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Preface

In recent years, computer vision, robotics, machine learning, and data science have been
some of the key areas that have contributed to major advances in technology. Anyone who
looks at papers or books in the above areas will be baffled by a strange jargon involving exotic
terms such as kernel PCA, ridge regression, lasso regression, support vector machines (SVM),
Lagrange multipliers, KKT conditions, etc. Do support vector machines chase cattle to catch
them with some kind of super lasso? No! But one will quickly discover that behind the jargon
which always comes with a new field (perhaps to keep the outsiders out of the club), lies a
lot of “classical” linear algebra and techniques from optimization theory. And there comes
the main challenge: in order to understand and use tools from machine learning, computer
vision, and so on, one needs to have a firm background in linear algebra and optimization
theory. To be honest, some probability theory and statistics should also be included, but we
already have enough to contend with.

Many books on machine learning struggle with the above problem. How can one under-
stand what are the dual variables of a ridge regression problem if one doesn’t know about the
Lagrangian duality framework? Similarly, how is it possible to discuss the dual formulation
of SVM without a firm understanding of the Lagrangian framework?

The easy way out is to sweep these difficulties under the rug. If one is just a consumer
of the techniques we mentioned above, the cookbook recipe approach is probably adequate.
But this approach doesn’t work for someone who really wants to do serious research and
make significant contributions. To do so, we believe that one must have a solid background
in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and energy studying
these fields, but we believe that perseverance will be amply rewarded.

This second volume covers some elements of optimization theory and applications, espe-
cially to machine learning. This volume is divided in five parts:

(1) Preliminaries of Optimization Theory.

(2) Linear Optimization.

(3) Nonlinear Optimization.

(4) Applications to Machine Learning.
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(5) An appendix consisting of two chapers; one on Hilbert bases and the Riesz–Fischer
theorem, the other one containing Matlab code.

Part I is devoted to some preliminaries of optimization theory. The goal of most optimiza-
tion problems is to minimize (or maximize) some objective function J subject to equality
or inequality constraints. Therefore it is important to understand when a function J has
a minimum or a maximum (an optimum). In most optimization problems, we need to find
necessary conditions for a function J : Ω → R to have a local extremum with respect to a
subset U of Ω (where Ω is open). This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

The case of equality constraints is much easier to deal with and is treated in Chapter 4.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers .

Part II deals with the special case where the objective function is a linear form and the
constraints are affine inequality and equality constraints. This subject is known as linear
programming , and the next four chapters give an introduction to the subject.

Part III is devoted to nonlinear optimization, which is the case where the objective
function J is not linear and the constaints are inequality constraints. Since it is practically
impossible to say anything interesting if the constraints are not convex, we quickly consider
the convex case.

Chapter 13 is devoted to some general results of optimization theory. A main theme is
to find sufficient conditions that ensure that an objective function has a minimum which
is achieved. We define gradient descent methods (including Newton’s method), and discuss
their convergence.

Chapter 14 contains the most important results of nonlinear optimization theory. The-
orem 14.6 gives necessary conditions for a function J to have a minimum on a subset U
defined by convex inequality constraints in terms of the Karush–Kuhn–Tucker conditions.
Furthermore, if J is also convex and if the KKT conditions hold, then J has a global mini-
mum.
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We illustrate the KKT conditions on an interesting example from machine learning the
so-called hard margin support vector machine; see Sections 14.5 and 14.6. The problem is to
separate two disjoint sets of points, {ui}pi=1 and {vj}qj=1, using a hyperplane satisfying some
optimality property (to maximize the margin).

Section 14.7 contains the most important results of the chapter. The notion of Lagrangian
duality is presented and we discuss weak duality and strong duality .

In Chapter 15, we consider some deeper aspects of the theory of convex functions that are
not necessarily differentiable at every point of their domain. Some substitute for the gradient
is needed. Fortunately, for convex functions, there is such a notion, namely subgradients . A
major motivation for developing this more sophisticated theory of differentiation of convex
functions is to extend the Lagrangian framework to convex functions that are not necessarily
differentiable.

Chapter 16 is devoted to the presentation of one of the best methods known at the
present for solving optimization problems involving equality constraints, called ADMM (al-
ternating direction method of multipliers). In fact, this method can also handle more general
constraints, namely, membership in a convex set. It can also be used to solve lasso mini-
mization.

In Section 16.4, we prove the convergence of ADMM under exactly the same assumptions
as in Boyd et al. [17]. It turns out that Assumption (2) in Boyd et al. [17] implies that the
matrices A>A and B>B are invertible (as we show after the proof of Theorem 16.1). This
allows us to prove a convergence result stronger than the convergence result proven in Boyd
et al. [17].

The next four chapters constitute Part IV, which covers some applications of optimization
theory (in particular Lagrangian duality) to machine learning.

Chapter 17 is an introduction to positive definite kernels and the use of kernel functions
in machine learning called a kernel function.

We illustrate the kernel methods on kernel PCA.

In Chapter 18 we return to the problem of separating two disjoint sets of points, {ui}pi=1

and {vj}qj=1, but this time we do not assume that these two sets are separable. To cope with
nonseparability, we allow points to invade the safety zone around the separating hyperplane,
and even points on the wrong side of the hyperplane. Such a method is called soft margin
support vector machine (SVM). We discuss variations of this method, including ν-SV classi-
fication. In each case we present a careful derivation of the dual. We prove rigorous results
about the existence of support vectors.

In Chapter 19, we discuss linear regression, ridge regression, lasso regression and elastic
net regression.

In Chapter 20 we present ν-SV Regression. This method is designed in the same spirit as
soft margin SVM, in the sense that it allows a margin of error. Here the errors are penalized
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in the `1-sense. We present a careful derivation of the dual and discuss the existence of
support vectors.

The methods presented in Chapters 18, 19 and 20 have all been implemented in Matlab,
and much of this code is given in Appendix B. Remarkably, ADMM emerges as the main
engine for solving most of these optimization problems. Thus it is nice to see the continuum
spanning from theoretical considerations of convergence and correctness to practical matters
of implementation. It is fun to see how these abstract Lagrange multipliers yield concrete
results such as the weight vector w defining the desired hyperplane in regression or SVM.

Except for a few exceptions we provide complete proofs. We did so to make this book
self-contained, but also because we believe that no deep knowledge of this material can be
acquired without working out some proofs. However, our advice is to skip some of the proofs
upon first reading, especially if they are long and intricate.

The chapters or sections marked with the symbol ~ contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.

Acknowledgement : We would like to thank Christine Allen-Blanchette, Kostas Daniilidis,
Carlos Esteves, Spyridon Leonardos, Stephen Phillips, João Sedoc, Stephen Shatz, Jianbo
Shi, and Marcelo Siqueira, for reporting typos and for helpful comments. Mary Pugh and
William Yu (at the University of Toronto) taught a course using our book and reported a
number of typos and errors. We warmly thank them as well as their students, not only for
finding errors, but also for very hepful comments and suggestions for simplifying some proofs.
Thanks to Gilbert Strang. We learned much from his books which have been a major source
of inspiration. Special thanks to Steven Boyd. We learned a lot from his remarkable book on
convex optimization and his papers, and Part III of our book is significantly inspired by his
writings. The first author also wishes to express his deepest gratitute to Philippe G. Ciarlet
who was his teacher and mentor in 1970-1972 while he was a student at ENPC in Paris.
Professor Ciarlet was by far his best teacher. He also knew how to instill in his students the
importance of intellectual rigor, honesty, and modesty. He still has his typewritten notes
on measure theory and integration, and on numerical linear algebra. The latter became his
wonderful book Ciarlet [25], from which we have borrowed heavily.
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3.6 Taylor’s Formula, Faà di Bruno’s Formula . . . . . . . . . . . . . . . . . . . 106
3.7 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Extrema of Real-Valued Functions 115
4.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 116
4.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 128

7



8 CONTENTS

4.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 131
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Newton’s Method and Its Generalizations 145
5.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 145
5.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 147
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Quadratic Optimization Problems 165
6.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 165
6.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 175
6.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 180
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7 Schur Complements and Applications 187
7.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 190
7.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 191
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

II Linear Optimization 195

8 Convex Sets, Cones, H-Polyhedra 197
8.1 What is Linear Programming? . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.2 Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces . . . . . . . . . . . . 199
8.3 Cones, Polyhedral Cones, and H-Polyhedra . . . . . . . . . . . . . . . . . . 202
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9 Linear Programs 209
9.1 Linear Programs, Feasible Solutions, Optimal Solutions . . . . . . . . . . . 209
9.2 Basic Feasible Solutions and Vertices . . . . . . . . . . . . . . . . . . . . . . 216
9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10 The Simplex Algorithm 227
10.1 The Idea Behind the Simplex Algorithm . . . . . . . . . . . . . . . . . . . . 227
10.2 The Simplex Algorithm in General . . . . . . . . . . . . . . . . . . . . . . . 236



CONTENTS 9

10.3 How to Perform a Pivoting Step Efficiently . . . . . . . . . . . . . . . . . . 243
10.4 The Simplex Algorithm Using Tableaux . . . . . . . . . . . . . . . . . . . . 247
10.5 Computational Efficiency of the Simplex Method . . . . . . . . . . . . . . . 255
10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

11 Linear Programming and Duality 261
11.1 Variants of the Farkas Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11.2 The Duality Theorem in Linear Programming . . . . . . . . . . . . . . . . . 267
11.3 Complementary Slackness Conditions . . . . . . . . . . . . . . . . . . . . . 275
11.4 Duality for Linear Programs in Standard Form . . . . . . . . . . . . . . . . 276
11.5 The Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 279
11.6 The Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
11.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

III NonLinear Optimization 301

12 Basics of Hilbert Spaces 303
12.1 The Projection Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.2 Duality and the Riesz Representation Theorem . . . . . . . . . . . . . . . . 316
12.3 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 321
12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

13 General Results of Optimization Theory 325
13.1 Optimization Problems; Basic Terminology . . . . . . . . . . . . . . . . . . 325
13.2 Existence of Solutions of an Optimization Problem . . . . . . . . . . . . . . 329
13.3 Minima of Quadratic Functionals . . . . . . . . . . . . . . . . . . . . . . . . 334
13.4 Elliptic Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
13.5 Iterative Methods for Unconstrained Problems . . . . . . . . . . . . . . . . 343
13.6 Gradient Descent Methods for Unconstrained Problems . . . . . . . . . . . 346
13.7 Convergence of Gradient Descent with Variable Stepsize . . . . . . . . . . . 354
13.8 Steepest Descent for an Arbitrary Norm . . . . . . . . . . . . . . . . . . . . 357
13.9 Newton’s Method For Finding a Minimum . . . . . . . . . . . . . . . . . . . 359
13.10 Conjugate Gradient Methods; Unconstrained Problems . . . . . . . . . . . . 363
13.11 Gradient Projection for Constrained Optimization . . . . . . . . . . . . . . 375
13.12 Penalty Methods for Constrained Optimization . . . . . . . . . . . . . . . . 377
13.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
13.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

14 Introduction to Nonlinear Optimization 385



10 CONTENTS

14.1 The Cone of Feasible Directions . . . . . . . . . . . . . . . . . . . . . . . . . 387
14.2 Active Constraints and Qualified Constraints . . . . . . . . . . . . . . . . . 393
14.3 The Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . . . . . 400
14.4 Equality Constrained Minimization . . . . . . . . . . . . . . . . . . . . . . . 411
14.5 Hard Margin Support Vector Machine; Version I . . . . . . . . . . . . . . . 416
14.6 Hard Margin Support Vector Machine; Version II . . . . . . . . . . . . . . . 421
14.7 Lagrangian Duality and Saddle Points . . . . . . . . . . . . . . . . . . . . . 429
14.8 Weak and Strong Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
14.9 Handling Equality Constraints Explicitly . . . . . . . . . . . . . . . . . . . . 446
14.10 Dual of the Hard Margin Support Vector Machine . . . . . . . . . . . . . . 450
14.11 Conjugate Function and Legendre Dual Function . . . . . . . . . . . . . . . 455
14.12 Some Techniques to Obtain a More Useful Dual Program . . . . . . . . . . 465
14.13 Uzawa’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
14.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
14.15 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

15 Subgradients and Subdifferentials ~ 479
15.1 Extended Real-Valued Convex Functions . . . . . . . . . . . . . . . . . . . . 481
15.2 Subgradients and Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . 490
15.3 Basic Properties of Subgradients and Subdifferentials . . . . . . . . . . . . . 502
15.4 Additional Properties of Subdifferentials . . . . . . . . . . . . . . . . . . . . 509
15.5 The Minimum of a Proper Convex Function . . . . . . . . . . . . . . . . . . 513
15.6 Generalization of the Lagrangian Framework . . . . . . . . . . . . . . . . . 519
15.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
15.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

16 Dual Ascent Methods; ADMM 527
16.1 Dual Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
16.2 Augmented Lagrangians and the Method of Multipliers . . . . . . . . . . . . 533
16.3 ADMM: Alternating Direction Method of Multipliers . . . . . . . . . . . . . 538
16.4 Convergence of ADMM ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
16.5 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
16.6 Some Applications of ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . 552
16.7 Solving Hard Margin (SVMh2) Using ADMM . . . . . . . . . . . . . . . . . 557
16.8 Applications of ADMM to `1-Norm Problems . . . . . . . . . . . . . . . . . 559
16.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
16.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

IV Applications to Machine Learning 567

17 Positive Definite Kernels 569
17.1 Feature Maps and Kernel Functions . . . . . . . . . . . . . . . . . . . . . . 569



CONTENTS 11

17.2 Basic Properties of Positive Definite Kernels . . . . . . . . . . . . . . . . . . 575
17.3 Hilbert Space Representation of a Positive Kernel . . . . . . . . . . . . . . . 582
17.4 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
17.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
17.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

18 Soft Margin Support Vector Machines 591
18.1 Soft Margin Support Vector Machines; (SVMs1) . . . . . . . . . . . . . . . . 594
18.2 Solving SVM (SVMs1) Using ADMM . . . . . . . . . . . . . . . . . . . . . . 609
18.3 Soft Margin Support Vector Machines; (SVMs2) . . . . . . . . . . . . . . . . 610
18.4 Solving SVM (SVMs2) Using ADMM . . . . . . . . . . . . . . . . . . . . . . 617
18.5 Soft Margin Support Vector Machines; (SVMs2′) . . . . . . . . . . . . . . . 618
18.6 Classification of the Data Points in Terms of ν (SVMs2′) . . . . . . . . . . . 628
18.7 Existence of Support Vectors for (SVMs2′) . . . . . . . . . . . . . . . . . . . 631
18.8 Solving SVM (SVMs2′) Using ADMM . . . . . . . . . . . . . . . . . . . . . 642
18.9 Soft Margin Support Vector Machines; (SVMs3) . . . . . . . . . . . . . . . . 646
18.10 Classification of the Data Points in Terms of ν (SVMs3) . . . . . . . . . . . 653
18.11 Existence of Support Vectors for (SVMs3) . . . . . . . . . . . . . . . . . . . 655
18.12 Solving SVM (SVMs3) Using ADMM . . . . . . . . . . . . . . . . . . . . . . 657
18.13 Soft Margin SVM; (SVMs4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
18.14 Solving SVM (SVMs4) Using ADMM . . . . . . . . . . . . . . . . . . . . . . 669
18.15 Soft Margin SVM; (SVMs5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
18.16 Solving SVM (SVMs5) Using ADMM . . . . . . . . . . . . . . . . . . . . . . 675
18.17 Summary and Comparison of the SVM Methods . . . . . . . . . . . . . . . 677
18.18 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

19 Ridge Regression, Lasso, Elastic Net 695
19.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
19.2 Ridge Regression; Learning an Affine Function . . . . . . . . . . . . . . . . 699
19.3 Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
19.4 Lasso Regression (`1-Regularized Regression) . . . . . . . . . . . . . . . . . 712
19.5 Lasso Regression; Learning an Affine Function . . . . . . . . . . . . . . . . . 716
19.6 Elastic Net Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
19.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

20 ν-SV Regression 731
20.1 ν-SV Regression; Derivation of the Dual . . . . . . . . . . . . . . . . . . . . 731
20.2 Existence of Support Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 742
20.3 Solving ν-Regression Using ADMM . . . . . . . . . . . . . . . . . . . . . . . 752
20.4 Kernel ν-SV Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
20.5 ν-Regression Version 2; Penalizing b . . . . . . . . . . . . . . . . . . . . . . 761
20.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768



12 CONTENTS

20.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

V Appendix 771

A Total Orthogonal Families in Hilbert Spaces 773
A.1 Total Orthogonal Families, Fourier Coefficients . . . . . . . . . . . . . . . . 773
A.2 The Hilbert Space `2(K) and the Riesz–Fischer Theorem . . . . . . . . . . . 782
A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
A.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

B Matlab Programs 793
B.1 Hard Margin (SVMh2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
B.2 Soft Margin SVM (SVMs2′) . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
B.3 Soft Margin SVM (SVMs3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
B.4 ν-SV Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

Bibliography 815



Chapter 1

Introduction

This second volume covers some elements of optimization theory and applications, especially
to machine learning. This volume is divided in five parts:

(1) Preliminaries of Optimization Theory.

(2) Linear Optimization.

(3) Nonlinear Optimization.

(4) Applications to Machine Learning.

(5) An appendix consisting of two chapers; one on Hilbert bases and the Riesz–Fischer
theorem, the other one containing Matlab code.

Part I is devoted to some preliminaries of optimization theory. The goal of most optimiza-
tion problems is to minimize (or maximize) some objective function J subject to equality
or inequality constraints. Therefore it is important to understand when a function J has a
minimum or a maximum (an optimum). If the function J is sufficiently differentiable, then
a necessary condition for a function to have an optimum typically involves the derivative of
the function J , and if J is real-valued, its gradient ∇J .

Thus it is desirable to review some basic notions of topology and calculus, in particular,
to have a firm grasp of the notion of derivative of a function between normed vector spaces.
Partial derivatives ∂f/∂A of functions whose range and domain are spaces of matrices tend
to be used casually, even though in most cases a correct definition is never provided. It is
possible, and simple, to define rigorously derivatives, gradients, and directional derivatives
of functions defined on matrices and to avoid these nonsensical partial derivatives.

Chapter 2 contains a review of basic topological notions used in analysis. We pay par-
ticular attention to complete metric spaces and complete normed vector spaces. In fact, we
provide a detailed construction of the completion of a metric space (and of a normed vector
space) using equivalence classes of Cauchy sequences. Chapter 3 is devoted to some notions
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of differential calculus, in particular, directional derivatives, total derivatives, gradients, Hes-
sians, and the inverse function theorem.

Chapter 4 deals with extrema of real-valued functions. In most optimization problems,
we need to find necessary conditions for a function J : Ω→ R to have a local extremum with
respect to a subset U of Ω (where Ω is open). This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

In (1), the equations ϕi(x) = 0 are called equality constraints , and in (2), the inequalities
ϕi(x) ≤ 0 are called inequality constraints . The case of equality constraints is much easier
to deal with and is treated in Chapter 4.

If the functions ϕi are convex and Ω is convex, then U is convex. This is a very important
case that we will discuss later. In particular, if the functions ϕi are affine, then the equality
constraints can be written as Ax = b, and the inequality constraints as Ax ≤ b, for some
m× n matrix A and some vector b ∈ Rm. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers . In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush–Kuhn–Tucker conditions. This will be discussed in
Chapter 14.

In Chapter 5 we discuss Newton’s method and some of its generalizations (the Newton–
Kantorovich theorem). These are methods to find the zeros of a function.

Chapter 6 covers the special case of determining when a quadratic function has a mini-
mum, subject to affine equality constraints. A complete answer is provided in terms of the
notion of symmetric positive semidefinite matrices.

The Schur complement is introduced in Chapter 7. We give a complete proof of a cri-
terion for a matrix to be positive definite (or positive semidefinite) stated in Boyd and
Vandenberghe [18] (Appendix B).

Part II deals with the special case where the objective function is a linear form and the
constraints are affine inequality and equality constraints. This subject is known as linear
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programming, and the next four chapters give an introduction to the subject. Although
linear programming has been supplanted by convex programming and its variants, it is still
a great workhorse. It is also a great warm up for the general treatment of Lagrangian duality.
We pay particular attention to versions of Farkas’ lemma, which is at the heart of duality in
linear programming.

Part III is devoted to nonlinear optimization, which is the case where the objective
function J is not linear and the constaints are inequality constraints. Since it is practically
impossible to say anything interesting if the constraints are not convex, we quickly consider
the convex case.

In optimization theory one often deals with function spaces of infinite dimension. Typ-
ically, these spaces either are Hilbert spaces or can be completed as Hilbert spaces. Thus
it is important to have some minimum knowledge about Hilbert spaces, and we feel that
this minimum knowledge includes the projection lemma, the fact that a closed subset has
an orthogonal complement, the Riesz representation theorem, and a version of the Farkas–
Minkowski lemma. Chapter 12 covers these topics. A more detailed introduction to Hilbert
spaces is given in Appendix A.

Chapter 13 is devoted to some general results of optimization theory. A main theme is
to find sufficient conditions that ensure that an objective function has a minimum which
is achieved. We define the notion of a coercive function. The most general result is The-
orem 13.2, which applies to a coercive convex function on a convex subset of a separable
Hilbert space. In the special case of a coercive quadratic functional, we obtain the Lions–
Stampacchia theorem (Theorem 13.6), and the Lax–Milgram theorem (Theorem 13.7). We
define elliptic functionals, which generalize quadratic functions defined by symmetric posi-
tive definite matrices. We define gradient descent methods, and discuss their convergence.
A gradient descent method looks for a descent direction and a stepsize parameter, which is
obtained either using an exact line search or a backtracking line search. A popular technique
to find the search direction is steepest descent. In addition to steepest descent for the Eu-
clidean norm, we discuss steepest descent for an arbitrary norm. We also consider a special
case of steepest descent, Newton’s method. This method converges faster than the other
gradient descent methods, but it is quite expensive since it requires computing and storing
Hessians. We also present the method of conjugate gradients and prove its correctness. We
briefly discuss the method of gradient projection and the penalty method in the case of
constrained optima.

Chapter 14 contains the most important results of nonlinear optimization theory. We
begin by defining the cone of feasible directions and then state a necessary condition for a
function to have local minimum on a set U that is not necessarily convex in terms of the
cone of feasible directions. The cone of feasible directions is not always convex, but it is if
the constraints are inequality constraints. An inequality constraint ϕ(u) ≤ 0 is said to be
active is ϕ(u) = 0. One can also define the notion of qualified constraint . Theorem 14.5
gives necessary conditions for a function J to have a minimum on a subset U defined by
qualified inequality constraints in terms of the Karush–Kuhn–Tucker conditions (for short
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KKT conditions), which involve nonnegative Lagrange multipliers. The proof relies on a
version of the Farkas–Minkowski lemma. Some of the KTT conditions assert that λiϕi(u) =
0, where λi ≥ 0 is the Lagrange multiplier associated with the constraint ϕi ≤ 0. To some
extent, this implies that active constaints are more important than inactive constraints,
since if ϕi(u) < 0 is an inactive constraint, then λi = 0. In general, the KKT conditions
are useless unlesss the constraints are convex. In this case, there is a manageable notion of
qualified constraint given by Slater’s conditions. Theorem 14.6 gives necessary conditions
for a function J to have a minimum on a subset U defined by convex inequality constraints
in terms of the Karush–Kuhn–Tucker conditions. Furthermore, if J is also convex and if the
KKT conditions hold, then J has a global minimum.

In Section 14.4, we apply Theorem 14.6 to the special case where the constraints are
equality constraints, which can be expressed as Ax = b. In the special case where the convex
objective function J is a convex quadratic functional of the form

J(x) =
1

2
x>Px+ q>x+ r,

where P is a n × n symmetric positive semidefinite matrix, the necessary and sufficient
conditions for having a minimum are expressed by a linear system involving a matrix called
the KKT matrix. We discuss conditions that guarantee that the KKT matrix is invertible,
and how to solve the KKT system. We also briefly discuss variants of Newton’s method
dealing with equality constraints.

We illustrate the KKT conditions on an interesting example, the so-called hard margin
support vector machine; see Sections 14.5 and 14.6. The problem is a classification problem,
or more accurately a separation problem. Suppose we have two nonempty disjoint finite sets
of p blue points {ui}pi=1 and q red points {vj}qj=1 in Rn. Our goal is to find a hyperplane H

of equation w>x − b = 0 (where w ∈ Rn is a nonzero vector and b ∈ R), such that all the
blue points ui are in one of the two open half-spaces determined by H, and all the red points
vj are in the other open half-space determined by H.

If the two sets are indeed separable, then in general there are infinitely many hyperplanes
separating them. Vapnik had the idea to find a hyperplane that maximizes the smallest
distance between the points and the hyperplane. Such a hyperplane is indeed unique and
is called a maximal hard margin hyperplane, or hard margin support vector machine. The
support vectors are those for which the constraints are active.

Section 14.7 contains the most important results of the chapter. The notion of Lagrangian
duality is presented. Given a primal optimization problem (P ) consisting in minimizing an
objective function J(v) with respect to some inequality constraints ϕi(v) ≤ 0, i = 1, . . . ,m,
we define the dual function G(µ) as the result of minimizing the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v)
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with respect to v, with µ ∈ Rm
+ . The dual program (D) is then to maximize G(µ) with

respect to µ ∈ Rm
+ . It turns out that G is a concave function, and the dual program is an

unconstrained maximization. This is actually a misleading statement because G is generally
a partial function, so maximizing G(µ) is equivalent to a constrained maximization problem
in which the constraints specify the domain of G, but in many cases, we obtain a dual
program simpler than the primal program. If d∗ is the optimal value of the dual program
and if p∗ is the optimal value of the primal program, we always have

d∗ ≤ p∗,

which is known as weak duality . Under certain conditions, d∗ = p∗, that is, the duality gap
is zero, in which case we say that strong duality holds. Also, under certain conditions, a
solution of the dual yields a solution of the primal, and if the primal has an optimal solution,
then the dual has an optimal solution, but beware that the converse is generally false (see
Theorem 14.17). We also show how to deal with equality constraints, and discuss the use of
conjugate functions to find the dual function. Our coverage of Lagrangian duality is quite
thorough, but we do not discuss more general orderings such as the semidefinite ordering.
For these topics which belong to convex optimization, the reader is referred to Boyd and
Vandenberghe [18].

In Chapter 15, we consider some deeper aspects of the theory of convex functions that are
not necessarily differentiable at every point of their domain. Some substitute for the gradient
is needed. Fortunately, for convex functions, there is such a notion, namely subgradients .
Geometrically, given a (proper) convex function f , the subgradients at x are vectors normal
to supporting hyperplanes to the epigraph of the function at (x, f(x)). The subdifferential
∂f(x) to f at x is the set of all subgradients at x. A crucial property is that f is differentiable
at x iff ∂f(x) = {∇fx}, where ∇fx is the gradient of f at x. Another important property is
that a (proper) convex function f attains its minimum at x iff 0 ∈ ∂f(x). A major motivation
for developing this more sophisticated theory of “differentiation” of convex functions is to
extend the Lagrangian framework to convex functions that are not necessarily differentiable.

Experience shows that the applicability of convex optimization is significantly increased
by considering extended real-valued functions, namely functions f : S → R ∪ {−∞,+∞},
where S is some subset of Rn (usually convex). This is reminiscent of what happens in
measure theory, where it is natural to consider functions that take the value +∞.

In Section 15.1, we introduce extended real-valued functions, which are functions that
may also take the values ±∞. In particular, we define proper convex functions, and the
closure of a convex function. Subgradients and subdifferentials are defined in Section 15.2.
We discuss some properties of subgradients in Section 15.3 and Section 15.4. In particular,
we relate subgradients to one-sided directional derivatives. In Section 15.5, we discuss the
problem of finding the minimum of a proper convex function and give some criteria in terms
of subdifferentials. In Section 15.6, we sketch the generalization of the results presented in
Chapter 14 about the Lagrangian framework to programs allowing an objective function and
inequality constraints which are convex but not necessarily differentiable.
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This chapter relies heavily on Rockafellar [61]. We tried to distill the body of results
needed to generalize the Lagrangian framework to convex but not necessarily differentiable
functions. Some of the results in this chapter are also discussed in Bertsekas [9, 12, 10].

Chapter 16 is devoted to the presentation of one of the best methods known at the
present for solving optimization problems involving equality constraints, called ADMM (al-
ternating direction method of multipliers). In fact, this method can also handle more general
constraints, namely, membership in a convex set. It can also be used to solve lasso mini-
mization.

In this chapter, we consider the problem of minimizing a convex function J (not neces-
sarily differentiable) under the equality constraints Ax = b. In Section 16.1, we discuss the
dual ascent method. It is essentially gradient descent applied to the dual function G, but
since G is maximized, gradient descent becomes gradient ascent.

In order to make the minimization step of the dual ascent method more robust, one can
use the trick of adding the penalty term (ρ/2) ‖Au− b‖2

2 to the Lagrangian. We obtain the
augmented Lagrangian

Lρ(u, λ) = J(u) + λ>(Au− b) + (ρ/2) ‖Au− b‖2
2 ,

with λ ∈ Rm, and where ρ > 0 is called the penalty parameter . We obtain the minimization
Problem (Pρ),

minimize J(u) + (ρ/2) ‖Au− b‖2
2

subject to Au = b,

which is equivalent to the original problem.

The benefit of adding the penalty term (ρ/2) ‖Au− b‖2
2 is that by Proposition 15.37,

Problem (Pρ) has a unique optimal solution under mild conditions on A. Dual ascent applied
to the dual of (Pρ) is called the method of multipliers and is discussed in Section 16.2.

The new twist in ADMM is to split the function J into two independent parts, as J(x, z) =
f(x) + g(z), and to consider the Minimization Problem (Padmm),

minimize f(x) + g(z)

subject to Ax+Bz = c,

for some p× n matrix A, some p×m matrix B, and with x ∈ Rn, z ∈ Rm, and c ∈ Rp. We
also assume that f and g are convex.

As in the method of multipliers, we form the augmented Lagrangian

Lρ(x, z, λ) = f(x) + g(z) + λ>(Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2
2 ,

with λ ∈ Rp and for some ρ > 0. The major difference with the method of multipliers is that
instead of performing a minimization step jointly over x and z, ADMM first performs an
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x-minimization step and then a z-minimization step. Thus x and z are updated in an alter-
nating or sequential fashion, which accounts for the term alternating direction. Because the
Lagrangian is augmented, some mild conditions on A and B imply that these minimization
steps are guaranteed to terminate. ADMM is presented in Section 16.3.

In Section 16.4, we prove the convergence of ADMM under exactly the same assumptions
as in Boyd et al. [17]. It turns out that Assumption (2) in Boyd et al. [17] implies that the
matrices A>A and B>B are invertible (as we show after the proof of Theorem 16.1). This
allows us to prove a convergence result stronger than the convergence result proven in Boyd
et al. [17]. In particular, we prove that all of the sequences (xk), (zk), and (λk) converge to

optimal solutions (x̃, z̃), and λ̃.

In Section 16.5, we discuss stopping criteria. In Section 16.6, we present some applications
of ADMM, in particular, minimization of a proper closed convex function f over a closed
convex set C in Rn and quadratic programming. The second example provides one of the
best methods for solving quadratic problems, in particular, the SVM problems discussed in
Chapter 18. Section 16.8 gives applications of ADMM to `1-norm problems, in particular,
lasso regularization which plays an important role in machine learning.

The next four chapters constitute Part IV, which covers some applications of optimization
theory (in particular Lagrangian duality) to machine learning.

Chapter 17 is an introduction to positive definite kernels and the use of kernel functions
in machine learning.

Let X be a nonempty set. If the set X represents a set of highly nonlinear data, it
may be advantageous to map X into a space F of much higher dimension called the feature
space, using a function ϕ : X → F called a feature map. This idea is that ϕ “unwinds” the
description of the objects in F in an attempt to make it linear. The space F is usually a
vector space equipped with an inner product 〈−,−〉. If F is infinite dimensional, then we
assume that it is a Hilbert space.

Many algorithms that analyze or classify data make use of the inner products 〈ϕ(x), ϕ(y)〉,
where x, y ∈ X. These algorithms make use of the function κ : X ×X → C given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X,

called a kernel function.

The kernel trick is to pretend that we have a feature embedding ϕ : X → F (actuallly
unknown), but to only use inner products 〈ϕ(x), ϕ(y)〉 that can be evaluated using the
original data through the known kernel function κ. It turns out that the functions of the
form κ as above can be defined in terms of a condition which is reminiscent of positive
semidefinite matrices (see Definition 17.2). Furthermore, every function satisfying Definition
17.2 arises from a suitable feature map into a Hilbert space; see Theorem 17.8.

We illustrate the kernel methods on kernel PCA (see Section 17.4).
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In Chapter 18 we return to the problem of separating two disjoint sets of points, {ui}pi=1

and {vj}qj=1, but this time we do not assume that these two sets are separable. To cope with
nonseparability, we allow points to invade the safety zone around the separating hyperplane,
and even points on the wrong side of the hyperplane. Such a method is called soft margin
support vector machine. We discuss variations of this method, including ν-SV classification.
In each case we present a careful derivation of the dual and we explain how to solve it using
ADMM. We prove rigorous results about the existence of support vectors.

In Chapter 19 we discuss linear regression. This problem can be cast as a learning
problem. We observe a sequence of (distinct) pairs ((x1, y1), . . . , (xm, ym)) called a set of
training data, where xi ∈ Rn and yi ∈ R, viewed as input-output pairs of some unknown
function f that we are trying to infer. The simplest kind of function is a linear function
f(x) = x>w, where w ∈ Rn is a vector of coefficients usually called a weight vector . Since
the problem is overdetermined and since our observations may be subject to errors, we can’t
solve for w exactly as the solution of the system Xw = y, so instead we solve the least-
squares problem of minimizing ‖Xw − y‖2

2, where X is the m×n matrix whose rows are the
row vectors x>i . In general there are still infinitely many solutions so we add a regularizing
term. If we add the term K ‖w‖2

2 to the objective function J(w) = ‖Xw − y‖2
2, then we have

ridge regression. This problem is discussed in Section 19.1.

We derive the dual program. The dual has a unique solution which yields a solution of the
primal. However, the solution of the dual is given in terms of the matrix XX> (whereas the
solution of the primal is given in terms of X>X), and since our data points xi are represented
by the rows of the matrix X, we see that this solution only involves inner products of the
xi. This observation is the core of the idea of kernel functions, which we introduce. We also
explain how to solve the problem of learning an affine function f(x) = x>w + b.

In general the vectors w produced by ridge regression have few zero entries. In practice it
is highly desirable to obtain sparse solutions, that is, vectors w with many components equal
to zero. This can be achieved by replacing the regularizing term K ‖w‖2

2 by the regularizing
term K ‖w‖1; that is, to use the `1-norm instead of the `2-norm; see Section 19.4. This
method has the exotic name of lasso regression. This time there is no closed-form solution,
but this is a convex optimization problem and there are efficient iterative methods to solve
it. We show that ADMM provides an efficient solution.

Lasso has some undesirable properties, in particular when the dimension of the data
is much larger than the number of data. In order to alleviate these problems, elastic net
regression penalizes w with both an `2 regularizing term K ‖w‖2

2 and an `1 regularizing term
τ ‖w‖1. The method of elastic net blends ridge regression and lasso and attempts to retain
their best properties; see Section 19.6. It can also be solved using ADMM but it appears to
be much slower than lasso when K is small and the dimension of the data is much larger
than the number of data.

In Chapter 20 we present ν-SV Regression. This method is designed in the same spirit
as soft margin SVM, in the sense that it allows a margin of error. Here the errors are
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penalized in the `1-sense. We discuss several variations of the method and show how to solve
them using ADMM. We present a careful derivation of the dual and discuss the existence of
support vectors.
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Part I

Preliminaries for Optimization Theory
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Chapter 2

Topology

This chapter contains a review of basic topological concepts. First metric spaces are defined.
Next normed vector spaces are defined. Closed and open sets are defined, and their basic
properties are stated. The general concept of a topological space is defined. The closure and
the interior of a subset are defined. The subspace topology and the product topology are
defined. Continuous maps and homeomorphisms are defined. Limits of sequences are de-
fined. Continuous linear maps and multilinear maps are defined and studied briefly. Cauchy
sequences and complete metric spaces are defined. We prove that every metric space can
be embedded in a complete metric space called its completion. A complete normed vector
space is called a Banach space. We prove that every normed vector space can be embedded
in a complete normed vector space. We conclude with the contraction mapping theorem in
a complete metric space.

2.1 Metric Spaces and Normed Vector Spaces

Most spaces considered in this book have a topological structure given by a metric or a norm,
and we first review these notions. We begin with metric spaces. Recall that R+ = {x ∈ R |
x ≥ 0}.

Definition 2.1. A metric space is a set E together with a function d : E×E → R+, called a
metric, or distance, assigning a nonnegative real number d(x, y) to any two points x, y ∈ E,
and satisfying the following conditions for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

Geometrically, Condition (D3) expresses the fact that in a triangle with vertices x, y, z,
the length of any side is bounded by the sum of the lengths of the other two sides. From
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(D3), we immediately get
|d(x, y)− d(y, z)| ≤ d(x, z).

Let us give some examples of metric spaces. Recall that the absolute value |x| of a real
number x ∈ R is defined such that |x| = x if x ≥ 0, |x| = −x if x < 0, and for a complex
number x = a+ ib, by |x| =

√
a2 + b2.

Example 2.1.

1. Let E = R, and d(x, y) = |x − y|, the absolute value of x − y. This is the so-called
natural metric on R.

2. Let E = Rn (or E = Cn). We have the Euclidean metric

d2(x, y) =
(
|x1 − y1|2 + · · ·+ |xn − yn|2

) 1
2 ,

the distance between the points (x1, . . . , xn) and (y1, . . . , yn).

3. For every set E, we can define the discrete metric, defined such that d(x, y) = 1 iff
x 6= y, and d(x, x) = 0.

4. For any a, b ∈ R such that a < b, we define the following sets:

[a, b] = {x ∈ R | a ≤ x ≤ b}, (closed interval)

(a, b) = {x ∈ R | a < x < b}, (open interval)

[a, b) = {x ∈ R | a ≤ x < b}, (interval closed on the left, open on the right)

(a, b] = {x ∈ R | a < x ≤ b}, (interval open on the left, closed on the right)

Let E = [a, b], and d(x, y) = |x− y|. Then ([a, b], d) is a metric space.

We will need to define the notion of proximity in order to define convergence of limits
and continuity of functions. For this we introduce some standard “small neighborhoods.”

Definition 2.2. Given a metric space E with metric d, for every a ∈ E, for every ρ ∈ R,
with ρ > 0, the set

B(a, ρ) = {x ∈ E | d(a, x) ≤ ρ}
is called the closed ball of center a and radius ρ, the set

B0(a, ρ) = {x ∈ E | d(a, x) < ρ}

is called the open ball of center a and radius ρ, and the set

S(a, ρ) = {x ∈ E | d(a, x) = ρ}

is called the sphere of center a and radius ρ. It should be noted that ρ is finite (i.e., not
+∞). A subset X of a metric space E is bounded if there is a closed ball B(a, ρ) such that
X ⊆ B(a, ρ).
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Clearly, B(a, ρ) = B0(a, ρ) ∪ S(a, ρ).

Example 2.2.

1. In E = R with the distance |x− y|, an open ball of center a and radius ρ is the open
interval (a− ρ, a+ ρ).

2. In E = R2 with the Euclidean metric, an open ball of center a and radius ρ is the set
of points inside the disk of center a and radius ρ, excluding the boundary points on
the circle.

3. In E = R3 with the Euclidean metric, an open ball of center a and radius ρ is the set
of points inside the sphere of center a and radius ρ, excluding the boundary points on
the sphere.

One should be aware that intuition can be misleading in forming a geometric image of a
closed (or open) ball. For example, if d is the discrete metric, a closed ball of center a and
radius ρ < 1 consists only of its center a, and a closed ball of center a and radius ρ ≥ 1
consists of the entire space!

� If E = [a, b], and d(x, y) = |x − y|, as in Example 2.1, an open ball B0(a, ρ), with
ρ < b− a, is in fact the interval [a, a+ ρ), which is closed on the left.

We now consider a very important special case of metric spaces, normed vector spaces.
Normed vector spaces have already been defined in Chapter 8 (Vol. I) (Definition 8.1 (Vol.
I)), but for the reader’s convenience we repeat the definition.

Definition 2.3. Let E be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function ‖ ‖ : E → R+, assigning
a nonnegative real number ‖u‖ to any vector u ∈ E, and satisfying the following conditions
for all x, y ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (homogeneity (or scaling))

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector space.

We showed in Chapter 8 (Vol. I), that

‖−x‖ = ‖x‖ ,

and from (N3), we get
|‖x‖ − ‖y‖| ≤ ‖x− y‖.
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Given a normed vector space E, if we define d such that

d(x, y) = ‖x− y‖,

it is easily seen that d is a metric. Thus, every normed vector space is immediately a metric
space. Note that the metric associated with a norm is invariant under translation, that is,

d(x+ u, y + u) = d(x, y).

For this reason we can restrict ourselves to open or closed balls of center 0.

Examples of normed vector spaces were given in Example 8.1 (Vol. I). We repeat the
most important examples.

Example 2.3. Let E = Rn (or E = Cn). There are three standard norms. For every
(x1, . . . , xn) ∈ E, we have the norm ‖x‖1, defined such that,

‖x‖1 = |x1|+ · · ·+ |xn|,

we have the Euclidean norm ‖x‖2, defined such that,

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

) 1
2 ,

and the sup-norm ‖x‖∞, defined such that,

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.

More generally, we define the `p-norm (for p ≥ 1) by

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p.

We proved in Proposition 8.1 (Vol. I) that the `p-norms are indeed norms. The closed
unit balls centered at (0, 0) for ‖‖1, ‖‖2, and ‖‖∞, along with the containment relationships,
are shown in Figures 2.1 and 2.2. Figures 2.3 and 2.4 illustrate the situation in R3.

Remark: In a normed vector space we define a closed ball or an open ball of radius ρ as a
closed ball or an open ball of center 0. We may use the notation B(ρ) for B(0, ρ) and B0(ρ)
for B0(0, ρ).

We will now define the crucial notions of open sets and closed sets within a metric space

Definition 2.4. Let E be a metric space with metric d. A subset U ⊆ E is an open set in E
if either U = ∅, or for every a ∈ U , there is some open ball B0(a, ρ) such that, B0(a, ρ) ⊆ U .1

A subset F ⊆ E is a closed set in E if its complement E − F is open in E. See Figure 2.5.

1Recall that ρ > 0.
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Figure 2.1: Figure a shows the diamond shaped closed ball associated with ‖ ‖1. Figure b
shows the closed unit disk associated with ‖‖2, while Figure c illustrates the closed unit ball
associated with ‖ ‖∞.

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Figure 2.2: The relationship between the closed unit balls centered at (0, 0).

The set E itself is open, since for every a ∈ E, every open ball of center a is contained in
E. In E = Rn, given n intervals [ai, bi], with ai < bi, it is easy to show that the open n-cube

{(x1, . . . , xn) ∈ E | ai < xi < bi, 1 ≤ i ≤ n}

is an open set. In fact, it is possible to find a metric for which such open n-cubes are open
balls! Similarly, we can define the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n},

which is a closed set.

The open sets satisfy some important properties that lead to the definition of a topological
space.
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a
b

c

Figure 2.3: Figure a shows the octahedral shaped closed ball associated with ‖ ‖1. Figure
b shows the closed spherical associated with ‖ ‖2, while Figure c illustrates the closed unit
ball associated with ‖ ‖∞.

> > 

Figure 2.4: The relationship between the closed unit balls centered at (0, 0, 0).

Proposition 2.1. Given a metric space E with metric d, the family O of all open sets
defined in Definition 2.4 satisfies the following properties:

(O1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is
closed under finite intersections.

(O2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have
⋃
i∈I Ui ∈ O, i.e., O is closed

under arbitrary unions.

(O3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.
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U

a

BO
(a,    )ρ

Figure 2.5: An open set U in E = R2 under the standard Euclidean metric. Any point in
the peach set U is surrounded by a small raspberry open set which lies within U .

Furthermore, for any two distinct points a 6= b in E, there exist two open sets Ua and Ub
such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅.

Proof. It is straightforward. For the last point, letting ρ = d(a, b)/3 (in fact ρ = d(a, b)/2
works too), we can pick Ua = B0(a, ρ) and Ub = B0(b, ρ). By the triangle inequality, we
must have Ua ∩ Ub = ∅.

The above proposition leads to the very general concept of a topological space.

� One should be careful that, in general, the family of open sets is not closed under infinite
intersections. For example, in R under the metric |x − y|, letting Un = (−1/n, +1/n),

each Un is open, but
⋂
n Un = {0}, which is not open.

2.2 Topological Spaces

Motivated by Proposition 2.1, a topological space is defined in terms of a family of sets
satisfying the properties of open sets stated in that proposition.

Definition 2.5. Given a set E, a topology on E (or a topological structure on E), is defined
as a family O of subsets of E called open sets , and satisfying the following three properties:

(1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is
closed under finite intersections.

(2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have
⋃
i∈I Ui ∈ O, i.e., O is closed

under arbitrary unions.

(3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

A set E together with a topology O on E is called a topological space. Given a topological
space (E,O), a subset F of E is a closed set if F = E − U for some open set U ∈ O, i.e., F
is the complement of some open set.
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� It is possible that an open set is also a closed set. For example, ∅ and E are both open
and closed.

Definition 2.6. When a topological space contains a proper nonempty subset U which is
both open and closed, the space E is said to be disconnected .

By taking complements, we can state properties of the closed sets dual to those of Defi-
nition 2.5. If we denote the family of closed sets of E as F = {F ⊆ E | E − F ∈ O}, then
the closed sets satisfy the following properties:

(1) For every finite family (Fi)1≤i≤n ∈ F , we have F1∪· · ·∪Fn ∈ F , i.e., F is closed under
finite unions.

(2) For every arbitrary family (Fi)i∈I of sets Fi ∈ F , we have
⋂
i∈I Fi ∈ F , i.e., F is closed

under arbitrary intersections.

(3) ∅ ∈ F , and E ∈ F , i.e., ∅ and E belong to F .

One of the reasons why topological spaces are important is that the definition of a topol-
ogy only involves a certain family O of sets, and not how such family is generated from
a metric or a norm. For example, different metrics or different norms can define the same
family of open sets. Many topological properties only depend on the family O and not on
the specific metric or norm. But the fact that a topology is definable from a metric or a
norm is important, because it usually implies nice properties of a space. All our examples
will be spaces whose topology is defined by a metric or a norm.

Definition 2.7. A topological space (E,O) is said to satisfy the Hausdorff separation axiom
(or T2-separation axiom) if for any two distinct points a 6= b in E, there exist two open sets
Ua and Ub such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅. When the T2-separation axiom is
satisfied, we also say that (E,O) is a Hausdorff space.

As shown by Proposition 2.1, any metric space is a topological Hausdorff space, the family
of open sets being in fact the family of arbitrary unions of open balls. Similarly, any normed
vector space is a topological Hausdorff space, the family of open sets being the family of
arbitrary unions of open balls. The topology O consisting of all subsets of E is called the
discrete topology .

Remark: Most (if not all) spaces used in analysis are Hausdorff spaces. Intuitively, the
Hausdorff separation axiom says that there are enough “small” open sets. Without this
axiom, some counter-intuitive behaviors may arise. For example, a sequence may have more
than one limit point (or a compact set may not be closed). Nevertheless, non-Hausdorff
topological spaces arise naturally in algebraic geometry. But even there, some substitute for
separation is used.

It is also worth noting that the Hausdorff separation axiom implies the following property.
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Proposition 2.2. If a topological space (E,O) is Hausdorff, then for every a ∈ E, the set
{a} is closed.

Proof. If x ∈ E −{a}, then x 6= a, and so there exist open sets Ua and Ux such that a ∈ Ua,
x ∈ Ux, and Ua ∩ Ux = ∅. See Figure 2.6. Thus, for every x ∈ E − {a}, there is an open set
Ux containing x and contained in E − {a}, showing by (O3) that E − {a} is open, and thus
that the set {a} is closed.

a

x

U

U

a

x

E

Figure 2.6: A schematic illustration of the Hausdorff separation property.

Given a topological space (E,O), given any subset A of E, since E ∈ O and E is a closed
set, the family CA = {F | A ⊆ F, F a closed set} of closed sets containing A is nonempty,
and since any arbitrary intersection of closed sets is a closed set, the intersection

⋂
CA of

the sets in the family CA is the smallest closed set containing A. By a similar reasoning, the
union of all the open subsets contained in A is the largest open set contained in A.

Definition 2.8. Given a topological space (E,O), given any subset A of E, the smallest
closed set containing A is denoted by A, and is called the closure, or adherence of A. See
Figure 2.7. A subset A of E is dense in E if A = E. The largest open set contained in A is

denoted by
◦
A, and is called the interior of A. See Figure 2.8. The set FrA = A ∩E − A is

called the boundary (or frontier) of A. We also denote the boundary of A by ∂A. See Figure
2.9.

Remark: The notation A for the closure of a subset A of E is somewhat unfortunate,
since A is often used to denote the set complement of A in E. Still, we prefer it to more
cumbersome notations such as clo(A), and we denote the complement of A in E by E − A
(or sometimes, Ac).

By definition, it is clear that a subset A of E is closed iff A = A. The set Q of rationals

is dense in R. It is easily shown that A =
◦
A ∪ ∂A and

◦
A ∩ ∂A = ∅.
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(1,-1)

Figure 2.7: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the
lines y = x and y = −x. The closure of A is obtained by the intersection of A with the
closed unit ball.

A

(1,1)

(1,-1)

(1,1)

(1,-1) A

(1,1)
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o

Figure 2.8: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the
lines y = x and y = −x. The interior of A is obtained by the covering A with small open
balls.

Another useful characterization of A is given by the following proposition.
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Figure 2.9: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the

lines y = x and y = −x. The boundary of A is A−
◦
A.

Proposition 2.3. Given a topological space (E,O), given any subset A of E, the closure
A of A is the set of all points x ∈ E such that for every open set U containing x, then
U ∩ A 6= ∅. See Figure 2.10.

A

A

Figure 2.10: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The purple subset A is illustrated with three red points, each in its closure since the
open ball centered at each point has nontrivial intersection with A.

Proof. If A = ∅, since ∅ is closed, the proposition holds trivially. Thus assume that A 6= ∅.
First assume that x ∈ A. Let U be any open set such that x ∈ U . If U ∩ A = ∅, since U is
open, then E − U is a closed set containing A, and since A is the intersection of all closed
sets containing A, we must have x ∈ E − U , which is impossible. Conversely, assume that
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x ∈ E is a point such that for every open set U containing x, U ∩A 6= ∅. Let F be any closed
subset containing A. If x /∈ F , since F is closed, then U = E − F is an open set such that
x ∈ U , and U ∩A = ∅, a contradiction. Thus, we have x ∈ F for every closed set containing
A, that is, x ∈ A.

Often it is necessary to consider a subset A of a topological space E, and to view the
subset A as a topological space.

2.3 Subspace and Product Topologies

The following proposition shows how to define a topology on a subset.

Proposition 2.4. Given a topological space (E,O), given any subset A of E, let

U = {U ∩ A | U ∈ O}

be the family of all subsets of A obtained as the intersection of any open set in O with A.
The following properties hold.

(1) The space (A,U) is a topological space.

(2) If E is a metric space with metric d, then the restriction dA : A × A → R+ of the
metric d to A defines a metric space. Furthermore, the topology induced by the metric
dA agrees with the topology defined by U , as above.

Proof. Left as an exercise.

Proposition 2.4 suggests the following definition.

Definition 2.9. Given a topological space (E,O), given any subset A of E, the subspace
topology on A induced by O is the family U of open sets defined such that

U = {U ∩ A | U ∈ O}

is the family of all subsets of A obtained as the intersection of any open set in O with A.
We say that (A,U) has the subspace topology . If (E, d) is a metric space, the restriction
dA : A× A→ R+ of the metric d to A is called the subspace metric.

For example, if E = Rn and d is the Euclidean metric, we obtain the subspace topology
on the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.

See Figure 2.11.
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A = (1,1,1)

B = (1,1,0)

C = (1,0,1)

D = (0,1,1)

Figure 2.11: An example of an open set in the subspace topology for {(x, y, z) ∈ R3 | −1 ≤
x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1}. The open set is the corner region ABCD and is obtained
by intersection the cube B0((1, 1, 1), 1).

� One should realize that every open set U ∈ O which is entirely contained in A is also in
the family U , but U may contain open sets that are not in O. For example, if E = R

with |x− y|, and A = [a, b], then sets of the form [a, c), with a < c < b belong to U , but they
are not open sets for R under |x−y|. However, there is agreement in the following situation.

Proposition 2.5. Given a topological space (E,O), given any subset A of E, if U is the
subspace topology, then the following properties hold.

(1) If A is an open set A ∈ O, then every open set U ∈ U is an open set U ∈ O.

(2) If A is a closed set in E, then every closed set w.r.t. the subspace topology is a closed
set w.r.t. O.

Proof. Left as an exercise.

The concept of product topology is also useful. We have the following proposition.
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Proposition 2.6. Given n topological spaces (Ei,Oi), let B be the family of subsets of
E1 × · · · × En defined as follows:

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},

and let P be the family consisting of arbitrary unions of sets in B, including ∅. Then P is a
topology on E1 × · · · × En.

Proof. Left as an exercise.

Definition 2.10. Given n topological spaces (Ei,Oi), the product topology on E1×· · ·×En
is the family P of subsets of E1 × · · · × En defined as follows: if

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},

then P is the family consisting of arbitrary unions of sets in B, including ∅. See Figure 2.12.
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Figure 2.12: Examples of open sets in the product topology for R2 and R3 induced by the
Euclidean metric.

If each (Ei, dEi) is a metric space, there are three natural metrics that can be defined on
E1 × · · · × En:

d1((x1, . . . , xn), (y1, . . . , yn)) = dE1(x1, y1) + · · ·+ dEn(xn, yn),

d2((x1, . . . , xn), (y1, . . . , yn)) =
(
(dE1(x1, y1))2 + · · ·+ (dEn(xn, yn))2

) 1
2 ,

d∞((x1, . . . , xn), (y1, . . . , yn)) = max{dE1(x1, y1), . . . , dEn(xn, yn)}.

Proposition 2.7. The following inequalities hold:

d∞((x1, . . . , xn), (y1, . . . , yn)) ≤ d2((x1, . . . , xn), (y1, . . . , yn)) ≤ d1((x1, . . . , xn), (y1, . . . , yn))

≤ nd∞((x1, . . . , xn), (y1, . . . , yn)),

so these distances define the same topology, which is the product topology.
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If each (Ei, ‖ ‖Ei) is a normed vector space, there are three natural norms that can be
defined on E1 × · · · × En:

‖(x1, . . . , xn)‖1 = ‖x1‖E1 + · · ·+ ‖xn‖En ,

‖(x1, . . . , xn)‖2 =
(
‖x1‖2

E1
+ · · ·+ ‖xn‖2

En

) 1
2
,

‖(x1, . . . , xn)‖∞ = max {‖x1‖E1 , . . . , ‖xn‖En} .

Proposition 2.8. The following inequalities hold:

‖(x1, . . . , xn)‖∞ ≤ ‖(x1, . . . , xn)‖2 ≤ ‖(x1, . . . , xn)‖1 ≤ n‖(x1, . . . , xn)‖∞,

so these norms define the same topology, which is the product topology.

It can also be verified that when Ei = R, with the standard topology induced by |x− y|,
the topology product on Rn is the standard topology induced by the Euclidean norm.

Definition 2.11. Two metrics d1 and d2 on a space E are equivalent if they induce the same
topology O on E (i.e., they define the same family O of open sets). Similarly, two norms
‖ ‖1 and ‖ ‖2 on a space E are equivalent if they induce the same topology O on E.

Given a topological space (E,O), it is often useful, as in Proposition 2.6, to define the
topology O in terms of a subfamily B of subsets of E.

Definition 2.12. Given a topological space (E,O), we say that a family B of subsets of
E is a basis for the topology O, if B is a subset of O, and if every open set U in O can be
obtained as some union (possibly infinite) of sets in B (agreeing that the empty union is the
empty set).

For example, given any metric space (E, d), B = {B0(a, ρ) | a ∈ E, ρ > 0} is a basis for
the topology. In particular, if d = ‖ ‖2, the open intervals form a basis for R, while the open
disks form a basis for R2. The open rectangles also form a basis for R2 with the standard
topology.

It is immediately verified that if a family B = (Ui)i∈I is a basis for the topology of (E,O),
then E =

⋃
i∈I Ui, and the intersection of any two sets Ui, Uj ∈ B is the union of some sets in

the family B (again, agreeing that the empty union is the empty set). Conversely, a family
B with these properties is the basis of the topology obtained by forming arbitrary unions of
sets in B.

Definition 2.13. Given a topological space (E,O), a subbasis for O is a family S of subsets
of E, such that the family B of all finite intersections of sets in S (including E itself, in case
of the empty intersection) is a basis of O. See Figure 2.13.

The following proposition gives useful criteria for determining whether a family of open
subsets is a basis of a topological space.
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Figure 2.13: Figure (i.) shows that the set of infinite open intervals forms a subbasis for R.
Figure (ii.) shows that the infinite open strips form a subbasis for R2.

Proposition 2.9. Given a topological space (E,O) and a family B of open subsets in O the
following properties hold:

(1) The family B is a basis for the topology O iff for every open set U ∈ O and every
x ∈ U , there is some B ∈ B such that x ∈ B and B ⊆ U . See Figure 2.14.

(2) The family B is a basis for the topology O iff

(a) For every x ∈ E, there is some B ∈ B such that x ∈ B.

(b) For any two open subsets, B1, B2 ∈ B, for every x ∈ E, if x ∈ B1∩B2, then there
is some B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩B2. See Figure 2.15.

x

U

B

B1

Figure 2.14: Given an open subset U of R2 and x ∈ U , there exists an open ball B containing
x with B ⊂ U . There also exists an open rectangle B1 containing x with B1 ⊂ U .

We now consider the fundamental property of continuity.
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Figure 2.15: A schematic illustration of Condition (b) in Proposition 2.9.

2.4 Continuous Functions

Definition 2.14. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. For every a ∈ E, we say that f is continuous at a, if for every open set V ∈ OF
containing f(a), there is some open set U ∈ OE containing a, such that, f(U) ⊆ V . See
Figure 2.16. We say that f is continuous if it is continuous at every a ∈ E.

If (E,OE) and (F,OF ) are topological spaces, and f : E → F is a function, for every
nonempty subset A ⊆ E of E, we say that f is continuous on A if the restriction of f to A
is continuous with respect to (A,U) and (F,OF ), where U is the subspace topology induced
by OE on A.

E

F

a

f

f(a)
V

U f(U)

Figure 2.16: A schematic illustration of Definition 2.14.

Definition 2.15. Let (E,OE) be a topological space. Define a neighborhood of a ∈ E as
any subset N of E containing some open set O ∈ O such that a ∈ O.

Now if f is continuous at a and N is any neighborhood of f(a), there is some open set
V ⊆ N containing f(a), and since f is continuous at a, there is some open set U containing
a, such that f(U) ⊆ V . Since V ⊆ N , the open set U is a subset of f−1(N) containing a,
and f−1(N) is a neighborhood of a. Conversely, if f−1(N) is a neighborhood of a whenever
N is any neighborhood of f(a), it is immediate that f is continuous at a. See Figure 2.17.

It is easy to see that Definition 2.14 is equivalent to the following statements.
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Figure 2.17: A schematic illustration of the neighborhood condition.

Proposition 2.10. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. For every a ∈ E, the function f is continuous at a ∈ E iff for every neighborhood
N of f(a) ∈ F , then f−1(N) is a neighborhood of a. The function f is continuous on E iff
f−1(V ) is an open set in OE for every open set V ∈ OF .

If E and F are metric spaces, Proposition 2.10 can be restated as follows.

Proposition 2.11. Let E and F be metric spaces defined by metrics d1 and d2. The function
f : E → F is continuous at a ∈ E iff for every ε > 0, there is some η > 0 such that for every
x ∈ E,

if d1(a, x) ≤ η, then d2(f(a), f(x)) ≤ ε.

If E and F are normed vector spaces, Proposition 2.10 can be restated as follows.

Proposition 2.12. Let E and F be normed vector spaces defined by norms ‖ ‖1 and ‖ ‖2.
The function f : E → F is continuous at a ∈ E iff for every ε > 0, there is some η > 0 such
that for every x ∈ E,

if ‖x− a‖1 ≤ η, then ‖f(x)− f(a)‖2 ≤ ε.

It is worth noting that continuity is a topological notion, in the sense that equivalent
metrics (or equivalent norms) define exactly the same notion of continuity.

An important example of a continuous function is the distance function in a metric space.
One can show that in a metric space (E, d), the distance d : E×E → R is continuous, where
E × E has the product topology. By the triangle inequality, we have

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y) = d(x0, y0) + d(x0, x) + d(y0, y)

and
d(x0, y0) ≤ d(x0, x) + d(x, y) + d(y, y0) = d(x, y) + d(x0, x) + d(y0, y).

Consequently,
|d(x, y)− d(x0, y0)| ≤ d(x0, x) + d(y0, y),
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which proves that d is continuous at (x0, y0). In fact this shows that d is uniformly continuous;
see Definition 2.21.

Similarly, for a normed vector space (E, ‖ ‖), the norm ‖ ‖ : E → R is (uniformly)
continuous.

Another important example of a continuous function is the projection of a product space.
Given a product E1× · · ·×En of topological spaces, as usual, we let πi : E1× · · ·×En → Ei
be the projection function such that, πi(x1, . . . , xn) = xi. It is immediately verified that each
πi is continuous.

Definition 2.16. Given a topological space (E,O), we say that a point a ∈ E is isolated if
{a} is an open set in O.

If (E,OE) and (F,OF ) are topological spaces, any function f : E → F is continuous at
every isolated point a ∈ E. In the discrete topology, every point is isolated.

As the following proposition shows, isolated points do not occur in nontrivial metric
spaces.

Proposition 2.13. In a nontrivial normed vector space (E, ‖ ‖) (with E 6= {0}), no point
is isolated.

Proof. To show this, we show that every open ball B0(u, ρ,) contains some vectors different
from u. Indeed, since E is nontrivial, there is some v ∈ E such that v 6= 0, and thus
λ = ‖v‖ > 0 (by (N1)). Let

w = u+
ρ

λ+ 1
v.

Since v 6= 0 and ρ > 0, we have w 6= u. Then,

‖w − u‖ =

∥∥∥∥ ρ

λ+ 1
v

∥∥∥∥ =
ρλ

λ+ 1
< ρ,

which shows that ‖w − u‖ < ρ, for w 6= u.

The following proposition shows that composition behaves well with respect to continuity.

Proposition 2.14. Given topological spaces (E,OE), (F,OF ), and (G,OG), and two func-
tions f : E → F and g : F → G, if f is continuous at a ∈ E and g is continuous at f(a) ∈ F ,
then g ◦ f : E → G is continuous at a ∈ E. Given n topological spaces (Fi,Oi), for every
function f : E → F1 × · · · × Fn, then f is continuous at a ∈ E iff every fi : E → Fi is
continuous at a, where fi = πi ◦ f .

Given a function f : E1 × · · · × En → F , we can fix n − 1 of the arguments, say
a1, . . . , ai−1, ai+1, . . . , an, and view f as a function of the remaining argument,

xi 7→ f(a1, . . . , ai−1, xi, ai+1, . . . , an),

where xi ∈ Ei. If f is continuous, it is clear that each fi is continuous.
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� One should be careful that the converse is false! For example, consider the function
f : R× R→ R, defined such that,

f(x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and f(0, 0) = 0.

The function f is continuous on R× R− {(0, 0)}, but on the line y = mx, with m 6= 0, we
have f(x, y) = m

1+m2 6= 0, and thus, on this line, f(x, y) does not approach 0 when (x, y)
approaches (0, 0). See Figure 2.18.
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Figure 2.18: The graph of f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0). The bottom of this graph,
which shows the approach along the line y = −x, does not have a z value of 0.

The following proposition is useful for showing that real-valued functions are continuous.

Proposition 2.15. If E is a topological space, and (R, |x− y|) the reals under the standard
topology, for any two functions f : E → R and g : E → R, for any a ∈ E, for any λ ∈ R, if
f and g are continuous at a, then f +g, λf , f ·g are continuous at a, and f/g is continuous
at a if g(a) 6= 0.

Proof. Left as an exercise.

Using Proposition 2.15, we can show easily that every real polynomial function is con-
tinuous.

The notion of isomorphism of topological spaces is defined as follows.

Definition 2.17. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. We say that f is a homeomorphism between E and F if f is bijective, and both
f : E → F and f−1 : F → E are continuous.
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� One should be careful that a bijective continuous function f : E → F is not necessarily
a homeomorphism. For example, if E = R with the discrete topology, and F = R with

the standard topology, the identity is not a homeomorphism. Another interesting example
involving a parametric curve is given below. Let L : R → R2 be the function, defined such
that

L1(t) =
t(1 + t2)

1 + t4
,

L2(t) =
t(1− t2)

1 + t4
.

If we think of (x(t), y(t)) = (L1(t), L2(t)) as a geometric point in R2, the set of points
(x(t), y(t)) obtained by letting t vary in R from −∞ to +∞, defines a curve having the shape
of a “figure eight,” with self-intersection at the origin, called the “lemniscate of Bernoulli.”
See Figure 2.19. The map L is continuous, and in fact bijective, but its inverse L−1 is not
continuous. Indeed, when we approach the origin on the branch of the curve in the upper left
quadrant (i.e., points such that, x ≤ 0, y ≥ 0), then t goes to −∞, and when we approach
the origin on the branch of the curve in the lower right quadrant (i.e., points such that,
x ≥ 0, y ≤ 0), then t goes to +∞.

Figure 2.19: The lemniscate of Bernoulli.

2.5 Limits and Continuity; Uniform Continuity

The definition of continuity utilizes open sets (or neighborhoods) to capture the notion of
“closeness.” Another way to quantify this notion of “closeness” is through the limit of a
sequence.

Definition 2.18. Given any set E, a sequence is any function x : N → E, usually denoted
by (xn)n∈N, or (xn)n≥0, or even by (xn).

Definition 2.19. Given a topological space (E,O), we say that a sequence (xn)n∈N converges
to some a ∈ E if for every open set U containing a, there is some n0 ≥ 0, such that, xn ∈ U ,
for all n ≥ n0. We also say that a is a limit of (xn)n∈N. See Figure 2.20.
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Figure 2.20: A schematic illustration of Definition 2.19.

When E is a metric space, Definition 2.19 is equivalent to the following proposition.

Proposition 2.16. Let E be a metric space with metric d. A sequence (xn)n∈N ⊂ E con-
verges to some a ∈ E iff

for every ε > 0, there is some n0 ≥ 0, such that, d(xn, a) ≤ ε, for all n ≥ n0.

When E is a normed vector space, Definition 2.19 is equivalent to the following proposi-
tion.

Proposition 2.17. Let E be a normed vector space with norm ‖‖. A sequence (xn)n∈N ⊂ E
converges to some a ∈ E iff

for every ε > 0, there is some n0 ≥ 0, such that, ‖xn − a‖ ≤ ε, for all n ≥ n0.

The following proposition shows the importance of the Hausdorff separation axiom.

Proposition 2.18. Given a topological space (E,O), if the Hausdorff separation axiom
holds, then every sequence has at most one limit.

Proof. Left as an exercise.

It is worth noting that the notion of limit is topological, in the sense that a sequence
converge to a limit b iff it converges to the same limit b in any equivalent metric (and similarly
for equivalent norms).

If E is a metric space and if A is a subset of E, there is a convenient way of showing that
a point x ∈ E belongs to the closure A of A in terms of sequences.

Proposition 2.19. Given any metric space (E, d), for any subset A of E and any point
x ∈ E, we have x ∈ A iff there is a sequence (an) of points an ∈ A converging to x.
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Proof. If the sequence (an) of points an ∈ A converges to x, then for every open subset U
of E containing x, there is some n0 such that an ∈ U for all n ≥ n0, so U ∩ A 6= ∅, and
Proposition 2.3 implies that x ∈ A.

Conversely, assume that x ∈ A. Then for every n ≥ 1, consider the open ball B0(x, 1/n).
By Proposition 2.3, we have B0(x, 1/n) ∩ A 6= ∅, so we can pick some an ∈ B0(x, 1/n) ∩ A.
This way, we define a sequence (an) of points in A, and by construction d(x, an) < 1/n for
all n ≥ 1, so the sequence (an) converges to x.

Before stating continuity in terms of limits, we still need one more concept, that of limit
for functions.

Definition 2.20. Let (E,OE) and (F,OF ) be topological spaces, let A be some nonempty
subset of E, and let f : A→ F be a function. For any a ∈ A and any b ∈ F , we say that f(x)
approaches b as x approaches a with values in A if for every open set V ∈ OF containing
b, there is some open set U ∈ OE containing a, such that, f(U ∩ A) ⊆ V . See Figure 2.21.
This is denoted by

lim
x→a,x∈A

f(x) = b.

b
a

b

A
U V

f(U     A)h

E
F

f

Figure 2.21: A schematic illustration of Definition 2.20.

Note that by Proposition 2.3, since a ∈ A, for every open set U containing a, we have
U ∩ A 6= ∅, and the definition is nontrivial. Also, even if a ∈ A, the value f(a) of f at a
plays no role in this definition.

When E and F are metric spaces, Definition 2.20 can be restated as follows.

