite, the last expression is nonnegative, and thus

Qy) = Q(zo)

for all y € R™, which proves that zp = A7'b is a global minimum of Q(z). A simple
computation yields

Q(A™'D) = —%bTA‘lb.

Remarks:

(1) The quadratic function Q(z) is also given by

Q(z) = %xTAa: — b,

but the definition using = 'b is more convenient for the proof of Proposition 6.2.

(2) If Q(x) contains a constant term ¢ € R, so that

1
Qz) = ixTA:c —z'b+ec,

the proof of Proposition 6.2 still shows that Q(z) has a unique global minimum for
x = A~'b, but the minimal value is

Q(A™'D) = —%bTA‘lb +c.

Thus when the energy function Q(z) of a system is given by a quadratic function

1
Q(x) = §mTAx — 2D,
where A is symmetric positive definite, finding the global minimum of Q(z) is equivalent to
solving the linear system Ax = b. Sometimes, it is useful to recast a linear problem Az = b
as a variational problem (finding the minimum of some energy function). However, very
often, a minimization problem comes with extra constraints that must be satisfied for all

admissible solutions.
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Example 6.1. For instance, we may want to minimize the quadratic function

Q(x1,x2) = %(l‘% + x%)

subject to the constraint
21‘1 — T = 5.

The solution for which @Q(x1,x2) is minimum is no longer (x;,z2) = (0,0), but instead,
(x1,22) = (2,—1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(z1, z2) in R? is a paraboloid
of revolution P with axis of revolution Oz. The constraint

233'1—372:5

corresponds to the vertical plane H parallel to the z-axis and containing the line of equation
2x7 — 9 = 5 in the xy-plane. Thus, as illustrated by Figure 6.1, the constrained minimum
of () is located on the parabola that is the intersection of the paraboloid P with the plane
H.

A nice way to solve constrained minimization problems of the above kind is to use the
method of Lagrange multipliers discussed in Section 4.1. But first let us define precisely
what kind of minimization problems we intend to solve.

Definition 6.3. The quadratic constrained minimization problem consists in minimizing a
quadratic function

1
Qz)==z"A e —b'x
2
subject to the linear constraints
B'x = f,

where A~! is an m x m symmetric positive definite matrix, B is an m x n matrix of rank n
(so that m > n), and where b,z € R™ (viewed as column vectors), and f € R" (viewed as a
column vector).

The reason for using A~! instead of A is that the constrained minimization problem has
an interpretation as a set of equilibrium equations in which the matrix that arises naturally
is A (see Strang [76]). Since A and A~! are both symmetric positive definite, this doesn’t
make any difference, but it seems preferable to stick to Strang’s notation.

In Example 6.1 we have m =2, n = 1,

10 0 2
= 0= 5 () 10

As explained in Section 4.1, the method of Lagrange multipliers consists in incorporating
the n constraints B'z = f into the quadratic function Q(z), by introducing extra variables
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Figure 6.1: Two views of the constrained optimization problem Q(z1,z) = (27 + 23)
subject to the constraint 2z — x5 = 5. The minimum (z;, z5) = (2, —1) is the the vertex of
the parabolic curve formed the intersection of the magenta planar constraint with the bowl
shaped surface.

A= (A1,...,\y) called Lagrange multipliers, one for each constraint. We form the Lagrangian

Lz, \) =Q(x)+ A\ (B'z — f) = %xTA_lx —(b—=B\N) "z - \"f.

We know from Theorem 4.2 that a necessary condition for our constrained optimization
problem to have a solution is that VL(z, \) = 0. Since

oL

—(2,\) =A"'2 — (b— BX
Ox

OL

i@ =BTa— .

we obtain the system of linear equations
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which can be written in matrix form as

At B\ (z\ (b
BT 0 A\[Sf)
We shall prove in Proposition 6.3 below that our constrained minimization problem has a

unique solution actually given by the above system.

Note that the matrix of this system is symmetric. We solve it as follows. Eliminating x
from the first equation

A7z + BA =10,

we get
z = A(b— B)),

and substituting into the second equation, we get
BTA(b— B\) = f,

that is,
BTABXN=B"Ab - f.

However, by a previous remark, since A is symmetric positive definite and the columns of
B are linearly independent, BT AB is symmetric positive definite, and thus invertible. Thus
we obtain the solution

A= (B"AB)"Y(B"Ab— f), x=A(b— B)\).

Note that this way of solving the system requires solving for the Lagrange multipliers first.

Letting e = b — B\, we also note that the system

(r 0) ()= ()

is equivalent to the system

e=0b— B,
x = Ae,
Bz =f.

The latter system is called the equilibrium equations by Strang [76]. Indeed, Strang shows
that the equilibrium equations of many physical systems can be put in the above form. This
includes spring-mass systems, electrical networks and trusses, which are structures built from
elastic bars. In each case, z, e, b, A, \, f, and K = B'" AB have a physical interpretation.
The matrix K = BT AB is usually called the stiffness matriz. Again, the reader is referred
to Strang [76].
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In order to prove that our constrained minimization problem has a unique solution, we
proceed to prove that the constrained minimization of Q(z) subject to BTz = f is equivalent
to the unconstrained maximization of another function —G(\). We get G(A) by minimizing
the Lagrangian L(x,\) treated as a function of z alone. The function —G(\) is the dual
function of the Lagrangian L(z, \). Here we are encountering a special case of the notion of
dual function defined in Section 14.7.

Since A~! is symmetric positive definite and
1
L(z,\) = §:JA—1:1; —(b—B\N) Tz - \"f,

by Proposition 6.2 the global minimum (with respect to x) of L(z,A) is obtained for the
solution = of
Az =b— B,

that is, when
x = A(b— BX\),

and the minimum of L(z, \) is

1
min L(x, \) = —§(B)\ —b)TABXA—0b) — AT f.
Letting
1
G(\) = 5(BA —b)"TA(BA=Db) + A" f,

we will show in Proposition 6.3 that the solution of the constrained minimization of Q(x)
subject to BTz = f is equivalent to the unconstrained maximization of —G()). This is a
special case of the duality discussed in Section 14.7.

Of course, since we minimized L(z, ) with respect to z, we have

for all z and all \. However, when the constraint BTz = f holds, L(z,\) = Q(z), and thus
for any admissible x, which means that B'x = f, we have

min Q(z) > max —G(N).
In order to prove that the unique minimum of the constrained problem Q(z) subject to
B'x = f is the unique maximum of —G(\), we compute Q(z) + G(\).

Proposition 6.3. The quadratic constrained minimization problem of Definition 6.3 has a
unique solution (x, \) given by the system

(5 0) () =0)

Furthermore, the component \ of the above solution is the unique value for which —G(\) is
MaTLmum.
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Proof. As we suggested earlier, let us compute Q(z) + G()), assuming that the constraint
BTz = f holds. Eliminating f, since b’z =2'band A\TB"x = 2" B\, we get

Q(z) +G(\) = %xTAlx —b'x+ %(B)\ —b)TABA D)+ A\ f
— %(A‘lx +BX—0b)TA(A™ 'z + BX —b).
Since A is positive definite, the last expression is nonnegative. In fact, it is null iff
A'lz 4+ BA—-b=0,

that is,
A7z + BAX=b.

But then the unique constrained minimum of Q(z) subject to BTz = f is equal to the
unique maximum of —G()\) exactly when B'x = f and A~'x + B\ = b, which proves the
proposition. O

We can confirm that the maximum of —G(\), or equivalently the minimum of

G(\) = %(B)\ —b)TABN=D)+ )\ f,

corresponds to value of A obtained by solving the system
A™t B\ (z\ (b
BT 0 AN\ f)

1 1
G(\) = 5ATBTABA —A'BTAb+ AT f + 5bTb,

Indeed, since

and BT AB is symmetric positive definite, by Proposition 6.2, the global minimum of G(\)
is obtained when
B"AB\N—B"Ab+ f =0,

that is, A\ = (BTAB)"Y(BT Ab — f), as we found earlier.

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimization
of Q(x) subject to BTz = f is called the primal problem, and the unconstrained
maximization of —G(\) is called the dual problem. Duality is the fact stated slightly
loosely as

rnxin Qz) = max —G(A).

A general treatment of duality in constrained minimization problems is given in Section
14.7.
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Recalling that e = b — B, since
1
G(\) = E(BA —b)TA(BA—b) + N f,

we can also write )
G(\) = §eTAe +ATf

This expression often represents the total potential energy of a system. Again, the
optimal solution is the one that minimizes the potential energy (and thus maximizes

—GO).

It is immediately verified that the equations of Proposition 6.3 are equivalent to the
equations stating that the partial derivatives of the Lagrangian L(z, \) are null:

oL
axi:(), 1=1,...,m,
oL
— =0, 7=1,...,n.
aAJ Y j ) 7n

Thus, the constrained minimum of Q(z) subject to B'x = f is an extremum of the
Lagrangian L(x,\). As we showed in Proposition 6.3, this extremum corresponds
to simultaneously minimizing L(z, A) with respect to x and maximizing L(z, A) with
respect to A\. Geometrically, such a point is a saddle point for L(x, \). Saddle points
are discussed in Section 14.7.

The Lagrange multipliers sometimes have a natural physical meaning. For example, in
the spring-mass system they correspond to node displacements. In some general sense,
Lagrange multipliers are correction terms needed to satisfy equilibrium equations and
the price paid for the constraints. For more details, see Strang [76].

Going back to the constrained minimization of Q(x1,z2) = 3(z% + 23) subject to

2[L‘1 — T9 = 5,

the Lagrangian is

1
L(zy, 29, \) = 5(w% + x3) + A2z — 22 — 5),

and the equations stating that the Lagrangian has a saddle point are

.T1+2)\:O7
CL’Q—)\:O,
2371—1'2—5:0.

We obtain the solution (zi,z2, A) = (2, —1,—1).
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The use of Lagrange multipliers in optimization and variational problems is discussed
extensively in Chapter 14.

Least squares methods and Lagrange multipliers are used to tackle many problems in
computer graphics and computer vision; see Trucco and Verri [79], Metaxas [55], Jain, Kat-
suri, and Schunck [44], Faugeras [32], and Foley, van Dam, Feiner, and Hughes [33].

6.2 Quadratic Optimization: The General Case

In this section we complete the study initiated in Section 6.1 and give necessary and sufficient
conditions for the quadratic function %xTAx — 2"b to have a global minimum. We begin
with the following simple fact:

Proposition 6.4. If A is an invertible symmetric matrixz, then the function

1
f(z) = éxTAx —z'b
has a minimum value iff A = 0, in which case this optimal value is obtained for a unique

value of x, namely v* = A™1b, and with
1
f(A™D) = —§bTA—1b.
Proof. Observe that

1 1 1
(= A7) TA(x — A7) = Ea:TAx —z'b+ 5bTA—lb.

Thus,
1 1

1
flz) = ixTA:c —z'b= §(x — A7) TA(x — A7) — §bTA’1b.
If A has some negative eigenvalue, say —\ (with A > 0), if we pick any eigenvector u of
A associated with ), then for any o € R with o # 0, if we let x = au + A~b, then since
Au = —Au, we get

f(z) = %(x — A7) T Az — A7) — %bTA‘lb

1 1
= é(wTAau - §bTA’1b
1

— —a®AfJull} — b4,
2 2

and since a can be made as large as we want and A > 0, we see that f has no minimum.

Consequently, in order for f to have a minimum, we must have A > 0. If A > 0, since A is

invertible, it is positive definite, so (z — A7) T A(x — A71b) > 0 iff x — A71b # 0, and it is

clear that the minimum value of f is achieved when z — A='b = 0, that is, x = A~'b. n
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Let us now consider the case of an arbitrary symmetric matrix A.

Proposition 6.5. If A is an n x n symmetric matriz, then the function

1
flz) = §xTA33 —z'b

has a minimum value iff A = 0 and (I — AAT)b =0, in which case this minimum value is
1
F=—ZbT AT,
P

Furthermore, if A is diagonalized as A = UXU (with U orthogonal), then the optimal value
1s achieved by all x € R™ of the form

r=Atb+UT (S)

for any z € R™", where r is the rank of A.

Proof. The case that A is invertible is taken care of by Proposition 6.4, so we may assume
that A is singular. If A has rank r < n, then we can diagonalize A as

(50
A_U(OOU,

where U is an orthogonal matrix and where ¥, is an r X r diagonal invertible matrix. Then
we have

L g (2 0 T
f(x)—éxU <O O)Ux—xUUb

1L, (% 0 .
§(UI) (0 O> Uz — (Uzx) Ub.

Ur = <y> and Ub= (C) ,
z d

with y,c € R" and z,d € R"™", we get

If we write

fz) = %(Ux)T (20 8) Uz — (Uz)TUb
s v
1

= §yTEry —ylc—2"d
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For y = 0, we get .
flz)=—24d,

so if d # 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that
c
Ub = (0>,

and we know from Proposition 21.5 (Vol. 1) that b is in the range of A (here, U is V'),
which is equivalent to (I — AAT)b = 0. If d = 0, then
L+ T
fla)=gy Zy—y e
Consider the function g: R™ — R given by

1
9y)=-y'Sy—y'c, yeR"

2
z

and U" is invertible (with inverse U), when x ranges over R", y ranges over the whole of
R", and since f(x) = g(y), the function f has a minimum iff ¢ has a minimum. Since ¥, is
invertible, by Proposition 6.4, the function ¢ has a minimum iff 3. > 0, which is equivalent
to A > 0.

Therefore, we have proven that if f has a minimum, then (I — AAT)b = 0 and A > 0.
Conversely, if (I — AAT)b =0, then

(Ga) o (oo G )= (6 0) o o))

:UT(B ]0 )szo,

Since

which implies that if
c
Ub__(d),

flx) =g(y) = %yTEry —y'e,

and because A > 0, we also have ¥, > 0, so ¢ and f have a minimum.

then d = 0, so as above

When the above conditions hold, since

(%0
A_U(OOU
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is positive semidefinite, the pseudo-inverse A™ of A is given by

10
+ _ 77T r
AT =U (o O)U,

and since

flx)=g(y) = %yTETy —y'c,

by Proposition 6.4 the minimum of g is achieved iff y* = X !c. Since f(z) is independent of
z, we can choose z = 0, and since d = 0, for x* given by

. Yte (e
Ux —( 0 ) and Ub—(()),
we deduce that

Y le >0\ (e >
* T r _ T r _ T r _ +
=t (0)‘6 <o o)(o)‘t (o O)Lb_Ab’ ()

and the minimum value of f is
1 1 1
flz*) = 5(A+b)UxA+b —b'ATh = 5bTA+AA+b —b'ATh= —§bTA+b,
since AT is symmetric and ATAAT = AT, For any x € R" of the form

r=A"+UT (S) , zeR"T,

—1 —1
r=Atb+UT <O> —uT (Er C) LUt (O> —_uT (Er C) ,
z 0 z z

and since f(x) is independent of z (because f(z) = g(y)), we have

since

F@) = fla*) = —%bTAﬂ). 0

The problem of minimizing the function

1
flz) = §xTAx —z'b
in the case where we add either linear constraints of the form C"z = 0 or affine constraints
of the form CTz =t (where t € R™ and ¢ # 0) where C is an n X m matrix can be reduced
to the unconstrained case using a () R-decomposition of C'. Let us show how to do this for
linear constraints of the form C''z = 0.
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If we use a QR decomposition of C', by permuting the columns of C' to make sure that
the first 7 columns of C' are linearly independent (where r = rank(C)), we may assume that

R S
C=Q" I
o (o)
where () is an n X n orthogonal matrix, R is an r X r invertible upper triangular matrix, S
is an r x (m — r) matrix, and II is a permutation matrix (C has rank r). Then if we let

)

where y € R” and z € R"™", then C'"xz = 0 becomes

RT 0 RT 0
T. T 1T vy _
CTr— Tl (ST O)Qx—H (ST 0) (2)_0,

which implies y = 0, and every solution of CTz = 0 is of the form

o (%)

minimize %(yT 2NQAQT (Z) + (y" 2NQb

subject to y=0,y€eR", z€ R"".

Our original problem becomes

Thus, the constraint C'"z = 0 has been simplified to y = 0, and if we write

Gy G
A T: 11 12
©AQ (G21 Gm)’

where G1; is an r X r matrix and Gy is an (n — r) X (n — r) matrix and

Qb = (Zl) . b ER, by e R,
2

our problem becomes
1
minimize §ZTG222 + ZTb2> z e R",
the problem solved in Proposition 6.5.

Constraints of the form C'z =t (where ¢t # 0) can be handled in a similar fashion. In
this case, we may assume that C' is an n X m matrix with full rank (so that m < n) and
t € R™. Then we use a () R-decomposition of the form

czp(ff),
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where P is an orthogonal n x n matrix and R is an m X m invertible upper triangular matrix.
If we write
r=P (y) ,
z

where y € R™ and z € R"™™, the equation C'"z = t becomes

(RTO)PTz =t,
that is,
T v\ _
(R 0) (Z) - ta
which yields
Ry =t.

Since R is invertible, we get y = (R")~'t, and then it is easy to see that our original problem
reduces to an unconstrained problem in terms of the matrix P' AP; the details are left as
an exercise.

6.3 Maximizing a Quadratic Function on the
Unit Sphere

In this section we discuss various quadratic optimization problems mostly arising from com-
puter vision (image segmentation and contour grouping). These problems can be reduced to
the following basic optimization problem: given an n X n real symmetric matrix A

maximize ! Ax

subject to z'xz =1, z € R".

In view of Proposition 21.10 (Vol. I), the maximum value of 2" Az on the unit sphere is
equal to the largest eigenvalue A\; of the matrix A, and it is achieved for any unit eigenvector
u, associated with ;. Similarly, the minimum value of " Az on the unit sphere is equal to
the smallest eigenvalue A, of the matrix A, and it is achieved for any unit eigenvector u,,
associated with \,,.