Proposition 2.20. Let E and F be metric spaces with metrics d1 and d2. Let A be some
nonempty subset of E, and let f : A→ F be a function. For any a ∈ A and any b ∈ F , f(x)
approaches b as x approaches a with values in A iff

for every ε > 0, there is some η > 0, such that, for every x ∈ A,

if d1(x, a) ≤ η, then d2(f(x), b) ≤ ε.
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When E and F are normed vector spaces, Definition 2.20 can be restated as follows.

Proposition 2.21. Let E and F be normed vector spaces with norms ‖ ‖1 and ‖ ‖2. Let A
be some nonempty subset of E, and let f : A → F be a function. For any a ∈ A and any
b ∈ F , f(x) approaches b as x approaches a with values in A iff

for every ε > 0, there is some η > 0, such that, for every x ∈ A,

if ‖x− a‖1 ≤ η, then ‖f(x)− b‖2 ≤ ε.

We have the following result relating continuity at a point and the previous notion.

Proposition 2.22. Let (E,OE) and (F,OF ) be two topological spaces, and let f : E → F be
a function. For any a ∈ E, the function f is continuous at a iff f(x) approaches f(a) when
x approaches a (with values in E).

Proof. Left as a trivial exercise.

Another important proposition relating the notion of convergence of a sequence to con-
tinuity is stated without proof.

Proposition 2.23. Let (E,OE) and (F,OF ) be two topological spaces, and let f : E → F
be a function.

(1) If f is continuous, then for every sequence (xn)n∈N in E, if (xn) converges to a, then
(f(xn)) converges to f(a).

(2) If E is a metric space, and (f(xn)) converges to f(a) whenever (xn) converges to a,
for every sequence (xn)n∈N in E, then f is continuous.

A special case of Definition 2.20 will be used when E and F are (nontrivial) normed
vector spaces with norms ‖ ‖1 and ‖ ‖2. Let U be any nonempty open subset of E. We
showed earlier that E has no isolated points and that every set {v} is closed, for every
v ∈ E. Since E is nontrivial, for every v ∈ U , there is a nontrivial open ball contained in U
(an open ball not reduced to its center). Then for every v ∈ U , A = U − {v} is open and
nonempty, and clearly, v ∈ A. For any v ∈ U , if f(x) approaches b when x approaches v
with values in A = U −{v}, we say that f(x) approaches b when x approaches v with values
6= v in U . This is denoted by

lim
x→v,x∈U,x6=v

f(x) = b.

Remark: Variations of the above case show up in the following case: E = R, and F is some
arbitrary topological space. Let A be some nonempty subset of R, and let f : A → F be
some function. For any a ∈ A, we say that f is continuous on the right at a if

lim
x→a,x∈A∩[a,+∞)

f(x) = f(a).
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We can define continuity on the left at a in a similar fashion, namely

lim
x→a,x∈A∩(−∞, a]

f(x) = f(a).

For example, the function f : R→ R{
f(x) = x if x < 1

f(x) = 2 if x ≥ 1,

is continuous on the right at 1, but not continuous on the left at 1. See Figure 2.22.

(1,2)

(1,1)

Figure 2.22: The graph of the piecewise function f(x) = x when x < 1 and f(x) = 2 when
x ≥ 1.

Let us consider another variation. LetA be some nonempty subset of R, and let f : A→ F
be some function. For any a ∈ A, we say that f has a discontinuity of the first kind at a if

lim
x→a,x∈A∩ (−∞,a)

f(x) = f(a−)

and
lim

x→a,x∈A∩ (a,+∞)
f(x) = f(a+)

both exist, and either f(a−) 6= f(a), or f(a+) 6= f(a). For example, the function f : R→ R{
f(x) = x if x < 1

f(x) = 2 if x ≥ 1,

has a discontinuity of the first kind at 1; both directional limits exits, namely
limx→a,x∈A∩ (−∞,a) f(x) = 1 and limx→a,x∈A∩ (a,+∞) f(x) = 2, but f(1−) 6= f(1) = 2. See
Figure 2.22.
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Note that it is possible that f(a−) = f(a+), but f is still discontinuous at a if this
common value differs from f(a). Functions defined on a nonempty subset of R, and that are
continuous, except for some points of discontinuity of the first kind, play an important role
in analysis.

In a metric space there is another important notion of continuity, namely uniform conti-
nuity.

Definition 2.21. Given two metric spaces, (E, dE) and (F, dF ), a function, f : E → F , is
uniformly continuous if for every ε > 0, there is some η > 0, such that for all a, b ∈ E,

if dE(a, b) ≤ η then dF (f(a), f(b)) ≤ ε.

See Figures 2.23 and 2.24.
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Figure 2.23: The real valued function f(x) =
√
x is uniformly continuous over (0,∞). Fix

ε. If the x values lie within the rose colored η strip, the y values always lie within the peach
ε strip.

As we saw earlier, the metric on a metric space is uniformly continuous, and the norm
on a normed metric space is uniformly continuous.

Before considering differentials, we need to look at the continuity of linear maps.

2.6 Continuous Linear and Multilinear Maps

If E and F are normed vector spaces, we first characterize when a linear map f : E → F is
continuous.

Proposition 2.24. Given two normed vector spaces E and F , for any linear map f : E → F ,
the following conditions are equivalent:
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Figure 2.24: The real valued function f(x) = 1/x is not uniformly continuous over (0,∞).
Fix ε. In order for the y values to lie within the peach epsilon strip, the widths of the eta
strips decrease as x→ 0.

(1) The function f is continuous at 0.

(2) There is a constant k ≥ 0 such that,

‖f(u)‖ ≤ k, for every u ∈ E such that ‖u‖ ≤ 1.

(3) There is a constant k ≥ 0 such that,

‖f(u)‖ ≤ k‖u‖, for every u ∈ E.

(4) The function f is continuous at every point of E.

Proof. Assume (1). Then for every ε > 0, there is some η > 0 such that, for every u ∈ E, if
‖u‖ ≤ η, then ‖f(u)‖ ≤ ε. Pick ε = 1, so that there is some η > 0 such that, if ‖u‖ ≤ η, then
‖f(u)‖ ≤ 1. If ‖u‖ ≤ 1, then ‖ηu‖ ≤ η‖u‖ ≤ η, and so, ‖f(ηu)‖ ≤ 1, that is, η‖f(u)‖ ≤ 1,
which implies ‖f(u)‖ ≤ η−1. Thus Condition (2) holds with k = η−1.

Assume that (2) holds. If u = 0, then by linearity, f(0) = 0, and thus ‖f(0)‖ ≤ k‖0‖
holds trivially for all k ≥ 0. If u 6= 0, then ‖u‖ > 0, and since∥∥∥∥ u

‖u‖

∥∥∥∥ = 1,

we have ∥∥∥∥f ( u

‖u‖

)∥∥∥∥ ≤ k,
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which implies that
‖f(u)‖ ≤ k‖u‖.

Thus Condition (3) holds.

If (3) holds, then for all u, v ∈ E, we have

‖f(v)− f(u)‖ = ‖f(v − u)‖ ≤ k‖v − u‖.

If k = 0, then f is the zero function, and continuity is obvious. Otherwise, if k > 0, for every
ε > 0, if ‖v − u‖ ≤ ε

k
, then ‖f(v − u)‖ ≤ ε, which shows continuity at every u ∈ E. Finally

it is obvious that (4) implies (1).

Among other things, Proposition 2.24 shows that a linear map is continuous iff the image
of the unit (closed) ball is bounded. Since a continuous linear map satisfies the condition
‖f(u)‖ ≤ k‖u‖ (for some k ≥ 0), it is also uniformly continuous.

Definition 2.22. If E and F are normed vector spaces, the set of all continuous linear maps
f : E → F is denoted by L(E;F ).

Using Proposition 2.24, we can define a norm on L(E;F ) which makes it into a normed
vector space. This definition has already been given in Chapter 8 (Vol. I) (Definition 8.7
(Vol. I)) but for the reader’s convenience, we repeat it here.

Definition 2.23. Given two normed vector spaces E and F , for every continuous linear
map f : E → F , we define the norm ‖f‖ of f as

‖f‖ = inf {k ≥ 0 | ‖f(x)‖ ≤ k‖x‖, for all x ∈ E}
= sup {‖f(x)‖ | ‖x‖ ≤ 1}
= sup {‖f(x)‖ | ‖x‖ = 1} .

From Definition 2.23, for every continuous linear map f ∈ L(E;F ), we have

‖f(x)‖ ≤ ‖f‖‖x‖,

for every x ∈ E. It is easy to verify that L(E;F ) is a normed vector space under the norm
of Definition 2.23. Furthermore, if E,F,G are normed vector spaces, and f : E → F and
g : F → G are continuous linear maps, we have

‖g ◦ f‖ ≤ ‖g‖‖f‖.

We can now show that when E = Rn or E = Cn, with any of the norms ‖ ‖1, ‖ ‖2, or
‖ ‖∞, then every linear map f : E → F is continuous.

Proposition 2.25. If E = Rn or E = Cn, with any of the norms ‖ ‖1, ‖ ‖2, or ‖ ‖∞, and F
is any normed vector space, then every linear map f : E → F is continuous.
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Proof. Let (e1, . . . , en) be the standard basis of Rn (a similar proof applies to Cn). In view
of Proposition 8.3 (Vol. I), it is enough to prove the proposition for the norm

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.

We have

‖f(v)− f(u)‖ = ‖f(v − u)‖ =

∥∥∥∥∥f(
∑

1≤i≤n

(vi − ui)ei)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
1≤i≤n

(vi − ui)f(ei)

∥∥∥∥∥ ,
and so,

‖f(v)− f(u)‖ ≤
( ∑

1≤i≤n

‖f(ei)‖
)

max
1≤i≤n

|vi − ui| =
( ∑

1≤i≤n

‖f(ei)‖
)
‖v − u‖∞.

By the argument used in Proposition 2.24 to prove that (3) implies (4), f is continuous.

Actually, we proved in Theorem 8.5 (Vol. I) that if E is a vector space of finite dimension,
then any two norms are equivalent, so that they define the same topology. This fact together
with Proposition 2.25 prove the following.

Theorem 2.26. If E is a vector space of finite dimension (over R or C), then all norms are
equivalent (define the same topology). Furthermore, for any normed vector space F , every
linear map f : E → F is continuous.

�� If E is a normed vector space of infinite dimension, a linear map f : E → F may not be
continuous.

As an example, let E be the infinite vector space of all polynomials over R. Let

‖P (X)‖ = sup
0≤x≤1

|P (x)|.

We leave as an exercise to show that this is indeed a norm. Let F = R, and let f : E → F
be the map defined such that, f(P (X)) = P (3). It is clear that f is linear. Consider the
sequence of polynomials

Pn(X) =

(
X

2

)n
.

It is clear that ‖Pn‖ =

(
1
2

)n
, and thus, the sequence Pn has the null polynomial as a limit.

However, we have

f(Pn(X)) = Pn(3) =

(
3

2

)n
,

and the sequence f(Pn(X)) diverges to +∞. Consequently, in view of Proposition 2.23 (1),
f is not continuous.

We now consider the continuity of multilinear maps. We treat explicitly bilinear maps,
the general case being a straightforward extension.
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Proposition 2.27. Given normed vector spaces E, F and G, for any bilinear map f : E ×
F → G, the following conditions are equivalent:

(1) The function f is continuous at 〈0, 0〉.

(2) There is a constant k ≥ 0 such that,

‖f(u, v)‖ ≤ k, for all u ∈ E, v ∈ F such that ‖u‖, ‖v‖ ≤ 1.

(3) There is a constant k ≥ 0 such that,

‖f(u, v)‖ ≤ k‖u‖‖v‖, for all u ∈ E, v ∈ F .

(4) The function f is continuous at every point of E × F .

Proof. It is similar to that of Proposition 2.24, with a small subtlety in proving that (3)
implies (4), namely that two different η’s that are not independent are needed.

In contrast to continuous linear maps, which must be uniformly continuous, nonzero
continuous bilinear maps are not uniformly continuous. Let f : E×F → G be a continuous
bilinear map such that f(a, b) 6= 0 for some a ∈ E and some b ∈ F . Consider the sequences
(un) and (vn) (with n ≥ 1) given by

un = (xn, yn) = (na, nb)

vn = (x′n, y
′
n) =

((
n+

1

n

)
a,

(
n+

1

n

)
b

)
.

Obviously

‖vn − un‖ ≤
1

n
(‖a‖+ ‖b‖),

so limn7→∞ ‖vn − un‖ = 0. On the other hand

f(x′n, y
′
n)− f(xn, yn) =

(
2 +

1

n2

)
f(a, b),

and thus limn7→∞ ‖f(x′n, y
′
n)− f(xn, yn)‖ = 2 ‖f(a, b)‖ 6= 0, which shows that f is not uni-

formly continuous, because if this was the case, this limit would be zero.

Definition 2.24. If E, F , and G are normed vector spaces, we denote the set of all contin-
uous bilinear maps f : E × F → G by L2(E,F ;G).

Using Proposition 2.27, we can define a norm on L2(E,F ;G) which makes it into a
normed vector space.
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Definition 2.25. Given normed vector spaces E, F , and G, for every continuous bilinear
map f : E × F → G, we define the norm ‖f‖ of f as

‖f‖ = inf {k ≥ 0 | ‖f(x, y)‖ ≤ k‖x‖‖y‖, for all x ∈ E, y ∈ F}
= sup {‖f(x, y)‖ | ‖x‖, ‖y‖ ≤ 1}
= sup {‖f(x, y)‖ | ‖x‖ = ‖y‖ = 1} .

From Definition 2.25, for every continuous bilinear map f ∈ L2(E,F ;G), we have

‖f(x, y)‖ ≤ ‖f‖‖x‖‖y‖,

for all x ∈ E, y ∈ F . It is easy to verify that L2(E,F ;G) is a normed vector space under
the norm of Definition 2.25.

Given a bilinear map f : E × F → G, for every u ∈ E, we obtain a linear map denoted
fu : F → G, defined such that, fu(v) = f(u, v). Furthermore, since

‖f(x, y)‖ ≤ ‖f‖‖x‖‖y‖,

it is clear that fu is continuous. We can then consider the map ϕ : E → L(F ;G), defined
such that, ϕ(u) = fu, for any u ∈ E, or equivalently, such that,

ϕ(u)(v) = f(u, v).

Actually, it is easy to show that ϕ is linear and continuous, and that ‖ϕ‖ = ‖f‖. Thus, f 7→ ϕ
defines a map from L2(E,F ;G) to L(E;L(F ;G)). We can also go back from L(E;L(F ;G))
to L2(E,F ;G). We summarize all this in the following proposition.

Proposition 2.28. Let E,F,G be three normed vector spaces. The map f 7→ ϕ, from
L2(E,F ;G) to L(E;L(F ;G)), defined such that, for every f ∈ L2(E,F ;G),

ϕ(u)(v) = f(u, v),

is an isomorphism of vector spaces, and furthermore, ‖ϕ‖ = ‖f‖.

As a corollary of Proposition 2.28, we get the following proposition which will be useful
when we define second-order derivatives.

Proposition 2.29. Let E and F be normed vector spaces. The map app from L(E;F )×E
to F , defined such that, for every f ∈ L(E;F ), for every u ∈ E,

app(f, u) = f(u),

is a continuous bilinear map.
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Remark: If E and F are nontrivial, it can be shown that ‖app‖ = 1. It can also be shown
that composition

◦ : L(E;F )× L(F ;G)→ L(E;G),

is bilinear and continuous.

The above propositions and definition generalize to arbitrary n-multilinear maps, with
n ≥ 2. Proposition 2.27 extends in the obvious way to any n-multilinear map f : E1 × · · · ×
En → F , but condition (3) becomes:

There is a constant k ≥ 0 such that,

‖f(u1, . . . , un)‖ ≤ k‖u1‖ · · · ‖un‖, for all u1 ∈ E1, . . . , un ∈ En.

Definition 2.25 also extends easily to

‖f‖ = inf {k ≥ 0 | ‖f(x1, . . . , xn)‖ ≤ k‖x1‖ · · · ‖xn‖, for all xi ∈ Ei, 1 ≤ i ≤ n}
= sup {‖f(x1, . . . , xn)‖ | ‖x1‖, . . . , ‖xn‖ ≤ 1}
= sup {‖f(x1, . . . , xn)‖ | ‖x1‖ = · · · = ‖xn‖ = 1} .

Proposition 2.28 is also easily extended, and we get an isomorphism between continuous
n-multilinear maps in Ln(E1, . . . , En;F ), and continuous linear maps in

L(E1;L(E2; . . . ;L(En;F ))).

An obvious extension of Proposition 2.29 also holds.

Complete metric spaces and complete normed vector spaces are important tools in anal-
ysis and optimization theory, so we include some sections covering the basics.

2.7 Complete Metric Spaces and Banach Spaces

Definition 2.26. Given a metric space, (E, d), a sequence, (xn)n∈N, in E is a Cauchy
sequence if the following condition holds: for every ε > 0, there is some p ≥ 0, such that for

all m,n ≥ p, then d(xm, xn) ≤ ε.

If every Cauchy sequence in (E, d) converges we say that (E, d) is a complete metric
space. A normed vector space (E, ‖ ‖) over R (or C) which is a complete metric space for
the distance d(u, v) = ‖v − u‖, is called a Banach space.

The standard example of a complete metric space is the set R of real numbers. As a
matter of fact, the set R can be defined as the “completion” of the set Q of rationals. The
spaces Rn and Cn under their standard topology are complete metric spaces.
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It can be shown that every normed vector space of finite dimension is a Banach space
(is complete). It can also be shown that if E and F are normed vector spaces, and F is a
Banach space, then L(E;F ) is a Banach space. If E,F and G are normed vector spaces,
and G is a Banach space, then L2(E,F ;G) is a Banach space.

An arbitrary metric space (E, d) is not necessarily complete, but there is a construction of

a metric space (Ê, d̂) such that Ê is complete, and there is a continuous (injective) distance-

preserving map ϕ : E → Ê such that ϕ(E) is dense in Ê. This is a generalization of the
construction of the set R of real numbers from the set Q of rational numbers in terms of
Cauchy sequences. This construction can be immediately adapted to a normed vector space
(E, ‖ ‖) to embed (E, ‖ ‖) into a complete normed vector space (Ê, ‖ ‖Ê) (a Banach space).
This construction is used heavily in integration theory where E is a set of functions.

2.8 Completion of a Metric Space

In order to prove a kind of uniqueness result for the completion (Ê, d̂) of a metric space
(E, d), we need the following result about extending a uniformly continuous function.

Recall that E0 is dense in E iff E0 = E. Since E is a metric space, by Proposition 2.19,
this means that for every x ∈ E, there is some sequence (xn) converging to x, with xn ∈ E0.

Theorem 2.30. Let E and F be two metric spaces, let E0 be a dense subspace of E, and let
f0 : E0 → F be a continuous function. If f0 is uniformly continuous and if F is complete,
then there is a unique uniformly continuous function f : E → F extending f0.

Proof. We follow Schwartz’s proof; see Schwartz [68] (Chapter XI, Section 3, Theorem 1).

Step 1 . We begin by constructing a function f : E → F extending f0. Since E0 is dense
in E, for every x ∈ E, there is some sequence (xn) converging to x, with xn ∈ E0. Then the
sequence (xn) is a Cauchy sequence in E. We claim that (f0(xn)) is a Cauchy sequence in
F .

Proof of the claim. For every ε > 0, since f0 is uniformly continuous, there is some η > 0
such that for all (y, z) ∈ E0, if d(y, z) ≤ η, then d(f0(y), f0(z)) ≤ ε. Since (xn) is a Cauchy
sequence with xn ∈ E0, there is some integer p > 0 such that if m,n ≥ p, then d(xm, xn) ≤ η,
thus d(f0(xm), f0(xn)) ≤ ε, which proves that (f0(xn)) is a Cauchy sequence in F .

Since F is complete and (f0(xn)) is a Cauchy sequence in F , the sequence (f0(xn))
converges to some element of F ; denote this element by f(x).

Step 2 . Let us now show that f(x) does not depend on the sequence (xn) converging to
x. Suppose that (x′n) and (x′′n) are two sequences of elements in E0 converging to x. Then
the mixed sequence

x′0, x
′′
0, x

′
1, x
′′
1, . . . , x

′
n, x

′′
n, . . . ,
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also converges to x. It follows that the sequence

f0(x′0), f0(x′′0), f0(x′1), f0(x′′1), . . . , f0(x′n), f0(x′′n), . . . ,

is a Cauchy sequence in F , and since F is complete, it converges to some element of F , which
implies that the sequences (f0(x′n)) and (f0(x′′n)) converge to the same limit.

As a summary, we have defined a function f : E → F by

f(x) = lim
n 7→∞

f0(xn),

for any sequence (xn) converging to x, with xn ∈ E0. See Figure 2.25.
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Figure 2.25: A schematic illustration of the construction of f : E → F where f(x) =
limn7→∞ f0(xn) for any sequence (xn) converging to x, with xn ∈ E0.

Step 3 . The function f extends f0. Since every element x ∈ E0 is the limit of the
constant sequence (xn) with xn = x for all n ≥ 0, by definition f(x) is the limit of the
sequence (f0(xn)), which is the constant sequence with value f0(x), so f(x) = f0(x); that is,
f extends f0.

Step 4 . We now prove that f is uniformly continuous. Since f0 is uniformly contin-
uous, for every ε > 0, there is some η > 0 such that if a, b ∈ E0 and d(a, b) ≤ η, then
d(f0(a), f0(b)) ≤ ε. Consider any two points x, y ∈ E such that d(x, y) ≤ η/2. We claim
that d(f(x), f(y)) ≤ ε, which shows that f is uniformly continuous.

Let (xn) be a sequence of points in E0 converging to x, and let (yn) be a sequence of
points in E0 converging to y. By the triangle inequality,

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) = d(x, y) + d(xn, x) + d(yn, y),



2.8. COMPLETION OF A METRIC SPACE 59

and since (xn) converges to x and (yn) converges to y, there is some integer p > 0 such that
for all n ≥ p, we have d(xn, x) ≤ η/4 and d(yn, y) ≤ η/4, and thus

d(xn, yn) ≤ d(x, y) +
η

2
.

Since we assumed that d(x, y) ≤ η/2, we get d(xn, yn) ≤ η for all n ≥ p, and by uniform
continuity of f0, we get

d(f0(xn), f0(yn)) ≤ ε

for all n ≥ p. Since the distance function on F is also continuous, and since (f0(xn)) converges
to f(x) and (f0(yn)) converges to f(y), we deduce that the sequence (d(f0(xn), f0(yn)))
converges to d(f(x), f(y)). This implies that d(f(x), f(y)) ≤ ε, as desired.

Step 5 . It remains to prove that f is unique. Since E0 is dense in E, for every x ∈ E,
there is some sequence (xn) converging to x, with xn ∈ E0. Since f extends f0 and since f
is continuous, we get

f(x) = lim
n 7→∞

f0(xn),

which only depends on f0 and x and shows that f is unique.

Remark: It can be shown that the theorem no longer holds if we either omit the hypothesis
that F is complete or omit that f0 is uniformly continuous.

For example, if E0 6= E and if we let F = E0 and f0 be the identity function, it is easy to
see that f0 cannot be extended to a continuous function from E to E0 (for any x ∈ E −E0,
any continuous extension f of f0 would satisfy f(x) = x, which is absurd since x /∈ E0).

If f0 is continuous but not uniformly continuous, a counter-example can be given by using
E = R = R ∪ {∞} made into a metric space, E0 = R, F = R, and f0 the identity function;
for details, see Schwartz [68] (Chapter XI, Section 3, page 134).

Definition 2.27. If (E, dE) and (F, dF ) are two metric spaces, then a function f : E → F
is distance-preserving , or an isometry , if

dF (f(x), f(y)) = dE(x, y), for all for all x, y ∈ E.

Observe that an isometry must be injective, because if f(x) = f(y), then dF (f(x), f(y)) =
0, and since dF (f(x), f(y)) = dE(x, y), we get dE(x, y) = 0, but dE(x, y) = 0 implies that
x = y. Also, an isometry is uniformly continuous (since we can pick η = ε to satisfy the
condition of uniform continuity). However, an isometry is not necessarily surjective.

We now give a construction of the completion of a metric space. This construction is just
a generalization of the classical construction of R from Q using Cauchy sequences.
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Theorem 2.31. Let (E, d) be any metric space. There is a complete metric space (Ê, d̂)
called a completion of (E, d), and a distance-preserving (uniformly continuous) map ϕ : E →
Ê such that ϕ(E) is dense in Ê, and the following extension property holds: for every
complete metric space F and for every uniformly continuous function f : E → F , there is a
unique uniformly continuous function f̂ : Ê → F such that

f = f̂ ◦ ϕ,

as illustrated in the following diagram.

E
ϕ //

f   @@@@@@@@ Ê

f̂
��
F.

As a consequence, for any two completions (Ê1, d̂1) and (Ê2, d̂2) of (E, d), there is a unique

bijective isometry between (Ê1, d̂1) and (Ê2, d̂2).

Proof. Consider the set E of all Cauchy sequences (xn) in E, and define the relation ∼ on E
as follows:

(xn) ∼ (yn) iff lim
n7→∞

d(xn, yn) = 0.

It is easy to check that ∼ is an equivalence relation on E , and let Ê = E/ ∼ be the quotient
set, that is, the set of equivalence classes modulo ∼. Our goal is to show that we can endow
Ê with a distance that makes it into a complete metric space satisfying the conditions of the
theorem. We proceed in several steps.

Step 1 . First let us construct the function ϕ : E → Ê. For every a ∈ E, we have the
constant sequence (an) such that an = a for all n ≥ 0, which is obviously a Cauchy sequence.

Let ϕ(a) ∈ Ê be the equivalence class [(an)] of the constant sequence (an) with an = a for all
n. By definition of ∼, the equivalence class ϕ(a) is also the equivalence class of all sequences
converging to a. The map a 7→ ϕ(a) is injective because a metric space is Hausdorff, so
if a 6= b, then a sequence converging to a does not converge to b. After having defined a
distance on Ê, we will check that ϕ is an isometry.

Step 2 . Let us now define a distance on Ê. Let α = [(an)] and β = [(bn)] be two
equivalence classes of Cauchy sequences in E. The triangle inequality implies that

d(am, bm) ≤ d(am, an) + d(an, bn) + d(bn, bm) = d(an, bn) + d(am, an) + d(bm, bn)

and

d(an, bn) ≤ d(an, am) + d(am, bm) + d(bm, bn) = d(am, bm) + d(am, an) + d(bm, bn),

which implies that

|d(am, bm)− d(an, bn)| ≤ d(am, an) + d(bm, bn).
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Since (an) and (bn) are Cauchy sequences, the above inequality shows that (d(an, bn)) is a
Cauchy sequence of nonnegative reals. Since R is complete, the sequence (d(an, bn)) has a

limit, which we denote by d̂(α, β); that is, we set

d̂(α, β) = lim
n7→∞

d(an, bn), α = [(an)], β = [(bn)].

See Figure 2.26.
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Figure 2.26: A schematic illustration of d̂(α, β) from the Cauchy sequence (d(an, bn)).

Step 3 . Let us check that d̂(α, β) does not depend on the Cauchy sequences (an) and
(bn) chosen in the equivalence classes α and β.

If (an) ∼ (a′n) and (bn) ∼ (b′n), then limn7→∞ d(an, a
′
n) = 0 and limn7→∞ d(bn, b

′
n) = 0, and

since

d(a′n, b
′
n) ≤ d(a′n, an) + d(an, bn) + d(bn, b

′
n) = d(an, bn) + d(an, a

′
n) + d(bn, b

′
n),

and

d(an, bn) ≤ d(an, a
′
n) + d(a′n, b

′
n) + d(b′n, bn) = d(a′n, b

′
n) + d(an, a

′
n) + d(bn, b

′
n),

we have
|d(an, bn)− d(a′n, b

′
n)| ≤ d(an, a

′
n) + d(bn, b

′
n),

so we have limn7→∞ d(a′n, b
′
n) = limn7→∞ d(an, bn) = d̂(α, β). Therefore, d̂(α, β) is indeed well

defined.
Step 4 . Let us check that ϕ is indeed an isometry.
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Given any two elements ϕ(a) and ϕ(b) in Ê, since they are the equivalence classes of
the constant sequences (an) and (bn) such that an = a and bn = b for all n, the constant
sequence (d(an, bn)) with d(an, bn) = d(a, b) for all n converges to d(a, b), so by definition

d̂(ϕ(a), ϕ(b)) = limn 7→∞ d(an, bn) = d(a, b), which shows that ϕ is an isometry.

Step 5 . Let us verify that d̂ is a metric on Ê. By definition it is obvious that d̂(α, β) =

d̂(β, α). If α and β are two distinct equivalence classes, then for any Cauchy sequence (an)
in the equivalence class α and for any Cauchy sequence (bn) in the equivalence class β, the
sequences (an) and (bn) are inequivalent, which means that limn7→∞ d(an, bn) 6= 0, that is,

d̂(α, β) 6= 0. Obviously, d̂(α, α) = 0.

For any equivalence classes α = [(an)], β = [(bn)], and γ = [(cn)], we have the triangle
inequality

d(an, cn) ≤ d(an, bn) + d(bn, cn),

so by continuity of the distance function, by passing to the limit, we obtain

d̂(α, γ) ≤ d̂(α, β) + d̂(β, γ),

which is the triangle inequality for d̂. Therefore, d̂ is a distance on Ê.

Step 6 . Let us prove that ϕ(E) is dense in Ê. For any α = [(an)], let (xn) be the constant
sequence such that xk = an for all k ≥ 0, so that ϕ(an) = [(xn)]. Then we have

d̂(α, ϕ(an)) = lim
m 7→∞

d(am, an) ≤ sup
p,q≥n

d(ap, aq).

Since (an) is a Cauchy sequence, supp,q≥n d(ap, aq) tends to 0 as n goes to infinity, so

lim
n7→∞

d(α, ϕ(an)) = 0,

which means that the sequence (ϕ(an)) converge to α, and ϕ(E) is indeed dense in Ê.

Step 7 . Finally let us prove that the metric space Ê is complete.

Let (αn) be a Cauchy sequence in Ê. Since ϕ(E) is dense in Ê, for every n > 0, there
some an ∈ E such that

d̂(αn, ϕ(an)) ≤ 1

n
.

Since

d̂(ϕ(am), ϕ(an)) ≤ d̂(ϕ(am), αm) + d̂(αm, αn) + d̂(αn, ϕ(an)) ≤ d̂(αm, αn) +
1

m
+

1

n
,

and since (αm) is a Cauchy sequence, so is (ϕ(an)), and as ϕ is an isometry, the sequence

(an) is a Cauchy sequence in E. Let α ∈ Ê be the equivalence class of (an). Since

d̂(α, ϕ(an)) = lim
m7→∞

d(am, an)
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and (an) is a Cauchy sequence, we deduce that the sequence (ϕ(an)) converges to α, and
since d(αn, ϕ(an)) ≤ 1/n for all n > 0, the sequence (αn) also converges to α.

Step 8 . Let us prove the extension property. Let F be any complete metric space and
let f : E → F be any uniformly continuous function. The function ϕ : E → Ê is an isometry
and a bijection between E and its image ϕ(E), so its inverse ϕ−1 : ϕ(E) → E is also an
isometry, and thus is uniformly continuous. If we let g = f ◦ ϕ−1, then g : ϕ(E) → F is a

uniformly continuous function, and ϕ(E) is dense in Ê, so by Theorem 2.30 there is a unique

uniformly continuous function f̂ : Ê → F extending g = f ◦ ϕ−1; see the diagram below:

E

f
((RRRRRRRRRRRRRRRRRR ϕ(E)

ϕ−1
oo

g

""DDDDDDDDD
⊆ Ê

f̂����������

F .

This means that

f̂ |ϕ(E) = f ◦ ϕ−1,

which implies that

(f̂ |ϕ(E)) ◦ ϕ = f,

that is, f = f̂ ◦ ϕ, as illustrated in the diagram below:

E
ϕ //

f   @@@@@@@@ Ê

f̂
��
F.

If h : Ê → F is any other uniformly continuous function such that f = h ◦ ϕ, then
g = f ◦ϕ−1 = h|ϕ(E), so h is a uniformly continuous function extending g, and by Theorem

2.30, we have have h = f̂ , so f̂ is indeed unique.

Step 9 . Uniqueness of the completion (Ê, d̂) up to a bijective isometry.

Let (Ê1, d̂1) and (Ê2, d̂2) be any two completions of (E, d). Then we have two uniformly

continuous isometries ϕ1 : E → Ê1 and ϕ2 : E → Ê2 , so by the unique extension property,
there exist unique uniformly continuous maps ϕ̂2 : Ê1 → Ê2 and ϕ̂1 : Ê2 → Ê1 such that the
following diagrams commute:

E
ϕ1 //

ϕ2
��>>>>>>>> Ê1

ϕ̂2

��

Ê2

E
ϕ2 //

ϕ1 ��@@@@@@@@ Ê2

ϕ̂1

��

Ê1.
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Consequently we have the following commutative diagrams:

Ê2

ϕ̂1

��

E
ϕ1 //

ϕ2
��>>>>>>>>

ϕ2

??��������
Ê1

ϕ̂2

��

Ê2

Ê1

ϕ̂2

��

E
ϕ2 //

ϕ1 ��@@@@@@@@

ϕ1

??~~~~~~~~
Ê2

ϕ̂1

��

Ê1.

However, idÊ1
and idÊ2

are uniformly continuous functions making the following diagrams
commute

E
ϕ1 //

ϕ1
��>>>>>>>> Ê1

id
Ê1

��

Ê1

E
ϕ2 //

ϕ2
��???????? Ê2

id
Ê2

��

Ê2,

so by the uniqueness of extensions we must have

ϕ̂1 ◦ ϕ̂2 = idÊ1
and ϕ̂2 ◦ ϕ̂1 = idÊ2

.

This proves that ϕ̂1 and ϕ̂2 are mutual inverses. Now since ϕ2 = ϕ̂2 ◦ ϕ1, we have

ϕ̂2|ϕ1(E) = ϕ2 ◦ ϕ−1
1 ,

and since ϕ−1
1 and ϕ2 are isometries, so is ϕ̂2|ϕ1(E). But we showed in Step 8 that ϕ̂2 is the

uniform continuous extension of ϕ̂2|ϕ1(E) and ϕ1(E) is dense in Ê1, so for any two elements

α, β ∈ Ê1, if (an) and (bn) are sequences in ϕ1(E) converging to α and β, we have

d̂2((ϕ̂2|ϕ1(E))(an), ((ϕ̂2|ϕ1(E))(bn)) = d̂1(an, bn),

and by passing to the limit we get

d̂2(ϕ̂2(α), ϕ̂2(β)) = d̂1(α, β),

which shows that ϕ̂2 is an isometry (similarly, ϕ̂1 is an isometry).

Remarks:

1. Except for Step 8 and Step 9, the proof of Theorem 2.31 is the proof given in Schwartz
[68] (Chapter XI, Section 4, Theorem 1), and Kolmogorov and Fomin [45] (Chapter 2,
Section 7, Theorem 4).

2. The construction of Ê relies on the completeness of R, and so it cannot be used to
construct R from Q. However, this construction can be modified to yield a construction
of R from Q.

We show in Section 2.9 that Theorem 2.31 yields a construction of the completion of a
normed vector space.
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2.9 Completion of a Normed Vector Space

An easy corollary of Theorem 2.31 and Theorem 2.30 is that every normed vector space can
be embedded in a complete normed vector space, that is, a Banach space.

Theorem 2.32. If (E, ‖ ‖) is a normed vector space, then its completion (Ê, d̂) as a metric
space (where E is given the metric d(x, y) = ‖x − y‖) can be given a unique vector space

structure extending the vector space structure on E, and a norm ‖ ‖Ê, so that (Ê, ‖ ‖Ê) is a

Banach space, and the metric d̂ is associated with the norm ‖‖Ê. Furthermore, the isometry

ϕ : E → Ê is a linear isometry.

Proof. The addition operation +: E × E → E is uniformly continuous because

‖(u′ + v′)− (u′′ + v′′)‖ ≤ ‖u′ − u′′‖+ ‖v′ − v′′‖.

It is not hard to show that Ê × Ê is a complete metric space and that E × E is dense in
Ê×Ê. Then by Theorem 2.30, the uniformly continuous function + has a unique continuous
extension +: Ê × Ê → Ê.

The map · : R × E → E is not uniformly continuous, but for any fixed λ ∈ R, the
map Lλ : E → E given by Lλ(u) = λ · u is uniformly continuous, so by Theorem 2.30 the

function Lλ has a unique continuous extension Lλ : Ê → Ê, which we use to define the scalar
multiplication · : R × Ê → Ê. It is easily checked that with the above addition and scalar
multiplication, Ê is a vector space.

Since the norm ‖ ‖ on E is uniformly continuous, it has a unique continuous extension

‖ ‖Ê : Ê → R+. The identities ‖u + v‖ ≤ ‖u‖ + ‖v‖ and ‖λu‖ ≤ |λ| ‖u‖ extend to Ê by
continuity. The equation

d(u, v) = ‖u− v‖

also extends to Ê by continuity and yields

d̂(α, β) = ‖α− β‖Ê,

which shows that ‖ ‖Ê is indeed a norm and that the metric d̂ is associated to it. Finally, it
is easy to verify that the map ϕ is linear. The uniqueness of the structure of normed vector
space follows from the uniqueness of continuous extensions in Theorem 2.30.

Theorem 2.32 and Theorem 2.30 will be used to show that every Hermitian space can be
embedded in a Hilbert space.

We refer the readers to the references cited at the end of this chapter for a discussion of
the concepts of compactness and connectedness. They are important, but of less immediate
concern.
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2.10 The Contraction Mapping Theorem

If (E, d) is a nonempty complete metric space, every map f : E → E, for which there is some
k such that 0 ≤ k < 1 and

d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ E

has the very important property that it has a unique fixed point, that is, there is a unique,
a ∈ E, such that f(a) = a.

Definition 2.28. Let (E, d) be a metric space. A map f : E → E is a contraction (or a
contraction mapping) if there is some real number k such that 0 ≤ k < 1 and

d(f(u), f(v)) ≤ kd(u, v) for all u, v ∈ E.

The number k is often called a Lipschitz constant .

Furthermore, the fixed point of a contraction mapping can be computed as the limit of
a fast converging sequence.

The fixed point property of contraction mappings is used to show some important the-
orems of analysis, such as the implicit function theorem and the existence of solutions to
certain differential equations. It can also be used to show the existence of fractal sets de-
fined in terms of iterated function systems. Since the proof is quite simple, we prove the
fixed point property of contraction mappings. First observe that a contraction mapping is
(uniformly) continuous.

Theorem 2.33. (Contraction Mapping Theorem) If (E, d) is a nonempty complete metric
space, every contraction mapping, f : E → E, has a unique fixed point. Furthermore, for
every x0 ∈ E, if we define the sequence (xn)≥0 such that xn+1 = f(xn) for all n ≥ 0, then
(xn)n≥0 converges to the unique fixed point of f .

Proof. First we prove that f has at most one fixed point. Indeed, if f(a) = a and f(b) = b,
since

d(a, b) = d(f(a), f(b)) ≤ kd(a, b)

and 0 ≤ k < 1, we must have d(a, b) = 0, that is, a = b.

Next we prove that (xn) is a Cauchy sequence. Observe that

d(x2, x1) ≤ kd(x1, x0),

d(x3, x2) ≤ kd(x2, x1) ≤ k2d(x1, x0),

...
...

d(xn+1, xn) ≤ kd(xn, xn−1) ≤ · · · ≤ knd(x1, x0).
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Thus, we have

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + d(xn+p−1, xn+p−2) + · · ·+ d(xn+1, xn)

≤ (kp−1 + kp−2 + · · ·+ k + 1)knd(x1, x0)

≤ kn

1− k
d(x1, x0).

We conclude that d(xn+p, xn) converges to 0 when n goes to infinity, which shows that (xn)
is a Cauchy sequence. Since E is complete, the sequence (xn) has a limit, a. Since f is
continuous, the sequence (f(xn)) converges to f(a). But xn+1 = f(xn) converges to a and
so f(a) = a, the unique fixed point of f .

The above theorem is also called the Banach fixed point theorem. Note that no matter
how the starting point x0 of the sequence (xn) is chosen, (xn) converges to the unique fixed
point of f . Also, the convergence is fast, since

d(xn, a) ≤ kn

1− k
d(x1, x0).

2.11 Further Readings

A thorough treatment of general topology can be found in Munkres [59, 58], Dixmier [29],
Lang [50], Schwartz [69, 68], Bredon [19], and the classic, Seifert and Threlfall [73].

2.12 Summary

The main concepts and results of this chapter are listed below:

• Metric space, distance, metric.

• Euclidean metric, discrete metric.

• Closed ball , open ball , sphere, bounded subset .

• Normed vector space, norm.

• Open and closed sets.

• Topology , topological space.

• Hausdorff separation axiom, Hausdorff space.

• Discrete topology .

• Closure, dense subset , interior , frontier or boundary .
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• Subspace topology .

• Product topology .

• Basis of a topology , subbasis of a topology .

• Continuous functions.

• Neighborhood of a point.

• Homeomorphisms .

• Limits of sequences.

• Continuous linear maps .

• The norm of a continuous linear map.

• Continuous bilinear maps .

• The norm of a continuous bilinear map.

• The isomorphism between L(E,F ;G) and L(E,L(F ;G)).

• Cauchy sequences

• Complete metric spaces and Banach spaces .

• Completion of a metric space or of a normed vector space.

• Contractions .

• The contraction mapping theorem.

2.13 Problems

Problem 2.1. Prove Proposition 2.1.

Problem 2.2. Give an example of a countably infinite family of closed sets whose union is
not closed.

Problem 2.3. Prove Proposition 2.4.

Problem 2.4. Prove Proposition 2.5.

Problem 2.5. Prove Proposition 2.6.

Problem 2.6. Prove Proposition 2.7.
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Problem 2.7. Prove Proposition 2.8.

Problem 2.8. Prove Proposition 2.9.

Problem 2.9. Prove Proposition 2.10.

Problem 2.10. Prove Proposition 2.11 and Proposition 2.12.

Problem 2.11. Prove Proposition 2.14.

Problem 2.12. Prove Proposition 2.15.

Problem 2.13. Prove Proposition 2.16 and Proposition 2.17.

Problem 2.14. Prove Proposition 2.18.

Problem 2.15. Prove Proposition 2.20 and Proposition 2.21.

Problem 2.16. Prove Proposition 2.22.

Problem 2.17. Prove Proposition 2.23.
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Chapter 3

Differential Calculus

This chapter contains a review of basic notions of differential calculus. First we review the
definition of the derivative of a function f : R→ R. Next we define directional derivatives and
the total derivative of a function f : E → F between normed vector spaces. Basic properties
of derivatives are shown, including the chain rule. We show how derivatives are represented
by Jacobian matrices. The mean value theorem is stated, as well as the implicit function
theorem and the inverse function theorem. Diffeomorphisms and local diffeomorphisms are
defined. Higher-order derivatives are defined, as well as the Hessian. Schwarz’s lemma (about
the commutativity of partials) is stated. Several versions of Taylor’s formula are stated, and
a famous formula due to Faà di Bruno’s is given.

3.1 Directional Derivatives, Total Derivatives

We first review the notion of the derivative of a real-valued function whose domain is an
open subset of R.

Let f : A → R, where A is a nonempty open subset of R, and consider any a ∈ A.
The main idea behind the concept of the derivative of f at a, denoted by f ′(a), is that
locally around a (that is, in some small open set U ⊆ A containing a), the function f is
approximated linearly1 by the map

x 7→ f(a) + f ′(a)(x− a).

As pointed out by Dieudonné in the early 1960s, it is an “unfortunate accident” that if
V is vector space of dimension one, then there is a bijection between the space V ∗ of linear
forms defined on V and the field of scalars. As a consequence, the derivative of a real-valued
function f defined on an open subset A of the reals can be defined as the scalar f ′(a) (for
any a ∈ A). But as soon as f is a function of several arguments, the scalar interpretation of
the derivative breaks down.

1Actually, the approximation is affine, but everybody commits this abuse of language.

71
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Part of the difficulty in extending the idea of derivative to more complex spaces is to give
an adequate notion of linear approximation. The key idea is to use linear maps. This could
be carried out in terms of matrices but it turns out that this neither shortens nor simplifies
proofs. In fact, this is often the opposite.

We admit that the more intrinsic definition of the notion of derivative f ′a at a point a of
a function f : E → F between two normed vector spaces E and F as a linear map requires
a greater effort to be grasped, but we feel that the advantages of this definition outweigh its
degree of abstraction. In particular, it yields a clear notion of the derivative of a function
f : Mm(R)→ Mn(R) defined from m×m matrices to n×n matrices (many definitions make
use of partial derivatives with respect to matrices that do not make any sense). But more
importantly, the definition of the derivative as a linear map makes it clear that whether
the space E or the space F is infinite dimensional does not matter. This is important in
optimization theory where the natural space of solutions of the problem is often an infinite
dimensional function space. Of course, to carry out computations one need to pick finite
bases and to use Jacobian matrices, but this is a different matter.

Let us now review the formal definition of the derivative of a real-valued function.

Definition 3.1. Let A be any nonempty open subset of R, and let a ∈ A. For any function
f : A→ R, the derivative of f at a ∈ A is the limit (if it exists)

lim
h→0, h∈U

f(a+ h)− f(a)

h
,

where U = {h ∈ R | a + h ∈ A, h 6= 0}. This limit is denoted by f ′(a), or Df(a), or df
dx

(a).
If f ′(a) exists for every a ∈ A, we say that f is differentiable on A. In this case, the map
a 7→ f ′(a) is denoted by f ′, or Df , or df

dx
.

Note that since A is assumed to be open, A − {a} is also open, and since the function
h 7→ a + h is continuous and U is the inverse image of A − {a} under this function, U is
indeed open and the definition makes sense.

We can also define f ′(a) as follows: there is some function ε, such that,

f(a+ h) = f(a) + f ′(a) · h+ ε(h)h,

whenever a+ h ∈ A, where ε(h) is defined for all h such that a+ h ∈ A, and

lim
h→0, h∈U

ε(h) = 0.

Remark: We can also define the notion of derivative of f at a on the left , and derivative
of f at a on the right . For example, we say that the derivative of f at a on the left is the
limit f ′(a−) (if it exists)

f ′(a−) = lim
h→0, h∈U

f(a+ h)− f(a)

h
,
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where U = {h ∈ R | a+ h ∈ A, h < 0}.
If a function f as in Definition 3.1 has a derivative f ′(a) at a, then it is continuous at

a. If f is differentiable on A, then f is continuous on A. The composition of differentiable
functions is differentiable.

Remark: A function f has a derivative f ′(a) at a iff the derivative of f on the left at a and
the derivative of f on the right at a exist and if they are equal. Also, if the derivative of f
on the left at a exists, then f is continuous on the left at a (and similarly on the right).

We would like to extend the notion of derivative to functions f : A→ F , where E and F
are normed vector spaces, and A is some nonempty open subset of E. The first difficulty is
to make sense of the quotient

f(a+ h)− f(a)

h
.

Since F is a normed vector space, f(a + h) − f(a) makes sense. But how do we define
the quotient by a vector? Well, we don’t!

A first possibility is to consider the directional derivative with respect to a vector u 6= 0
in E. We can consider the vector f(a+ tu)− f(a), where t ∈ R. Now,

f(a+ tu)− f(a)

t

makes sense.

The idea is that in E, the points of the form a+ tu for t in some small interval [−ε, +ε] in
R form a line segment [r, s] in A containing a, and that the image of this line segment defines
a small curve segment on f(A). This curve segment is defined by the map t 7→ f(a + tu),
from [r, s] to F , and the directional derivative Duf(a) defines the direction of the tangent
line at a to this curve; see Figure 3.1. This leads us to the following definition.

Definition 3.2. Let E and F be two normed vector spaces, let A be a nonempty open subset
of E, and let f : A→ F be any function. For any a ∈ A, for any u 6= 0 in E, the directional
derivative of f at a w.r.t. the vector u, denoted by Duf(a), is the limit (if it exists)

Duf(a) = lim
t→0, t∈U

f(a+ tu)− f(a)

t
,

where U = {t ∈ R | a+ tu ∈ A, t 6= 0} (or U = {t ∈ C | a+ tu ∈ A, t 6= 0}).

Since the map t 7→ a + tu is continuous, and since A − {a} is open, the inverse image
U of A− {a} under the above map is open, and the definition of the limit in Definition 3.2
makes sense. The directional derivative is sometimes called the Gâteaux derivative.

Remark: Since the notion of limit is purely topological, the existence and value of a di-
rectional derivative is independent of the choice of norms in E and F , as long as they are
equivalent norms.
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u
a

a + tu

a + tu
a

f(a)

f(a+tu)

D   f(a)
u

Figure 3.1: Let f : R2 → R. The graph of f is the peach surface in R3, and t 7→ f(a+ tu) is
the embedded orange curve connecting f(a) to f(a + tu). Then Duf(a) is the slope of the
pink tangent line in the direction of u.

In the special case where E = R and F = R, and we let u = 1 (i.e., the real number 1,
viewed as a vector), it is immediately verified that D1f(a) = f ′(a), in the sense of Definition
3.1. When E = R (or E = C) and F is any normed vector space, the derivative D1f(a), also
denoted by f ′(a), provides a suitable generalization of the notion of derivative.

However, when E has dimension ≥ 2, directional derivatives present a serious problem,
which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe
that the directional derivatives w.r.t. all nonnull vectors u share something in common. As
a consequence, a function can have all directional derivatives at a, and yet not be continuous
at a. Two functions may have all directional derivatives in some open sets, and yet their
composition may not.

Example 3.1. Let f : R2 → R be the function given by

f(x, y) =

{
x2y
x4+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

The graph of f(x, y) is illustrated in Figure 3.2.

For any u 6= 0, letting u =

(
h
k

)
, we have

f(0 + tu)− f(0)

t
=

h2k

t2h4 + k2
,

so that

Duf(0, 0) =

{
h2

k
if k 6= 0

0 if k = 0.
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Figure 3.2: The graph of the function from Example 3.1. Note that f is not continuous at
(0, 0), despite the existence of Duf(0, 0) for all u 6= 0.

Thus, Duf(0, 0) exists for all u 6= 0.

On the other hand, if Df(0, 0) existed, it would be a linear map Df(0, 0) : R2 → R
represented by a row matrix (α β), and we would have Duf(0, 0) = Df(0, 0)(u) = αh+ βk,
but the explicit formula for Duf(0, 0) is not linear. As a matter of fact, the function f is
not continuous at (0, 0). For example, on the parabola y = x2, f(x, y) = 1

2
, and when we

approach the origin on this parabola, the limit is 1
2
, but f(0, 0) = 0.

To avoid the problems arising with directional derivatives we introduce a more uniform
notion.

Given two normed spaces E and F , recall that a linear map f : E → F is continuous iff
there is some constant C ≥ 0 such that

‖f(u)‖ ≤ C ‖u‖ for all u ∈ E.

Definition 3.3. Let E and F be two normed vector spaces, let A be a nonempty open subset
of E, and let f : A → F be any function. For any a ∈ A, we say that f is differentiable at
a ∈ A if there is a continuous linear map L : E → F and a function h 7→ ε(h), such that

f(a+ h) = f(a) + L(h) + ε(h)‖h‖

for every a+ h ∈ A, where ε(h) is defined for every h such that a+ h ∈ A, and

lim
h→0, h∈U

ε(h) = 0,
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where U = {h ∈ E | a + h ∈ A, h 6= 0}. The linear map L is denoted by Df(a), or Dfa, or
df(a), or dfa, or f ′(a), and it is called the Fréchet derivative, or derivative, or total derivative,
or total differential , or differential of f at a; see Figure 3.3.

a

h

h

f(a)

f(a+h)

f(a)
L(h)

f(a+h) -

Figure 3.3: Let f : R2 → R. The graph of f is the green surface in R3. The linear map
L = Df(a) is the pink tangent plane. For any vector h ∈ R2, L(h) is approximately equal
to f(a+ h)− f(a). Note that L(h) is also the direction tangent to the curve t 7→ f(a+ th).

Since the map h 7→ a+h from E to E is continuous, and since A is open in E, the inverse
image U of A− {a} under the above map is open in E, and it makes sense to say that

lim
h→0, h∈U

ε(h) = 0.

Note that for every h ∈ U , since h 6= 0, ε(h) is uniquely determined since

ε(h) =
f(a+ h)− f(a)− L(h)

‖h‖
,

and that the value ε(0) plays absolutely no role in this definition. The condition for f to be
differentiable at a amounts to the fact that

lim
h7→0

‖f(a+ h)− f(a)− L(h)‖
‖h‖

= 0 (†)

as h 6= 0 approaches 0, when a+ h ∈ A. However, it does no harm to assume that ε(0) = 0,
and we will assume this from now on.
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Again, we note that the derivative Df(a) of f at a provides an affine approximation of
f , locally around a.

Remarks:

(1) Since the notion of limit is purely topological, the existence and value of a derivative is
independent of the choice of norms in E and F , as long as they are equivalent norms.

(2) If h : (−a, a) → R is a real-valued function defined on some open interval containing
0, we say that h is o(t) for t→ 0, and we write h(t) = o(t), if

lim
t7→0, t 6=0

h(t)

t
= 0.

With this notation (the little o notation), the function f is differentiable at a iff

f(a+ h)− f(a)− L(h) = o(‖h‖),

which is also written as

f(a+ h) = f(a) + L(h) + o(‖h‖).

The following proposition shows that our new definition is consistent with the definition
of the directional derivative and that the continuous linear map L is unique, if it exists.

Proposition 3.1. Let E and F be two normed spaces, let A be a nonempty open subset of E,
and let f : A→ F be any function. For any a ∈ A, if Df(a) is defined, then f is continuous
at a and f has a directional derivative Duf(a) for every u 6= 0 in E. Furthermore,

Duf(a) = Df(a)(u)

and thus, Df(a) is uniquely defined.

Proof. If L = Df(a) exists, then for any nonzero vector u ∈ E, because A is open, for any
t ∈ R− {0} (or t ∈ C− {0}) small enough, a+ tu ∈ A, so

f(a+ tu) = f(a) + L(tu) + ε(tu)‖tu‖
= f(a) + tL(u) + |t|ε(tu)‖u‖

which implies that

L(u) =
f(a+ tu)− f(a)

t
− |t|

t
ε(tu)‖u‖,

and since limt7→0 ε(tu) = 0, we deduce that

L(u) = Df(a)(u) = Duf(a).

Because
f(a+ h) = f(a) + L(h) + ε(h)‖h‖

for all h such that ‖h‖ is small enough, L is continuous, and limh7→0 ε(h)‖h‖ = 0, we have
limh7→0 f(a+ h) = f(a), that is, f is continuous at a.
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When E is of finite dimension, every linear map is continuous (see Proposition 8.8 (Vol.
I) or Theorem 2.26), and this assumption is then redundant.

Although this may not be immediately obvious, the reason for requiring the linear map
Dfa to be continuous is to ensure that if a function f is differentiable at a, then it is
continuous at a. This is certainly a desirable property of a differentiable function. In finite
dimension this holds, but in infinite dimension this is not the case. The following proposition
shows that if Dfa exists at a and if f is continuous at a, then Dfa must be a continuous
map. So if a function is differentiable at a, then it is continuous iff the linear map Dfa is
continuous. We chose to include the second condition rather that the first in the definition
of a differentiable function.

Proposition 3.2. Let E and F be two normed spaces, let A be a nonempty open subset of
E, and let f : A→ F be any function. For any a ∈ A, if Dfa is defined, then f is continuous
at a iff Dfa is a continuous linear map.

Proof. Proposition 3.1 shows that if Dfa is defined and continuous then f is continuous at
a. Conversely, assume that Dfa exists and that f is continuous at a. Since f is continuous
at a and since Dfa exists, for any η > 0 there is some ρ with 0 < ρ < 1 such that if ‖h‖ ≤ ρ
then

‖f(a+ h)− f(a)‖ ≤ η

2
,

and

‖f(a+ h)− f(a)−Da(h)‖ ≤ η

2
‖h‖ ≤ η

2
,

so we have

‖Da(h)‖ = ‖Da(h)− (f(a+ h)− f(a)) + f(a+ h)− f(a)‖
≤ ‖f(a+ h)− f(a)−Da(h)‖+ ‖f(a+ h)− f(a)‖

≤ η

2
+
η

2
= η,

which proves that Dfa is continuous at 0. By Proposition 2.24, Dfa is a continuous linear
map.

Example 3.2. Consider the map f : Mn(R)→ Mn(R) given by

f(A) = A>A− I,

where Mn(R) denotes the vector space of all n × n matrices with real entries equipped
with any matrix norm, since they are all equivalent; for example, pick the Frobenius norm
‖A‖F =

√
tr(A>A). We claim that

Df(A)(H) = A>H +H>A, for all A and H in Mn(R).
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We have

f(A+H)− f(A)− (A>H +H>A) = (A+H)>(A+H)− I − (A>A− I)− A>H −H>A
= A>A+ A>H +H>A+H>H − A>A− A>H −H>A
= H>H.

It follows that

ε(H) =
f(A+H)− f(A)− (A>H +H>A)

‖H‖
=
H>H

‖H‖
,

and since our norm is the Frobenius norm,

‖ε(H)‖ =

∥∥∥∥H>H‖H‖
∥∥∥∥ ≤

∥∥H>∥∥ ‖H‖
‖H‖

=
∥∥H>∥∥ = ‖H‖ ,

so
lim
H 7→0

ε(H) = 0,

and we conclude that
Df(A)(H) = A>H +H>A.

If Df(a) exists for every a ∈ A, we get a map Df : A→ L(E;F ), called the derivative of
f on A, and also denoted by df . Here L(E;F ) denotes the vector space of continuous linear
maps from E to F .

We now consider a number of standard results about derivatives.

3.2 Properties of Derivatives

A function f : E → F is said to be affine if there is some linear map
−→
f : E → F and some

fixed vector c ∈ F , such that

f(u) =
−→
f (u) + c

for all u ∈ E. We call
−→
f the linear map associated with f .

Proposition 3.3. Given two normed spaces E and F , if f : E → F is a constant function,

then Df(a) = 0, for every a ∈ E. If f : E → F is a continuous affine map, then Df(a) =
−→
f ,

for every a ∈ E, where
−→
f denotes the linear map associated with f .

Proposition 3.4. Given a normed space E and a normed vector space F , for any two
functions f, g : E → F , for every a ∈ E, if Df(a) and Dg(a) exist, then D(f + g)(a) and
D(λf)(a) exist, and

D(f + g)(a) = Df(a) + Dg(a),

D(λf)(a) = λDf(a).
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Given two normed vector spaces (E1, ‖ ‖1) and (E2, ‖ ‖2), there are three natural and
equivalent norms that can be used to make E1 × E2 into a normed vector space:

1. ‖(u1, u2)‖1 = ‖u1‖1 + ‖u2‖2.

2. ‖(u1, u2)‖2 = (‖u1‖2
1 + ‖u2‖2

2)1/2.

3. ‖(u1, u2)‖∞ = max(‖u1‖1 , ‖u2‖2).

We usually pick the first norm. If E1, E2, and F are three normed vector spaces, recall that
a bilinear map f : E1 × E2 → F is continuous iff there is some constant C ≥ 0 such that

‖f(u1, u2)‖ ≤ C ‖u1‖1 ‖u2‖2 for all u1 ∈ E1 and all u2 ∈ E2.

Proposition 3.5. Given three normed vector spaces E1, E2, and F , for any continuous
bilinear map f : E1 × E2 → F , for every (a, b) ∈ E1 × E2, Df(a, b) exists, and for every
u ∈ E1 and v ∈ E2,

Df(a, b)(u, v) = f(u, b) + f(a, v).

Proof. Since f is bilinear, a simple computation implies that

f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v)) = f(a+ u, b+ v)− f(a, b)− f(u, b)− f(a, v)

= f(a+ u, b) + f(a+ u, v)− f(a, b)− f(u, b)− f(a, v)

= f(a, b) + f(u, b) + f(a, v) + f(u, v)− f(a, b)− f(u, b)− f(a, v)

= f(u, v).

We define

ε(u, v) =
f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v))

‖(u, v)‖1

,

and observe that the continuity of f implies

‖f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v))‖ = ‖f(u, v)‖
≤ C ‖u‖1 ‖v‖2 ≤ C (‖u‖1 + ‖v‖2)2 .

Hence

‖ε(u, v)‖ =

∥∥∥∥ f(u, v)

‖(u, v)‖1

∥∥∥∥ =
‖f(u, v)‖
‖(u, v)‖1

≤ C (‖u‖1 + ‖v‖2)2

‖u‖1 + ‖v‖2

= C (‖u‖1 + ‖v‖2) = C ‖(u, v)‖1 ,

which in turn implies
lim

(u,v)7→(0,0)
ε(u, v) = 0.
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We now state the very useful chain rule.

Theorem 3.6. Given three normed spaces E, F , and G, let A be an open set in E, and let
B an open set in F . For any functions f : A→ F and g : B → G, such that f(A) ⊆ B, for
any a ∈ A, if Df(a) exists and Dg(f(a)) exists, then D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

Proof. Since f is differentiable at a and g is differentiable at b = f(a), for every η such that
0 < η < 1 there is some ρ > 0 such that for all s, t, if ‖s‖ ≤ ρ and ‖t‖ ≤ ρ then

f(a+ s) = f(a) + Dfa(s) + ε1(s)

g(b+ t) = g(b) + Dgb(t) + ε2(t),

with ‖ε1(s)‖ ≤ η ‖s‖ and ‖ε2(t)‖ ≤ η ‖t‖. Since Dfa and Dgb are continuous, we have

‖Dfa(s)‖ ≤ ‖Dfa‖ ‖s‖ and ‖Dgb(t)‖ ≤ ‖Dgb‖ ‖t‖ ,

which, since ‖ε1(s)‖ ≤ η ‖s‖ and η < 1, implies that

‖Dfa(s) + ε1(s)‖ ≤ ‖Dfa‖ ‖s‖+ ‖ε1(s)‖ ≤ ‖Dfa‖ ‖s‖+ η ‖s‖ ≤ (‖Dfa‖+ 1) ‖s‖ .

Consequently, if ‖s‖ < ρ/(‖Dfa‖+ 1), we have

‖ε2(Dfa(s) + ε1(s))‖ ≤ η(‖Dfa‖+ 1) ‖s‖ , (∗1)

and
‖Dgb(ε1(s))‖ ≤ ‖Dgb‖ ‖ε1(s)‖ ≤ η ‖Dgb‖ ‖s‖ . (∗2)

Then since b = f(a), using the above we have

(g ◦ f)(a+ s) = g(f(a+ s)) = g(b+ Dfa(s) + ε1(s))

= g(b) + Dgb(Dfa(s) + ε1(s)) + ε2(Dfa(s) + ε1(s))

= g(b) + (Dgb ◦Dfa)(s) + Dgb(ε1(s)) + ε2(Dfa(s) + ε1(s)).

Now by (∗1) and (∗2) we have

‖Dgb(ε1(s)) + ε2(Dfa(s) + ε1(s))‖ ≤ ‖Dgb(ε1(s))‖+ ‖ε2(Dfa(s) + ε1(s))‖
≤ η ‖Dgb‖ ‖s‖+ η(‖Dfa‖+ 1) ‖s‖
= η(‖Dfa‖+ ‖Dgb‖+ 1) ‖s‖ ,

so if we write ε3(s) = Dgb(ε1(s)) + ε2(Dfa(s) + ε1(s)) we proved that

(g ◦ f)(a+ s) = g(b) + (Dgb ◦Dfa)(s) + ε3(s)

with ε3(s) ≤ η(‖Dfa‖+ ‖Dgb‖+ 1) ‖s‖, which proves that Dgb ◦Dfa is the derivative of g ◦ f
at a. Since Dfa and Dgb are continuous, so is Dgb ◦Dfa, which proves our proposition.
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Theorem 3.6 has many interesting consequences. We mention two corollaries.

Proposition 3.7. Given three normed vector spaces E, F , and G, for any open subset A in
E, for any a ∈ A, let f : A → F such that Df(a) exists, and let g : F → G be a continuous
affine map. Then D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = −→g ◦Df(a),

where −→g is the linear map associated with the affine map g.

Proposition 3.8. Given two normed vector spaces E and F , let A be some open subset in
E, let B be some open subset in F , let f : A → B be a bijection from A to B, and assume
that Df exists on A and that Df−1 exists on B. Then for every a ∈ A,

Df−1(f(a)) = (Df(a))−1.

Proposition 3.8 has the remarkable consequence that the two vector spaces E and F have
the same dimension. In other words, a local property, the existence of a bijection f between
an open set A of E and an open set B of F , such that f is differentiable on A and f−1 is
differentiable on B, implies a global property, that the two vector spaces E and F have the
same dimension.

Let us mention two more rules about derivatives that are used all the time.

Let ι : GL(n,C)→ Mn(C) be the function (inversion) defined on invertible n×n matrices
by

ι(A) = A−1.

Observe that GL(n,C) is indeed an open subset of the normed vector space Mn(C) of
complex n × n matrices, since its complement is the closed set of matrices A ∈ Mn(C)
satisfying det(A) = 0. Then we have

dιA(H) = −A−1HA−1,

for all A ∈ GL(n,C) and for all H ∈ Mn(C).

To prove the preceding line observe that for H with sufficiently small norm, we have

ι(A+H)− ι(A) + A−1HA−1 = (A+H)−1 − A−1 + A−1HA−1

= (A+H)−1[I − (A+H)A−1 + (A+H)A−1HA−1]

= (A+H)−1[I − I −HA−1 +HA−1 +HA−1HA−1]

= (A+H)−1HA−1HA−1.

Consequently, we get

ε(H) =
ι(A+H)− ι(A) + A−1HA−1

‖H‖
=

(A+H)−1HA−1HA−1

‖H‖
,
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and since ∥∥(A+H)−1HA−1HA−1
∥∥ ≤ ‖H‖2

∥∥A−1
∥∥2 ∥∥(A+H)−1

∥∥ ,
it is clear that limH 7→0 ε(H) = 0, which proves that

dιA(H) = −A−1HA−1.

In particular, if A = I, then dιI(H) = −H.

Next, if f : Mn(C)→ Mn(C) and g : Mn(C)→ Mn(C) are differentiable matrix functions,
then

d(fg)A(B) = dfA(B)g(A) + f(A)dgA(B),

for all A,B ∈Mn(C). This is known as the product rule.

In preparation for the next section on Jacobian matrices and the section on the implicit
function theorem we need the following definitions.

When E is of finite dimension n, for any basis (u1, . . . , un) of E, we can define the
directional derivatives with respect to the vectors in the basis (u1, . . . , un) (actually, we can
also do it for an infinite basis). This way we obtain the definition of partial derivatives as
follows:

Definition 3.4. For any two normed spaces E and F , if E is of finite dimension n, for
every basis (u1, . . . , un) for E, for every a ∈ E, for every function f : E → F , the directional
derivatives Dujf(a) (if they exist) are called the partial derivatives of f with respect to the

basis (u1, . . . , un). The partial derivative Dujf(a) is also denoted by ∂jf(a), or
∂f

∂xj
(a).

The notation
∂f

∂xj
(a) for a partial derivative, although customary and going back to

Leibniz, is a “logical obscenity.” Indeed, the variable xj really has nothing to do with the
formal definition. This is just another of these situations where tradition is just too hard to
overthrow!

More generally we now consider the situation where E is a finite direct sum. Given a
normed vector space E = E1⊕· · ·⊕En and a normed vector space F , given any open subset
A of E, for any c = (c1, . . . , cn) ∈ A, we define the continuous functions icj : Ej → E, such
that

icj(x) = (c1, . . . , cj−1, x, cj+1, . . . , cn).

For any function f : A → F , we have functions f ◦ icj : Ej → F defined on (icj)
−1(A), which

contains cj.

Definition 3.5. If D(f ◦ icj)(cj) exists, we call it the partial derivative of f w.r.t. its jth

argument, at c. We also denote this derivative by Djf(c) of
∂f

∂xj
(c). Note that Djf(c) ∈

L(Ej;F ).
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This notion is a generalization of the notion defined in Definition 3.4. In fact, when E is
of dimension n, and a basis (u1, . . . , un) has been chosen, we can write E = Ku1⊕· · ·⊕Kun,
(with K = R or K = C), and then

Djf(c)(λuj) = λ∂jf(c),

and the two notions are consistent. We will use freely the notation
∂f

∂xj
(c) instead of Djf(c).

The notion ∂jf(c) introduced in Definition 3.4 is really that of the vector derivative,

whereas Djf(c)

(
=

∂f

∂xj
(c)

)
is the corresponding linear map. The following proposition

holds.

Proposition 3.9. Given a normed vector space E = E1 ⊕ · · · ⊕ En, and a normed vector
space F , given any open subset A of E, for any function f : A → F , for every c ∈ A, if

Df(c) exists, then each
∂f

∂xj
(c) exists, and

Df(c)(u1, . . . , un) =
∂f

∂xj
(c)(u1) + · · ·+ ∂f

∂xj
(c)(un),

for every ui ∈ Ei, 1 ≤ i ≤ n. The same result holds for the finite product E1 × · · · × En.

Proof. If ij : Ej → E is the linear map given by

ij(x) = (0, . . . , 0, x, 0, . . . , 0),

then
icj(x) = (c1, . . . , cj−1, 0, cj+1, . . . , cn) + ij(x),

which shows that icj is affine, so Dicj(x) = ij. The proposition is then a simple application of
Theorem 3.6.

In the special case where F is a normed vector space of finite dimension m, for any basis
(v1, . . . , vm) of F , every vector x ∈ F can be expressed uniquely as

x = x1v1 + · · ·+ xmvm,

where (x1, . . . , xm) ∈ Km, the coordinates of x in the basis (v1, . . . , vm) (where K = R or
K = C). Thus, letting Fi be the standard normed vector space K with its natural structure,
we note that F is isomorphic to the direct sum F = K ⊕ · · · ⊕ K. Then every function
f : E → F is represented by m functions (f1, . . . , fm), where fi : E → K (where K = R or
K = C), and

f(x) = f1(x)v1 + · · ·+ fm(x)vm,

for every x ∈ E. The following proposition is easily shown.
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Proposition 3.10. For any two normed vector spaces E and F , if F is of finite dimension
m, for any basis (v1, . . . , vm) of F , a function f : E → F is differentiable at a iff each fi is
differentiable at a, and

Df(a)(u) = Df1(a)(u)v1 + · · ·+ Dfm(a)(u)vm,

for every u ∈ E.

3.3 Jacobian Matrices

If both E and F are of finite dimension, for any basis (u1, . . . , un) of E and any basis
(v1, . . . , vm) of F , every function f : E → F is determined by m functions fi : E → R (or
fi : E → C), where

f(x) = f1(x)v1 + · · ·+ fm(x)vm,

for every x ∈ E. From Proposition 3.1, we have

Df(a)(uj) = Dujf(a) = ∂jf(a),

and from Proposition 3.10, we have

Df(a)(uj) = Df1(a)(uj)v1 + · · ·+ Dfi(a)(uj)vi + · · ·+ Dfm(a)(uj)vm,

that is,

Df(a)(uj) = ∂jf1(a)v1 + · · ·+ ∂jfi(a)vi + · · ·+ ∂jfm(a)vm.

Since the j-th column of the m×n-matrix representing Df(a) w.r.t. the bases (u1, . . . , un)
and (v1, . . . , vm) is equal to the components of the vector Df(a)(uj) over the basis (v1, . . . ,vm),
the linear map Df(a) is determined by the m×n-matrix J(f)(a) = (∂jfi(a)), (or J(f)(a) =
(∂fi/∂xj)(a)):

J(f)(a) =


∂1f1(a) ∂2f1(a) . . . ∂nf1(a)
∂1f2(a) ∂2f2(a) . . . ∂nf2(a)

...
...

. . .
...

∂1fm(a) ∂2fm(a) . . . ∂nfm(a)


or

J(f)(a) =



∂f1

∂x1

(a)
∂f1

∂x2

(a) . . .
∂f1

∂xn
(a)

∂f2

∂x1

(a)
∂f2

∂x2

(a) . . .
∂f2

∂xn
(a)

...
...

. . .
...

∂fm
∂x1

(a)
∂fm
∂x2

(a) . . .
∂fm
∂xn

(a)


.
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Definition 3.6. The matrix J(f)(a) is called the Jacobian matrix of Df at a. When m = n,
the determinant, det(J(f)(a)), of J(f)(a) is called the Jacobian of Df(a).

From a standard fact of linear algebra, we know that this determinant in fact only depends
on Df(a), and not on specific bases. However, partial derivatives give a means for computing
it.

When E = Rn and F = Rm, for any function f : Rn → Rm, it is easy to compute the
partial derivatives (∂fi/∂xj)(a). We simply treat the function fi : Rn → R as a function of
its j-th argument, leaving the others fixed, and compute the derivative as in Definition 3.1,
that is, the usual derivative.

Example 3.3. For example, consider the function f : R2 → R2, defined such that

f(r, θ) = (r cos(θ), r sin(θ)).

Then we have

J(f)(r, θ) =

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
,

and the Jacobian (determinant) has value det(J(f)(r, θ)) = r.

In the case where E = R (or E = C), for any function f : R → F (or f : C → F ), the
Jacobian matrix of Df(a) is a column vector. In fact, this column vector is just D1f(a).
Then for every λ ∈ R (or λ ∈ C),

Df(a)(λ) = λD1f(a).

This case is sufficiently important to warrant a definition.

Definition 3.7. Given a function f : R → F (or f : C → F ), where F is a normed vector
space, the vector

Df(a)(1) = D1f(a)

is called the vector derivative or velocity vector (in the real case) at a. We usually identify
Df(a) with its Jacobian matrix D1f(a), which is the column vector corresponding to D1f(a).
By abuse of notation, we also let Df(a) denote the vector Df(a)(1) = D1f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve that is
the trajectory of some particle moving in Rm as a function of time, and the vector D1f(a)
is the velocity of the moving particle f(t) at t = a; see Figure 3.4.

It is often useful to consider functions f : [a, b]→ F from a closed interval [a, b] ⊆ R to a
normed vector space F , and its derivative Df(a) on [a, b], even though [a, b] is not open. In
this case, as in the case of a real-valued function, we define the right derivative D1f(a+) at
a, and the left derivative D1f(b−) at b, and we assume their existence.
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Example 3.4.

1. When A = (0, 1) and F = R3, a function f : (0, 1) → R3 defines a (parametric) curve
in R3. If f = (f1, f2, f3), its Jacobian matrix at a ∈ R is

J(f)(a) =



∂f1

∂t
(a)

∂f2

∂t
(a)

∂f3

∂t
(a)

 .

See Figure 3.4.

Figure 3.4: The red space curve f(t) = (cos(t), sin(t), t).

The velocity vectors J(f)(a) =

− sin(t)
cos(t)

1

 are represented by the blue arrows.

2. When E = R2 and F = R3, a function ϕ : R2 → R3 defines a parametric surface.
Letting ϕ = (f, g, h), its Jacobian matrix at a ∈ R2 is

J(ϕ)(a) =



∂f

∂u
(a)

∂f

∂v
(a)

∂g

∂u
(a)

∂g

∂v
(a)

∂h

∂u
(a)

∂h

∂v
(a)

 .

See Figure 3.5. The Jacobian matrix is J(f)(a) =

 1 0
0 1

2u 2v

. The first column is the
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Figure 3.5: The parametric surface x = u, y = v, z = u2 + v2.

vector tangent to the pink u-direction curve, while the second column is the vector
tangent to the blue v-direction curve.

3. When E = R3 and F = R, for a function f : R3 → R, the Jacobian matrix at a ∈ R3 is

J(f)(a) =

(
∂f

∂x
(a)

∂f

∂y
(a)

∂f

∂z
(a)

)
.

More generally, when f : Rn → R, the Jacobian matrix at a ∈ Rn is the row vector

J(f)(a) =

(
∂f

∂x1

(a) · · · ∂f
∂xn

(a)

)
.

Its transpose is a column vector called the gradient of f at a, denoted by gradf(a) or ∇f(a).
Then given any v ∈ Rn, note that

Df(a)(v) =
∂f

∂x1

(a) v1 + · · ·+ ∂f

∂xn
(a) vn = gradf(a) · v,

the scalar product of gradf(a) and v.

Example 3.5. Consider the quadratic function f : Rn → R given by

f(x) = x>Ax, x ∈ Rn,

where A is a real n× n symmetric matrix. We claim that

dfu(h) = 2u>Ah for all u, h ∈ Rn.



3.3. JACOBIAN MATRICES 89

Since A is symmetric, we have

f(u+ h) = (u> + h>)A(u+ h)

= u>Au+ u>Ah+ h>Au+ h>Ah

= u>Au+ 2u>Ah+ h>Ah,

so we have
f(u+ h)− f(u)− 2u>Ah = h>Ah.

If we write

ε(h) =
h>Ah

‖h‖
for h /∈ 0 where ‖ ‖ is the 2-norm, by Cauchy–Schwarz we have

|ε(h)| ≤ ‖h‖ ‖Ah‖
‖h‖

≤ ‖h‖
2 ‖A‖
‖h‖

= ‖h‖ ‖A‖ ,

which shows that limh7→0 ε(h) = 0. Therefore,

dfu(h) = 2u>Ah for all u, h ∈ Rn,

as claimed. This formula shows that the gradient ∇fu of f at u is given by

∇fu = 2Au.

As a first corollary we obtain the gradient of a function of the form

f(x) =
1

2
x>Ax− b>x,

where A is a symmetric n× n matrix and b is some vector b ∈ Rn. Since the derivative of a
linear function is itself, we obtain

dfu(h) = u>Ah− b>h,

and the gradient of f(x) = 1
2
x>Ax− b>x, is given by

∇fu = Au− b.

As a second corollary we obtain the gradient of the function

f(x) = ‖Ax− b‖2
2 = (Ax− b)>(Ax− b) = (x>A> − b>)(Ax− b)

which is the function to minimize in a least squares problem, where A is an m × n matrix.
We have

f(x) = x>A>Ax− x>A>b− b>Ax+ b>b = x>A>Ax− 2b>Ax+ b>b,
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and since the derivative of a constant function is 0 and the derivative of a linear function is
itself, we get

dfu(h) = 2u>A>Ah− 2b>Ah.

Consequently, the gradient of f(x) = ‖Ax− b‖2
2 is given by

∇fu = 2A>Au− 2A>b.

These two results will be heavily used in quadratic optimization.

When E, F , and G have finite dimensions, and (u1, . . . , up) is a basis for E, (v1, . . . , vn)
is a basis for F , and (w1, . . . , wm) is a basis for G, if A is an open subset of E, B is an
open subset of F , for any functions f : A→ F and g : B → G, such that f(A) ⊆ B, for any
a ∈ A, letting b = f(a), and h = g ◦ f , if Df(a) exists and Dg(b) exists, by Theorem 3.6,
the Jacobian matrix J(h)(a) = J(g ◦ f)(a) w.r.t. the bases (u1, . . . , up) and (w1, . . . , wm) is
the product of the Jacobian matrices J(g)(b) w.r.t. the bases (v1, . . . , vn) and (w1, . . . , wm),
and J(f)(a) w.r.t. the bases (u1, . . . , up) and (v1, . . . , vn):

J(h)(a) =


∂1g1(b) ∂2g1(b) . . . ∂ng1(b)
∂1g2(b) ∂2g2(b) . . . ∂ng2(b)

...
...

. . .
...

∂1gm(b) ∂2gm(b) . . . ∂ngm(b)



∂1f1(a) ∂2f1(a) . . . ∂pf1(a)
∂1f2(a) ∂2f2(a) . . . ∂pf2(a)

...
...

. . .
...

∂1fn(a) ∂2fn(a) . . . ∂pfn(a)


or

J(h)(a) =



∂g1

∂y1

(b)
∂g1

∂y2

(b) . . .
∂g1

∂yn
(b)

∂g2

∂y1

(b)
∂g2

∂y2

(b) . . .
∂g2

∂yn
(b)

...
...

. . .
...

∂gm
∂y1

(b)
∂gm
∂y2

(b) . . .
∂gm
∂yn

(b)





∂f1

∂x1

(a)
∂f1

∂x2

(a) . . .
∂f1

∂xp
(a)

∂f2

∂x1

(a)
∂f2

∂x2

(a) . . .
∂f2

∂xp
(a)

...
...

. . .
...

∂fn
∂x1

(a)
∂fn
∂x2

(a) . . .
∂fn
∂xp

(a)


.

Thus, we have the familiar formula

∂hi
∂xj

(a) =
k=n∑
k=1

∂gi
∂yk

(b)
∂fk
∂xj

(a).

Given two normed vector spaces E and F of finite dimension, given an open subset A of
E, if a function f : A→ F is differentiable at a ∈ A, then its Jacobian matrix is well defined.
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� One should be warned that the converse is false. As evidenced by Example 3.1, there are
functions such that all the partial derivatives exist at some a ∈ A, but yet, the function is

not differentiable at a, and not even continuous at a. However, there are sufficient conditions
on the partial derivatives for Df(a) to exist, namely, continuity of the partial derivatives.

If f is differentiable on A, then f defines a function Df : A→ L(E;F ). It turns out that
the continuity of the partial derivatives on A is a necessary and sufficient condition for Df
to exist and to be continuous on A.

If f : [a, b] → R is a function which is continuous on [a, b] and differentiable on (a, b),
then there is some c with a < c < b such that

f(b)− f(a) = (b− a)f ′(c).

This result is known as the mean value theorem and is a generalization of Rolle’s theorem,
which corresponds to the case where f(a) = f(b).

Unfortunately, the mean value theorem fails for vector-valued functions. For example,
the function f : [0, 2π]→ R2 given by

f(t) = (cos t, sin t)

is such that f(2π)− f(0) = (0, 0), yet its derivative f ′(t) = (− sin t, cos t) does not vanish in
(0, 2π).

A suitable generalization of the mean value theorem to vector-valued functions is possible
if we consider an inequality (an upper bound) instead of an equality. This generalized version
of the mean value theorem plays an important role in the proof of several major results of
differential calculus.

If E is a vector space (over R or C), given any two points a, b ∈ E, the closed segment
[a, b] is the set of all points a + λ(b − a), where 0 ≤ λ ≤ 1, λ ∈ R, and the open segment
(a, b) is the set of all points a+ λ(b− a), where 0 < λ < 1, λ ∈ R.

Proposition 3.11. Let E and F be two normed vector spaces, let A be an open subset of
E, and let f : A → F be a continuous function on A. Given any a ∈ A and any h 6= 0 in
E, if the closed segment [a, a + h] is contained in A, if f : A → F is differentiable at every
point of the open segment (a, a+ h), and

sup
x∈(a,a+h)

‖Df(x)‖ ≤M,

for some M ≥ 0, then
‖f(a+ h)− f(a)‖ ≤M‖h‖.

As a corollary, if L : E → F is a continuous linear map, then

‖f(a+ h)− f(a)− L(h)‖ ≤M‖h‖,

where M = supx∈(a,a+h) ‖Df(x)− L‖.
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The above proposition is sometimes called the “mean value theorem.” Propostion 3.11
can be used to show the following important result.

Theorem 3.12. Given two normed vector spaces E and F , where E is of finite dimension
n, and where (u1, . . . , un) is a basis of E, given any open subset A of E, given any function
f : A → F , the derivative Df : A → L(E;F ) is defined and continuous on A iff every

partial derivative ∂jf (or
∂f

∂xj
) is defined and continuous on A, for all j, 1 ≤ j ≤ n. As

a corollary, if F is of finite dimension m, and (v1, . . . , vm) is a basis of F , the derivative

Df : A→ L(E;F ) is defined and continuous on A iff every partial derivative ∂jfi (or
∂fi
∂xj

)

is defined and continuous on A, for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Theorem 3.12 gives a necessary and sufficient condition for the existence and continuity
of the derivative of a function on an open set. It should be noted that a more general version
of Theorem 3.12 holds, assuming that E = E1 ⊕ · · · ⊕ En, or E = E1 × · · · × En, and using
the more general partial derivatives Djf introduced before Proposition 3.9.

Definition 3.8. Given two normed vector spaces E and F , and an open subset A of E, we
say that a function f : A→ F is of class C0 on A or a C0-function on A if f is continuous
on A. We say that f : A→ F is of class C1 on A or a C1-function on A if Df exists and is
continuous on A.

Since the existence of the derivative on an open set implies continuity, a C1-function is of
course a C0-function. Theorem 3.12 gives a necessary and sufficient condition for a function
f to be a C1-function (when E is of finite dimension). It is easy to show that the composition
of C1-functions (on appropriate open sets) is a C1-function.

3.4 The Implicit and The Inverse Function Theorems

Given three normed vector spaces E,F , and G, given a function f : E × F → G, given any
c ∈ G, it may happen that the equation

f(x, y) = c

has the property that for some open sets A ⊆ E and B ⊆ F , there is a function g : A→ B,
such that

f(x, g(x)) = c,

for all x ∈ A. Such a situation is usually very rare, but if some solution (a, b) ∈ E × F
such that f(a, b) = c is known, under certain conditions, for some small open sets A ⊆ E
containing a and B ⊆ F containing b, the existence of a unique g : A→ B such that

f(x, g(x)) = c,
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for all x ∈ A, can be shown. Under certain conditions, it can also be shown that g is
continuous and differentiable. Such a theorem, known as the implicit function theorem, can
be proven.

Example 3.6. Let E = R2, F = G = R, Ω = R2 × R ∼= R3, f : R2 × R→ R given by

f((x1, x2), x3) = x2
1 + x2

2 + x2
3 − 1,

a =
(√

3/(2
√

2),
√

3/(2
√

2)
)
, b = 1/2, and c = 0. The set of vectors (x1, x2, x3) ∈ R2 such

that
f((x1, x2), x3) = x2

1 + x2
2 + x2

3 − 1 = 0

is the unit sphere in R3. The vector (a, b) belongs to the unit sphere since ‖a‖2
2 + b2− 1 = 0.

The function g : R2 → R given by

g(x1, x2) =
√

1− x2
1 − x2

2

satisfies the equation
f(x1, x2, g(x1, x2)) = 0

all for (x1, x2) in the open disk {(x1, x2) ∈ R2 | x2
1 + x2

2 < 1}, and g(a) = b. Observe that if
we had picked b = −1/2, then we would need to consider the function

g(x1, x2) = −
√

1− x2
1 − x2

2.

We now state a very general version of the implicit function theorem. The proof of
this theorem is fairly involved and uses a fixed-point theorem for contracting mappings in
complete metric spaces; it is given in Schwartz [70].

Theorem 3.13. Let E,F , and G be normed vector spaces, let Ω be an open subset of E×F ,
let f : Ω → G be a function defined on Ω, let (a, b) ∈ Ω, let c ∈ G, and assume that
f(a, b) = c. If the following assumptions hold:

(1) The function f : Ω→ G is continuous on Ω;

(2) F is a complete normed vector space;

(3)
∂f

∂y
(x, y) exists for every (x, y) ∈ Ω and

∂f

∂y
: Ω → L(F ;G) is continuous, where

∂f

∂y
(x, y) is defined as in Definition 3.5;

(4)
∂f

∂y
(a, b) is a bijection of L(F ;G), and

(∂f
∂y

(a, b)
)−1

∈ L(G;F ); this hypothesis implies

that G is also a complete normed vector space;
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then the following properties hold:

(a) There exist some open subset A ⊆ E containing a and some open subset B ⊆ F
containing b, such that A× B ⊆ Ω, and for every x ∈ A, the equation f(x, y) = c has
a single solution y = g(x), and thus there is a unique function g : A → B such that
f(x, g(x)) = c, for all x ∈ A;

(b) The function g : A→ B is continuous.

If we also assume that

(5) The derivative Df(a, b) exists;

then

(c) The derivative Dg(a) exists, and

Dg(a) = −
(∂f
∂y

(a, b)
)−1

◦ ∂f
∂x

(a, b);

and if in addition

(6)
∂f

∂x
: Ω→ L(E;G) is also continuous (and thus, in view of (3), f is C1 on Ω);

then

(d) The derivative Dg : A→ L(E;F ) is continuous, and

Dg(x) = −
(∂f
∂y

(x, g(x))
)−1

◦ ∂f
∂x

(x, g(x)),

for all x ∈ A.

Example 3.7. Going back to Example 3.6, write x = (x1, x2) and y = x3, so that the partial
derivatives ∂f/∂x and ∂f/∂y are given in terms of their Jacobian matrices by

∂f

∂x
(x, y) =

(
2x1 2x2

)
∂f

∂y
(x, y) = 2x3.

If 0 < |b| ≤ 1 and ‖a‖2
2 + b2 − 1 = 0, then Conditions (3) and (4) are satisfied. Conditions

(1) and (2) obviously hold. Since df(a,b) is given by its Jacobian matrix as

df(a,b) =
(
2a1 2a2 2b

)
,

Condition (5) holds, and clearly, Condition (6) also holds.
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Theorem 3.13 implies that there is some open subset A of R2 containing a, some open
subset B of R containing b, and a unique function g : A→ B such that

f(x, g(x)) = 0

for all x ∈ A. In fact, we can pick A to be the open unit disk in R, B = (0, 2), and if
0 < b ≤ 1, then

g(x1, x2) =
√

1− x2
1 − x2

2,

else if −1 ≤ b < 0, then

g(x1, x2) = −
√

1− x2
1 − x2

2.

Assuming 0 < b ≤ 1, We have

∂f

∂x
(x, g(x)) = (2x1 2x2),

and (
∂f

∂y
(x, g(x))

)−1

=
1

2
√

1− x2
1 − x2

2

,

so according to the theorem,

dgx = − 1√
1− x2

1 − x2
2

(x1 x2),

which matches the derivative of g computed directly.

Observe that the functions (x1, x2) 7→
√

1− x2
1 − x2

2 and (x1, x2) 7→ −
√

1− x2
1 − x2

2 are
two differentiable parametrizations of the sphere, but the union of their ranges does not cover
the entire sphere. Since b 6= 0, none of the points on the unit circle in the (x1, x2)-plane are
covered. Our function f views b as lying on the x3-axis. In order to cover the entire sphere
using this method, we need four more maps, which correspond to b lying on the x1-axis or
on the x2 axis. Then we get the additional (implicit) maps (x2, x3) 7→ ±

√
1− x2

2 − x2
3 and

(x1, x3) 7→ ±
√

1− x2
1 − x2

3.

The implicit function theorem plays an important role in the calculus of variations.

We now consider another very important notion, that of a (local) diffeomorphism.

Definition 3.9. Given two topological spaces E and F and an open subset A of E, we say
that a function f : A → F is a local homeomorphism from A to F if for every a ∈ A, there
is an open set U ⊆ A containing a and an open set V containing f(a) such that f is a
homeomorphism from U to V = f(U). If B is an open subset of F , we say that f : A → F
is a (global) homeomorphism from A to B if f is a homeomorphism from A to B = f(A). If
E and F are normed vector spaces, we say that f : A → F is a local diffeomorphism from
A to F if for every a ∈ A, there is an open set U ⊆ A containing a and an open set V
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containing f(a) such that f is a bijection from U to V , f is a C1-function on U , and f−1

is a C1-function on V = f(U). We say that f : A → F is a (global) diffeomorphism from A
to B if f is a homeomorphism from A to B = f(A), f is a C1-function on A, and f−1 is a
C1-function on B.

Note that a local diffeomorphism is a local homeomorphism. Also, as a consequence of
Proposition 3.8, if f is a diffeomorphism on A, then Df(a) is a bijection for every a ∈ A.
The following theorem can be shown. In fact, there is a fairly simple proof using Theorem
3.13.

Theorem 3.14. (Inverse Function Theorem) Let E and F be complete normed spaces, let A
be an open subset of E, and let f : A→ F be a C1-function on A. The following properties
hold:

(1) For every a ∈ A, if Df(a) is a linear isomorphism (which means that both Df(a)
and (Df(a))−1 are linear and continuous),2 then there exist some open subset U ⊆ A
containing a, and some open subset V of F containing f(a), such that f is a diffeo-
morphism from U to V = f(U). Furthermore,

Df−1(f(a)) = (Df(a))−1.

For every neighborhood N of a, the image f(N) of N is a neighborhood of f(a), and
for every open ball U ⊆ A of center a, the image f(U) of U contains some open ball
of center f(a).

(2) If Df(a) is invertible for every a ∈ A, then B = f(A) is an open subset of F , and
f is a local diffeomorphism from A to B. Furthermore, if f is injective, then f is a
diffeomorphism from A to B.

Proofs of the inverse function theorem can be found in Schwartz [70], Lang [49], Abraham
and Marsden [1], and Cartan [21].

The idea of Schwartz’s proof is that if we define the function f1 : F × Ω→ F by

f1(y, z) = f(z)− y,

then an inverse g = f−1 of f is an implicit solution of the equation f1(y, z) = 0, since
f1(y, g(y)) = f(g(y)) − y = 0. Observe that the roles of E and F are switched, but this is
not a problem since F is complete. The proof consists in checking that the conditions of
Theorem 3.13 apply.

Part (1) of Theorem 3.14 is often referred to as the “(local) inverse function theorem.”
It plays an important role in the study of manifolds and (ordinary) differential equations.

2Actually, since E and F are Banach spaces, by the open mapping theorem, it is sufficient to assume that
Df(a) is continuous and bijective; see Lang [49].
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If E and F are both of finite dimension, and some bases have been chosen, the invertibility
of Df(a) is equivalent to the fact that the Jacobian determinant det(J(f)(a)) is nonnull. The
case where Df(a) is just injective or just surjective is also important for defining manifolds,
using implicit definitions.

Definition 3.10. Let E and F be normed vector spaces, where E and F are of finite
dimension (or both E and F are complete), and let A be an open subset of E. For any
a ∈ A, a C1-function f : A → F is an immersion at a if Df(a) is injective. A C1-function
f : A → F is a submersion at a if Df(a) is surjective. A C1-function f : A → F is an
immersion on A (resp. a submersion on A) if Df(a) is injective (resp. surjective) for every
a ∈ A.

When E and F are finite dimensional with dim(E) = n and dim(F ) = m, if m ≥ n,
then f is an immersion iff the Jacobian matrix, J(f)(a), has full rank n for all a ∈ E, and
if n ≥ m, then f is a submersion iff the Jacobian matrix, J(f)(a), has full rank m for all
a ∈ E.

Example 3.8. For example, f : R → R2 defined by f(t) = (cos(t), sin(t)) is an immersion

since J(f)(t) =

(
− sin(t)
cos(t)

)
has rank 1 for all t. On the other hand, f : R → R2 defined by

f(t) = (t2, t2) is not an immersion since J(f)(t) =

(
2t
2t

)
vanishes at t = 0. See Figure 3.6.

An example of a submersion is given by the projection map f : R2 → R, where f(x, y) = x,
since J(f)(x, y) =

(
1 0

)
.

The following results can be shown.

Proposition 3.15. Let A be an open subset of Rn, and let f : A → Rm be a function.
For every a ∈ A, f : A → Rm is a submersion at a iff there exists an open subset U of A
containing a, an open subset W ⊆ Rn−m, and a diffeomorphism ϕ : U → f(U) ×W , such
that,

f = π1 ◦ ϕ,

where π1 : f(U)×W → f(U) is the first projection. Equivalently,

(f ◦ ϕ−1)(y1, . . . , ym, . . . , yn) = (y1, . . . , ym).

U ⊆ A
ϕ //

f &&NNNNNNNNNNN f(U)×W
π1
��

f(U) ⊆ Rm

Furthermore, the image of every open subset of A under f is an open subset of F . (The
same result holds for Cn and Cm). See Figure 3.7.
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(i.)

(ii.)

Figure 3.6: Figure (i.) is the immersion of R into R2 given by f(t) = (cos(t), sin(t)). Figure
(ii.), the parametric curve f(t) = (t2, t2), is not an immersion since the tangent vanishes at
the origin.

Proposition 3.16. Let A be an open subset of Rn, and let f : A → Rm be a function. For
every a ∈ A, f : A → Rm is an immersion at a iff there exists an open subset U of A
containing a, an open subset V containing f(a) such that f(U) ⊆ V , an open subset W
containing 0 such that W ⊆ Rm−n, and a diffeomorphism ϕ : V → U ×W , such that,

ϕ ◦ f = in1,

where in1 : U → U ×W is the injection map such that in1(u) = (u, 0), or equivalently,

(ϕ ◦ f)(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

U ⊆ A
f //

in1 &&MMMMMMMMMMM f(U) ⊆ V

ϕ

��
U ×W

(The same result holds for Cn and Cm). See Figure 3.8.

We now briefly consider second-order and higher-order derivatives.
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a

A

U

W =~ (0,1)

f

f(U) x W

f(U)

φ

π1

Figure 3.7: Let n = 3 and m = 2. The submersion maps the solid lavender egg in R3 onto
the bottom pink circular face of the solid cylinder f(U)×W .

3.5 Second-Order and Higher-Order Derivatives

Given two normed vector spaces E and F , and some open subset A of E, if Df(a) is defined
for every a ∈ A, then we have a mapping Df : A → L(E;F ). Since L(E;F ) is a normed
vector space, if Df exists on an open subset U of A containing a, we can consider taking the
derivative of Df at some a ∈ A.

Definition 3.11. Given a function f : A → F defined on some open subset A of E such
that Df(a) is defined for every a ∈ A, if D(Df)(a) exists for every a ∈ A, we get a mapping
D2f : A→ L(E;L(E;F )) called the second derivative of f on A, where D2f(a) = D(Df)(a),
for every a ∈ A.

As in the case of the first derivative Dfa where Dfa(u) = Duf(a), where Duf(a) is the
directional derivative of f at a in the direction u, it would be useful to express D2f(a)(u)(v)
in terms of two directional derivatives. This can indeed be done. If D2f(a) exists, then for
every u ∈ E,

D2f(a)(u) = D(Df)(a)(u) = Du(Df)(a) ∈ L(E;F ).

We have the following result.

Proposition 3.17. If D2f(a) exists, then Du(Dvf)(a) exists and

D2f(a)(u)(v) = Du(Dvf)(a), for all u, v ∈ E.

Proof. Recall from Proposition 2.29, that the map app from L(E;F )×E to F , defined such
that for every L ∈ L(E;F ), for every v ∈ E,

app(L, v) = L(v),
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f

a U

V

f(a)

A

f(U)
φ

U x W

W =~ (0,1)

Figure 3.8: Let n = 2 and m = 3. The immersion maps the purple circular base of the
cylinder U ×W to circular cup on the surface of the solid purple gourd.

is a continuous bilinear map. Thus, in particular, given a fixed v ∈ E, the linear map
appv : L(E;F )→ F , defined such that appv(L) = L(v), is a continuous map.

Also recall from Proposition 3.7, that if h : A → G is a function such that Dh(a) exits,
and k : G→ H is a continuous linear map, then, D(k ◦ h)(a) exists, and

k(Dh(a)(u)) = D(k ◦ h)(a)(u),

that is,
k(Duh(a)) = Du(k ◦ h)(a),

Applying these two facts to h = Df , and to k = appv, we have

appv(Du(Df)(a)) = Du(Df)(a)(v) = Du(appv ◦Df)(a).

But (appv ◦Df)(x) = Df(x)(v) = Dvf(x), for every x ∈ A, that is, appv ◦Df = Dvf on A.
So we have

Du(Df)(a)(v) = Du(Dvf)(a),

and since D2f(a)(u) = Du(Df)(a), we get

D2f(a)(u)(v) = Du(Dvf)(a).
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Definition 3.12. We denote Du(Dvf)(a) by D2
u,vf(a) (or DuDvf(a)).

Recall from Proposition 2.28, that the map from L2(E,E;F ) to L(E;L(E;F )) defined
such that g 7→ ϕ iff for every g ∈ L2(E,E;F ),

ϕ(u)(v) = g(u, v),

is an isomorphism of vector spaces. Thus, we will consider D2f(a) ∈ L(E;L(E;F )) as a
continuous bilinear map in L2(E,E;F ), and we write D2f(a)(u, v), instead of D2f(a)(u)(v).

Then the above discussion can be summarized by saying that when D2f(a) is defined,
we have

D2f(a)(u, v) = DuDvf(a).

Definition 3.13. When E has finite dimension and (e1, . . . , en) is a basis for E, we denote

DejDeif(a) by
∂2f

∂xi∂xj
(a), when i 6= j, and we denote DeiDeif(a) by

∂2f

∂x2
i

(a).

The following important result attributed to Schwarz can be shown using Proposition
3.11. Given a bilinear map h : E × E → F , recall that h is symmetric if

h(u, v) = h(v, u),

for all u, v ∈ E.

Proposition 3.18. (Schwarz’s lemma) Given two normed vector spaces E and F , given
any open subset A of E, given any f : A → F , for every a ∈ A, if D2f(a) exists, then
D2f(a) ∈ L2(E,E;F ) is a continuous symmetric bilinear map. As a corollary, if E is of
finite dimension n, and (e1, . . . , en) is a basis for E, we have

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a).

Remark: There is a variation of the above result which does not assume the existence of
D2f(a), but instead assumes that DuDvf and DvDuf exist on an open subset containing
a and are continuous at a, and concludes that DuDvf(a) = DvDuf(a). This is a different
result which does not imply Proposition 3.18 and is not a consequence of Proposition 3.18.

� When E = R2, the existence of
∂2f

∂x∂y
(a) and

∂2f

∂y∂x
(a) is not sufficient to insure the

existence of D2f(a).
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When E is of finite dimension n and (e1, . . . , en) is a basis for E, if D2f(a) exists, for
every u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen in E, since D2f(a) is a symmetric
bilinear form, we have

D2f(a)(u, v) =
n∑

i=1,j=1

uivjD
2f(a)(ei, ej) =

n∑
i=1,j=1

uivjDejDeif(a) =
n∑

i=1,j=1

uivj
∂2f

∂xi∂xj
(a),

which can be written in matrix form as:

D2f(a)(u, v) = U>



∂2f

∂x2
1

(a)
∂2f

∂x1∂x2

(a) . . .
∂2f

∂x1∂xn
(a)

∂2f

∂x1∂x2

(a)
∂2f

∂x2
2

(a) . . .
∂2f

∂x2∂xn
(a)

...
...

. . .
...

∂2f

∂x1∂xn
(a)

∂2f

∂x2∂xn
(a) . . .

∂2f

∂x2
n

(a)


V,

where U is the column matrix representing u, and V is the column matrix representing v,
over the basis (e1, . . . , en). Note that the entries in this matrix are vectors in F , so the above
expression is an abuse of notation, but since the ui and vj are scalars, the above expression
makes sense since it is a bilinear combination. In the special case where m = 1, that is,
F = R or F = C, the Hessian matrix is an n× n matrix with scalar entries.

Definition 3.14. The above symmetric matrix is called the Hessian of f at a.

Example 3.9. Consider the function f defined on real invertible 2 × 2 matrices such that
ad− bc > 0 given by

f(a, b, c, d) = log(ad− bc).
We immediately verify that the Jacobian matrix of f is given by

dfa,b,c,d =
1

ad− bc
(
d −c −b a

)
.

It is easily checked that if

A =

(
a b
c d

)
, X =

(
x1 x2

x3 x4

)
,

then

dfA(X) = tr(A−1X) =
1

ad− bc
tr

((
d −b
−c a

)(
x1 x2

x3 x4

))
.

Computing second-order derivatives, we find that the Hessian matrix of f is given by

Hf(A) =
1

(ad− bc)2


−d2 cd bd −bc
cd −c2 −ad ac
bd −ad −b2 ab
−bc ac ab −a2

 .



3.5. SECOND-ORDER AND HIGHER-ORDER DERIVATIVES 103

Using the formula for the derivative of the inversion map and the chain rule we can show
that

D2f(A)(X1, X2) = −tr(A−1X1A
−1X2),

and so
Hf(A)(X1, X2) = −tr(A−1X1A

−1X2),

a formula which is far from obvious.

The function f can be generalized to matrices A ∈ GL+(n,R), that is, n×n real invertible
matrices of positive determinants, as

f(A) = log det(A).

It can be shown that the formulae

dfA(X) = tr(A−1X)

D2f(A)(X1, X2) = −tr(A−1X1A
−1X2)

also hold.

Example 3.10. If we restrict the function of Example 3.9 to symmetric positive definite
matrices we obtain the function g defined by

g(a, b, c) = log(ac− b2).

We immediately verify that the Jacobian matrix of g is given by

dga,b,c =
1

ac− b2

(
c −2b a

)
.

Computing second-order derivatives, we find that the Hessian matrix of g is given by

Hg(a, b, c) =
1

(ac− b2)2

−c2 2bc −b2

2bc −2(b2 + ac) 2ab
−b2 2ab −a2

 .

Although this is not obvious, it can be shown that if ac − b2 > 0 and a, c > 0, then the
matrix −Hg(a, b, c) is symmetric positive definite.

We now indicate briefly how higher-order derivatives are defined. Let m ≥ 2. Given
a function f : A → F as before, for any a ∈ A, if the derivatives Dif exist on A for all
i, 1 ≤ i ≤ m − 1, by induction, Dm−1f can be considered to be a continuous function
Dm−1f : A→ Lm−1(Em−1;F ).

Definition 3.15. Define Dmf(a), the m-th derivative of f at a, as

Dmf(a) = D(Dm−1f)(a).
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Then Dmf(a) can be identified with a continuous m-multilinear map in Lm(Em;F ). We
can then show (as we did before) that if Dmf(a) is defined, then

Dmf(a)(u1, . . . , um) = Du1 . . .Dumf(a).

Definition 3.16. When E if of finite dimension n and (e1, . . . , en) is a basis for E, if Dmf(a)
exists, for every j1, . . . , jm ∈ {1, . . . , n}, we denote Dejm

. . .Dej1
f(a) by

∂mf

∂xj1 . . . ∂xjm
(a).

Example 3.11. Going back to the function f of Example 3.9 given by f(A) = log det(A),
using the formula for the derivative of the inversion map, the chain rule and the product
rule, we can show that

Dmf(A)(X1, . . . , Xm) = (−1)m−1
∑

σ∈Sm−1

tr(A−1X1A
−1Xσ(1)+1A

−1Xσ(2)+1 · · ·A−1Xσ(m−1)+1)

for any m ≥ 1, where A ∈ GL+(n,R) and X1, . . . Xm are any n× n real matrices.

Given a m-multilinear map h ∈ Lm(Em;F ), recall that h is symmetric if

h(uπ(1), . . . , uπ(m)) = h(u1, . . . , um),

for all u1, . . . , um ∈ E, and all permutations π on {1, . . . ,m}. Then the following general-
ization of Schwarz’s lemma holds.

Proposition 3.19. Given two normed vector spaces E and F , given any open subset A
of E, given any f : A → F , for every a ∈ A, for every m ≥ 1, if Dmf(a) exists, then
Dmf(a) ∈ Lm(Em;F ) is a continuous symmetric m-multilinear map. As a corollary, if E is
of finite dimension n, and (e1, . . . , en) is a basis for E, we have

∂mf

∂xj1 . . . ∂xjm
(a) =

∂mf

∂xπ(j1) . . . ∂xπ(jm)

(a),

for every j1, . . . , jm ∈ {1, . . . , n}, and for every permutation π on {1, . . . ,m}.

Because the trace function is invariant under permutation of its arguments (tr(XY ) =
tr(Y X)), we see that the m-th derivatives in Example 3.11 are indeed symmetric multilinear
maps.

If E is of finite dimension n, and (e1, . . . , en) is a basis for E, Dmf(a) is a symmetric
m-multilinear map, and we have

Dmf(a)(u1, . . . , um) =
∑
j

u1,j1 · · ·um,jm
∂mf

∂xj1 . . . ∂xjm
(a),
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where j ranges over all functions j : {1, . . . ,m} → {1, . . . , n}, for any m vectors

uj = uj,1e1 + · · ·+ uj,nen.

The concept of C1-function is generalized to the concept of Cm-function, and Theorem
3.12 can also be generalized.

Definition 3.17. Given two normed vector spaces E and F , and an open subset A of E,
for any m ≥ 1, we say that a function f : A → F is of class Cm on A or a Cm-function on
A if Dkf exists and is continuous on A for every k, 1 ≤ k ≤ m. We say that f : A → F
is of class C∞ on A or a C∞-function on A if Dkf exists and is continuous on A for every
k ≥ 1. A C∞-function (on A) is also called a smooth function (on A). A Cm-diffeomorphism
f : A → B between A and B (where A is an open subset of E and B is an open subset
of B) is a bijection between A and B = f(A), such that both f : A → B and its inverse
f−1 : B → A are Cm-functions.

Equivalently, f is a Cm-function on A if f is a C1-function on A and Df is a Cm−1-
function on A.

We have the following theorem giving a necessary and sufficient condition for f to a
Cm-function on A.

Theorem 3.20. Given two normed vector spaces E and F , where E is of finite dimension
n, and where (u1, . . . , un) is a basis of E, given any open subset A of E, given any function
f : A → F , for any m ≥ 1, the derivative Dmf is a Cm-function on A iff every partial

derivative Dujk
. . .Duj1

f (or
∂kf

∂xj1 . . . ∂xjk
(a)) is defined and continuous on A, for all k,

1 ≤ k ≤ m, and all j1, . . . , jk ∈ {1, . . . , n}. As a corollary, if F is of finite dimension p,
and (v1, . . . , vp) is a basis of F , the derivative Dmf is defined and continuous on A iff every

partial derivative Dujk
. . .Duj1

fi (or
∂kfi

∂xj1 . . . ∂xjk
(a)) is defined and continuous on A, for all

k, 1 ≤ k ≤ m, for all i, 1 ≤ i ≤ p, and all j1, . . . , jk ∈ {1, . . . , n}.

Definition 3.18. When E = R (or E = C), for any a ∈ E, Dmf(a)(1, . . . , 1) is a vector in
F , called the mth-order vector derivative. As in the case m = 1, we will usually identify the
multilinear map Dmf(a) with the vector Dmf(a)(1, . . . , 1).

Some notational conventions can also be introduced to simplify the notation of higher-
order derivatives, and we discuss such conventions very briefly.

Recall that when E is of finite dimension n, and (e1, . . . , en) is a basis for E, Dmf(a) is
a symmetric m-multilinear map, and we have

Dmf(a)(u1, . . . , um) =
∑
j

u1,j1 · · ·um,jm
∂mf

∂xj1 . . . ∂xjm
(a),
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where j ranges over all functions j : {1, . . . ,m} → {1, . . . , n}, for any m vectors

uj = uj,1e1 + · · ·+ uj,nen.

We can then group the various occurrences of ∂xjk corresponding to the same variable xjk ,
and this leads to the notation( ∂

∂x1

)α1
( ∂

∂x2

)α2

· · ·
( ∂

∂xn

)αn
f(a),

where α1 + α2 + · · ·+ αn = m.

If we denote (α1, . . . , αn) simply by α, then we denote( ∂

∂x1

)α1
( ∂

∂x2

)α2

· · ·
( ∂

∂xn

)αn
f

by

∂αf, or
( ∂
∂x

)α
f.

If α = (α1, . . . , αn), we let |α| = α1 + α2 + · · ·+ αn, α! = α1! · · ·αn!, and if h = (h1, . . . , hn),
we denote hα1

1 · · ·hαnn by hα.

In the next section we survey various versions of Taylor’s formula.

3.6 Taylor’s Formula, Faà di Bruno’s Formula

We discuss, without proofs, several versions of Taylor’s formula. The hypotheses required in
each version become increasingly stronger. The first version can be viewed as a generalization
of the notion of derivative. Given an m-linear map f : Em → F , for any vector h ∈ E, we
abbreviate

f(h, . . . , h︸ ︷︷ ︸
m

)

by f(hm). The version of Taylor’s formula given next is sometimes referred to as the formula
of Taylor–Young .

Theorem 3.21. (Taylor–Young) Given two normed vector spaces E and F , for any open
subset A ⊆ E, for any function f : A → F , for any a ∈ A, if Dkf exists in A for all k,
1 ≤ k ≤ m− 1, and if Dmf(a) exists, then we have:

f(a+ h) = f(a) +
1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm) + ‖h‖mε(h),

for any h such that a+ h ∈ A, and where limh→0, h 6=0 ε(h) = 0.
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The above version of Taylor’s formula has applications to the study of relative maxima
(or minima) of real-valued functions. It is also used to study the local properties of curves
and surfaces.

The next version of Taylor’s formula can be viewed as a generalization of Proposition
3.11. It is sometimes called the Taylor formula with Lagrange remainder or generalized mean
value theorem.

Theorem 3.22. (Generalized mean value theorem) Let E and F be two normed vector
spaces, let A be an open subset of E, and let f : A → F be a function on A. Given any
a ∈ A and any h 6= 0 in E, if the closed segment [a, a + h] is contained in A, Dkf exists in
A for all k, 1 ≤ k ≤ m, Dm+1f(x) exists at every point x of the open segment (a, a+h), and

max
x∈(a,a+h)

∥∥Dm+1f(x)
∥∥ ≤M,

for some M ≥ 0, then∥∥∥∥f(a+ h)− f(a)−
( 1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm)

)∥∥∥∥ ≤M
‖h‖m+1

(m+ 1)!
.

As a corollary, if L : Em+1 → F is a continuous (m+ 1)-linear map, then∥∥∥∥f(a+ h)− f(a)−
( 1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm) +

L(hm+1)

(m+ 1)!

)∥∥∥∥ ≤M
‖h‖m+1

(m+ 1)!
,

where M = maxx∈(a,a+h) ‖Dm+1f(x)− L‖.

The above theorem is sometimes stated under the slightly stronger assumption that f is
a Cm-function on A. If f : A → R is a real-valued function, Theorem 3.22 can be refined a
little bit. This version is often called the formula of Taylor–Maclaurin.

Theorem 3.23. (Taylor–Maclaurin) Let E be a normed vector space, let A be an open subset
of E, and let f : A→ R be a real-valued function on A. Given any a ∈ A and any h 6= 0 in
E, if the closed segment [a, a+h] is contained in A, if Dkf exists in A for all k, 1 ≤ k ≤ m,
and Dm+1f(x) exists at every point x of the open segment (a, a + h), then there is some
θ ∈ R, with 0 < θ < 1, such that

f(a+ h) = f(a) +
1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm) +

1

(m+ 1)!
Dm+1f(a+ θh)(hm+1).

Example 3.12. Going back to the function f of Example 3.9 given by f(A) = log det(A),
we know from Example 3.11 that

Dmf(A)(X1, . . . , Xm) = (−1)m−1
∑

σ∈Sm−1

tr(A−1X1A
−1Xσ(1)+1 · · ·A−1Xσ(m−1)+1) (∗)
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for all m ≥ 1, with A ∈ GL+(n,R). If we make the stronger assumption that A is symmetric
positive definite, then for any other symmetric positive definite matrixB, since the symmetric
positive definite matrices form a convex set, the matrices A + θ(B − A) = (1 − θ)A + θB
are also symmetric positive definite for θ ∈ [0, 1]. Theorem 3.23 applies with H = B −A (a
symmetric matrix), and using (∗), we obtain

log det(A+H) = log det(A) + tr

(
A−1H − 1

2
(A−1H)2 + · · ·+ (−1)m−1

m
(A−1H)m

+
(−1)m

m+ 1
((A+ θH)−1H)m+1

)
,

for some θ such that 0 < θ < 1. In particular, if A = I, for any symmetric matrix H such
that I +H is symmetric positive definite, we obtain

log det(I +H) = tr

(
H − 1

2
H2 + · · ·+ (−1)m−1

m
Hm

+
(−1)m

m+ 1
((I + θH)−1H)m+1

)
,

for some θ such that 0 < θ < 1. In the special case when n = 1, we have I = 1, H is a real
such that 1 + H > 0 and the trace function is the identity, so we recognize the partial sum
of the series for x 7→ log(1 + x),

log(1 +H) = H − 1

2
H2 + · · ·+ (−1)m−1

m
Hm

+
(−1)m

m+ 1
(1 + θH)−(m+1)Hm+1.

We also mention for “mathematical culture,” a version with integral remainder, in the
case of a real-valued function. This is usually called Taylor’s formula with integral remainder .

Theorem 3.24. (Taylor’s formula with integral remainder) Let E be a normed vector space,
let A be an open subset of E, and let f : A → R be a real-valued function on A. Given any
a ∈ A and any h 6= 0 in E, if the closed segment [a, a + h] is contained in A, and if f is a
Cm+1-function on A, then we have

f(a+ h) = f(a) +
1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm)

+

∫ 1

0

(1− t)m

m!

[
Dm+1f(a+ th)(hm+1)

]
dt.

The advantage of the above formula is that it gives an explicit remainder.
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We now examine briefly the situation where E is of finite dimension n, and (e1, . . . , en)
is a basis for E. In this case we get a more explicit expression for the expression

k=m∑
i=0

1

k!
Dkf(a)(hk)

involved in all versions of Taylor’s formula, where by convention, D0f(a)(h0) = f(a). If
h = h1e1 + · · ·+ hnen, then we have

k=m∑
k=0

1

k!
Dkf(a)(hk) =

∑
k1+···+kn≤m

hk11 · · ·hknn
k1! · · · kn!

( ∂

∂x1

)k1
· · ·
( ∂

∂xn

)kn
f(a),

which, using the abbreviated notation introduced at the end of Section 3.5, can also be
written as

k=m∑
k=0

1

k!
Dkf(a)(hk) =

∑
|α|≤m

hα

α!
∂αf(a).

The advantage of the above notation is that it is the same as the notation used when
n = 1, i.e., when E = R (or E = C). Indeed, in this case, the Taylor–Maclaurin formula
reads as:

f(a+ h) = f(a) +
h

1!
D1f(a) + · · ·+ hm

m!
Dmf(a) +

hm+1

(m+ 1)!
Dm+1f(a+ θh),

for some θ ∈ R, with 0 < θ < 1, where Dkf(a) is the value of the k-th derivative of f at
a (and thus, as we have already said several times, this is the kth-order vector derivative,
which is just a scalar, since F = R).

In the above formula, the assumptions are that f : [a, a + h] → R is a Cm-function on
[a, a+ h], and that Dm+1f(x) exists for every x ∈ (a, a+ h).

Taylor’s formula is useful to study the local properties of curves and surfaces. In the case
of a curve, we consider a function f : [r, s] → F from a closed interval [r, s] of R to some
vector space F , the derivatives Dkf(a)(hk) correspond to vectors hkDkf(a), where Dkf(a) is
the kth vector derivative of f at a (which is really Dkf(a)(1, . . . , 1)), and for any a ∈ (r, s),
Theorem 3.21 yields the following formula:

f(a+ h) = f(a) +
h

1!
D1f(a) + · · ·+ hm

m!
Dmf(a) + hmε(h),

for any h such that a+ h ∈ (r, s), and where limh→0, h 6=0 ε(h) = 0.

In the case of functions f : Rn → R, it is convenient to have formulae for the Taylor–
Young formula and the Taylor–Maclaurin formula in terms of the gradient and the Hessian.
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Recall that the gradient ∇f(a) of f at a ∈ Rn is the column vector

∇f(a) =



∂f

∂x1

(a)

∂f

∂x2

(a)

...

∂f

∂xn
(a)


,

and that
f ′(a)(u) = Df(a)(u) = ∇f(a) · u,

for any u ∈ Rn (where · means inner product). The above equation shows that the direction
of the gradient ∇f(a) is the direction of maximal increase of the function f at a and that
‖∇f(a)‖ is the rate of change of f in its direction of maximal increase. This is the reason
why methods of “gradient descent” pick the direction opposite to the gradient (we are trying
to minimize f).

The Hessian matrix ∇2f(a) of f at a ∈ Rn is the n× n symmetric matrix

∇2f(a) =



∂2f

∂x2
1

(a)
∂2f

∂x1∂x2

(a) . . .
∂2f

∂x1∂xn
(a)

∂2f

∂x1∂x2

(a)
∂2f

∂x2
2

(a) . . .
∂2f

∂x2∂xn
(a)

...
...

. . .
...

∂2f

∂x1∂xn
(a)

∂2f

∂x2∂xn
(a) . . .

∂2f

∂x2
n

(a)


,

and we have
D2f(a)(u, v) = u>∇2f(a) v = u · ∇2f(a)v = ∇2f(a)u · v,

for all u, v ∈ Rn. This is the special case of Definition 3.14 where E = Rn and F = R. Then
we have the following three formulations of the formula of Taylor–Young of order 2:

f(a+ h) = f(a) + Df(a)(h) +
1

2
D2f(a)(h, h) + ‖h‖2 ε(h)

f(a+ h) = f(a) +∇f(a) · h+
1

2
(h · ∇2f(a)h) + (h · h)ε(h)

f(a+ h) = f(a) + (∇f(a))>h+
1

2
(h>∇2f(a)h) + (h>h)ε(h),

with limh7→0 ε(h) = 0.

One should keep in mind that only the first formula is intrinsic (i.e., does not depend on
the choice of a basis), whereas the other two depend on the basis and the inner product chosen
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on Rn. As an exercise, the reader should write similar formulae for the Taylor–Maclaurin
formula of order 2.

Another application of Taylor’s formula is the derivation of a formula which gives the m-
th derivative of the composition of two functions, usually known as “Faà di Bruno’s formula.”
This formula is useful when dealing with geometric continuity of splines curves and surfaces.

Proposition 3.25. Given any normed vector space E, for any function f : R→ R and any
function g : R→ E, for any a ∈ R, letting b = f(a), f (i)(a) = Dif(a), and g(i)(b) = Dig(b),
for any m ≥ 1, if f (i)(a) and g(i)(b) exist for all i, 1 ≤ i ≤ m, then (g◦f)(m)(a) = Dm(g◦f)(a)
exists and is given by the following formula:

(g ◦ f)(m)(a) =
∑

0≤j≤m

∑
i1+i2+···+im=j

i1+2i2+···+mim=m
i1,i2,··· ,im≥0

m!

i1! · · · im!
g(j)(b)

(
f (1)(a)

1!

)i1
· · ·
(
f (m)(a)

m!

)im
.

When m = 1, the above simplifies to the familiar formula

(g ◦ f)′(a) = g′(b)f ′(a),

and for m = 2, we have

(g ◦ f)(2)(a) = g(2)(b)(f (1)(a))2 + g(1)(b)f (2)(a).

3.7 Further Readings

A thorough treatment of differential calculus can be found in Munkres [58], Lang [50],
Schwartz [70], Cartan [21], and Avez [5]. The techniques of differential calculus have many
applications, especially to the geometry of curves and surfaces and to differential geometry
in general. For this, we recommend do Carmo [30, 31] (two beautiful classics on the subject),
Kreyszig [46], Stoker [75], Gray [38], Berger and Gostiaux [8], Milnor [56], Lang [48], Warner
[82] and Choquet-Bruhat [23].

3.8 Summary

The main concepts and results of this chapter are listed below:

• Directional derivative (Duf(a)).

• Total derivative, Fréchet derivative, derivative, total differential , differential
(df(a), dfa).

• Partial derivatives .
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• Affine functions.

• The chain rule.

• Jacobian matrices (J(f)(a)), Jacobians .

• Gradient of a function (grad f(a), ∇f(a)).

• Mean value theorem.

• C0-functions, C1-functions .

• The implicit function theorem.

• Local homeomorphisms, local diffeomorphisms , diffeomorphisms .

• The inverse function theorem.

• Immersions, submersions .

• Second-order derivatives.

• Schwarz’s lemma.

• Hessian matrix .

• C∞-functions , smooth functions .

• Taylor–Young’s formula.

• Generalized mean value theorem.

• Taylor–MacLaurin’s formula.

• Taylor’s formula with integral remainder .

• Faà di Bruno’s formula.

3.9 Problems

Problem 3.1. Let f : Mn(R)→ Mn(R) be the function defined on n× n matrices by

f(A) = A2.

Prove that
DfA(H) = AH +HA,

for all A,H ∈ Mn(R).
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Problem 3.2. Let f : Mn(R)→ Mn(R) be the function defined on n× n matrices by

f(A) = A3.

Prove that
DfA(H) = A2H + AHA+HA2,

for all A,H ∈ Mn(R).

Problem 3.3. If f : Mn(R) → Mn(R) and g : Mn(R) → Mn(R) are differentiable matrix
functions, prove that

d(fg)A(B) = dfA(B)g(A) + f(A)dgA(B),

for all A,B ∈ Mn(R).

Problem 3.4. Recall that so(3) denotes the vector space of real skew-symmetric n × n
matrices (B> = −B). Let C : so(n)→ Mn(R) be the function given by

C(B) = (I −B)(I +B)−1.

(1) Prove that if B is skew-symmetric, then I −B and I +B are invertible, and so C is
well-defined. Prove that

(2) Prove that

dC(B)(A) = −[I + (I −B)(I +B)−1]A(I +B)−1 = −2(I +B)−1A(I +B)−1.

(3) Prove that dC(B) is injective for every skew-symmetric matrix B.

Problem 3.5. Prove that

dmCB(H1, . . . , Hm)

= 2(−1)m
∑
π∈Sm

(I +B)−1Hπ(1)(I +B)−1Hπ(2)(I +B)−1 · · · (I +B)−1Hπ(m)(I +B)−1.

Problem 3.6. Consider the function g defined for all A ∈ GL(n,R), that is, all n× n real
invertible matrices, given by

g(A) = det(A).

(1) Prove that
dgA(X) = det(A)tr(A−1X),

for all n× n real matrices X.

(2) Consider the function f defined for all A ∈ GL+(n,R), that is, n× n real invertible
matrices of positive determinants, given by

f(A) = log g(A) = log det(A).
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Prove that

dfA(X) = tr(A−1X)

D2f(A)(X1, X2) = −tr(A−1X1A
−1X2),

for all n× n real matrices X,X1, X2.

(3) Prove that

Dmf(A)(X1, . . . , Xm) = (−1)m−1
∑

σ∈Sm−1

tr(A−1X1A
−1Xσ(1)+1A

−1Xσ(2)+1 · · ·A−1Xσ(m−1)+1)

for any m ≥ 1, where X1, . . . Xm are any n× n real matrices.



Chapter 4

Extrema of Real-Valued Functions

This chapter deals with extrema of real-valued functions. In most optimization problems,
we need to find necessary conditions for a function J : Ω→ R to have a local extremum with
respect to a subset U of Ω (where Ω is open). This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

In (1), the equations ϕi(x) = 0 are called equality constraints , and in (2), the inequalities
ϕi(x) ≤ 0 are called inequality constraints . The case of equality constraints is much easier
to deal with and is treated in this chapter.

If the functions ϕi are convex and Ω is convex, then U is convex. This is a very important
case that we discuss later. In particular, if the functions ϕi are affine, then the equality
constraints can be written as Ax = b, and the inequality constraints as Ax ≤ b, for some
m× n matrix A and some vector b ∈ Rm. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers . In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush–Kuhn–Tucker conditions. This will be discussed in
Chapter 14.

115



116 CHAPTER 4. EXTREMA OF REAL-VALUED FUNCTIONS

4.1 Local Extrema, Constrained Local Extrema, and

Lagrange Multipliers

Let J : E → R be a real-valued function defined on a normed vector space E (or more
generally, any topological space). Ideally we would like to find where the function J reaches
a minimum or a maximum value, at least locally. In this chapter we will usually use the
notations dJ(u) or J ′(u) (or dJu or J ′u) for the derivative of J at u, instead of DJ(u). Our
presentation follows very closely that of Ciarlet [25] (Chapter 7), which we find to be one of
the clearest.

Definition 4.1. If J : E → R is a real-valued function defined on a normed vector space E,
we say that J has a local minimum (or relative minimum) at the point u ∈ E if there is
some open subset W ⊆ E containing u such that

J(u) ≤ J(w) for all w ∈ W.

Similarly, we say that J has a local maximum (or relative maximum) at the point u ∈ E if
there is some open subset W ⊆ E containing u such that

J(u) ≥ J(w) for all w ∈ W.

In either case, we say that J has a local extremum (or relative extremum) at u. We say
that J has a strict local minimum (resp. strict local maximum) at the point u ∈ E if there
is some open subset W ⊆ E containing u such that

J(u) < J(w) for all w ∈ W − {u}

(resp.

J(u) > J(w) for all w ∈ W − {u}).

By abuse of language, we often say that the point u itself “is a local minimum” or a
“local maximum,” even though, strictly speaking, this does not make sense.

We begin with a well-known necessary condition for a local extremum.

Proposition 4.1. Let E be a normed vector space and let J : Ω→ R be a function, with Ω
some open subset of E. If the function J has a local extremum at some point u ∈ Ω and if
J is differentiable at u, then

dJu = J ′(u) = 0.

Proof. Pick any v ∈ E. Since Ω is open, for t small enough we have u + tv ∈ Ω, so there is
an open interval I ⊆ R such that the function ϕ given by

ϕ(t) = J(u+ tv)
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for all t ∈ I is well-defined. By applying the chain rule, we see that ϕ is differentiable at
t = 0, and we get

ϕ′(0) = dJu(v).

Without loss of generality, assume that u is a local minimum. Then we have

ϕ′(0) = lim
t7→0−

ϕ(t)− ϕ(0)

t
≤ 0

and

ϕ′(0) = lim
t7→0+

ϕ(t)− ϕ(0)

t
≥ 0,

which shows that ϕ′(0) = dJu(v) = 0. As v ∈ E is arbitrary, we conclude that dJu = 0.

Definition 4.2. A point u ∈ Ω such that J ′(u) = 0 is called a critical point of J .

If E = Rn, then the condition dJu = 0 is equivalent to the system

∂J

∂x1

(u1, . . . , un) = 0

...

∂J

∂xn
(u1, . . . , un) = 0.

� The condition of Proposition 4.1 is only a necessary condition for the existence of an
extremum, but not a sufficient condition.

Here are some counter-examples. If f : R → R is the function given by f(x) = x3, since
f ′(x) = 3x2, we have f ′(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced
by the graph shown in Figure 4.1.

Figure 4.1: The graph of f(x) = x3. Note that x = 0 is a saddle point and not a local
extremum.



118 CHAPTER 4. EXTREMA OF REAL-VALUED FUNCTIONS

If g : R2 → R is the function given by g(x, y) = x2 − y2, then g′(x,y) = (2x − 2y), so

g′(0,0) = (0 0), yet near (0, 0) the function g takes negative and positive values. See Figure
4.2.

Figure 4.2: The graph of g(x, y) = x2− y2. Note that (0, 0) is a saddle point and not a local
extremum.

� It is very important to note that the hypothesis that Ω is open is crucial for the validity
of Proposition 4.1.

For example, if J is the identity function on R and U = [0, 1], a closed subset, then
J ′(x) = 1 for all x ∈ [0, 1], even though J has a minimum at x = 0 and a maximum at x = 1.

In many practical situations, we need to look for local extrema of a function J under
additional constraints . This situation can be formalized conveniently as follows. We have a
function J : Ω → R defined on some open subset Ω of a normed vector space, but we also
have some subset U of Ω, and we are looking for the local extrema of J with respect to the
set U .

The elements u ∈ U are often called feasible solutions of the optimization problem con-
sisting in finding the local extrema of some objective function J with respect to some subset
U of Ω defined by a set of constraints. Note that in most cases, U is not open. In fact, U is
usually closed.

Definition 4.3. If J : Ω → R is a real-valued function defined on some open subset Ω of a
normed vector space E and if U is some subset of Ω, we say that J has a local minimum (or
relative minimum) at the point u ∈ U with respect to U if there is some open subset W ⊆ Ω
containing u such that

J(u) ≤ J(w) for all w ∈ U ∩W.
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Similarly, we say that J has a local maximum (or relative maximum) at the point u ∈ U
with respect to U if there is some open subset W ⊆ Ω containing u such that

J(u) ≥ J(w) for all w ∈ U ∩W.

In either case, we say that J has a local extremum at u with respect to U .

In order to find necessary conditions for a function J : Ω→ R to have a local extremum
with respect to a subset U of Ω (where Ω is open), we need to somehow incorporate the
definition of U into these conditions. This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

In (1), the equations ϕi(x) = 0 are called equality constraints , and in (2), the inequalities
ϕi(x) ≤ 0 are called inequality constraints .

An inequality constraint of the form ϕi(x) ≥ 0 is equivalent to the inequality constraint
−ϕx(x) ≤ 0. An equality constraint ϕi(x) = 0 is equivalent to the conjunction of the
two inequality constraints ϕi(x) ≤ 0 and −ϕi(x) ≤ 0, so the case of inequality constraints
subsumes the case of equality constraints. However, the case of equality constraints is easier
to deal with, and in this chapter we will restrict our attention to this case.

If the functions ϕi are convex and Ω is convex, then U is convex. This is a very important
case that we will discuss later. In particular, if the functions ϕi are affine, then the equality
constraints can be written as Ax = b, and the inequality constraints as Ax ≤ b, for some
m× n matrix A and some vector b ∈ Rm. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers . In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush–Kuhn–Tucker conditions. This will be discussed in
Chapter 14.

We begin by considering the case where Ω ⊆ E1 × E2 is an open subset of a product of
normed vector spaces and where U is the zero locus of some continuous function ϕ : Ω→ E2,
which means that

U = {(u1, u2) ∈ Ω | ϕ(u1, u2) = 0}.
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For the sake of brevity, we say that J has a constrained local extremum at u instead of saying
that J has a local extremum at the point u ∈ U with respect to U .

In most applications, we have E1 = Rn−m and E2 = Rm for some integers m,n such that
1 ≤ m < n, Ω is an open subset of Rn, J : Ω → R, and we have m functions ϕi : Ω → R
defining the subset

U = {v ∈ Ω | ϕi(v) = 0, 1 ≤ i ≤ m}.

Fortunately, there is a necessary condition for constrained local extrema in terms of
Lagrange multipliers .

Theorem 4.2. (Necessary condition for a constrained extremum in terms of Lagrange multi-
pliers) Let Ω be an open subset of Rn, consider m C1-functions ϕi : Ω→ R (with 1 ≤ m < n),
let

U = {v ∈ Ω | ϕi(v) = 0, 1 ≤ i ≤ m},

and let u ∈ U be a point such that the derivatives dϕi(u) ∈ L(Rn;R) are linearly independent;
equivalently, assume that the m × n matrix

(
(∂ϕi/∂xj)(u)

)
has rank m. If J : Ω → R is a

function which is differentiable at u ∈ U and if J has a local constrained extremum at u,
then there exist m numbers λi(u) ∈ R, uniquely defined, such that

dJ(u) + λ1(u)dϕ1(u) + · · ·+ λm(u)dϕm(u) = 0;

equivalently,
∇J(u) + λ1(u)∇ϕ1(u) + · · ·+ λm(u)∇ϕm(u) = 0.

Theorem 4.2 will be proven as a corollary of Theorem 4.4, which gives a more general
formulation that applies to the situation where E1 is an infinite-dimensional Banach space.
To simplify the exposition we postpone a discussion of this theorem until we have presented
several examples illustrating the method of Lagrange multipliers.

Definition 4.4. The numbers λi(u) involved in Theorem 4.2 are called the Lagrange multipli-
ers associated with the constrained extremum u (again, with some minor abuse of language).

The linear independence of the linear forms dϕi(u) is equivalent to the fact that the
Jacobian matrix

(
(∂ϕi/∂xj)(u)

)
of ϕ = (ϕ1, . . . , ϕm) at u has rank m. If m = 1, the linear

independence of the dϕi(u) reduces to the condition ∇ϕ1(u) 6= 0.

A fruitful way to reformulate the use of Lagrange multipliers is to introduce the notion
of the Lagrangian associated with our constrained extremum problem.

Definition 4.5. The Lagrangian associated with our constrained extremum problem is the
function L : Ω× Rm → R given by

L(v, λ) = J(v) + λ1ϕ1(v) + · · ·+ λmϕm(v),

with λ = (λ1, . . . , λm).
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We have the following simple but important proposition.

Proposition 4.3. There exists some µ = (µ1, . . . , µm) and some u ∈ U such that

dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u) = 0

if and only if

dL(u, µ) = 0,

or equivalently

∇L(u, µ) = 0;

that is, iff (u, µ) is a critical point of the Lagrangian L.

Proof. Indeed dL(u, µ) = 0 is equivalent to

∂L

∂v
(u, µ) = 0

∂L

∂λ1

(u, µ) = 0

...

∂L

∂λm
(u, µ) = 0,

and since
∂L

∂v
(u, µ) = dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u)

and
∂L

∂λi
(u, µ) = ϕi(u),

we get

dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u) = 0

and

ϕ1(u) = · · · = ϕm(u) = 0,

that is, u ∈ U . The converse is proven in a similar fashion (essentially by reversing the
argument).

If we write out explicitly the condition

dJ(u) + λ1dϕ1(u) + · · ·+ λmdϕm(u) = 0,
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we get the n×m system

∂J

∂x1

(u) + λ1
∂ϕ1

∂x1

(u) + · · ·+ λm
∂ϕm
∂x1

(u) = 0

...

∂J

∂xn
(u) + λ1

∂ϕ1

∂xn
(u) + · · ·+ λm

∂ϕm
∂xn

(u) = 0,

and it is important to note that the matrix of this system is the transpose of the Jacobian
matrix of ϕ at u. If we write Jac(ϕ)(u) =

(
(∂ϕi/∂xj)(u)

)
for the Jacobian matrix of ϕ (at

u), then the above system is written in matrix form as

∇J(u) + (Jac(ϕ)(u))>λ = 0,

where λ is viewed as a column vector, and the Lagrangian is equal to

L(u, λ) = J(u) + (ϕ1(u), . . . , ϕm(u))λ.

The beauty of the Lagrangian is that the constraints {ϕi(v) = 0} have been incorporated
into the function L(v, λ), and that the necessary condition for the existence of a constrained
local extremum of J is reduced to the necessary condition for the existence of a local ex-
tremum of the unconstrained L.

However, one should be careful to check that the assumptions of Theorem 4.2 are satisfied
(in particular, the linear independence of the linear forms dϕi).

Example 4.1. For example, let J : R3 → R be given by

J(x, y, z) = x+ y + z2

and g : R3 → R by
g(x, y, z) = x2 + y2.

Since g(x, y, z) = 0 iff x = y = 0, we have U = {(0, 0, z) | z ∈ R} and the restriction of J to
U is given by

J(0, 0, z) = z2,

which has a minimum for z = 0. However, a “blind” use of Lagrange multipliers would
require that there is some λ so that

∂J

∂x
(0, 0, z) = λ

∂g

∂x
(0, 0, z),

∂J

∂y
(0, 0, z) = λ

∂g

∂y
(0, 0, z),

∂J

∂z
(0, 0, z) = λ

∂g

∂z
(0, 0, z),

and since
∂g

∂x
(x, y, z) = 2x,

∂g

∂y
(x, y, z) = 2y,

∂g

∂z
(0, 0, z) = 0,
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the partial derivatives above all vanish for x = y = 0, so at a local extremum we should also
have

∂J

∂x
(0, 0, z) = 0,

∂J

∂y
(0, 0, z) = 0,

∂J

∂z
(0, 0, z) = 0,

but this is absurd since

∂J

∂x
(x, y, z) = 1,

∂J

∂y
(x, y, z) = 1,

∂J

∂z
(x, y, z) = 2z.

The reader should enjoy finding the reason for the flaw in the argument.