A variant of the above problem often encountered in computer vision consists in mini-
mizing " Az on the ellipsoid given by an equation of the form

x' Bx =1,

where B is a symmetric positive definite matrix. Since B is positive definite, it can be
diagonalized as

B=QDQ',
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where () is an orthogonal matrix and D is a diagonal matrix,
D = diag(dy, ..., d,),

with d; > 0, for i = 1,...,n. If we define the matrices B/? and B~/ by

B2 = Qdiag (Vi ..., v/d,) Q7
and

BY2 _ Q diag (1/\/d_1, e 1/@) QT7

it is clear that these matrices are symmetric, that B~"/2BB~'/2 = I, and that BY? and
B~Y2 are mutual inverses. Then if we make the change of variable

x = B Y%y,
the equation ' Bx = 1 becomes 3"y = 1, and the optimization problem
minimize z' Ax
subject to x' Bxr =1, z € R",
is equivalent to the problem
minimize y  B~Y2AB™1/%y
subject to  y'y=1, y € R,
where y = B'/2x and B~Y2AB~Y/? are symmetric.

The complex version of our basic optimization problem in which A is a Hermitian matrix
also arises in computer vision. Namely, given an n X n complex Hermitian matrix A,

maximize ¥ Ax

subject to 2z =1, z € C".

Again by Proposition 21.10 (Vol. I), the maximum value of *Az on the unit sphere is
equal to the largest eigenvalue A\; of the matrix A, and it is achieved for any unit eigenvector
u; associated with ;.

Remark: It is worth pointing out that if A is a skew-Hermitian matrix, that is, if A* = — A,
then x* Az is pure imaginary or zero.

Indeed, since z = z*Ax is a scalar, we have z* = Z (the conjugate of z), so we have
r*Ar = (2" Ax)" = 2" A%r = —x" Az,

so x* Az + 2" Ax = 2Re(z*Az) = 0, which means that 2*Ax is pure imaginary or zero.
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In particular, if A is a real matrix and if A is skew-symmetric, then
z" Az = 0.
Thus, for any real matrix (symmetric or not),
x"Ax =z " H(A)x,

where H(A) = (A+ A")/2, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the problem
of maximizing a quadratic function on the sphere. This problem was completely solved by
Golub [37] (1973). The problem is the following: given an n X n real symmetric matrix A
and an n X p matrix C,

minimize r! Az
subject to x'z=1,CTa=0, z € R"

As in Section 6.2, Golub shows that the linear constraint C'x = 0 can be eliminated as
follows: if we use a QR decomposition of C, by permuting the columns, we may assume that

R S

_ T

e (5 3o
where () is an orthogonal n x n matrix, R is an r X r invertible upper triangular matrix, and
Sis an r X (p — r) matrix (assuming C' has rank r). If we let

_ Y
.T—QT(Z>,

where y € R™ and z € R, then C'"z = 0 becomes

RT 0 R" 0\ (y
i — 107 _
(ST O> Qu = (ST O> <z) =0,

which implies y = 0, and every solution of C"z = 0 is of the form

o).

minimize (yT ZT)QAQT <Z>
subject to 2’z =1, z€ R"",
y=0,yeR"

Our original problem becomes
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Thus the constraint C'Tz = 0 has been simplified to y = 0, and if we write

Gy G
A T — 11 12
Q Q (Girz G22) )

our problem becomes

minimize 2T Gonz

subject to 2"z =1, z € R,

a standard eigenvalue problem.

Remark: There is a way of finding the eigenvalues of (G55 which does not require the Q)R-
factorization of C. Observe that if we let

0 0
=(04):

JQAQT T = (8 GO) ,

P=Q'JQ,

then

and if we set

then
PAP =QTJQAQTJQ.

Now, QT JQAQTJQ and JQAQ'TJ have the same eigenvalues, so PAP and JQAQ'"J also
have the same eigenvalues. It follows that the solutions of our optimization problem are
among the eigenvalues of K = PAP, and at least r of those are 0. Using the fact that CC™
is the projection onto the range of C, where C* is the pseudo-inverse of C, it can also be

shown that
P=1-CC",

the projection onto the kernel of CT. So P can be computed directly in terms of C. In
particular, when n > p and C has full rank (the columns of C are linearly independent),

then we know that C* = (CTC)'CT and
P=I-cCcCcTc)y'c’.

This fact is used by Cour and Shi [26] and implicitly by Yu and Shi [83].

The problem of adding affine constraints of the form N 'z = t, where t # 0, also comes
up in practice. At first glance, this problem may not seem harder than the linear problem in
which ¢ = 0, but it is. This problem was extensively studied in a paper by Gander, Golub,
and von Matt [36] (1989).
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Gander, Golub, and von Matt consider the following problem: Given an (n+m) x (n-+m)
real symmetric matrix A (with n > 0), an (n+m) xm matrix N with full rank, and a nonzero
vector ¢ € R™ with ||(NT)*¢|| <1 (where (NT)" denotes the pseudo-inverse of NT),

minimize x' Az

subject to x'x =1, Nz =t z e R"™.

The condition ||(N T)*75“ < 1 ensures that the problem has a solution and is not trivial.
The authors begin by proving that the affine constraint N'z = ¢ can be eliminated. One
way to do so is to use a QR decomposition of N. If

v=r(®).

where P is an orthogonal (n + m) X (n + m) matrix and R is an m X m invertible upper
triangular matrix, then if we observe that

z' Axv =2 PPTAPP 'z,
N'z=(RT0)P'x =t

' x=2"PP'x =1,

+., (B IT
PAP_(F -

and if we write

where B is an m X m symmetric matrix, C' is an n X n symmetric matrix, [' is an m x n

matrix, and
Plo=(Y
Z Y

2" Ar =y "By + 22Ty + 2" Cz,
R'y=t,
yTy +2Tz=1.

with y € R™ and z € R", we then get

Thus
y=(R")™t,

and if we write
s2=1-— yTy >0

and
b="Ty,
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we get the simplified problem

Unfortunately, if b # 0, Proposition 21.10 (Vol. I) is no longer applicable. It is still
possible to find the minimum of the function z'Cz + 22"b using Lagrange multipliers, but
such a solution is too involved to be presented here. Interested readers will find a thorough

minimize 2T024+22"h

subject to 2"z =s%, z € R™.

discussion in Gander, Golub, and von Matt [36].

6.4 Summary

The main concepts and results of this chapter are listed below:

Quadratic optimization problems; quadratic functions.

Symmetric positive definite and positive semidefinite matrices.

The positive semidefinite cone ordering.

Existence of a global minimum when A is symmetric positive definite.
Constrained quadratic optimization problems.

Lagrange multipliers; Lagrangian.

Primal and dual problems.

Quadratic optimization problems: the case of a symmetric invertible matrix A.
Quadratic optimization problems: the general case of a symmetric matrix A.
Adding linear constraints of the form CTz = 0.

Adding affine constraints of the form C'Tx = ¢, with ¢ # 0.

Maximizing a quadratic function over the unit sphere.

Maximizing a quadratic function over an ellipsoid.

Maximizing a Hermitian quadratic form.

Adding linear constraints of the form C'Tz = 0.

Adding affine constraints of the form N'x = ¢, with ¢ # 0.
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6.5 Problems

Problem 6.1. Prove that the relation
A>B

between any two nxn matrices (symmetric or not) iff A— B is symmetric positive semidefinite
is indeed a partial order.

Problem 6.2. (1) Prove that if A is symmetric positive definite, then so is A~

(2) Prove that if C' is a symmetric positive definite m x m matrix and A is an m X n
matrix of rank n (and so m > n and the map z — Az is injective), then ATC A is symmetric
positive definite.

Problem 6.3. Find the minimum of the function

1
Q(x1,x2) = 5(255% + a3)

subject to the constraint
1 — T9 = 3.

Problem 6.4. Consider the problem of minimizing the function

1
flz) = §xTAx —z'b

in the case where we add an affine constraint of the form Oz = t, with t € R™ and t # 0,
and where C'is an n x m matrix of rank m < n. As in Section 6.2, use a () R-decomposition

e r (7).

where P is an orthogonal n X n matrix and R is an m X m invertible upper triangular matrix,

and write
z

R'y=t.

Give the details of the reduction of this constrained minimization problem to an uncon-
strained minimization problem involving the matrix P AP.

to deduce that

Problem 6.5. Find the maximum and the minimum of the function

Q(z,y) = (z y) (; ?) Cj)

on the unit circle 2% + y? = 1.



Chapter 7

Schur Complements and Applications

Schur complements arise naturally in the process of inverting block matrices of the form
A B
M —
and in characterizing when symmetric versions of these matrices are positive definite or
positive semidefinite. These characterizations come up in various quadratic optimization

problems; see Boyd and Vandenberghe [18], especially Appendix B. In the most general
case, pseudo-inverses are also needed.

In this chapter we introduce Schur complements and describe several interesting ways in
which they are used. Along the way we provide some details and proofs of some results from
Appendix A.5 (especially Section A.5.5) of Boyd and Vandenberghe [18].

7.1 Schur Complements
Let M be an n x n matrix written as a 2 X 2 block matrix
A B
u=(c 1)

where A is a p X p matrix and D is a ¢ X ¢ matrix, with n = p + ¢ (so B is a p X ¢ matrix
and C'is a ¢ X p matrix). We can try to solve the linear system

(e ) () -()

Ax+ By = ¢
Cx+ Dy = d,

that is,

189
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by mimicking Gaussian elimination. If we assume that D is invertible, then we first solve
for y, getting
Y= D71<d - C‘r)u
and after substituting this expression for y in the first equation, we get
Az + B(D*(d— Cx)) = c,
that is,
(A— BD 'C)xr =c— BD'd.

If the matrix A — BD!C' is invertible, then we obtain the solution to our system
r=(A—-BD'C)"'(c— BD'd),
y=DYd—-C(A-BD'C)*(c— BD'd)).

If A is invertible, then by eliminating x first using the first equation, we obtain analogous

formulas involving the matrix D — CA~!B. The above formulas suggest that the matrices
A — BD7'C and D — CA™'B play a special role and suggest the following definition:

Definition 7.1. Given any n x n block matrix of the form
A B
= )
where A is a p X p matrix and D is a ¢ X ¢ matrix, with n = p + ¢ (so B is a p X ¢ matrix
and C'is a ¢ X p matrix), if D is invertible, then the matrix A — BD~'C is called the Schur

complement of D in M. If A is invertible, then the matrix D — CA™!'B is called the Schur
complement of A in M.

The above equations written as
r=(A-BD'C)'c—(A-BD'C)"'BD 4,
y=-D'C(A-BD'C)'c
+ (D' +D7'C(A—- BD'C)'BD ),
yield a formula for the inverse of M in terms of the Schur complement of D in M, namely

A B\ (A— BD~'C)! —(A— BD'C)"'BD"!
¢ D) ~\-D'C(A-BD'C)' D '4+D'C(A-BD'C)"'BD!)"

A moment of reflection reveals that

A B\ (A— BD'C)! 0\ /I —BD!
¢ D) ~\-D'C(A-BD'C)™' p)J\o 1 )
and then

(B8 (he DO 2) )

By taking inverses, we obtain the following result.
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Proposition 7.1. If the matriz D s invertible, then

A B\ (I BD*\ (A-BD'C 0 I 0
C D) \0 I 0 D)\D™'C 1)

The above expression can be checked directly and has the advantage of requiring only
the invertibility of D.

Remark: If A is invertible, then we can use the Schur complement D — CA™'B of A to
obtain the following factorization of M:

A BY (I 0)\/[A 0 I A'B
¢ p) - \ca* 1)\o p-ca'B)\o 1 )

If D — CA™'B is invertible, we can invert all three matrices above, and we get another
formula for the inverse of M in terms of (D — CA™!B), namely,

A B\' [AT'4A'B(D—CA'B)"'ICA™! —A'B(D - CA'B)™!
c D) —(D—CA™'B)"1CA™! (D — CA-'B)~!

If A,D and both Schur complements A — BD~'C and D — CA™!'B are all invertible, by
comparing the two expressions for M ! we get the (non-obvious) formula

(A-BD'C) ' = A '+ A'B(D - CA'B)~'cA™".

Using this formula, we obtain another expression for the inverse of M involving the Schur
complements of A and D (see Horn and Johnson [43]):

Proposition 7.2. If A, D and both Schur complements A — BD~*C and D — CA™'B are
all invertible, then

(3 2) - (LdteBafionm ol )

If we set D = I and change B to —B, we get
(A+BO) ' =A"1 - A'B(I-CA'B)'CA™,

a formula known as the matriz inversion lemma (see Boyd and Vandenberghe [18], Appendix
C.4, especially C.4.3).
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7.2 Symmetric Positive Definite Matrices and
Schur Complements

If we assume that our block matrix M is symmetric, so that A, D are symmetric and C' = BT,
then we see by Proposition 7.1 that M is expressed as

o (A BY_(I BD™\(A=BD'BT 0\ (I BD™'
~\B" D) \o 1 0 D/ \0O I ’
which shows that M is similar to a block diagonal matrix (obviously, the Schur complement,

A — BD7 BT, is symmetric). As a consequence, we have the following version of “Schur’s
trick” to check whether M > 0 for a symmetric matrix.

Proposition 7.3. For any symmetric matrix M of the form

A B
(38
if C s invertible, then the following properties hold:

(1) M =0 iff C =0 and A— BC™*BT = 0.
(2) If C = 0, then M = 0 iff A— BC7'BT = 0.

Proof. (1) Since C'is invertible, we have
o (A BY_ (I BCY (A=BCT'BT 0\ (I BCT' )
—\BT C) \o 1 0 C)\0 1 ’
Observe that )
I Bc-\\"' (I —BC™
0 1 ~\0 I ’
so (x) yields

I —BC-"\ (A B\ (I -BC™"\' [(A-BC'BT 0
0 I BT ¢)\o I - 0 c)

and we know that for any symmetric matrix 7', here 7' = M, and any invertible matrix NV,

here o1
I —BC~
v=( ),

the matrix 7T is positive definite (T = 0) iff NTNT (which is obviously symmetric) is positive
definite (NTNT = 0). But a block diagonal matrix is positive definite iff each diagonal block
is positive definite, which concludes the proof.

(2) This is because for any symmetric matrix 7" and any invertible matrix N, we have
T =0iff NTNT = 0. O
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Another version of Proposition 7.3 using the Schur complement of A instead of the
Schur complement of C' also holds. The proof uses the factorization of M using the Schur
complement of A (see Section 7.1).

Proposition 7.4. For any symmetric matrix M of the form

A B
M:(BT C«)a

if A is invertible then the following properties hold:
(1) M =0 iff A= 0 and C — B"A7'B = 0.
(2) If A= 0, then M =0 iff C — BTA™1B = 0.
Here is an illustration of Proposition 7.4(2). Consider the nonlinear quadratic constraint
(Az 4+ b)"(Az +b) < c'z +d,

were A € M,,(R), z,b,¢ € R" and d € R. Since obviously I = I, is invertible and I > 0, we

have Ap
1 T+
((Aas—i—b)T ch—i-d) =0
iff c"e+d— (Az+b)"(Az +b) = 0iff (Az +b)"(Az +b) < ¢'x + d, since the matrix (a
scalar) ¢'x +d — (Az +b) " (Az + b) is the Schur complement of I in the above matrix.

The trick of using Schur complements to convert nonlinear inequality constraints into
linear constraints on symmetric matrices involving the semidefinite ordering > is used exten-
sively to convert nonlinear problems into semidefinite programs; see Boyd and Vandenberghe

18].

When C'is singular (or A is singular), it is still possible to characterize when a symmetric
matrix M as above is positive semidefinite, but this requires using a version of the Schur
complement involving the pseudo-inverse of C, namely A — BC*BT (or the Schur comple-
ment, C — BT ATB, of A). We use the criterion of Proposition 6.5, which tells us when a
quadratic function of the form %xTPx — b has a minimum and what this optimum value
is (where P is a symmetric matrix).

7.3 Symmetric Positive Semidefinite Matrices and
Schur Complements

We now return to our original problem, characterizing when a symmetric matrix

A B
M:(BT O)
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is positive semidefinite. Thus, we want to know when the function
flay)=(z"y") (;T g) (Z) =2 Ar+ 22" By +y' Cy

has a minimum with respect to both x and y. If we hold y constant, Proposition 6.5 implies
that f(z,y) has a minimum iff A > 0 and (I — AA")By = 0, and then the minimum value
is

fa*,y) = —y"BTA*By +y'Cy = y"(C — BTA*B)y.
Since we want f(z,y) to be uniformly bounded from below for all x,y, we must have (I —
AAT)B = 0. Now f(z*,y) has a minimum iff C — B"ATB = 0. Therefore, we have
established that f(x,y) has a minimum over all x,y iff
Ax0, I-AATB=0, C—-B'ATB>0.
Similar reasoning applies if we first minimize with respect to y and then with respect to x,
but this time, the Schur complement A — BCTBT of C is involved. Putting all these facts

together, we get our main result:

Theorem 7.5. Given any symmetric matrix

A B
(i o)

the following conditions are equivalent:
(1) M =0 (M is positive semidefinite).
(2) A=0, (I-—AAT")B=0, C—-BTA'B=0.

(3) C=0, (I-CC*HBT =0, A—BC*BT 0.

If M > 0 as in Theorem 7.5, then it is easy to check that we have the following factor-
izations (using the fact that ATAAT = AT and CTCC*T = C*):

A B\ (I BCT\ [(A-BC*BT 0 1 0
BT ¢) \o I 0 c)\Ct*B" I

A B\ [ I 0\/(A 0 I A'B
BT ¢)~\BTat 1)\0 c-BTA*B)\0 I )

and
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7.4 Summary

The main concepts and results of this chapter are listed below:
e Schur complements.
e The matrix inversion lemma.
e Symmetric positive definite matrices and Schur complements.

e Symmetric positive semidefinite matrices and Schur complements.

7.5 Problems

Problem 7.1. Prove that maximizing the function g(A) given by
g()‘) =co+ Acp — (bo + )\b1)T(A0 + )\A1)+<bo + )\bl),

subject to
AO + )\Al i O, bo + /\bl € range(Ao + /\Al),
with Ay, A; some n X n symmetric positive semidefinite matrices, by, by € R™, and ¢y, ¢; € R,
is equivalent to maximizing v subject to the constraints
A>0

Ap + A4 by + Aby “ 0
(b(]—i‘/\bl)—r Co+)\01 -/ '

Problem 7.2. Let a4, ...,a, be m vectors in R" and assume that they span R".
(1) Prove that the matrix
m
Sl
k=1

is symmetric positive definite.

(2) Define the matrix X by

X = <2m: Wg) ) :

k=1

Zzl:1akaz a; )
=0, 1=1,...,m.

Prove that

.
a; 1

Deduce that
aiTXaigl, 1< <m.
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Problem 7.3. Consider the function g of Example 3.14 defined by
g(a,b,c) = log(ac — b*),

where ac — b > 0. We found that the Hessian matrix of ¢ is given by

1 —c? 2bc —b?
H bc)= ——— | 20c —2(b? 2ab
b ) = ey e (2(12_ " e

Use the Schur complement (of a?) to prove that the matrix —Hg(a,b,c) is symmetric
positive definite if ac — b* > 0 and a, ¢ > 0.
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Chapter 8

Convex Sets, Cones, H-Polyhedra

8.1 What is Linear Programming?

What is linear programming? At first glance, one might think that this is some style of com-
puter programming. After all, there is imperative programming, functional programming,
object-oriented programming, etc. The term linear programming is somewhat misleading,
because it really refers to a method for planning with linear constraints, or more accurately,
an optimization method where both the objective function and the constraints are linear.!

Linear programming was created in the late 1940’s, one of the key players being George
Dantzing, who invented the simplex algorithm. Kantorovitch also did some pioneering work
on linear programming as early as 1939. The term linear programming has a military con-
notation because in the early 1950’s it was used as a synonym for plans or schedules for
training troops, logistical supply, resource allocation, etc. Unfortunately the term linear
programming is well established and we are stuck with it.

Interestingly, even though originally most applications of linear programming were in
the field of economics and industrial engineering, linear programming has become an im-
portant tool in theoretical computer science and in the theory of algorithms. Indeed, linear
programming is often an effective tool for designing approximation algorithms to solve hard
problems (typically NP-hard problems). Linear programming is also the “baby version” of
convex programming, a very effective methodology which has received much attention in
recent years.

Our goal is to present the mathematical underpinnings of linear programming, in par-
ticular the existence of an optimal solution if a linear program is feasible and bounded, and
the duality theorem in linear programming, one of the deepest results in this field. The
duality theorem in linear programming also has significant algorithmic implications but we
do not discuss this here. We present the simplex algorithm, the dual simplex algorithm, and
the primal dual algorithm. We also describe the tableau formalism for running the simplex

! Again, we witness another unfortunate abuse of terminology; the constraints are in fact affine.
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algorithm and its variants. A particularly nice feature of the tableau formalism is that the
update of a tableau can be performed using elementary row operations identical to the op-
erations used during the reduction of a matrix to row reduced echelon form (rref). What
differs is the criterion for the choice of the pivot.

However, we do not discuss other methods such as the ellipsoid method or interior points
methods. For these more algorithmic issues, we refer the reader to standard texts on linear
programming. In our opinion, one of the clearest (and among the most concise!) is Matousek
and Gardner [54]; Chvatal [24] and Schrijver [67] are classics. Papadimitriou and Steiglitz
[60] offers a very crisp presentation in the broader context of combinatorial optimization,
and Bertsimas and Tsitsiklis [14] and Vanderbei [80] are very complete.

Linear programming has to do with maximizing a linear cost function cix; + -+ + ¢, x,
with respect to m “linear” inequalities of the form

ai1T1 + -+ AinTy S b2

These constraints can be put together into an m x n matrix A = (a;;), and written more

concisely as
Ax <b.

For technical reasons that will appear clearer later on, it is often preferable to add the
nonnegativity constaints z; > 0 for ¢« = 1,...,n. We write x > 0. It is easy to show that
every linear program is equivalent to another one satisfying the constraints x > 0, at the
expense of adding new variables that are also constrained to be nonnegative. Let P(A,b) be
the set of feasible solutions of our linear program given by

P(Ab) ={z e R" | Az < b, x > 0}.
Then there are two basic questions:
(1) Is P(A,b) nonempty, that is, does our linear program have a chance to have a solution?

(2) Does the objective function ¢1x; + - - - + ¢,x, have a maximum value on P (A, b)?

The answer to both questions can be no. But if P(A, b) is nonempty and if the objective
function is bounded above (on P(A, b)), then it can be shown that the maximum of ¢;z; +
-+ + cpx,, is achieved by some xz € P(A,b). Such a solution is called an optimal solution.
Perhaps surprisingly, this result is not so easy to prove (unless one has the simplex method
at his disposal). We will prove this result in full detail (see Proposition 9.1).

The reason why linear constraints are so important is that the domain of potential optimal
solutions P (A, b) is convex. In fact, P(A,b) is a convex polyhedron which is the intersection
of half-spaces cut out by affine hyperplanes. The objective function being linear is convex,
and this is also a crucial fact. Thus, we are led to study convex sets, in particular those that
arise from solutions of inequalities defined by affine forms, but also convex cones.
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We give a brief introduction to these topics. As a reward, we provide several criteria for
testing whether a system of inequalities

Az < b, x>0

has a solution or not in terms of versions of the Farkas lemma (see Proposition 14.3 and
Proposition 11.4). Then we give a complete proof of the strong duality theorem for linear
programming (see Theorem 11.7). We also discuss the complementary slackness conditions
and show that they can be exploited to design an algorithm for solving a linear program
that uses both the primal problem and its dual. This algorithm known as the primal dual
algorithm, although not used much nowadays, has been the source of inspiration for a whole
class of approximation algorithms also known as primal dual algorithms.

We hope that this chapter and the next three will be a motivation for learning more
about linear programming, convex optimization, but also convex geometry. The “bible” in
convex optimization is Boyd and Vandenberghe [18], and one of the best sources for convex
geometry is Ziegler [84]. This is a rather advanced text, so the reader may want to begin
with Gallier [35].

8.2 Affine Subsets, Convex Sets, Affine Hyperplanes,
Half-Spaces

We view R" as consisting of column vectors (n x 1 matrices). As usual, row vectors represent

linear forms, that is linear maps ¢: R" — R, in the sense that the row vector y (a 1 x n

matrix) represents the linear form ¢ if p(z) = ya for all x € R”. We denote the space of
linear forms (row vectors) by (R™)*.

Recall that a linear combination of vectors in R" is an expression
AT+ AT,

where x4, ..., 2, € R" and where \,...,\,, are arbitrary scalars in R. Given a sequence of
vectors S = (x1,...,%,,) with z; € R™, the set of all linear combinations of the vectors in S is
the smallest (linear) subspace containing S called the linear span of S, and denoted span(.S).
A linear subspace of R™ is any nonempty subset of R" closed under linear combinations.

Definition 8.1. An affine combination of vectors in R™ is an expression
M1+ AT

where x4, ..., 2z, € R" and where \{,...,\,, are scalars in R satisfying the condition
M+ A, =1

Given a sequence of vectors S = (1, ..., x,,) with z; € R", the set of all affine combinations

of the vectors in S is the smallest affine subspace containing S called the affine hull of S
and denoted aff(.5).
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() (b)

Figure 8.1: (a) A convex set; (b) A nonconvex set

Definition 8.2. An affine subspace A of R™ is any subset of R" closed under affine combi-
nations.

If A is a nonempty affine subspace of R™, then it can be shown that V4 = {a—b | a,b € A}
is a linear subspace of R and that

A=a+Vi={a+v|veVy}
for any a € A; see Gallier [34] (Section 2.5).

Definition 8.3. Given an affine subspace A, the linear space V4 = {a — b | a,b € A} is
called the direction of A. The dimension of the nonempty affine subspace A is the dimension
of its direction Vjy.

Definition 8.4. Convex combinations are affine combinations \jzy + - - - + A\, x,, satisfying
the extra condition that \; >0 forv=1,...,m.

A convex set is defined as follows.

Definition 8.5. A subset V' of R" is convez if for any two points a,b € V', we have ¢ € V
for every point ¢ = (1 — A)a + Ab, with 0 < A < 1 (A € R). Given any two points a, b, the
notation [a, b] is often used to denote the line segment between a and b, that is,

[a,b) ={ceR"|c=(1—=XNa+ b, 0 <A< 1},

and thus a set V' is convex if [a,b] C V for any two points a,b € V' (a = b is allowed). The
dimension of a convex set V is the dimension of its affine hull aff(A).

The empty set is trivially convex, every one-point set {a} is convex, and the entire affine
space R" is convex.

It is obvious that the intersection of any family (finite or infinite) of convex sets is convex.
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Definition 8.6. Given any (nonempty) subset S of R", the smallest convex set containing
S is denoted by conv(.S) and called the convex hull of S (it is the intersection of all convex
sets containing S).

It is essential not only to have a good understanding of conv(S), but to also have good
methods for computing it. We have the following simple but crucial result.

Proposition 8.1. For any family S = (a;)ier of points in R™, the set V' of convex combina-
tions Y ..; Nia; (where Yy, Ai =1 and \; > 0) is the convex hull conv(S) of S = (a;)ier-

It is natural to wonder whether Proposition 8.1 can be sharpened in two directions:
(1) Is it possible to have a fixed bound on the number of points involved in the convex
combinations? (2) Is it necessary to consider convex combinations of all points, or is it
possible to consider only a subset with special properties?

The answer is yes in both cases. In Case 1, Carathéodory’s theorem asserts that it is
enough to consider convex combinations of n + 1 points. For example, in the plane R?, the
convex hull of a set S of points is the union of all triangles (interior points included) with
vertices in S. In Case 2, the theorem of Krein and Milman asserts that a convex set that is
also compact is the convex hull of its extremal points (given a convex set S, a point a € S
is extremal if S — {a} is also convex).

We will not prove these theorems here, but we invite the reader to consult Gallier [35] or
Berger [7].

Convex sets also arise as half-spaces cut out by affine hyperplanes.

Definition 8.7. An affine form ¢: R" — R is defined by some linear form ¢ € (R")* and
some scalar 8 € R so that

p(x) =cx+ [ forall x € R™

If ¢ # 0, the affine form ¢ specified by (¢, 3) defines the affine hyperplane (for short hyper-
plane) H(p) given by

H(p) = {z € R" | p(x) = 0} = {z € R" | cx + § = 0},
and the two (closed) half-spaces

Hi(p) ={z eR" [p(x) > 0} = {r € R" | cx + > 0},
H_(p) ={z e R" [p(r) <0} ={z e R" [ cx + 5 < 0}.

When 5 =0, we call H a linear hyperplane.



204 CHAPTER 8. CONVEX SETS, CONES, H-POLYHEDRA

Figure 8.2: Figure i. illustrates the hyperplane H(p) for ¢(z,y) = 2z + y + 3, while Figure
ii. illustrates the hyperplane H(y) for p(z,y,2) =x +y+ 2z — 1.

Both H, (p) and H_(p) are convex and H = H(p) N H_(p).

For example, ¢: R? — R with ¢(z,y) = 2x + y + 3 is an affine form defining the line
given by the equation y = —2z — 3. Another example of an affine form is ¢: R® — R
with ¢(x,y,2) = x + y + z — 1; this affine form defines the plane given by the equation
x +y + z =1, which is the plane through the points (0,0,1), (0,1,0), and (1,0,0). Both of
these hyperplanes are illustrated in Figure 8.2.

Definition 8.8. For any two vector z,y € R" with x = (z1,...,2,) and y = (y1,...,yn) We
write x <y iff o; <y, fori=1,...,n,and x > y iff y < x. In particular x > 0 iff z; > 0 for
1=1,...,n.

Certain special types of convex sets called cones and ‘H-polyhedra play an important role.
The set of feasible solutions of a linear program is an H-polyhedron, and cones play a crucial
role in the proof of Proposition 9.1 and in the Farkas—Minkowski proposition (Proposition
11.2).

8.3 Cones, Polyhedral Cones, and H-Polyhedra

Cones and polyhedral cones are defined as follows.

Definition 8.9. Given a nonempty subset S C R™, the cone C' = cone(S) spanned by S is
the convex set

k
cone(S) = {Z Ay, u; € S, € R, A\ > O},

=1
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of positive combinations of vectors from S. If S consists of a finite set of vectors, the cone
C' = cone(S) is called a polyhedral cone. Figure 8.3 illustrates a polyhedral cone.

0,0,1) (0,1,1)

(1,0,1) i a1

Figure 8.3: Let S = {(0,0,1),(1,0,1),(1,1,1),(0,1,1)}. The polyhedral cone, cone(S), is
the solid “pyramid” with apex at the origin and square cross sections.

Note that if some nonzero vector u belongs to a cone C', then \u € C for all A > 0, that
is, the ray {\u | A > 0} belongs to C.

Remark: The cones (and polyhedral cones) of Definition 8.9 are always convez. For this
reason, we use the simpler terminology cone instead of convex cone. However, there are
more general kinds of cones (see Definition 14.1) that are not convex (for example, a union
of polyhedral cones or the linear cone generated by the curve in Figure 8.4), and if we were
dealing with those we would refer to the cones of Definition 8.9 as convex cones.

Definition 8.10. An H-polyhedron, for short a polyhedron, is any subset P = (),_, C; of
R" defined as the intersection of a finite number s of closed half-spaces C;. An example of
an H-polyhedron is shown in Figure 8.6. An H-polytope is a bounded H-polyhedron, which
means that there is a closed ball B,(x) of center x and radius r > 0 such that P C B,(x).
An example of a H-polytope is shown in Figure 8.5.

By convention, we agree that R™ itself is an H-polyhedron.

Remark: The H-polyhedra of Definition 8.10 are always convex. For this reason, as in the
case of cones we use the simpler terminology H-polyhedron instead of convex H-polyhedron.
In algebraic topology, there are more general polyhedra that are not convex.
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\_/L/_\S
0,0,1)

a—

cone(S)

Figure 8.4: Let S be a planar curve in z = 1. The linear cone of S, consisting of all half rays
connecting S to the origin, is not convex.

It can be shown that an H-polytope P is equal to the convex hull of finitely many points
(the extreme points of P). This is a nontrivial result whose proof takes a significant amount
of work; see Gallier [35] and Ziegler [84].

An unbounded H-polyhedron is not equal to the convex hull of finite set of points. To
obtain an equivalent notion we introduce the notion of a V-polyhedron.

Definition 8.11. A V-polyhedron is any convex subset A C R" of the form
A =conv(Y) +cone(V) ={a+v|a€conv(Y), v € cone(V)},
where Y C R™ and V' C R™ are finite (possibly empty).
When V' = () we simply have a polytope, and when Y = ) or Y = {0}, we simply have a
cone.

It can be shown that every H-polyhedron is a V-polyhedron and conversely. This is one
of the major theorems in the theory of polyhedra, and its proof is nontrivial. For a complete
proof, see Gallier [35] and Ziegler [84].

Every polyhedral cone is closed. This is an important fact that is used in the proof
of several other key results such as Proposition 9.1 and the Farkas—Minkowski proposition
(Proposition 11.2).

Although it seems obvious that a polyhedral cone should be closed, a rigorous proof is
not entirely trivial.
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T

Figure 8.5: An icosahedron is an example of an H-polytope.

Indeed, the fact that a polyhedral cone is closed relies crucially on the fact that C' is
spanned by a finite number of vectors, because the cone generated by an infinite set may
not be closed. For example, consider the closed disk D C R? of center (0,1) and radius 1,
which is tangent to the z-axis at the origin. Then the cone(D) consists of the open upper
half-plane plus the origin (0,0), but this set is not closed.

Proposition 8.2. Every polyhedral cone C' is closed.
Proof. This is proven by showing that

1. Every primitive cone is closed, where a primitive cone is a polyhedral cone spanned by
linearly independent vectors.

2. A polyhedral cone C' is the union of finitely many primitive cones.

Assume that (ay,...,a,) are linearly independent vectors in R", and consider any se-
quence (x5

gk = Z )\l(-k)ai
i=1
of vectors in the primitive cone cone({ay,...,a;}), which means that )\;k) > 0 for i =

1,...,m and all £ > 0. The vectors z(*) belong to the subspace U spanned by (1, .., am),
and U is closed. Assume that the sequence (2¥));>¢ converges to a limit » € R". Since U
is closed and z®) € U for all k > 0, we have z € U. If we write = x1a1 + - - - + Ty, We

would like to prove that z; > 0 for i = 1,...,m. The sequence the (z¥)),>o converges to x
ifft

lim ||x(k) — :UH =0,

k00
ift

NG A
Jim (oW —af?) =0

=1
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.
. 200
20,0 conv(Y)

cone(V)

(0,-1,1) @ . (01,1)

conv(Y) + cone(V)

Figure 8.6: The “triangular trough” determined by the inequalities y — 2z < 0, y + 2z > 0,
and —2 < x < 2 is an H-polyhedron and an V-polyhedron, where Y = {(2,0,0), (—2,0,0)
and V = {(0,1,1),(0,—1,1)}.

iff
lim )\Ek) =x; 1=1,...,m.
k— o0

Since )\Z(»k) > 0 fori =1,...,m and all £ > 0, we have x; > 0 for i = 1,...,m, so
x € cone({ay,...,an}).

Next, assume that x belongs to the polyhedral cone C'. Consider a positive combination

= May + -+ \pag, (%1)
for some nonzero aq,...,a; € C, with \; > 0 and with £ minimal. Since k is minimal, we
must have \; > 0 for : = 1,..., k. We claim that (ay,...,a) are linearly independent.