One should also keep in mind that Theorem 4.2 gives only a necessary condition. The
(u, λ) may not correspond to local extrema! Thus, it is always necessary to analyze the local
behavior of J near a critical point u. This is generally difficult, but in the case where J is
affine or quadratic and the constraints are affine or quadratic, this is possible (although not
always easy).

Example 4.2. Let us apply the above method to the following example in which E1 = R,
E2 = R, Ω = R2, and

J(x1, x2) = −x2

ϕ(x1, x2) = x2
1 + x2

2 − 1.

Observe that
U = {(x1, x2) ∈ R2 | x2

1 + x2
2 = 1}

is the unit circle, and since

∇ϕ(x1, x2) =

(
2x1

2x2

)
,

it is clear that ∇ϕ(x1, x2) 6= 0 for every point = (x1, x2) on the unit circle. If we form the
Lagrangian

L(x1, x2, λ) = −x2 + λ(x2
1 + x2

2 − 1),

Theorem 4.2 says that a necessary condition for J to have a constrained local extremum is
that ∇L(x1, x2, λ) = 0, so the following equations must hold:

2λx1 = 0

−1 + 2λx2 = 0

x2
1 + x2

2 = 1.

The second equation implies that λ 6= 0, and then the first yields x1 = 0, so the third yields
x2 = ±1, and we get two solutions:

λ =
1

2
, (x1, x2) = (0, 1)

λ = −1

2
, (x′1, x

′
2) = (0,−1).
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We can check immediately that the first solution is a minimum and the second is a maximum.
The reader should look for a geometric interpretation of this problem.

Example 4.3. Let us now consider the case in which J is a quadratic function of the form

J(v) =
1

2
v>Av − v>b,

where A is an n × n symmetric matrix, b ∈ Rn, and the constraints are given by a linear
system of the form

Cv = d,

where C is an m× n matrix with m < n and d ∈ Rm. We also assume that C has rank m.
In this case the function ϕ is given by

ϕ(v) = (Cv − d)>,

because we view ϕ(v) as a row vector (and v as a column vector), and since

dϕ(v)(w) = C>w,

the condition that the Jacobian matrix of ϕ at u have rank m is satisfied. The Lagrangian
of this problem is

L(v, λ) =
1

2
v>Av − v>b+ (Cv − d)>λ =

1

2
v>Av − v>b+ λ>(Cv − d),

where λ is viewed as a column vector. Now because A is a symmetric matrix, it is easy to
show that

∇L(v, λ) =

(
Av − b+ C>λ

Cv − d

)
.

Therefore, the necessary condition for constrained local extrema is

Av + C>λ = b

Cv = d,

which can be expressed in matrix form as(
A C>

C 0

)(
v
λ

)
=

(
b
d

)
,

where the matrix of the system is a symmetric matrix. We should not be surprised to find the
system discussed later in Chapter 6, except for some renaming of the matrices and vectors
involved. As we will show in Section 6.2, the function J has a minimum iff A is positive
definite, so in general, if A is only a symmetric matrix, the critical points of the Lagrangian
do not correspond to extrema of J .
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Remark: If the Jacobian matrix Jac(ϕ)(v) =
(
(∂ϕi/∂xj)(v)

)
has rank m for all v ∈ U

(which is equivalent to the linear independence of the linear forms dϕi(v)), then we say that
0 ∈ Rm is a regular value of ϕ. In this case, it is known that

U = {v ∈ Ω | ϕ(v) = 0}

is a smooth submanifold of dimension n−m of Rn. Furthermore, the set

TvU = {w ∈ Rn | dϕi(v)(w) = 0, 1 ≤ i ≤ m} =
m⋂
i=1

Ker dϕi(v)

is the tangent space to U at v (a vector space of dimension n−m). Then, the condition

dJ(v) + µ1dϕ1(v) + · · ·+ µmdϕm(v) = 0

implies that dJ(v) vanishes on the tangent space TvU . Conversely, if dJ(v)(w) = 0 for all
w ∈ TvU , this means that dJ(v) is orthogonal (in the sense of Definition 10.3 (Vol. I)) to
TvU . Since (by Theorem 10.4(b) (Vol. I)) the orthogonal of TvU is the space of linear forms
spanned by dϕ1(v), . . . , dϕm(v), it follows that dJ(v) must be a linear combination of the
dϕi(v). Therefore, when 0 is a regular value of ϕ, Theorem 4.2 asserts that if u ∈ U is a
local extremum of J , then dJ(u) must vanish on the tangent space TuU . We can say even
more. The subset Z(J) of Ω given by

Z(J) = {v ∈ Ω | J(v) = J(u)}

(the level set of level J(u)) is a hypersurface in Ω, and if dJ(u) 6= 0, the zero locus of dJ(u)
is the tangent space TuZ(J) to Z(J) at u (a vector space of dimension n− 1), where

TuZ(J) = {w ∈ Rn | dJ(u)(w) = 0}.

Consequently, Theorem 4.2 asserts that

TuU ⊆ TuZ(J);

this is a geometric condition.

We now return to the general situation where E1 and E2 may be infinite-dimensional
normed vector spaces (with E1 a Banach space) and we state and prove the following general
result about the method of Lagrange multipliers.

Theorem 4.4. (Necessary condition for a constrained extremum) Let Ω ⊆ E1 × E2 be an
open subset of a product of normed vector spaces, with E1 a Banach space (E1 is complete),
let ϕ : Ω → E2 be a C1-function (which means that dϕ(ω) exists and is continuous for all
ω ∈ Ω), and let

U = {(u1, u2) ∈ Ω | ϕ(u1, u2) = 0}.
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Moreover, let u = (u1, u2) ∈ U be a point such that

∂ϕ

∂x2

(u1, u2) ∈ L(E2;E2) and

(
∂ϕ

∂x2

(u1, u2)

)−1

∈ L(E2;E2),

and let J : Ω → R be a function which is differentiable at u. If J has a constrained local
extremum at u, then there is a continuous linear form Λ(u) ∈ L(E2;R) such that

dJ(u) + Λ(u) ◦ dϕ(u) = 0.

Proof. The plan of attack is to use the implicit function theorem; Theorem 3.13. Observe
that the assumptions of Theorem 3.13 are indeed met. Therefore, there exist some open
subsets U1 ⊆ E1, U2 ⊆ E2, and a continuous function g : U1 → U2 with (u1, u2) ∈ U1×U2 ⊆ Ω
and such that

ϕ(v1, g(v1)) = 0

for all v1 ∈ U1. Moreover, g is differentiable at u1 ∈ U1 and

dg(u1) = −
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x1

(u).

It follows that the restriction of J to (U1 × U2) ∩ U yields a function G of a single variable,
with

G(v1) = J(v1, g(v1))

for all v1 ∈ U1. Now the function G is differentiable at u1 and it has a local extremum at u1

on U1, so Proposition 4.1 implies that

dG(u1) = 0.

By the chain rule,

dG(u1) =
∂J

∂x1

(u) +
∂J

∂x2

(u) ◦ dg(u1)

=
∂J

∂x1

(u)− ∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x1

(u).

From dG(u1) = 0, we deduce

∂J

∂x1

(u) =
∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x1

(u),

and since we also have

∂J

∂x2

(u) =
∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x2

(u),
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if we let

Λ(u) = − ∂J
∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

,

then we get

dJ(u) =
∂J

∂x1

(u) +
∂J

∂x2

(u)

=
∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦
(
∂ϕ

∂x1

(u) +
∂ϕ

∂x2

(u)

)
= −Λ(u) ◦ dϕ(u),

which yields dJ(u) + Λ(u) ◦ dϕ(u) = 0, as claimed.

Finally, we prove Theorem 4.2.

Proof of Theorem 4.2. The linear independence of the m linear forms dϕi(u) is equivalent to
the fact that the m×n matrix A =

(
(∂ϕi/∂xj)(u)

)
has rank m. By reordering the columns,

we may assume that the first m columns are linearly independent. To conform to the set-up
of Theorem 4.4 we define E1 and E2 as

E1 =

{ n∑
i=m+1

viei | (vm+1, . . . , vn) ∈ Rn−m
}
, E2 =

{ m∑
i=1

viei | (v1, . . . , vm) ∈ Rm

}
.

If we let ψ : Ω→ Rm be the function defined by

ψ(vm+1, . . . , vn, v1, . . . , vm) = (ϕ1(v), . . . , ϕm(v))

for all (vm+1, . . . , vn, v1, . . . , vm) ∈ Ω, with v = (v1, . . . , vn), then we see that ∂ψ/∂x2(u) is
invertible and both ∂ψ/∂x2(u) and its inverse are continuous, so that Theorem 4.4 applies,
and there is some (continuous) linear form Λ(u) ∈ L(Rm;R) such that

dJ(u) + Λ(u) ◦ dψ(um+1, . . . , un, u1, . . . , um) = 0,

namely
dJ(u) + Λ(u) ◦ dϕ(u) = 0.

However, Λ(u) is defined by some m-tuple (λ1(u), . . . , λm(u)) ∈ Rm, and in view of the
definition of ϕ, the above equation is equivalent to

dJ(u) + λ1(u)dϕ1(u) + · · ·+ λm(u)dϕm(u) = 0.

The uniqueness of the λi(u) is a consequence of the linear independence of the dϕi(u).

We now investigate conditions for the existence of extrema involving the second derivative
of J .
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4.2 Using Second Derivatives to Find Extrema

For the sake of brevity, we consider only the case of local minima; analogous results are
obtained for local maxima (replace J by −J , since maxu J(u) = −minu−J(u)). We begin
with a necessary condition for an unconstrained local minimum.

Proposition 4.5. Let E be a normed vector space and let J : Ω→ R be a function, with Ω
some open subset of E. If the function J is differentiable in Ω, if J has a second derivative
D2J(u) at some point u ∈ Ω, and if J has a local minimum at u, then

D2J(u)(w,w) ≥ 0 for all w ∈ E.

Proof. Pick any nonzero vector w ∈ E. Since Ω is open, for t small enough, u+ tw ∈ Ω and
J(u+ tw) ≥ J(u), so there is some open interval I ⊆ R such that

u+ tw ∈ Ω and J(u+ tw) ≥ J(u)

for all t ∈ I. Using the Taylor–Young formula and the fact that we must have dJ(u) = 0
since J has a local minimum at u, we get

0 ≤ J(u+ tw)− J(u) =
t2

2
D2J(u)(w,w) + t2 ‖w‖2 ε(tw),

with limt7→0 ε(tw) = 0, which implies that

D2J(u)(w,w) ≥ 0.

Since the argument holds for all w ∈ E (trivially if w = 0), the proposition is proven.

One should be cautioned that there is no converse to the previous proposition. For exam-
ple, the function f : x 7→ x3 has no local minimum at 0, yet df(0) = 0 and D2f(0)(u, v) = 0.
Similarly, the reader should check that the function f : R2 → R given by

f(x, y) = x2 − 3y3

has no local minimum at (0, 0); yet df(0, 0) = 0 since df(x, y) = (2x,−9y2), and for u =
(u1, u2), D2f(0, 0)(u, u) = 2u2

1 ≥ 0 since

D2f(x, y)(u, u) =
(
u1 u2

)(2 0
0 −18y

)(
u1

u2

)
.

See Figure 4.3.

When E = Rn, Proposition 4.5 says that a necessary condition for having a local mini-
mum is that the Hessian ∇2J(u) be positive semidefinite (it is always symmetric).

We now give sufficient conditions for the existence of a local minimum.
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Figure 4.3: The graph of f(x, y) = x2 − 3y3. Note that (0, 0) not a local extremum despite
the fact that df(0, 0) = 0.

Theorem 4.6. Let E be a normed vector space, let J : Ω → R be a function with Ω some
open subset of E, and assume that J is differentiable in Ω and that dJ(u) = 0 at some point
u ∈ Ω. The following properties hold:

(1) If D2J(u) exists and if there is some number α ∈ R such that α > 0 and

D2J(u)(w,w) ≥ α ‖w‖2 for all w ∈ E,

then J has a strict local minimum at u.

(2) If D2J(v) exists for all v ∈ Ω and if there is a ball B ⊆ Ω centered at u such that

D2J(v)(w,w) ≥ 0 for all v ∈ B and all w ∈ E,

then J has a local minimum at u.

Proof. (1) Using the formula of Taylor–Young, for every vector w small enough, we can write

J(u+ w)− J(u) =
1

2
D2J(u)(w,w) + ‖w‖2 ε(w)

≥
(

1

2
α + ε(w)

)
‖w‖2

with limw 7→0 ε(w) = 0. Consequently if we pick r > 0 small enough that |ε(w)| < α/2 for all
w with ‖w‖ < r, then J(u+w) > J(u) for all u+w ∈ B, where B is the open ball of center
u and radius r. This proves that J has a local strict minimum at u.
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(2) The formula of Taylor–Maclaurin shows that for all u+ w ∈ B, we have

J(u+ w) = J(u) +
1

2
D2J(v)(w,w) ≥ J(u),

for some v ∈ (u, u+w) (recall that (u, u+w) = {(1−λ)(u+w)+λ(u+w) | 0 < λ < 1}).

There are no converses of the two assertions of Theorem 4.6. However, there is a condition
on D2J(u) that implies the condition of Part (1). Since this condition is easier to state when
E = Rn, we begin with this case.

Recall that a n×n symmetric matrix A is positive definite if x>Ax > 0 for all x ∈ Rn−{0}.
In particular, A must be invertible.

Proposition 4.7. For any symmetric matrix A, if A is positive definite, then there is some
α > 0 such that

x>Ax ≥ α ‖x‖2 for all x ∈ Rn.

Proof. Pick any norm in Rn (recall that all norms on Rn are equivalent). Since the unit
sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1} is compact and since the function f(x) = x>Ax is never
zero on Sn−1, the function f has a minimum α > 0 on Sn−1. Using the usual trick that
x = ‖x‖ (x/ ‖x‖) for every nonzero vector x ∈ Rn and the fact that the inequality of the
proposition is trivial for x = 0, from

x>Ax ≥ α for all x with ‖x‖ = 1,

we get
x>Ax ≥ α ‖x‖2 for all x ∈ Rn,

as claimed.

We can combine Theorem 4.6 and Proposition 4.7 to obtain a useful sufficient condition
for the existence of a strict local minimum. First let us introduce some terminology.

Definition 4.6. Given a function J : Ω → R as before, say that a point u ∈ Ω is a nonde-
generate critical point if dJ(u) = 0 and if the Hessian matrix ∇2J(u) is invertible.

Proposition 4.8. Let J : Ω → R be a function defined on some open subset Ω ⊆ Rn. If
J is differentiable in Ω and if some point u ∈ Ω is a nondegenerate critical point such that
∇2J(u) is positive definite, then J has a strict local minimum at u.

Remark: It is possible to generalize Proposition 4.8 to infinite-dimensional spaces by finding
a suitable generalization of the notion of a nondegenerate critical point. Firstly, we assume
that E is a Banach space (a complete normed vector space). Then we define the dual E ′ of
E as the set of continuous linear forms on E, so that E ′ = L(E;R). Following Lang, we use
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the notation E ′ for the space of continuous linear forms to avoid confusion with the space
E∗ = Hom(E,R) of all linear maps from E to R. A continuous bilinear map ϕ : E ×E → R
in L2(E,E;R) yields a map Φ from E to E ′ given by

Φ(u) = ϕu,

where ϕu ∈ E ′ is the linear form defined by

ϕu(v) = ϕ(u, v).

It is easy to check that ϕu is continuous and that the map Φ is continuous. Then we say
that ϕ is nondegenerate iff Φ: E → E ′ is an isomorphism of Banach spaces, which means
that Φ is invertible and that both Φ and Φ−1 are continuous linear maps. Given a function
J : Ω → R differentiable on Ω as before (where Ω is an open subset of E), if D2J(u) exists
for some u ∈ Ω, we say that u is a nondegenerate critical point if dJ(u) = 0 and if D2J(u) is
nondegenerate. Of course, D2J(u) is positive definite if D2J(u)(w,w) > 0 for all w ∈ E−{0}.

Using the above definition, Proposition 4.7 can be generalized to a nondegenerate positive
definite bilinear form (on a Banach space) and Theorem 4.8 can also be generalized to the
situation where J : Ω→ R is defined on an open subset of a Banach space. For details and
proofs, see Cartan [21] (Part I Chapter 8) and Avez [5] (Chapter 8 and Chapter 10).

In the next section we make use of convexity; both on the domain Ω and on the function
J itself.

4.3 Using Convexity to Find Extrema

We begin by reviewing the definition of a convex set and of a convex function.

Definition 4.7. Given any real vector space E, we say that a subset C of E is convex if
either C = ∅ or if for every pair of points u, v ∈ C, the line segment connecting u and v is
contained in C, i.e.,

(1− λ)u+ λv ∈ C for all λ ∈ R such that 0 ≤ λ ≤ 1.

Given any two points u, v ∈ E, the line segment [u, v] is the set

[u, v] = {(1− λ)u+ λv ∈ E | λ ∈ R, 0 ≤ λ ≤ 1}.

Clearly, a nonempty set C is convex iff [u, v] ⊆ C whenever u, v ∈ C. See Figure 4.4 for an
example of a convex set.

Definition 4.8. If C is a nonempty convex subset of E, a function f : C → R is convex (on
C) if for every pair of points u, v ∈ C,

f((1− λ)u+ λv) ≤ (1− λ)f(u) + λf(v) for all λ ∈ R such that 0 ≤ λ ≤ 1;
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(a)

(b)

u

v

u

v

Figure 4.4: Figure (a) shows that a sphere is not convex in R3 since the dashed green line
does not lie on its surface. Figure (b) shows that a solid ball is convex in R3.

the function f is strictly convex (on C) if for every pair of distinct points u, v ∈ C (u 6= v),

f((1− λ)u+ λv) < (1− λ)f(u) + λf(v) for all λ ∈ R such that 0 < λ < 1;

see Figure 4.5. The epigraph1 epi(f) of a function f : A → R defined on some subset A of
Rn is the subset of Rn+1 defined as

epi(f) = {(x, y) ∈ Rn+1 | f(x) ≤ y, x ∈ A}.

A function f : C → R defined on a convex subset C is concave (resp. strictly concave) if
(−f) is convex (resp. strictly convex).

It is obvious that a function f is convex iff its epigraph epi(f) is a convex subset of Rn+1.

Example 4.4. Here are some common examples of convex sets.

• Subspaces V ⊆ E of a vector space E are convex.

• Affine subspaces , that is, sets of the form u+V , where V is a subspace of E and u ∈ E,
are convex.

• Balls (open or closed) are convex. Given any linear form ϕ : E → R, for any scalar
c ∈ R, the closed half–spaces

H+
ϕ,c = {u ∈ E | ϕ(u) ≥ c}, H−ϕ,c = {u ∈ E | ϕ(u) ≤ c},

are convex.
1“Epi” means above.
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u v

l = (1-λ)f(u) + λf(v)

f

(a)

u v

l = (1-λ)f(u) + λf(v)

f

(b)

Figure 4.5: Figures (a) and (b) are the graphs of real valued functions. Figure (a) is the
graph of convex function since the blue line lies above the graph of f . Figure (b) shows the
graph of a function which is not convex.

• Any intersection of half–spaces is convex.

• More generally, any intersection of convex sets is convex.

Example 4.5. Here are some common examples of convex and concave functions.

• Linear forms are convex functions (but not strictly convex).

• Any norm ‖ ‖ : E → R+ is a convex function.

• The max function,
max(x1, . . . , xn) = max{x1, . . . , xn}

is convex on Rn.

• The exponential x 7→ ecx is strictly convex for any c 6= 0 (c ∈ R).

• The logarithm function is concave on R+ − {0}.

• The log-determinant function log det is concave on the set of symmetric positive definite
matrices. This function plays an important role in convex optimization.

An excellent exposition of convexity and its applications to optimization can be found in
Boyd [18].
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Here is a necessary condition for a function to have a local minimum with respect to a
convex subset U .

Theorem 4.9. (Necessary condition for a local minimum on a convex subset) Let J : Ω→ R
be a function defined on some open subset Ω of a normed vector space E and let U ⊆ Ω be
a nonempty convex subset. Given any u ∈ U , if dJ(u) exists and if J has a local minimum
in u with respect to U , then

dJ(u)(v − u) ≥ 0 for all v ∈ U.

Proof. Let v = u+w be an arbitrary point in U . Since U is convex, we have u+ tw ∈ U for
all t such that 0 ≤ t ≤ 1. Since dJ(u) exists, we can write

J(u+ tw)− J(u) = dJ(u)(tw) + ‖tw‖ ε(tw)

with limt7→0 ε(tw) = 0. However, because 0 ≤ t,

J(u+ tw)− J(u) = t(dJ(u)(w) + ‖w‖ ε(tw))

and since u is a local minimum with respect to U , we have J(u+ tw)− J(u) ≥ 0, so we get

t(dJ(u)(w) + ‖w‖ ε(tw)) ≥ 0.

The above implies that dJ(u)(w) ≥ 0, because otherwise we could pick t > 0 small enough
so that

dJ(u)(w) + ‖w‖ ε(tw) < 0,

a contradiction. Since the argument holds for all v = u+w ∈ U , the theorem is proven.

Observe that the convexity of U is a substitute for the use of Lagrange multipliers, but
we now have to deal with an inequality instead of an equality.

In the special case where U is a subspace of E we have the following result.

Corollary 4.10. With the same assumptions as in Theorem 4.9, if U is a subspace of E, if
dJ(u) exists and if J has a local minimum in u with respect to U , then

dJ(u)(w) = 0 for all w ∈ U.

Proof. In this case since u ∈ U we have 2u ∈ U , and for any u + w ∈ U , we must have
2u−(u+w) = u−w ∈ U . The previous theorem implies that dJ(u)(w) ≥ 0 and dJ(u)(−w) ≥
0, that is, dJ(u)(w) ≤ 0, so dJ(u) = 0. Since the argument holds for w ∈ U (because U is a
subspace, if u,w ∈ U , then u+ w ∈ U), we conclude that

dJ(u)(w) = 0 for all w ∈ U.

We will now characterize convex functions when they have a first derivative or a second
derivative.
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Proposition 4.11. (Convexity and first derivative) Let f : Ω → R be a function differen-
tiable on some open subset Ω of a normed vector space E and let U ⊆ Ω be a nonempty
convex subset.

(1) The function f is convex on U iff

f(v) ≥ f(u) + df(u)(v − u) for all u, v ∈ U.

(2) The function f is strictly convex on U iff

f(v) > f(u) + df(u)(v − u) for all u, v ∈ U with u 6= v.

See Figure 4.6.

u v

f
(u, f(u))

(v, f(v))

(y,v)

v - u

y - v

y = f(u) + df(u)(v-u)

Figure 4.6: An illustration of a convex valued function f . Since f is convex it always lies
above its tangent line.

Proof. Let u, v ∈ U be any two distinct points and pick λ ∈ R with 0 < λ < 1. If the
function f is convex, then

f((1− λ)u+ λv) ≤ (1− λ)f(u) + λf(v),

which yields
f((1− λ)u+ λv)− f(u)

λ
≤ f(v)− f(u).

It follows that

df(u)(v − u) = lim
λ 7→0

f((1− λ)u+ λv)− f(u)

λ
≤ f(v)− f(u).
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If f is strictly convex, the above reasoning does not work, because a strict inequality is not
necessarily preserved by “passing to the limit.” We have recourse to the following trick: for
any ω such that 0 < ω < 1, observe that

(1− λ)u+ λv = u+ λ(v − u) =
ω − λ
ω

u+
λ

ω
(u+ ω(v − u)).

If we assume that 0 < λ ≤ ω, the convexity of f yields

f(u+ λ(v − u)) = f

((
1− λ

ω

)
u+

λ

ω
(u+ ω(v − u))

)
≤ ω − λ

ω
f(u) +

λ

ω
f(u+ ω(v − u)).

If we subtract f(u) to both sides, we get

f(u+ λ(v − u))− f(u)

λ
≤ f(u+ ω(v − u))− f(u)

ω
.

Now since 0 < ω < 1 and f is strictly convex,

f(u+ ω(v − u)) = f((1− ω)u+ ωv) < (1− ω)f(u) + ωf(v),

which implies that
f(u+ ω(v − u))− f(u)

ω
< f(v)− f(u),

and thus we get

f(u+ λ(v − u))− f(u)

λ
≤ f(u+ ω(v − u))− f(u)

ω
< f(v)− f(u).

If we let λ go to 0, by passing to the limit we get

df(u)(v − u) ≤ f(u+ ω(v − u))− f(u)

ω
< f(v)− f(u),

which yields the desired strict inequality.

Let us now consider the converse of (1); that is, assume that

f(v) ≥ f(u) + df(u)(v − u) for all u, v ∈ U.

For any two distinct points u, v ∈ U and for any λ with 0 < λ < 1, we get

f(v) ≥ f(v + λ(u− v))− λdf(v + λ(u− v))(u− v)

f(u) ≥ f(v + λ(u− v)) + (1− λ)df(v + λ(u− v))(u− v),

and if we multiply the first inequality by 1−λ and the second inequality by λ and them add
up the resulting inequalities, we get

(1− λ)f(v) + λf(u) ≥ f(v + λ(u− v)) = f((1− λ)v + λu),

which proves that f is convex.

The proof of the converse of (2) is similar, except that the inequalities are replaced by
strict inequalities.
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We now establish a convexity criterion using the second derivative of f . This criterion is
often easier to check than the previous one.

Proposition 4.12. (Convexity and second derivative) Let f : Ω → R be a function twice
differentiable on some open subset Ω of a normed vector space E and let U ⊆ Ω be a
nonempty convex subset.

(1) The function f is convex on U iff

D2f(u)(v − u, v − u) ≥ 0 for all u, v ∈ U.

(2) If
D2f(u)(v − u, v − u) > 0 for all u, v ∈ U with u 6= v,

then f is strictly convex.

Proof. First assume that the inequality in Condition (1) is satisfied. For any two distinct
points u, v ∈ U , the formula of Taylor–Maclaurin yields

f(v)− f(u)− df(u)(v − u) =
1

2
D2f(w)(v − u, v − u)

=
ρ2

2
D2f(w)(v − w, v − w),

for some w = (1 − λ)u + λv = u + λ(v − u) with 0 < λ < 1, and with ρ = 1/(1 − λ) > 0,
so that v − u = ρ(v − w). Since D2f(w)(v − w, v − w) ≥ 0 for all u,w ∈ U , we conclude by
applying Proposition 4.11(1).

Similarly, if (2) holds, the above reasoning and Proposition 4.11(2) imply that f is strictly
convex.

To prove the necessary condition in (1), define g : Ω→ R by

g(v) = f(v)− df(u)(v),

where u ∈ U is any point considered fixed. If f is convex, since

g(v)− g(u) = f(v)− f(u)− df(u)(v − u),

Proposition 4.11 implies that f(v) − f(u) − df(u)(v − u) ≥ 0, which implies that g has a
local minimum at u with respect to all v ∈ U . Therefore, we have dg(u) = 0. Observe that
g is twice differentiable in Ω and D2g(u) = D2f(u), so the formula of Taylor–Young yields
for every v = u+ w ∈ U and all t with 0 ≤ t ≤ 1,

0 ≤ g(u+ tw)− g(u) =
t2

2
D2f(u)(tw, tw) + ‖tw‖2 ε(tw)

=
t2

2
(D2f(u)(w,w) + 2 ‖w‖2 ε(wt)),

with limt7→0 ε(wt) = 0, and for t small enough, we must have D2f(u)(w,w) ≥ 0, as claimed.
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The converse of Proposition 4.12 (2) is false as we see by considering the strictly convex
function f given by f(x) = x4 and its second derivative at x = 0.

Example 4.6. On the other hand, if f is a quadratic function of the form

f(u) =
1

2
u>Au− u>b

where A is a symmetric matrix, we know that

df(u)(v) = v>(Au− b),

so

f(v)− f(u)− df(u)(v − u) =
1

2
v>Av − v>b− 1

2
u>Au+ u>b− (v − u)>(Au− b)

=
1

2
v>Av − 1

2
u>Au− (v − u)>Au

=
1

2
v>Av +

1

2
u>Au− v>Au

=
1

2
(v − u)>A(v − u).

Therefore, Proposition 4.11 implies that A is positive semidefinite iff f is convex and A is
positive definite iff f is strictly convex.

We conclude this section by applying our previous theorems to convex functions defined
on convex subsets. In this case local minima (resp. local maxima) are global minima (resp.
global maxima). The next definition is the special case of Definition 4.1 in which W = E
but it does not hurt to state it explicitly.

Definition 4.9. Let f : E → R be any function defined on some normed vector space (or
more generally, any set). For any u ∈ E, we say that f has a minimum in u (resp. maximum
in u) if

f(u) ≤ f(v) (resp. f(u) ≥ f(v)) for all v ∈ E.

We say that f has a strict minimum in u (resp. strict maximum in u) if

f(u) < f(v) (resp. f(u) > f(v)) for all v ∈ E − {u}.

If U ⊆ E is a subset of E and u ∈ U , we say that f has a minimum in u (resp. strict
minimum in u) with respect to U if

f(u) ≤ f(v) for all v ∈ U (resp. f(u) < f(v) for all v ∈ U − {u}),

and similarly for a maximum in u (resp. strict maximum in u) with respect to U with ≤
changed to ≥ and < to >.
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Sometimes, we say global maximum (or minimum) to stress that a maximum (or a min-
imum) is not simply a local maximum (or minimum).

Theorem 4.13. Given any normed vector space E, let U be any nonempty convex subset of
E.

(1) For any convex function J : U → R, for any u ∈ U , if J has a local minimum at u in
U , then J has a (global) minimum at u in U .

(2) Any strict convex function J : U → R has at most one minimum (in U), and if it does,
then it is a strict minimum (in U).

(3) Let J : Ω → R be any function defined on some open subset Ω of E with U ⊆ Ω and
assume that J is convex on U . For any point u ∈ U , if dJ(u) exists, then J has a
minimum in u with respect to U iff

dJ(u)(v − u) ≥ 0 for all v ∈ U.

(4) If the convex subset U in (3) is open, then the above condition is equivalent to

dJ(u) = 0.

Proof. (1) Let v = u + w be any arbitrary point in U . Since J is convex, for all t with
0 ≤ t ≤ 1, we have

J(u+ tw) = J(u+ t(v − u)) = J((1− t)u+ tv) ≤ (1− t)J(u) + tJ(v),

which yields
J(u+ tw)− J(u) ≤ t(J(v)− J(u)).

Because J has a local minimum at u, there is some t0 with 0 < t0 < 1 such that

0 ≤ J(u+ t0w)− J(u) ≤ t0(J(v)− J(u)),

which implies that J(v)− J(u) ≥ 0.

(2) If J is strictly convex, the above reasoning with w 6= 0 shows that there is some t0
with 0 < t0 < 1 such that

0 ≤ J(u+ t0w)− J(u) < t0(J(v)− J(u)),

which shows that u is a strict global minimum (in U), and thus that it is unique.

(3) We already know from Theorem 4.9 that the condition dJ(u)(v−u) ≥ 0 for all v ∈ U
is necessary (even if J is not convex). Conversely, because J is convex, careful inspection of
the proof of Part (1) of Proposition 4.11 shows that only the fact that dJ(u) exists is needed
to prove that

J(v)− J(u) ≥ dJ(u)(v − u) for all v ∈ U,
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and if
dJ(u)(v − u) ≥ 0 for all v ∈ U,

then
J(v)− J(u) ≥ 0 for all v ∈ U,

as claimed.

(4) If U is open, then for every u ∈ U we can find an open ball B centered at u of radius
ε small enough so that B ⊆ U . Then for any w 6= 0 such that ‖w‖ < ε, we have both
v = u+ w ∈ B and v′ = u− w ∈ B, so Condition (3) implies that

dJ(u)(w) ≥ 0 and dJ(u)(−w) ≥ 0,

which yields
dJ(u)(w) = 0.

Since the above holds for all w 6= 0 such such that ‖w‖ < ε and since dJ(u) is linear, we
leave it to the reader to fill in the details of the proof that dJ(u) = 0.

Example 4.7. Theorem 4.13 can be used to rederive the fact that the least squares solutions
of a linear system Ax = b (where A is an m× n matrix) are given by the normal equation

A>Ax = A>b.

For this, we consider the quadratic function

J(v) =
1

2
‖Av − b‖2

2 −
1

2
‖b‖2

2 ,

and our least squares problem is equivalent to finding the minima of J on Rn. A computation
reveals that

J(v) =
1

2
‖Av − b‖2

2 −
1

2
‖b‖2

2

=
1

2
(Av − b)>(Av − b)− 1

2
b>b

=
1

2
(v>A> − b>)(Av − b)− 1

2
b>b

=
1

2
v>A>Av − v>A>b,

and so
dJ(u) = A>Au− A>b.

Since A>A is positive semidefinite, the function J is convex, and Theorem 4.13(4) implies
that the minima of J are the solutions of the equation

A>Au− A>b = 0.
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The considerations in this chapter reveal the need to find methods for finding the zeros
of the derivative map

dJ : Ω→ E ′,

where Ω is some open subset of a normed vector space E and E ′ is the space of all continuous
linear forms on E (a subspace of E∗). Generalizations of Newton’s method yield such methods
and they are the object of the next chapter.

4.4 Summary

The main concepts and results of this chapter are listed below:

• Local minimum, local maximum, local extremum, strict local minimum, strict local
maximum.

• Necessary condition for a local extremum involving the derivative; critical point.

• Local minimum with respect to a subset U , local maximum with respect to a subset
U , local extremum with respect to a subset U .

• Constrained local extremum.

• Necessary condition for a constrained extremum.

• Necessary condition for a constrained extremum in terms of Lagrange multipliers.

• Lagrangian.

• Critical points of a Lagrangian.

• Necessary condition of an unconstrained local minimum involving the second-order
derivative.

• Sufficient condition for a local minimum involving the second-order derivative.

• A sufficient condition involving nondegenerate critical points.

• Convex sets, convex functions, concave functions, strictly convex functions, strictly
concave functions.

• Necessary condition for a local minimum on a convex set involving the derivative.

• Convexity of a function involving a condition on its first derivative.

• Convexity of a function involving a condition on its second derivative.

• Minima of convex functions on convex sets.
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4.5 Problems

Problem 4.1. Find the extrema of the function J(v1, v2) = v2
2 on the subset U given by

U = {(v1, v2) ∈ R2 | v2
1 + v2

2 − 1 = 0}.

Problem 4.2. Find the extrema of the function J(v1, v2) = v1 + (v2 − 1)2 on the subset U
given by

U = {(v1, v2) ∈ R2 | v2
1 = 0}.

Problem 4.3. Let A be an n × n real symmetric matrix, B an n × n symmetric positive
definite matrix, and let b ∈ Rn.

(1) Prove that a necessary condition for the function J given by

J(v) =
1

2
v>Av − b>v

to have an extremum at u ∈ U , with U defined by

U = {v ∈ Rn | v>Bv = 1},

is that there is some λ ∈ R such that

Au− b = λBu.

(2) Prove that there is a symmetric positive definite matrix S such that B = S2. Prove
that if b = 0, then λ is an eigenvalue of the symmetric matrix S−1AS−1.

(3) Prove that for all (u, λ) ∈ U × R, if Au− b = λBu, then

J(v)− J(u) =
1

2
(v − u)>(A− λB)(v − u)

for all v ∈ U . Deduce that without additional assumptions, it is not possible to conclude
that u is an extremum of J on U .

Problem 4.4. Let E be a normed vector space, and let U be a subset of E such that for
all u, v ∈ U , we have (1/2)(u+ v) ∈ U .

(1) Prove that if U is closed, then U is convex.

Hint . Every real θ ∈ (0, 1) can be written as

θ =
∑
n≥1

αn2−n,

with αn ∈ {0, 1}.
(2) Does the result in (1) hold if U is not closed?
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Problem 4.5. Prove that the function f with domain dom(f) = R− {0} given by f(x) =
1/x2 has the property that f ′′(x) > 0 for all x ∈ dom(f), but it is not convex. Why isn’t
Proposition 4.12 applicable?

Problem 4.6. (1) Prove that the function x 7→ eax (on R) is convex for any a ∈ R.

(2) Prove that the function x 7→ xa is convex on {x ∈ R | x > 0}, for all a ∈ R such that
a ≤ 0 or a ≥ 1.

Problem 4.7. (1) Prove that the function x 7→ |x|p is convex on R for all p ≥ 1.

(2) Prove that the function x 7→ log x is concave on {x ∈ R | x > 0}.
(3) Prove that the function x 7→ x log x is convex on {x ∈ R | x > 0}.

Problem 4.8. (1) Prove that the function f given by f(x1, . . . , xn) = max{x1, . . . , xn} is
convex on Rn.

(2) Prove that the function g given by g(x1, . . . , xn) = log(ex1 + · · · + exn) is convex on
Rn.

Prove that

max{x1, . . . , xn} ≤ g(x1, . . . , xn) ≤ max{x1, . . . , xn}+ log n.

Problem 4.9. In Problem 3.6, it was shown that

dfA(X) = tr(A−1X)

D2f(A)(X1, X2) = −tr(A−1X1A
−1X2),

for all n × n real matrices X,X1, X2, where f is the function defined on GL+(n,R) (the
n× n real invertible matrices of positive determinants), given by

f(A) = log det(A).

Assume that A is symmetric positive definite and that X is symmetric.

(1) Prove that the eigenvalues of A−1X are real (even though A−1X may not be sym-
metric).

Hint . Since A is symmetric positive definite, then so is A−1, so we can write A−1 = S2 for
some symmetric positive definite matrix S, and then

A−1X = S2X = S(SXS)S−1.

(2) Prove that the eigenvalues of (A−1X)2 are nonnegative. Deduce that

D2f(A)(X,X) = −tr((A−1X)2) < 0

for all nonzero symmetric matrices X and SPD matrices A. Conclude that the function
X 7→ log detX is strictly concave on the set of symmetric positive definite matrices.
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Chapter 5

Newton’s Method and Its
Generalizations

In Chapter 4 we investigated the problem of determining when a function J : Ω→ R defined
on some open subset Ω of a normed vector space E has a local extremum. Proposition 4.1
gives a necessary condition when J is differentiable: if J has a local extremum at u ∈ Ω,
then we must have

J ′(u) = 0.

Thus we are led to the problem of finding the zeros of the derivative

J ′ : Ω→ E ′,

where E ′ = L(E;R) is the set of linear continuous functions from E to R; that is, the dual
of E, as defined in the remark after Proposition 4.8.

This leads us to consider the problem in a more general form, namely, given a function
f : Ω→ Y from an open subset Ω of a normed vector space X to a normed vector space Y ,
find

(i) Sufficient conditions which guarantee the existence of a zero of the function f ; that is,
an element a ∈ Ω such that f(a) = 0.

(ii) An algorithm for approximating such an a, that is, a sequence (xk) of points of Ω whose
limit is a.

In this chapter we discuss Newton’s method and some of it generalizations to give (partial)
answers to Problems (i) and (i).

5.1 Newton’s Method for Real Functions of a Real Ar-

gument

When X = Y = R, we can use Newton’s method to find a zero of a function f : Ω→ R. We
pick some initial element x0 ∈ R “close enough” to a zero a of f , and we define the sequence

145
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(xk) by

xk+1 = xk −
f(xk)

f ′(xk)
,

for all k ≥ 0, provided that f ′(xk) 6= 0. The idea is to define xk+1 as the intersection of the
x-axis with the tangent line to the graph of the function x 7→ f(x) at the point (xk, f(xk)).
Indeed, the equation of this tangent line is

y − f(xk) = f ′(xk)(x− xk),

and its intersection with the x-axis is obtained for y = 0, which yields

x = xk −
f(xk)

f ′(xk)
,

as claimed. See Figure 5.1.

x k

xk f(       )xk,( )

xk+1

xk+1 xk+1f(        ),( )

xk+2

Figure 5.1: The construction of two stages in Newton’s method.

Example 5.1. If α > 0 and f(x) = x2 − α, Newton’s method yields the sequence

xk+1 =
1

2

(
xk +

α

xk

)
to compute the square root

√
α of α. It can be shown that the method converges to

√
α for

any x0 > 0; see Problem 5.1. Actually, the method also converges when x0 < 0! Find out
what is the limit.
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The case of a real function suggests the following method for finding the zeros of a
function f : Ω→ Y , with Ω ⊆ X: given a starting point x0 ∈ Ω, the sequence (xk) is defined
by

xk+1 = xk − (f ′(xk))
−1(f(xk)) (∗)

for all k ≥ 0.

For the above to make sense, it must be ensured that

(1) All the points xk remain within Ω.

(2) The function f is differentiable within Ω.

(3) The derivative f ′(x) is a bijection from X to Y for all x ∈ Ω.

These are rather demanding conditions but there are sufficient conditions that guarantee
that they are met. Another practical issue is that it may be very costly to compute (f ′(xk))

−1

at every iteration step. In the next section we investigate generalizations of Newton’s method
which address the issues that we just discussed.

5.2 Generalizations of Newton’s Method

Suppose that f : Ω → Rn is given by n functions fi : Ω → R, where Ω ⊆ Rn. In this case,
finding a zero a of f is equivalent to solving the system

f1(a1 . . . , an) = 0

f2(a1 . . . , an) = 0

...

fn(a1 . . . , an) = 0.

In the standard Newton method, the iteration step is given by (∗), namely

xk+1 = xk − (f ′(xk))
−1(f(xk)),

and if we define ∆xk as ∆xk = xk+1 − xk, we see that ∆xk = −(f ′(xk))
−1(f(xk)), so ∆xk is

obtained by solving the equation

f ′(xk)∆xk = −f(xk),

and then we set xk+1 = xk + ∆xk.

The generalization is as follows.

Variant 1. A single iteration of Newton’s method consists in solving the linear system

(J(f)(xk))∆xk = −f(xk),



148 CHAPTER 5. NEWTON’S METHOD AND ITS GENERALIZATIONS

and then setting

xk+1 = xk + ∆xk,

where J(f)(xk) =
(
∂fi
∂xj

(xk)
)

is the Jacobian matrix of f at xk.

In general it is very costly to compute J(f)(xk) at each iteration and then to solve the
corresponding linear system. If the method converges, the consecutive vectors xk should
differ only a little, as also the corresponding matrices J(f)(xk). Thus, we are led to several
variants of Newton’s method.

Variant 2. This variant consists in keeping the same matrix for p consecutive steps (where
p is some fixed integer ≥ 2):

xk+1 = xk − (f ′(x0))−1(f(xk)), 0 ≤ k ≤ p− 1

xk+1 = xk − (f ′(xp))
−1(f(xk)), p ≤ k ≤ 2p− 1

...

xk+1 = xk − (f ′(xrp))
−1(f(xk)), rp ≤ k ≤ (r + 1)p− 1

...

Variant 3. Set p =∞, that is, use the same matrix f ′(x0) for all iterations, which leads
to iterations of the form

xk+1 = xk − (f ′(x0))−1(f(xk)), k ≥ 0,

Variant 4. Replace f ′(x0) by a particular matrix A0 which is easy to invert:

xk+1 = xk − A−1
0 f(xk), k ≥ 0.

In the last two cases, if possible, we use an LU factorization of f ′(x0) or A0 to speed up the
method. In some cases, it may even possible to set A0 = I.

The above considerations lead us to the definition of a generalized Newton method , as in
Ciarlet [25] (Chapter 7). Recall that a linear map f ∈ L(E;F ) is called an isomorphism iff
f is continuous, bijective, and f−1 is also continuous.

Definition 5.1. If X and Y are two normed vector spaces and if f : Ω → Y is a function
from some open subset Ω of X, a generalized Newton method for finding zeros of f consists
of

(1) A sequence of families (Ak(x)) of linear isomorphisms from X to Y , for all x ∈ Ω and
all integers k ≥ 0;

(2) Some starting point x0 ∈ Ω;
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(3) A sequence (xk) of points of Ω defined by

xk+1 = xk − (Ak(x`))
−1(f(xk)), k ≥ 0, (∗∗)

where for every integer k ≥ 0, the integer ` satisfies the condition

0 ≤ ` ≤ k.

With ∆xk = xk+1 − xk, Equation (∗∗) is equivalent to solving the equation

Ak(x`)(∆xk) = −f(xk)

and setting xk+1 = xk + ∆xk. The function Ak(x) usually depends on f ′.

Definition 5.1 gives us enough flexibility to capture all the situations that we have previ-
ously discussed:

Function Index

Variant 1: Ak(x) = f ′(x), ` = k

Variant 2: Ak(x) = f ′(x), ` = min{rp, k}, if rp ≤ k ≤ (r + 1)p− 1, r ≥ 0

Variant 3: Ak(x) = f ′(x), ` = 0

Variant 4: Ak(x) = A0,

where A0 is a linear isomorphism from X to Y . The first case corresponds to Newton’s
original method and the others to the variants that we just discussed. We could also have
Ak(x) = Ak, a fixed linear isomorphism independent of x ∈ Ω.

Example 5.2. Consider the matrix function f given by

f(X) = A−X−1,

with A and X invertible n× n matrices. If we apply Variant 1 of Newton’s method starting
with any n × n matrix X0, since the derivative of the function g given by g(X) = X−1 is
dgX(Y ) = −X−1Y X−1, we have

f ′X(Y ) = X−1Y X−1,

so
(f ′X)−1(Y ) = XYX

and the Newton step is

Xk+1 = Xk − (f ′Xk)
−1(f(Xk)) = Xk −Xk(A−X−1

k )Xk,

which yields the sequence (Xk) with

Xk+1 = Xk(2I − AXk), k ≥ 0.

In Problem 5.5, it is shown that Newton’s method converges to A−1 iff the spectral radius
of I −X0A is strictly smaller than 1, that is, ρ(I −X0A) < 1.
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The following theorem inspired by the Newton–Kantorovich theorem gives sufficient con-
ditions that guarantee that the sequence (xk) constructed by a generalized Newton method
converges to a zero of f close to x0. Although quite technical, these conditions are not very
surprising.

Theorem 5.1. Let X be a Banach space, let f : Ω→ Y be differentiable on the open subset
Ω ⊆ X, and assume that there are constants r,M, β > 0 such that if we let

B = {x ∈ X | ‖x− x0‖ ≤ r} ⊆ Ω,

then

(1)

sup
k≥0

sup
x∈B

∥∥A−1
k (x)

∥∥
L(Y ;X)

≤M,

(2) β < 1 and

sup
k≥0

sup
x,x′∈B

‖f ′(x)− Ak(x′)‖L(X;Y ) ≤
β

M

(3)

‖f(x0)‖ ≤ r

M
(1− β).

Then the sequence (xk) defined by

xk+1 = xk − A−1
k (x`)(f(xk)), 0 ≤ ` ≤ k

is entirely contained within B and converges to a zero a of f , which is the only zero of f in
B. Furthermore, the convergence is geometric, which means that

‖xk − a‖ ≤
‖x1 − x0‖

1− β
βk.

Proof. We follow Ciarlet [25] (Theorem 7.5.1, Section 7.5). The proof has three steps.

Step 1. We establish the following inequalities for all k ≥ 1.

‖xk − xk−1‖ ≤M ‖f(xk−1)‖ (a)

‖xk − x0‖ ≤ r (xk ∈ B) (b)

‖f(xk)‖ ≤
β

M
‖xk − xk−1‖ . (c)

We proceed by induction on k, starting with the base case k = 1. Since

x1 = x0 − A−1
0 (x0)(f(x0)),
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we have x1 − x0 = −A−1
0 (x0)(f(x0)), so by (1) and (3) and since 0 < β < 1, we have

‖x1 − x0‖ ≤M ‖f(x0)‖ ≤ r(1− β) ≤ r,

establishing (a) and (b) for k = 1. We also have f(x0) = −A0(x0)(x1 − x0), so
−f(x0)− A0(x0)(x1 − x0) = 0 and thus

f(x1) = f(x1)− f(x0)− A0(x0)(x1 − x0).

By the mean value theorem (Proposition 3.11) applied to the function x 7→ f(x)−A0(x0)(x),
by (2), we get

‖f(x1)‖ ≤ sup
x∈B
‖f ′(x)− A0(x0)‖ ‖x1 − x0‖ ≤

β

M
‖x1 − x0‖ ,

which is (c) for k = 1. We now establish the induction step.

Since by definition

xk − xk−1 = −A−1
k−1(x`)(f(xk−1)), 0 ≤ ` ≤ k − 1,

by (1) and the fact that by the induction hypothesis for (b), x` ∈ B, we get

‖xk − xk−1‖ ≤M ‖f(xk−1)‖ ,

which proves (a) for k. As a consequence, since by the induction hypothesis for (c),

‖f(xk−1)‖ ≤ β

M
‖xk−1 − xk−2‖ ,

we get
‖xk − xk−1‖ ≤M ‖f(xk−1)‖ ≤ β ‖xk−1 − xk−2‖ , (∗1)

and by repeating this step,

‖xk − xk−1‖ ≤ βk−1 ‖x1 − x0‖ . (∗2)

Using (∗2) and (3), we obtain

‖xk − x0‖ ≤
k∑
j=1

‖xj − xj−1‖ ≤

(
k∑
j=1

βj−1

)
‖x1 − x0‖

≤ ‖x1 − x0‖
1− β

≤ M

1− β
‖f(x0)‖ ≤ r,

which proves that xk ∈ B, which is (b) for k.

Since
xk − xk−1 = −A−1

k−1(x`)(f(xk−1))
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we also have f(xk−1) = −Ak−1(x`)(xk − xk−1), so we have

f(xk) = f(xk)− f(xk−1)− Ak−1(x`)(xk − xk−1),

and as in the base case, applying the mean value theorem (Proposition 3.11) to the function
x 7→ f(x)− Ak−1(x`)(x), by (2), we obtain

‖f(xk)‖ ≤ sup
x∈B
‖f ′(x)− Ak−1(x`)‖ ‖xk − xk−1‖ ≤

β

M
‖xk − xk−1‖ ,

proving (c) for k.

Step 2. Prove that f has a zero in B.

To do this we prove that (xk) is a Cauchy sequence. This is because, using (∗2), we have

‖xk+j − xk‖ ≤
j−1∑
i=0

‖xk+i+1 − xk+i‖ ≤ βk

(
j−1∑
i=0

βi

)
‖x1 − x0‖

≤ βk

1− β
‖x1 − x0‖ ,

for all k ≥ 0 and all j ≥ 0, proving that (xk) is a Cauchy sequence. Since B is a closed ball
in a complete normed vector space, B is complete and the Cauchy sequence (xk) converges
to a limit a ∈ B. Since f is continuous on Ω (because it is differentiable), by (c) we obtain

‖f(a)‖ = lim
k 7→∞
‖f(xk)‖ ≤

β

M
lim
k 7→∞
‖xk − xk−1‖ = 0,

which yields f(a) = 0.

Since

‖xk+j − xk‖ ≤
βk

1− β
‖x1 − x0‖ ,

if we let j tend to infinity, we obtain the inequality

‖xk − a‖ = ‖a− xk‖ ≤
βk

1− β
‖x1 − x0‖ ,

which is the last statement of the theorem.

Step 3. Prove that f has a unique zero in B.

Suppose f(a) = f(b) = 0 with a, b ∈ B. Since A−1
0 (x0)(A0(x0)(b− a)) = b− a, we have

b− a = −A−1
0 (x0)(f(b)− f(a)− A0(x0)(b− a)),

which by (1) and (2) and the mean value theorem implies that

‖b− a‖ ≤
∥∥A−1

0 (x0)
∥∥ sup
x∈B
‖f ′(x)− A0(x0)‖ ‖b− a‖ ≤ β ‖b− a‖ .

Since 0 < β < 1, the inequality ‖b− a‖ ≤ β ‖b− a‖ is only possible if a = b.
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It should be observed that the conditions of Theorem 5.1 are typically quite stringent.
It can be shown that Theorem 5.1 applies to the function f of Example 5.1 given by f(x) =
x2 − α with α > 0, for any x0 > 0 such that

6

7
α ≤ x2

0 ≤
6

5
α,

with β = 2/5, r = (1/6)x0, M = 3/(5x0). Such values of x0 are quite close to
√
α.

If we assume that we already know that some element a ∈ Ω is a zero of f , the next
theorem gives sufficient conditions for a special version of a generalized Newton method to
converge. For this special method the linear isomorphisms Ak(x) are independent of x ∈ Ω.

Theorem 5.2. Let X be a Banach space and let f : Ω → Y be differentiable on the open
subset Ω ⊆ X. If a ∈ Ω is a point such that f(a) = 0, if f ′(a) is a linear isomorphism, and
if there is some λ with 0 < λ < 1/2 such that

sup
k≥0
‖Ak − f ′(a)‖L(X;Y ) ≤

λ

‖(f ′(a))−1‖L(Y ;X)

,

then there is a closed ball B of center a such that for every x0 ∈ B, the sequence (xk) defined
by

xk+1 = xk − A−1
k (f(xk)), k ≥ 0,

is entirely contained within B and converges to a, which is the only zero of f in B. Further-
more, the convergence is geometric, which means that

‖xk − a‖ ≤ βk ‖x0 − a‖ ,

for some β < 1.

A proof of Theorem 5.2 can be found in Ciarlet [25] (Section 7.5).

For the sake of completeness, we state a version of the Newton–Kantorovich theorem
which corresponds to the case where Ak(x) = f ′(x). In this instance, a stronger result can
be obtained especially regarding upper bounds, and we state a version due to Gragg and
Tapia which appears in Problem 7.5-4 of Ciarlet [25].

Theorem 5.3. (Newton–Kantorovich) Let X be a Banach space, and let f : Ω → Y be
differentiable on the open subset Ω ⊆ X. Assume that there exist three positive constants
λ, µ, ν and a point x0 ∈ Ω such that

0 < λµν ≤ 1

2
,
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and if we let

ρ− =
1−
√

1− 2λµν

µν

ρ+ =
1 +
√

1− 2λµν

µν

B = {x ∈ X | ‖x− x0‖ < ρ−}
Ω+ = {x ∈ Ω | ‖x− x0‖ < ρ+},

then B ⊆ Ω, f ′(x0) is an isomorphism of L(X;Y ), and∥∥(f ′(x0))−1
∥∥ ≤ µ,∥∥(f ′(x0))−1f(x0)
∥∥ ≤ λ,

sup
x,y∈Ω+

‖f ′(x)− f ′(y)‖ ≤ ν ‖x− y‖ .

Then f ′(x) is isomorphism of L(X;Y ) for all x ∈ B, and the sequence defined by

xk+1 = xk − (f ′(xk))
−1(f(xk)), k ≥ 0

is entirely contained within the ball B and converges to a zero a of f which is the only zero
of f in Ω+. Finally, if we write θ = ρ−/ρ+, then we have the following bounds:

‖xk − a‖ ≤
2
√

1− 2λµν

λµν

θ2k

1− θ2k
‖x1 − x0‖ if λµν <

1

2

‖xk − a‖ ≤
‖x1 − x0‖

2k−1
if λµν =

1

2
,

and
2 ‖xk+1 − xk‖

1 +
√

(1 + 4θ2k(1 + θ2k)−2)
≤ ‖xk − a‖ ≤ θ2k−1 ‖xk − xk−1‖ .

We can now specialize Theorems 5.1 and 5.2 to the search of zeros of the derivative
J ′ : Ω → E ′, of a function J : Ω → R, with Ω ⊆ E. The second derivative J ′′ of J is
a continuous bilinear form J ′′ : E × E → R, but is is convenient to view it as a linear
map in L(E,E ′); the continuous linear form J ′′(u) is given by J ′′(u)(v) = J ′′(u, v). In our
next theorem, which follows immediately from Theorem 5.1, we assume that the Ak(x) are
isomorphisms in L(E,E ′).

Theorem 5.4. Let E be a Banach space, let J : Ω → R be twice differentiable on the open
subset Ω ⊆ E, and assume that there are constants r,M, β > 0 such that if we let

B = {x ∈ E | ‖x− x0‖ ≤ r} ⊆ Ω,

then
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(1)
sup
k≥0

sup
x∈B

∥∥A−1
k (x)

∥∥
L(E′;E)

≤M,

(2) β < 1 and

sup
k≥0

sup
x,x′∈B

‖J ′′(x)− Ak(x′)‖L(E;E′) ≤
β

M

(3)

‖J ′(x0)‖ ≤ r

M
(1− β).

Then the sequence (xk) defined by

xk+1 = xk − A−1
k (x`)(J

′(xk)), 0 ≤ ` ≤ k

is entirely contained within B and converges to a zero a of J ′, which is the only zero of J ′

in B. Furthermore, the convergence is geometric, which means that

‖xk − a‖ ≤
‖x1 − x0‖

1− β
βk.

In the next theorem, which follows immediately from Theorem 5.2, we assume that the
Ak(x) are isomorphisms in L(E,E ′) that are independent of x ∈ Ω.

Theorem 5.5. Let E be a Banach space and let J : Ω → R be twice differentiable on the
open subset Ω ⊆ E. If a ∈ Ω is a point such that J ′(a) = 0, if J ′′(a) is a linear isomorphism,
and if there is some λ with 0 < λ < 1/2 such that

sup
k≥0
‖Ak − J ′′(a)‖L(E;E′) ≤

λ

‖(J ′′(a))−1‖L(E′;E)

,

then there is a closed ball B of center a such that for every x0 ∈ B, the sequence (xk) defined
by

xk+1 = xk − A−1
k (J ′(xk)), k ≥ 0,

is entirely contained within B and converges to a, which is the only zero of J ′ in B. Fur-
thermore, the convergence is geometric, which means that

‖xk − a‖ ≤ βk ‖x0 − a‖ ,

for some β < 1.

When E = Rn, the Newton method given by Theorem 5.4 yields an iteration step of the
form

xk+1 = xk − A−1
k (x`)∇J(xk), 0 ≤ ` ≤ k,
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where ∇J(xk) is the gradient of J at xk (here, we identify E ′ with Rn). In particular,
Newton’s original method picks Ak = J ′′, and the iteration step is of the form

xk+1 = xk − (∇2J(xk))
−1∇J(xk), k ≥ 0,

where ∇2J(xk) is the Hessian of J at xk.

Example 5.3. Let us apply Newton’s original method to the function J given by J(x) =
1
3
x3 − 4x. We have J ′(x) = x2 − 4 and J ′′(x) = 2x, so the Newton step is given by

xk+1 = xk −
x2
k − 4

2xk
=

1

2

(
xk +

4

xk

)
.

This is the sequence of Example 5.1 to compute the square root of 4. Starting with any
x0 > 0 it converges very quickly to 2.

As remarked in Ciarlet [25] (Section 7.5), generalized Newton methods have a very wide
range of applicability. For example, various versions of gradient descent methods can be
viewed as instances of Newton method. See Section 13.9 for an example.

Newton’s method also plays an important role in convex optimization, in particular,
interior-point methods. A variant of Newton’s method dealing with equality constraints has
been developed. We refer the reader to Boyd and Vandenberghe [18], Chapters 10 and 11,
for a comprehensive exposition of these topics.

5.3 Summary

The main concepts and results of this chapter are listed below:

• Newton’s method for functions f : R→ R.

• Generalized Newton methods.

• The Newton-Kantorovich theorem.

5.4 Problems

Problem 5.1. If α > 0 and f(x) = x2 − α, Newton’s method yields the sequence

xk+1 =
1

2

(
xk +

α

xk

)
to compute the square root

√
α of α.
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(1) Prove that if x0 > 0, then xk > 0 and

xk+1 −
√
α =

1

2xk
(xk −

√
α)2

xk+2 − xk+1 =
1

2xk+1

(α− x2
k+1)

for all k ≥ 0. Deduce that Newton’s method converges to
√
α for any x0 > 0.

(2) Prove that if x0 < 0, then Newton’s method converges to −
√
α.

Problem 5.2. (1) If α > 0 and f(x) = x2−α, show that the conditions of Theorem 5.1 are
satisfied by any β ∈ (0, 1) and any x0 such that

|x2
0 − α| ≤

4β(1− β)

(β + 2)2
x2

0,

with

r =
β

β + 2
x0, M =

β + 2

4x0

.

(2) Prove that the maximum of the function defined on [0, 1] by

β 7→ 4β(1− β)

(β + 2)2

has a maximum for β = 2/5. For this value of β, check that r = (1/6)x0, M = 3/(5x0), and

6

7
α ≤ x2

0 ≤
6

5
α.

Problem 5.3. Consider generalizing Problem 5.1 to the matrix function f given by f(X) =
X2 − C, where X and C are two real n × n matrices with C symmetric positive definite.
The first step is to determine for which A does the inverse df−1

A exist. Let g be the function
given by g(X) = X2. From Problem 3.1 we know that the derivative at A of the function
g is dgA(X) = AX + XA, and obviously dfA = dgA. Thus we are led to figure out when
the linear matrix map X 7→ AX + XA is invertible. This can be done using the Kronecker
product.

Given an m × n matrix A = (aij) and a p × q matrix B = (bij), the Kronecker product
(or tensor product) A⊗B of A and B is the mp× nq matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
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It can be shown (and you may use these facts without proof) that ⊗ is associative and that

(A⊗B)(C ⊗D) = AC ⊗BD
(A⊗B)> = A> ⊗B>,

whenever AC and BD are well defined.

Given any n × n matrix X, let vec(X) be the vector in Rn2
obtained by concatenating

the rows of X.

(1) Prove that AX = Y iff

(A⊗ In)vec(X) = vec(Y )

and XA = Y iff
(In ⊗ A>)vec(X) = vec(Y ).

Deduce that AX +XA = Y iff

((A⊗ In) + (In ⊗ A>))vec(X) = vec(Y ).

In the case where n = 2 and if we write

A =

(
a b
c d

)
,

check that

A⊗ I2 + I2 ⊗ A> =


2a c b 0
b a+ d 0 b
c 0 a+ d c
0 c b 2d

 .

The problem is to determine when the matrix (A⊗ In) + (In ⊗ A>) is invertible.

Remark: The equation AX + XA = Y is a special case of the equation AX + XB = C
(sometimes written AX − XB = C), called the Sylvester equation, where A is an m × m
matrix, B is an n× n matrix, and X,C are m× n matrices; see Higham [42] (Appendix B).

(2) In the case where n = 2, prove that

det(A⊗ I2 + I2 ⊗ A>) = 4(a+ d)2(ad− bc).

(3) Let A and B be any two n×n complex matrices. Use Schur factorizations A = UT1U
∗

and B = V T2V
∗ (where U and V are unitary and T1, T2 are upper-triangular) to prove that

if λ1, . . . , λn are the eigenvalues of A and µ1, . . . , µn are the eigenvalues of B, then the scalars
λiµj are the eigenvalues of A⊗B, for i, j = 1, . . . , n.

Hint . Check that U ⊗ V is unitary and that T1 ⊗ T2 is upper triangular.
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(4) Prove that the eigenvalues of (A ⊗ In) + (In ⊗ B) are the scalars λi + µj, for i, j =
1, . . . , n. Deduce that the eigenvalues of (A⊗ In) + (In⊗A>) are λi + λj, for i, j = 1, . . . , n.
Thus (A⊗ In) + (In⊗A>) is invertible iff λi +λj 6= 0, for i, j = 1, . . . , n. In particular, prove
that if A is symmetric positive definite, then so is (A⊗ In) + (In ⊗ A>).

Hint . Use (3).

(5) Prove that if A and B are symmetric and (A⊗ In) + (In⊗A>) is invertible, then the
unique solution X of the equation AX +XA = B is symmetric.

(6) Starting with a symmetric positive definite matrix X0, the general step of Newton’s
method is

Xk+1 = Xk − (f ′Xk)
−1(X2

k − C) = Xk − (g′Xk)
−1(X2

k − C),

and since g′Xk is linear, this is equivalent to

Xk+1 = Xk − (g′Xk)
−1(X2

k) + (g′Xk)
−1(C).

But since Xk is SPD, (g′Xk)
−1(X2

k) is the unique solution of

XkY + Y Xk = X2
k

whose solution is obviously Y = (1/2)Xk. Therefore the Newton step is

Xk+1 = Xk − (g′Xk)
−1(X2

k) + (g′Xk)
−1(C) = Xk −

1

2
Xk + (g′Xk)

−1(C) =
1

2
Xk + (g′Xk)

−1(C),

so we have

Xk+1 =
1

2
Xk + (g′Xk)

−1(C) = (g′Xk)
−1(X2

k + C).

Prove that if Xk and C are symmetric positive definite, then (g′Xk)
−1(C) is symmetric

positive definite, and if C is symmetric positive semidefinite, then (g′Xk)
−1(C) is symmetric

positive semidefinite.

Hint . By (5) the unique solution Z of the equation XkZ+ZXk = C (where C is symmetric)
is symmetric so it can be diagonalized as Z = QDQ> with Q orthogonal and D a real
diagonal matrix. Prove that

Q>XkQD +DQ>XkQ = Q>CQ,

and solve the system using the diagonal elements.

Deduce that if Xk and C are SPD, then Xk+1 is SPD.

Since C = PΣP> is SPD, it has an SPD square root (in fact unique) C1/2 = PΣ1/2P>.
Prove that

Xk+1 − C1/2 = (g′Xk)
−1(Xk − C1/2)2.

Prove that ∥∥(g′Xk)
−1
∥∥

2
≥ 1

2 ‖Xk‖2

.
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Open problem: Does Theorem 5.1 apply for some suitable r,M, β?

(7) Prove that if C and X0 commute, provided that the equation XkZ + ZXk = C has
a unique solution for all k, then Xk and C commute for all k and Z is given by

Z =
1

2
X−1
k C =

1

2
CX−1

k .

Deduce that

Xk+1 =
1

2
(Xk +X−1

k C) =
1

2
(Xk + CX−1

k ).

This is the matrix analog of the formula given in Problem 5.1(1).

Prove that if C and X0 have positive eigenvalues and C and X0 commute, then Xk+1 has
positive eigenvalues for all k ≥ 0 and thus the sequence (Xk) is defined.

Hint . Because Xk and C commute, X−1
k and C commute, and obviously Xk and X−1

k com-
mute. By Proposition 22.15 of Vol. I, Xk, X

−1
k , and C are triangulable in a common basis,

so there is some orthogonal matrix P and some upper-triangular matrices T1, T2 such that

Xk = PT1P
>, X−1

k = PT−1
1 P>, C = PT2P

>.

It follows that

Xk+1 =
1

2
P (T1 + T−1

1 T2)P>.

Also recall that the diagonal entries of an upper-triangular matrix are the eigenvalues of that
matrix.

We conjecture that if C has positive eigenvalues, then the Newton sequence converges
starting with any X0 of the form X0 = µIn, with µ > 0.

(8) Implement the above method in Matlab (there is a command kron(A, B) to form the
Kronecker product of A and B). Test your program on diagonalizable and nondiagonalizable
matrices, including

W =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 , A1 =


5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

 ,

and

A2 =


1 0 0 0
−1 0.01 0 0
−1 −1 100 100
−1 −1 −100 100

 , A3 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 , A4 =


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 .

What happens with

C =

(
−1 0
0 −1

)
, X0 =

(
1 −1
1 1

)
.
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The problem of determining when square roots of matrices exist and procedures for
finding them are thoroughly investigated in Higham [42] (Chapter 6).

Problem 5.4. (1) Show that Newton’s method applied to the function

f(x) = α− 1

x

with α 6= 0 and x ∈ R− {0} yields the sequence (xk) with

xk+1 = xk(2− αxk), k ≥ 0.

(2) If we let rk = 1 − αxk, prove that rk+1 = r2
k for all k ≥ 0. Deduce that Newton’s

method converges to 1/α if 0 < αx0 < 2.

Problem 5.5. (1) Show that Newton’s method applied to the matrix function

f(X) = A−X−1,

with A and X invertible n × n matrices and started with any n × n matrix X0 yields the
sequence (Xk) with

Xk+1 = Xk(2I − AXk), k ≥ 0.

(2) If we let Rk = I − AXk, prove that

Rk+1 = I − (I −Rk)(I +Rk) = R2
k

for all k ≥ 0. Deduce that Newton’s method converges to A−1 iff the spectral radius of
I − AX0 is strictly smaller than 1, that is, ρ(I − AX0) < 1.

(3) Assume that A is symmetric positive definite and let X0 = µI. Prove that the
condition ρ(I − AX0) < 1 is equivalent to

0 < µ <
2

ρ(A)
.

(4) Write a Matlab program implementing Newton’s method specified in (1). Test your
program with the n× n matrix

An =


2 −1 0 · · · 0
−1 2 −1 . . . 0
...

. . . . . . . . .
...

0 · · · −1 2 −1
0 · · · 0 −1 2

 ,

and with X0 = µIn, for various values of n, including n = 8, 10, 20, and various values of µ
such that 0 < µ ≤ 1/2. Find some µ > 1/2 causing divergence.
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Problem 5.6. A method for computing the nth root x1/n of a positive real number x ∈ R,
with n ∈ N a positive integer n ≥ 2, proceeds as follows: define the sequence (xk), where x0

is any chosen positive real, and

xk+1 =
1

n

(
(n− 1)xk +

x

xn−1
k

)
, k ≥ 0.

(1) Implement the above method in Matlab and test it for various input values of x, x0,
and of n ≥ 2, by running successively your program for m = 2, 3, . . . , 100 iterations. Have
your program plot the points (i, xi) to watch how quickly the sequence converges.

Experiment with various choices of x0. One of these choices should be x0 = x. Compare
your answers with the result of applying the of Matlab function x 7→ x1/n.

In some case, when x0 is small, the number of iterations has to be at least 1000. Exhibit
this behavior.

Problem 5.7. Refer to Problem 5.6 for the definition of the sequence (xk).

(1) Define the relative error εk as

εk =
xk
x1/n

− 1, k ≥ 0.