If not, there is some nontrivial linear combination

pray + - -+ prag =0, (*2)

and since the a; are nonzero, p; # 0 for some at least some j. We may assume that p; <0
for some j (otherwise, we consider the family (—u;)1<i<k), so let

J={je{l,....k} | pn; <0}
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For any t € R, since x = Aja; + - - - + Agag, using (k) we get

x = ()\1 + t,u1)a1 + -+ ()\k + t,uk)ak:a (*3)

s
t= min(——ﬂ) > 0,
JjeJ /_L]

we have (A, +tp;) > 0 for i = 1,...k, but A\; + tp; = 0 for some j € J, so (x3) is an
expression of z with less that k nonzero coefficients, contradicting the minimality of & in
(%1). Therefore, (ay,...,ax) are linearly independent.

and if we pick

Since a polyhedral cone C' is spanned by finitely many vectors, there are finitely many
primitive cones (corresponding to linearly independent subfamilies), and since every x € C,
belongs to some primitive cone, C' is the union of a finite number of primitive cones. Since
every primitive cone is closed, as a union of finitely many closed sets, C' itself is closed.

The above facts are also proven in Matousek and Gardner [54] (Chapter 6, Section 5,
Lemma 6.5.3, 6.5.4, and 6.5.5). O]

Another way to prove that a polyhedral cone C' is closed is to show that C' is also a H-
polyhedron. This takes even more work; see Gallier [35] (Chapter 4, Section 4, Proposition
4.16). Yet another proof is given in Lax [51] (Chapter 13, Theorem 1).

8.4 Summary

The main concepts and results of this chapter are listed below:

e Affine combination.

e Affine hull.

e Affine subspace; direction of an affine subspace, dimension of an affine subspace.
e Convex combination.

e Convex set, dimension of a convex set.
e Convex hull.

e Affine form.

e Affine hyperplane, half-spaces.

e Cone, polyhedral cone.

e H-polyhedron, H-polytope.

e V-polyhedron, polytope.

e Primitive cone.
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8.5 Problems

Problem 8.1. Prove Proposition 8.1.

Problem 8.2. Describe an icosahedron both as an H-polytope and as a V-polytope. Do
the same thing for a dodecahedron. What do you observe?



Chapter 9

Linear Programs

In this chapter we introduce linear programs and the basic notions relating to this concept.
We define the H-polyhedron P(A,b) of feasible solutions. Then we define bounded and
unbounded linear programs and the notion of optimal solution. We define slack variables
and the important notion of linear program in standard form.

We show that if a linear program in standard form has a feasible solution and is bounded
above, then it has an optimal solution. This is not an obvious result and the proof relies on
the fact that a polyhedral cone is closed (this result was shown in the previous chapter).

Next we show that in order to find optimal solutions it suffices to consider solutions of
a special form called basic feasible solutions. We prove that if a linear program in standard
form has a feasible solution and is bounded above, then some basic feasible solution is an
optimal solution (Theorem 9.4).

Geometrically, a basic feasible solution corresponds to a wverter. In Theorem 9.6 we
prove that a basic feasible solution of a linear program in standard form is a vertex of the
polyhedron P(A,b). Finally, we prove that if a linear program in standard form has some
feasible solution, then it has a basic feasible solution (see Theorem 9.7). This fact allows the
simplex algorithm described in the next chapter to get started.

9.1 Linear Programs, Feasible Solutions, Optimal So-
lutions

The purpose of linear programming is to solve the following type of optimization problem.

211
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Definition 9.1. A Linear Program (P) is the following kind of optimization problem:

maximize cx
subject to

a1xr S b1

where x € R", ¢, aq,...,a, € (R™)* by,...,b, € R.

The linear form c¢ defines the objective function x — cx of the Linear Program (P) (from
R™ to R), and the inequalities a;z < b; and x; > 0 are called the constraints of the Linear
Program (P).

If we define the m x n matrix

a1
A= :
A,
whose rows are the row vectors aq,...,a,, and b as the column vector
by
b=1": |,
b

the m inequality constraints a;x < b; can be written in matrix form as
Az <b.
Thus the Linear Program (P) can also be stated as the Linear Program (P):

maximize cx
subject to Az <b and x > 0.

We should note that in many applications, the natural primal optimization problem
is actually the minimization of some objective function cx = cyx1 + - -+ + ¢,x,, rather its
maximization. For example, many of the optimization problems considered in Papadimitriou
and Steiglitz [60] are minimization problems.

Of course, minimizing cx is equivalent to maximizing —cx, so our presentation covers
minimization too.

Here is an explicit example of a linear program of Type (P):
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Example 9.1.

maximize 1z + Za

subject to
To—x1 <1
T, 4 629 < 15
4r; — 29 <10
x1 20, zy 20,

and in matrix form

maximize (1 1) (il)
2

subject to

Figure 9.1: The H-polyhedron associated with Example 9.1. The green point (3,2) is the
unique optimal solution.

It turns out that x; = 3,29 = 2 yields the maximum of the objective function x; + xo,
which is 5. This is illustrated in Figure 9.1. Observe that the set of points that satisfy
the above constraints is a convex region cut out by half planes determined by the lines of
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equations

IQ—JIl:l

Ty + 69 = 15
4x1 — 19 = 10
r1 =0
ro9 = 0.

In general, each constraint a;x < b; corresponds to the affine form ; given by ¢;(x) =
a;x — b; and defines the half-space H_(¢;), and each inequality z; > 0 defines the half-space
H(z;). The intersection of these half-spaces is the set of solutions of all these constraints.
It is a (possibly empty) H-polyhedron denoted P(A,b).

Definition 9.2. If P(A,b) = (), we say that the Linear Program (P) has no feasible solution,
and otherwise any x € P(A,b) is called a feasible solution of (P).

The linear program shown in Example 9.2 obtained by reversing the direction of the
inequalities 9 — 1 < 1 and 421 — 29 < 10 in the linear program of Example 9.1 has no
feasible solution; see Figure 9.2.

Example 9.2.

maximize x1+ X9

subject to
T — T9 < —1
1+ 6z < 15
To —4xy < —10
1 >0, z9 > 0.

Assume P(A,b) # 0, so that the Linear Program (P) has a feasible solution. In this case,
consider the image {cz € R |z € P(A,b)} of P(A,b) under the objective function x — cz.

Definition 9.3. If the set {cx € R | z € P(A,b)} is unbounded above, then we say that the
Linear Program (P) is unbounded.

The linear program shown in Example 9.3 obtained from the linear program of Example
9.1 by deleting the constraints 4z; — x5 < 10 and x; + 625 < 15 is unbounded.

Example 9.3.

maximize 1z + Za
subject to
T —x1 <1
1 >0, 29 > 0.
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Figure 9.2: There is no H-polyhedron associated with Example 9.2 since the blue and purple
regions do not overlap.

Otherwise, we will prove shortly that if x4 is the least upper bound of the set {cz € R |
x € P(A,b)}, then there is some p € P(A,b) such that

cp = K,

that is, the objective function x — cx has a maximum value p on P(A,b) which is achieved
by some p € P(A,b).

Definition 9.4. If the set {cx € R | x € P(A,b)} is nonempty and bounded above, any
point p € P(A,b) such that cp = max{cx € R | x € P(A,b)} is called an optimal solution
(or optimum) of (P). Optimal solutions are often denoted by an upper *; for example, p*.

The linear program of Example 9.1 has a unique optimal solution (3,2), but observe
that the linear program of Example 9.4 in which the objective function is (1/6)x; + x2 has
infinitely many optimal solutions; the maximum of the objective function is 15/6 which
occurs along the points of orange boundary line in Figure 9.1.

Example 9.4.

. 1
maximize 6x1+x2

subject to
To—11 <1
x1 + 625 < 15
4r; — 29 < 10
1 >0, 29 > 0.
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The proof that if the set {cx € R | z € P(A,b)} is nonempty and bounded above, then
there is an optimal solution p € P(A,b), is not as trivial as it might seem. It relies on the
fact that a polyhedral cone is closed, a fact that was shown in Section 8.3.

We also use a trick that makes the proof simpler, which is that a Linear Program (P)
with inequality constraints Az < b

maximize cx
subject to Az <b and x >0,

is equivalent to the Linear Program (P;) with equality constraints
maximize cZ

subject to A7 =b and 7 >0,

where A is an m x (n +m) matrix, ¢ is a linear form in (R™*™)* and Z € R"*™ given by
A= (A Im) , = (c Om) , and T = (z) ,

with x € R" and z € R™.
Indeed, AZ = b and T >0 iff
Ar+2z=b, x>0,22>0,
iff
Axr <b, x>0,
and ¢7 = cx.

Definition 9.5. The variables z are called slack variables, and a linear program of the form
(P,) is called a linear program in standard form.

The result of converting the linear program of Example 9.4 to standard form is the
program shown in Example 9.5.

Example 9.5.

. 1
maximize 6x1+x2

subject to
To—T1+21=1
Ty 4 625 + 29 = 15
4r1 —xo + 23 =10
2120, 292>0,20>20, 20>0, 23 >0.
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We can now prove that if a linear program has a feasible solution and is bounded, then
it has an optimal solution.

Proposition 9.1. Let (P,) be a linear program in standard form, with equality constraint
Az =b. If P(A,b) is nonempty and bounded above, and if p is the least upper bound of the
set {cx € R | x € P(A,b)}, then there is some p € P(A,b) such that

cp = i,

that is, the objective function x — cx has a mazximum value p on P(A,b) which is achieved
by some optimum solution p € P(A,Db).

Proof. Since u = sup{cz € R | z € P(A,b)}, there is a sequence (x*));>¢ of vectors

) € P(A,b) such that limy_. cx® = . In particular, if we write z®) = (acgk), - ,x%k))

we have xg»k) >0for j=1,...,n and for all £k > 0. Let A be the (m 4+ 1) X n matrix

=)

and consider the sequence (Az®)),~o of vectors Az® € R™. We have

~ (k) (k)
(k) _ C (k) _ Cx o Cx
= ()= () = (%)
since by hypothesis 2(¥) € P(A,b), and the constraints are Az = b and x > 0. Since by

hypothesis limy, ;oo cz® = p, the sequence (Zx(’“))kzo converges to the vector (ﬁ) . Now,

observe that each vector Az®*) can be written as the convex combination

PO S FCrY
j=1

with xg-k) > 0 and where A7 € R™*! is the jth column of A. Therefore, Az® belongs to the
polyheral cone B B B
C =cone(A',...,A") = {Az | x € R", z > 0},

and since by Proposition 8.2 this cone is closed, limy>q Az®) e C , which means that there
is some © € R™ with © > 0 such that

my . Tk _ A cu
(5) = m A= A= (5.

that is, cu = p and Au = b. Hence, u is an optimal solution of (F). ]

The next question is, how do we find such an optimal solution? It turns out that for
linear programs in standard form where the constraints are of the form Az = b and x > 0,
there are always optimal solutions of a special type called basic feasible solutions.
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9.2 Basic Feasible Solutions and Vertices

If the system Ax = b has a solution and if some row of A is a linear combination of other
rows, then the corresponding equation is redundant, so we may assume that the rows of A
are linearly independent; that is, we may assume that A has rank m, so m < n.

Definition 9.6. If A is an m x n matrix, for any nonempty subset K of {1,...,n}, let Ax
be the submatrix of A consisting of the columns of A whose indices belong to K. We denote
the jth column of the matrix A by A7.

Definition 9.7. Given a Linear Program (Fz)

maximize cx
subject to Az =0b and x > 0,

where A has rank m, a vector x € R" is a basic feasible solution of (P) if x € P(A,b) # 0,
and if there is some subset K of {1,...,n} of size m such that

(1) The matrix A is invertible (that is, the columns of A are linearly independent).
(2) z;=0forall j ¢ K.

The subset K is called a basis of x. Every index k € K is called basic, and every index
j ¢ K is called nonbasic. Similarly, the columns A* corresponding to indices k € K are
called basic, and the columns A’ corresponding to indices j ¢ K are called nonbasic. The
variables corresponding to basic indices k € K are called basic variables, and the variables
corresponding to indices j ¢ K are called nonbasic.

For example, the linear program

maximize T, + To
subject to x1+ a9+ 23 =1 and z; >0, 25 >0, x3 >0, ()

has three basic feasible solutions; the basic feasible solution K = {1} corresponds to the
point (1,0,0); the basic feasible solution K = {2} corresponds to the point (0,1,0); the
basic feasible solution K = {3} corresponds to the point (0,0,1). Each of these points
corresponds to the vertices of the slanted purple triangle illustrated in Figure 9.3. The
vertices (1,0,0) and (0, 1,0) optimize the objective function with a value of 1.

We now show that if the Standard Linear Program (P) as in Definition 9.7 has some
feasible solution and is bounded above, then some basic feasible solution is an optimal
solution. We follow Matousek and Gardner [54] (Chapter 4, Section 2, Theorem 4.2.3).

First we obtain a more convenient characterization of a basic feasible solution.
Proposition 9.2. Given any Standard Linear Program (Pp) where Az = b and A is an

m x n matriz of rank m, for any feasible solution x, if J» = {j € {1,...,n} |x; > 0}, then
x 15 a basic feasible solution iff the columns of the matriz Ay, are linearly independent.
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Figure 9.3: The H-polytope associated with Linear Program (). The objective function
(with x; — x and 25 — y) is represented by vertical planes parallel to the purple plane
x + 1y = 0.7, and reaches it maximal value when z +y = 1.

Proof. 1f x is a basic feasible solution, then there is some subset K C {1,...,n} of size m such
that the columns of Ak are linearly independent and x; = 0 for all j ¢ K, so by definition,
Js C K, which implies that the columns of the matrix A;_ are linearly independent.

Conversely, assume that z is a feasible solution such that the columns of the matrix A ;.
are linearly independent. If |J.| = m, we are done since we can pick K = J. and then z
is a basic feasible solution. If |J.| < m, we can extend J- to an m-element subset K by
adding m — |J-| column indices so that the columns of Ay are linearly independent, which
is possible since A has rank m. O

Next we prove that if a linear program in standard form has any feasible solution xy and
is bounded above, then is has some basic feasible solution z which is as good as z, in the
sense that cx > cxy.

Proposition 9.3. Let (P,) be any standard linear program with objective function cx, where
Az = b and A is an m X n matriz of rank m. If (Py) is bounded above and if x¢ is some
feasible solution of (Py), then there is some basic feasible solution T such that cx > cxg.

Proof. Among the feasible solutions z such that cz > czg (o is one of them) pick one with
the mazimum number of coordinates z; equal to 0, say z. Let

K=J. ={je{l,....,n}|z; >0}

and let s = |K|. We claim that T is a basic feasible solution, and by construction ¢z > cxy.

If the columns of Ay are linearly independent, then by Proposition 9.2 we know that x
is a basic feasible solution and we are done.
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Otherwise, the columns of Ax are linearly dependent, so there is some nonzero vector
v = (vy,...,vs) such that Axg v = 0. Let w € R" be the vector obtained by extending v by
setting w; = 0 for all j ¢ K. By construction,

Aw =A KU = 0.
We will derive a contradiction by exhibiting a feasible solution x () such that cx(ty) > cxo
with more zero coordinates than .
For this we claim that we may assume that w satisfies the following two conditions:
(1) cw > 0.
(2) There is some j € K such that w; < 0.
If cw = 0 and if Condition (2) fails, since w # 0, we have w; > 0 for some j € K, in
which case we can use —w, for which w; < 0.

If cw < 0, then ¢(—w) > 0, so we may assume that cw > 0. If w; > 0 for all j € K, since
7 is feasible, ¥ > 0, and so x(t) = Z + tw > 0 for all t > 0. Furthermore, since Aw = 0 and
T is feasible, we have

Az(t) = AT + tAw = b,
and thus z(t) is feasible for all ¢ > 0. We also have
cx(t) = e + tew.

Since cw > 0, as t > 0 goes to infinity the objective function cz(t) also tends to infinity,
contradicting the fact that is is bounded above. Therefore, some w satisfying Conditions (1)
and (2) above must exist.

We show that there is some ¢y > 0 such that cx(ty) > cxg and x(ty) = T + tow is feasible,
yet x(ty) has more zero coordinates than z, a contradiction.

Since x(t) = = + tw, we have
soifwelet I = {i € {1,...,n} | w; <0} C K, which is nonempty since w satisfies Condition

(2) above, if we pick
N
to = mln{ },
i€l w;

then ty > 0, because w; < 0 for all 7 € I, and by definition of K we have x; > 0 for all i € K.
By the definition of t; > 0 and since z > 0, we have

I(to)j:fj+t0wj >0 for alleK,

so z(tg) > 0, and z(t); = 0 for some ¢ € I. Since Ax(ty) = b (for any t), x(to) is a feasible
solution,

cx(ty) = cx + tocw > cxy + tocw > cxy,
and z(ty); = 0 for some i € I, we see that x(fy) has more zero coordinates than z, a
contradiction. ]
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Proposition 9.3 implies the following important result.

Theorem 9.4. Let (P) be any standard linear program with objective function cx, where
Az =b and A is an m X n matriz of rank m. If (P,) has some feasible solution and if it is
bounded above, then some basic feasible solution T is an optimal solution of (P).

Proof. By Proposition 9.3, for any feasible solution x there is some basic feasible solution x
such that ¢z < cx. But there are only finitely many basic feasible solutions, so one of them
has to yield the maximum of the objective function. m

Geometrically, basic solutions are exactly the vertices of the polyhedron P(A,b), a notion
that we now define.

Definition 9.8. Given an #H-polyhedron P C R", a vertex of P is a point v € P with
property that there is some nonzero linear form ¢ € (R™)* and some p € R, such that v
is the unique point of P for which the map x — cz has the maximum value p ; that is,
cy < cv=pfor all y € P — {v}. Geometrically, this means that the hyperplane of equation
cy = p touches P exactly at v. More generally, a convex subset F' of P is a k-dimensional
face of P if F has dimension k and if there is some affine form ¢(x) = cx — p such that
cy=pforally € F, and cy < p for all y € P — F. A 1-dimensional face is called an edge.

The concept of a vertex is illustrated in Figure 9.4, while the concept of an edge is
illustrated in Figure 9.5.

Figure 9.4: The cube centered at the origin with diagonal through (—1,—1,—1) and (1,1, 1)
has eight vertices. The vertex (1,1,1) is associated with the linear form = +y + z = 3.

Since a k-dimensional face F' of P is equal to the intersection of the hyperplane H ()
of equation cx = p with P, it is indeed convex and the notion of dimension makes sense.
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“

x+y=2

Figure 9.5: The cube centered at the origin with diagonal through (—1,—1,—1) and (1,1,1)
has twelve edges. The edge from (1,1,—1) to (1,1,1) is associated with the linear form
T4y =2

Observe that a 0-dimensional face of P is a vertex. If P has dimension d, then the (d — 1)-
dimensional faces of P are called its facets.

If (P) is a linear program in standard form, then its basic feasible solutions are exactly
the vertices of the polyhedron P(A,b). To prove this fact we need the following simple
proposition

Proposition 9.5. Let Ax = b be a linear system where A is an m X n matrix of rank m.
For any subset K C {1,...,n} of size m, if A is invertible, then there is at most one basic
feasible solution x € R"™ with x; =0 for all j ¢ K (of course, v >0)

Proof. In order for z to be feasible we must have Az = b. Write N = {1,...,n} — K, xg
for the vector consisting of the coordinates of x with indices in K, and xy for the vector
consisting of the coordinates of x with indices in N. Then

Ax = AKJZK +AN37N =b.
In order for = to be a basic feasible solution we must have zy = 0, so
f4}(1@( =b.

Since by hypothesis Ak is invertible, zx = A;(lb is uniquely determined. If zx > 0 then x
is a basic feasible solution, otherwise it is not. This proves that there is at most one basic
feasible solution z € R™ with z; =0 for all j ¢ K. O

Theorem 9.6. Let (P) be a linear program in standard form, where Az = b and A is an
m X n matriz of rank m. For every v € P(A,b), the following conditions are equivalent:
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(1) v is a vertex of the Polyhedron P(A,b).

(2) v is a basic feasible solution of the Linear Program (P).

Proof. First, assume that v is a vertex of P(A,b), and let ¢(x) = cx — u be a linear form
such that cy < u for all y € P(A,b) and cv = p. This means that v is the unique point of
P(A,b) for which the objective function z + cx has the maximum value p on P(A,b), so by
Theorem 9.4, since this maximum is achieved by some basic feasible solution, by uniqueness
v must be a basic feasible solution.

Conversely, suppose v is a basic feasible solution of (P) corresponding to a subset K C
{1,...,n} of size m. Let ¢ € (R™)* be the linear form defined by

o ifjek
c; =
Tl ifjé K.

By construction ¢v = 0 and ¢x < 0 for any = > 0, hence the function x — ¢z on P(A,b)
has a maximum at v. Furthermore, ¢x < 0 for any = > 0 such that xz; > 0 for some j ¢ K.
However, by Proposition 9.5, the vector v is the only basic feasible solution such that v; =0
for all j ¢ K, and therefore v is the only point of P(A,b) maximizing the function x — ¢z,
so it is a vertex. O

In theory, to find an optimal solution we try all (YZ) possible m-elements subsets K of
{1,...,n} and solve for the corresponding unique solution zx of Axx = b. Then we check
whether such a solution satisfies zx > 0, compute crg, and return some feasible xg for
which the objective function is maximum. This is a totally impractical algorithm.

A practical algorithm is the simplex algorithm. Basically, the simplex algorithm tries to
“climb” in the polyhderon P(A,b) from vertex to vertex along edges (using basic feasible
solutions), trying to maximize the objective function. We present the simplex algorithm in
the next chapter. The reader may also consult texts on linear programming. In particular,
we recommend Matousek and Gardner [54], Chvatal [24], Papadimitriou and Steiglitz [60],
Bertsimas and Tsitsiklis [14], Ciarlet [25], Schrijver [67], and Vanderbei [80].

Observe that Theorem 9.4 asserts that if a Linear Program (P) in standard form (where
Az = band A is an m X n matrix of rank m) has some feasible solution and is bounded above,
then some basic feasible solution is an optimal solution. By Theorem 9.6, the polyhedron
P(A,b) must have some vertex.

But suppose we only know that P(A,b) is nonempty; that is, we don’t know that the
objective function cx is bounded above. Does P(A, b) have some vertex?

The answer to the above question is yes, and this is important because the simplex
algorithm needs an initial basic feasible solution to get started. Here we prove that if P(A, b)
is nonempty, then it must contain a vertex. This proof still doesn’t constructively yield a
vertex, but we will see in the next chapter that the simplex algorithm always finds a vertex
if there is one (provided that we use a pivot rule that prevents cycling).
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Theorem 9.7. Let (P) be a linear program in standard form, where Ax = b and A is an
m X n matriz of rank m. If P(A,b) is nonempty (there is a feasible solution), then P(A,b)
has some vertex; equivalently, (P) has some basic feasible solution.

Proof. The proof relies on a trick, which is to add slack variables x,,11, ..., %, and use the
new objective function —(x,41 + -+ + Tpim)-

If we let A be the m x (m 4 n)-matrix, and z, T, and T be the vectors given by

T Tn+1
A=(A I,), z=|:|€eR", zT= ; €R™, i\:(;)ER’”m,

Tn Ln4m
then consider the Linear Program (P) in standard form

maximize — (Tp41 + -+ Tpam)

subject to AZ=0b and 7 > 0.

Since x; > 0 for all 4, the objective function —(z,41 + + -+ + Zp1m) is bounded above by
0. The system AZ = b is equivalent to the system

Ax +7T = b,

so for every feasible solution u € P(A,b), since Au = b, the vector (u,0,,) is also a feasible
solution of (]3), in fact an optimal solution since the value of the objective function —(x,41 +
o+ Tp1y) for T =01is 0. By Proposition 9.3, the linear program (ﬁ) has some basic feasible
solution (u*, w*) for which the value of the objective function is greater than or equal to the
value of the objective function for (u,0,,), and since (u,0,,) is an optimal solution, (u*,w*)
is also an optimal solution of (ﬁ) This implies that w* = 0, since otherwise the objective

function — (2,41 + - -+ + Zpism) would have a strictly negative value.

~

Therefore, (u*,0,,) is a basic feasible solution of (P), and thus the columns corresponding
to nonzero components of u* are linearly independent. Some of the coordinates of u* could
be equal to 0, but since A has rank m we can add columns of A to obtain a basis K associated
with u*, and u* is indeed a basic feasible solution of (P). O

The definition of a basic feasible solution can be adapted to linear programs where the
constraints are of the form Az < b, > 0; see Matousek and Gardner [54] (Chapter 4,
Section 4, Definition 4.4.2).

The most general type of linear program allows constraints of the form a;x > b; or
a;x = b; besides constraints of the form a;x < b;. The variables x; may also take negative
values. It is always possible to convert such programs to the type considered in Definition
9.1. We proceed as follows.



9.3. SUMMARY 225

Every constraint a;z > b; is replaced by the constraint —a;xz < —b;. Every equality
constraint a;x = b; is replaced by the two constraints a;x < b; and —a;z < —b;.

If there are n variables x;, we create n new variables y; and n new variables z; and
replace every variable z; by y; — z;. We also add the 2n constraints y; > 0 and z; > 0. If the
constraints are given by the inequalities Az < b, we now have constraints given by

(A —A) (Z) <b, y>0,2>0,
We replace the objective function cx by cy — cz.

Remark: We also showed that we can replace the inequality constraints Ax < b by equality
constraints Ax = b, by adding slack variables constrained to be nonnegative.

9.3 Summary
The main concepts and results of this chapter are listed below:
e Linear program.
e Objective function, constraints.
e Feasible solution.
e Bounded and unbounded linear programs.
e Optimal solution, optimum.
e Slack variables, linear program in standard form.
e Basic feasible solution.
e Basis of a variable.
e Basic, nonbasic index, basic, nonbasic variable.

e Vertex, face, edge, facet.

9.4 Problems

Problem 9.1. Convert the following program to standard form:

maximize x1 + Ta
subject to
To—x1 <1
x1 + 629 < 15
— 4z, + 29 > 10.
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Problem 9.2. Convert the following program to standard form:

maximize 3xp — 2x9
subject to
2r] —x9 < 4
Ty +3x9 > 5
T > 0.

Problem 9.3. The notion of basic feasible solution for linear programs where the constraints
are of the form Az < b, z > 0 is defined as follows. A basic feasible solution of a (general)
linear program with n variables is a feasible solution for which some n linearly independent
constraints hold with equality.

Prove that the definition of a basic feasible solution for linear programs in standard form
is a special case of the above definition.

Problem 9.4. Consider the linear program

maximize x1 + X9
subject to
1+ T2 < 1.

Show that none of the optimal solutions are basic.
Problem 9.5. The standard n-simplex is the subset A" of R"*! given by
A" ={(x1,.. . Tpp) ER™ |21+ + 2y =1, 2, >0, 1 <i<n+1}.

(1) Prove that A™ is convex and that it is the convex hull of the n+1 vectors ey, ... e,41,
where e; is the ith canonical unit basis vector, i =1,...,n+ 1.

(2) Prove that A" is the intersection of n + 1 half spaces and determine the hyperplanes
defining these half-spaces.

Remark: The volume under the standard simplex A™ is 1/(n + 1)!.
Problem 9.6. The n-dimensional cross-polytope is the subset X P, of R" given by
XP,={(x1,...,2,) € R" | |z1| + -+ + |2, < 1}

(1) Prove that X P, is convex and that it is the convex hull of the 2n vectors +e;, where
e; is the ¢th canonical unit basis vector, : = 1,...,n.

(2) Prove that X P, is the intersection of 2" half spaces and determine the hyperplanes
defining these half-spaces.

Remark: The volume of X P, is 2" /nl.
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Problem 9.7. The n-dimensional hypercube is the subset C,, of R™ given by
Co= {1, 2,) €R" |z < 1,1 < <},

(1) Prove that (), is convex and that it is the convex hull of the 2" vectors (£1,...,+1),
1=1,...,n.

(2) Prove that C), is the intersection of 2n half spaces and determine the hyperplanes
defining these half-spaces.

Remark: The volume of C,, is 2.
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Chapter 10

The Simplex Algorithm

10.1 The Idea Behind the Simplex Algorithm

The simplex algorithm, due to Dantzig, applies to a linear program (P) in standard form,
where the constraints are given by Az = b and x > 0, with A a m X n matrix of rank
m, and with an objective function z — cz. This algorithm either reports that (P) has no
feasible solution, or that (P) is unbounded, or yields an optimal solution. Geometrically,
the algorithm climbs from vertex to vertex in the polyhedron P(A,b), trying to improve
the value of the objective function. Since vertices correspond to basic feasible solutions, the
simplex algorithm actually works with basic feasible solutions.

Recall that a basic feasible solution x is a feasible solution for which there is a subset
K C {1,...,n} of size m such that the matrix Ax consisting of the columns of A whose
indices belong to K are linearly independent, and that z; = 0 for all j ¢ K. We also let
J-(x) be the set of indices

Jo(z)={je{1,....,n}|z; >0},

so for a basic feasible solution z associated with K, we have J.(z) C K. In fact, by
Proposition 9.2, a feasible solution x is a basic feasible solution iff the columns of A;_(,) are
linearly independent.

If J.(z) had cardinality m for all basic feasible solutions z, then the simplex algorithm
would make progress at every step, in the sense that it would strictly increase the value of the
objective function. Unfortunately, it is possible that |Js(z)| < m for certain basic feasible
solutions, and in this case a step of the simplex algorithm may not increase the value of the
objective function. Worse, in rare cases, it is possible that the algorithm enters an infinite
loop. This phenomenon called cycling can be detected, but in this case the algorithm fails
to give a conclusive answer.

Fortunately, there are ways of preventing the simplex algorithm from cycling (for exam-
ple, Bland’s rule discussed later), although proving that these rules work correctly is quite
involved.

229
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The potential “bad” behavior of a basic feasible solution is recorded in the following
definition.

Definition 10.1. Given a Linear Program (P) in standard form where the constraints are
given by Ax = b and x > 0, with A an m x n matrix of rank m, a basic feasible solution z
is degenerate if |J< (x)| < m, otherwise it is nondegenerate.

The origin 0,,, if it is a basic feasible solution, is degenerate. For a less trivial example,
x = (0,0,0,2) is a degenerate basic feasible solution of the following linear program in which
m =2 and n = 4.

Example 10.1.

maximize o
subject to
— T+ 2o +23=0
1+ x4 =2
120, 292>0, 23>0, 24 > 0.

The matrix A and the vector b are given by

-1 110 0
a=(3 o0 ) =)

and if z = (0,0,0,2), then J- () = {4}. There are two ways of forming a set of two linearly
independent columns of A containing the fourth column.

Given a basic feasible solution x associated with a subset K of size m, since the columns
of the matrix Ay are linearly independent, by abuse of language we call the columns of Ag
a basis of x.

If u is a vertex of (P), that is, a basic feasible solution of (P) associated with a basis
K (of size m), in “normal mode,” the simplex algorithm tries to move along an edge from
the vertex u to an adjacent vertex v (with u,v € P(A,b) C R™) corresponding to a basic
feasible solution whose basis is obtained by replacing one of the basic vectors A* with k € K
by another nonbasic vector A7 for some j ¢ K, in such a way that the value of the objective
function is increased.

Let us demonstrate this process on an example.
Example 10.2. Let (P) be the following linear program in standard form.
maximize x; + X9
subject to
—x1+ a2 ta3=1
1 +x4=3
To+ x5 = 2
120, 2920, 23>0, x4 >0, z5 > 0.
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The matrix A and the vector b are given by

-1
A=

_ o

1
0
0

O = O

1
0

Figure 10.1: The planar H-polyhedron associated with Example 10.2. The initial basic
feasible solution is the origin. The simplex algorithm first moves along the horizontal orange
line to feasible solution at vertex wu;. It then moves along the vertical red line to obtain the
optimal feasible solution us.

The vector ug = (0,0, 1,3,2) corresponding to the basis K = {3,4,5} is a basic feasible
solution, and the corresponding value of the objective function is 0 + 0 = 0. Since the
columns (A3, A%, A5) corresponding to K = {3,4,5} are linearly independent we can express

Al and A? as
Al — —A3 + A4
A% = A3+ A°.
Since
1A% +3A% +24° = Ayy = b,
for any 6 € R, we have
b=1A%+ 34 +24° — A +0A"

= 1A4° + 3A" + 24° — 9(— A + A*) + 9 A
=0A' + (14 0)A4° + (3 —0)A" +2A°,
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and

b=1A%+3A% +2A4° — A% + HA?
= 14% + 3A" + 24° — (A + A%) 4+ 9A°
=0A% + (1 - 0)A® + 3A" + (2 — 0) A°.

In the first case, the vector (0,0,1 + 60,3 — 6,2) is a feasible solution iff 0 < 6§ < 3, and
the new value of the objective function is 6.

In the second case, the vector (0,60,1 —6,3,2 —6,1) is a feasible solution iff 0 < § < 1,
and the new value of the objective function is also 6.

Consider the first case. It is natural to ask whether we can get another vertex and increase
the objective function by setting to zero one of the coordinates of (0,0,1+6,3—6,2), in this
case the fouth one, by picking # = 3. This yields the feasible solution (3,0,4,0,2), which
corresponds to the basis (A!, A%, A%), and so is indeed a basic feasible solution, with an
improved value of the objective function equal to 3. Note that A* left the basis (A3, A1, A%)
and Al entered the new basis (A, A3 A5).

We can now express A% and A? in terms of the basis (A!, A3, A%), which is easy to do
since we already have A' and A2 in term of (A3, A% A®), and A' and A* are swapped. Such
a step is called a pivoting step. We obtain

A2:A3+A5
At = A 4 AP,

Then we repeat the process with u; = (3,0,4,0,2) and the basis (A, A3, A%). We have

b=3A" +4A% 4 24° — 9A* + 0 A*
= 3A' 4 4A% + 245 — 9(A® + AP) + O A
=3A'+0A* + (4 —0)A® + (2 - 0) A%,

and

b=3A"+4A% +2A4° — hA* + 0 A*
= 3A' +4A% + 245 — (A" + A3) 4 9A*
=(3—0)A" + (4 —0)A> + 9A* + 245

In the first case, the point (3,60,4 — 6,0,2 — 0) is a feasible solution iff 0 < § < 2, and the
new value of the objective function is 3+ 6. In the second case, the point (3—6,0,4—0,0,2)
is a feasible solution iff 0 < # < 3, and the new value of the objective function is 3 — . To
increase the objective function, we must choose the first case and we pick § = 2. Then we
get the feasible solution uy = (3,2,2,0,0), which corresponds to the basis (A, A% A3), and
thus is a basic feasible solution. The new value of the objective function is 5.
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Next we express A* and A° in terms of the basis (A, A% A3). Again this is easy to do
since we just swapped A% and A? (a pivoting step), and we get

A5:A2_A3
At = Al + A3

We repeat the process with uy = (3,2,2,0,0) and the basis (A, A%, A3). We have

=3A' 4+ 2A% + 24 — A" + 9A*
=3A' +24% + 243 — (A" 4 A%) 4 0A*
=(3-0)A" +2A% + (2 - 0)A® + 0 A*,

and

b=3A"+242 4+ 243 — A + HA>
= 3A' + 24 + 243 — (A% — A3) - 0A°
=3A"+ (2-0)A*+ (2+0)A® + 0A°.

In the first case, the point (3 —0,2,2 —6,0,0) is a feasible solution iff 0 < 6 < 2, and the
value of the objective function is 5 — 6. In the second case, the point (3,2 — 60,2+ 6,0,0) is
a feasible solution iff 0 < # < 2, and the value of the objective function is also 5 — . Since
we must have § > 0 to have a feasible solution, there is no way to increase the objective
function. In this situation, it turns out that we have reached an optimal solution, in our
case uy = (3,2,2,0,0), with the maximum of the objective function equal to 5.