Prove that

εk+1 =
x(1−1/n)

nxn−1
k

(
(n− 1)xnk

x
− nxn−1

k

x(1−1/n)
+ 1

)
,

and then that

εk+1 =
1

n(εk + 1)n−1

(
εk(εk + 1)n−2((n− 1)εk + (n− 2)) + 1− (εk + 1)n−2

)
,

for all k ≥ 0.

(2) Since

εk + 1 =
xk
x1/n

,

and since we assumed x0, x > 0, we have ε0 + 1 > 0. We would like to prove that

εk ≥ 0, for all k ≥ 1.

For this consider the variations of the function f given by

f(u) = (n− 1)un − nx1/nun−1 + x,

for u ∈ R.

Use the above to prove that f(u) ≥ 0 for all u ≥ 0. Conclude that

εk ≥ 0, for all k ≥ 1.
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(3) Prove that if n = 2, then

0 ≤ εk+1 =
ε2k

2(εk + 1)
, for all k ≥ 0,

else if n ≥ 3, then

0 ≤ εk+1 ≤
(n− 1)

n
εk, for all k ≥ 1.

Prove that the sequence (xk) converges to x1/n for every initial value x0 > 0.

(4) When n = 2, we saw in Problem 5.7(3) that

0 ≤ εk+1 =
ε2k

2(εk + 1)
, for all k ≥ 0.

For n = 3, prove that

εk+1 =
2ε2k(3/2 + εk)

3(εk + 1)2
, for all k ≥ 0,

and for n = 4, prove that

εk+1 =
3ε2k

4(εk + 1)3

(
2 + (8/3)εk + ε2k

)
, for all k ≥ 0.

Let µ3 and µ4 be the functions given by

µ3(a) =
3

2
+ a

µ4(a) = 2 +
8

3
a+ a2,

so that if n = 3, then

εk+1 =
2ε2kµ3(εk)

3(εk + 1)2
, for all k ≥ 0,

and if n = 4, then

εk+1 =
3ε2kµ4(εk)

4(εk + 1)3
, for all k ≥ 0.

Prove that
aµ3(a) ≤ (a+ 1)2 − 1, for all a ≥ 0,

and
aµ4(a) ≤ (a+ 1)3 − 1, for all a ≥ 0.

Let η3,k = µ3(ε1)εk when n = 3, and η4,k = µ4(ε1)εk when n = 4. Prove that

η3,k+1 ≤
2

3
η2

3,k, for all k ≥ 1,
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and

η4,k+1 ≤
3

4
η2

4,k, for all k ≥ 1.

Deduce from the above that the rate of convergence of ηi,k is very fast, for i = 3, 4 (and
k ≥ 1).

Remark: If we let µ2(a) = a for all a and η2,k = εk, we then proved that

η2,k+1 ≤
1

2
η2

2,k, for all k ≥ 1.

Problem 5.8. This is a continuation of Problem 5.7.

(1) Prove that for all n ≥ 2, we have

εk+1 =

(
n− 1

n

)
ε2kµn(εk)

(εk + 1)n−1
, for all k ≥ 0,

where µn is given by

µn(a) =
1

2
n+

n−4∑
j=1

1

n− 1

(
(n− 1)

(
n− 2

j

)
+ (n− 2)

(
n− 2

j + 1

)
−
(
n− 2

j + 2

))
aj

+
n(n− 2)

n− 1
an−3 + an−2.

Furthermore, prove that µn can be expressed as

µn(a) =
1

2
n+

n(n− 2)

3
a+

n−4∑
j=2

(j + 1)n

(j + 2)(n− 1)

(
n− 1

j + 1

)
aj +

n(n− 2)

n− 1
an−3 + an−2.

(2) Prove that for every j, with 1 ≤ j ≤ n− 1, the coefficient of aj in aµn(a) is less than
or equal to the coefficient of aj in (a+ 1)n−1 − 1, and thus

aµn(a) ≤ (a+ 1)n−1 − 1, for all a ≥ 0,

with strict inequality if n ≥ 3. In fact, prove that if n ≥ 3, then for every j, with 3 ≤ j ≤
n−2, the coefficient of aj in aµn(a) is strictly less than the coefficient of aj in (a+ 1)n−1−1,
and if n ≥ 4, this also holds for j = 2.

Let ηn,k = µn(ε1)εk (n ≥ 2). Prove that

ηn,k+1 ≤
(
n− 1

n

)
η2
n,k, for all k ≥ 1.



Chapter 6

Quadratic Optimization Problems

In this chapter we consider two classes of quadratic optimization problems that appear
frequently in engineering and in computer science (especially in computer vision):

1. Minimizing

Q(x) =
1

2
x>Ax− x>b

over all x ∈ Rn, or subject to linear or affine constraints.

2. Minimizing

Q(x) =
1

2
x>Ax− x>b

over the unit sphere.

In both cases, A is a symmetric matrix. We also seek necessary and sufficient conditions for
Q to have a global minimum.

6.1 Quadratic Optimization: The Positive

Definite Case

Many problems in physics and engineering can be stated as the minimization of some energy
function, with or without constraints. Indeed, it is a fundamental principle of mechanics
that nature acts so as to minimize energy. Furthermore, if a physical system is in a stable
state of equilibrium, then the energy in that state should be minimal. For example, a small
ball placed on top of a sphere is in an unstable equilibrium position. A small motion causes
the ball to roll down. On the other hand, a ball placed inside and at the bottom of a sphere
is in a stable equilibrium position because the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such functions can be
conveniently defined in the form

Q(x) = x>Ax− x>b,

165
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where A is a symmetric n× n matrix and x, b, are vectors in Rn, viewed as column vectors.
Actually, for reasons that will be clear shortly, it is preferable to put a factor 1

2
in front of

the quadratic term, so that

Q(x) =
1

2
x>Ax− x>b.

The question is, under what conditions (on A) does Q(x) have a global minimum, prefer-
ably unique?

We give a complete answer to the above question in two stages:

1. In this section we show that if A is symmetric positive definite, then Q(x) has a unique
global minimum precisely when

Ax = b.

2. In Section 6.2 we give necessary and sufficient conditions in the general case, in terms
of the pseudo-inverse of A.

We begin with the matrix version of Definition 20.2 (Vol. I).

Definition 6.1. A symmetric positive definite matrix is a matrix whose eigenvalues are
strictly positive, and a symmetric positive semidefinite matrix is a matrix whose eigenvalues
are nonnegative.

Equivalent criteria are given in the following proposition.

Proposition 6.1. Given any Euclidean space E of dimension n, the following properties
hold:

(1) Every self-adjoint linear map f : E → E is positive definite iff

〈f(x), x〉 > 0

for all x ∈ E with x 6= 0.

(2) Every self-adjoint linear map f : E → E is positive semidefinite iff

〈f(x), x〉 ≥ 0

for all x ∈ E.

Proof. (1) First assume that f is positive definite. Recall that every self-adjoint linear map
has an orthonormal basis (e1, . . . , en) of eigenvectors, and let λ1, . . . , λn be the corresponding
eigenvalues. With respect to this basis, for every x = x1e1 + · · ·+ xnen 6= 0, we have

〈f(x), x〉 =
〈
f
( n∑
i=1

xiei

)
,

n∑
i=1

xiei

〉
=
〈 n∑

i=1

λixiei,
n∑
i=1

xiei

〉
=

n∑
i=1

λix
2
i ,
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which is strictly positive, since λi > 0 for i = 1, . . . , n, and x2
i > 0 for some i, since x 6= 0.

Conversely, assume that
〈f(x), x〉 > 0

for all x 6= 0. Then for x = ei, we get

〈f(ei), ei〉 = 〈λiei, ei〉 = λi,

and thus λi > 0 for all i = 1, . . . , n.

(2) As in (1), we have

〈f(x), x〉 =
n∑
i=1

λix
2
i ,

and since λi ≥ 0 for i = 1, . . . , n because f is positive semidefinite, we have 〈f(x), x〉 ≥ 0, as
claimed. The converse is as in (1) except that we get only λi ≥ 0 since 〈f(ei), ei〉 ≥ 0.

Some special notation is customary (especially in the field of convex optimization) to
express that a symmetric matrix is positive definite or positive semidefinite.

Definition 6.2. Given any n × n symmetric matrix A we write A � 0 if A is positive
semidefinite and we write A � 0 if A is positive definite.

Remark: It should be noted that we can define the relation

A � B

between any two n×n matrices (symmetric or not) iff A−B is symmetric positive semidef-
inite. It is easy to check that this relation is actually a partial order on matrices, called the
positive semidefinite cone ordering ; for details, see Boyd and Vandenberghe [18], Section 2.4.

If A is symmetric positive definite, it is easily checked that A−1 is also symmetric positive
definite. Also, if C is a symmetric positive definite m×m matrix and A is an m×n matrix of
rank n (and so m ≥ n and the map x 7→ Ax is injective), then A>CA is symmetric positive
definite.

We can now prove that

Q(x) =
1

2
x>Ax− x>b

has a global minimum when A is symmetric positive definite.

Proposition 6.2. Given a quadratic function

Q(x) =
1

2
x>Ax− x>b,

if A is symmetric positive definite, then Q(x) has a unique global minimum for the solution
x0 = A−1b of the linear system Ax = b. The minimum value of Q(x) is

Q(A−1b) = −1

2
b>A−1b.
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Proof. Since A is positive definite, it is invertible since its eigenvalues are all strictly positive.
Let x0 = A−1b, and compute Q(y)−Q(x0) for any y ∈ Rn. Since Ax0 = b, we get

Q(y)−Q(x0) =
1

2
y>Ay − y>b− 1

2
x>0 Ax0 + x>0 b

=
1

2
y>Ay − y>Ax0 +

1

2
x>0 Ax0

=
1

2
(y − x0)>A(y − x0).

Since A is positive definite, the last expression is nonnegative, and thus

Q(y) ≥ Q(x0)

for all y ∈ Rn, which proves that x0 = A−1b is a global minimum of Q(x). A simple
computation yields

Q(A−1b) = −1

2
b>A−1b.

Remarks:

(1) The quadratic function Q(x) is also given by

Q(x) =
1

2
x>Ax− b>x,

but the definition using x>b is more convenient for the proof of Proposition 6.2.

(2) If Q(x) contains a constant term c ∈ R, so that

Q(x) =
1

2
x>Ax− x>b+ c,

the proof of Proposition 6.2 still shows that Q(x) has a unique global minimum for
x = A−1b, but the minimal value is

Q(A−1b) = −1

2
b>A−1b+ c.

Thus when the energy function Q(x) of a system is given by a quadratic function

Q(x) =
1

2
x>Ax− x>b,

where A is symmetric positive definite, finding the global minimum of Q(x) is equivalent to
solving the linear system Ax = b. Sometimes, it is useful to recast a linear problem Ax = b
as a variational problem (finding the minimum of some energy function). However, very
often, a minimization problem comes with extra constraints that must be satisfied for all
admissible solutions.
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Example 6.1. For instance, we may want to minimize the quadratic function

Q(x1, x2) =
1

2

(
x2

1 + x2
2

)
subject to the constraint

2x1 − x2 = 5.

The solution for which Q(x1, x2) is minimum is no longer (x1, x2) = (0, 0), but instead,
(x1, x2) = (2,−1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(x1, x2) in R3 is a paraboloid
of revolution P with axis of revolution Oz. The constraint

2x1 − x2 = 5

corresponds to the vertical plane H parallel to the z-axis and containing the line of equation
2x1 − x2 = 5 in the xy-plane. Thus, as illustrated by Figure 6.1, the constrained minimum
of Q is located on the parabola that is the intersection of the paraboloid P with the plane
H.

A nice way to solve constrained minimization problems of the above kind is to use the
method of Lagrange multipliers discussed in Section 4.1. But first let us define precisely
what kind of minimization problems we intend to solve.

Definition 6.3. The quadratic constrained minimization problem consists in minimizing a
quadratic function

Q(x) =
1

2
x>A−1x− b>x

subject to the linear constraints
B>x = f,

where A−1 is an m×m symmetric positive definite matrix, B is an m× n matrix of rank n
(so that m ≥ n), and where b, x ∈ Rm (viewed as column vectors), and f ∈ Rn (viewed as a
column vector).

The reason for using A−1 instead of A is that the constrained minimization problem has
an interpretation as a set of equilibrium equations in which the matrix that arises naturally
is A (see Strang [76]). Since A and A−1 are both symmetric positive definite, this doesn’t
make any difference, but it seems preferable to stick to Strang’s notation.

In Example 6.1 we have m = 2, n = 1,

A =

(
1 0
0 1

)
= I2, b =

(
0
0

)
, B =

(
2
−1

)
, f = 5.

As explained in Section 4.1, the method of Lagrange multipliers consists in incorporating
the n constraints B>x = f into the quadratic function Q(x), by introducing extra variables
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Figure 6.1: Two views of the constrained optimization problem Q(x1, x2) = 1
2

(
x2

1 + x2
2

)
subject to the constraint 2x1 − x2 = 5. The minimum (x1, x2) = (2,−1) is the the vertex of
the parabolic curve formed the intersection of the magenta planar constraint with the bowl
shaped surface.

λ = (λ1, . . . , λn) called Lagrange multipliers , one for each constraint. We form the Lagrangian

L(x, λ) = Q(x) + λ>(B>x− f) =
1

2
x>A−1x− (b−Bλ)>x− λ>f.

We know from Theorem 4.2 that a necessary condition for our constrained optimization
problem to have a solution is that ∇L(x, λ) = 0. Since

∂L

∂x
(x, λ) = A−1x− (b−Bλ)

∂L

∂λ
(x, λ) = B>x− f,

we obtain the system of linear equations

A−1x+Bλ = b,

B>x = f,
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which can be written in matrix form as(
A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
.

We shall prove in Proposition 6.3 below that our constrained minimization problem has a
unique solution actually given by the above system.

Note that the matrix of this system is symmetric. We solve it as follows. Eliminating x
from the first equation

A−1x+Bλ = b,

we get
x = A(b−Bλ),

and substituting into the second equation, we get

B>A(b−Bλ) = f,

that is,
B>ABλ = B>Ab− f.

However, by a previous remark, since A is symmetric positive definite and the columns of
B are linearly independent, B>AB is symmetric positive definite, and thus invertible. Thus
we obtain the solution

λ = (B>AB)−1(B>Ab− f), x = A(b−Bλ).

Note that this way of solving the system requires solving for the Lagrange multipliers first.

Letting e = b−Bλ, we also note that the system(
A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
is equivalent to the system

e = b−Bλ,
x = Ae,

B>x = f.

The latter system is called the equilibrium equations by Strang [76]. Indeed, Strang shows
that the equilibrium equations of many physical systems can be put in the above form. This
includes spring-mass systems, electrical networks and trusses, which are structures built from
elastic bars. In each case, x, e, b, A, λ, f , and K = B>AB have a physical interpretation.
The matrix K = B>AB is usually called the stiffness matrix . Again, the reader is referred
to Strang [76].
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In order to prove that our constrained minimization problem has a unique solution, we
proceed to prove that the constrained minimization of Q(x) subject to B>x = f is equivalent
to the unconstrained maximization of another function −G(λ). We get G(λ) by minimizing
the Lagrangian L(x, λ) treated as a function of x alone. The function −G(λ) is the dual
function of the Lagrangian L(x, λ). Here we are encountering a special case of the notion of
dual function defined in Section 14.7.

Since A−1 is symmetric positive definite and

L(x, λ) =
1

2
x>A−1x− (b−Bλ)>x− λ>f,

by Proposition 6.2 the global minimum (with respect to x) of L(x, λ) is obtained for the
solution x of

A−1x = b−Bλ,
that is, when

x = A(b−Bλ),

and the minimum of L(x, λ) is

min
x
L(x, λ) = −1

2
(Bλ− b)>A(Bλ− b)− λ>f.

Letting

G(λ) =
1

2
(Bλ− b)>A(Bλ− b) + λ>f,

we will show in Proposition 6.3 that the solution of the constrained minimization of Q(x)
subject to B>x = f is equivalent to the unconstrained maximization of −G(λ). This is a
special case of the duality discussed in Section 14.7.

Of course, since we minimized L(x, λ) with respect to x, we have

L(x, λ) ≥ −G(λ)

for all x and all λ. However, when the constraint B>x = f holds, L(x, λ) = Q(x), and thus
for any admissible x, which means that B>x = f , we have

min
x
Q(x) ≥ max

λ
−G(λ).

In order to prove that the unique minimum of the constrained problem Q(x) subject to
B>x = f is the unique maximum of −G(λ), we compute Q(x) +G(λ).

Proposition 6.3. The quadratic constrained minimization problem of Definition 6.3 has a
unique solution (x, λ) given by the system(

A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
.

Furthermore, the component λ of the above solution is the unique value for which −G(λ) is
maximum.
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Proof. As we suggested earlier, let us compute Q(x) + G(λ), assuming that the constraint
B>x = f holds. Eliminating f , since b>x = x>b and λ>B>x = x>Bλ, we get

Q(x) +G(λ) =
1

2
x>A−1x− b>x+

1

2
(Bλ− b)>A(Bλ− b) + λ>f

=
1

2
(A−1x+Bλ− b)>A(A−1x+Bλ− b).

Since A is positive definite, the last expression is nonnegative. In fact, it is null iff

A−1x+Bλ− b = 0,

that is,
A−1x+Bλ = b.

But then the unique constrained minimum of Q(x) subject to B>x = f is equal to the
unique maximum of −G(λ) exactly when B>x = f and A−1x + Bλ = b, which proves the
proposition.

We can confirm that the maximum of −G(λ), or equivalently the minimum of

G(λ) =
1

2
(Bλ− b)>A(Bλ− b) + λ>f,

corresponds to value of λ obtained by solving the system(
A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
.

Indeed, since

G(λ) =
1

2
λ>B>ABλ− λ>B>Ab+ λ>f +

1

2
b>b,

and B>AB is symmetric positive definite, by Proposition 6.2, the global minimum of G(λ)
is obtained when

B>ABλ−B>Ab+ f = 0,

that is, λ = (B>AB)−1(B>Ab− f), as we found earlier.

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimization
of Q(x) subject to B>x = f is called the primal problem, and the unconstrained
maximization of −G(λ) is called the dual problem. Duality is the fact stated slightly
loosely as

min
x
Q(x) = max

λ
−G(λ).

A general treatment of duality in constrained minimization problems is given in Section
14.7.
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Recalling that e = b−Bλ, since

G(λ) =
1

2
(Bλ− b)>A(Bλ− b) + λ>f,

we can also write

G(λ) =
1

2
e>Ae+ λ>f.

This expression often represents the total potential energy of a system. Again, the
optimal solution is the one that minimizes the potential energy (and thus maximizes
−G(λ)).

(2) It is immediately verified that the equations of Proposition 6.3 are equivalent to the
equations stating that the partial derivatives of the Lagrangian L(x, λ) are null:

∂L

∂xi
= 0, i = 1, . . . ,m,

∂L

∂λj
= 0, j = 1, . . . , n.

Thus, the constrained minimum of Q(x) subject to B>x = f is an extremum of the
Lagrangian L(x, λ). As we showed in Proposition 6.3, this extremum corresponds
to simultaneously minimizing L(x, λ) with respect to x and maximizing L(x, λ) with
respect to λ. Geometrically, such a point is a saddle point for L(x, λ). Saddle points
are discussed in Section 14.7.

(3) The Lagrange multipliers sometimes have a natural physical meaning. For example, in
the spring-mass system they correspond to node displacements. In some general sense,
Lagrange multipliers are correction terms needed to satisfy equilibrium equations and
the price paid for the constraints. For more details, see Strang [76].

Going back to the constrained minimization of Q(x1, x2) = 1
2
(x2

1 + x2
2) subject to

2x1 − x2 = 5,

the Lagrangian is

L(x1, x2, λ) =
1

2

(
x2

1 + x2
2

)
+ λ(2x1 − x2 − 5),

and the equations stating that the Lagrangian has a saddle point are

x1 + 2λ = 0,

x2 − λ = 0,

2x1 − x2 − 5 = 0.

We obtain the solution (x1, x2, λ) = (2,−1,−1).
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The use of Lagrange multipliers in optimization and variational problems is discussed
extensively in Chapter 14.

Least squares methods and Lagrange multipliers are used to tackle many problems in
computer graphics and computer vision; see Trucco and Verri [79], Metaxas [55], Jain, Kat-
suri, and Schunck [44], Faugeras [32], and Foley, van Dam, Feiner, and Hughes [33].

6.2 Quadratic Optimization: The General Case

In this section we complete the study initiated in Section 6.1 and give necessary and sufficient
conditions for the quadratic function 1

2
x>Ax − x>b to have a global minimum. We begin

with the following simple fact:

Proposition 6.4. If A is an invertible symmetric matrix, then the function

f(x) =
1

2
x>Ax− x>b

has a minimum value iff A � 0, in which case this optimal value is obtained for a unique
value of x, namely x∗ = A−1b, and with

f(A−1b) = −1

2
b>A−1b.

Proof. Observe that

1

2
(x− A−1b)>A(x− A−1b) =

1

2
x>Ax− x>b+

1

2
b>A−1b.

Thus,

f(x) =
1

2
x>Ax− x>b =

1

2
(x− A−1b)>A(x− A−1b)− 1

2
b>A−1b.

If A has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector u of
A associated with λ, then for any α ∈ R with α 6= 0, if we let x = αu + A−1b, then since
Au = −λu, we get

f(x) =
1

2
(x− A−1b)>A(x− A−1b)− 1

2
b>A−1b

=
1

2
αu>Aαu− 1

2
b>A−1b

= −1

2
α2λ ‖u‖2

2 −
1

2
b>A−1b,

and since α can be made as large as we want and λ > 0, we see that f has no minimum.
Consequently, in order for f to have a minimum, we must have A � 0. If A � 0, since A is
invertible, it is positive definite, so (x− A−1b)>A(x− A−1b) > 0 iff x− A−1b 6= 0, and it is
clear that the minimum value of f is achieved when x− A−1b = 0, that is, x = A−1b.
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Let us now consider the case of an arbitrary symmetric matrix A.

Proposition 6.5. If A is an n× n symmetric matrix, then the function

f(x) =
1

2
x>Ax− x>b

has a minimum value iff A � 0 and (I − AA+)b = 0, in which case this minimum value is

p∗ = −1

2
b>A+b.

Furthermore, if A is diagonalized as A = U>ΣU (with U orthogonal), then the optimal value
is achieved by all x ∈ Rn of the form

x = A+b+ U>
(

0
z

)
,

for any z ∈ Rn−r, where r is the rank of A.

Proof. The case that A is invertible is taken care of by Proposition 6.4, so we may assume
that A is singular. If A has rank r < n, then we can diagonalize A as

A = U>
(

Σr 0
0 0

)
U,

where U is an orthogonal matrix and where Σr is an r× r diagonal invertible matrix. Then
we have

f(x) =
1

2
x>U>

(
Σr 0
0 0

)
Ux− x>U>Ub

=
1

2
(Ux)>

(
Σr 0
0 0

)
Ux− (Ux)>Ub.

If we write

Ux =

(
y
z

)
and Ub =

(
c
d

)
,

with y, c ∈ Rr and z, d ∈ Rn−r, we get

f(x) =
1

2
(Ux)>

(
Σr 0
0 0

)
Ux− (Ux)>Ub

=
1

2
(y> z>)

(
Σr 0
0 0

)(
y
z

)
− (y> z>)

(
c
d

)
=

1

2
y>Σry − y>c− z>d.
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For y = 0, we get
f(x) = −z>d,

so if d 6= 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that

Ub =

(
c
0

)
,

and we know from Proposition 21.5 (Vol. I) that b is in the range of A (here, U is V >),
which is equivalent to (I − AA+)b = 0. If d = 0, then

f(x) =
1

2
y>Σry − y>c.

Consider the function g : Rr → R given by

g(y) =
1

2
y>Σry − y>c, y ∈ Rr.

Since (
y
z

)
= U>x

and U> is invertible (with inverse U), when x ranges over Rn, y ranges over the whole of
Rr, and since f(x) = g(y), the function f has a minimum iff g has a minimum. Since Σr is
invertible, by Proposition 6.4, the function g has a minimum iff Σr � 0, which is equivalent
to A � 0.

Therefore, we have proven that if f has a minimum, then (I − AA+)b = 0 and A � 0.
Conversely, if (I − AA+)b = 0, then((

Ir 0
0 In−r

)
− U>

(
Σr 0
0 0

)
UU>

(
Σ−1
r 0
0 0

)
U

)
b =

((
Ir 0
0 In−r

)
− U>

(
Ir 0
0 0

)
U

)
b

= U>
(

0 0
0 In−r

)
Ub = 0,

which implies that if

Ub =

(
c
d

)
,

then d = 0, so as above

f(x) = g(y) =
1

2
y>Σry − y>c,

and because A � 0, we also have Σr � 0, so g and f have a minimum.

When the above conditions hold, since

A = U>
(

Σr 0
0 0

)
U
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is positive semidefinite, the pseudo-inverse A+ of A is given by

A+ = U>
(

Σ−1
r 0
0 0

)
U,

and since

f(x) = g(y) =
1

2
y>Σry − y>c,

by Proposition 6.4 the minimum of g is achieved iff y∗ = Σ−1
r c. Since f(x) is independent of

z, we can choose z = 0, and since d = 0, for x∗ given by

Ux∗ =

(
Σ−1
r c
0

)
and Ub =

(
c
0

)
,

we deduce that

x∗ = U>
(

Σ−1
r c
0

)
= U>

(
Σ−1
r 0
0 0

)(
c
0

)
= U>

(
Σ−1
r 0
0 0

)
Ub = A+b, (∗)

and the minimum value of f is

f(x∗) =
1

2
(A+b)>AA+b− b>A+b =

1

2
b>A+AA+b− b>A+b = −1

2
b>A+b,

since A+ is symmetric and A+AA+ = A+. For any x ∈ Rn of the form

x = A+b+ U>
(

0
z

)
, z ∈ Rn−r,

since

x = A+b+ U>
(

0
z

)
= U>

(
Σ−1
r c
0

)
+ U>

(
0
z

)
= U>

(
Σ−1
r c
z

)
,

and since f(x) is independent of z (because f(x) = g(y)), we have

f(x) = f(x∗) = −1

2
b>A+b.

The problem of minimizing the function

f(x) =
1

2
x>Ax− x>b

in the case where we add either linear constraints of the form C>x = 0 or affine constraints
of the form C>x = t (where t ∈ Rm and t 6= 0) where C is an n×m matrix can be reduced
to the unconstrained case using a QR-decomposition of C. Let us show how to do this for
linear constraints of the form C>x = 0.
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If we use a QR decomposition of C, by permuting the columns of C to make sure that
the first r columns of C are linearly independent (where r = rank(C)), we may assume that

C = Q>
(
R S
0 0

)
Π,

where Q is an n× n orthogonal matrix, R is an r × r invertible upper triangular matrix, S
is an r × (m− r) matrix, and Π is a permutation matrix (C has rank r). Then if we let

x = Q>
(
y
z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

C>x = Π>
(
R> 0
S> 0

)
Qx = Π>

(
R> 0
S> 0

)(
y
z

)
= 0,

which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0
z

)
.

Our original problem becomes

minimize
1

2
(y> z>)QAQ>

(
y
z

)
+ (y> z>)Qb

subject to y = 0, y ∈ Rr, z ∈ Rn−r.

Thus, the constraint C>x = 0 has been simplified to y = 0, and if we write

QAQ> =

(
G11 G12

G21 G22

)
,

where G11 is an r × r matrix and G22 is an (n− r)× (n− r) matrix and

Qb =

(
b1

b2

)
, b1 ∈ Rr, b2 ∈ Rn−r,

our problem becomes

minimize
1

2
z>G22z + z>b2, z ∈ Rn−r,

the problem solved in Proposition 6.5.

Constraints of the form C>x = t (where t 6= 0) can be handled in a similar fashion. In
this case, we may assume that C is an n × m matrix with full rank (so that m ≤ n) and
t ∈ Rm. Then we use a QR-decomposition of the form

C = P

(
R
0

)
,
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where P is an orthogonal n×n matrix and R is an m×m invertible upper triangular matrix.
If we write

x = P

(
y
z

)
,

where y ∈ Rm and z ∈ Rn−m, the equation C>x = t becomes

(R> 0)P>x = t,

that is,

(R> 0)

(
y
z

)
= t,

which yields

R>y = t.

Since R is invertible, we get y = (R>)−1t, and then it is easy to see that our original problem
reduces to an unconstrained problem in terms of the matrix P>AP ; the details are left as
an exercise.

6.3 Maximizing a Quadratic Function on the

Unit Sphere

In this section we discuss various quadratic optimization problems mostly arising from com-
puter vision (image segmentation and contour grouping). These problems can be reduced to
the following basic optimization problem: given an n× n real symmetric matrix A

maximize x>Ax

subject to x>x = 1, x ∈ Rn.

In view of Proposition 21.10 (Vol. I), the maximum value of x>Ax on the unit sphere is
equal to the largest eigenvalue λ1 of the matrix A, and it is achieved for any unit eigenvector
u1 associated with λ1. Similarly, the minimum value of x>Ax on the unit sphere is equal to
the smallest eigenvalue λn of the matrix A, and it is achieved for any unit eigenvector un
associated with λn.

A variant of the above problem often encountered in computer vision consists in mini-
mizing x>Ax on the ellipsoid given by an equation of the form

x>Bx = 1,

where B is a symmetric positive definite matrix. Since B is positive definite, it can be
diagonalized as

B = QDQ>,
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where Q is an orthogonal matrix and D is a diagonal matrix,

D = diag(d1, . . . , dn),

with di > 0, for i = 1, . . . , n. If we define the matrices B1/2 and B−1/2 by

B1/2 = Q diag
(√

d1, . . . ,
√
dn

)
Q>

and
B−1/2 = Q diag

(
1/
√
d1, . . . , 1/

√
dn

)
Q>,

it is clear that these matrices are symmetric, that B−1/2BB−1/2 = I, and that B1/2 and
B−1/2 are mutual inverses. Then if we make the change of variable

x = B−1/2y,

the equation x>Bx = 1 becomes y>y = 1, and the optimization problem

minimize x>Ax

subject to x>Bx = 1, x ∈ Rn,

is equivalent to the problem

minimize y>B−1/2AB−1/2y

subject to y>y = 1, y ∈ Rn,

where y = B1/2x and B−1/2AB−1/2 are symmetric.

The complex version of our basic optimization problem in which A is a Hermitian matrix
also arises in computer vision. Namely, given an n× n complex Hermitian matrix A,

maximize x∗Ax

subject to x∗x = 1, x ∈ Cn.

Again by Proposition 21.10 (Vol. I), the maximum value of x∗Ax on the unit sphere is
equal to the largest eigenvalue λ1 of the matrix A, and it is achieved for any unit eigenvector
u1 associated with λ1.

Remark: It is worth pointing out that if A is a skew-Hermitian matrix, that is, if A∗ = −A,
then x∗Ax is pure imaginary or zero.

Indeed, since z = x∗Ax is a scalar, we have z∗ = z (the conjugate of z), so we have

x∗Ax = (x∗Ax)∗ = x∗A∗x = −x∗Ax,

so x∗Ax+ x∗Ax = 2Re(x∗Ax) = 0, which means that x∗Ax is pure imaginary or zero.
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In particular, if A is a real matrix and if A is skew-symmetric, then

x>Ax = 0.

Thus, for any real matrix (symmetric or not),

x>Ax = x>H(A)x,

where H(A) = (A+ A>)/2, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the problem
of maximizing a quadratic function on the sphere. This problem was completely solved by
Golub [37] (1973). The problem is the following: given an n × n real symmetric matrix A
and an n× p matrix C,

minimize x>Ax

subject to x>x = 1, C>x = 0, x ∈ Rn.

As in Section 6.2, Golub shows that the linear constraint C>x = 0 can be eliminated as
follows: if we use a QR decomposition of C, by permuting the columns, we may assume that

C = Q>
(
R S
0 0

)
Π,

where Q is an orthogonal n×n matrix, R is an r× r invertible upper triangular matrix, and
S is an r × (p− r) matrix (assuming C has rank r). If we let

x = Q>
(
y
z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

Π>
(
R> 0
S> 0

)
Qx = Π>

(
R> 0
S> 0

)(
y
z

)
= 0,

which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0
z

)
.

Our original problem becomes

minimize (y> z>)QAQ>
(
y
z

)
subject to z>z = 1, z ∈ Rn−r,

y = 0, y ∈ Rr.



6.3. MAXIMIZING A QUADRATIC FUNCTION ON THE UNIT SPHERE 183

Thus the constraint C>x = 0 has been simplified to y = 0, and if we write

QAQ> =

(
G11 G12

G>12 G22

)
,

our problem becomes

minimize z>G22z

subject to z>z = 1, z ∈ Rn−r,

a standard eigenvalue problem.

Remark: There is a way of finding the eigenvalues of G22 which does not require the QR-
factorization of C. Observe that if we let

J =

(
0 0
0 In−r

)
,

then

JQAQ>J =

(
0 0
0 G22

)
,

and if we set
P = Q>JQ,

then
PAP = Q>JQAQ>JQ.

Now, Q>JQAQ>JQ and JQAQ>J have the same eigenvalues, so PAP and JQAQ>J also
have the same eigenvalues. It follows that the solutions of our optimization problem are
among the eigenvalues of K = PAP , and at least r of those are 0. Using the fact that CC+

is the projection onto the range of C, where C+ is the pseudo-inverse of C, it can also be
shown that

P = I − CC+,

the projection onto the kernel of C>. So P can be computed directly in terms of C. In
particular, when n ≥ p and C has full rank (the columns of C are linearly independent),
then we know that C+ = (C>C)−1C> and

P = I − C(C>C)−1C>.

This fact is used by Cour and Shi [26] and implicitly by Yu and Shi [83].

The problem of adding affine constraints of the form N>x = t, where t 6= 0, also comes
up in practice. At first glance, this problem may not seem harder than the linear problem in
which t = 0, but it is. This problem was extensively studied in a paper by Gander, Golub,
and von Matt [36] (1989).
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Gander, Golub, and von Matt consider the following problem: Given an (n+m)×(n+m)
real symmetric matrix A (with n > 0), an (n+m)×m matrix N with full rank, and a nonzero
vector t ∈ Rm with

∥∥(N>)+t
∥∥ < 1 (where (N>)+ denotes the pseudo-inverse of N>),

minimize x>Ax

subject to x>x = 1, N>x = t, x ∈ Rn+m.

The condition
∥∥(N>)+t

∥∥ < 1 ensures that the problem has a solution and is not trivial.
The authors begin by proving that the affine constraint N>x = t can be eliminated. One
way to do so is to use a QR decomposition of N . If

N = P

(
R
0

)
,

where P is an orthogonal (n + m) × (n + m) matrix and R is an m × m invertible upper
triangular matrix, then if we observe that

x>Ax = x>PP>APP>x,

N>x = (R> 0)P>x = t,

x>x = x>PP>x = 1,

and if we write

P>AP =

(
B Γ>

Γ C

)
,

where B is an m ×m symmetric matrix, C is an n × n symmetric matrix, Γ is an m × n
matrix, and

P>x =

(
y
z

)
,

with y ∈ Rm and z ∈ Rn, we then get

x>Ax = y>By + 2z>Γy + z>Cz,

R>y = t,

y>y + z>z = 1.

Thus

y = (R>)−1t,

and if we write

s2 = 1− y>y > 0

and

b = Γy,
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we get the simplified problem

minimize z>Cz + 2z>b

subject to z>z = s2, z ∈ Rm.

Unfortunately, if b 6= 0, Proposition 21.10 (Vol. I) is no longer applicable. It is still
possible to find the minimum of the function z>Cz + 2z>b using Lagrange multipliers, but
such a solution is too involved to be presented here. Interested readers will find a thorough
discussion in Gander, Golub, and von Matt [36].

6.4 Summary

The main concepts and results of this chapter are listed below:

• Quadratic optimization problems; quadratic functions .

• Symmetric positive definite and positive semidefinite matrices.

• The positive semidefinite cone ordering .

• Existence of a global minimum when A is symmetric positive definite.

• Constrained quadratic optimization problems.

• Lagrange multipliers ; Lagrangian.

• Primal and dual problems.

• Quadratic optimization problems: the case of a symmetric invertible matrix A.

• Quadratic optimization problems: the general case of a symmetric matrix A.

• Adding linear constraints of the form C>x = 0.

• Adding affine constraints of the form C>x = t, with t 6= 0.

• Maximizing a quadratic function over the unit sphere.

• Maximizing a quadratic function over an ellipsoid.

• Maximizing a Hermitian quadratic form.

• Adding linear constraints of the form C>x = 0.

• Adding affine constraints of the form N>x = t, with t 6= 0.
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6.5 Problems

Problem 6.1. Prove that the relation

A � B

between any two n×nmatrices (symmetric or not) iff A−B is symmetric positive semidefinite
is indeed a partial order.

Problem 6.2. (1) Prove that if A is symmetric positive definite, then so is A−1.

(2) Prove that if C is a symmetric positive definite m × m matrix and A is an m × n
matrix of rank n (and so m ≥ n and the map x 7→ Ax is injective), then A>CA is symmetric
positive definite.

Problem 6.3. Find the minimum of the function

Q(x1, x2) =
1

2
(2x2

1 + x2
2)

subject to the constraint
x1 − x2 = 3.

Problem 6.4. Consider the problem of minimizing the function

f(x) =
1

2
x>Ax− x>b

in the case where we add an affine constraint of the form C>x = t, with t ∈ Rm and t 6= 0,
and where C is an n×m matrix of rank m ≤ n. As in Section 6.2, use a QR-decomposition

C = P

(
R
0

)
,

where P is an orthogonal n×n matrix and R is an m×m invertible upper triangular matrix,
and write

x = P

(
y
z

)
,

to deduce that
R>y = t.

Give the details of the reduction of this constrained minimization problem to an uncon-
strained minimization problem involving the matrix P>AP .

Problem 6.5. Find the maximum and the minimum of the function

Q(x, y) =
(
x y

)(1 2
2 1

)(
x
y

)
on the unit circle x2 + y2 = 1.



Chapter 7

Schur Complements and Applications

Schur complements arise naturally in the process of inverting block matrices of the form

M =

(
A B
C D

)
and in characterizing when symmetric versions of these matrices are positive definite or
positive semidefinite. These characterizations come up in various quadratic optimization
problems; see Boyd and Vandenberghe [18], especially Appendix B. In the most general
case, pseudo-inverses are also needed.

In this chapter we introduce Schur complements and describe several interesting ways in
which they are used. Along the way we provide some details and proofs of some results from
Appendix A.5 (especially Section A.5.5) of Boyd and Vandenberghe [18].

7.1 Schur Complements

Let M be an n× n matrix written as a 2× 2 block matrix

M =

(
A B
C D

)
,

where A is a p× p matrix and D is a q × q matrix, with n = p + q (so B is a p× q matrix
and C is a q × p matrix). We can try to solve the linear system(

A B
C D

)(
x
y

)
=

(
c
d

)
,

that is,

Ax+By = c,

Cx+Dy = d,
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by mimicking Gaussian elimination. If we assume that D is invertible, then we first solve
for y, getting

y = D−1(d− Cx),

and after substituting this expression for y in the first equation, we get

Ax+B(D−1(d− Cx)) = c,

that is,
(A−BD−1C)x = c−BD−1d.

If the matrix A−BD−1C is invertible, then we obtain the solution to our system

x = (A−BD−1C)−1(c−BD−1d),

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)).

If A is invertible, then by eliminating x first using the first equation, we obtain analogous
formulas involving the matrix D − CA−1B. The above formulas suggest that the matrices
A−BD−1C and D − CA−1B play a special role and suggest the following definition:

Definition 7.1. Given any n× n block matrix of the form

M =

(
A B
C D

)
,

where A is a p× p matrix and D is a q × q matrix, with n = p + q (so B is a p× q matrix
and C is a q × p matrix), if D is invertible, then the matrix A−BD−1C is called the Schur
complement of D in M . If A is invertible, then the matrix D − CA−1B is called the Schur
complement of A in M .

The above equations written as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d,

y = −D−1C(A−BD−1C)−1c

+ (D−1 +D−1C(A−BD−1C)−1BD−1)d,

yield a formula for the inverse of M in terms of the Schur complement of D in M , namely(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

A moment of reflection reveals that(
A B
C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
,

and then (
A B
C D

)−1

=

(
I 0

−D−1C I

)(
(A−BD−1C)−1 0

0 D−1

)(
I −BD−1

0 I

)
.

By taking inverses, we obtain the following result.
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Proposition 7.1. If the matrix D is invertible, then(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

The above expression can be checked directly and has the advantage of requiring only
the invertibility of D.

Remark: If A is invertible, then we can use the Schur complement D − CA−1B of A to
obtain the following factorization of M :(

A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

If D − CA−1B is invertible, we can invert all three matrices above, and we get another
formula for the inverse of M in terms of (D − CA−1B), namely,

(
A B
C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

If A,D and both Schur complements A − BD−1C and D − CA−1B are all invertible, by
comparing the two expressions for M−1, we get the (non-obvious) formula

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.

Using this formula, we obtain another expression for the inverse of M involving the Schur
complements of A and D (see Horn and Johnson [43]):

Proposition 7.2. If A,D and both Schur complements A − BD−1C and D − CA−1B are
all invertible, then(

A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

If we set D = I and change B to −B, we get

(A+BC)−1 = A−1 − A−1B(I − CA−1B)−1CA−1,

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [18], Appendix
C.4, especially C.4.3).
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7.2 Symmetric Positive Definite Matrices and

Schur Complements

If we assume that our block matrix M is symmetric, so that A,D are symmetric and C = B>,
then we see by Proposition 7.1 that M is expressed as

M =

(
A B
B> D

)
=

(
I BD−1

0 I

)(
A−BD−1B> 0

0 D

)(
I BD−1

0 I

)>
,

which shows that M is similar to a block diagonal matrix (obviously, the Schur complement,
A − BD−1B>, is symmetric). As a consequence, we have the following version of “Schur’s
trick” to check whether M � 0 for a symmetric matrix.

Proposition 7.3. For any symmetric matrix M of the form

M =

(
A B
B> C

)
,

if C is invertible, then the following properties hold:

(1) M � 0 iff C � 0 and A−BC−1B> � 0.

(2) If C � 0, then M � 0 iff A−BC−1B> � 0.

Proof. (1) Since C is invertible, we have

M =

(
A B
B> C

)
=

(
I BC−1

0 I

)(
A−BC−1B> 0

0 C

)(
I BC−1

0 I

)>
. (∗)

Observe that (
I BC−1

0 I

)−1

=

(
I −BC−1

0 I

)
,

so (∗) yields(
I −BC−1

0 I

)(
A B
B> C

)(
I −BC−1

0 I

)>
=

(
A−BC−1B> 0

0 C

)
,

and we know that for any symmetric matrix T , here T = M , and any invertible matrix N ,
here

N =

(
I −BC−1

0 I

)
,

the matrix T is positive definite (T � 0) iff NTN> (which is obviously symmetric) is positive
definite (NTN> � 0). But a block diagonal matrix is positive definite iff each diagonal block
is positive definite, which concludes the proof.

(2) This is because for any symmetric matrix T and any invertible matrix N , we have
T � 0 iff NTN> � 0.
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Another version of Proposition 7.3 using the Schur complement of A instead of the
Schur complement of C also holds. The proof uses the factorization of M using the Schur
complement of A (see Section 7.1).

Proposition 7.4. For any symmetric matrix M of the form

M =

(
A B
B> C

)
,

if A is invertible then the following properties hold:

(1) M � 0 iff A � 0 and C −B>A−1B � 0.

(2) If A � 0, then M � 0 iff C −B>A−1B � 0.

Here is an illustration of Proposition 7.4(2). Consider the nonlinear quadratic constraint

(Ax+ b)>(Ax+ b) ≤ c>x+ d,

were A ∈ Mn(R), x, b, c ∈ Rn and d ∈ R. Since obviously I = In is invertible and I � 0, we
have (

I Ax+ b
(Ax+ b)> c>x+ d

)
� 0

iff c>x + d − (Ax + b)>(Ax + b) � 0 iff (Ax + b)>(Ax + b) ≤ c>x + d, since the matrix (a
scalar) c>x+ d− (Ax+ b)>(Ax+ b) is the Schur complement of I in the above matrix.

The trick of using Schur complements to convert nonlinear inequality constraints into
linear constraints on symmetric matrices involving the semidefinite ordering � is used exten-
sively to convert nonlinear problems into semidefinite programs; see Boyd and Vandenberghe
[18].

When C is singular (or A is singular), it is still possible to characterize when a symmetric
matrix M as above is positive semidefinite, but this requires using a version of the Schur
complement involving the pseudo-inverse of C, namely A − BC+B> (or the Schur comple-
ment, C − B>A+B, of A). We use the criterion of Proposition 6.5, which tells us when a
quadratic function of the form 1

2
x>Px− x>b has a minimum and what this optimum value

is (where P is a symmetric matrix).

7.3 Symmetric Positive Semidefinite Matrices and

Schur Complements

We now return to our original problem, characterizing when a symmetric matrix

M =

(
A B
B> C

)
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is positive semidefinite. Thus, we want to know when the function

f(x, y) = (x> y>)

(
A B
B> C

)(
x
y

)
= x>Ax+ 2x>By + y>Cy

has a minimum with respect to both x and y. If we hold y constant, Proposition 6.5 implies
that f(x, y) has a minimum iff A � 0 and (I − AA+)By = 0, and then the minimum value
is

f(x∗, y) = −y>B>A+By + y>Cy = y>(C −B>A+B)y.

Since we want f(x, y) to be uniformly bounded from below for all x, y, we must have (I −
AA+)B = 0. Now f(x∗, y) has a minimum iff C − B>A+B � 0. Therefore, we have
established that f(x, y) has a minimum over all x, y iff

A � 0, (I − AA+)B = 0, C −B>A+B � 0.

Similar reasoning applies if we first minimize with respect to y and then with respect to x,
but this time, the Schur complement A − BC+B> of C is involved. Putting all these facts
together, we get our main result:

Theorem 7.5. Given any symmetric matrix

M =

(
A B
B> C

)
the following conditions are equivalent:

(1) M � 0 (M is positive semidefinite).

(2) A � 0, (I − AA+)B = 0, C −B>A+B � 0.

(3) C � 0, (I − CC+)B> = 0, A−BC+B> � 0.

If M � 0 as in Theorem 7.5, then it is easy to check that we have the following factor-
izations (using the fact that A+AA+ = A+ and C+CC+ = C+):(

A B
B> C

)
=

(
I BC+

0 I

)(
A−BC+B> 0

0 C

)(
I 0

C+B> I

)
and (

A B
B> C

)
=

(
I 0

B>A+ I

)(
A 0
0 C −B>A+B

)(
I A+B
0 I

)
.
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7.4 Summary

The main concepts and results of this chapter are listed below:

• Schur complements.

• The matrix inversion lemma.

• Symmetric positive definite matrices and Schur complements.

• Symmetric positive semidefinite matrices and Schur complements.

7.5 Problems

Problem 7.1. Prove that maximizing the function g(λ) given by

g(λ) = c0 + λc1 − (b0 + λb1)>(A0 + λA1)+(b0 + λb1),

subject to
A0 + λA1 � 0, b0 + λb1 ∈ range(A0 + λA1),

with A0, A1 some n×n symmetric positive semidefinite matrices, b0, b1 ∈ Rn, and c0, c1 ∈ R,
is equivalent to maximizing γ subject to the constraints

λ ≥ 0(
A0 + λA1 b0 + λb1

(b0 + λb1)> c0 + λc1 − γ

)
� 0.

Problem 7.2. Let a1, . . . , am be m vectors in Rn and assume that they span Rn.

(1) Prove that the matrix
m∑
k=1

aka
>
k

is symmetric positive definite.

(2) Define the matrix X by

X =

(
m∑
k=1

aka
>
k

)−1

.

Prove that (∑m
k=1 aka

>
k ai

a>i 1

)
� 0, i = 1, . . . ,m.

Deduce that
a>i Xai ≤ 1, 1 ≤ i ≤ m.
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Problem 7.3. Consider the function g of Example 3.10 defined by

g(a, b, c) = log(ac− b2),

where ac− b2 > 0. We found that the Hessian matrix of g is given by

Hg(a, b, c) =
1

(ac− b2)2

−c2 2bc −b2

2bc −2(b2 + ac) 2ab
−b2 2ab −a2

 .

Use the Schur complement (of a2) to prove that the matrix −Hg(a, b, c) is symmetric
positive definite if ac− b2 > 0 and a, c > 0.
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Linear Optimization
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Chapter 8

Convex Sets, Cones, H-Polyhedra

8.1 What is Linear Programming?

What is linear programming? At first glance, one might think that this is some style of com-
puter programming. After all, there is imperative programming, functional programming,
object-oriented programming, etc. The term linear programming is somewhat misleading,
because it really refers to a method for planning with linear constraints, or more accurately,
an optimization method where both the objective function and the constraints are linear.1

Linear programming was created in the late 1940’s, one of the key players being George
Dantzing, who invented the simplex algorithm. Kantorovitch also did some pioneering work
on linear programming as early as 1939. The term linear programming has a military con-
notation because in the early 1950’s it was used as a synonym for plans or schedules for
training troops, logistical supply, resource allocation, etc. Unfortunately the term linear
programming is well established and we are stuck with it.

Interestingly, even though originally most applications of linear programming were in
the field of economics and industrial engineering, linear programming has become an im-
portant tool in theoretical computer science and in the theory of algorithms. Indeed, linear
programming is often an effective tool for designing approximation algorithms to solve hard
problems (typically NP-hard problems). Linear programming is also the “baby version” of
convex programming, a very effective methodology which has received much attention in
recent years.

Our goal is to present the mathematical underpinnings of linear programming, in par-
ticular the existence of an optimal solution if a linear program is feasible and bounded, and
the duality theorem in linear programming, one of the deepest results in this field. The
duality theorem in linear programming also has significant algorithmic implications but we
do not discuss this here. We present the simplex algorithm, the dual simplex algorithm, and
the primal dual algorithm. We also describe the tableau formalism for running the simplex

1Again, we witness another unfortunate abuse of terminology; the constraints are in fact affine.
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algorithm and its variants. A particularly nice feature of the tableau formalism is that the
update of a tableau can be performed using elementary row operations identical to the op-
erations used during the reduction of a matrix to row reduced echelon form (rref). What
differs is the criterion for the choice of the pivot.

However, we do not discuss other methods such as the ellipsoid method or interior points
methods. For these more algorithmic issues, we refer the reader to standard texts on linear
programming. In our opinion, one of the clearest (and among the most concise!) is Matousek
and Gardner [54]; Chvatal [24] and Schrijver [67] are classics. Papadimitriou and Steiglitz
[60] offers a very crisp presentation in the broader context of combinatorial optimization,
and Bertsimas and Tsitsiklis [14] and Vanderbei [80] are very complete.

Linear programming has to do with maximizing a linear cost function c1x1 + · · · + cnxn
with respect to m “linear” inequalities of the form

ai1x1 + · · ·+ ainxn ≤ bi.

These constraints can be put together into an m × n matrix A = (aij), and written more
concisely as

Ax ≤ b.

For technical reasons that will appear clearer later on, it is often preferable to add the
nonnegativity constaints xi ≥ 0 for i = 1, . . . , n. We write x ≥ 0. It is easy to show that
every linear program is equivalent to another one satisfying the constraints x ≥ 0, at the
expense of adding new variables that are also constrained to be nonnegative. Let P(A, b) be
the set of feasible solutions of our linear program given by

P(A, b) = {x ∈ Rn | Ax ≤ b, x ≥ 0}.

Then there are two basic questions:

(1) Is P(A, b) nonempty, that is, does our linear program have a chance to have a solution?

(2) Does the objective function c1x1 + · · ·+ cnxn have a maximum value on P(A, b)?

The answer to both questions can be no. But if P(A, b) is nonempty and if the objective
function is bounded above (on P(A, b)), then it can be shown that the maximum of c1x1 +
· · · + cnxn is achieved by some x ∈ P(A, b). Such a solution is called an optimal solution.
Perhaps surprisingly, this result is not so easy to prove (unless one has the simplex method
at his disposal). We will prove this result in full detail (see Proposition 9.1).

The reason why linear constraints are so important is that the domain of potential optimal
solutions P(A, b) is convex . In fact, P(A, b) is a convex polyhedron which is the intersection
of half-spaces cut out by affine hyperplanes. The objective function being linear is convex,
and this is also a crucial fact. Thus, we are led to study convex sets, in particular those that
arise from solutions of inequalities defined by affine forms, but also convex cones.
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We give a brief introduction to these topics. As a reward, we provide several criteria for
testing whether a system of inequalities

Ax ≤ b, x ≥ 0

has a solution or not in terms of versions of the Farkas lemma (see Proposition 14.3 and
Proposition 11.4). Then we give a complete proof of the strong duality theorem for linear
programming (see Theorem 11.7). We also discuss the complementary slackness conditions
and show that they can be exploited to design an algorithm for solving a linear program
that uses both the primal problem and its dual. This algorithm known as the primal dual
algorithm, although not used much nowadays, has been the source of inspiration for a whole
class of approximation algorithms also known as primal dual algorithms.

We hope that this chapter and the next three will be a motivation for learning more
about linear programming, convex optimization, but also convex geometry. The “bible” in
convex optimization is Boyd and Vandenberghe [18], and one of the best sources for convex
geometry is Ziegler [84]. This is a rather advanced text, so the reader may want to begin
with Gallier [35].

8.2 Affine Subsets, Convex Sets, Affine Hyperplanes,

Half-Spaces

We view Rn as consisting of column vectors (n×1 matrices). As usual, row vectors represent
linear forms, that is linear maps ϕ : Rn → R, in the sense that the row vector y (a 1 × n
matrix) represents the linear form ϕ if ϕ(x) = yx for all x ∈ Rn. We denote the space of
linear forms (row vectors) by (Rn)∗.

Recall that a linear combination of vectors in Rn is an expression

λ1x1 + · · ·+ λmxm

where x1, . . . , xm ∈ Rn and where λ1, . . . , λm are arbitrary scalars in R. Given a sequence of
vectors S = (x1, . . . , xm) with xi ∈ Rn, the set of all linear combinations of the vectors in S is
the smallest (linear) subspace containing S called the linear span of S, and denoted span(S).
A linear subspace of Rn is any nonempty subset of Rn closed under linear combinations.

Definition 8.1. An affine combination of vectors in Rn is an expression

λ1x1 + · · ·+ λmxm

where x1, . . . , xm ∈ Rn and where λ1, . . . , λm are scalars in R satisfying the condition

λ1 + · · ·+ λm = 1.

Given a sequence of vectors S = (x1, . . . , xm) with xi ∈ Rn, the set of all affine combinations
of the vectors in S is the smallest affine subspace containing S called the affine hull of S
and denoted aff(S).
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(a) (b)

Figure 8.1: (a) A convex set; (b) A nonconvex set

Definition 8.2. An affine subspace A of Rn is any subset of Rn closed under affine combi-
nations.

If A is a nonempty affine subspace of Rn, then it can be shown that VA = {a−b | a, b ∈ A}
is a linear subspace of Rn and that

A = a+ VA = {a+ v | v ∈ VA}

for any a ∈ A; see Gallier [34] (Section 2.5).

Definition 8.3. Given an affine subspace A, the linear space VA = {a − b | a, b ∈ A} is
called the direction of A. The dimension of the nonempty affine subspace A is the dimension
of its direction VA.

Definition 8.4. Convex combinations are affine combinations λ1x1 + · · ·+ λmxm satisfying
the extra condition that λi ≥ 0 for i = 1, . . . ,m.

A convex set is defined as follows.

Definition 8.5. A subset V of Rn is convex if for any two points a, b ∈ V , we have c ∈ V
for every point c = (1 − λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R). Given any two points a, b, the
notation [a, b] is often used to denote the line segment between a and b, that is,

[a, b] = {c ∈ Rn | c = (1− λ)a+ λb, 0 ≤ λ ≤ 1},

and thus a set V is convex if [a, b] ⊆ V for any two points a, b ∈ V (a = b is allowed). The
dimension of a convex set V is the dimension of its affine hull aff(A).

The empty set is trivially convex, every one-point set {a} is convex, and the entire affine
space Rn is convex.

It is obvious that the intersection of any family (finite or infinite) of convex sets is convex.
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Definition 8.6. Given any (nonempty) subset S of Rn, the smallest convex set containing
S is denoted by conv(S) and called the convex hull of S (it is the intersection of all convex
sets containing S).

It is essential not only to have a good understanding of conv(S), but to also have good
methods for computing it. We have the following simple but crucial result.

Proposition 8.1. For any family S = (ai)i∈I of points in Rn, the set V of convex combina-
tions

∑
i∈I λiai (where

∑
i∈I λi = 1 and λi ≥ 0) is the convex hull conv(S) of S = (ai)i∈I .

It is natural to wonder whether Proposition 8.1 can be sharpened in two directions:
(1) Is it possible to have a fixed bound on the number of points involved in the convex
combinations? (2) Is it necessary to consider convex combinations of all points, or is it
possible to consider only a subset with special properties?

The answer is yes in both cases. In Case 1, Carathéodory’s theorem asserts that it is
enough to consider convex combinations of n + 1 points. For example, in the plane R2, the
convex hull of a set S of points is the union of all triangles (interior points included) with
vertices in S. In Case 2, the theorem of Krein and Milman asserts that a convex set that is
also compact is the convex hull of its extremal points (given a convex set S, a point a ∈ S
is extremal if S − {a} is also convex).

We will not prove these theorems here, but we invite the reader to consult Gallier [35] or
Berger [7].

Convex sets also arise as half-spaces cut out by affine hyperplanes.

Definition 8.7. An affine form ϕ : Rn → R is defined by some linear form c ∈ (Rn)∗ and
some scalar β ∈ R so that

ϕ(x) = cx+ β for all x ∈ Rn.

If c 6= 0, the affine form ϕ specified by (c, β) defines the affine hyperplane (for short hyper-
plane) H(ϕ) given by

H(ϕ) = {x ∈ Rn | ϕ(x) = 0} = {x ∈ Rn | cx+ β = 0},

and the two (closed) half-spaces

H+(ϕ) = {x ∈ Rn | ϕ(x) ≥ 0} = {x ∈ Rn | cx+ β ≥ 0},
H−(ϕ) = {x ∈ Rn | ϕ(x) ≤ 0} = {x ∈ Rn | cx+ β ≤ 0}.

When β = 0, we call H a linear hyperplane.
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y = -2x - 3

(0,0,1)

(1,0,0)

(0,1,0)

x + y + z = 1

HH+
H+_

H_

i. ii.

Figure 8.2: Figure i. illustrates the hyperplane H(ϕ) for ϕ(x, y) = 2x+ y + 3, while Figure
ii. illustrates the hyperplane H(ϕ) for ϕ(x, y, z) = x+ y + z − 1.

Both H+(ϕ) and H−(ϕ) are convex and H = H+(ϕ) ∩H−(ϕ).

For example, ϕ : R2 → R with ϕ(x, y) = 2x + y + 3 is an affine form defining the line
given by the equation y = −2x − 3. Another example of an affine form is ϕ : R3 → R
with ϕ(x, y, z) = x + y + z − 1; this affine form defines the plane given by the equation
x + y + z = 1, which is the plane through the points (0, 0, 1), (0, 1, 0), and (1, 0, 0). Both of
these hyperplanes are illustrated in Figure 8.2.

Definition 8.8. For any two vector x, y ∈ Rn with x = (x1, . . . , xn) and y = (y1, . . . , yn) we
write x ≤ y iff xi ≤ yi for i = 1, . . . , n, and x ≥ y iff y ≤ x. In particular x ≥ 0 iff xi ≥ 0 for
i = 1, . . . , n.

Certain special types of convex sets called cones and H-polyhedra play an important role.
The set of feasible solutions of a linear program is an H-polyhedron, and cones play a crucial
role in the proof of Proposition 9.1 and in the Farkas–Minkowski proposition (Proposition
11.2).

8.3 Cones, Polyhedral Cones, and H-Polyhedra

Cones and polyhedral cones are defined as follows.

Definition 8.9. Given a nonempty subset S ⊆ Rn, the cone C = cone(S) spanned by S is
the convex set

cone(S) =

{ k∑
i=1

λiui, ui ∈ S, λi ∈ R, λi ≥ 0

}
,
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of positive combinations of vectors from S. If S consists of a finite set of vectors, the cone
C = cone(S) is called a polyhedral cone. Figure 8.3 illustrates a polyhedral cone.

(1,0,1)

(0,0,1)

(1,1,1)

(0,1,1)

(1,0,1)

(0,0,1)

(1,1,1)

(0,1,1)

S

cone(S)

Figure 8.3: Let S = {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)}. The polyhedral cone, cone(S), is
the solid “pyramid” with apex at the origin and square cross sections.

Note that if some nonzero vector u belongs to a cone C, then λu ∈ C for all λ ≥ 0, that
is, the ray {λu | λ ≥ 0} belongs to C.

Remark: The cones (and polyhedral cones) of Definition 8.9 are always convex. For this
reason, we use the simpler terminology cone instead of convex cone. However, there are
more general kinds of cones (see Definition 14.1) that are not convex (for example, a union
of polyhedral cones or the linear cone generated by the curve in Figure 8.4), and if we were
dealing with those we would refer to the cones of Definition 8.9 as convex cones.

Definition 8.10. An H-polyhedron, for short a polyhedron, is any subset P =
⋂s
i=1 Ci of

Rn defined as the intersection of a finite number s of closed half-spaces Ci. An example of
an H-polyhedron is shown in Figure 8.6. An H-polytope is a bounded H-polyhedron, which
means that there is a closed ball Br(x) of center x and radius r > 0 such that P ⊆ Br(x).
An example of a H-polytope is shown in Figure 8.5.

By convention, we agree that Rn itself is an H-polyhedron.

Remark: The H-polyhedra of Definition 8.10 are always convex. For this reason, as in the
case of cones we use the simpler terminology H-polyhedron instead of convex H-polyhedron.
In algebraic topology, there are more general polyhedra that are not convex.
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(0,0,1)
S

cone(S)

Figure 8.4: Let S be a planar curve in z = 1. The linear cone of S, consisting of all half rays
connecting S to the origin, is not convex.

It can be shown that an H-polytope P is equal to the convex hull of finitely many points
(the extreme points of P). This is a nontrivial result whose proof takes a significant amount
of work; see Gallier [35] and Ziegler [84].

An unbounded H-polyhedron is not equal to the convex hull of finite set of points. To
obtain an equivalent notion we introduce the notion of a V-polyhedron.

Definition 8.11. A V-polyhedron is any convex subset A ⊆ Rn of the form

A = conv(Y ) + cone(V ) = {a+ v | a ∈ conv(Y ), v ∈ cone(V )},

where Y ⊆ Rn and V ⊆ Rn are finite (possibly empty).

When V = ∅ we simply have a polytope, and when Y = ∅ or Y = {0}, we simply have a
cone.

It can be shown that every H-polyhedron is a V-polyhedron and conversely. This is one
of the major theorems in the theory of polyhedra, and its proof is nontrivial. For a complete
proof, see Gallier [35] and Ziegler [84].

Every polyhedral cone is closed. This is an important fact that is used in the proof
of several other key results such as Proposition 9.1 and the Farkas–Minkowski proposition
(Proposition 11.2).

Although it seems obvious that a polyhedral cone should be closed, a rigorous proof is
not entirely trivial.
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with plots :
 with plottools :
?icosahedron
display icosahedron 0, 0, 0 , 0.8 , axes = none ;

Figure 8.5: An icosahedron is an example of an H-polytope.

Indeed, the fact that a polyhedral cone is closed relies crucially on the fact that C is
spanned by a finite number of vectors, because the cone generated by an infinite set may
not be closed. For example, consider the closed disk D ⊆ R2 of center (0, 1) and radius 1,
which is tangent to the x-axis at the origin. Then the cone(D) consists of the open upper
half-plane plus the origin (0, 0), but this set is not closed.

Proposition 8.2. Every polyhedral cone C is closed.

Proof. This is proven by showing that

1. Every primitive cone is closed, where a primitive cone is a polyhedral cone spanned by
linearly independent vectors.

2. A polyhedral cone C is the union of finitely many primitive cones.

Assume that (a1, . . . , am) are linearly independent vectors in Rn, and consider any se-
quence (x(k))k≥0

x(k) =
m∑
i=1

λ
(k)
i ai

of vectors in the primitive cone cone({a1, . . . , am}), which means that λ
(k)
j ≥ 0 for i =

1, . . . ,m and all k ≥ 0. The vectors x(k) belong to the subspace U spanned by (a1, . . . , am),
and U is closed. Assume that the sequence (x(k))k≥0 converges to a limit x ∈ Rn. Since U
is closed and x(k) ∈ U for all k ≥ 0, we have x ∈ U . If we write x = x1a1 + · · · + xmam, we
would like to prove that xi ≥ 0 for i = 1, . . . ,m. The sequence the (x(k))k≥0 converges to x
iff

lim
k 7→∞

∥∥x(k) − x
∥∥ = 0,

iff

lim
k 7→∞

( m∑
i=1

|λ(k)
i − xi|2

)1/2

= 0
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2

-2

x

y

y + z = 0

(2,0,0)

(-2,0,0)
conv(Y)

cone(V)

conv(Y) cone(V)+

 y - z = 0

y + z = 0

(0,1,1)(0,-1,1)

Figure 8.6: The “triangular trough” determined by the inequalities y − z ≤ 0, y + z ≥ 0,
and −2 ≤ x ≤ 2 is an H-polyhedron and an V-polyhedron, where Y = {(2, 0, 0), (−2, 0, 0)}
and V = {(0, 1, 1), (0,−1, 1)}.

iff
lim
k 7→∞

λ
(k)
i = xi, i = 1, . . . ,m.

Since λ
(k)
i ≥ 0 for i = 1, . . . ,m and all k ≥ 0, we have xi ≥ 0 for i = 1, . . . ,m, so

x ∈ cone({a1, . . . , am}).
Next, assume that x belongs to the polyhedral cone C. Consider a positive combination

x = λ1a1 + · · ·+ λkak, (∗1)

for some nonzero a1, . . . , ak ∈ C, with λi ≥ 0 and with k minimal . Since k is minimal, we
must have λi > 0 for i = 1, . . . , k. We claim that (a1, . . . , ak) are linearly independent.

If not, there is some nontrivial linear combination

µ1a1 + · · ·+ µkak = 0, (∗2)

and since the ai are nonzero, µj 6= 0 for some at least some j. We may assume that µj < 0
for some j (otherwise, we consider the family (−µi)1≤i≤k), so let

J = {j ∈ {1, . . . , k} | µj < 0}.
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For any t ∈ R, since x = λ1a1 + · · ·+ λkak, using (∗2) we get

x = (λ1 + tµ1)a1 + · · ·+ (λk + tµk)ak, (∗3)

and if we pick

t = min
j∈J

(
−λj
µj

)
≥ 0,

we have (λi + tµi) ≥ 0 for i = 1, . . . , k, but λj + tµj = 0 for some j ∈ J , so (∗3) is an
expression of x with less that k nonzero coefficients, contradicting the minimality of k in
(∗1). Therefore, (a1, . . . , ak) are linearly independent.

Since a polyhedral cone C is spanned by finitely many vectors, there are finitely many
primitive cones (corresponding to linearly independent subfamilies), and since every x ∈ C,
belongs to some primitive cone, C is the union of a finite number of primitive cones. Since
every primitive cone is closed, as a union of finitely many closed sets, C itself is closed.

The above facts are also proven in Matousek and Gardner [54] (Chapter 6, Section 5,
Lemma 6.5.3, 6.5.4, and 6.5.5).

Another way to prove that a polyhedral cone C is closed is to show that C is also a H-
polyhedron. This takes even more work; see Gallier [35] (Chapter 4, Section 4, Proposition
4.16). Yet another proof is given in Lax [51] (Chapter 13, Theorem 1).

8.4 Summary

The main concepts and results of this chapter are listed below:

• Affine combination.

• Affine hull.

• Affine subspace; direction of an affine subspace, dimension of an affine subspace.

• Convex combination.

• Convex set, dimension of a convex set.

• Convex hull.

• Affine form.

• Affine hyperplane, half-spaces.

• Cone, polyhedral cone.

• H-polyhedron, H-polytope.

• V-polyhedron, polytope.

• Primitive cone.
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8.5 Problems

Problem 8.1. Prove Proposition 8.1.

Problem 8.2. Describe an icosahedron both as an H-polytope and as a V-polytope. Do
the same thing for a dodecahedron. What do you observe?



Chapter 9

Linear Programs

In this chapter we introduce linear programs and the basic notions relating to this concept.
We define the H-polyhedron P(A, b) of feasible solutions. Then we define bounded and
unbounded linear programs and the notion of optimal solution. We define slack variables
and the important notion of linear program in standard form.

We show that if a linear program in standard form has a feasible solution and is bounded
above, then it has an optimal solution. This is not an obvious result and the proof relies on
the fact that a polyhedral cone is closed (this result was shown in the previous chapter).

Next we show that in order to find optimal solutions it suffices to consider solutions of
a special form called basic feasible solutions . We prove that if a linear program in standard
form has a feasible solution and is bounded above, then some basic feasible solution is an
optimal solution (Theorem 9.4).

Geometrically, a basic feasible solution corresponds to a vertex . In Theorem 9.6 we
prove that a basic feasible solution of a linear program in standard form is a vertex of the
polyhedron P(A, b). Finally, we prove that if a linear program in standard form has some
feasible solution, then it has a basic feasible solution (see Theorem 9.7). This fact allows the
simplex algorithm described in the next chapter to get started.

9.1 Linear Programs, Feasible Solutions, Optimal So-

lutions

The purpose of linear programming is to solve the following type of optimization problem.

209
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Definition 9.1. A Linear Program (P ) is the following kind of optimization problem:

maximize cx

subject to

a1x ≤ b1

. . .

amx ≤ bm

x ≥ 0,

where x ∈ Rn, c, a1, . . . , am ∈ (Rn)∗, b1, . . . , bm ∈ R.

The linear form c defines the objective function x 7→ cx of the Linear Program (P ) (from
Rn to R), and the inequalities aix ≤ bi and xj ≥ 0 are called the constraints of the Linear
Program (P ).

If we define the m× n matrix

A =

a1
...
am


whose rows are the row vectors a1, . . . , am and b as the column vector

b =

 b1
...
bm

 ,

the m inequality constraints aix ≤ bi can be written in matrix form as

Ax ≤ b.

Thus the Linear Program (P ) can also be stated as the Linear Program (P ):

maximize cx

subject to Ax ≤ b and x ≥ 0.

We should note that in many applications, the natural primal optimization problem
is actually the minimization of some objective function cx = c1x1 + · · · + cnxn, rather its
maximization. For example, many of the optimization problems considered in Papadimitriou
and Steiglitz [60] are minimization problems.

Of course, minimizing cx is equivalent to maximizing −cx, so our presentation covers
minimization too.

Here is an explicit example of a linear program of Type (P ):
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Example 9.1.

maximize x1 + x2

subject to

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

x1 ≥ 0, x2 ≥ 0,

and in matrix form

maximize
(
1 1

)(x1

x2

)
subject to −1 1

1 6
4 −1

(x1

x2

)
≤

 1
15
10


x1 ≥ 0, x2 ≥ 0.

K1 0 1 2 3 4 5

K1

1

2

3

4

x   + 6x    = 151 2

(3,2)

x    -
 x    =

 1

2
1

4x
   -

 x
    

= 
10

1
2

Figure 9.1: The H-polyhedron associated with Example 9.1. The green point (3, 2) is the
unique optimal solution.

It turns out that x1 = 3, x2 = 2 yields the maximum of the objective function x1 + x2,
which is 5. This is illustrated in Figure 9.1. Observe that the set of points that satisfy
the above constraints is a convex region cut out by half planes determined by the lines of
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equations

x2 − x1 = 1

x1 + 6x2 = 15

4x1 − x2 = 10

x1 = 0

x2 = 0.

In general, each constraint aix ≤ bi corresponds to the affine form ϕi given by ϕi(x) =
aix− bi and defines the half-space H−(ϕi), and each inequality xj ≥ 0 defines the half-space
H+(xj). The intersection of these half-spaces is the set of solutions of all these constraints.
It is a (possibly empty) H-polyhedron denoted P(A, b).

Definition 9.2. If P(A, b) = ∅, we say that the Linear Program (P ) has no feasible solution,
and otherwise any x ∈ P(A, b) is called a feasible solution of (P ).

The linear program shown in Example 9.2 obtained by reversing the direction of the
inequalities x2 − x1 ≤ 1 and 4x1 − x2 ≤ 10 in the linear program of Example 9.1 has no
feasible solution; see Figure 9.2.

Example 9.2.

maximize x1 + x2

subject to

x1 − x2 ≤ −1

x1 + 6x2 ≤ 15

x2 − 4x1 ≤ −10

x1 ≥ 0, x2 ≥ 0.

Assume P(A, b) 6= ∅, so that the Linear Program (P ) has a feasible solution. In this case,
consider the image {cx ∈ R | x ∈ P(A, b)} of P(A, b) under the objective function x 7→ cx.

Definition 9.3. If the set {cx ∈ R | x ∈ P(A, b)} is unbounded above, then we say that the
Linear Program (P ) is unbounded .

The linear program shown in Example 9.3 obtained from the linear program of Example
9.1 by deleting the constraints 4x1 − x2 ≤ 10 and x1 + 6x2 ≤ 15 is unbounded.

Example 9.3.

maximize x1 + x2

subject to

x2 − x1 ≤ 1

x1 ≥ 0, x2 ≥ 0.
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K1 0 1 2 3 4 5

K1

1

2

3

4

5

x   + 6x    = 151 2

x    -
 x    =

 1

2
1

4x
   

- x
   

 =
 1

0
1

2

Figure 9.2: There is no H-polyhedron associated with Example 9.2 since the blue and purple
regions do not overlap.

Otherwise, we will prove shortly that if µ is the least upper bound of the set {cx ∈ R |
x ∈ P(A, b)}, then there is some p ∈ P(A, b) such that

cp = µ,

that is, the objective function x 7→ cx has a maximum value µ on P(A, b) which is achieved
by some p ∈ P(A, b).

Definition 9.4. If the set {cx ∈ R | x ∈ P(A, b)} is nonempty and bounded above, any
point p ∈ P(A, b) such that cp = max{cx ∈ R | x ∈ P(A, b)} is called an optimal solution
(or optimum) of (P ). Optimal solutions are often denoted by an upper ∗; for example, p∗.

The linear program of Example 9.1 has a unique optimal solution (3, 2), but observe
that the linear program of Example 9.4 in which the objective function is (1/6)x1 + x2 has
infinitely many optimal solutions; the maximum of the objective function is 15/6 which
occurs along the points of orange boundary line in Figure 9.1.

Example 9.4.

maximize
1

6
x1 + x2

subject to

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

x1 ≥ 0, x2 ≥ 0.
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The proof that if the set {cx ∈ R | x ∈ P(A, b)} is nonempty and bounded above, then
there is an optimal solution p ∈ P(A, b), is not as trivial as it might seem. It relies on the
fact that a polyhedral cone is closed, a fact that was shown in Section 8.3.

We also use a trick that makes the proof simpler, which is that a Linear Program (P )
with inequality constraints Ax ≤ b

maximize cx

subject to Ax ≤ b and x ≥ 0,

is equivalent to the Linear Program (P2) with equality constraints

maximize ĉ x̂

subject to Âx̂ = b and x̂ ≥ 0,

where Â is an m× (n+m) matrix, ĉ is a linear form in (Rn+m)∗, and x̂ ∈ Rn+m, given by

Â =
(
A Im

)
, ĉ =

(
c 0>m

)
, and x̂ =

(
x
z

)
,

with x ∈ Rn and z ∈ Rm.

Indeed, Âx̂ = b and x̂ ≥ 0 iff

Ax+ z = b, x ≥ 0, z ≥ 0,

iff
Ax ≤ b, x ≥ 0,

and ĉ x̂ = cx.

Definition 9.5. The variables z are called slack variables , and a linear program of the form
(P2) is called a linear program in standard form.

The result of converting the linear program of Example 9.4 to standard form is the
program shown in Example 9.5.

Example 9.5.

maximize
1

6
x1 + x2

subject to

x2 − x1 + z1 = 1

x1 + 6x2 + z2 = 15

4x1 − x2 + z3 = 10

x1 ≥ 0, x2 ≥ 0, z1 ≥ 0, z2 ≥ 0, z3 ≥ 0.
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We can now prove that if a linear program has a feasible solution and is bounded, then
it has an optimal solution.

Proposition 9.1. Let (P2) be a linear program in standard form, with equality constraint
Ax = b. If P(A, b) is nonempty and bounded above, and if µ is the least upper bound of the
set {cx ∈ R | x ∈ P(A, b)}, then there is some p ∈ P(A, b) such that

cp = µ,

that is, the objective function x 7→ cx has a maximum value µ on P(A, b) which is achieved
by some optimum solution p ∈ P(A, b).

Proof. Since µ = sup{cx ∈ R | x ∈ P(A, b)}, there is a sequence (x(k))k≥0 of vectors

x(k) ∈ P(A, b) such that limk 7→∞ cx
(k) = µ. In particular, if we write x(k) = (x

(k)
1 , . . . , x

(k)
n )

we have x
(k)
j ≥ 0 for j = 1, . . . , n and for all k ≥ 0. Let Ã be the (m+ 1)× n matrix

Ã =

(
c
A

)
,

and consider the sequence (Ãx(k))k≥0 of vectors Ãx(k) ∈ Rm+1. We have

Ãx(k) =

(
c
A

)
x(k) =

(
cx(k)

Ax(k)

)
=

(
cx(k)

b

)
,

since by hypothesis x(k) ∈ P(A, b), and the constraints are Ax = b and x ≥ 0. Since by

hypothesis limk 7→∞ cx
(k) = µ, the sequence (Ãx(k))k≥0 converges to the vector

(
µ
b

)
. Now,

observe that each vector Ãx(k) can be written as the convex combination

Ãx(k) =
n∑
j=1

x
(k)
j Ãj,

with x
(k)
j ≥ 0 and where Ãj ∈ Rm+1 is the jth column of Ã. Therefore, Ãx(k) belongs to the

polyheral cone
C = cone(Ã1, . . . , Ãn) = {Ãx | x ∈ Rn, x ≥ 0},

and since by Proposition 8.2 this cone is closed, limk≥∞ Ãx
(k) ∈ C, which means that there

is some u ∈ Rn with u ≥ 0 such that(
µ
b

)
= lim

k≥∞
Ãx(k) = Ãu =

(
cu
Au

)
,

that is, cu = µ and Au = b. Hence, u is an optimal solution of (P2).

The next question is, how do we find such an optimal solution? It turns out that for
linear programs in standard form where the constraints are of the form Ax = b and x ≥ 0,
there are always optimal solutions of a special type called basic feasible solutions.
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9.2 Basic Feasible Solutions and Vertices

If the system Ax = b has a solution and if some row of A is a linear combination of other
rows, then the corresponding equation is redundant, so we may assume that the rows of A
are linearly independent; that is, we may assume that A has rank m, so m ≤ n.

Definition 9.6. If A is an m× n matrix, for any nonempty subset K of {1, . . . , n}, let AK
be the submatrix of A consisting of the columns of A whose indices belong to K. We denote
the jth column of the matrix A by Aj.

Definition 9.7. Given a Linear Program (P2)

maximize cx

subject to Ax = b and x ≥ 0,

where A has rank m, a vector x ∈ Rn is a basic feasible solution of (P ) if x ∈ P(A, b) 6= ∅,
and if there is some subset K of {1, . . . , n} of size m such that

(1) The matrix AK is invertible (that is, the columns of AK are linearly independent).

(2) xj = 0 for all j /∈ K.

The subset K is called a basis of x. Every index k ∈ K is called basic, and every index
j /∈ K is called nonbasic. Similarly, the columns Ak corresponding to indices k ∈ K are
called basic, and the columns Aj corresponding to indices j /∈ K are called nonbasic. The
variables corresponding to basic indices k ∈ K are called basic variables , and the variables
corresponding to indices j /∈ K are called nonbasic.

For example, the linear program

maximize x1 + x2

subject to x1 + x2 + x3 = 1 and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, (∗)

has three basic feasible solutions; the basic feasible solution K = {1} corresponds to the
point (1, 0, 0); the basic feasible solution K = {2} corresponds to the point (0, 1, 0); the
basic feasible solution K = {3} corresponds to the point (0, 0, 1). Each of these points
corresponds to the vertices of the slanted purple triangle illustrated in Figure 9.3. The
vertices (1, 0, 0) and (0, 1, 0) optimize the objective function with a value of 1.

We now show that if the Standard Linear Program (P2) as in Definition 9.7 has some
feasible solution and is bounded above, then some basic feasible solution is an optimal
solution. We follow Matousek and Gardner [54] (Chapter 4, Section 2, Theorem 4.2.3).

First we obtain a more convenient characterization of a basic feasible solution.

Proposition 9.2. Given any Standard Linear Program (P2) where Ax = b and A is an
m× n matrix of rank m, for any feasible solution x, if J> = {j ∈ {1, . . . , n} | xj > 0}, then
x is a basic feasible solution iff the columns of the matrix AJ> are linearly independent.
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x + y + z = 1

x + y = 0.7

Figure 9.3: The H-polytope associated with Linear Program (∗). The objective function
(with x1 → x and x2 → y) is represented by vertical planes parallel to the purple plane
x+ y = 0.7, and reaches it maximal value when x+ y = 1.

Proof. If x is a basic feasible solution, then there is some subset K ⊆ {1, . . . , n} of size m such
that the columns of AK are linearly independent and xj = 0 for all j /∈ K, so by definition,
J> ⊆ K, which implies that the columns of the matrix AJ> are linearly independent.

Conversely, assume that x is a feasible solution such that the columns of the matrix AJ>
are linearly independent. If |J>| = m, we are done since we can pick K = J> and then x
is a basic feasible solution. If |J>| < m, we can extend J> to an m-element subset K by
adding m− |J>| column indices so that the columns of AK are linearly independent, which
is possible since A has rank m.

Next we prove that if a linear program in standard form has any feasible solution x0 and
is bounded above, then is has some basic feasible solution x̃ which is as good as x0, in the
sense that cx̃ ≥ cx0.

Proposition 9.3. Let (P2) be any standard linear program with objective function cx, where
Ax = b and A is an m × n matrix of rank m. If (P2) is bounded above and if x0 is some
feasible solution of (P2), then there is some basic feasible solution x̃ such that cx̃ ≥ cx0.

Proof. Among the feasible solutions x such that cx ≥ cx0 (x0 is one of them) pick one with
the maximum number of coordinates xj equal to 0, say x̃. Let

K = J> = {j ∈ {1, . . . , n} | x̃j > 0}

and let s = |K|. We claim that x̃ is a basic feasible solution, and by construction cx̃ ≥ cx0.

If the columns of AK are linearly independent, then by Proposition 9.2 we know that x̃
is a basic feasible solution and we are done.
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Otherwise, the columns of AK are linearly dependent, so there is some nonzero vector
v = (v1, . . . , vs) such that AK v = 0. Let w ∈ Rn be the vector obtained by extending v by
setting wj = 0 for all j /∈ K. By construction,

Aw = AK v = 0.

We will derive a contradiction by exhibiting a feasible solution x(t0) such that cx(t0) ≥ cx0

with more zero coordinates than x̃.

For this we claim that we may assume that w satisfies the following two conditions:

(1) cw ≥ 0.

(2) There is some j ∈ K such that wj < 0.

If cw = 0 and if Condition (2) fails, since w 6= 0, we have wj > 0 for some j ∈ K, in
which case we can use −w, for which wj < 0.

If cw < 0, then c(−w) > 0, so we may assume that cw > 0. If wj > 0 for all j ∈ K, since
x̃ is feasible, x̃ ≥ 0, and so x(t) = x̃+ tw ≥ 0 for all t ≥ 0. Furthermore, since Aw = 0 and
x̃ is feasible, we have

Ax(t) = Ax̃+ tAw = b,

and thus x(t) is feasible for all t ≥ 0. We also have

cx(t) = cx̃+ tcw.

Since cw > 0, as t > 0 goes to infinity the objective function cx(t) also tends to infinity,
contradicting the fact that is is bounded above. Therefore, some w satisfying Conditions (1)
and (2) above must exist.

We show that there is some t0 > 0 such that cx(t0) ≥ cx0 and x(t0) = x̃+ t0w is feasible,
yet x(t0) has more zero coordinates than x̃, a contradiction.

Since x(t) = x̃+ tw, we have
x(t)i = x̃i + twi,

so if we let I = {i ∈ {1, . . . , n} | wi < 0} ⊆ K, which is nonempty since w satisfies Condition
(2) above, if we pick

t0 = min
i∈I

{
−x̃i
wi

}
,

then t0 > 0, because wi < 0 for all i ∈ I, and by definition of K we have x̃i > 0 for all i ∈ K.
By the definition of t0 > 0 and since x̃ ≥ 0, we have

x(t0)j = x̃j + t0wj ≥ 0 for all j ∈ K,

so x(t0) ≥ 0, and x(t0)i = 0 for some i ∈ I. Since Ax(t0) = b (for any t), x(t0) is a feasible
solution,

cx(t0) = cx̃+ t0cw ≥ cx0 + t0cw ≥ cx0,

and x(t0)i = 0 for some i ∈ I, we see that x(t0) has more zero coordinates than x̃, a
contradiction.
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Proposition 9.3 implies the following important result.

Theorem 9.4. Let (P2) be any standard linear program with objective function cx, where
Ax = b and A is an m× n matrix of rank m. If (P2) has some feasible solution and if it is
bounded above, then some basic feasible solution x̃ is an optimal solution of (P2).

Proof. By Proposition 9.3, for any feasible solution x there is some basic feasible solution x̃
such that cx ≤ cx̃. But there are only finitely many basic feasible solutions, so one of them
has to yield the maximum of the objective function.

Geometrically, basic solutions are exactly the vertices of the polyhedron P(A, b), a notion
that we now define.

Definition 9.8. Given an H-polyhedron P ⊆ Rn, a vertex of P is a point v ∈ P with
property that there is some nonzero linear form c ∈ (Rn)∗ and some µ ∈ R, such that v
is the unique point of P for which the map x 7→ cx has the maximum value µ ; that is,
cy < cv = µ for all y ∈ P − {v}. Geometrically, this means that the hyperplane of equation
cy = µ touches P exactly at v. More generally, a convex subset F of P is a k-dimensional
face of P if F has dimension k and if there is some affine form ϕ(x) = cx − µ such that
cy = µ for all y ∈ F , and cy < µ for all y ∈ P − F . A 1-dimensional face is called an edge.

The concept of a vertex is illustrated in Figure 9.4, while the concept of an edge is
illustrated in Figure 9.5.

x + y + z = 3

(1,1,1)

Figure 9.4: The cube centered at the origin with diagonal through (−1,−1,−1) and (1, 1, 1)
has eight vertices. The vertex (1, 1, 1) is associated with the linear form x+ y + z = 3.

Since a k-dimensional face F of P is equal to the intersection of the hyperplane H(ϕ)
of equation cx = µ with P , it is indeed convex and the notion of dimension makes sense.
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x + y = 2
(1,1,1)

(1,1,-1)

Figure 9.5: The cube centered at the origin with diagonal through (−1,−1,−1) and (1, 1, 1)
has twelve edges. The edge from (1, 1,−1) to (1, 1, 1) is associated with the linear form
x+ y = 2.

Observe that a 0-dimensional face of P is a vertex. If P has dimension d, then the (d− 1)-
dimensional faces of P are called its facets .

If (P ) is a linear program in standard form, then its basic feasible solutions are exactly
the vertices of the polyhedron P(A, b). To prove this fact we need the following simple
proposition

Proposition 9.5. Let Ax = b be a linear system where A is an m × n matrix of rank m.
For any subset K ⊆ {1, . . . , n} of size m, if AK is invertible, then there is at most one basic
feasible solution x ∈ Rn with xj = 0 for all j /∈ K (of course, x ≥ 0)

Proof. In order for x to be feasible we must have Ax = b. Write N = {1, . . . , n} −K, xK
for the vector consisting of the coordinates of x with indices in K, and xN for the vector
consisting of the coordinates of x with indices in N . Then

Ax = AKxK + ANxN = b.

In order for x to be a basic feasible solution we must have xN = 0, so

AKxK = b.

Since by hypothesis AK is invertible, xK = A−1
K b is uniquely determined. If xK ≥ 0 then x

is a basic feasible solution, otherwise it is not. This proves that there is at most one basic
feasible solution x ∈ Rn with xj = 0 for all j /∈ K.

Theorem 9.6. Let (P ) be a linear program in standard form, where Ax = b and A is an
m× n matrix of rank m. For every v ∈ P(A, b), the following conditions are equivalent:
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(1) v is a vertex of the Polyhedron P(A, b).

(2) v is a basic feasible solution of the Linear Program (P ).

Proof. First, assume that v is a vertex of P(A, b), and let ϕ(x) = cx − µ be a linear form
such that cy < µ for all y ∈ P(A, b) and cv = µ. This means that v is the unique point of
P(A, b) for which the objective function x 7→ cx has the maximum value µ on P(A, b), so by
Theorem 9.4, since this maximum is achieved by some basic feasible solution, by uniqueness
v must be a basic feasible solution.

Conversely, suppose v is a basic feasible solution of (P ) corresponding to a subset K ⊆
{1, . . . , n} of size m. Let ĉ ∈ (Rn)∗ be the linear form defined by

ĉj =

{
0 if j ∈ K
−1 if j /∈ K.

By construction ĉ v = 0 and ĉ x ≤ 0 for any x ≥ 0, hence the function x 7→ ĉ x on P(A, b)
has a maximum at v. Furthermore, ĉ x < 0 for any x ≥ 0 such that xj > 0 for some j /∈ K.
However, by Proposition 9.5, the vector v is the only basic feasible solution such that vj = 0
for all j /∈ K, and therefore v is the only point of P(A, b) maximizing the function x 7→ ĉ x,
so it is a vertex.

In theory, to find an optimal solution we try all
(
n
m

)
possible m-elements subsets K of

{1, . . . , n} and solve for the corresponding unique solution xK of AKx = b. Then we check
whether such a solution satisfies xK ≥ 0, compute cxK , and return some feasible xK for
which the objective function is maximum. This is a totally impractical algorithm.

A practical algorithm is the simplex algorithm. Basically, the simplex algorithm tries to
“climb” in the polyhderon P(A, b) from vertex to vertex along edges (using basic feasible
solutions), trying to maximize the objective function. We present the simplex algorithm in
the next chapter. The reader may also consult texts on linear programming. In particular,
we recommend Matousek and Gardner [54], Chvatal [24], Papadimitriou and Steiglitz [60],
Bertsimas and Tsitsiklis [14], Ciarlet [25], Schrijver [67], and Vanderbei [80].

Observe that Theorem 9.4 asserts that if a Linear Program (P ) in standard form (where
Ax = b and A is an m×n matrix of rank m) has some feasible solution and is bounded above,
then some basic feasible solution is an optimal solution. By Theorem 9.6, the polyhedron
P(A, b) must have some vertex.

But suppose we only know that P(A, b) is nonempty; that is, we don’t know that the
objective function cx is bounded above. Does P(A, b) have some vertex?

The answer to the above question is yes, and this is important because the simplex
algorithm needs an initial basic feasible solution to get started. Here we prove that if P(A, b)
is nonempty, then it must contain a vertex. This proof still doesn’t constructively yield a
vertex, but we will see in the next chapter that the simplex algorithm always finds a vertex
if there is one (provided that we use a pivot rule that prevents cycling).
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Theorem 9.7. Let (P ) be a linear program in standard form, where Ax = b and A is an
m× n matrix of rank m. If P(A, b) is nonempty (there is a feasible solution), then P(A, b)
has some vertex; equivalently, (P ) has some basic feasible solution.

Proof. The proof relies on a trick, which is to add slack variables xn+1, . . . , xn+m and use the
new objective function −(xn+1 + · · ·+ xn+m).

If we let Â be the m× (m+ n)-matrix, and x, x, and x̂ be the vectors given by

Â =
(
A Im

)
, x =

x1
...
xn

 ∈ Rn, x =

xn+1
...

xn+m

 ∈ Rm, x̂ =

(
x
x

)
∈ Rn+m,

then consider the Linear Program (P̂ ) in standard form

maximize − (xn+1 + · · ·+ xn+m)

subject to Â x̂ = b and x̂ ≥ 0.

Since xi ≥ 0 for all i, the objective function −(xn+1 + · · · + xn+m) is bounded above by

0. The system Â x̂ = b is equivalent to the system

Ax+ x = b,

so for every feasible solution u ∈ P(A, b), since Au = b, the vector (u, 0m) is also a feasible

solution of (P̂ ), in fact an optimal solution since the value of the objective function −(xn+1 +

· · ·+xn+m) for x = 0 is 0. By Proposition 9.3, the linear program (P̂ ) has some basic feasible
solution (u∗, w∗) for which the value of the objective function is greater than or equal to the
value of the objective function for (u, 0m), and since (u, 0m) is an optimal solution, (u∗, w∗)

is also an optimal solution of (P̂ ). This implies that w∗ = 0, since otherwise the objective
function −(xn+1 + · · ·+ xn+m) would have a strictly negative value.

Therefore, (u∗, 0m) is a basic feasible solution of (P̂ ), and thus the columns corresponding
to nonzero components of u∗ are linearly independent. Some of the coordinates of u∗ could
be equal to 0, but since A has rank m we can add columns of A to obtain a basis K associated
with u∗, and u∗ is indeed a basic feasible solution of (P ).

The definition of a basic feasible solution can be adapted to linear programs where the
constraints are of the form Ax ≤ b, x ≥ 0; see Matousek and Gardner [54] (Chapter 4,
Section 4, Definition 4.4.2).

The most general type of linear program allows constraints of the form aix ≥ bi or
aix = bi besides constraints of the form aix ≤ bi. The variables xi may also take negative
values. It is always possible to convert such programs to the type considered in Definition
9.1. We proceed as follows.
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Every constraint aix ≥ bi is replaced by the constraint −aix ≤ −bi. Every equality
constraint aix = bi is replaced by the two constraints aix ≤ bi and −aix ≤ −bi.

If there are n variables xi, we create n new variables yi and n new variables zi and
replace every variable xi by yi− zi. We also add the 2n constraints yi ≥ 0 and zi ≥ 0. If the
constraints are given by the inequalities Ax ≤ b, we now have constraints given by(

A −A
)(y

z

)
≤ b, y ≥ 0, z ≥ 0.

We replace the objective function cx by cy − cz.

Remark: We also showed that we can replace the inequality constraints Ax ≤ b by equality
constraints Ax = b, by adding slack variables constrained to be nonnegative.

9.3 Summary

The main concepts and results of this chapter are listed below:

• Linear program.

• Objective function, constraints.

• Feasible solution.

• Bounded and unbounded linear programs.

• Optimal solution, optimum.

• Slack variables, linear program in standard form.

• Basic feasible solution.

• Basis of a variable.

• Basic, nonbasic index, basic, nonbasic variable.

• Vertex, face, edge, facet.

9.4 Problems

Problem 9.1. Convert the following program to standard form:

maximize x1 + x2

subject to

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

− 4x1 + x2 ≥ 10.
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Problem 9.2. Convert the following program to standard form:

maximize 3x1 − 2x2

subject to

2x1 − x2 ≤ 4

x1 + 3x2 ≥ 5

x2 ≥ 0.

Problem 9.3. The notion of basic feasible solution for linear programs where the constraints
are of the form Ax ≤ b, x ≥ 0 is defined as follows. A basic feasible solution of a (general)
linear program with n variables is a feasible solution for which some n linearly independent
constraints hold with equality.

Prove that the definition of a basic feasible solution for linear programs in standard form
is a special case of the above definition.

Problem 9.4. Consider the linear program

maximize x1 + x2

subject to

x1 + x2 ≤ 1.

Show that none of the optimal solutions are basic.

Problem 9.5. The standard n-simplex is the subset ∆n of Rn+1 given by

∆n = {(x1, . . . , xn+1) ∈ Rn+1 | x1 + · · ·+ xn+1 = 1, xi ≥ 0, 1 ≤ i ≤ n+ 1}.

(1) Prove that ∆n is convex and that it is the convex hull of the n+ 1 vectors e1, . . . en+1,
where ei is the ith canonical unit basis vector, i = 1, . . . , n+ 1.

(2) Prove that ∆n is the intersection of n+ 1 half spaces and determine the hyperplanes
defining these half-spaces.

Remark: The volume under the standard simplex ∆n is 1/(n+ 1)!.

Problem 9.6. The n-dimensional cross-polytope is the subset XPn of Rn given by

XPn = {(x1, . . . , xn) ∈ Rn | |x1|+ · · ·+ |xn| ≤ 1}.

(1) Prove that XPn is convex and that it is the convex hull of the 2n vectors ±ei, where
ei is the ith canonical unit basis vector, i = 1, . . . , n.

(2) Prove that XPn is the intersection of 2n half spaces and determine the hyperplanes
defining these half-spaces.

Remark: The volume of XPn is 2n/n!.
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Problem 9.7. The n-dimensional hypercube is the subset Cn of Rn given by

Cn = {(x1, . . . , xn) ∈ Rn | |xi| ≤ 1, 1 ≤ i ≤ n}.

(1) Prove that Cn is convex and that it is the convex hull of the 2n vectors (±1, . . . ,±1),
i = 1, . . . , n.

(2) Prove that Cn is the intersection of 2n half spaces and determine the hyperplanes
defining these half-spaces.

Remark: The volume of Cn is 2n.
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Chapter 10

The Simplex Algorithm

10.1 The Idea Behind the Simplex Algorithm

The simplex algorithm, due to Dantzig, applies to a linear program (P ) in standard form,
where the constraints are given by Ax = b and x ≥ 0, with A a m × n matrix of rank
m, and with an objective function x 7→ cx. This algorithm either reports that (P ) has no
feasible solution, or that (P ) is unbounded, or yields an optimal solution. Geometrically,
the algorithm climbs from vertex to vertex in the polyhedron P(A, b), trying to improve
the value of the objective function. Since vertices correspond to basic feasible solutions, the
simplex algorithm actually works with basic feasible solutions.

Recall that a basic feasible solution x is a feasible solution for which there is a subset
K ⊆ {1, . . . , n} of size m such that the matrix AK consisting of the columns of A whose
indices belong to K are linearly independent, and that xj = 0 for all j /∈ K. We also let
J>(x) be the set of indices

J>(x) = {j ∈ {1, . . . , n} | xj > 0},

so for a basic feasible solution x associated with K, we have J>(x) ⊆ K. In fact, by
Proposition 9.2, a feasible solution x is a basic feasible solution iff the columns of AJ>(x) are
linearly independent.

If J>(x) had cardinality m for all basic feasible solutions x, then the simplex algorithm
would make progress at every step, in the sense that it would strictly increase the value of the
objective function. Unfortunately, it is possible that |J>(x)| < m for certain basic feasible
solutions, and in this case a step of the simplex algorithm may not increase the value of the
objective function. Worse, in rare cases, it is possible that the algorithm enters an infinite
loop. This phenomenon called cycling can be detected, but in this case the algorithm fails
to give a conclusive answer.

Fortunately, there are ways of preventing the simplex algorithm from cycling (for exam-
ple, Bland’s rule discussed later), although proving that these rules work correctly is quite
involved.

227
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The potential “bad” behavior of a basic feasible solution is recorded in the following
definition.

Definition 10.1. Given a Linear Program (P ) in standard form where the constraints are
given by Ax = b and x ≥ 0, with A an m× n matrix of rank m, a basic feasible solution x
is degenerate if |J>(x)| < m, otherwise it is nondegenerate.

The origin 0n, if it is a basic feasible solution, is degenerate. For a less trivial example,
x = (0, 0, 0, 2) is a degenerate basic feasible solution of the following linear program in which
m = 2 and n = 4.

Example 10.1.

maximize x2

subject to

− x1 + x2 + x3 = 0

x1 + x4 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The matrix A and the vector b are given by

A =

(
−1 1 1 0
1 0 0 1

)
, b =

(
0
2

)
,

and if x = (0, 0, 0, 2), then J>(x) = {4}. There are two ways of forming a set of two linearly
independent columns of A containing the fourth column.

Given a basic feasible solution x associated with a subset K of size m, since the columns
of the matrix AK are linearly independent, by abuse of language we call the columns of AK
a basis of x.

If u is a vertex of (P ), that is, a basic feasible solution of (P ) associated with a basis
K (of size m), in “normal mode,” the simplex algorithm tries to move along an edge from
the vertex u to an adjacent vertex v (with u, v ∈ P(A, b) ⊆ Rn) corresponding to a basic
feasible solution whose basis is obtained by replacing one of the basic vectors Ak with k ∈ K
by another nonbasic vector Aj for some j /∈ K, in such a way that the value of the objective
function is increased.

Let us demonstrate this process on an example.

Example 10.2. Let (P ) be the following linear program in standard form.

maximize x1 + x2

subject to

− x1 + x2 + x3 = 1

x1 + x4 = 3

x2 + x5 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.
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The matrix A and the vector b are given by

A =

−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 , b =

1
3
2

 .

K1 0 1 2 3 4 5

K1

1

2

3

-x
 +

 x 
= 1

1
2

u

uu0 1

2

Figure 10.1: The planar H-polyhedron associated with Example 10.2. The initial basic
feasible solution is the origin. The simplex algorithm first moves along the horizontal orange
line to feasible solution at vertex u1. It then moves along the vertical red line to obtain the
optimal feasible solution u2.

The vector u0 = (0, 0, 1, 3, 2) corresponding to the basis K = {3, 4, 5} is a basic feasible
solution, and the corresponding value of the objective function is 0 + 0 = 0. Since the
columns (A3, A4, A5) corresponding to K = {3, 4, 5} are linearly independent we can express
A1 and A2 as

A1 = −A3 + A4

A2 = A3 + A5.

Since

1A3 + 3A4 + 2A5 = Au0 = b,

for any θ ∈ R, we have

b = 1A3 + 3A4 + 2A5 − θA1 + θA1

= 1A3 + 3A4 + 2A5 − θ(−A3 + A4) + θA1

= θA1 + (1 + θ)A3 + (3− θ)A4 + 2A5,



230 CHAPTER 10. THE SIMPLEX ALGORITHM

and

b = 1A3 + 3A4 + 2A5 − θA2 + θA2

= 1A3 + 3A4 + 2A5 − θ(A3 + A5) + θA2

= θA2 + (1− θ)A3 + 3A4 + (2− θ)A5.

In the first case, the vector (θ, 0, 1 + θ, 3 − θ, 2) is a feasible solution iff 0 ≤ θ ≤ 3, and
the new value of the objective function is θ.

In the second case, the vector (0, θ, 1 − θ, 3, 2 − θ, 1) is a feasible solution iff 0 ≤ θ ≤ 1,
and the new value of the objective function is also θ.

Consider the first case. It is natural to ask whether we can get another vertex and increase
the objective function by setting to zero one of the coordinates of (θ, 0, 1+θ, 3−θ, 2), in this
case the fouth one, by picking θ = 3. This yields the feasible solution (3, 0, 4, 0, 2), which
corresponds to the basis (A1, A3, A5), and so is indeed a basic feasible solution, with an
improved value of the objective function equal to 3. Note that A4 left the basis (A3, A4, A5)
and A1 entered the new basis (A1, A3, A5).

We can now express A2 and A4 in terms of the basis (A1, A3, A5), which is easy to do
since we already have A1 and A2 in term of (A3, A4, A5), and A1 and A4 are swapped. Such
a step is called a pivoting step. We obtain

A2 = A3 + A5

A4 = A1 + A3.

Then we repeat the process with u1 = (3, 0, 4, 0, 2) and the basis (A1, A3, A5). We have

b = 3A1 + 4A3 + 2A5 − θA2 + θA2

= 3A1 + 4A3 + 2A5 − θ(A3 + A5) + θA2

= 3A1 + θA2 + (4− θ)A3 + (2− θ)A5,

and

b = 3A1 + 4A3 + 2A5 − θA4 + θA4

= 3A1 + 4A3 + 2A5 − θ(A1 + A3) + θA4

= (3− θ)A1 + (4− θ)A3 + θA4 + 2A5.

In the first case, the point (3, θ, 4 − θ, 0, 2 − θ) is a feasible solution iff 0 ≤ θ ≤ 2, and the
new value of the objective function is 3+θ. In the second case, the point (3−θ, 0, 4−θ, θ, 2)
is a feasible solution iff 0 ≤ θ ≤ 3, and the new value of the objective function is 3− θ. To
increase the objective function, we must choose the first case and we pick θ = 2. Then we
get the feasible solution u2 = (3, 2, 2, 0, 0), which corresponds to the basis (A1, A2, A3), and
thus is a basic feasible solution. The new value of the objective function is 5.
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Next we express A4 and A5 in terms of the basis (A1, A2, A3). Again this is easy to do
since we just swapped A5 and A2 (a pivoting step), and we get

A5 = A2 − A3

A4 = A1 + A3.

We repeat the process with u2 = (3, 2, 2, 0, 0) and the basis (A1, A2, A3). We have

b = 3A1 + 2A2 + 2A3 − θA4 + θA4

= 3A1 + 2A2 + 2A3 − θ(A1 + A3) + θA4

= (3− θ)A1 + 2A2 + (2− θ)A3 + θA4,

and

b = 3A1 + 2A2 + 2A3 − θA5 + θA5

= 3A1 + 2A2 + 2A3 − θ(A2 − A3) + θA5

= 3A1 + (2− θ)A2 + (2 + θ)A3 + θA5.

In the first case, the point (3 − θ, 2, 2 − θ, θ, 0) is a feasible solution iff 0 ≤ θ ≤ 2, and the
value of the objective function is 5− θ. In the second case, the point (3, 2− θ, 2 + θ, 0, θ) is
a feasible solution iff 0 ≤ θ ≤ 2, and the value of the objective function is also 5− θ. Since
we must have θ ≥ 0 to have a feasible solution, there is no way to increase the objective
function. In this situation, it turns out that we have reached an optimal solution, in our
case u2 = (3, 2, 2, 0, 0), with the maximum of the objective function equal to 5.

We could also have applied the simplex algorithm to the vertex u0 = (0, 0, 1, 3, 2) and to
the vector (0, θ, 1 − θ, 3, 2 − θ, 1), which is a feasible solution iff 0 ≤ θ ≤ 1, with new value
of the objective function θ. By picking θ = 1, we obtain the feasible solution (0, 1, 0, 3, 1),
corresponding to the basis (A2, A4, A5), which is indeed a vertex. The new value of the
objective function is 1. Then we express A1 and A3 in terms the basis (A2, A4, A5) obtaining

A1 = A4 − A3

A3 = A2 − A5,

and repeat the process with (0, 1, 0, 3, 1) and the basis (A2, A4, A5). After three more steps
we will reach the optimal solution u2 = (3, 2, 2, 0, 0).

Let us go back to the linear program of Example 10.1 with objective function x2 and
where the matrix A and the vector b are given by

A =

(
−1 1 1 0
1 0 0 1

)
, b =

(
0
2

)
.

Recall that u0 = (0, 0, 0, 2) is a degenerate basic feasible solution, and the objective function
has the value 0. See Figure 10.2 for a planar picture of the H-polyhedron associated with
Example 10.1.
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Figure 10.2: The planar H-polyhedron associated with Example 10.1. The initial basic
feasible solution is the origin. The simplex algorithm moves along the slanted orange line to
the apex of the triangle.

Pick the basis (A3, A4). Then we have

A1 = −A3 + A4

A2 = A3,

and we get

b = 2A4 − θA1 + θA1

= 2A4 − θ(−A3 + A4) + θA1

= θA1 + θA3 + (2− θ)A4,

and

b = 2A4 − θA2 + θA2

= 2A4 − θA3 + θA2

= θA2 − θA3 + 2A4.

In the first case, the point (θ, 0, θ, 2− θ) is a feasible solution iff 0 ≤ θ ≤ 2, and the value of
the objective function is 0, and in the second case the point (0, θ,−θ, 2) is a feasible solution
iff θ = 0, and the value of the objective function is θ. However, since we must have θ = 0 in
the second case, there is no way to increase the objective function either.

It turns out that in order to make the cases considered by the simplex algorithm as
mutually exclusive as possible, since in the second case the coefficient of θ in the value of
the objective function is nonzero, namely 1, we should choose the second case. We must
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pick θ = 0, but we can swap the vectors A3 and A2 (because A2 is coming in and A3 has
the coefficient −θ, which is the reason why θ must be zero), and we obtain the basic feasible
solution u1 = (0, 0, 0, 2) with the new basis (A2, A4). Note that this basic feasible solution
corresponds to the same vertex (0, 0, 0, 2) as before, but the basis has changed. The vectors
A1 and A3 can be expressed in terms of the basis (A2, A4) as

A1 = −A2 + A4

A3 = A2.

We now repeat the procedure with u1 = (0, 0, 0, 2) and the basis (A2, A4), and we get

b = 2A4 − θA1 + θA1

= 2A4 − θ(−A2 + A4) + θA1

= θA1 + θA2 + (2− θ)A4,

and

b = 2A4 − θA3 + θA3

= 2A4 − θA2 + θA3

= −θA2 + θA3 + 2A4.

In the first case, the point (θ, θ, 0, 2−θ) is a feasible solution iff 0 ≤ θ ≤ 2 and the value of the
objective function is θ, and in the second case the point (0,−θ, θ, 2) is a feasible solution iff
θ = 0 and the value of the objective function is θ. In order to increase the objective function
we must choose the first case and pick θ = 2. We obtain the feasible solution u2 = (2, 2, 0, 0)
whose corresponding basis is (A1, A2) and the value of the objective function is 2.

The vectors A3 and A4 are expressed in terms of the basis (A1, A2) as

A3 = A2

A4 = A1 + A3,

and we repeat the procedure with u2 = (2, 2, 0, 0) and the basis (A1, A2). We get

b = 2A1 + 2A2 − θA3 + θA3

= 2A1 + 2A2 − θA2 + θA3

= 2A1 + (2− θ)A2 + θA3,

and

b = 2A1 + 2A2 − θA4 + θA4

= 2A1 + 2A2 − θ(A1 + A3) + θA4

= (2− θ)A1 + 2A2 − θA3 + θA4.



234 CHAPTER 10. THE SIMPLEX ALGORITHM

In the first case, the point (2, 2− θ, 0, θ) is a feasible solution iff 0 ≤ θ ≤ 2 and the value of
the objective function is 2− θ, and in the second case, the point (2− θ, 2,−θ, θ) is a feasible
solution iff θ = 0 and the value of the objective function is 2. This time there is no way
to improve the objective function and we have reached an optimal solution u2 = (2, 2, 0, 0)
with the maximum of the objective function equal to 2.

Let us now consider an example of an unbounded linear program.

Example 10.3. Let (P ) be the following linear program in standard form.

maximize x1

subject to

x1 − x2 + x3 = 1

− x1 + x2 + x4 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The matrix A and the vector b are given by

A =

(
1 −1 1 0
−1 1 0 1

)
, b =

(
1
2

)
.
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Figure 10.3: The planar H-polyhedron associated with Example 10.3. The initial basic
feasible solution is the origin. The simplex algorithm first moves along the horizontal indigo
line to basic feasible solution at vertex (1, 0). Any optimal feasible solution occurs by moving
along the boundary line parameterized by the orange arrow θ(1, 1).

The vector u0 = (0, 0, 1, 2) corresponding to the basis K = {3, 4} is a basic feasible
solution, and the corresponding value of the objective function is 0. The vectors A1 and A2
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are expressed in terms of the basis (A3, A4) by

A1 = A3 − A4

A2 = −A3 + A4.

Starting with u0 = (0, 0, 1, 2), we get

b = A3 + 2A4 − θA1 + θA1

= A3 + 2A4 − θ(A3 − A4) + θA1

= θA1 + (1− θ)A3 + (2 + θ)A4,

and

b = A3 + 2A4 − θA2 + θA2

= A3 + 2A4 − θ(−A3 + A4) + θA2

= θA2 + (1 + θ)A3 + (2− θ)A4.

In the first case, the point (θ, 0, 1− θ, 2 + θ) is a feasible solution iff 0 ≤ θ ≤ 1 and the value
of the objective function is θ, and in the second case, the point (0, θ, 1 + θ, 2− θ) is a feasible
solution iff 0 ≤ θ ≤ 2 and the value of the objective function is 0. In order to increase the
objective function we must choose the first case, and we pick θ = 1. We get the feasible
solution u1 = (1, 0, 0, 3) corresponding to the basis (A1, A4), so it is a basic feasible solution,
and the value of the objective function is 1.

The vectors A2 and A3 are given in terms of the basis (A1, A4) by

A2 = −A1

A3 = A1 + A4.

Repeating the process with u1 = (1, 0, 0, 3), we get

b = A1 + 3A4 − θA2 + θA2

= A1 + 3A4 − θ(−A1) + θA2

= (1 + θ)A1 + θA2 + 3A4,

and

b = A1 + 3A4 − θA3 + θA3

= A1 + 3A4 − θ(A1 + A4) + θA3

= (1− θ)A1 + θA3 + (3− θ)A4.

In the first case, the point (1 + θ, θ, 0, 3) is a feasible solution for all θ ≥ 0 and the value
of the objective function if 1 + θ, and in the second case, the point (1 − θ, 0, θ, 3 − θ) is a
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feasible solution iff 0 ≤ θ ≤ 1 and the value of the objective function is 1− θ. This time, we
are in the situation where the points

(1 + θ, θ, 0, 3) = (1, 0, 0, 3) + θ(1, 1, 0, 0), θ ≥ 0

form an infinite ray in the set of feasible solutions, and the objective function 1 + θ is
unbounded from above on this ray. This indicates that our linear program, although feasible,
is unbounded.

Let us now describe a step of the simplex algorithm in general.

10.2 The Simplex Algorithm in General

We assume that we already have an initial vertex u0 to start from. This vertex corresponds
to a basic feasible solution with basis K0. We will show later that it is always possible to
find a basic feasible solution of a Linear Program (P ) is standard form, or to detect that (P )
has no feasible solution.

The idea behind the simplex algorithm is this: Given a pair (u,K) consisting of a basic
feasible solution u and a basis K for u, find another pair (u+, K+) consisting of another basic
feasible solution u+ and a basis K+ for u+, such that K+ is obtained from K by deleting
some basic index k− ∈ K and adding some nonbasic index j+ /∈ K, in such a way that the
value of the objective function increases (preferably strictly). The step which consists in
swapping the vectors Ak

−
and Aj

+
is called a pivoting step.

Let u be a given vertex corresponds to a basic feasible solution with basis K. Since the
m vectors Ak corresponding to indices k ∈ K are linearly independent, they form a basis, so
for every nonbasic j /∈ K, we write

Aj =
∑
k∈K

γjkA
k. (∗)

We let γjK ∈ Rm be the vector given by γjK = (γjk)k∈K . Actually, since the vector γjK depends
on K, to be very precise we should denote its components by (γjK)k, but to simplify notation
we usually write γjk instead of (γjK)k (unless confusion arises). We will explain later how the
coefficients γjk can be computed efficiently.

Since u is a feasible solution we have u ≥ 0 and Au = b, that is,∑
k∈K

ukA
k = b. (∗∗)

For every nonbasic j /∈ K, a candidate for entering the basis K, we try to find a new vertex
u(θ) that improves the objective function, and for this we add −θAj + θAj = 0 to b in
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Equation (∗∗) and then replace the occurrence of Aj in −θAj by the right hand side of
Equation (∗) to obtain

b =
∑
k∈K

ukA
k − θAj + θAj

=
∑
k∈K

ukA
k − θ

(∑
k∈K

γjkA
k

)
+ θAj

=
∑
k∈K

(
uk − θγjk

)
Ak + θAj.

Consequently, the vector u(θ) appearing on the right-hand side of the above equation given
by

u(θ)i =


ui − θγji if i ∈ K
θ if i = j

0 if i /∈ K ∪ {j}

automatically satisfies the constraints Au(θ) = b, and this vector is a feasible solution iff

θ ≥ 0 and uk ≥ θγjk for all k ∈ K.

Obviously θ = 0 is a solution, and if

θj = min

{
uk

γjk

∣∣∣∣ γjk > 0, k ∈ K
}
> 0,

then we have a range of feasible solutions for 0 ≤ θ ≤ θj. The value of the objective function
for u(θ) is

cu(θ) =
∑
k∈K

ck(uk − θγjk) + θcj = cu+ θ

(
cj −

∑
k∈K

γjkck

)
.

Since the potential change in the objective function is

θ

(
cj −

∑
k∈K

γjkck

)
and θ ≥ 0, if cj −

∑
k∈K γ

j
kck ≤ 0, then the objective function can’t be increased.

However, if cj+ −
∑

k∈K γ
j+

k ck > 0 for some j+ /∈ K, and if θj
+
> 0, then the objective

function can be strictly increased by choosing any θ > 0 such that θ ≤ θj
+

, so it is natural
to zero at least one coefficient of u(θ) by picking θ = θj

+
, which also maximizes the increase

of the objective function. In this case (Case below (B2)), we obtain a new feasible solution
u+ = u(θj

+
).

Now, if θj
+
> 0, then there is some index k ∈ K such uk > 0, γj

+

k > 0, and θj
+

= uk/γ
j+

k ,
so we can pick such an index k− for the vector Ak

−
leaving the basis K. We claim that
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K+ = (K − {k−}) ∪ {j+} is a basis. This is because the coefficient γj
+

k− associated with the

column Ak
−

is nonzero (in fact, γj
+

k− > 0), so Equation (∗), namely

Aj
+

= γj
+

k−A
k− +

∑
k∈K−{k−}

γj
+

k Ak,

yields the equation

Ak
−

= (γj
+

k−)−1Aj
+ −

∑
k∈K−{k−}

(γj
+

k−)−1γj
+

k Ak,

and these equations imply that the subspaces spanned by the vectors (Ak)k∈K and the vectors
(Ak)k∈K+ are identical. However, K is a basis of dimension m so this subspace has dimension
m, and since K+ also has m elements, it must be a basis. Therefore, u+ = u(θj

+
) is a basic

feasible solution.

The above case is the most common one, but other situations may arise. In what follows,
we discuss all eventualities.

Case (A).

We have cj −
∑

k∈K γ
j
kck ≤ 0 for all j /∈ K. Then it turns out that u is an optimal

solution. Otherwise, we are in Case (B).

Case (B).

We have cj −
∑

k∈K γ
j
kck > 0 for some j /∈ K (not necessarily unique). There are three

subcases.

Case (B1).

If for some j /∈ K as above we also have γjk ≤ 0 for all k ∈ K, since uk ≥ 0 for all
k ∈ K, this places no restriction on θ, and the objective function is unbounded above. This
is demonstrated by Example 10.3 with K = {3, 4} and j = 2 since γ2

{3,4} = (−1, 0).

Case (B2).

There is some index j+ /∈ K such that simultaneously

(1) cj+ −
∑

k∈K γ
j+

k ck > 0, which means that the objective function can potentially be
increased;

(2) There is some k ∈ K such that γj
+

k > 0, and for every k ∈ K, if γj
+

k > 0 then uk > 0,
which implies that θj

+
> 0.

If we pick θ = θj
+

where

θj
+

= min

{
uk

γj
+

k

∣∣∣∣ γj+k > 0, k ∈ K
}
> 0,
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then the feasible solution u+ given by

u+
i =


ui − θj

+
γj

+

i if i ∈ K
θj

+
if i = j+

0 if i /∈ K ∪ {j+}

is a vertex of P(A, b). If we pick any index k− ∈ K such that θj
+

= uk−/γ
j+
k− , then

K+ = (K−{k−})∪{j+} is a basis for u+. The vector Aj
+

enters the new basis K+, and the
vector Ak

−
leaves the old basis K. This is a pivoting step. The objective function increases

strictly. This is demonstrated by Example 10.2 with K = {3, 4, 5}, j = 1, and k = 4, Then
γ1
{3,4,5} = (−1, 1, 0), with γ1

4 = 1. Since u = (0, 0, 1, 3, 2), θ1 = u4
γ14

= 3, and the new optimal

solutions becomes u+ = (3, 0, 1− 3(−1), 3− 3(1), 2− 3(0)) = (3, 0, 4, 0, 2).

Case (B3).

There is some index j /∈ K such that cj −
∑

k∈K γ
j
kck > 0, and for each of the indices

j /∈ K satisfying the above property we have simultaneously

(1) cj −
∑

k∈K γ
j
kck > 0, which means that the objective function can potentially be in-

creased;

(2) There is some k ∈ K such that γjk > 0, and uk = 0, which implies that θj = 0.

Consequently, the objective function does not change. In this case, u is a degenerate basic
feasible solution.

We can associate to u+ = u a new basis K+ as follows: Pick any index j+ /∈ K such that

cj+ −
∑
k∈K

γj
+

k ck > 0,

and any index k− ∈ K such that

γj
+

k− > 0,

and let K+ = (K − {k−}) ∪ {j+}. As in Case (B2), The vector Aj
+

enters the new basis
K+, and the vector Ak

−
leaves the old basis K. This is a pivoting step. However, the

objective function does not change since θj+ = 0. This is demonstrated by Example 10.1
with K = {3, 4}, j = 2, and k = 3.

It is easy to prove that in Case (A) the basic feasible solution u is an optimal solution,
and that in Case (B1) the linear program is unbounded. We already proved that in Case
(B2) the vector u+ and its basis K+ constitutes a basic feasible solution, and the proof in
Case (B3) is similar. For details, see Ciarlet [25] (Chapter 10).
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It is convenient to reinterpret the various cases considered by introducing the following
sets:

B1 =
{
j /∈ K | cj −

∑
k∈K

γjkck > 0, max
k∈K

γjk ≤ 0
}

B2 =

{
j /∈ K | cj −

∑
k∈K

γjkck > 0, max
k∈K

γjk > 0, min
{uk
γjk

∣∣∣ k ∈ K, γjk > 0
}
> 0

}
B3 =

{
j /∈ K | cj −

∑
k∈K

γjkck > 0, max
k∈K

γjk > 0, min
{uk
γjk

∣∣∣ k ∈ K, γjk > 0
}

= 0

}
,

and
B = B1 ∪B2 ∪B3 =

{
j /∈ K | cj −

∑
k∈K

γjkck > 0
}
.

Then it is easy to see that the following equivalences hold:

Case (A)⇐⇒ B = ∅, Case (B)⇐⇒ B 6= ∅
Case (B1)⇐⇒ B1 6= ∅
Case (B2)⇐⇒ B2 6= ∅
Case (B3)⇐⇒ B3 6= ∅.

Furthermore, Cases (A) and (B), Cases (B1) and (B3), and Cases (B2) and (B3) are mutually
exclusive, while Cases (B1) and (B2) are not.

If Case (B1) and Case (B2) arise simultaneously, we opt for Case (B1) which says that
the Linear Program (P ) is unbounded and terminate the algorithm.

Here are a few remarks about the method.

In Case (B2), which is the path followed by the algorithm most frequently, various choices
have to be made for the index j+ /∈ K for which θj

+
> 0 (the new index in K+). Similarly,

various choices have to be made for the index k− ∈ K leaving K, but such choices are
typically less important.

Similarly in Case (B3), various choices have to be made for the new index j+ /∈ K going
into K+. In Cases (B2) and (B3), criteria for making such choices are called pivot rules .

Case (B3) only arises when u is a degenerate vertex. But even if u is degenerate, Case
(B2) may arise if uk > 0 whenever γjk > 0. It may also happen that u is nondegenerate but
as a result of Case (B2), the new vertex u+ is degenerate because at least two components

uk1 − θj
+
γj

+

k1
and uk2 − θj

+
γj

+

k2
vanish for some distinct k1, k2 ∈ K.

Cases (A) and (B1) correspond to situations where the algorithm terminates, and Case
(B2) can only arise a finite number of times during execution of the simplex algorithm, since
the objective function is strictly increased from vertex to vertex and there are only finitely
many vertices. Therefore, if the simplex algorithm is started on any initial basic feasible
solution u0, then one of three mutually exclusive situations may arise:
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(1) There is a finite sequence of occurrences of Case (B2) and/or Case (B3) ending with an
occurrence of Case (A). Then the last vertex produced by the algorithm is an optimal
solution. This is what occurred in Examples 10.1 and 10.2.

(2) There is a finite sequence of occurrences of Case (B2) and/or Case (B3) ending with
an occurrence of Case (B1). We conclude that the problem is unbounded, and thus
has no solution. This is what occurred in Example 10.3.

(3) There is a finite sequence of occurrences of Case (B2) and/or Case (B3), followed by
an infinite sequence of Case (B3). If this occurs, the algorithm visits the some basis
twice. This a phenomenon known as cycling . In this eventually the algorithm fails to
come to a conclusion.

There are examples for which cycling occur, although this is rare in practice. Such an
example is given in Chvatal [24]; see Chapter 3, pages 31-32, for an example with seven
variables and three equations that cycles after six iterations under a certain pivot rule.

The third possibility can be avoided by the choice of a suitable pivot rule. Two of these
rules are Bland’s rule and the lexicographic rule; see Chvatal [24] (Chapter 3, pages 34-38).

Bland’s rule says: choose the smallest of the eligible incoming indices j+ /∈ K, and
similarly choose the smallest of the eligible outgoing indices k− ∈ K.

It can be proven that cycling cannot occur if Bland’s rule is chosen as the pivot rule. The
proof is very technical; see Chvatal [24] (Chapter 3, pages 37-38), Matousek and Gardner [54]
(Chapter 5, Theorem 5.8.1), and Papadimitriou and Steiglitz [60] (Section 2.7). Therefore,
assuming that some initial basic feasible solution is provided, and using a suitable pivot rule
(such as Bland’s rule), the simplex algorithm always terminates and either yields an optimal
solution or reports that the linear program is unbounded. Unfortunately, Bland’s rules is
one of the slowest pivot rules.

The choice of a pivot rule affects greatly the number of pivoting steps that the simplex
algorithms goes through. It is not our intention here to explain the various pivot rules.
We simply mention the following rules, referring the reader to Matousek and Gardner [54]
(Chapter 5, Section 5.7) or to the texts cited in Section 8.1.

1. Largest coefficient, or Dantzig’s rule.

2. Largest increase.

3. Steepest edge.

4. Bland’s Rule.

5. Random edge.
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The steepest edge rule is one of the most popular. The idea is to maximize the ratio

c(u+ − u)

‖u+ − u‖
.

The random edge rule picks the index j+ /∈ K of the entering basis vector uniformly at
random among all eligible indices.

Let us now return to the issue of the initialization of the simplex algorithm. We use the
Linear Program (P̂ ) introduced during the proof of Theorem 9.7.

Consider a Linear Program (P2)

maximize cx

subject to Ax = b and x ≥ 0,

in standard form where A is an m× n matrix of rank m.

First, observe that since the constraints are equations, we can ensure that b ≥ 0, because
every equation aix = bi where bi < 0 can be replaced by −aix = −bi. The next step is to
introduce the Linear Program (P̂ ) in standard form

maximize − (xn+1 + · · ·+ xn+m)

subject to Â x̂ = b and x̂ ≥ 0,

where Â and x̂ are given by

Â =
(
A Im

)
, x̂ =

 x1
...

xn+m

 .

Since we assumed that b ≥ 0, the vector x̂ = (0n, b) is a feasible solution of (P̂ ), in fact a basic
feasible solutions since the matrix associated with the indices n+1, . . . , n+m is the identity
matrix Im. Furthermore, since xi ≥ 0 for all i, the objective function −(xn+1 + · · ·+ xn+m)
is bounded above by 0.

If we execute the simplex algorithm with a pivot rule that prevents cycling, starting with
the basic feasible solution (0n, d), since the objective function is bounded by 0, the simplex
algorithm terminates with an optimal solution given by some basic feasible solution, say
(u∗, w∗), with u∗ ∈ Rn and w∗ ∈ Rm.

As in the proof of Theorem 9.7, for every feasible solution u ∈ P(A, b), the vector (u, 0m)

is an optimal solution of (P̂ ). Therefore, if w∗ 6= 0, then P(A, b) = ∅, since otherwise for
every feasible solution u ∈ P(A, b) the vector (u, 0m) would yield a value of the objective
function −(xn+1 + · · ·+ xn+m) equal to 0, but (u∗, w∗) yields a strictly negative value since
w∗ 6= 0.
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Otherwise, w∗ = 0, and u∗ is a feasible solution of (P2). Since (u∗, 0m) is a basic

feasible solution of (P̂ ) the columns corresponding to nonzero components of u∗ are linearly
independent. Some of the coordinates of u∗ could be equal to 0, but since A has rank m
we can add columns of A to obtain a basis K∗ associated with u∗, and u∗ is indeed a basic
feasible solution of (P2).

Running the simplex algorithm on the Linear Program P̂ to obtain an initial feasible
solution (u0, K0) of the linear program (P2) is called Phase I of the simplex algorithm.
Running the simplex algorithm on the Linear Program (P2) with some initial feasible solution
(u0, K0) is called Phase II of the simplex algorithm. If a feasible solution of the Linear
Program (P2) is readily available then Phase I is skipped. Sometimes, at the end of Phase
I, an optimal solution of (P2) is already obtained.

In summary, we proved the following fact worth recording.

Proposition 10.1. For any Linear Program (P2)

maximize cx

subject to Ax = b and x ≥ 0,

in standard form, where A is an m × n matrix of rank m and b ≥ 0, consider the Linear
Program (P̂ ) in standard form

maximize − (xn+1 + · · ·+ xn+m)

subject to Â x̂ = b and x̂ ≥ 0.

The simplex algorithm with a pivot rule that prevents cycling started on the basic feasible
solution x̂ = (0n, b) of (P̂ ) terminates with an optimal solution (u∗, w∗).

(1) If w∗ 6= 0, then P(A, b) = ∅, that is, the Linear Program (P2) has no feasible solution.

(2) If w∗ = 0, then P(A, b) 6= ∅, and u∗ is a basic feasible solution of (P2) associated with
some basis K.

Proposition 10.1 shows that determining whether the polyhedron P(A, b) defined by a
system of equations Ax = b and inequalities x ≥ 0 is nonempty is decidable. This decision
procedure uses a fail-safe version of the simplex algorithm (that prevents cycling), and the
proof that it always terminates and returns an answer is nontrivial.

10.3 How to Perform a Pivoting Step Efficiently

We now discuss briefly how to perform the computation of (u+, K+) from a basic feasible
solution (u,K).
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In order to avoid applying permutation matrices it is preferable to allow a basis K to be
a sequence of indices, possibly out of order. Thus, for any m × n matrix A (with m ≤ n)
and any sequence K = (k1, k2, · · · , km) of m elements with ki ∈ {1, . . . , n}, the matrix AK
denotes the m×m matrix whose ith column is the kith column of A, and similarly for any
vector u ∈ Rn (resp. any linear form c ∈ (Rn)∗), the vector uK ∈ Rm (the linear form
cK ∈ (Rm)∗) is the vector whose ith entry is the kith entry in u (resp. the linear whose ith
entry is the kith entry in c).

For each nonbasic j /∈ K, we have

Aj = γjk1A
k1 + · · ·+ γjkmA

km = AKγ
j
K ,

so the vector γjK is given by γjK = A−1
K Aj, that is, by solving the system

AKγ
j
K = Aj. (∗γ)

To be very precise, since the vector γjK depends on K its components should be denoted by
(γjK)ki , but as we said before, to simplify notation we write γjki instead of (γjK)ki .

In order to decide which case applies ((A), (B1), (B2), (B3)), we need to compute the
numbers cj −

∑
k∈K γ

j
kck for all j /∈ K. For this, observe that

cj −
∑
k∈K

γjkck = cj − cKγjK = cj − cKA−1
K Aj.

If we write βK = cKA
−1
K , then

cj −
∑
k∈K

γjkck = cj − βKAj,

and we see that β>K ∈ Rm is the solution of the system β>K = (A−1
K )>c>k , which means that

β>K is the solution of the system
A>Kβ

>
K = c>K . (∗β)

Remark: Observe that since u is a basis feasible solution of (P ), we have uj = 0 for all
j /∈ K, so u is the solution of the equation AKuK = b. As a consequence, the value of the
objective function for u is cu = cKuK = cKA

−1
K b. This fact will play a crucial role in Section

11.2 to show that when the simplex algorithm terminates with an optimal solution of the
Linear Program (P ), then it also produces an optimal solution of the Dual Linear Program
(D).

Assume that we have a basic feasible solution u, a basis K for u, and that we also have
the matrix AK as well its inverse A−1

K (perhaps implicitly) and also the inverse (A>K)−1 of
A>K (perhaps implicitly). Here is a description of an iteration step of the simplex algorithm,
following almost exactly Chvatal (Chvatal [24], Chapter 7, Box 7.1).
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An Iteration Step of the (Revised) Simplex Method

Step 1. Compute the numbers cj −
∑

k∈K γ
j
kck = cj − βKAj for all j /∈ K, and for this,

compute β>K as the solution of the system

A>Kβ
>
K = c>K .

If cj − βKAj ≤ 0 for all j /∈ K, stop and return the optimal solution u (Case (A)).

Step 2. If Case (B) arises, use a pivot rule to determine which index j+ /∈ K should enter
the new basis K+ (the condition cj+ − βKAj

+
> 0 should hold).

Step 3. Compute maxk∈K γ
j+

k . For this, solve the linear system

AKγ
j+

K = Aj
+

.

Step 4. If maxk∈K γ
j+

k ≤ 0, then stop and report that Linear Program (P ) is unbounded
(Case (B1)).

Step 5. If maxk∈K γ
j+

k > 0, use the ratios uk/γ
j+

k for all k ∈ K such that γj
+

k > 0 to
compute θj

+
, and use a pivot rule to determine which index k− ∈ K such that θj

+
= uk−/γ

j+
k−

should leave K (Case (B2)).

If maxk∈K γ
j+

k = 0, then use a pivot rule to determine which index k− for which γj
+

k− > 0
should leave the basis K (Case (B3)).

Step 6. Update u, K, and AK , to u+ and K+, and AK+ . During this step, given the
basis K specified by the sequence K = (k1, . . . , k`, . . . , km), with k− = k`, then K+ is the
sequence obtained by replacing k` by the incoming index j+, so K+ = (k1, . . . , j

+, . . . , km)
with j+ in the `th slot.

The vector u is easily updated. To compute AK+ from AK we take advantage of the fact
that AK and AK+ only differ by a single column, namely the `th column Aj

+
, which is given

by the linear combination

Aj
+

= AKγ
j+

K .

To simplify notation, denote γj
+

K by γ, and recall that k− = k`. If K = (k1, . . . , km), then
AK = [Ak1 · · ·Ak− · · ·Aim ], and since AK+ is the result of replacing the `th column Ak

−
of

AK by the column Aj
+

, we have

AK+ = [Ak1 · · ·Aj+ · · ·Aim ] = [Ak1 · · ·AKγ · · ·Aim ] = AKE(γ),

where E(γ) is the following invertible matrix obtained from the identity matrix Im by re-
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placing its `th column by γ:

E(γ) =



1 γ1

. . .
...

1 γ`−1

γ`
γ`+1 1

...
. . .

γm 1


.

Since γ` = γj
+

k− > 0, the matrix E(γ) is invertible, and it is easy to check that its inverse is
given by

E(γ)−1 =



1 −γ−1
` γ1

. . .
...

1 −γ−1
` γ`−1

γ−1
`

−γ−1
` γ`+1 1

...
. . .

−γ−1
` γm 1


,

which is very cheap to compute. We also have

A−1
K+ = E(γ)−1A−1

K .

Consequently, if AK and A−1
K are available, then AK+ and A−1

K+ can be computed cheaply
in terms of AK and A−1

K and matrices of the form E(γ). Then the systems (∗γ) to find the
vectors γjK can be solved cheaply.

Since
A>K+ = E(γ)>A>K

and
(A>K+)−1 = (A>K)−1(E(γ)>)−1,

the matrices A>K+ and (A>K+)−1 can also be computed cheaply from A>K , (A>K)−1, and matrices
of the form E(γ)>. Thus the systems (∗β) to find the linear forms βK can also be solved
cheaply.

A matrix of the form E(γ) is called an eta matrix ; see Chvatal [24] (Chapter 7). We
showed that the matrix AKs obtained after s steps of the simplex algorithm can be written
as

AKs = AKs−1Es

for some eta matrix Es, so Aks can be written as the product

AKs = E1E2 · · ·Es
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of s eta matrices. Such a factorization is called an eta factorization. The eta factorization
can be used to either invert AKs or to solve a system of the form AKsγ = Aj

+
iteratively.

Which method is more efficient depends on the sparsity of the Ei.

In summary, there are cheap methods for finding the next basic feasible solution (u+, K+)
from (u,K). We simply wanted to give the reader a flavor of these techniques. We refer the
reader to texts on linear programming for detailed presentations of methods for implementing
efficiently the simplex method. In particular, the revised simplex method is presented in
Chvatal [24], Papadimitriou and Steiglitz [60], Bertsimas and Tsitsiklis [14], and Vanderbei
[80].

10.4 The Simplex Algorithm Using Tableaux

We now describe a formalism for presenting the simplex algorithm, namely (full) tableaux .
This is the traditional formalism used in all books, modulo minor variations. A particularly
nice feature of the tableau formalism is that the update of a tableau can be performed using
elementary row operations identical to the operations used during the reduction of a matrix
to row reduced echelon form (rref). What differs is the criterion for the choice of the pivot.

Since the quantities cj− cKγjK play a crucial role in determining which column Aj should
come into the basis, the notation cj is used to denote cj − cKγjK , which is called the reduced
cost of the variable xj. The reduced costs actually depend on K so to be very precise we
should denote them by (cK)j, but to simplify notation we write cj instead of (cK)j. We will
see shortly how (cK+)i is computed in terms of (cK)i.

Observe that the data needed to execute the next step of the simplex algorithm are

(1) The current basic solution uK and its basis K = (k1, . . . , km).

(2) The reduced costs cj = cj − cKA−1
K Aj = cj − cKγjK , for all j /∈ K.

(3) The vectors γjK = (γjki)
m
i=1 for all j /∈ K, that allow us to express each Aj as AKγ

j
K .

All this information can be packed into a (m+ 1)× (n+ 1) matrix called a (full) tableau
organized as follows:

cKuK c1 · · · cj · · · cn
uk1 γ1

1 · · · γj1 · · · γn1
...

...
...

...
ukm γ1

m · · · γjm · · · γnm

It is convenient to think as the first row as Row 0, and of the first column as Column 0.
Row 0 contains the current value of the objective function and the reduced costs. Column
0, except for its top entry, contains the components of the current basic solution uK , and
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the remaining columns, except for their top entry, contain the vectors γjK . Observe that
the γjK corresponding to indices j in K constitute a permutation of the identity matrix

Im. The entry γj
+

k− is called the pivot element. A tableau together with the new basis
K+ = (K − {k−}) ∪ {j+} contains all the data needed to compute the new uK+ , the new
γjK+ , and the new reduced costs (cK+)j.