We could also have applied the simplex algorithm to the vertex uy = (0,0, 1,3,2) and to
the vector (0,6,1 —6,3,2 — 6, 1), which is a feasible solution iff 0 < 6§ < 1, with new value
of the objective function #. By picking # = 1, we obtain the feasible solution (0,1,0,3,1),
corresponding to the basis (A%, A%, A%), which is indeed a vertex. The new value of the
objective function is 1. Then we express A' and A? in terms the basis (A%, A*] A%) obtaining

A1:A4—A3
AP =A% - AP

and repeat the process with (0,1,0,3,1) and the basis (A2, A, A5). After three more steps
we will reach the optimal solution us = (3,2,2,0,0).

Let us go back to the linear program of Example 10.1 with objective function z5 and
where the matrix A and the vector b are given by

-1 110 0
=300 =)

Recall that ug = (0,0, 0,2) is a degenerate basic feasible solution, and the objective function
has the value 0. See Figure 10.2 for a planar picture of the H-polyhedron associated with
Example 10.1.
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Figure 10.2: The planar H-polyhedron associated with Example 10.1. The initial basic
feasible solution is the origin. The simplex algorithm moves along the slanted orange line to
the apex of the triangle.

Pick the basis (A3, A%). Then we have

Al — —A3 4 A4
A2 — A3
and we get
b=2A4" —9A' +9A!
=24* — (- A% + A*) +0A"
=0A" + A% + (2 - 0)A,
and

b=2A"— A* + A
=2A" — 9A® + 9 A
=0A? — A + 2A%.

In the first case, the point (0,0,6,2 — ) is a feasible solution iff 0 < 6 < 2, and the value of
the objective function is 0, and in the second case the point (0,60, —0,2) is a feasible solution
iff # = 0, and the value of the objective function is #. However, since we must have § = 0 in
the second case, there is no way to increase the objective function either.

It turns out that in order to make the cases considered by the simplex algorithm as
mutually exclusive as possible, since in the second case the coefficient of # in the value of
the objective function is nonzero, namely 1, we should choose the second case. We must
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pick # = 0, but we can swap the vectors A3 and A? (because A? is coming in and A% has
the coefficient —6, which is the reason why 6 must be zero), and we obtain the basic feasible
solution u; = (0,0,0,2) with the new basis (A%, A?). Note that this basic feasible solution
corresponds to the same vertex (0,0, 0,2) as before, but the basis has changed. The vectors
A' and A3 can be expressed in terms of the basis (A2, A*) as

AIZ—A2+A4
A3 = A%

We now repeat the procedure with u; = (0,0,0,2) and the basis (A2, A*), and we get

b=24% — A" +9A
=24 — 9(—A* + A) + 0 A"
= A" + 047 + (2 — 9) A%,

and

bh=2A% —9A3 +9A3
= 2A* —0A? + 0A3
= —0A% +0A3 +2A%,

In the first case, the point (6, 6,0,2—6) is a feasible solution iff 0 < § < 2 and the value of the
objective function is #, and in the second case the point (0, —0,6,2) is a feasible solution iff
6 = 0 and the value of the objective function is #. In order to increase the objective function
we must choose the first case and pick 6 = 2. We obtain the feasible solution uy = (2,2,0,0)
whose corresponding basis is (A, A?) and the value of the objective function is 2.

The vectors A® and A* are expressed in terms of the basis (A, A?) as
A% = A2
A= AL 4 A3,
and we repeat the procedure with uy = (2,2,0,0) and the basis (A, A%). We get
b=2A" +2A% — A3 + 9A®

=2A' 4242 — A% + A3
= 24"+ (2 - 0)A* + 0A%,

and

b=2A" 4+ 24? — 9A* + A
=2A" 4+ 2A% — 9(A' + A3) 4 9A*
= (2-0)A' +24% — 9A® + 9A*.
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In the first case, the point (2,2 — 6,0, 60) is a feasible solution iff 0 < § < 2 and the value of
the objective function is 2 — 6, and in the second case, the point (2 — 6,2, —6,0) is a feasible
solution iff § = 0 and the value of the objective function is 2. This time there is no way
to improve the objective function and we have reached an optimal solution uy = (2,2,0,0)
with the maximum of the objective function equal to 2.

Let us now consider an example of an unbounded linear program.

Example 10.3. Let (P) be the following linear program in standard form.

maximize
subject to
T — 2o +a3=1
— T+ 2+ x4 =2
1 >0, 202>0, 23>0, 24 >0.

The matrix A and the vector b are given by

Figure 10.3: The planar H-polyhedron associated with Example 10.3. The initial basic
feasible solution is the origin. The simplex algorithm first moves along the horizontal indigo
line to basic feasible solution at vertex (1,0). Any optimal feasible solution occurs by moving
along the boundary line parameterized by the orange arrow 0(1,1).

The vector ug = (0,0,1,2) corresponding to the basis K = {3,4} is a basic feasible
solution, and the corresponding value of the objective function is 0. The vectors A! and A2
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are expressed in terms of the basis (A3, A%) by

Al — A3 o A4
A% = — A% 4 AL

Starting with uy = (0,0, 1, 2), we get

b= A% +2A4* —9A' 4 0A"
= A3 4 24% — 9(A® — AY) +0A
=0A' + (1 - 0)A% + (2+0)AY,

and

b= A%+ 24" — A% + 0A?
= A% 4 2A% — 9(—A% + AY) + 042
=A%+ (1+0)A° + (2 — 0) A

In the first case, the point (6,0,1 — 6,2+ 0) is a feasible solution iff 0 < 6 < 1 and the value
of the objective function is €, and in the second case, the point (0,6,1+6,2 — @) is a feasible
solution iff 0 < # < 2 and the value of the objective function is 0. In order to increase the
objective function we must choose the first case, and we pick # = 1. We get the feasible
solution u; = (1,0,0,3) corresponding to the basis (A!, A%), so it is a basic feasible solution,
and the value of the objective function is 1.

The vectors A? and A3 are given in terms of the basis (A, A?) by
A=A
AP = Al + AL
Repeating the process with u; = (1,0,0, 3), we get

b= A" +3A" — 0A* + 0 A
= Al 434 — 9(—A") + 9A?
=(14+0)A' +0A% + 3A%,

and

b= A' +3A* —0A> +0A>
= A + 34 — (A" + AY) + A3
= (1-0)A" + 0A% + (3 — 9)A™.

In the first case, the point (1 + 6,6,0,3) is a feasible solution for all § > 0 and the value
of the objective function if 1 + #, and in the second case, the point (1 —6,0,0,3 —0) is a
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feasible solution iff 0 < # < 1 and the value of the objective function is 1 — 6. This time, we
are in the situation where the points

(1+46,6,0,3) = (1,0,0,3) +6(1,1,0,0), 6>0

form an infinite ray in the set of feasible solutions, and the objective function 1 + € is
unbounded from above on this ray. This indicates that our linear program, although feasible,
is unbounded.

Let us now describe a step of the simplex algorithm in general.

10.2 The Simplex Algorithm in General

We assume that we already have an initial vertex ug to start from. This vertex corresponds
to a basic feasible solution with basis Kj;. We will show later that it is always possible to
find a basic feasible solution of a Linear Program (P) is standard form, or to detect that (P)
has no feasible solution.

The idea behind the simplex algorithm is this: Given a pair (u, K) consisting of a basic
feasible solution v and a basis K for u, find another pair (u™, K) consisting of another basic
feasible solution u™ and a basis Kt for u*, such that K is obtained from K by deleting
some basic index k£~ € K and adding some nonbasic index j* ¢ K, in such a way that the
value of the objective function increases (preferably strictly). The step which consists in
swapping the vectors A~ and A7" is called a pivoting step.

Let u be a given vertex corresponds to a basic feasible solution with basis K. Since the
m vectors A* corresponding to indices k € K are linearly independent, they form a basis, so
for every nonbasic j ¢ K, we write

A=Al AR (%)

keK

We let ﬂ( € R™ be the vector given by 'y}{ = (vi) rex - Actually, since the vector ﬂ( depends
on K, to be very precise we should denote its components by ('y}() k, but to simplify notation
we usually write 47 instead of (v} )y (unless confusion arises). We will explain later how the
coefficients ’yi can be computed efficiently.

Since u is a feasible solution we have u > 0 and Au = b, that is,

Z up A¥ = b. (%)

keK

For every nonbasic j ¢ K, a candidate for entering the basis K, we try to find a new vertex
u(f) that improves the objective function, and for this we add —0A7 + A7 = 0 to b in
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Equation (*x) and then replace the occurrence of A7 in —f A7 by the right hand side of
Equation (*) to obtain

b= ZukAk — QAT + QA7

keK

v <Z 7;‘Ak) oA
keK keK

=3 (w = 0n) A+ 07
keK

Consequently, the vector u(f) appearing on the right-hand side of the above equation given
by
u — 0y ifie K
u(@); =<0 ifi=j
0 ifi ¢ KU{j}
automatically satisfies the constraints Au(f) = b, and this vector is a feasible solution iff

>0 and ukZny,f; forall k € K.

Obviously § = 0 is a solution, and if

~ U
6 = min{ —l;
Vi

7i>0,k:eK}>0,

then we have a range of feasible solutions for 0 < § < #7. The value of the objective function
for u(0) is
cu(f) = Z cx(up — 07]) + 0c; = cu + 9<cj — Z 'yick).
keK keK

Since the potential change in the objective function is

0 (cj -> yl‘ick)

keK
and 0 >0, if ¢; — ZkeK y,zck < 0, then the objective function can’t be increased.

However, if cj+ — Y, ’yi+ck > 0 for some j* ¢ K, and if 6" > 0, then the objective
function can be strictly increased by choosing any 6 > 0 such that § < 67", so it is natural
to zero at least one coefficient of u(6) by picking 6 = 67 " which also maximizes the increase

of the objective function. In this case (Case below (B2)), we obtain a new feasible solution
ut = u(9h).

Now, if #7° > 0, then there is some index k € K such u; > 0, 'yf >0, and 07" = uk/vf,
so we can pick such an index £~ for the vector A*” leaving the basis K. We claim that



240 CHAPTER 10. THE SIMPLEX ALGORITHM

Kt = (K —{k })U{j*}is a basis. This is because the coefficient ’ylj; associated with the

column A*” is nonzero (in fact, 7,]; > (), so Equation (x), namely

AT = fyitAk_ + Z fyi+Ak,
keK—{k—}

yields the equation
- N1 it a1 it
AT = ()T = Y ()T AN
keK—{k~}

and these equations imply that the subspaces spanned by the vectors (A*)zcx and the vectors
(A¥) e+ are identical. However, K is a basis of dimension m so this subspace has dimension
m, and since K+ also has m elements, it must be a basis. Therefore, u™ = u(6’") is a basic
feasible solution.

The above case is the most common one, but other situations may arise. In what follows,
we discuss all eventualities.

Case (A).

We have ¢; — 3, 7ick < 0 for all j ¢ K. Then it turns out that u is an optimal
solution. Otherwise, we are in Case (B).

Case (B).

We have ¢; — >, ¢ yick > ( for some j ¢ K (not necessarily unique). There are three
subcases.

Case (B1).

If for some j ¢ K as above we also have yi < 0 for all k£ € K, since ux > 0 for all
k € K, this places no restriction on #, and the objective function is unbounded above. This
is demonstrated by Example 10.3 with K = {3,4} and j = 2 since 753’4} = (—1,0).

Case (B2).

There is some index j+ ¢ K such that simultaneously

(1) cj+ = X pex v,f;Jrck > 0, which means that the objective function can potentially be
increased;

(2) There is some k € K such that 75 > 0, and for every k € K, if 7? > 0 then ug > 0,
which implies that 677 > 0.

If we pick 8 = 7" where
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then the feasible solution u™ given by

U; — 9j+7g+ ifie K
u = 07" if i =4t

0 if i ¢ K U{j*}

is a vertex of P(A,b). If we pick any index k= € K such that 67" = u, /vif, then

K+ = (K—{k })U{j*} is a basis for u™. The vector A7" enters the new basis K+, and the
vector AF™ leaves the old basis K. This is a pivoting step. The objective function increases
strictly. This is demonstrated by Example 10.2 with K = {3,4,5}, j = 1, and k = 4, Then
7{1374’5} = (=1,1,0), with v} = 1. Since u = (0,0, 1,3,2), 0* = “t =3, and the new optimal

solutions becomes u™ = (3,0,1 — 3(—1),3 — 3(1),2 — 3(0)) = ( ?O, 4,0,2).
Case (B3).

There is some index j ¢ K such that ¢; — 3", 7lcx > 0, and for each of the indices
j ¢ K satisfying the above property we have simultaneously

(1) ¢j — Y pex vick > 0, which means that the objective function can potentially be in-
creased;

(2) There is some k € K such that vi; > 0, and uj, = 0, which implies that 67 = 0.

Consequently, the objective function does not change. In this case, u is a degenerate basic
feasible solution.

We can associate to u™ = u a new basis K as follows: Pick any index j* ¢ K such that

i+
j
Cj+ — E Y ¢k >0,
keK

and any index k~ € K such that
j+
Y- > 0,

and let KT = (K — {k"})U{j"}. As in Case (B2), The vector A’" enters the new basis
K*, and the vector A*" leaves the old basis K. This is a pivoting step. However, the
objective function does not change since 8% = 0. This is demonstrated by Example 10.1
with K = {3,4}, 7 =2, and k = 3.

It is easy to prove that in Case (A) the basic feasible solution u is an optimal solution,
and that in Case (B1) the linear program is unbounded. We already proved that in Case
(B2) the vector u™ and its basis KT constitutes a basic feasible solution, and the proof in
Case (B3) is similar. For details, see Ciarlet [25] (Chapter 10).
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It is convenient to reinterpret the various cases considered by introducing the following
sets:

Blz{j¢K|Cj—Z%ﬁck>0, maxviﬁ()}

Py keK
b= {5 ¢ K ey~ 3 s > 0yt > 0, min{ e Kot >0} > 0]
e keK Vi
Bgz{jg;f(\cj—zvicp(), max 3 > 0, min{u—’j‘kéf(ﬁbo}zo}’
€ 0
keK k

and
B:BluBQUBg,:{jgéK|cj—Z’yick>O}.
keK
Then it is easy to see that the following equivalences hold:

Case (A) < B =0, Case (B) <= B #1)

Case (Bl) <= B; #0

Case (B2) <= By # 0
(

Case (B3) <= B; # ().

Furthermore, Cases (A) and (B), Cases (B1) and (B3), and Cases (B2) and (B3) are mutually
exclusive, while Cases (B1) and (B2) are not.

If Case (B1) and Case (B2) arise simultaneously, we opt for Case (B1) which says that
the Linear Program (P) is unbounded and terminate the algorithm.

Here are a few remarks about the method.

In Case (B2), which is the path followed by the algorithm most frequently, various choices
have to be made for the index j+ ¢ K for which ¢/ > 0 (the new index in K*). Similarly,
various choices have to be made for the index k= € K leaving K, but such choices are
typically less important.

Similarly in Case (B3), various choices have to be made for the new index j© ¢ K going
into K. In Cases (B2) and (B3), criteria for making such choices are called pivot rules.

Case (B3) only arises when u is a degenerate vertex. But even if u is degenerate, Case
(B2) may arise if uj, > 0 whenever ] > 0. It may also happen that u is nondegenerate but
as a result of Case (B2), the new vertex u* is degenerate because at least two components

ot ot . L.
Uk, — Gﬁfﬁﬂ and ug, — 91+fyi2 vanish for some distinct k1, ko € K.

Cases (A) and (B1) correspond to situations where the algorithm terminates, and Case
(B2) can only arise a finite number of times during execution of the simplex algorithm, since
the objective function is strictly increased from vertex to vertex and there are only finitely
many vertices. Therefore, if the simplex algorithm is started on any initial basic feasible
solution ug, then one of three mutually exclusive situations may arise:
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(1) There is a finite sequence of occurrences of Case (B2) and/or Case (B3) ending with an
occurrence of Case (A). Then the last vertex produced by the algorithm is an optimal
solution. This is what occurred in Examples 10.1 and 10.2.

(2) There is a finite sequence of occurrences of Case (B2) and/or Case (B3) ending with
an occurrence of Case (B1). We conclude that the problem is unbounded, and thus
has no solution. This is what occurred in Example 10.3.

(3) There is a finite sequence of occurrences of Case (B2) and/or Case (B3), followed by
an infinite sequence of Case (B3). If this occurs, the algorithm visits the some basis
twice. This a phenomenon known as cycling. In this eventually the algorithm fails to
come to a conclusion.

There are examples for which cycling occur, although this is rare in practice. Such an
example is given in Chvatal [24]; see Chapter 3, pages 31-32, for an example with seven
variables and three equations that cycles after six iterations under a certain pivot rule.

The third possibility can be avoided by the choice of a suitable pivot rule. Two of these
rules are Bland’s rule and the lexicographic rule; see Chvatal [24] (Chapter 3, pages 34-38).

Bland’s rule says: choose the smallest of the eligible incoming indices j* ¢ K, and
similarly choose the smallest of the eligible outgoing indices k= € K.

It can be proven that cycling cannot occur if Bland’s rule is chosen as the pivot rule. The
proof is very technical; see Chvatal [24] (Chapter 3, pages 37-38), Matousek and Gardner [54]
(Chapter 5, Theorem 5.8.1), and Papadimitriou and Steiglitz [60] (Section 2.7). Therefore,
assuming that some initial basic feasible solution is provided, and using a suitable pivot rule
(such as Bland’s rule), the simplex algorithm always terminates and either yields an optimal
solution or reports that the linear program is unbounded. Unfortunately, Bland’s rules is
one of the slowest pivot rules.