If we define the m× n matrix Γ as the matrix Γ = [γ1
K · · · γnK ] whose jth column is γjK ,

and c as the row vector c = (c1 · · · cn), then the above tableau is denoted concisely by

cKuK c
uK Γ

We now show that the update of a tableau can be performed using elementary row
operations identical to the operations used during the reduction of a matrix to row reduced
echelon form (rref).

If K = (k1, . . . , km), j+ is the index of the incoming basis vector, k− = k` is the index
of the column leaving the basis, and if K+ = (k1, . . . , k`−1, j

+, k`+1, . . . , km), since AK+ =

AKE(γj
+

K ), the new columns γjK+ are computed in terms of the old columns γjK using (∗γ)
and the equations

γjK+ = A−1
K+A

j = E(γj
+

K )−1A−1
K Aj = E(γj

+

K )−1γjK .

Consequently, the matrix Γ+ is given in terms of Γ by

Γ+ = E(γj
+

K )−1Γ.

But the matrix E(γj
+

K )−1 is of the form

E(γj
+

K )−1 =



1 −(γj
+

k−)−1γj
+

k1
. . .

...

1 −(γj
+

k−)−1γj
+

k`−1

(γj
+

k−)−1

−(γj
+

k−)−1γj
+

k`+1
1

...
. . .

−(γj
+

k−)−1γj
+

km
1


,

with the column involving the γs in the `th column, and Γ+ is obtained by applying the
following elementary row operations to Γ:

1. Multiply Row ` by 1/γj
+

k− (the inverse of the pivot) to make the entry on Row ` and
Column j+ equal to 1.

2. Subtract γj
+

ki
× (the normalized) Row ` from Row i, for i = 1, . . . , `− 1, `+ 1, . . . ,m.
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These are exactly the elementary row operations that reduce the `th column γj
+

K of Γ
to the `th column of the identity matrix Im. Thus, this step is identical to the sequence of
steps that the procedure to convert a matrix to row reduced echelon from executes on the
`th column of the matrix. The only difference is the criterion for the choice of the pivot.

Since the new basic solution uK+ is given by uK+ = A−1
K+b, we have

uK+ = E(γj
+

K )−1A−1
K b = E(γj

+

K )−1uK .

This means that u+ is obtained from uK by applying exactly the same elementary row
operations that were applied to Γ. Consequently, just as in the procedure for reducing a
matrix to rref, we can apply elementary row operations to the matrix [uk Γ], which consists
of rows 1, . . . ,m of the tableau.

Once the new matrix Γ+ is obtained, the new reduced costs are given by the following
proposition.

Proposition 10.2. Given any Linear Program (P2) in standard form

maximize cx

subject to Ax = b and x ≥ 0,

where A is an m×n matrix of rank m, if (u,K) is a basic (not necessarily feasible) solution
of (P2) and if K+ = (K − {k−}) ∪ {j+}, with K = (k1, . . . , km) and k− = k`, then for
i = 1, . . . , n we have

ci − cK+γiK+ = ci − cKγiK −
γik−

γj
+

k−

(cj+ − cKγj
+

K ).

Using the reduced cost notation, the above equation is

(cK+)i = (cK)i −
γik−

γj
+

k−

(cK)j+ .

Proof. Without any loss of generality and to simplify notation assume that K = (1, . . . ,m)
and write j for j+ and ` for km. Since γiK = A−1

K Ai, γiK+ = A−1
K+Ai, and AK+ = AKE(γjK),

we have

ci − cK+γiK+ = ci − cK+A−1
K+A

i = ci − cK+E(γjK)−1A−1
K Ai = ci − cK+E(γjK)−1γiK ,

where

E(γjK)−1 =



1 −(γj` )
−1γj1

. . .
...

1 −(γj` )
−1γj`−1

(γj` )
−1

−(γj` )
−1γj`+1 1
...

. . .

−(γj` )
−1γjm 1
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where the `th column contains the γs. Since cK+ = (c1, . . . , c`−1, cj, c`+1, . . . , cm), we have

cK+E(γjK)−1 =

(
c1, . . . , c`−1,

cj

γj`
−

m∑
k=1,k 6=`

ck
γjk
γj`
, c`+1, . . . , cm

)
,

and

cK+E(γjK)−1γiK =

(
c1 . . . c`−1

cj

γj`
−

m∑
k=1,k 6=`

ck
γjk
γj`

c`+1 . . . cm

)


γi1
...

γi`−1

γi`
γi`+1

...
γim


=

m∑
k=1,k 6=`

ckγ
i
k +

γi`
γj`

(
cj −

m∑
k=1,k 6=`

ckγ
j
k

)

=
m∑

k=1,k 6=`

ckγ
i
k +

γi`
γj`

(
cj + c`γ

j
` −

m∑
k=1

ckγ
j
k

)

=
m∑
k=1

ckγ
i
k +

γi`
γj`

(
cj −

m∑
k=1

ckγ
j
k

)
= cKγ

i
K +

γi`
γj`

(cj − cKγjK),

and thus

ci − cK+γiK+ = ci − cK+E(γjK)−1γiK = ci − cKγiK −
γi`
γj`

(cj − cKγjK),

as claimed.

Since (γ1
k− , . . . , γ

n
k−) is the `th row of Γ, we see that Proposition 10.2 shows that

cK+ = cK −
(cK)j+

γj
+

k−

Γ`, (†)

where Γ` denotes the `-th row of Γ and γj
+

k− is the pivot. This means that cK+ is obtained
by the elementary row operations which consist of first normalizing the `th row by dividing

it by the pivot γj
+

k− , and then subtracting (cK)j+× the normalized Row ` from cK . These are
exactly the row operations that make the reduced cost (cK)j+ zero.
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Remark: It easy easy to show that we also have

cK+ = c− cK+Γ+.

We saw in Section 10.2 that the change in the objective function after a pivoting step
during which column j+ comes in and column k− leaves is given by

θj
+

(
cj+ −

∑
k∈K

γj
+

k ck

)
= θj

+

(cK)j+ ,

where

θj
+

=
uk−

γj
+

k−

.

If we denote the value of the objective function cKuK by zK , then we see that

zK+ = zK +
(cK)j+

γj
+

k−

uk− .

This means that the new value zK+ of the objective function is obtained by first normalizing

the `th row by dividing it by the pivot γj
+

k− , and then adding (cK)j+× the zeroth entry of
the normalized `th line by (cK)j+ to the zeroth entry of line 0.

In updating the reduced costs, we subtract rather than add (cK)j+× the normalized row `
from row 0. This suggests storing −zK as the zeroth entry on line 0 rather than zK , because
then all the entries row 0 are updated by the same elementary row operations. Therefore,
from now on, we use tableau of the form

−cKuK c1 · · · cj · · · cn
uk1 γ1

1 · · · γj1 · · · γn1
...

...
...

...
ukm γ1

m · · · γjm · · · γnm

The simplex algorithm first chooses the incoming column j+ by picking some column for

which cj > 0, and then chooses the outgoing column k− by considering the ratios uk/γ
j+

k for

which γj
+

k > 0 (along column j+), and picking k− to achieve the minimum of these ratios.

Here is an illustration of the simplex algorithm using elementary row operations on an
example from Papadimitriou and Steiglitz [60] (Section 2.9).
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Example 10.4. Consider the linear program

maximize − 2x2 − x4 − 5x7

subject to

x1 + x2 + x3 + x4 = 4

x1 + x5 = 2

x3 + x6 = 3

3x2 + x3 + x7 = 6

x1, x2, x3, x4, x5, x6, x7 ≥ 0.

We have the basic feasible solution u = (0, 0, 0, 4, 2, 3, 6), with K = (4, 5, 6, 7). Since cK =
(−1, 0, 0,−5) and c = (0,−2, 0,−1, 0, 0− 5) the first tableau is

34 1 14 6 0 0 0 0
u4 = 4 1 1 1 1 0 0 0

u5 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 6 0 3 1 0 0 0 1

Since cj = cj − cKγjK , Row 0 is obtained by subtracting −1× Row 1 and −5× Row 4
from c = (0,−2, 0,−1, 0, 0,−5). Let us pick Column j+ = 1 as the incoming column. We
have the ratios (for positive entries on Column 1)

4/1, 2/1,

and since the minimum is 2, we pick the outgoing column to be Column k− = 5. The pivot
1 is indicated in red. The new basis is K = (4, 1, 6, 7). Next we apply row operations to
reduce Column 1 to the second vector of the identity matrix I4. For this, we subtract Row
2 from Row 1. We get the tableau

34 1 14 6 0 0 0 0
u4 = 2 0 1 1 1 −1 0 0

u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 6 0 3 1 0 0 0 1

To compute the new reduced costs, we want to set c1 to 0, so we apply the identical row
operations and subtract Row 2 from Row 0 to obtain the tableau

32 0 14 6 0 −1 0 0

u4 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 6 0 3 1 0 0 0 1
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Next, pick Column j+ = 3 as the incoming column. We have the ratios (for positive
entries on Column 3)

2/1, 3/1, 6/1,

and since the minimum is 2, we pick the outgoing column to be Column k− = 4. The pivot
1 is indicated in red and the new basis is K = (3, 1, 6, 7). Next we apply row operations to
reduce Column 3 to the first vector of the identity matrix I4. For this, we subtract Row 1
from Row 3 and from Row 4 and obtain the tableau:

32 0 14 6 0 −1 0 0

u3 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 1 0 −1 0 −1 1 1 0
u7 = 4 0 2 0 −1 1 0 1

To compute the new reduced costs, we want to set c3 to 0, so we subtract 6× Row 1 from
Row 0 to get the tableau

20 0 8 0 −6 5 0 0

u3 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 1 0 −1 0 −1 1 1 0
u7 = 4 0 2 0 −1 1 0 1

Next we pick j+ = 2 as the incoming column. We have the ratios (for positive entries on
Column 2)

2/1, 4/2,

and since the minimum is 2, we pick the outgoing column to be Column k− = 3. The pivot
1 is indicated in red and the new basis is K = (2, 1, 6, 7). Next we apply row operations to
reduce Column 2 to the first vector of the identity matrix I4. For this, we add Row 1 to
Row 3 and subtract 2× Row 1 from Row 4 to obtain the tableau:

20 0 8 0 −6 5 0 0

u2 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 0 0 0 −2 −3 3 0 1

To compute the new reduced costs, we want to set c2 to 0, so we subtract 8× Row 1 from
Row 0 to get the tableau
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4 0 0 −8 −14 13 0 0
u2 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0

u7 = 0 0 0 −2 −3 3 0 1

The only possible incoming column corresponds to j+ = 5. We have the ratios (for
positive entries on Column 5)

2/1, 0/3,

and since the minimum is 0, we pick the outgoing column to be Column k− = 7. The pivot
3 is indicated in red and the new basis is K = (2, 1, 6, 5). Since the minimum is 0, the
basis K = (2, 1, 6, 5) is degenerate (indeed, the component corresponding to the index 5 is
0). Next we apply row operations to reduce Column 5 to the fourth vector of the identity
matrix I4. For this, we multiply Row 4 by 1/3, and then add the normalized Row 4 to Row
1 and subtract the normalized Row 4 from Row 2 to obtain the tableau:

4 0 0 −8 −14 13 0 0
u2 = 2 0 1 1/3 0 0 0 1/3
u1 = 2 1 0 2/3 1 0 0 −1/3
u6 = 3 0 0 1 0 0 1 0

u5 = 0 0 0 −2/3 −1 1 0 1/3

To compute the new reduced costs, we want to set c5 to 0, so we subtract 13× Row 4
from Row 0 to get the tableau

4 0 0 2/3 −1 0 0 −13/3
u2 = 2 0 1 1/3 0 0 0 1/3

u1 = 2 1 0 2/3 1 0 0 −1/3

u6 = 3 0 0 1 0 0 1 0
u5 = 0 0 0 −2/3 −1 1 0 1/3

The only possible incoming column corresponds to j+ = 3. We have the ratios (for
positive entries on Column 3)

2/(1/3) = 6, 2/(2/3) = 3, 3/1 = 3,

and since the minimum is 3, we pick the outgoing column to be Column k− = 1. The pivot
2/3 is indicated in red and the new basis is K = (2, 3, 6, 5). Next we apply row operations to
reduce Column 3 to the second vector of the identity matrix I4. For this, we multiply Row
2 by 3/2, subtract (1/3)× (normalized Row 2) from Row 1, and subtract normalized Row 2
from Row 3, and add (2/3)× (normalized Row 2) to Row 4 to obtain the tableau:
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4 0 0 2/3 −1 0 0 −13/3
u2 = 1 −1/2 1 0 −1/2 0 0 1/2

u3 = 3 3/2 0 1 3/2 0 0 −1/2
u6 = 0 −3/2 0 0 −3/2 0 1 1/2
u5 = 2 1 0 0 0 1 0 0

To compute the new reduced costs, we want to set c3 to 0, so we subtract (2/3)× Row 2
from Row 0 to get the tableau

2 −1 0 0 −2 0 0 −4
u2 = 1 −1/2 1 0 −1/2 0 0 1/2
u3 = 3 3/2 0 1 3/2 0 0 −1/2
u6 = 0 −3/2 0 0 −3/2 0 1 1/2
u5 = 2 1 0 0 0 1 0 0

Since all the reduced cost are ≤ 0, we have reached an optimal solution, namely
(0, 1, 3, 0, 2, 0, 0, 0), with optimal value −2.

The progression of the simplex algorithm from one basic feasible solution to another
corresponds to the visit of vertices of the polyhedron P associated with the constraints of
the linear program illustrated in Figure 10.4.

As a final comment, if it is necessary to run Phase I of the simplex algorithm, in the event
that the simplex algorithm terminates with an optimal solution (u∗, 0m) and a basis K∗ such
that some ui = 0, then the basis K∗ contains indices of basic columns Aj corresponding to
slack variables that need to be driven out of the basis. This is easy to achieve by performing a
pivoting step involving some other column j+ corresponding to one of the original variables

(not a slack variable) for which (γK∗)
j+

i 6= 0. In such a step, it doesn’t matter whether

(γK∗)
j+

i < 0 or (cK∗)j+ ≤ 0. If the original matrix A has no redundant equations, such a step

is always possible. Otherwise, (γK∗)
j
i = 0 for all non-slack variables, so we detected that the

ith equation is redundant and we can delete it.

Other presentations of the tableau method can be found in Bertsimas and Tsitsiklis [14]
and Papadimitriou and Steiglitz [60].

10.5 Computational Efficiency of the Simplex Method

Let us conclude with a few comments about the efficiency of the simplex algorithm. In
practice, it was observed by Dantzig that for linear programs with m < 50 and m+n < 200,
the simplex algorithms typically requires less than 3m/2 iterations, but at most 3m iterations.
This fact agrees with more recent empirical experiments with much larger programs that
show that the number iterations is bounded by 3m. Thus, it was somewhat of a shock in
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Figure 10.4: The polytope P associated with the linear program optimized by the tableau
method. The red arrowed path traces the progression of the simplex method from the origin
to the vertex (0, 1, 3).

1972 when Klee and Minty found a linear program with n variables and n equations for
which the simplex algorithm with Dantzig’s pivot rule requires requires 2n − 1 iterations.
This program (taken from Chvatal [24], page 47) is reproduced below:

maximize
n∑
j=1

10n−jxj

subject to(
2
i−1∑
j=1

10i−jxj

)
+ xi ≤ 100i−1

xj ≥ 0,

for i = 1, . . . , n and j = 1, . . . , n.

If p = max(m,n), then, in terms of worse case behavior, for all currently known pivot
rules, the simplex algorithm has exponential complexity in p. However, as we said earlier, in
practice, nasty examples such as the Klee–Minty example seem to be rare, and the number
of iterations appears to be linear in m.

Whether or not a pivot rule (a clairvoyant rule) for which the simplex algorithms runs
in polynomial time in terms of m is still an open problem.
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The Hirsch conjecture claims that there is some pivot rule such that the simplex algorithm
finds an optimal solution in O(p) steps. The best bound known so far due to Kalai and
Kleitman is m1+lnn = (2n)lnm. For more on this topic, see Matousek and Gardner [54]
(Section 5.9) and Bertsimas and Tsitsiklis [14] (Section 3.7).

Researchers have investigated the problem of finding upper bounds on the expected
number of pivoting steps if a randomized pivot rule is used. Bounds better than 2m (but of
course, not polynomial) have been found.

Understanding the complexity of linear programing, in particular of the simplex algo-
rithm, is still ongoing. The interested reader is referred to Matousek and Gardner [54]
(Chapter 5, Section 5.9) for some pointers.

In the next section we consider important theoretical criteria for determining whether a
set of constraints Ax ≤ b and x ≥ 0 has a solution or not.

10.6 Summary

The main concepts and results of this chapter are listed below:

• Degenerate and nondegenerate basic feasible solution.

• Pivoting step.

• Pivot rule.

• Cycling.

• Bland’s rule, Dantzig’s rule, steepest edge rule, random edge rule, largest increase rule,
lexicographic rule.

• Phase I and Phase II of the simplex algorithm.

• eta matrix, eta factorization.

• Revised simplex method.

• Reduced cost.

• Full tableaux.

• The Hirsch conjecture.
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10.7 Problems

Problem 10.1. In Section 10.2 prove that if Case (A) arises, then the basic feasible solution
u is an optimal solution. Prove that if Case (B1) arises, then the linear program is unbounded.
Prove that if Case (B3) arises, then (u+, K+) is a basic feasible solution.

Problem 10.2. In Section 10.2 prove that the following equivalences hold:

Case (A)⇐⇒ B = ∅, Case (B)⇐⇒ B 6= ∅
Case (B1)⇐⇒ B1 6= ∅
Case (B2)⇐⇒ B2 6= ∅
Case (B3)⇐⇒ B3 6= ∅.

Furthermore, prove that Cases (A) and (B), Cases (B1) and (B3), and Cases (B2) and (B3)
are mutually exclusive, while Cases (B1) and (B2) are not.

Problem 10.3. Consider the linear program (due to E.M.L. Beale):

maximize (3/4)x1 − 150x2 + (1/50)x3 − 6x4

subject to

(1/4)x1 − 60x2 − (1/25)x3 + 9x4 ≤ 0

(1/4)x1 − 90x2 − (1/50)x3 + 3x4 ≤ 0

x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(1) Convert the above program to standard form.

(2) Show that if we apply the simplex algorithm with the pivot rule which selects the
column entering the basis as the column of smallest index, then the method cycles.

Problem 10.4. Read carefully the proof given by Chvatal that the lexicographic pivot rule
and Bland’s pivot rule prevent cycling; see Chvatal [24] (Chapter 3, pages 34-38).

Problem 10.5. Solve the following linear program (from Chvatal [24], Chapter 3, page 44)
using the two-phase simplex algorithm:

maximize 3x1 + x2

subject to

x1 − x2 ≤ −1

− x1 − x2 ≤ −3

2x1 + x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.
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Problem 10.6. Solve the following linear program (from Chvatal [24], Chapter 3, page 44)
using the two-phase simplex algorithm:

maximize 3x1 + x2

subject to

x1 − x2 ≤ −1

− x1 − x2 ≤ −3

2x1 + x2 ≤ 2

x1 ≥ 0, x2 ≥ 0.

Problem 10.7. Solve the following linear program (from Chvatal [24], Chapter 3, page 44)
using the two-phase simplex algorithm:

maximize 3x1 + x2

subject to

x1 − x2 ≤ −1

− x1 − x2 ≤ −3

2x1 − x2 ≤ 2

x1 ≥ 0, x2 ≥ 0.

Problem 10.8. Show that the following linear program (from Chvatal [24], Chapter 3, page
43) is unbounded.

maximize x1 + 3x2 − x3

subject to

2x1 + 2x2 − x3 ≤ 10

3x1 − 2x2 + x3 ≤ 10

x1 − 3x2 + x3 ≤ 10

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Hint . Try x1 = 0, x3 = t, and a suitable value for x2.
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Chapter 11

Linear Programming and Duality

11.1 Variants of the Farkas Lemma

If A is an m × n matrix and if b ∈ Rm is a vector, it is known from linear algebra that
the linear system Ax = b has no solution iff there is some linear form y ∈ (Rm)∗ such that
yA = 0 and yb 6= 0. This means that the linear from y vanishes on the columns A1, . . . , An

of A but does not vanish on b. Since the linear form y defines the linear hyperplane H
of equation yz = 0 (with z ∈ Rm), geometrically the equation Ax = b has no solution iff
there is a linear hyperplane H containing A1, . . . , An and not containing b. This is a kind of
separation theorem that says that the vectors A1, . . . , An and b can be separated by some
linear hyperplane H.

What we would like to do is to generalize this kind of criterion, first to a system Ax = b
subject to the constraints x ≥ 0, and next to sets of inequality constraints Ax ≤ b and x ≥ 0.
There are indeed such criteria going under the name of Farkas lemma.

The key is a separation result involving polyhedral cones known as the Farkas–Minkowski
proposition. We have the following fundamental separation lemma.

Proposition 11.1. Let C ⊆ Rn be a closed nonempty (convex) cone. For any point a ∈ Rn,
if a /∈ C, then there is a linear hyperplane H (through 0) such that

1. C lies in one of the two half-spaces determined by H.

2. a /∈ H

3. a lies in the other half-space determined by H.

We say that H strictly separates C and a.

Proposition 11.1, which is illustrated in Figure 11.1, is an easy consequence of another
separation theorem that asserts that given any two nonempty closed convex sets A and B
of Rn with A compact, there is a hyperplane H strictly separating A and B (which means

261
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that A ∩ H = ∅, B ∩ H = ∅, that A lies in one of the two half-spaces determined by H,
and B lies in the other half-space determined by H); see Gallier [34] (Chapter 7, Corollary
7.4 and Proposition 7.3). This proof is nontrivial and involves a geometric version of the
Hahn–Banach theorem.

H

C

a

Figure 11.1: In R3, the olive green hyperplane H separates the cone C from the orange point
a.

The Farkas–Minkowski proposition is Proposition 11.1 applied to a polyhedral cone

C = {λ1a1 + · · ·+ λnan | λi ≥ 0, i = 1, . . . , n}

where {a1, . . . , an} is a finite number of vectors ai ∈ Rn. By Proposition 8.2, any polyhedral
cone is closed, so Proposition 11.1 applies and we obtain the following separation lemma.

Proposition 11.2. (Farkas–Minkowski) Let C ⊆ Rn be a nonempty polyhedral cone C =
cone({a1, . . . , an}). For any point b ∈ Rn, if b /∈ C, then there is a linear hyperplane H
(through 0) such that

1. C lies in one of the two half-spaces determined by H.

2. b /∈ H

3. b lies in the other half-space determined by H.

Equivalently, there is a nonzero linear form y ∈ (Rn)∗ such that

1. yai ≥ 0 for i = 1, . . . , n.

2. yb < 0.
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A direct proof of the Farkas–Minkowski proposition not involving Proposition 11.1 is
given at the end of this section.

Remark: There is a generalization of the Farkas–Minkowski proposition applying to infinite
dimensional real Hilbert spaces; see Theorem 12.12 (or Ciarlet [25], Chapter 9).

Proposition 11.2 implies our first version of Farkas’ lemma.

Proposition 11.3. (Farkas Lemma, Version I) Let A be an m× n matrix and let b ∈ Rm

be any vector. The linear system Ax = b has no solution x ≥ 0 iff there is some nonzero
linear form y ∈ (Rm)∗ such that yA ≥ 0>n and yb < 0.

Proof. First assume that there is some nonzero linear form y ∈ (Rm)∗ such that yA ≥ 0 and
yb < 0. If x ≥ 0 is a solution of Ax = b, then we get

yAx = yb,

but if yA ≥ 0 and x ≥ 0, then yAx ≥ 0, and yet by hypothesis yb < 0, a contradiction.

Next assume that Ax = b has no solution x ≥ 0. This means that b does not belong to
the polyhedral cone C = cone({A1, . . . , An}) spanned by the columns of A. By Proposition
11.2, there is a nonzero linear form y ∈ (Rm)∗ such that

1. yAj ≥ 0 for j = 1, . . . , n.

2. yb < 0,

which says that yA ≥ 0>n and yb < 0.

Next consider the solvability of a system of inequalities of the form Ax ≤ b and x ≥ 0.

Proposition 11.4. (Farkas Lemma, Version II) Let A be an m× n matrix and let b ∈ Rm

be any vector. The system of inequalities Ax ≤ b has no solution x ≥ 0 iff there is some
nonzero linear form y ∈ (Rm)∗ such that y ≥ 0>m, yA ≥ 0>n and yb < 0.

Proof. We use the trick of linear programming which consists of adding “slack variables” zi
to convert inequalities aix ≤ bi into equations aix + zi = bi with zi ≥ 0 already discussed
just before Definition 8.9. If we let z = (z1, . . . , zm), it is obvious that the system Ax ≤ b
has a solution x ≥ 0 iff the equation (

A Im
)(x

z

)
= b

has a solution

(
x
z

)
with x ≥ 0 and z ≥ 0. Now by Farkas I, the above system has no

solution with with x ≥ 0 and z ≥ 0 iff there is some nonzero linear form y ∈ (Rm)∗ such that

y
(
A Im

)
≥ 0>n+m

and yb < 0, that is, yA ≥ 0>n , y ≥ 0>m and yb < 0.
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In the next section we use Farkas II to prove the duality theorem in linear programming.
Observe that by taking the negation of the equivalence in Farkas II we obtain a criterion of
solvability, namely:

The system of inequalities Ax ≤ b has a solution x ≥ 0 iff for every nonzero linear form
y ∈ (Rm)∗ such that y ≥ 0>m, if yA ≥ 0>n , then yb ≥ 0.

We now prove the Farkas–Minkowski proposition without using Proposition 11.1. This
approach uses a basic property of the distance function from a point to a closed set.

Definition 11.1. Let X ⊆ Rn be any nonempty set and let a ∈ Rn be any point. The
distance d(a,X) from a to X is defined as

d(a,X) = inf
x∈X
‖a− x‖ .

Here, ‖ ‖ denotes the Euclidean norm.

Proposition 11.5. Let X ⊆ Rn be any nonempty set and let a ∈ Rn be any point. If X is
closed, then there is some z ∈ X such that ‖a− z‖ = d(a,X).

Proof. Since X is nonempty, pick any x0 ∈ X, and let r = ‖a− x0‖. If Br(a) is the closed
ball Br(a) = {x ∈ Rn | ‖x− a‖ ≤ r}, then clearly

d(a,X) = inf
x∈X
‖a− x‖ = inf

x∈X∩Br(a)
‖a− x‖ .

Since Br(a) is compact and X is closed, K = X ∩ Br(a) is also compact. But the function
x 7→ ‖a− x‖ defined on the compact set K is continuous, and the image of a compact set
by a continuous function is compact, so by Heine–Borel it has a minimum that is achieved
by some z ∈ K ⊆ X.

Remark: If U is a nonempty, closed and convex subset of a Hilbert space V , a standard
result of Hilbert space theory (the projection lemma, see Proposition 12.5) asserts that for
any v ∈ V there is a unique p ∈ U such that

‖v − p‖ = inf
u∈U
‖v − u‖ = d(v, U),

and

〈p− v, u− p〉 ≥ 0 for all u ∈ U.

Here ‖w‖ =
√
〈w,w〉, where 〈−,−〉 is the inner product of the Hilbert space V .

We can now give a proof of the Farkas–Minkowski proposition (Proposition 11.2) that
does not use Proposition 11.1. This proof is adapted from Matousek and Gardner [54]
(Chapter 6, Sections 6.5).
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a1
a2

3a

b

z H
C

Figure 11.2: The hyperplane H, perpendicular to z − b, separates the point b from C =
cone({a1, a2, a3}).

Proof of the Farkas–Minkowski proposition. Let C = cone({a1, . . . , am}) be a polyhedral
cone (nonempty) and assume that b /∈ C. By Proposition 8.2, the polyhedral cone is closed,
and by Proposition 11.5 there is some z ∈ C such that d(b, C) = ‖b− z‖; that is, z is a point
of C closest to b. Since b /∈ C and z ∈ C we have u = z − b 6= 0, and we claim that the
linear hyperplane H orthogonal to u does the job, as illustrated in Figure 11.2.

First let us show that
〈u, z〉 = 〈z − b, z〉 = 0. (∗1)

This is trivial if z = 0, so assume z 6= 0. If 〈u, z〉 6= 0, then either 〈u, z〉 > 0 or 〈u, z〉 < 0. In
either case we show that we can find some point z′ ∈ C closer to b than z is, a contradiction.

Case 1 : 〈u, z〉 > 0.

Let z′ = (1− α)z for any α such that 0 < α < 1. Then z′ ∈ C and since u = z − b,

z′ − b = (1− α)z − (z − u) = u− αz,

so
‖z′ − b‖2

= ‖u− αz‖2 = ‖u‖2 − 2α〈u, z〉+ α2 ‖z‖2 .

If we pick α > 0 such that α < 2〈u, z〉/ ‖z‖2, then −2α〈u, z〉 + α2 ‖z‖2 < 0, so ‖z′ − b‖2 <
‖u‖2 = ‖z − b‖2, contradicting the fact that z is a point of C closest to b.

Case 2 : 〈u, z〉 < 0.

Let z′ = (1 +α)z for any α such that α ≥ −1. Then z′ ∈ C and since u = z− b, we have
z′ − b = (1 + α)z − (z − u) = u+ αz so

‖z′ − b‖2
= ‖u+ αz‖2 = ‖u‖2 + 2α〈u, z〉+ α2 ‖z‖2 ,
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and if
0 < α < −2〈u, z〉/ ‖z‖2 ,

then 2α〈u, z〉+ α2 ‖z‖2 < 0, so ‖z′ − b‖2 < ‖u‖2 = ‖z − b‖2, a contradiction as above.

Therefore 〈u, z〉 = 0. We have

〈u, u〉 = 〈u, z − b〉 = 〈u, z〉 − 〈u, b〉 = −〈u, b〉,

and since u 6= 0, we have 〈u, u〉 > 0, so 〈u, u〉 = −〈u, b〉 implies that

〈u, b〉 < 0. (∗2)

It remains to prove that 〈u, ai〉 ≥ 0 for i = 1, . . . ,m. Pick any x ∈ C such that x 6= z.
We claim that

〈b− z, x− z〉 ≤ 0. (∗3)

Otherwise 〈b− z, x− z〉 > 0, that is, 〈z − b, x− z〉 < 0, and we show that we can find some
point z′ ∈ C on the line segment [z, x] closer to b than z is.

For any α such that 0 ≤ α ≤ 1, we have z′ = (1 − α)z + αx = z + α(x − z) ∈ C, and
since z′ − b = z − b+ α(x− z) we have

‖z′ − b‖2
= ‖z − b+ α(x− z)‖2 = ‖z − b‖2 + 2α〈z − b, x− z〉+ α2 ‖x− z‖2 ,

so for any α > 0 such that

α < −2〈z − b, x− z〉/ ‖x− z‖2 ,

we have 2α〈z − b, x− z〉+ α2 ‖x− z‖2 < 0, which implies that ‖z′ − b‖2 < ‖z − b‖2, contra-
dicting that z is a point of C closest to b.

Since 〈b− z, x− z〉 ≤ 0, u = z − b, and by (∗1), 〈u, z〉 = 0, we have

0 ≥ 〈b− z, x− z〉 = 〈−u, x− z〉 = −〈u, x〉+ 〈u, z〉 = −〈u, x〉,

which means that
〈u, x〉 ≥ 0 for all x ∈ C, (∗3)

as claimed. In particular,
〈u, ai〉 ≥ 0 for i = 1, . . . ,m. (∗4)

Then by (∗2) and (∗4), the linear form defined by y = u> satisfies the properties yb < 0 and
yai ≥ 0 for i = 1, . . . ,m, which proves the Farkas–Minkowski proposition.

There are other ways of proving the Farkas–Minkowski proposition, for instance using
minimally infeasible systems or Fourier–Motzkin elimination; see Matousek and Gardner [54]
(Chapter 6, Sections 6.6 and 6.7).



11.2. THE DUALITY THEOREM IN LINEAR PROGRAMMING 267

11.2 The Duality Theorem in Linear Programming

Let (P ) be the linear program

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A a m× n matrix, and assume that (P ) has a feasible solution and is bounded above.
Since by hypothesis the objective function x 7→ cx is bounded on P(A, b), it might be useful
to deduce an upper bound for cx from the inequalities Ax ≤ b, for any x ∈ P(A, b). We can
do this as follows: for every inequality

aix ≤ bi 1 ≤ i ≤ m,

pick a nonnegative scalar yi, multiply both sides of the above inequality by yi obtaining

yiaix ≤ yibi 1 ≤ i ≤ m,

(the direction of the inequality is preserved since yi ≥ 0), and then add up these m equations,
which yields

(y1a1 + · · ·+ ymam)x ≤ y1b1 + · · ·+ ymbm.

If we can pick the yi ≥ 0 such that

c ≤ y1a1 + · · ·+ ymam,

then since xj ≥ 0, we have

cx ≤ (y1a1 + · · ·+ ymam)x ≤ y1b1 + · · ·+ ymbm,

namely we found an upper bound of the value cx of the objective function of (P ) for any
feasible solution x ∈ P(A, b). If we let y be the linear form y = (y1, . . . , ym), then since

A =

a1
...
am


y1a1 + · · · + ymam = yA, and y1b1 + · · · + ymbm = yb, what we did was to look for some
y ∈ (Rm)∗ such that

c ≤ yA, y ≥ 0,

so that we have
cx ≤ yb for all x ∈ P(A, b). (∗)

Then it is natural to look for a “best” value of yb, namely a minimum value, which leads to
the definition of the dual of the linear program (P ), a notion due to John von Neumann.
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Definition 11.2. Given any Linear Program (P )

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A an m× n matrix, the dual (D) of (P ) is the following optimization problem:

minimize yb

subject to yA ≥ c and y ≥ 0,

where y ∈ (Rm)∗.

The variables y1, . . . , ym are called the dual variables . The original Linear Program
(P ) is called the primal linear program and the original variables x1, . . . , xn are the primal
variables .

Here is an explicit example of a linear program and its dual.

Example 11.1. Consider the linear program illustrated by Figure 11.3

maximize 2x1 + 3x2

subject to

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

Its dual linear program is illustrated in Figure 11.4

minimize 12y1 + 3y2 + 4y3

subject to

4y1 + 2y2 + 3y3 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

It can be checked that (x1, x2) = (1/2, 5/4) is an optimal solution of the primal linear
program, with the maximum value of the objective function 2x1 + 3x2 equal to 19/4, and
that (y1, y2, y3) = (5/16, 0, 1/4) is an optimal solution of the dual linear program, with the
minimum value of the objective function 12y1 + 3y2 + 4y3 also equal to 19/4.

Observe that in the Primal Linear Program (P ), we are looking for a vector x ∈ Rn

maximizing the form cx, and that the constraints are determined by the action of the rows
of the matrix A on x. On the other hand, in the Dual Linear Program (D), we are looking
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x
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0
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4x + 8y  = 12

2x + y = 3

3x + 2y = 4

Figure 11.3: The H-polytope for the linear program of Example 11.1. Note x1 → x and
x2 → y.

for a linear form y ∈ (R∗)m minimizing the form yb, and the constraints are determined by
the action of y on the columns of A. This is the sense in which (D) is the dual (P ). In most
presentations, the fact that (P ) and (D) perform a search for a solution in spaces that are
dual to each other is obscured by excessive use of transposition.

To convert the Dual Program (D) to a standard maximization problem we change the
objective function yb to −b>y> and the inequality yA ≥ c to −A>y> ≤ −c>. The Dual
Linear Program (D) is now stated as (D′)

maximize − b>y>

subject to − A>y> ≤ −c> and y> ≥ 0,

where y ∈ (Rm)∗. Observe that the dual in maximization form (D′′) of the Dual Program
(D′) gives back the Primal Program (P ).

The above discussion established the following inequality known as weak duality .

Proposition 11.6. (Weak Duality) Given any Linear Program (P )

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A an m × n matrix, for any feasible solution x ∈ Rn of the Primal Problem (P ) and
every feasible solution y ∈ (Rm)∗ of the Dual Problem (D), we have

cx ≤ yb.

Definition 11.3. We say that the Dual Linear Program (D) is bounded below if
{yb | y> ∈ P(−A>,−c>)} is bounded below.
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x

y

4x + 2y + 3z = 2

8x + y + 2z = 3

Figure 11.4: The H-polyhedron for the dual linear program of Example 11.1 is the spacial
region “above” the pink plane and in “front” of the blue plane. Note y1 → x, y2 → y, and
y3 → z.

What happens if x∗ is an optimal solution of (P ) and if y∗ is an optimal solution of (D)?
We have cx∗ ≤ y∗b, but is there a “duality gap,” that is, is it possible that cx∗ < y∗b?

The answer is no, this is the strong duality theorem. Actually, the strong duality theorem
asserts more than this.

Theorem 11.7. (Strong Duality for Linear Programming) Let (P ) be any linear program

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A an m × n matrix. The Primal Problem (P ) has a feasible solution and is bounded
above iff the Dual Problem (D) has a feasible solution and is bounded below. Furthermore, if
(P ) has a feasible solution and is bounded above, then for every optimal solution x∗ of (P )
and every optimal solution y∗ of (D), we have

cx∗ = y∗b.

Proof. If (P ) has a feasible solution and is bounded above, then we know from Proposition
9.1 that (P ) has some optimal solution. Let x∗ be any optimal solution of (P ). First we will
show that (D) has a feasible solution v.

Let µ = cx∗ be the maximum of the objective function x 7→ cx. Then for any ε > 0, the
system of inequalities

Ax ≤ b, x ≥ 0, cx ≥ µ+ ε

has no solution, since otherwise µ would not be the maximum value of the objective function
cx. We would like to apply Farkas II, so first we transform the above system of inequalities
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into the system (
A
−c

)
x ≤

(
b

−(µ+ ε)

)
.

By Proposition 11.4 (Farkas II), there is some linear form (λ, z) ∈ (Rm+1)∗ such that λ ≥ 0,
z ≥ 0, (

λ z
)( A
−c

)
≥ 0>m,

and (
λ z

)( b
−(µ+ ε)

)
< 0,

which means that
λA− zc ≥ 0>m, λb− z(µ+ ε) < 0,

that is,

λA ≥ zc

λb < z(µ+ ε)

λ ≥ 0, z ≥ 0.

On the other hand, since x∗ ≥ 0 is an optimal solution of the system Ax ≤ b, by Farkas II
again (by taking the negation of the equivalence), since λA ≥ 0 (for the same λ as before),
we must have

λb ≥ 0. (∗1)

We claim that z > 0. Otherwise, since z ≥ 0, we must have z = 0, but then

λb < z(µ+ ε)

implies
λb < 0, (∗2)

and since λb ≥ 0 by (∗1), we have a contradiction. Consequently, we can divide by z > 0
without changing the direction of inequalities, and we obtain

λ

z
A ≥ c

λ

z
b < µ+ ε

λ

z
≥ 0,

which shows that v = λ/z is a feasible solution of the Dual Problem (D). However, weak
duality (Proposition 11.6) implies that cx∗ = µ ≤ yb for any feasible solution y ≥ 0 of the
Dual Program (D), so (D) is bounded below and by Proposition 9.1 applied to the version
of (D) written as a maximization problem, we conclude that (D) has some optimal solution.



272 CHAPTER 11. LINEAR PROGRAMMING AND DUALITY

For any optimal solution y∗ of (D), since v is a feasible solution of (D) such that vb < µ+ ε,
we must have

µ ≤ y∗b < µ+ ε,

and since our reasoning is valid for any ε > 0, we conclude that cx∗ = µ = y∗b.

If we assume that the dual program (D) has a feasible solution and is bounded below,
since the dual of (D) is (P ), we conclude that (P ) is also feasible and bounded above.

The strong duality theorem can also be proven by the simplex method, because when
it terminates with an optimal solution of (P ), the final tableau also produces an optimal
solution y of (D) that can be read off the reduced costs of columns n + 1, . . . , n + m by
flipping their signs. We follow the proof in Ciarlet [25] (Chapter 10).

Theorem 11.8. Consider the Linear Program (P),

maximize cx

subject to Ax ≤ b and x ≥ 0,

its equivalent version (P2) in standard form,

maximize ĉ x̂

subject to Âx̂ = b and x̂ ≥ 0,

where Â is an m× (n+m) matrix, ĉ is a linear form in (Rn+m)∗, and x̂ ∈ Rn+m, given by

Â =
(
A Im

)
, ĉ =

(
c 0>m

)
, x =

x1
...
xn

 , x =

xn+1
...

xn+m

 , x̂ =

(
x
x

)
,

and the Dual (D) of (P ) given by

minimize yb

subject to yA ≥ c and y ≥ 0,

where y ∈ (Rm)∗. If the simplex algorithm applied to the Linear Program (P2) terminates
with an optimal solution (û∗, K∗), where û∗ is a basic feasible solution and K∗ is a basis for

û∗, then y∗ = ĉK∗Â
−1
K∗ is an optimal solution for (D) such that ĉ û∗ = y∗b. Furthermore, y∗

is given in terms of the reduced costs by y∗ = −((cK∗)n+1 . . . (cK∗)n+m).

Proof. We know that K∗ is a subset of {1, . . . , n+m} consisting of m indices such that the

corresponding columns of Â are linearly independent. Let N∗ = {1, . . . , n + m} −K∗. The
simplex method terminates with an optimal solution in Case (A), namely when

ĉj −
∑
k∈k

γjkĉk ≤ 0 for all j ∈ N∗,
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where Âj =
∑

k∈K∗ γ
j
kÂ

k, or using the notations of Section 10.3,

ĉj − ĉK∗Â−1
K∗Â

j ≤ 0 for all j ∈ N∗.

The above inequalities can be written as

ĉN∗ − ĉK∗Â−1
K∗ÂN∗ ≤ 0>n ,

or equivalently as
ĉK∗Â

−1
K∗ÂN∗ ≥ ĉN∗ . (∗1)

The value of the objective function for the optimal solution û∗ is ĉ û∗ = ĉK∗û
∗
K∗ , and since

û∗K∗ satisfies the equation ÂK∗û
∗
K∗ = b, the value of the objective function is

ĉK∗ û
∗
K∗ = ĉK∗Â

−1
K∗b. (∗2)

Then if we let y∗ = ĉK∗Â
−1
K∗ , obviously we have y∗b = ĉK∗ûK∗ , so if we can prove that y∗ is a

feasible solution of the Dual Linear program (D), by weak duality, y∗ is an optimal solution
of (D). We have

y∗ÂK∗ = ĉK∗Â
−1
K∗ÂK∗ = ĉK∗ , (∗3)

and by (∗1) we get

y∗ÂN∗ = ĉK∗Â
−1
K∗ÂN∗ ≥ ĉN∗ . (∗4)

Let P be the (n+m)× (n+m) permutation matrix defined so that

Â P =
(
A Im

)
P =

(
ÂK∗ ÂN∗

)
.

Then we also have
ĉ P =

(
c 0>m

)
P =

(
ĉK∗ ĉN∗

)
.

Using Equations (∗3) and (∗4) we obtain

y∗
(
ÂK∗ ÂN∗

)
≥
(
ĉK∗ ĉN∗

)
,

that is,
y∗
(
A Im

)
P ≥

(
c 0>m

)
P,

which is equivalent to
y∗
(
A Im

)
≥
(
c 0>m

)
,

that is
y∗A ≥ c, y ≥ 0,

and these are exactly the conditions that say that y∗ is a feasible solution of the Dual Program
(D).
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The reduced costs are given by (ĉK∗)i = ĉi − ĉK∗Â−1
K∗Â

i, for i = 1, . . . , n + m. But for

i = n + j with j = 1, . . . ,m each column Ân+j is the jth vector of the identity matrix Im
and by definition ĉn+j = 0, so

(ĉK∗)n+j = −(ĉK∗Â
−1
K∗)j = −y∗j j = 1, . . . ,m,

as claimed.

The fact that the above proof is fairly short is deceptive because this proof relies on the
fact that there are versions of the simplex algorithm using pivot rules that prevent cycling,
but the proof that such pivot rules work correctly is quite lengthy. Other proofs are given
in Matousek and Gardner [54] (Chapter 6, Sections 6.3), Chvatal [24] (Chapter 5), and
Papadimitriou and Steiglitz [60] (Section 2.7).

Observe that since the last m rows of the final tableau are actually obtained by multipling
[u Â] by Â−1

K∗ , the m×m matrix consisting of the last m columns and last m rows of the final

tableau is Â−1
K∗ (basically, the simplex algorithm has performed the steps of a Gauss–Jordan

reduction). This fact allows saving some steps in the primal dual method.

By combining weak duality and strong duality, we obtain the following theorem which
shows that exactly four cases arise.

Theorem 11.9. (Duality Theorem of Linear Programming) Let (P ) be any linear program

maximize cx

subject to Ax ≤ b and x ≥ 0,

and let (D) be its dual program

minimize yb

subject to yA ≥ c and y ≥ 0,

with A an m× n matrix. Then exactly one of the following possibilities occur:

(1) Neither (P ) nor (D) has a feasible solution.

(2) (P ) is unbounded and (D) has no feasible solution.

(3) (P ) has no feasible solution and (D) is unbounded.

(4) Both (P ) and (D) have a feasible solution. Then both have an optimal solution, and
for every optimal solution x∗ of (P ) and every optimal solution y∗ of (D), we have

cx∗ = y∗b.

An interesting corollary of Theorem 11.9 is that there is a test to determine whether a
Linear Program (P ) has an optimal solution.
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Corollary 11.10. The Primal Program (P ) has an optimal solution iff the following set of
constraints is satisfiable:

Ax ≤ b

yA ≥ c

cx ≥ yb

x ≥ 0, y ≥ 0>m.

In fact, for any feasible solution (x∗, y∗) of the above system, x∗ is an optimal solution of
(P ) and y∗ is an optimal solution of (D)

11.3 Complementary Slackness Conditions

Another useful corollary of the strong duality theorem is the following result known as the
equilibrium theorem.

Theorem 11.11. (Equilibrium Theorem) For any Linear Program (P ) and its Dual Linear
Program (D) (with set of inequalities Ax ≤ b where A is an m × n matrix, and objective
function x 7→ cx), for any feasible solution x of (P ) and any feasible solution y of (D), x
and y are optimal solutions iff

yi = 0 for all i for which
∑n

j=1 aijxj < bi (∗D)

and
xj = 0 for all j for which

∑m
i=1 yiaij > cj. (∗P )

Proof. First assume that (∗D) and (∗P ) hold. The equations in (∗D) say that yi = 0 unless∑n
j=1 aijxj = bi, hence

yb =
m∑
i=1

yibi =
m∑
i=1

yi

n∑
j=1

aijxj =
m∑
i=1

n∑
j=1

yiaijxj.

Similarly, the equations in (∗P ) say that xj = 0 unless
∑m

i=1 yiaij = cj, hence

cx =
n∑
j=1

cjxj =
n∑
j=1

m∑
i=1

yiaijxj.

Consequently, we obtain
cx = yb.

By weak duality (Proposition 11.6), we have

cx ≤ yb = cx
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for all feasible solutions x of (P ), so x is an optimal solution of (P ). Similarly,

yb = cx ≤ yb

for all feasible solutions y of (D), so y is an optimal solution of (D).

Let us now assume that x is an optimal solution of (P ) and that y is an optimal solution
of (D). Then as in the proof of Proposition 11.6,

n∑
j=1

cjxj ≤
m∑
i=1

n∑
j=1

yiaijxj ≤
m∑
i=1

yibi.

By strong duality, since x and y are optimal solutions the above inequalities are actually
equalities, so in particular we have

n∑
j=1

(
cj −

m∑
i=1

yiaij

)
xj = 0.

Since x and y are feasible, xi ≥ 0 and yj ≥ 0, so if
∑m

i=1 yiaij > cj, we must have xj = 0.
Similarly, we have

m∑
i=1

yi

( m∑
j=1

aijxj − bi
)

= 0,

so if
∑m

j=1 aijxj < bi, then yi = 0.

The equations in (∗D) and (∗P ) are often called complementary slackness conditions .
These conditions can be exploited to solve for an optimal solution of the primal problem
with the help of the dual problem, and conversely. Indeed, if we guess a solution to one
problem, then we may solve for a solution of the dual using the complementary slackness
conditions, and then check that our guess was correct. This is the essence of the primal-dual
method. To present this method, first we need to take a closer look at the dual of a linear
program already in standard form.

11.4 Duality for Linear Programs in Standard Form

Let (P ) be a linear program in standard form, where Ax = b for some m× n matrix of rank
m and some objective function x 7→ cx (of course, x ≥ 0). To obtain the dual of (P ) we
convert the equations Ax = b to the following system of inequalities involving a (2m) × n
matrix: (

A
−A

)
x ≤

(
b
−b

)
.
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Then if we denote the 2m dual variables by (y′, y′′), with y′, y′′ ∈ (Rm)∗, the dual of the
above program is

minimize y′b− y′′b

subject to
(
y′ y′′

)( A
−A

)
≥ c and y′, y′′ ≥ 0,

where y′, y′′ ∈ (Rm)∗, which is equivalent to

minimize (y′ − y′′)b
subject to (y′ − y′′)A ≥ c and y′, y′′ ≥ 0,

where y′, y′′ ∈ (Rm)∗. If we write y = y′ − y′′, we find that the above linear program is
equivalent to the following Linear Program (D):

minimize yb

subject to yA ≥ c,

where y ∈ (Rm)∗. Observe that y is not required to be nonnegative; it is arbitrary.

Next we would like to know what is the version of Theorem 11.8 for a linear program
already in standard form. This is very simple.

Theorem 11.12. Consider the Linear Program (P2) in standard form

maximize cx

subject to Ax = b and x ≥ 0,

and its Dual (D) given by

minimize yb

subject to yA ≥ c,

where y ∈ (Rm)∗. If the simplex algorithm applied to the Linear Program (P2) terminates
with an optimal solution (u∗, K∗), where u∗ is a basic feasible solution and K∗ is a basis for
u∗, then y∗ = cK∗A

−1
K∗ is an optimal solution for (D) such that cu∗ = y∗b. Furthermore, if

we assume that the simplex algorithm is started with a basic feasible solution (u0, K0) where
K0 = (n−m+ 1, . . . , n) (the indices of the last m columns of A) and A(n−m+1,...,n) = Im (the
last m columns of A constitute the identity matrix Im), then the optimal solution y∗ = cK∗A

−1
K∗

for (D) is given in terms of the reduced costs by

y∗ = c(n−m+1,...,n) − (cK∗)(n−m+1,...,n),

and the m×m matrix consisting of last m columns and the last m rows of the final tableau
is A−1

K∗.
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Proof. The proof of Theorem 11.8 applies with A instead of Â, and we can show that

cK∗A
−1
K∗AN∗ ≥ cN∗ ,

and that y∗ = cK∗A
−1
K∗ satisfies, cu∗ = y∗b, and

y∗AK∗ = cK∗A
−1
K∗AK∗ = cK∗ ,

y∗AN∗ = cK∗A
−1
K∗AN∗ ≥ cN∗ .

Let P be the n× n permutation matrix defined so that

AP =
(
AK∗ AN∗

)
.

Then we also have
cP =

(
cK∗ cN∗

)
,

and using the above equations and inequalities we obtain

y∗
(
AK∗ AN∗

)
≥
(
cK∗ cN∗

)
,

that is, y∗AP ≥ cP , which is equivalent to

y∗A ≥ c,

which shows that y∗ is a feasible solution of (D) (remember, y∗ is arbitrary so there is no
need for the constraint y∗ ≥ 0).

The reduced costs are given by

(cK∗)i = ci − cK∗A−1
K∗A

i,

and since for j = n−m+ 1, . . . , n the column Aj is the (j+m−n)th column of the identity
matrix Im, we have

(cK∗)j = cj − (cK∗A
−1
K∗)j+m−n j = n−m+ 1, . . . , n,

that is,
y∗ = c(n−m+1,...,n) − (cK∗)(n−m+1,...,n),

as claimed. Since the last m rows of the final tableau is obtained by multiplying [u0 A] by
A−1
K∗ , and the last m columns of A constitute Im, the last m rows and the last m columns of

the final tableau constitute A−1
K∗ .

Let us now take a look at the complementary slackness conditions of Theorem 11.11. If
we go back to the version of (P ) given by

maximize cx

subject to

(
A
−A

)
x ≤

(
b
−b

)
and x ≥ 0,
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and to the version of (D) given by

minimize y′b− y′′b

subject to
(
y′ y′′

)( A
−A

)
≥ c and y′, y′′ ≥ 0,

where y′, y′′ ∈ (Rm)∗, since the inequalities Ax ≤ b and −Ax ≤ −b together imply that
Ax = b, we have equality for all these inequality constraints, and so the Conditions (∗D)
place no constraints at all on y′ and y′′, while the Conditions (∗P ) assert that

xj = 0 for all j for which
∑m

i=1(y′i − y′′i )aij > cj.

If we write y = y′ − y′′, the above conditions are equivalent to

xj = 0 for all j for which
∑m

i=1 yiaij > cj.

Thus we have the following version of Theorem 11.11.

Theorem 11.13. (Equilibrium Theorem, Version 2) For any Linear Program (P2) in
standard form (with Ax = b where A is an m × n matrix, x ≥ 0, and objective function
x 7→ cx) and its Dual Linear Program (D), for any feasible solution x of (P ) and any
feasible solution y of (D), x and y are optimal solutions iff

xj = 0 for all j for which
∑m

i=1 yiaij > cj. (∗P )

Therefore, the slackness conditions applied to a Linear Program (P2) in standard form
and to its Dual (D) only impose slackness conditions on the variables xj of the primal
problem.

The above fact plays a crucial role in the primal-dual method.

11.5 The Dual Simplex Algorithm

Given a Linear Program (P2) in standard form

maximize cx

subject to Ax = b and x ≥ 0,

where A is an m×n matrix of rank m, if no obvious feasible solution is available but if c ≤ 0,
rather than using the method for finding a feasible solution described in Section 10.2 we
may use a method known as the dual simplex algorithm. This method uses basic solutions
(u,K) where Au = b and uj = 0 for all uj /∈ K, but does not require u ≥ 0, so u may not
be feasible. However, y = cKA

−1
K is required to be feasible for the dual program

minimize yb

subject to yA ≥ c,
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where y ∈ (R∗)m. Since c ≤ 0, observe that y = 0>m is a feasible solution of the dual.

If a basic solution u of (P2) is found such that u ≥ 0, then cu = yb for y = cKA
−1
K ,

and we have found an optimal solution u for (P2) and y for (D). The dual simplex method
makes progress by attempting to make negative components of u zero and by decreasing the
objective function of the dual program.

The dual simplex method starts with a basic solution (u,K) of Ax = b which is not
feasible but for which y = cKA

−1
K is dual feasible. In many cases the original linear program

is specified by a set of inequalities Ax ≤ b with some bi < 0, so by adding slack variables it is
easy to find such basic solution u, and if in addition c ≤ 0, then because the cost associated
with slack variables is 0, we see that y = 0 is a feasible solution of the dual.

Given a basic solution (u,K) of Ax = b (feasible or not), y = cKA
−1
K is dual feasible

iff cKA
−1
K A ≥ c, and since cKA

−1
K AK = cK , the inequality cKA

−1
K A ≥ c is equivalent to

cKA
−1
K AN ≥ cN , that is,

cN − cKA−1
K AN ≤ 0, (∗1)

where N = {1, . . . , n} −K. Equation (∗1) is equivalent to

cj − cKγjK ≤ 0 for all j ∈ N , (∗2)

where γjK = A−1
K Aj. Recall that the notation cj is used to denote cj − cKγjK , which is called

the reduced cost of the variable xj.

As in the simplex algorithm we need to decide which column Ak leaves the basis K and
which column Aj enters the new basis K+, in such a way that y+ = cK+A−1

K+ is a feasible
solution of (D), that is, cN+ − cK+A−1

K+AN+ ≤ 0, where N+ = {1, . . . , n} − K+. We use
Proposition 10.2 to decide wich column k− should leave the basis.

Suppose (u,K) is a solution of Ax = b for which y = cKA
−1
K is dual feasible.

Case (A). If u ≥ 0, then u is an optimal solution of (P2).

Case (B). There is some k ∈ K such that uk < 0. In this case pick some k− ∈ K such
that uk− < 0 (according to some pivot rule).

Case (B1). Suppose that γjk− ≥ 0 for all j /∈ K (in fact, for all j, since γjk− ∈ {0, 1} for
all j ∈ K). If so, we we claim that (P2) is not feasible.

Indeed, let v be some basic feasible solution. We have v ≥ 0 and Av = b, that is,

n∑
j=1

vjA
j = b,

so by multiplying both sides by A−1
K and using the fact that by definition γjK = A−1

K Aj, we
obtain

n∑
j=1

vjγ
j
K = A−1

K b = uK .
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But recall that by hypothesis uk− < 0, yet vj ≥ 0 and γjk− ≥ 0 for all j, so the component of
index k− is zero or positive on the left, and negative on the right, a contradiction. Therefore,
(P2) is indeed not feasible.

Case (B2). We have γjk− < 0 for some j.

We pick the column Aj entering the basis among those for which γjk− < 0. Since we

assumed that cj − cKγjK ≤ 0 for all j ∈ N by (∗2), consider

µ+ = max

{
−cj − cKγ

j
K

γjk−

∣∣∣∣ γjk− < 0, j ∈ N
}

= max

{
− cj

γjk−

∣∣∣∣ γjk− < 0, j ∈ N
}
≤ 0,

and the set

N(µ+) =

{
j ∈ N

∣∣∣∣ − cj

γjk−
= µ+

}
.

We pick some index j+ ∈ N(µ+) as the index of the column entering the basis (using
some pivot rule).

Recall that by hypothesis ci − cKγiK ≤ 0 for all j /∈ K and ci − cKγiK = 0 for all i ∈ K.

Since γj
+

k− < 0, for any index i such that γik− ≥ 0, we have −γik−/γ
j+

k− ≥ 0, and since by
Proposition 10.2

ci − cK+γiK+ = ci − cKγiK −
γik−

γj
+

k−

(cj+ − cKγj
+

K ),

we have ci − cK+γiK+ ≤ 0. For any index i such that γik− < 0, by the choice of j+ ∈ K∗,

−ci − cKγ
i
K

γik−
≤ −

cj+ − cKγj
+

K

γj
+

k−

,

so

ci − cKγiK −
γik−

γj
+

k−

(cj+ − cKγj
+

K ) ≤ 0,

and again, ci−cK+γiK+ ≤ 0. Therefore, if we let K+ = (K−{k−})∪{j+}, then y+ = cK+A−1
K+

is dual feasible. As in the simplex algorithm, θ+ is given by

θ+ = uk−/γ
j+

k− ≥ 0,

and u+ is also computed as in the simplex algorithm by

u+
i =


ui − θj

+
γj

+

i if i ∈ K
θj

+
if i = j+

0 if i /∈ K ∪ {j+}
.
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The change in the objective function of the primal and dual program (which is the same,
since uK = A−1

K b and y = cKA
−1
K is chosen such that cu = cKuK = yb) is the same as in the

simplex algorithm, namely

θ+
(
cj

+ − cKγj
+

K

)
.

We have θ+ > 0 and cj
+ − cKγj

+

K ≤ 0, so if cj
+ − cKγj

+

K < 0, then the objective function of
the dual program decreases strictly.

Case (B3). µ+ = 0.

The possibity that µ+ = 0, that is, cj
+−cKγj

+

K = 0, may arise. In this case, the objective
function doesn’t change. This is a case of degeneracy similar to the degeneracy that arises
in the simplex algorithm. We still pick j+ ∈ N(µ+), but we need a pivot rule that prevents
cycling. Such rules exist; see Bertsimas and Tsitsiklis [14] (Section 4.5) and Papadimitriou
and Steiglitz [60] (Section 3.6).

The reader surely noticed that the dual simplex algorithm is very similar to the simplex
algorithm, except that the simplex algorithm preserves the property that (u,K) is (primal)
feasible, whereas the dual simplex algorithm preserves the property that y = cKA

−1
K is dual

feasible. One might then wonder whether the dual simplex algorithm is equivalent to the
simplex algorithm applied to the dual problem. This is indeed the case, there is a one-to-one
correspondence between the dual simplex algorithm and the simplex algorithm applied to
the dual problem in maximization form. This correspondence is described in Papadimitriou
and Steiglitz [60] (Section 3.7).

The comparison between the simplex algorithm and the dual simplex algorithm is best
illustrated if we use a description of these methods in terms of (full) tableaux .

Recall that a (full) tableau is an (m+ 1)× (n+ 1) matrix organized as follows:

−cKuK c1 · · · cj · · · cn
uk1 γ1

1 · · · γj1 · · · γn1
...

...
...

...
ukm γ1

m · · · γjm · · · γnm

The top row contains the current value of the objective function and the reduced costs,
the first column except for its top entry contain the components of the current basic solution
uK , and the remaining columns except for their top entry contain the vectors γjK . Observe
that the γjK corresponding to indices j in K constitute a permutation of the identity matrix
Im. A tableau together with the new basis K+ = (K − {k−}) ∪ {j+} contains all the data

needed to compute the new uK+ , the new γjK+ , and the new reduced costs ci− (γik−/γ
j+

k−)cj+ .

When executing the simplex algorithm, we have uk ≥ 0 for all k ∈ K (and uj = 0 for
all j /∈ K), and the incoming column j+ is determined by picking one of the column indices
such that cj > 0. Then the index k− of the leaving column is determined by looking at the

minimum of the ratios uk/γ
j+

k for which γj
+

k > 0 (along column j+).
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On the other hand, when executing the dual simplex algorithm, we have cj ≤ 0 for all
j /∈ K (and ck = 0 for all k ∈ K), and the outgoing column k− is determined by picking one
of the row indices such that uk < 0. The index j+ of the incoming column is determined by
looking at the maximum of the ratios −cj/γjk− for which γjk− < 0 (along row k−).

More details about the comparison between the simplex algorithm and the dual simplex
algorithm can be found in Bertsimas and Tsitsiklis [14] and Papadimitriou and Steiglitz [60].

Here is an example of the the dual simplex method.

Example 11.2. Consider the following linear program in standard form:

Maximize − 4x1 − 2x2 − x3

subject to

−1 −1 2 1 0 0
−4 −2 1 0 1 0
1 1 −4 0 0 1



x1

x2

x3

x4

x5

x6

 =

−3
−4
2

 and x1, x2, x3, x4, x5, x6 ≥ 0.

We initialize the dual simplex procedure with (u,K) where u =


0
0
0
−3
−4
2

 and K = (4, 5, 6).

The initial tableau, before explicitly calculating the reduced cost, is

0 c1 c2 c3 c4 c5 c6

u4 = −3 −1 −1 2 1 0 0
u5 = −4 −4 −2 1 0 1 0
u6 = 2 1 1 −4 0 0 1

.

Since u has negative coordinates, Case (B) applies, and we will set k− = 4. We must now
determine whether Case (B1) or Case (B2) applies. This determination is accomplished by
scanning the first three columns in the tableau and observing each column has a negative
entry. Thus Case (B2) is applicable, and we need to determine the reduced costs. Observe
that c = (−4,−2,−1, 0, 0, 0), which in turn implies c(4,5,6) = (0, 0, 0). Equation (∗2) implies
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that the nonzero reduced costs are

c1 = c1 − c(4,5,6)

−1
−4
1

 = −4

c2 = c2 − c(4,5,6)

−1
−2
1

 = −2

c3 = c3 − c(4,5,6)

−2
1
4

 = −1,

and our tableau becomes

0 −4 −2 −1 0 0 0

u4 = −3 −1 −1 2 1 0 0

u5 = −4 −4 −2 1 0 1 0
u6 = 2 1 1 −4 0 0 1

.

Since k− = 4, our pivot row is the first row of the tableau. To determine candidates for j+,
we scan this row, locate negative entries and compute

µ+ = max

{
− cj
γj4

∣∣∣∣ γj4 < 0, j ∈ {1, 2, 3}
}

= max

{
−2

1
,
−4

1

}
= −2.

Since µ+ occurs when j = 2, we set j+ = 2. Our new basis is K+ = (2, 5, 6). We must
normalize the first row of the tableau, namely multiply by −1, then add twice this normalized
row to the second row, and subtract the normalized row from the third row to obtain the
updated tableau.

0 −4 −2 −1 0 0 0

u2 = 3 1 1 −2 −1 0 0
u5 = 2 −2 0 −3 −2 1 0
u6 = −1 0 0 −2 1 0 1

It remains to update the reduced costs and the value of the objective function by adding
twice the normalized row to the top row.

6 −2 0 −5 −2 0 0
u2 = 3 1 1 −2 −1 0 0
u5 = 2 −2 0 −3 −2 1 0

u6 = −1 0 0 −2 1 0 1

We now repeat the procedure of Case (B2) and set k− = 6 (since this is the only negative
entry of u+). Our pivot row is now the third row of the updated tableau, and the new µ+
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becomes

µ+ = max

{
− cj
γj6

∣∣∣∣ γj6 < 0, j ∈ {1, 3, 4}
}

= max

{
−5

2

}
= −5

2
,

which implies that j+ = 3. Hence the new basis is K+ = (2, 5, 3), and we update the tableau
by taking −1

2
of Row 3, adding twice the normalized Row 3 to Row 1, and adding three

times the normalized Row 3 to Row 2.

6 −2 0 −5 −2 0 0
u2 = 4 1 1 0 −2 0 −1
u5 = 7/2 −2 0 0 −7/2 1 −3/2

u3 = 1/2 0 0 1 −1/2 0 −1/2

It remains to update the objective function and the reduced costs by adding five times the
normalized row to the top row.

17/2 −2 0 0 −9/2 0 −5/2
u2 = 4 1 1 0 −2 0 −1
u5 = 7/2 −2 0 0 −7

2
1 −3/2

u3 = 1/2 0 0 1 −1/2 0 −1/2

Since u+ has no negative entries, the dual simplex method terminates and objective function
−4x1 − 2x2 − x3 is maximized with −17

2
at (0, 4, 1

2
). See Figure 11.5.

(0, 4, 1/2)

z = 1/2

Figure 11.5: The objective function −4x1−2x2−x3 is maximized at the intersection between
the blue plane −x1 − x2 + 2x3 = −3 and the pink plane x1 + x2 − 4x3 = 2.
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11.6 The Primal-Dual Algorithm

Let (P2) be a linear program in standard form

maximize cx

subject to Ax = b and x ≥ 0,

where A is an m× n matrix of rank m, and (D) be its dual given by

minimize yb

subject to yA ≥ c,

where y ∈ (Rm)∗.

First we may assume that b ≥ 0 by changing every equation
∑n

j=1 aijxj = bi with bi < 0
to
∑n

j=1−aijxj = −bi. If we happen to have some feasible solution y of the dual program
(D), we know from Theorem 11.13 that a feasible solution x of (P2) is an optimal solution iff
the equations in (∗P ) hold. If we denote by J the subset of {1, . . . , n} for which the equalities

yAj = cj

hold, then by Theorem 11.13 a feasible solution x of (P2) is an optimal solution iff

xj = 0 for all j /∈ J.

Let |J | = p and N = {1, . . . , n} − J . The above suggests looking for x ∈ Rn such that∑
j∈J

xjA
j = b

xj ≥ 0 for all j ∈ J
xj = 0 for all j /∈ J,

or equivalently
AJxJ = b, xJ ≥ 0, (∗1)

and
xN = 0n−p.

To search for such an x, we just need to look for a feasible xJ , and for this we can use
the Restricted Primal linear program (RP ) defined as follows:

maximize − (ξ1 + · · ·+ ξm)

subject to
(
AJ Im

)(xJ
ξ

)
= b and x, ξ ≥ 0.
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Since by hypothesis b ≥ 0 and the objective function is bounded above by 0, this linear
program has an optimal solution (x∗J , ξ

∗).

If ξ∗ = 0, then the vector u∗ ∈ Rn given by u∗J = x∗J and u∗N = 0n−p is an optimal solution
of (P ).

Otherwise, ξ∗ > 0 and we have failed to solve (∗1). However we may try to use ξ∗ to
improve y. For this consider the Dual (DRP ) of (RP ):

minimize zb

subject to zAJ ≥ 0

z ≥ −1>m.

Observe that the Program (DRP ) has the same objective function as the original Dual
Program (D). We know by Theorem 11.12 that the optimal solution (x∗J , ξ

∗) of (RP ) yields
an optimal solution z∗ of (DRP ) such that

z∗b = −(ξ∗1 + · · ·+ ξ∗m) < 0.

In fact, if K∗ is the basis associated with (x∗J , ξ
∗) and if we write

Â =
(
AJ Im

)
and ĉ = [0>p − 1>], then by Theorem 11.12 we have

z∗ = ĉK∗Â
−1
K∗ = −1>m − (cK∗)(p+1,...,p+m),

where (cK∗)(p+1,...,p+m) denotes the row vector of reduced costs in the final tableau corre-
sponding to the last m columns.

If we write
y(θ) = y + θz∗,

then the new value of the objective function of (D) is

y(θ)b = yb+ θz∗b, (∗2)

and since z∗b < 0, we have a chance of improving the objective function of (D), that is,
decreasing its value for θ > 0 small enough if y(θ) is feasible for (D). This will be the case
iff y(θ)A ≥ c iff

yA+ θz∗A ≥ c. (∗3)

Now since y is a feasible solution of (D) we have yA ≥ c, so if z∗A ≥ 0, then (∗3) is satisfied
and y(θ) is a solution of (D) for all θ > 0, which means that (D) is unbounded. But this
implies that (P ) is not feasible.



288 CHAPTER 11. LINEAR PROGRAMMING AND DUALITY

Let us take a closer look at the inequalities z∗A ≥ 0. For j ∈ J , since z∗ is an optimal
solution of (DRP ), we know that z∗AJ ≥ 0, so if z∗Aj ≥ 0 for all j ∈ N , then (P2) is not
feasible.