The choice of a pivot rule affects greatly the number of pivoting steps that the simplex
algorithms goes through. It is not our intention here to explain the various pivot rules.
We simply mention the following rules, referring the reader to Matousek and Gardner [54]
(Chapter 5, Section 5.7) or to the texts cited in Section 8.1.

1. Largest coefficient, or Dantzig’s rule.

2. Largest increase.

w

. Steepest edge.
4. Bland’s Rule.

5. Random edge.
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The steepest edge rule is one of the most popular. The idea is to maximize the ratio

c(ut —u)

lut =l

The random edge rule picks the index j* ¢ K of the entering basis vector uniformly at
random among all eligible indices.

Let us now return to the issue of the initialization of the simplex algorithm. We use the
Linear Program (P) introduced during the proof of Theorem 9.7.

Consider a Linear Program (P2)

maximize cx
subject to Ax =b and x > 0,

in standard form where A is an m X n matrix of rank m.

First, observe that since the constraints are equations, we can ensure that b > 0, because
every equation a;x = b; where bi < 0 can be replaced by —a;x = —b;. The next step is to

introduce the Linear Program (P) in standard form

maximize — (Tp41 + 0 F Topam)

subject to A7 =0 and 7 > 0,
where A and 7 are given by

X

Tn+m
Since we assumed that b > 0, the vector = (0, b) is a feasible solution of (]3), in fact a basic
feasible solutions since the matrix associated with the indices n+1,...,n+m is the identity
matrix I,,,. Furthermore, since z; > 0 for all i, the objective function — (2,41 + -+ + Tpim)
is bounded above by 0.

If we execute the simplex algorithm with a pivot rule that prevents cycling, starting with
the basic feasible solution (0,, d), since the objective function is bounded by 0, the simplex
algorithm terminates with an optimal solution given by some basic feasible solution, say
(u*, w*), with u* € R" and w* € R™.

As in the proof of Theorem 9.7, for every feasible solution u € P(A,b), the vector (u,0,,)
is an optimal solution of (ﬁ) Therefore, if w* # 0, then P(A,b) = (), since otherwise for
every feasible solution u € P(A,b) the vector (u,0,,) would yield a value of the objective
function — (41 + - + Tpim) equal to 0, but (u*, w*) yields a strictly negative value since
w* # 0.
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Otherwise, w* = 0, and u* is a feasible solution of (P2). Since (u*,0,,) is a basic
feasible solution of (13) the columns corresponding to nonzero components of u* are linearly
independent. Some of the coordinates of u* could be equal to 0, but since A has rank m
we can add columns of A to obtain a basis K* associated with «*, and u* is indeed a basic

feasible solution of (P2).

Running the simplex algorithm on the Linear Program P to obtain an initial feasible
solution (ug, Ky) of the linear program (P2) is called Phase I of the simplex algorithm.
Running the simplex algorithm on the Linear Program (P2) with some initial feasible solution
(uo, Ko) is called Phase II of the simplex algorithm. If a feasible solution of the Linear
Program (P2) is readily available then Phase I is skipped. Sometimes, at the end of Phase
I, an optimal solution of (P2) is already obtained.

In summary, we proved the following fact worth recording.

Proposition 10.1. For any Linear Program (P2)

maximize cx
subject to Az =0 and x >0,

in standard form, where A is an m x n matriz of rank m and b > 0, consider the Linear
Program (P) in standard form

maximize — (Tpy1+ -+ Togm)

subject to AZ=b and 7 > 0.

The simplex algorithm with a piwot rule that prevents cycling started on the basic feasible
solution T = (0,,b) of (P) terminates with an optimal solution (u*, w*).

(1) If w* # 0, then P(A,b) = 0, that is, the Linear Program (P2) has no feasible solution.

(2) If w* =0, then P(A,b) # (0, and u* is a basic feasible solution of (P2) associated with
some basis K.

Proposition 10.1 shows that determining whether the polyhedron P(A,b) defined by a
system of equations Az = b and inequalities x > 0 is nonempty is decidable. This decision
procedure uses a fail-safe version of the simplex algorithm (that prevents cycling), and the
proof that it always terminates and returns an answer is nontrivial.

10.3 How to Perform a Pivoting Step Efficiently

We now discuss briefly how to perform the computation of (u™, K*) from a basic feasible
solution (u, K).
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In order to avoid applying permutation matrices it is preferable to allow a basis K to be
a sequence of indices, possibly out of order. Thus, for any m x n matrix A (with m < n)
and any sequence K = (ky, ks, -+, ky,) of m elements with k; € {1,...,n}, the matrix Ax
denotes the m x m matrix whose ith column is the k;th column of A, and similarly for any
vector v € R™ (resp. any linear form ¢ € (R™)*), the vector ux € R™ (the linear form
cx € (R™)*) is the vector whose ith entry is the k;th entry in u (resp. the linear whose ith
entry is the k;th entry in c¢).

For each nonbasic j ¢ K, we have
A = AN ] AP = A,
so the vector ﬂ( is given by ﬂ( = A}l A7, that is, by solving the system
AK'Y;{ = A, (*4)

To be very precise, since the vector 'y}'{ depends on K its components should be denoted by
(Vi )x;» but as we said before, to simplify notation we write 7;, instead of (v ),-

In order to decide which case applies ((A), (B1), (B2), (B3)), we need to compute the
numbers ¢; — >, - Vicx for all j ¢ K. For this, observe that

- E Jor — o I e —1Aj
C; ViCk = Cj — CkVi = ¢ — Ck A A7,
keK

If we write Bk = cx A", then

i ,
G — E Ytk = ¢ — P A,
keK

and we see that 3} € R™ is the solution of the system 3} = (Ax') ¢}, which means that
B} is the solution of the system

ApBr = cpe. (*s)

Remark: Observe that since u is a basis feasible solution of (P), we have u; = 0 for all
Jj ¢ K, so u is the solution of the equation Axux = b. As a consequence, the value of the
objective function for u is cu = cxux = cKAl}lb. This fact will play a crucial role in Section
11.2 to show that when the simplex algorithm terminates with an optimal solution of the
Linear Program (P), then it also produces an optimal solution of the Dual Linear Program
(D).

Assume that we have a basic feasible solution u, a basis K for u, and that we also have
the matrix Ax as well its inverse Ay (perhaps implicitly) and also the inverse (A} )~! of
Aj. (perhaps implicitly). Here is a description of an iteration step of the simplex algorithm,
following almost exactly Chvatal (Chvatal [24], Chapter 7, Box 7.1).
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An Tteration Step of the (Revised) Simplex Method

Step 1. Compute the numbers ¢; — >, yick =¢; — B A for all j ¢ K, and for this,
compute 3j as the solution of the system

T oT T
APy = cg-

If ¢; — B A? <0 for all j ¢ K, stop and return the optimal solution u (Case (A)).

Step 2. If Case (B) arises, use a pivot rule to determine which index j* ¢ K should enter
the new basis K (the condition ¢;+ — BxA7" > 0 should hold).

Step 3. Compute maxge Vf:. For this, solve the linear system

Ayl = AT

Step 4. If maxgeg 7,3: < 0, then stop and report that Linear Program (P) is unbounded
(Case (B1)).

Step 5. If maxgeg 7{ > 0, use the ratios uk/%‘f for all k € K such that 'yi+ > 0 to
compute 67", and use a pivot rule to determine which index k= € K such that 67" = - /v *
should leave K (Case (B2)).

If maxycx 7,3: = 0, then use a pivot rule to determine which index £~ for which 7{: >0
should leave the basis K (Case (B3)).

Step 6. Update u, K, and Ag, to vt and KT, and Ag+. During this step, given the
basis K specified by the sequence K = (ky,... kg, ..., kp), with k= = ky, then K is the
sequence obtained by replacing ky by the incoming index j*, so KT = (ky,...,j7, ... kn)
with 77 in the (th slot.

The vector u is easily updated. To compute Ax+ from Ax we take advantage of the fact
that Ax and Ag+ only differ by a single column, namely the ¢th column A7", which is given
by the linear combination

AT = Aprl
To simplify notation, denote vg by v, and recall that k= = ky. If K = (ky,..., k), then
Ag = [APr ... AP ... AP and since Ag+ is the result of replacing the (th column AF™ of
A by the column A7 we have

Ape = [AM AT A = [AR e Ay o A = AR B(y),

where E(v) is the following invertible matrix obtained from the identity matrix I, by re-
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placing its /th column by ~:

L ve

Yey1 1

Y 1
Since v, = fyit > 0, the matrix E(v) is invertible, and it is easy to check that its inverse is

given by
1 /0

—’Ye_lWH 1

_/7; 1’Ym 1
which is very cheap to compute. We also have

Ak = B(y) T AR

Consequently, if Ax and Ax' are available, then Ag+ and A;{ﬂ can be computed cheaply
in terms of Ay and Ay' and matrices of the form E(v). Then the systems (x,) to find the
vectors 7}, can be solved cheaply.

Since
Agr = B(v) T Ag
and
(A )™ = (A (EM )T
the matrices A}, and (A, )~! can also be computed cheaply from A, (A))~", and matrices

of the form E()". Thus the systems (xg) to find the linear forms S can also be solved
cheaply.

A matrix of the form F(7) is called an eta matriz; see Chvatal [24] (Chapter 7). We
showed that the matrix Ags obtained after s steps of the simplex algorithm can be written
as

AKS - AKs—lES

for some eta matrix F, so Ags can be written as the product

Ags = F1Ey--- Ej
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of s eta matrices. Such a factorization is called an eta factorization. The eta factorization
can be used to either invert Ags or to solve a system of the form Ax vy = A7" iteratively.
Which method is more efficient depends on the sparsity of the F;.

In summary, there are cheap methods for finding the next basic feasible solution (u™, K)
from (u, K). We simply wanted to give the reader a flavor of these techniques. We refer the
reader to texts on linear programming for detailed presentations of methods for implementing
efficiently the simplex method. In particular, the revised simpler method is presented in
Chvatal [24], Papadimitriou and Steiglitz [60], Bertsimas and Tsitsiklis [14], and Vanderbei
80].

10.4 The Simplex Algorithm Using Tableaux

We now describe a formalism for presenting the simplex algorithm, namely (full) tableauz.
This is the traditional formalism used in all books, modulo minor variations. A particularly
nice feature of the tableau formalism is that the update of a tableau can be performed using
elementary row operations identical to the operations used during the reduction of a matrix
to row reduced echelon form (rref). What differs is the criterion for the choice of the pivot.

Since the quantities ¢; — cK’y}; play a crucial role in determining which column A’ should
come into the basis, the notation ¢; is used to denote c¢; — cKﬂ(, which is called the reduced
cost of the variable x;. The reduced costs actually depend on K so to be very precise we
should denote them by (¢);, but to simplify notation we write ¢; instead of (¢x);. We will
see shortly how (¢x+); is computed in terms of (¢ );.

Observe that the data needed to execute the next step of the simplex algorithm are
(1) The current basic solution ug and its basis K = (k1,..., kn).
(2) The reduced costs ¢; = ¢; — cx A AV = ¢ — cxyl, for all j ¢ K.

(3) The vectors vl = (Vi)?ll for all j ¢ K, that allow us to express each A7 as Ag7y.

All this information can be packed into a (m+1) x (n+ 1) matrix called a (full) tableau
organized as follows:

CKUK El P Ej e En
1 J n

Uk, ST 1 M
.. J - n

Ug,, Tm Y Tm

It is convenient to think as the first row as Row 0, and of the first column as Column 0.
Row 0 contains the current value of the objective function and the reduced costs. Column
0, except for its top entry, contains the components of the current basic solution ug, and
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the remaining columns, except for their top entry, contain the vectors ﬂ(. Observe that
the 7;; corresponding to indices j in K constitute a permutation of the identity matrix
I,,. The entry ’y,f: is called the pivot element. A tableau together with the new basis
Kt = (K —{k7})U{j"} contains all the data needed to compute the new uy+, the new
fyiﬁ, and the new reduced costs (Cx+);.

If we define the m x n matrix I" as the matrix I' = [y3 -+ %] whose jth column is 7}(,
and ¢ as the row vector ¢ = (¢; --- €,), then the above tableau is denoted concisely by
CKUK C
UK T

We now show that the update of a tableau can be performed using elementary row
operations identical to the operations used during the reduction of a matrix to row reduced
echelon form (rref).

If K= (ky,...,kn), j* is the index of the incoming basis vector, k= = ky is the index
of the column leaving the basis, and if Kt = (ky,..., k1,77, ko1, ..., k), since Ag+ =

AKE(V}; ), the new columns ,y;ﬁ are computed in terms of the old columns %’( using ()
and the equations

: L L L
Vicr = Agr Al = Bl ) A A = Eyge ) ke

Consequently, the matrix I't is given in terms of T by

It = B(v)7'T.

But the matrix E(~% )~! is of the form

1 ()",
L —() ™,
- i+
k)= ()" :

Be)
—(n) M, ]

j+

S+
_(ka)ilvim 1

with the column involving the s in the /th column, and I'* is obtained by applying the
following elementary row operations to I':

1. Multiply Row ¢ by 1 /’yit (the inverse of the pivot) to make the entry on Row ¢ and
Column j* equal to 1.

2. Subtract 'yf X (the normalized) Row ¢ from Row i, fori=1,... .0 —1,0+1,...,m.
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These are ezactly the elementary row operations that reduce the th column ’y}; of T
to the fth column of the identity matrix [,,,. Thus, this step is identical to the sequence of
steps that the procedure to convert a matrix to row reduced echelon from executes on the
(th column of the matrix. The only difference is the criterion for the choice of the pivot.

Since the new basic solution ug+ is given by ux+ = A;éb, we have
T .
ug+ = E(vie ) TARD = E(yy ) tug.

This means that u+ is obtained from wug by applying exactly the same elementary row
operations that were applied to I'. Consequently, just as in the procedure for reducing a
matrix to rref, we can apply elementary row operations to the matrix [uy I'], which consists
of rows 1,...,m of the tableau.

Once the new matrix I'" is obtained, the new reduced costs are given by the following
proposition.

Proposition 10.2. Given any Linear Program (P2) in standard form

maximize cx
subject to Az =b and x > 0,

where A is an m x n matriz of rank m, if (u, K) is a basic (not necessarily feasible) solution
of (P2) and if KT = (K — {k~}) U{j"}, with K = (ky,...,ky) and k= = ky, then for
1=1,...,n we have
i i lir it
Ci — Ck+Vg+ = G — CKVg — 7(Cj+ — CK Y )-
=
Using the reduced cost notation, the above equation s

)

(Cx+)i = (Cr)i — ’;+ (Cr)j+-
Vi

Proof. Without any loss of generality and to simplify notation assume that K = (1,...,m)
and write j for j* and ¢ for k,,. Since v = A A% 4t = AL A and A+ = AgE(v)),
we have

Ci — Ci+Ysr = € — cK+A;(1+Ai = — cK+E(7§<)_1A;<1Ai = — CK+E(7§<)_17§(,

where
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where the fth column contains the vs. Since cx+ = (c1, ..., Co—1,¢j, Co41, - - -, Cm), We have

-1 _ J k
CK+E(7K) = <017-~-7Ce—1,—j— E Ck_jvcﬁ—i-la"wcm)a
Ve k=rkre Ve

and
"
, m J o/
‘ . c 7y :
CK"'E('Y%()il’V;( = (Cl . Co—q —]J — Z Ck—I; Cot1 - Cm> "Yé
Voo k=igre Tt Ve
Vin
= > it (a- D e
k=1,k0 Ve k=1,k£¢
= Z CkY + = (Cj + coyy — Z ck'yk)
k=1,k#¢( 14 k=1
=3 ek + 5o - Sand)
k=1 ¢ k=1
= Cri + —ﬁ-(Cj — CKVK )
e
and thus
i i V=1 i j
Ci = e+ Yer = G~ Crr E(v) Tk = ¢ — e — 7—5(%‘ — CKVk),
¢
as claimed. O]
Since (yi-,...,7) is the ¢th row of I', we see that Proposition 10.2 shows that
_ _ CK )j+
Cr+ = Ck — ( jij Ly, (1)
V-

where I'y denotes the /-th row of I" and 'yif is the pivot. This means that ¢x+ is obtained
by the elementary row operations which consist of first normalizing the ¢/th row by dividing
it by the pivot 7,];, and then subtracting (¢x);+ x the normalized Row ¢ from ¢x. These are
exactly the row operations that make the reduced cost (Ck);+ zero.
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Remark: It easy easy to show that we also have

EK+ =C— CK+F+.

We saw in Section 10.2 that the change in the objective function after a pivoting step
during which column j* comes in and column &k~ leaves is given by

(o T ) = 0"

keK

where
Up—

i+
=
V-

If we denote the value of the objective function cxug by zx, then we see that

E .
2+ = 2 + ( szﬁ U

Vi

This means that the new value zx+ of the objective function is obtained by first normalizing
the /th row by dividing it by the pivot ’yit, and then adding (¢x);+x the zeroth entry of
the normalized (th line by (¢x);+ to the zeroth entry of line 0.

In updating the reduced costs, we subtract rather than add (¢x);+ % the normalized row ¢
from row 0. This suggests storing —zx as the zeroth entry on line 0 rather than zjx, because
then all the entries row 0 are updated by the same elementary row operations. Therefore,
from now on, we use tableau of the form

—Ccgug | &1 - G - T
1 J n

A

1 .. J . n

Uk, Tm Vin Tm

The simplex algorithm first chooses the incoming column j* by picking some column for
which ¢; > 0, and then chooses the outgoing column £~ by considering the ratios uy/ fy,ff for
which yf > 0 (along column j*), and picking k™~ to achieve the minimum of these ratios.

Here is an illustration of the simplex algorithm using elementary row operations on an
example from Papadimitriou and Steiglitz [60] (Section 2.9).
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Example 10.4. Consider the linear program

maximize — 2Ty — x4 — DTy
subject to
T1+ To+ a3+ x4 =4
T+ x5 =2

T3+ Tg =3
3ZE2 + 23+ 27 = 6
X1,T2,T3,T4,Ts5,Te, L7 2 0.

We have the basic feasible solution u = (0,0,0,4,2,3,6), with K = (4,5,6,7). Since cx =
(—=1,0,0,—5) and ¢ = (0,—2,0,—1,0,0 — 5) the first tableau is

3 |1 14 6 0 0 0 0
uy=4| 1 1 1 100 0
us;=21(1) 0 0 0 1 0 0
u=3]0 0 1 00 1 0
;=60 3 100 0 1

Since ¢; = ¢j — cKﬂ(, Row 0 is obtained by subtracting —1x Row 1 and —5x Row 4
from ¢ = (0,-2,0,—1,0, 0, —5). Let us pick Column j* = 1 as the incoming column. We
have the ratios (for positive entries on Column 1)

4/1, 2/1,

and since the minimum is 2, we pick the outgoing column to be Column £~ = 5. The pivot
1 is indicated in red. The new basis is K = (4,1,6,7). Next we apply row operations to
reduce Column 1 to the second vector of the identity matrix 1. For this, we subtract Row
2 from Row 1. We get the tableau

3. |1 14 6 0 0 0 0
wu=2]0 1 1 1 -1 0 0
w=2[C1) 000 1 00
w=3] 0 0 1 0 0 1 0
w=6| 0 3 10 0 0 1

To compute the new reduced costs, we want to set ¢; to 0, so we apply the identical row
operations and subtract Row 2 from Row 0 to obtain the tableau

32 [0 14 6 0 —1 0 0
w=2/0 1 (1) 1 -1 0 0
w=2[1 0 0 0 I 0 0
=3[0 0 1 0 0 L 0
w=6/0 3 1 0 0 0 1
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Next, pick Column j* = 3 as the incoming column. We have the ratios (for positive
entries on Column 3)

2/1, 3/1, 6/1,

and since the minimum is 2, we pick the outgoing column to be Column £~ = 4. The pivot
1 is indicated in red and the new basis is K = (3,1,6,7). Next we apply row operations to
reduce Column 3 to the first vector of the identity matrix I,. For this, we subtract Row 1
from Row 3 and from Row 4 and obtain the tableau:

32 0 4 6 0 —1 0 0
us=2/0 1 (1) 1 -1 0 0
w=2[1 0 0 0 1 00
ug=1]0 -1 0 —1 1 1 0
wy=4|0 2 0 -1 1 0 1

To compute the new reduced costs, we want to set ¢3 to 0, so we subtract 6x Row 1 from
Row 0 to get the tableau

20 [0 8 0 6 5 0 0
uy=2/0 (1) 1 1 -1 0 0
w=2[1 0 0 0 1 0 0
=10 —1 0 -1 1 1 0
wy=4/0 2 0 -1 1 0 1

Next we pick j* = 2 as the incoming column. We have the ratios (for positive entries on
Column 2)

2/1, 4/2,

and since the minimum is 2, we pick the outgoing column to be Column £~ = 3. The pivot
1 is indicated in red and the new basis is K = (2,1,6,7). Next we apply row operations to
reduce Column 2 to the first vector of the identity matrix I,. For this, we add Row 1 to
Row 3 and subtract 2x Row 1 from Row 4 to obtain the tableau:

20 [0 8 0 6 5 00
w=2[0 (1) 1 1 -1 0 0
w=2]1 0 0 1 00
w=3|0 0 1 0 0 1 0
uw7=0][0 0 -2 -3 3 0 1

To compute the new reduced costs, we want to set ¢, to 0, so we subtract 8x Row 1 from
Row 0 to get the tableau
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4 0 0 -8 —-14 13 0 O
=210 1 1 1 -1 0 0
wu=2|1 0 0 0 1 0 0
Ug = 0 0 1 0 0O 1 0
;=00 0 -2 -3 (3) 0 1
The only possible incoming column corresponds to 55 = 5. We have the ratios (for
positive entries on Column 5)
2/1, 0/3,
and since the minimum is 0, we pick the outgoing column to be Column £~ = 7. The pivot

3 is indicated in red and the new basis is K = (2,1,6,5). Since the minimum is 0, the
basis K = (2,1,6,5) is degenerate (indeed, the component corresponding to the index 5 is
0). Next we apply row operations to reduce Column 5 to the fourth vector of the identity
matrix I,. For this, we multiply Row 4 by 1/3, and then add the normalized Row 4 to Row
1 and subtract the normalized Row 4 from Row 2 to obtain the tableau:

4 J0 0 -8 —14 13 0 0
w=2/0 1 1/3 0 0 0 1/3
w=2[1 0 2/3 1 0 0 —1/3
=310 0 1 0 0 1 0
us;=0]0 0 —2/3 -1 (1) 0 1/3

To compute the new reduced costs, we want to set ¢; to 0, so we subtract 13x Row 4
from Row 0 to get the tableau

4 [0 0 2/3 -1 0 0 —13/3
w=2|0 1 1/3 0 0 0 1/3
w=21 0 @ 1 00 -1/3
w=3/0 0 1 0 01 0
us=0]0 0 —2/3 -1 1 0 1/3

The only possible incoming column corresponds to j© = 3. We have the ratios (for
positive entries on Column 3)

2/(1/3) =6, 2/(2/3) =3, 3/1 = 3,

and since the minimum is 3, we pick the outgoing column to be Column £~ = 1. The pivot
2/3 is indicated in red and the new basis is K = (2, 3,6,5). Next we apply row operations to
reduce Column 3 to the second vector of the identity matrix I,. For this, we multiply Row
2 by 3/2, subtract (1/3)x (normalized Row 2) from Row 1, and subtract normalized Row 2
from Row 3, and add (2/3)x (normalized Row 2) to Row 4 to obtain the tableau:
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4 0 0 2/3 -1 0 0 —13/3
w=1|-1/2 1 0 —1/2 0 0 1/2
us=3|3/2 0 (1) 3/2 0 0 —1/2
w=0|-3/2 0 0 -3/2 0 1 1/2
w=2| 1 0 0 0 10 0

To compute the new reduced costs, we want to set ¢3 to 0, so we subtract (2/3)x Row 2
from Row 0 to get the tableau

2 -1 00 -2 00 —4
upy=1]-1/2 1 0 —-1/2 0 0 1,2
us=3] 3/2 0 1 3/2 0 0 —1/2
us=0]-3/2 0 0 —3/2 0 1 1/2
us=2] 1 00 0 10 0

Since all the reduced cost are < 0, we have reached an optimal solution, namely
(0,1,3,0,2,0,0,0), with optimal value —2.

The progression of the simplex algorithm from one basic feasible solution to another
corresponds to the visit of vertices of the polyhedron P associated with the constraints of
the linear program illustrated in Figure 10.4.

As a final comment, if it is necessary to run Phase I of the simplex algorithm, in the event
that the simplex algorithm terminates with an optimal solution (u*,0,,) and a basis K* such
that some u; = 0, then the basis K* contains indices of basic columns A’ corresponding to
slack variables that need to be driven out of the basis. This is easy to achieve by performing a
pivoting step involving some other colur?n 4T corresponding to one of the original variables
J

(not a slack variable) for which (yx+)] # 0. In such a step, it doesn’t matter whether

(VK*)g T <0or (Ck+);j+ < 0. If the original matrix A has no redundant equations, such a step
is always possible. Otherwise, (yx+)? = 0 for all non-slack variables, so we detected that the
ith equation is redundant and we can delete it.

Other presentations of the tableau method can be found in Bertsimas and Tsitsiklis [14]
and Papadimitriou and Steiglitz [60].

10.5 Computational Efficiency of the Simplex Method

Let us conclude with a few comments about the efficiency of the simplex algorithm. In
practice, it was observed by Dantzig that for linear programs with m < 50 and m +n < 200,
the simplex algorithms typically requires less than 3m /2 iterations, but at most 3m iterations.
This fact agrees with more recent empirical experiments with much larger programs that
show that the number iterations is bounded by 3m. Thus, it was somewhat of a shock in
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Figure 10.4: The polytope P associated with the linear program optimized by the tableau
method. The red arrowed path traces the progression of the simplex method from the origin
to the vertex (0, 1, 3).

1972 when Klee and Minty found a linear program with n variables and n equations for
which the simplex algorithm with Dantzig’s pivot rule requires requires 2" — 1 iterations.
This program (taken from Chvatal [24], page 47) is reproduced below:

n
maximize E 10" x;

j=1
subject to
i—1
(2 > 10i—ja;j> + x; < 10071
j=1
fori=1,...,nand j=1,...,n.

If p = max(m,n), then, in terms of worse case behavior, for all currently known pivot
rules, the simplex algorithm has exponential complexity in p. However, as we said earlier, in
practice, nasty examples such as the Klee-Minty example seem to be rare, and the number
of iterations appears to be linear in m.

Whether or not a pivot rule (a clairvoyant rule) for which the simplex algorithms runs
in polynomial time in terms of m is still an open problem.
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The Hirsch conjecture claims that there is some pivot rule such that the simplex algorithm
finds an optimal solution in O(p) steps. The best bound known so far due to Kalai and
Kleitman is m!™m" = (2n)"™  For more on this topic, see Matousek and Gardner [54]
(Section 5.9) and Bertsimas and Tsitsiklis [14] (Section 3.7).

Researchers have investigated the problem of finding upper bounds on the expected
number of pivoting steps if a randomized pivot rule is used. Bounds better than 2™ (but of
course, not polynomial) have been found.

Understanding the complexity of linear programing, in particular of the simplex algo-
rithm, is still ongoing. The interested reader is referred to Matousek and Gardner [54]
(Chapter 5, Section 5.9) for some pointers.

In the next section we consider important theoretical criteria for determining whether a
set, of constraints Az < b and = > 0 has a solution or not.

10.6 Summary
The main concepts and results of this chapter are listed below:
e Degenerate and nondegenerate basic feasible solution.
e Pivoting step.
e Pivot rule.
e Cycling.

e Bland’s rule, Dantzig’s rule, steepest edge rule, random edge rule, largest increase rule,
lexicographic rule.

e Phase I and Phase II of the simplex algorithm.
e cta matrix, eta factorization.

e Revised simplex method.

e Reduced cost.

e Full tableaux.

e The Hirsch conjecture.
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10.7 Problems

Problem 10.1. In Section 10.2 prove that if Case (A) arises, then the basic feasible solution
w is an optimal solution. Prove that if Case (B1) arises, then the linear program is unbounded.
Prove that if Case (B3) arises, then (u™, K) is a basic feasible solution.

Problem 10.2. In Section 10.2 prove that the following equivalences hold:

Case (A) <= B =0, Case (B) <= B #1

Case (Bl) <= B, # 0

Case (B2) <= By # )
(

Case (B3) < Bs # 0.

Furthermore, prove that Cases (A) and (B), Cases (B1) and (B3), and Cases (B2) and (B3)
are mutually exclusive, while Cases (B1) and (B2) are not.

Problem 10.3. Consider the linear program (due to E.M.L. Beale):

maximize (3/4)x; — 15022 + (1/50)x5 — 614
subject to
(1/4)xy — 60z9 — (1/25)x3 4+ 924 <0
(1/4)x; — 9025 — (1/50)x3 + 324 <0
T3 <1
120, 2920, 23>0, z, > 0.

(1) Convert the above program to standard form.

(2) Show that if we apply the simplex algorithm with the pivot rule which selects the
column entering the basis as the column of smallest index, then the method cycles.

Problem 10.4. Read carefully the proof given by Chvatal that the lexicographic pivot rule
and Bland’s pivot rule prevent cycling; see Chvatal [24] (Chapter 3, pages 34-38).

Problem 10.5. Solve the following linear program (from Chvatal [24], Chapter 3, page 44)
using the two-phase simplex algorithm:

maximize 3z + X
subject to
T —To < —1
-] — 29 < =3
201 + 19 < 4
1 >0, 29 > 0.
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Problem 10.6. Solve the following linear program (from Chvatal [24], Chapter 3, page 44)
using the two-phase simplex algorithm:

maximize 3z + X2
subject to
T — T < —1
— 21— Ty < =3
201 + a2 < 2
1 >0, 9 > 0.

Problem 10.7. Solve the following linear program (from Chvatal [24], Chapter 3, page 44)
using the two-phase simplex algorithm:

maximize 3x; + x9
subject to
T — Ty < —1
—x1— 22 < =3
201 —x9 < 2
1 >0, 29 > 0.

Problem 10.8. Show that the following linear program (from Chvatal [24], Chapter 3, page
43) is unbounded.

maximize 1 + 3T9 — T3
subject to
2x1 4+ 229 — 23 < 10
3r1 — 219 + 23 < 10
1 — 3T9 + 23 < 10
120, 29 >0, x3 > 0.

Hint. Try x1 = 0,23 = t, and a suitable value for z».
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Chapter 11

Linear Programming and Duality

11.1 Variants of the Farkas Lemma

If Ais an m x n matrix and if b € R™ is a vector, it is known from linear algebra that
the linear system Ax = b has no solution iff there is some linear form y € (R™)* such that
yA = 0 and yb # 0. This means that the linear from y vanishes on the columns A, ..., A"
of A but does not vanish on b. Since the linear form y defines the linear hyperplane H
of equation yz = 0 (with z € R™), geometrically the equation Az = b has no solution iff
there is a linear hyperplane H containing A, ..., A" and not containing b. This is a kind of
separation theorem that says that the vectors Al ... A" and b can be separated by some
linear hyperplane H.

What we would like to do is to generalize this kind of criterion, first to a system Ax =b
subject to the constraints x > 0, and next to sets of inequality constraints Ax < b and z > 0.
There are indeed such criteria going under the name of Farkas lemma.

The key is a separation result involving polyhedral cones known as the Farkas—Minkowski
proposition. We have the following fundamental separation lemma.

Proposition 11.1. Let C' C R" be a closed nonempty (convex) cone. For any point a € R™,
if a ¢ C, then there is a linear hyperplane H (through 0) such that

1. C lies in one of the two half-spaces determined by H.
2. a¢ H
3. a lies in the other half-space determined by H.

We say that H strictly separates C' and a.

Proposition 11.1, which is illustrated in Figure 11.1, is an easy consequence of another
separation theorem that asserts that given any two nonempty closed convex sets A and B
of R™ with A compact, there is a hyperplane H strictly separating A and B (which means

263
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that ANH = (0, BN H = (), that A lies in one of the two half-spaces determined by H,
and B lies in the other half-space determined by H); see Gallier [34] (Chapter 7, Corollary
7.4 and Proposition 7.3). This proof is nontrivial and involves a geometric version of the
Hahn—Banach theorem.

Figure 11.1: In R3, the olive green hyperplane H separates the cone C from the orange point
a.

The Farkas—Minkowski proposition is Proposition 11.1 applied to a polyhedral cone
C:{)\1G1+"'+)\nan | )\1 ZO, Z:L,N}

where {ay,...,a,} is a finite number of vectors a; € R". By Proposition 8.2, any polyhedral
cone is closed, so Proposition 11.1 applies and we obtain the following separation lemma.

Proposition 11.2. (Farkas—Minkowski) Let C C R™ be a nonempty polyhedral cone C' =
cone({ai,...,an}). For any point b € R™, if b ¢ C, then there is a linear hyperplane H
(through 0) such that

1. C lies in one of the two half-spaces determined by H.

2.b¢ H

3. b lies in the other half-space determined by H.
Equivalently, there is a nonzero linear form y € (R™)* such that

1. ya; >0 fori=1,...,n.

2. yb < 0.
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A direct proof of the Farkas—Minkowski proposition not involving Proposition 11.1 is
given at the end of this section.

Remark: There is a generalization of the Farkas—Minkowski proposition applying to infinite
dimensional real Hilbert spaces; see Theorem 12.12 (or Ciarlet [25], Chapter 9).

Proposition 11.2 implies our first version of Farkas’ lemma.

Proposition 11.3. (Farkas Lemma, Version I) Let A be an m x n matriz and let b € R™
be any vector. The linear system Ax = b has no solution x > 0 iff there is some nonzero
linear form y € (R™)* such that yA >0 and yb < 0.

Proof. First assume that there is some nonzero linear form y € (R™)* such that yA > 0 and
yb < 0. If x > 0 is a solution of Az = b, then we get

yAz = yb,
but if yA > 0 and x > 0, then yAx > 0, and yet by hypothesis yb < 0, a contradiction.

Next assume that Ax = b has no solution x > 0. This means that b does not belong to
the polyhedral cone C' = cone({A!, ..., A"}) spanned by the columns of A. By Proposition
11.2, there is a nonzero linear form y € (R™)* such that

1. yAh >0forj=1,...,n.
2. yb <0,
which says that yA > 0] and yb < 0. O

Next consider the solvability of a system of inequalities of the form Ax < b and z > 0.

Proposition 11.4. (Farkas Lemma, Version II) Let A be an m x n matriz and let b € R™
be any vector. The system of inequalities Az < b has no solution x > 0 iff there is some
nonzero linear form y € (R™)* such that y >0}, yA >0, and yb < 0.

Proof. We use the trick of linear programming which consists of adding “slack variables” z;
to convert inequalities a;z < b; into equations a;x + z; = b; with z; > 0 already discussed
just before Definition 8.9. If we let z = (21,...,25), it is obvious that the system Az < b
has a solution xz > 0 iff the equation
(A I,) (x) —b
z

has a solution (i) with x > 0 and z > 0. Now by Farkas I, the above system has no
solution with with z > 0 and z > 0 iff there is some nonzero linear form y € (R™)* such that

y(A L) >0,

n+m

and yb < 0, that is, yA >0, y > 0! and yb < 0. n
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In the next section we use Farkas II to prove the duality theorem in linear programming.
Observe that by taking the negation of the equivalence in Farkas II we obtain a criterion of
solvability, namely:

The system of inequalities Ax < b has a solution x > 0 iff for every nonzero linear form
y € (R™)* such that y > 0! if yA> 0], then yb > 0.

m?’ n’

We now prove the Farkas—Minkowski proposition without using Proposition 11.1. Thi