Otherwise, there is some j ∈ N = {1, . . . , n} − J such that

z∗Aj < 0,

and then since by the definition of N we have yAj > cj for all j ∈ N , if we pick θ such that

0 < θ ≤ yAj − cj
−z∗Aj

j ∈ N, z∗Aj < 0,

then we decrease the objective function y(θ)b = yb+ θz∗b of (D) (since z∗b < 0). Therefore
we pick the best θ, namely

θ+ = min

{
yAj − cj
−z∗Aj

∣∣∣∣ j /∈ J, z∗Aj < 0

}
> 0. (∗4)

Next we update y to y+ = y(θ+) = y + θ+z∗, we create the new restricted primal with
the new subset

J+ = {j ∈ {1, . . . , n} | y+Aj = cj},

and repeat the process.

Here are the steps of the primal-dual algorithm.

Step 1. Find some feasible solution y of the Dual Program (D). We will show later
that this is always possible.

Step 2. Compute

J+ = {j ∈ {1, . . . , n} | yAj = cj}.

Step 3. Set J = J+ and solve the Problem (RP ) using the simplex algorithm, starting
from the optimal solution determined during the previous round, obtaining the
optimal solution (x∗J , ξ

∗) with the basis K∗.

Step 4.

If ξ∗ = 0, then stop with an optimal solution u∗ for (P ) such that u∗J = x∗J and the
other components of u∗ are zero.

Else let

z∗ = −1>m − (cK∗)(p+1,...,p+m),

be the optimal solution of (DRP ) corresponding to (x∗J , ξ
∗) and the basis K∗.

If z∗Aj ≥ 0 for all j /∈ J , then stop; the Program (P ) has no feasible solution.
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Else compute

θ+ = min

{
−yA

j − cj
z∗Aj

∣∣∣∣ j /∈ J, z∗Aj < 0

}
, y+ = y + θ+z∗,

and
J+ = {j ∈ {1, . . . , n} | y+Aj = cj}.

Go back to Step 3.

The following proposition shows that at each iteration we can start the Program (RP )
with the optimal solution obtained at the previous iteration.

Proposition 11.14. Every j ∈ J such that Aj is in the basis of the optimal solution ξ∗

belongs to the next index set J+.

Proof. Such an index j ∈ J correspond to a variable ξj such that ξj > 0, so by complementary
slackness, the constraint z∗Aj ≥ 0 of the Dual Program (DRP ) must be an equality, that
is, z∗Aj = 0. But then we have

y+Aj = yAj + θ+z∗Aj = cj,

which shows that j ∈ J+.

If (u∗, ξ∗) with the basis K∗ is the optimal solution of the Program (RP ), Proposition
11.14 together with the last property of Theorem 11.12 allows us to restart the (RP ) in Step
3 with (u∗, ξ∗)K∗ as initial solution (with basis K∗). For every j ∈ J − J+, column j is

deleted, and for every j ∈ J+ − J , the new column Aj is computed by multiplying Â−1
K∗ and

Aj, but Â−1
K∗ is the matrix Γ∗[1:m; p+ 1:p+m] consisting of the last m columns of Γ∗ in the

final tableau, and the new reduced cj is given by cj − z∗Aj. Reusing the optimal solution of
the previous (RP ) may improve efficiency significantly.

Another crucial observation is that for any index j0 ∈ N such that
θ+ = (yAj0 − cj0)/(−z∗Aj0), we have

y+Aj0 = yAj0 + θ+z∗Aj0 = cj0 ,

and so j0 ∈ J+. This fact that be used to ensure that the primal-dual algorithm terminates
in a finite number of steps (using a pivot rule that prevents cycling); see Papadimitriou and
Steiglitz [60] (Theorem 5.4).

It remains to discuss how to pick some initial feasible solution y of the Dual Program
(D). If cj ≤ 0 for j = 1, . . . , n, then we can pick y = 0. If we are dealing with a minimization
problem, the weight cj are often nonnegative, so from the point of view of maximization we
will have −cj ≤ 0 for all j, and we will be able to use y = 0 as a starting point.

Going back to our primal problem in maximization form and its dual in minimization
form, we still need to deal with the situation where cj > 0 for some j, in which case there
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may not be any obvious y feasible for (D). Preferably we would like to find such a y very
cheaply.

There is a trick to deal with this situation. We pick some very large positive number M
and add to the set of equations Ax = b the new equation

x1 + · · ·+ xn + xn+1 = M,

with the new variable xn+1 constrained to be nonnegative. If the Program (P ) has a fea-
sible solution, such an M exists. In fact it can shown that for any basic feasible solution
u = (u1, . . . , un), each |ui| is bounded by some expression depending only on A and b; see
Papadimitriou and Steiglitz [60] (Lemma 2.1). The proof is not difficult and relies on the fact
that the inverse of a matrix can be expressed in terms of certain determinants (the adjugates).
Unfortunately, this bound contains m! as a factor, which makes it quite impractical.

Having added the new equation above, we obtain the new set of equations(
A 0n
1>n 1

)(
x

xn+1

)
=

(
b
M

)
,

with x ≥ 0, xn+1 ≥ 0, and the new objective function given by(
c 0

)( x
xn+1

)
= cx.

The dual of the above linear program is

minimize yb+ ym+1M

subject to yAj + ym+1 ≥ cj j = 1, . . . , n

ym+1 ≥ 0.

If cj > 0 for some j, observe that the linear form ỹ given by

ỹi =

{
0 if 1 ≤ i ≤ m

max1≤j≤n{cj} > 0

is a feasible solution of the new dual program. In practice, we can choose M to be a number
close to the largest integer representable on the computer being used.

Here is an example of the primal-dual algorithm given in the Math 588 class notes of T.
Molla [57].

Example 11.3. Consider the following linear program in standard form:

Maximize − x1 − 3x2 − 3x3 − x4

subject to

3 4 −3 1
3 −2 6 −1
6 4 0 1



x1

x2

x3

x4

 =

2
1
4

 and x1, x2, x3, x4 ≥ 0.
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The associated Dual Program (D) is

Minimize 2y1 + y2 + 4y3

subject to
(
y1 y2 y3

)3 4 −3 1
3 −2 6 −1
6 4 0 1

 ≥ (−1 −3 −3 −1
)
.

We initialize the primal-dual algorithm with the dual feasible point y = (−1/3 0 0).
Observe that only the first inequality of (D) is actually an equality, and hence J = {1}. We
form the Restricted Primal Program (RP1)

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 1 0 0
3 0 1 0
6 0 0 1



x1

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, ξ1, ξ2, ξ3 ≥ 0.

We now solve (RP1) via the simplex algorithm. The initial tableau with K = (2, 3, 4) and
J = {1} is

x1 ξ1 ξ2 ξ3

7 12 0 0 0
ξ1 = 2 3 1 0 0

ξ2 = 1 3 0 1 0
ξ3 = 4 6 0 0 1

.

For (RP1), ĉ = (0,−1,−1,−1), (x1, ξ1, ξ2, ξ3) = (0, 2, 1, 4), and the nonzero reduced cost is
given by

0− (−1 − 1 − 1)

3
3
6

 = 12.

Since there is only one nonzero reduced cost, we must set j+ = 1. Since
min{ξ1/3, ξ2/3, ξ3/6} = 1/3, we see that k− = 3 and K = (2, 1, 4). Hence we pivot through
the red circled 3 (namely we divide row 2 by 3, and then subtract 3× (row 2) from row 1,
6× (row 2) from row 3, and 12× (row 2) from row 0), to obtain the tableau

x1 ξ1 ξ2 ξ3

3 0 0 −4 0
ξ1 = 1 0 1 −1 0
x1 = 1/3 1 0 1/3 0
ξ3 = 2 0 0 −2 1

.

At this stage the simplex algorithm for (RP1) terminates since there are no positive reduced
costs. Since the upper left corner of the final tableau is not zero, we proceed with Step 4 of
the primal dual algorithm and compute

z∗ = (−1 − 1 − 1)− (0 − 4 0) = (−1 3 − 1),
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yA2 − c2 = (−1/3 0 0)

 4
−2
4

+ 3 =
5

3
, z∗A2 = −(−1 3 − 1)

 4
−2
4

 = 14,

yA4 − c4 = (−1/3 0 0)

 1
−1
1

+ 1 =
2

3
, z∗A4 = −(−1 3 − 1)

 1
−1
1

 = 5,

so

θ+ = min

{
5

42
,

2

15

}
=

5

42
,

and we conclude that the new feasible solution for (D) is

y+ = (−1/3 0 0) +
5

42
(−1 3 − 1) = (−19/42 5/14 − 5/42).

When we substitute y+ into (D), we discover that the first two constraints are equalities,
and that the new J is J = {1, 2}. The new Reduced Primal (RP2) is

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 4 1 0 0
3 −2 0 1 0
6 4 0 0 1



x1

x2

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, x2, ξ1, ξ2, ξ3 ≥ 0.

Once again, we solve (RP2) via the simplex algorithm, where ĉ = (0, 0,−1,−1,−1), (x1, x2,
ξ1, ξ2, ξ3) = (1/3, 0, 1, 0, 2) and K = (3, 1, 5). The initial tableau is obtained from the final
tableau of the previous (RP1) by adding a column corresponding the the variable x2, namely

Â−1
K A2 =

1 −1 0
0 1/3 0
0 −2 1

 4
−2
4

 =

 6
−2/3

8

 ,

with

c2 = c2 − z∗A2 = 0−
(
−1 3 −1

) 4
−2
4

 = 14,

and we get
x1 x2 ξ1 ξ2 ξ3

3 0 14 0 −4 0

ξ1 = 1 0 6 1 −1 0
x1 = 1/3 1 −2/3 0 1/3 0
ξ3 = 2 0 8 0 −2 1

.
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Note that j+ = 2 since the only positive reduced cost occurs in column 2. Also observe
that since min{ξ1/6, ξ3/8} = ξ1/6 = 1/6, we set k− = 3, K = (2, 1, 5) and pivot along the
red 6 to obtain the tableau

x1 x2 ξ1 ξ2 ξ3

2/3 0 0 −7/3 −5/3 0
x2 = 1/6 0 1 1/6 −1/6 0
x1 = 4/9 1 0 1/9 2/9 0
ξ3 = 2/3 0 0 −4/3 −2/3 1

.

Since the reduced costs are either zero or negative the simplex algorithm terminates, and
we compute

z∗ = (−1 − 1 − 1)− (−7/3 − 5/3 0) = (4/3 2/3 − 1),

y+A4 − c4 = (−19/42 5/14 − 5/42)

 1
−1
1

+ 1 = 1/14,

z∗A4 = −(4/3 2/3 − 1)

 1
−1
1

 = 1/3,

so

θ+ =
3

14
,

y+ = (−19/42 5/14 − 5/42) +
5

14
(4/3 2/3 − 1) = (−1/6 1/2 − 1/3).

When we plug y+ into (D), we discover that the first, second, and fourth constraints are
equalities, which implies J = {1, 2, 4}. Hence the new Restricted Primal (RP3) is

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 4 1 1 0 0
3 −2 −1 0 1 0
6 4 1 0 0 1



x1

x2

x4

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, x2, x4, ξ1, ξ2, ξ3 ≥ 0.

The initial tableau for (RP3), with ĉ = (0, 0, 0,−1,−1,−1), (x1, x2, x4, ξ1, ξ2, ξ3) = (4/9, 1/6,
0, 0, 0, 2/3) and K = (2, 1, 6), is obtained from the final tableau of the previous (RP2) by
adding a column corresponding the the variable x4, namely

Â−1
K A4 =

 1/6 −1/6 0
1/9 2/9 0
−4/3 −2/3 1

 1
−1
1

 =

 1/3
−1/9
1/3

 ,
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with

c4 = c4 − z∗A4 = 0−
(
4/3 2/3 −1

) 1
−1
1

 = 1/3,

and we get

x1 x2 x4 ξ1 ξ2 ξ3

2/3 0 0 1/3 −7/3 −5/3 0

x2 = 1/6 0 1 1/3 1/6 −1/6 0

x1 = 4/9 1 0 −1/9 1/9 2/9 0
ξ3 = 2/3 0 0 1/3 −4/3 −2/3 1

.

Since the only positive reduced cost occurs in column 3, we set j+ = 3. Furthermore
since min{x2/(1/3), ξ3/(1/3)} = x2/(1/3) = 1/2, we let k− = 2, K = (3, 1, 6), and pivot
around the red circled 1/3 to obtain

x1 x2 x4 ξ1 ξ2 ξ3

1/2 0 −1 0 −5/2 −3/2 0
x4 = 1/2 0 3 1 1/2 −1/2 0
x1 = 1/2 1 1/3 0 1/6 1/6 0
ξ3 = 1/2 0 −1 0 −3/2 −1/2 1

.

At this stage there are no positive reduced costs, and we must compute

z∗ = (−1 − 1 − 1)− (−5/2 − 3/2 0) = (3/2 1/2 − 1),

y+A3 − c3 = (−1/6 1/2 − 1/3)

−3
6
0

+ 3 = 13/2,

z∗A3 = −(3/2 1/2 − 1)

−3
6
0

 = 3/2,

so

θ+ =
13

3
,

y+ = (−1/6 1/2 − 1/3) +
13

3
(3/2 1/2 − 1) = (19/3 8/3 − 14/3).
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We plug y+ into (D) and discover that the first, third, and fourth constraints are equalities.
Thus, J = {1, 3, 4} and the Restricted Primal (RP4) is

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 −3 1 1 0 0
3 6 −1 0 1 0
6 0 1 0 0 1



x1

x3

x4

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, x3, x4, ξ1, ξ2, ξ3 ≥ 0.

The initial tableau for (RP4), with ĉ = (0, 0, 0,−1,−1,−1), (x1, x3, x4, ξ1, ξ2, ξ3) = (1/2,
0, 1/2, 0, 0, 1/2) and K = (3, 1, 6) is obtained from the final tableau of the previous (RP3)
by replacing the column corresponding to the variable x2 by a column corresponding to the
variable x3, namely

Â−1
K A3 =

 1/2 −1/2 0
1/6 1/6 0
−3/2 −1/2 1

−3
6
0

 =

−9/2
1/2
3/2

 ,

with

c3 = c3 − z∗A3 = 0−
(
3/2 1/2 −1

)−3
6
0

 = 3/2,

and we get

x1 x3 x4 ξ1 ξ2 ξ3

1/2 0 3/2 0 −5/2 −3/2 0
x4 = 1/2 0 −9/2 1 1/2 −1/2 0
x1 = 1/2 1 1/2 0 1/6 1/6 0

ξ3 = 1/2 0 3/2 0 −3/2 −1/2 1

.

By analyzing the top row of reduced cost, we see that j+ = 2. Furthermore, since
min{x1/(1/2), ξ3/(3/2)} = ξ3/(3/2) = 1/3, we let k− = 6, K = (3, 1, 2), and pivot along the
red circled 3/2 to obtain

x1 x3 x4 ξ1 ξ2 ξ3

0 0 0 0 −1 −1 −1
x4 = 2 0 0 1 −4 −2 3
x1 = 1/3 1 0 0 2/3 1/3 −1/3
x3 = 1/3 0 1 0 −1 −1/3 2/3

.

Since the upper left corner of the final tableau is zero and the reduced costs are all ≤ 0,
we are finally finished. Then y = (19/3 8/3 − 14/3) is an optimal solution of (D), but more
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importantly (x1, x2, x3, x4) = (1/3, 0, 1/3, 2) is an optimal solution for our original linear
program and provides an optimal value of −10/3.

The primal-dual algorithm for linear programming doesn’t seem to be the favorite method
to solve linear programs nowadays. But it is important because its basic principle, to use
a restricted (simpler) primal problem involving an objective function with fixed weights,
namely 1, and the dual problem to provide feedback to the primal by improving the ob-
jective function of the dual, has led to a whole class of combinatorial algorithms (often
approximation algorithms) based on the primal-dual paradigm. The reader will get a taste
of this kind of algorithm by consulting Papadimitriou and Steiglitz [60], where it is explained
how classical algorithms such as Dijkstra’s algorithm for the shortest path problem, and Ford
and Fulkerson’s algorithm for max flow can be derived from the primal-dual paradigm.

11.7 Summary

The main concepts and results of this chapter are listed below:

• Strictly separating hyperplane.

• Farkas–Minkowski proposition.

• Farkas lemma, version I, Farkas lemma, version II.

• Distance of a point to a subset.

• Dual linear program, primal linear program.

• Dual variables, primal variables.

• Complementary slackness conditions.

• Dual simplex algorithm.

• Primal-dual algorithm.

• Restricted primal linear program.

11.8 Problems

Problem 11.1. Let (v1, . . . , vn) be a sequence of n vectors in Rd and let V be the d × n
matrix whose j-th column is vj. Prove the equivalence of the following two statements:

(a) There is no nontrivial positive linear dependence among the vj, which means that there
is no nonzero vector, y = (y1, . . . , yn) ∈ Rn, with yj ≥ 0 for j = 1, . . . , n, so that

y1v1 + · · ·+ ynvn = 0

or equivalently, V y = 0.
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(b) There is some vector, c ∈ Rd, so that c>V > 0, which means that c>vj > 0, for
j = 1, . . . , n.

Problem 11.2. Check that the dual in maximization form (D′′) of the Dual Program (D′)
(which is the dual of (P ) in maximization form),

maximize − b>y>

subject to − A>y> ≤ −c> and y> ≥ 0,

where y ∈ (Rm)∗, gives back the Primal Program (P ).

Problem 11.3. In a General Linear Program (P ) with n primal variables x1, . . . , xn and
objective function

∑n
j=1 cjxj (to be maximized), the m constraints are of the form

n∑
j=1

aijxj ≤ bi,

n∑
j=1

aijxj ≥ bi,

n∑
j=1

aijxj = bi,

for i = 1, . . . ,m, and the variables xj satisfy an inequality of the form

xj ≥ 0,

xj ≤ 0,

xj ∈ R,

for j = 1, . . . , n. If y1, . . . , ym are the dual variables, show that the dual program of the
linear program in standard form equivalent to (P ) is equivalent to the linear program whose
objective function is

∑m
i=1 yibi (to be minimized) and whose constraints are determined as

follows:

if


xj ≥ 0
xj ≤ 0
xj ∈ R

 , then



m∑
i=1

aijyi ≥ cj

m∑
i=1

aijyi ≤ cj

m∑
i=1

aijyi = cj


,
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and

if



n∑
j=1

aijxj ≤ bi

n∑
j=1

aijxj ≥ bi

n∑
j=1

aijxj = bi


, then


yi ≥ 0
yi ≤ 0
yi ∈ R

 .

Problem 11.4. Apply the procedure of Problem 11.3 to show that the dual of the (general)
linear program

maximize 3x1 + 2x2 + 5x3

subject to

5x1 + 3x2 + x3 = −8

4x1 + 2x2 + 8x3 ≤ 23

6x1 + 7x2 + 3x3 ≥ 1

x1 ≤ 4, x3 ≥ 0

is the (general) linear program:

minimize − 8y1 + 23y2 − y3 + 4y4

subject to

5y1 + 4y2 − 6y3 + y4 = 3

3y1 + 2y2 − 7y3 = 2

y1 + 8y2 − 3y3 ≥ 5

y2, y3, y4 ≥ 0.

Problem 11.5. (1) Prove that the dual of the (general) linear program

maximize cx

subject to Ax = b and x ∈ Rn

is

minimize yb

subject to yA = c and y ∈ Rm.

(2) Prove that the dual of the (general) linear program

maximize cx

subject to Ax ≥ b and x ≥ 0
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is

minimize yb

subject to yA ≥ c and y ≤ 0.

Problem 11.6. Use the complementary slackness conditions to confirm that

x1 = 2, x2 = 4, x3 = 0, x4 = 0, x5 = 7, x6 = 0

is an optimal solution of the following linear program (from Chavatal [24], Chapter 5):

maximize 18x1 − 7x2 + 12x3 + 5x4 + 8x6

subject to

2x1 − 6x2 + 2x3 + 7x4 + 3x5 + 8x6 ≤ 1

−3x1 − x2 + 4x3 − 3x4 + x5 + 2x6 ≤ −2

8x1 − 3x2 + 5x3 − 2x4 + 2x6 ≤ 4

4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1

5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1, x2, x3, x4, x5, x6 ≥ 0.

Problem 11.7. Check carefully that the dual simplex method is equivalent to the simplex
method applied to the dual program in maximization form.
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Part III

NonLinear Optimization
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Chapter 12

Basics of Hilbert Spaces

Most of the “deep” results about the existence of minima of real-valued functions proven in
Chapter 13 rely on two fundamental results of Hilbert space theory:

(1) The projection lemma, which is a result about nonempty, closed, convex subsets of a
Hilbert space V .

(2) The Riesz representation theorem, which allows us to express a continuous linear form
on a Hilbert space V in terms of a vector in V and the inner product on V .

The correctness of the Karush–Kuhn–Tucker conditions appearing in Lagrangian duality
follows from a version of the Farkas–Minkowski proposition, which also follows from the
projection lemma.

Thus, we feel that it is indispensable to review some basic results of Hilbert space theory,
although in most applications considered here the Hilbert space in question will be finite-
dimensional. However, in optimization theory, there are many problems where we seek to
find a function minimizing some type of energy functional (often given by a bilinear form),
in which case we are dealing with an infinite dimensional Hilbert space, so it necessary to
develop tools to deal with the more general situation of infinite-dimensional Hilbert spaces.

12.1 The Projection Lemma

Given a Hermitian space 〈E,ϕ〉, we showed in Section 13.1 (Vol. I) that the function
‖ ‖ : E → R defined such that ‖u‖ =

√
ϕ(u, u), is a norm on E. Thus, E is a normed

vector space. If E is also complete, then it is a very interesting space.

Recall that completeness has to do with the convergence of Cauchy sequences. A normed
vector space 〈E, ‖ ‖〉 is automatically a metric space under the metric d defined such that
d(u, v) = ‖v− u‖ (see Chapter 2 for the definition of a normed vector space and of a metric
space, or Lang [49, 50], or Dixmier [29]). Given a metric space E with metric d, a sequence

303
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(an)n≥1 of elements an ∈ E is a Cauchy sequence iff for every ε > 0, there is some N ≥ 1
such that

d(am, an) < ε for all m,n ≥ N.

We say that E is complete iff every Cauchy sequence converges to a limit (which is unique,
since a metric space is Hausdorff).

Every finite dimensional vector space over R or C is complete. For example, one can
show by induction that given any basis (e1, . . . , en) of E, the linear map h : Cn → E defined
such that

h((z1, . . . , zn)) = z1e1 + · · ·+ znen

is a homeomorphism (using the sup-norm on Cn). One can also use the fact that any two
norms on a finite dimensional vector space over R or C are equivalent (see Chapter 8 (Vol.
I), or Lang [50], Dixmier [29], Schwartz [69]).

However, if E has infinite dimension, it may not be complete. When a Hermitian space is
complete, a number of the properties that hold for finite dimensional Hermitian spaces also
hold for infinite dimensional spaces. For example, any closed subspace has an orthogonal
complement, and in particular, a finite dimensional subspace has an orthogonal complement.
Hermitian spaces that are also complete play an important role in analysis. Since they were
first studied by Hilbert, they are called Hilbert spaces.

Definition 12.1. A (complex) Hermitian space 〈E,ϕ〉 which is a complete normed vector
space under the norm ‖ ‖ induced by ϕ is called a Hilbert space. A real Euclidean space
〈E,ϕ〉 which is complete under the norm ‖ ‖ induced by ϕ is called a real Hilbert space.

All the results in this section hold for complex Hilbert spaces as well as for real Hilbert
spaces. We state all results for the complex case only, since they also apply to the real case,
and since the proofs in the complex case need a little more care.

Example 12.1. The space `2 of all countably infinite sequences x = (xi)i∈N of complex
numbers such that

∑∞
i=0 |xi|2 < ∞ is a Hilbert space. It will be shown later that the map

ϕ : `2 × `2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑
i=0

xiyi

is well defined, and that `2 is a Hilbert space under ϕ. In fact, we will prove a more general
result (Proposition A.3).

Example 12.2. The set C∞[a, b] of smooth functions f : [a, b] → C is a Hermitian space
under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx,

but it is not a Hilbert space because it is not complete. It is possible to construct its
completion L2([a, b]), which turns out to be the space of Lebesgue integrable functions on
[a, b].
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Theorem 2.32 yields a quick proof of the fact that any Hermitian space E (with Hermitian
product 〈−,−〉) can be embedded in a Hilbert space Eh.

Theorem 12.1. Given a Hermitian space (E, 〈−,−〉) (resp. Euclidean space), there is a
Hilbert space (Eh, 〈−,−〉h) and a linear map ϕ : E → Eh, such that

〈u, v〉 = 〈ϕ(u), ϕ(v)〉h

for all u, v ∈ E, and ϕ(E) is dense in Eh. Furthermore, Eh is unique up to isomorphism.

Proof. Let (Ê, ‖ ‖Ê) be the Banach space, and let ϕ : E → Ê be the linear isometry, given

by Theorem 2.32. Let ‖u‖ =
√
〈u, u〉 (with u ∈ E) and Eh = Ê. If E is a real vector space,

we know from Section 11.1 (Vol. I) that the inner product 〈−,−〉 can be expressed in terms
of the norm ‖u‖ by the polarity equation

〈u, v〉 =
1

2
(‖u+ v‖2 − ‖u‖2 − ‖v‖2),

and if E is a complex vector space, we know from Section 13.1 (Vol. I) that we have the
polarity equation

〈u, v〉 =
1

4
(‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2).

By the Cauchy-Schwarz inequality, |〈u, v〉| ≤ ‖u‖‖v‖, the map 〈−,−〉 : E × E → C (resp.
〈−,−〉 : E × E → R) is continuous. However, it is not uniformly continuous, but we can
get around this problem by using the polarity equations to extend it to a continuous map.
By continuity, the polarity equations also hold in Eh, which shows that 〈−,−〉 extends to
a positive definite Hermitian inner product (resp. Euclidean inner product) 〈−,−〉h on Eh
induced by ‖ ‖Ê extending 〈−,−〉.

Remark: We followed the approach in Schwartz [68] (Chapter XXIII, Section 42. Theorem
2). For other approaches, see Munkres [59] (Chapter 7, Section 43), and Bourbaki [16].

One of the most important facts about finite-dimensional Hermitian (and Euclidean)
spaces is that they have orthonormal bases. This implies that, up to isomorphism, every
finite-dimensional Hermitian space is isomorphic to Cn (for some n ∈ N) and that the inner
product is given by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.

Furthermore, every subspace W has an orthogonal complement W⊥, and the inner product
induces a natural duality between E and E∗ (actually, between E and E∗) where E∗ is the
space of linear forms on E.

When E is a Hilbert space, E may be infinite dimensional, often of uncountable dimen-
sion. Thus, we can’t expect that E always have an orthonormal basis. However, if we modify
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the notion of basis so that a “Hilbert basis” is an orthogonal family that is also dense in E,
i.e., every v ∈ E is the limit of a sequence of finite combinations of vectors from the Hilbert
basis, then we can recover most of the “nice” properties of finite-dimensional Hermitian
spaces. For instance, if (uk)k∈K is a Hilbert basis, for every v ∈ E, we can define the Fourier
coefficients ck = 〈v, uk〉/‖uk‖, and then, v is the “sum” of its Fourier series

∑
k∈K ckuk. How-

ever, the cardinality of the index set K can be very large, and it is necessary to define what
it means for a family of vectors indexed by K to be summable. We will do this in Section
A.1. It turns out that every Hilbert space is isomorphic to a space of the form `2(K), where
`2(K) is a generalization of the space of Example 12.1 (see Theorem A.8, usually called the
Riesz-Fischer theorem).

Our first goal is to prove that a closed subspace of a Hilbert space has an orthogonal
complement. We also show that duality holds if we redefine the dual E ′ of E to be the space
of continuous linear maps on E. Our presentation closely follows Bourbaki [16]. We also
were inspired by Rudin [62], Lang [49, 50], Schwartz [69, 68], and Dixmier [29]. In fact, we
highly recommend Dixmier [29] as a clear and simple text on the basics of topology and
analysis. To achieve this goal, we must first prove the so-called projection lemma.

Recall that in a metric space E, a subset X of E is closed iff for every convergent sequence
(xn) of points xn ∈ X, the limit x = limn→∞ xn also belongs to X. The closure X of X is
the set of all limits of convergent sequences (xn) of points xn ∈ X. Obviously, X ⊆ X. We
say that the subset X of E is dense in E iff E = X, the closure of X, which means that
every a ∈ E is the limit of some sequence (xn) of points xn ∈ X. Convex sets will again play
a crucial role. In a complex vector space E, a subset C ⊆ E is convex if (1− λ)x+ λy ∈ C
for all x, y ∈ C and all real λ ∈ [0, 1]. Observe that a subspace is convex.

First we state the following easy “parallelogram law,” whose proof is left as an exercise.

Proposition 12.2. If E is a Hermitian space, for any two vectors u, v ∈ E, we have

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

From the above, we get the following proposition:

Proposition 12.3. If E is a Hermitian space, given any d, δ ∈ R such that 0 ≤ δ < d, let

B = {u ∈ E | ‖u‖ < d} and C = {u ∈ E | ‖u‖ ≤ d+ δ}.

For any convex set such A that A ⊆ C −B, we have

‖v − u‖ ≤
√

12dδ,

for all u, v ∈ A (see Figure 12.1).



12.1. THE PROJECTION LEMMA 307

C B

A u

v

1-2
(u+v)

u

1-2

1-2
v

Figure 12.1: Inequality of Proposition 12.3.

Proof. Since A is convex, 1
2

(u + v) ∈ A if u, v ∈ A, and thus, ‖1
2

(u + v)‖ ≥ d. From the
parallelogram equality written in the form∥∥∥1

2
(u+ v)

∥∥∥2

+
∥∥∥1

2
(u− v)

∥∥∥2

=
1

2

(
‖u‖2 + ‖v‖2

)
,

since δ < d, we get∥∥∥1

2
(u− v)

∥∥∥2

=
1

2

(
‖u‖2 + ‖v‖2

)
−
∥∥∥1

2
(u+ v)

∥∥∥2

≤ (d+ δ)2 − d2 = 2dδ + δ2 ≤ 3dδ,

from which
‖v − u‖ ≤

√
12dδ.

Definition 12.2. If X is a nonempty subset of a metric space (E, d), for any a ∈ E, recall
that we define the distance d(a,X) of a to X as

d(a,X) = inf
b∈X

d(a, b).

Also, the diameter δ(X) of X is defined by

δ(X) = sup{d(a, b) | a, b ∈ X}.

It is possible that δ(X) =∞.

We leave the following standard two facts as an exercise (see Dixmier [29]):

Proposition 12.4. Let E be a metric space.

(1) For every subset X ⊆ E, δ(X) = δ(X).

(2) If E is a complete metric space, for every sequence (Fn) of closed nonempty subsets of
E such that Fn+1 ⊆ Fn, if limn→∞ δ(Fn) = 0, then

⋂∞
n=1 Fn consists of a single point.

We are now ready to prove the crucial projection lemma.
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Proposition 12.5. (Projection lemma) Let E be a Hilbert space and let X ⊆ E be any
nonempty convex and closed subset.

(1) For any u ∈ E, there is a unique vector pX(u) ∈ X such that

‖u− pX(u)‖ = inf
v∈X
‖u− v‖ = d(u,X).

See Figure 12.2.

(2) The vector pX(u) is the unique vector w ∈ E satisfying the following property (see
Figure 12.3):

w ∈ X and < 〈u− w, z − w〉 ≤ 0 for all z ∈ X. (∗)

(3) If X is a nonempty closed subspace of E, then the vector pX(u) is the unique vector
w ∈ E satisfying the following property:

w ∈ X and 〈u− w, z〉 = 0 for all z ∈ X. (∗∗)

u

p
X(u)

u - p   (u)X

Figure 12.2: Let X be the solid pink ellipsoid. The projection of the purple point u onto X
is the magenta point pX(u).

Proof. (1) Let d = infv∈X ‖u − v‖ = d(u,X). We define a sequence Xn of subsets of X as
follows: for every n ≥ 1,

Xn =

{
v ∈ X | ‖u− v‖ ≤ d+

1

n

}
.
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Xu

z

w = p    (u)X

Figure 12.3: Inequality of Proposition 12.5.

It is immediately verified that each Xn is nonempty (by definition of d), convex, and
that Xn+1 ⊆ Xn. Also, by Proposition 12.3, (where B = {v ∈ E | ‖u− v‖ ≤ d}, C ={
v ∈ E | ‖u− v‖ ≤ d+ 1

n

}
, and A = Xn), we have

sup{‖z − v‖ | v, z ∈ Xn} ≤
√

12d/n,

and thus,
⋂
n≥1Xn contains at most one point; see Proposition 12.4(2). We will prove that⋂

n≥1Xn contains exactly one point, namely, pX(u). For this, define a sequence (wn)n≥1 by
picking some wn ∈ Xn for every n ≥ 1. We claim that (wn)n≥1 is a Cauchy sequence. Given
any ε > 0, if we pick N such that

N >
12d

ε2
,

since (Xn)n≥1 is a monotonic decreasing sequence, which means that Xn+1 ⊆ Xn for all
n ≥ 1, for all m,n ≥ N , we have

‖wm − wn‖ ≤
√

12d/N < ε,

as desired. Since E is complete, the sequence (wn)n≥1 has a limit w, and since wn ∈ X and
X is closed, we must have w ∈ X. Also observe that

‖u− w‖ ≤ ‖u− wn‖+ ‖wn − w‖,

and since w is the limit of (wn)n≥1 and

‖u− wn‖ ≤ d+
1

n
,

given any ε > 0, there is some n large enough so that

1

n
<
ε

2
and ‖wn − w‖ ≤

ε

2
,
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and thus
‖u− w‖ ≤ d+ ε.

Since the above holds for every ε > 0, we have ‖u − w‖ = d. Thus, w ∈ Xn for all n ≥ 1,
which proves that

⋂
n≥1Xn = {w}. Now any z ∈ X such that ‖u − z‖ = d(u,X) = d also

belongs to every Xn, and thus z = w, proving the uniqueness of w, which we denote as
pX(u). See Figure 12.4.

u

v

d

d + 1/n+1

d + 1/n

i.

X

X w

X

n+1

w

X

n

w

w

u

ii.

n+1

n

n-1n-1

d + 1/n-1

Figure 12.4: Let X be the solid pink ellipsoid with pX(u) = w at its apex. Each Xn is the
intersection of X and a solid sphere centered at u with radius d + 1/n. These intersections
are the colored “caps” of Figure ii. The Cauchy sequence (wn)n≥1 is obtained by selecting a
point in each colored Xn.

(2) Let z ∈ X. Since X is convex, v = (1 − λ)pX(u) + λz ∈ X for every λ, 0 ≤ λ ≤ 1.
Then by the definition of u, we have

‖u− v‖ ≥ ‖u− pX(u)‖

for all λ, 0 ≤ λ ≤ 1, and since

‖u− v‖2 = ‖u− pX(u)− λ(z − pX(u))‖2

= ‖u− pX(u)‖2 + λ2‖z − pX(u)‖2 − 2λ< 〈u− pX(u), z − pX(u)〉 ,

for all λ, 0 < λ ≤ 1, we get

< 〈u− pX(u), z − pX(u)〉 =
1

2λ

(
‖u− pX(u)‖2 − ‖u− v‖2

)
+
λ

2
‖z − pX(u)‖2. (†)

Since
‖u− v‖ ≥ ‖u− pX(u)‖,
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we have

‖u− pX(u)‖2 − ‖u− v‖2 = (‖u− pX(u)‖ − ‖u− v‖)(‖u− pX(u)‖+ ‖u− v‖) ≤ 0,

and since Equation (†) holds for all λ such that 0 < λ ≤ 1, if ‖u− pX(u)‖2 − ‖u− v‖2 < 0,
then for λ > 0 small enough we have

1

2λ

(
‖u− pX(u)‖2 − ‖u− v‖2

)
+
λ

2
‖z − pX(u)‖2 < 0,

and if ‖u− pX(u)‖2−‖u− v‖2 = 0, then the limit of λ
2
‖z− pX(u)‖2 as λ > 0 goes to zero is

zero, so in all cases, by (†), we have

< 〈u− pX(u), z − pX(u)〉 ≤ 0.

Conversely, assume that w ∈ X satisfies the condition

< 〈u− w, z − w〉 ≤ 0

for all z ∈ X. For all z ∈ X, we have

‖u− z‖2 = ‖u− w‖2 + ‖z − w‖2 − 2< 〈u− w, z − w〉 ≥ ‖u− w‖2,

which implies that ‖u− w‖ = d(u,X) = d, and from (1), that w = pX(u).

(3) If X is a subspace of E and w ∈ X, when z ranges over X the vector z − w also
ranges over the whole of X so Condition (∗) is equivalent to

w ∈ X and <〈u− w, z〉 ≤ 0 for all z ∈ X. (∗1)

Since X is a subspace, if z ∈ X, then −z ∈ X, which implies that (∗1) is equivalent to

w ∈ X and <〈u− w, z〉 = 0 for all z ∈ X. (∗2)

Finally, since X is a subspace, if z ∈ X ,then iz ∈ X, and this implies that

0 = <〈u− w, iz〉 = −i=〈u− w, z〉,

so =〈u−w, z〉 = 0, but since we also have <〈u−w, z〉 = 0, we see that (∗2) is equivalent to

w ∈ X and 〈u− w, z〉 = 0 for all z ∈ X, (∗∗)

as claimed.

Definition 12.3. The vector pX(u) is called the projection of u onto X, and the map
pX : E → X is called the projection of E onto X.
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In the case of a real Hilbert space, there is an intuitive geometric interpretation of the
condition

〈u− pX(u), z − pX(u)〉 ≤ 0

for all z ∈ X. If we restate the condition as

〈u− pX(u), pX(u)− z〉 ≥ 0

for all z ∈ X, this says that the absolute value of the measure of the angle between the
vectors u − pX(u) and pX(u) − z is at most π/2. See Figure 12.5. This makes sense, since
X is convex, and points in X must be on the side opposite to the “tangent space” to X at
pX(u), which is orthogonal to u − pX(u). Of course, this is only an intuitive description,
since the notion of tangent space has not been defined!

u p   (u)X

z

u - p  (u)X
p  (u)X - z

X

X

Figure 12.5: Let X be the solid blue ice cream cone. The acute angle between the black
vector u− pX(u) and the purple vector pX(u)− z is less than π/2.

If X is a closed subspace of E, then Condition (∗∗) says that the vector u − pX(u) is
orthogonal to X, in the sense that u− pX(u) is orthogonal to every vector z ∈ X.

The map pX : E → X is continuous as shown below.

Proposition 12.6. Let E be a Hilbert space. For any nonempty convex and closed subset
X ⊆ E, the map pX : E → X is continuous. In fact, pX satisfies the Lipschitz condition

‖pX(v)− pX(u)‖ ≤ ‖v − u‖ for all u, v ∈ E.

Proof. For any two vectors u, v ∈ E, let x = pX(u)−u, y = pX(v)−pX(u), and z = v−pX(v).
Clearly, (as illustrated in Figure 12.6),

v − u = x+ y + z,

and from Proposition 12.5(2), we also have

< 〈x, y〉 ≥ 0 and < 〈z, y〉 ≥ 0,
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from which we get

‖v − u‖2 = ‖x+ y + z‖2 = ‖x+ z + y‖2

= ‖x+ z‖2 + ‖y‖2 + 2< 〈x, y〉+ 2< 〈z, y〉
≥ ‖y‖2 = ‖pX(v)− pX(u)‖2.

However, ‖pX(v)− pX(u)‖ ≤ ‖v − u‖ obviously implies that pX is continuous.

u

v

v - u

p  (v)
XZ

P  (u)X

X

y

X

Figure 12.6: Let X be the solid gold ellipsoid. The vector v−u is the sum of the three green
vectors, each of which is determined by the appropriate projections.

We can now prove the following important proposition.

Proposition 12.7. Let E be a Hilbert space.

(1) For any closed subspace V ⊆ E, we have E = V ⊕ V ⊥, and the map pV : E → V is
linear and continuous.

(2) For any u ∈ E, the projection pV (u) is the unique vector w ∈ E such that

w ∈ V and 〈u− w, z〉 = 0 for all z ∈ V .

Proof. (1) First, we prove that u − pV (u) ∈ V ⊥ for all u ∈ E. For any v ∈ V , since V is a
subspace, z = pV (u) + λv ∈ V for all λ ∈ C, and since V is convex and nonempty (since it
is a subspace), and closed by hypothesis, by Proposition 12.5(2), we have

<(λ 〈u− pV (u), v〉) = <(〈u− pV (u), λv〉 = < 〈u− pV (u), z − pV (u)〉 ≤ 0
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for all λ ∈ C. In particular, the above holds for λ = 〈u− pV (u), v〉, which yields

| 〈u− pV (u), v〉 | ≤ 0,

and thus, 〈u− pV (u), v〉 = 0. See Figure 12.7. As a consequence, u − pV (u) ∈ V ⊥ for all
u ∈ E. Since u = pV (u) + u − pV (u) for every u ∈ E, we have E = V + V ⊥. On the other
hand, since 〈−,−〉 is positive definite, V ∩ V ⊥ = {0}, and thus E = V ⊕ V ⊥.

We already proved in Proposition 12.6 that pV : E → V is continuous. Also, since

pV (λu+µv)− (λpV (u) +µpV (v)) = pV (λu+µv)− (λu+µv) + λ(u− pV (u)) +µ(v− pV (v)),

for all u, v ∈ E, and since the left-hand side term belongs to V , and from what we just
showed, the right-hand side term belongs to V ⊥, we have

pV (λu+ µv)− (λpV (u) + µpV (v)) = 0,

showing that pV is linear.

(2) This is basically obvious from (1). We proved in (1) that u − pV (u) ∈ V ⊥, which is
exactly the condition

〈u− pV (u), z〉 = 0

for all z ∈ V . Conversely, if w ∈ V satisfies the condition

〈u− w, z〉 = 0

for all z ∈ V , since w ∈ V , every vector z ∈ V is of the form y − w, with y = z + w ∈ V ,
and thus, we have

〈u− w, y − w〉 = 0

for all y ∈ V , which implies the condition of Proposition 12.5(2):

< 〈u− w, y − w〉 ≤ 0

for all y ∈ V . By Proposition 12.5, w = pV (u) is the projection of u onto V .

Remark: If pV : E → V is linear, then V is a subspace of E. It follows that if V is a closed
convex subset of E, then pV : E → V is linear iff V is a subspace of E.

Example 12.3. Let us illustrate the power of Proposition 12.7 on the following “least
squares” problem. Given a real m× n-matrix A and some vector b ∈ Rm, we would like to
solve the linear system

Ax = b

in the least-squares sense, which means that we would like to find some solution x ∈ Rn that
minimizes the Euclidean norm ‖Ax− b‖ of the error Ax− b. It is actually not clear that the
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u

p  (u)
V

V
u - p

   (
u)

V

Figure 12.7: Let V be the pink plane. The vector u− pV (u) is perpendicular to any v ∈ V .

problem has a solution, but it does! The problem can be restated as follows: Is there some
x ∈ Rn such that

‖Ax− b‖ = inf
y∈Rn
‖Ay − b‖,

or equivalently, is there some z ∈ Im (A) such that

‖z − b‖ = d(b, Im (A)),

where Im (A) = {Ay ∈ Rm | y ∈ Rn}, the image of the linear map induced by A. Since
Im (A) is a closed subspace of Rm, because we are in finite dimension, Proposition 12.7 tells
us that there is a unique z ∈ Im (A) such that

‖z − b‖ = inf
y∈Rn
‖Ay − b‖,

and thus the problem always has a solution since z ∈ Im (A), and since there is at least some
x ∈ Rn such that Ax = z (by definition of Im (A)). Note that such an x is not necessarily
unique. Furthermore, Proposition 12.7 also tells us that z ∈ Im (A) is the solution of the
equation

〈z − b, w〉 = 0 for all w ∈ Im (A),

or equivalently, that x ∈ Rn is the solution of

〈Ax− b, Ay〉 = 0 for all y ∈ Rn,

which is equivalent to
〈A>(Ax− b), y〉 = 0 for all y ∈ Rn,

and thus, since the inner product is positive definite, to A>(Ax− b) = 0, i.e.,

A>Ax = A>b.
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Therefore, the solutions of the original least-squares problem are precisely the solutions
of the the so-called normal equations

A>Ax = A>b,

discovered by Gauss and Legendre around 1800. We also proved that the normal equations
always have a solution.

Computationally, it is best not to solve the normal equations directly, and instead, to
use methods such as the QR-decomposition (applied to A) or the SVD-decomposition (in
the form of the pseudo-inverse). We will come back to this point later on.

Here is another important corollary of Proposition 12.7.

Corollary 12.8. For any continuous nonnull linear map h : E → C, the null space

H = Kerh = {u ∈ E | h(u) = 0} = h−1(0)

is a closed hyperplane H, and thus, H⊥ is a subspace of dimension one such that E = H⊕H⊥.

The above suggests defining the dual space of E as the set of all continuous maps h : E →
C.

Remark: If h : E → C is a linear map which is not continuous, then it can be shown
that the hyperplane H = Kerh is dense in E! Thus, H⊥ is reduced to the trivial subspace
{0}. This goes against our intuition of what a hyperplane in Rn (or Cn) is, and warns us
not to trust our “physical” intuition too much when dealing with infinite dimensions. As a
consequence, the map [ : E → E∗ introduced in Section 13.2 (Vol. I) (see just after Definition
12.4 below) is not surjective, since the linear forms of the form u 7→ 〈u, v〉 (for some fixed
vector v ∈ E) are continuous (the inner product is continuous).

12.2 Duality and the Riesz Representation Theorem

We now show that by redefining the dual space of a Hilbert space as the set of continuous
linear forms on E we recover Theorem 13.6 (Vol. I).

Definition 12.4. Given a Hilbert space E, we define the dual space E ′ of E as the vector
space of all continuous linear forms h : E → C. Maps in E ′ are also called bounded linear
operators, bounded linear functionals, or simply operators or functionals .

As in Section 13.2 (Vol. I), for all u, v ∈ E, we define the maps ϕlu : E → C and
ϕrv : E → C such that

ϕlu(v) = 〈u, v〉,
and

ϕrv(u) = 〈u, v〉 .
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In fact, ϕlu = ϕru, and because the inner product 〈−,−〉 is continuous, it is obvious that ϕrv
is continuous and linear, so that ϕrv ∈ E ′. To simplify notation, we write ϕv instead of ϕrv.

Theorem 13.6 (Vol. I) is generalized to Hilbert spaces as follows.

Proposition 12.9. (Riesz representation theorem) Let E be a Hilbert space. Then the map
[ : E → E ′ defined such that

[(v) = ϕv,

is semilinear, continuous, and bijective. Furthermore, for any continuous linear map ψ ∈ E ′,
if u ∈ E is the unique vector such that

ψ(v) = 〈v, u〉 for all v ∈ E,

then we have ‖ψ‖ = ‖u‖, where

‖ψ‖ = sup

{
|ψ(v)|
‖v‖

∣∣∣∣ v ∈ E, v 6= 0

}
.

Proof. The proof is basically identical to the proof of Theorem 13.6 (Vol. I), except that a
different argument is required for the surjectivity of [ : E → E ′, since E may not be finite
dimensional. For any nonnull linear operator h ∈ E ′, the hyperplane H = Kerh = h−1(0)
is a closed subspace of E, and by Proposition 12.7, H⊥ is a subspace of dimension one such
that E = H ⊕ H⊥. Then picking any nonnull vector w ∈ H⊥, observe that H is also the
kernel of the linear operator ϕw, with

ϕw(u) = 〈u,w〉 ,

and thus, since any two nonzero linear forms defining the same hyperplane must be propor-
tional, there is some nonzero scalar λ ∈ C such that h = λϕw. But then, h = ϕλw, proving
that [ : E → E ′ is surjective.

By the Cauchy–Schwarz inequality we have

|ψ(v)| = |〈v, u〉| ≤ ‖v‖ ‖u‖ ,

so by definition of ‖ψ‖ we get

‖ψ‖ ≤ ‖u‖ .

Obviously ψ = 0 iff u = 0 so assume u 6= 0. We have

‖u‖2 = 〈u, u〉 = ψ(u) ≤ ‖ψ‖ ‖u‖ ,

which yields ‖u‖ ≤ ‖ψ‖, and therefore ‖ψ‖ = ‖u‖, as claimed.
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Proposition 12.9 is known as the Riesz representation theorem or “Little Riesz Theorem.”
It shows that the inner product on a Hilbert space induces a natural semilinear isomorphism
between E and its dual E ′ (equivalently, a linear isomorphism between E and E ′). This
isomorphism is an isometry (it is preserves the norm).

Remark: Many books on quantum mechanics use the so-called Dirac notation to denote
objects in the Hilbert space E and operators in its dual space E ′. In the Dirac notation, an
element of E is denoted as |x〉, and an element of E ′ is denoted as 〈t|. The scalar product
is denoted as 〈t| · |x〉. This uses the isomorphism between E and E ′, except that the inner
product is assumed to be semi-linear on the left rather than on the right.

Proposition 12.9 allows us to define the adjoint of a linear map, as in the Hermitian case
(see Proposition 13.8 (Vol. I)). Actually, we can prove a slightly more general result which
is used in optimization theory.

If ϕ : E×E → C is a sesquilinear map on a normed vector space (E, ‖ ‖), then Proposition
2.27 is immediately adapted to prove that ϕ is continuous iff there is some constant k ≥ 0
such that

|ϕ(u, v)| ≤ k ‖u‖ ‖v‖ for all u, v ∈ E.
Thus we define ‖ϕ‖ as in Definition 2.25 by

‖ϕ‖ = sup {|ϕ(x, y)| | ‖x‖ ≤ 1, ‖y‖ ≤ 1, x, y ∈ E} .

Proposition 12.10. Given a Hilbert space E, for every continuous sesquilinear map ϕ : E×
E → C, there is a unique continuous linear map fϕ : E → E, such that

ϕ(u, v) = 〈u, fϕ(v)〉 for all u, v ∈ E.

We also have ‖fϕ‖ = ‖ϕ‖. If ϕ is Hermitian, then fϕ is self-adjoint, that is

〈u, fϕ(v)〉 = 〈fϕ(u), v〉 for all u, v ∈ E.

Proof. The proof is adapted from Rudin [63] (Theorem 12.8). To define the function fϕ, we
proceed as follows. For any fixed v ∈ E, define the linear map ϕv by

ϕv(u) = ϕ(u, v) for all u ∈ E.

Since ϕ is continuous, ϕv is continuous. So by Proposition 12.9, there is a unique vector in
E that we denote fϕ(v) such that

ϕv(u) = 〈u, fϕ(v)〉 for all u ∈ E,

and ‖fϕ(v)‖ = ‖ϕv‖. Let us check that the map v 7→ fϕ(v) is linear.

We have

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2) ϕ is additive

= 〈u, fϕ(v1)〉+ 〈u, fϕ(v2)〉 by definition of fϕ

= 〈u, fϕ(v1) + fϕ(v2)〉 〈−,−〉 is additive
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for all u ∈ E, and since fϕ(v1+v2) is the unique vector such that ϕ(u, v1+v2) = 〈u, fϕ(v1+v2)〉
for all u ∈ E, we must have

fϕ(v1 + v2) = fϕ(v1) + fϕ(v2).

For any λ ∈ C we have

ϕ(u, λv) = λϕ(u, v) ϕ is sesquilinear

= λ〈u, fϕ(v)〉 by definition of fϕ

= 〈u, λfϕ(v)〉 〈−,−〉 is sesquilinear

for all u ∈ E, and since fϕ(λv) is the unique vector such that ϕ(u, λv) = 〈u, fϕ(λv)〉 for all
u ∈ E, we must have

fϕ(λv) = λfϕ(v).

Therefore fϕ is linear.

Then by definition of ‖ϕ‖, we have

|ϕv(u)| = |ϕ(u, v)| ≤ ‖ϕ‖ ‖u‖ ‖v‖ ,

which shows that ‖ϕv‖ ≤ ‖ϕ‖ ‖v‖. Since ‖fϕ(v)‖ = ‖ϕv‖, we have

‖fϕ(v)‖ ≤ ‖ϕ‖ ‖v‖ ,

which shows that fϕ is continuous and that ‖fϕ‖ ≤ ‖ϕ‖. But by the Cauchy–Schwarz
inequality we also have

|ϕ(u, v)| = |〈u, fϕ(v)〉| ≤ ‖u‖ ‖fϕ(v)‖ ≤ ‖u‖ ‖fϕ‖ ‖v‖ ,

so ‖ϕ‖ ≤ ‖fϕ‖, and thus

‖fϕ‖ = ‖ϕ‖ .

If ϕ is Hermitian, ϕ(v, u) = ϕ(u, v), so

〈fϕ(u), v〉 = 〈v, fϕ(u)〉 = ϕ(v, u) = ϕ(u, v) = 〈u, fϕ(v)〉,

which shows that fϕ is self-adjoint.

Proposition 12.11. Given a Hilbert space E, for every continuous linear map f : E → E,
there is a unique continuous linear map f ∗ : E → E, such that

〈f(u), v〉 = 〈u, f ∗(v)〉 for all u, v ∈ E,

and we have ‖f ∗‖ = ‖f‖. The map f ∗ is called the adjoint of f .
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Proof. The proof is adapted from Rudin [63] (Section 12.9). By the Cauchy–Schwarz in-
equality, since

|〈x, y〉| ≤ ‖x‖ ‖y‖ ,
we see that the sesquilinear map (x, y) 7→ 〈x, y〉 on E×E is continuous. Let ϕ : E×E → C
be the sesquilinear map given by

ϕ(u, v) = 〈f(u), v〉 for all u, v ∈ E.

Since f is continuous and the inner product 〈−,−〉 is continuous, this is a continuous map.
By Proposition 12.10, there is a unique linear map f ∗ : E → E such that

〈f(u), v〉 = ϕ(u, v) = 〈u, f ∗(v)〉 for all u, v ∈ E,

with ‖f ∗‖ = ‖ϕ‖.
We can also prove that ‖ϕ‖ = ‖f‖. First, by definition of ‖ϕ‖ we have

‖ϕ‖ = sup {|ϕ(x, y)| | ‖x‖ ≤ 1, ‖y‖ ≤ 1}
= sup {|〈f(x), y〉| | ‖x‖ ≤ 1, ‖y‖ ≤ 1}
≤ sup {‖f(x)‖ ‖y‖ | ‖x‖ ≤ 1, ‖y‖ ≤ 1}
≤ sup {‖f(x)‖ | ‖x‖ ≤ 1}
= ‖f‖ .

In the other direction we have

‖f(x)‖2 = 〈f(x), f(x)〉 = ϕ(x, f(x)) ≤ ‖ϕ‖ ‖x‖ ‖f(x)‖ ,

and if f(x) 6= 0 we get ‖f(x)‖ ≤ ‖ϕ‖ ‖x‖. This inequality holds trivially if f(x) = 0, so we
conclude that ‖f‖ ≤ ‖ϕ‖. Therefore we have

‖ϕ‖ = ‖f‖ ,

as claimed, and consequently ‖f ∗‖ = ‖ϕ‖ = ‖f‖.

It is easy to show that the adjoint satisfies the following properties:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗

(f ◦ g)∗ = g∗ ◦ f ∗

f ∗∗ = f.

One can also show that ‖f ∗ ◦ f‖ = ‖f‖2 (see Rudin [63], Section 12.9).

As in the Hermitian case, given two Hilbert spaces E and F , the above results can be
adapted to show that for any linear map f : E → F , there is a unique linear map f ∗ : F → E
such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .
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12.3 Farkas–Minkowski Lemma in Hilbert Spaces

In this section (V, 〈−,−〉) is assumed to be a real Hilbert space. The projection lemma can
be used to show an interesting version of the Farkas–Minkowski lemma in a Hilbert space.

Given a finite sequence of vectors (a1, . . . , am) with ai ∈ V , let C be the polyhedral cone

C = cone(a1, . . . , am) =

{ m∑
i=1

λiai | λi ≥ 0, i = 1, . . . ,m

}
.

For any vector b ∈ V , the Farkas–Minkowski lemma gives a criterion for checking whether
b ∈ C.

In Proposition 8.2 we proved that every polyhedral cone cone(a1, . . . , am) with ai ∈ Rn is
closed. Close examination of the proof shows that it goes through if ai ∈ V where V is any
vector space possibly of infinite dimension, because the important fact is that the number
m of these vectors is finite, not their dimension.

Theorem 12.12. (Farkas–Minkowski Lemma in Hilbert Spaces) Let (V, 〈−,−〉) be a real
Hilbert space. For any finite sequence of vectors (a1, . . . , am) with ai ∈ V , if C is the
polyhedral cone C = cone(a1, . . . , am), for any vector b ∈ V , we have b /∈ C iff there is a
vector u ∈ V such that

〈ai, u〉 ≥ 0 i = 1, . . . ,m, and 〈b, u〉 < 0.

Equivalently, b ∈ C iff for all u ∈ V ,

if 〈ai, u〉 ≥ 0 i = 1, . . . ,m, then 〈b, u〉 ≥ 0.

Proof. We follow Ciarlet [25] (Chapter 9, Theorem 9.1.1). We already established in Propo-
sition 8.2 that the polyhedral cone C = cone(a1, . . . , am) is closed. Next we claim the
following:

Claim: If C is a nonempty, closed, convex subset of a Hilbert space V , and b ∈ V is any
vector such that b /∈ C, then there exist some u ∈ V and infinitely many scalars α ∈ R such
that

〈v, u〉 > α for every v ∈ C
〈b, u〉 < α.

We use the projection lemma (Proposition 12.5) which says that since b /∈ C there is
some unique c = pC(b) ∈ C such that

‖b− c‖ = inf
v∈C
‖b− v‖ > 0

〈b− c, v − c〉 ≤ 0 for all v ∈ C,
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or equivalently

‖b− c‖ = inf
v∈C
‖b− v‖ > 0

〈v − c, c− b〉 ≥ 0 for all v ∈ C.

As a consequence, since b 6∈ C and c ∈ C, we have c− b 6= 0, so

〈v, c− b〉 ≥ 〈c, c− b〉 > 〈b, c− b〉

because 〈c, c − b〉 − 〈b, c − b〉 = 〈c − b, c − b〉 > 0, and if we pick u = c − b and any α such
that

〈c, c− b〉 > α > 〈b, c− b〉,

the claim is satisfied.

We now prove the Farkas–Minkowski lemma. Assume that b /∈ C. Since C is nonempty,
convex, and closed, by the claim there is some u ∈ V and some α ∈ R such that

〈v, u〉 > α for every v ∈ C
〈b, u〉 < α.

But C is a polyhedral cone containing 0, so we must have α < 0. Then for every v ∈ C,
since C a polyhedral cone if v ∈ C then λv ∈ C for all λ > 0, so by the above

〈v, u〉 > α

λ
for every λ > 0,

which implies that
〈v, u〉 ≥ 0.

Since ai ∈ C for i = 1, . . . ,m, we proved that

〈ai, u〉 ≥ 0 i = 1, . . . ,m and 〈b, u〉 < α < 0,

which proves Farkas lemma.

Remark: Observe that the claim established during the proof of Theorem 12.12 shows that
the affine hyperplane Hu,α of equation 〈v, u〉 = α for all v ∈ V separates strictly C and {b}.

12.4 Summary

The main concepts and results of this chapter are listed below:

• Hilbert space.

• Projection lemma.
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• Distance of a point to a subset, diameter.

• Projection onto a closed and convex subset.

• Orthogonal complement of a closed subspace.

• Dual of a Hilbert space.

• Bounded linear operator (or functional).

• Riesz representation theorem.

• Adjoint of a continuous linear map.

• Farkas–Minkowski lemma.

12.5 Problems

Problem 12.1. Let V be a Hilbert space. Prove that a subspace W of V is dense in V if
and only if there is no nonzero vector orthogonal to W .

Problem 12.2. Prove that the adjoint satisfies the following properties:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗

(f ◦ g)∗ = g∗ ◦ f ∗

f ∗∗ = f.

Problem 12.3. Prove that ‖f ∗ ◦ f‖ = ‖f‖2.

Problem 12.4. Let V be a (real) Hilbert space and let C be a nonempty closed convex
subset of V . Define the map h : V → R ∪ {+∞} by

h(u) = sup
v∈C
〈u, v〉.

Prove that

C =
⋂
u∈V

{v ∈ V | 〈u, v〉 ≤ h(u)} =
⋂
u∈ΛC

{v ∈ V | 〈u, v〉 ≤ h(u)},

where ΛC = {u ∈ V | h(u) 6= +∞}.

Describe ΛC when C is also a subspace of V .
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Problem 12.5. Let A be a real m×n matrix, and let (uk) be a sequence of vectors uk ∈ Rn

such that uk ≥ 0. Prove that if the sequence (Auk) converges, then there is some u ∈ Rn

such that
Au = lim

k 7→∞
Auk and u ≥ 0.

Problem 12.6. Let V be a real Hilbert space, (a1, . . . , am) a sequence of m vectors in V ,
b some vector in V , (α1, . . . , αm) a sequence of m real numbers, and β some real number.
Prove that the inclusion

{w ∈ V | 〈ai, w〉 ≥ αi, 1 ≤ i ≤ m} ⊆ {w ∈ V | 〈b, w〉 ≥ β}

holds if and only if there exist λ1, . . . , λm ∈ R such that λi ≥ 0 for i = 1, . . . ,m and

b =
m∑
i=1

λiai

β ≤
m∑
i=1

λiαi.



Chapter 13

General Results of Optimization
Theory

This chapter is devoted to some general results of optimization theory. A main theme is
to find sufficient conditions that ensure that an objective function has a minimum which
is achieved. We define the notion of a coercive function. The most general result is The-
orem 13.2, which applies to a coercive convex function on a convex subset of a separable
Hilbert space. In the special case of a coercive quadratic functional, we obtain the Lions–
Stampacchia theorem (Theorem 13.6), and the Lax–Milgram theorem (Theorem 13.7). We
define elliptic functionals, which generalize quadratic functions defined by symmetric posi-
tive definite matrices. We define gradient descent methods, and discuss their convergence.
A gradient descent method looks for a descent direction and a stepsize parameter, which is
obtained either using an exact line search or a backtracking line search. A popular technique
to find the search direction is steepest descent. In addition to steepest descent for the Eu-
clidean norm, we discuss steepest descent for an arbitrary norm. We also consider a special
case of steepest descent, Newton’s method. This method converges faster than the other
gradient descent methods, but it is quite expensive since it requires computing and storing
Hessians. We also present the method of conjugate gradients and prove its correctness. We
briefly discuss the method of gradient projection and the penalty method in the case of
constrained optima.

13.1 Optimization Problems; Basic Terminology

The main goal of optimization theory is to construct algorithms to find solutions (often
approximate) of problems of the form

find u

such that u ∈ U and J(u) = inf
v∈U

J(v),

where U is a given subset of a (real) vector space V (possibly infinite dimensional) and
J : Ω→ R is a function defined on some open subset Ω of V such that U ⊆ Ω.

325
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To be very clear, infv∈U J(v) denotes the greatest lower bound of the set of real numbers
{J(u) | u ∈ U}. To make sure that we are on firm grounds, let us review the notions of
greatest lower bound and least upper bound of a set of real numbers.

Let X be any nonempty subset of R. The set LB(X) of lower bounds of X is defined as

LB(X) = {b ∈ R | b ≤ x for all x ∈ X}.

If the set X is not bounded below, which means that for every r ∈ R there is some x ∈ X
such that x < r, then LB(X) is empty. Otherwise, if LB(X) is nonempty, since it is bounded
above by every element of X, by a fundamental property of the real numbers, the set LB(X)
has a greatest element denoted inf X. The real number inf X is thus the greatest lower bound
of X. In general, inf X does not belong to X, but if it does, then it is the least element of
X.

If LB(X) = ∅, then X is unbounded below and inf X is undefined. In this case (with an
abuse of notation), we write

inf X = −∞.

By convention, when X = ∅ we set
inf ∅ = +∞.

For example, if X = {x ∈ R | x ≤ 0}, then LB(X) = ∅. On the other hand, if
X = {1/n | n ∈ N−{0}}, then LB(X) = {x ∈ R | x ≤ 0} and inf X = 0, which is not in X.

Similarly, the set UB(X) of upper bounds of X is given by

UB(X) = {u ∈ R | x ≤ u for all x ∈ X}.

If X is not bounded above, then UB(X) = ∅. Otherwise, if UB(X) 6= ∅, then it has least
element denoted supX. Thus supX is the least upper bound of X. If supX ∈ X, then it is
the greatest element of X. If UB(X) = ∅, then

supX = +∞.

By convention, when X = ∅ we set

sup ∅ = −∞.

For example, if X = {x ∈ R | x ≥ 0}, then UB(X) = ∅. On the other hand, if
X = {1− 1/n | n ∈ N− {0}}, then UB(X) = {x ∈ R | x ≥ 1} and supX = 1, which is not
in X.

The element infv∈U J(v) is just inf{J(v) | v ∈ U}. The notation J∗ is often used to
denote infv∈U J(v). If the function J is not bounded below, which means that for every
r ∈ R, there is some u ∈ U such that J(u) < r, then

inf
v∈U

J(v) = −∞,
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and we say that our minimization problem has no solution, or that it is unbounded (below).
For example, if V = Ω = R, U = {x ∈ R | x ≤ 0}, and J(x) = x, then the function J(x) is
not bounded below and infv∈U J(v) = −∞.

The issue is that J∗ may not belong to {J(u) | u ∈ U}, that is, it may not be achieved
by some element u ∈ U , and solving the above problem consists in finding some u ∈ U that
achieves the value J∗ in the sense that J(u) = J∗. If no such u ∈ U exists, again we say that
our minimization problem has no solution.

The minimization problem

find u

such that u ∈ U and J(u) = inf
v∈U

J(v)

is often presented in the following more informal way:

minimize J(v)
subject to v ∈ U. (Problem M)

A vector u ∈ U such that J(u) = infv∈U J(v) is often called a minimizer of J over U .
Some authors denote the set of minimizers of J over U by arg minv∈U J(v) and write

u ∈ arg min
v∈U

J(v)

to express that u is such a minimizer. When such a minimizer is unique, by abuse of notation,
this unique minimizer u is denoted by

u = arg min
v∈U

J(v).

We prefer not to use this notation, although it seems to have invaded the literature.

If we need to maximize rather than minimize a function, then we try to find some u ∈ U
such that

J(u) = sup
v∈U

J(v).

Here supv∈U J(v) is the least upper bound of the set {J(u) | u ∈ U}. Some authors denote
the set of maximizers of J over U by arg maxv∈U J(v).

Remark: Some authors define an extended real-valued function as a function f : Ω → R
which is allowed to take the value −∞ or even +∞ for some of its arguments. Although
this may be convenient to deal with situations where we need to consider infv∈U J(v) or
supv∈U J(v), such “functions” are really partial functions and we prefer not to use the notion
of extended real-valued function.
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In most cases, U is defined as the set of solutions of a finite sets of constraints , either
equality constraints ϕi(v) = 0, or inequality constraints ϕi(v) ≤ 0, where the ϕi : Ω → R
are some given functions. The function J is often called the functional of the optimization
problem. This is a slightly odd terminology, but it is justified if V is a function space.

The following questions arise naturally:

(1) Results concerning the existence and uniqueness of a solution for Problem (M). In the
next section we state sufficient conditions either on the domain U or on the function
J that ensure the existence of a solution.

(2) The characterization of the possible solutions of Problem M. These are conditions for
any element u ∈ U to be a solution of the problem. Such conditions usually involve
the derivative dJu of J , and possibly the derivatives of the functions ϕi defining U .
Some of these conditions become sufficient when the functions ϕi are convex,

(3) The effective construction of algorithms , typically iterative algorithms that construct
a sequence (uk)k≥1 of elements of U whose limit is a solution u ∈ U of our problem.
It is then necessary to understand when and how quickly such sequences converge.
Gradient descent methods fall under this category. As a general rule, unconstrained
problems (for which U = Ω = V ) are (much) easier to deal with than constrained
problems (where U 6= V ).

The material of this chapter is heavily inspired by Ciarlet [25]. In this chapter it is
assumed that V is a real vector space with an inner product 〈−,−〉. If V is infinite dimen-
sional, then we assume that it is a real Hilbert space (it is complete). As usual, we write
‖u‖ = 〈u, u〉1/2 for the norm associated with the inner product 〈−,−〉. The reader may
want to review Section 12.1, especially the projection lemma and the Riesz representation
theorem.

As a matter of terminology, if U is defined by inequality and equality constraints as

U = {v ∈ Ω | ϕi(v) ≤ 0, i = 1, . . . ,m, ψj(v) = 0, j = 1, . . . , p},

if J and all the functions ϕi and ψj are affine, the problem is said to be linear (or a linear
program), and otherwise nonlinear . If J is of the form

J(v) = 〈Av, v〉 − 〈b, v〉

where A is a nonzero symmetric positive semidefinite matrix and the constraints are affine,
the problem is called a quadratic programming problem. If the inner product 〈−,−〉 is the
standard Euclidean inner product, J is also expressed as

J(v) = v>Av − b>v.



13.2. EXISTENCE OF SOLUTIONS OF AN OPTIMIZATION PROBLEM 329

13.2 Existence of Solutions of an Optimization

Problem

We begin with the case where U is a closed but possibly unbounded subset of Rn. In this
case the following type of functions arise.

Definition 13.1. A real-valued function J : V → R defined on a normed vector space V is
coercive iff for any sequence (vk)k≥1 of vectors vk ∈ V , if limk 7→∞ ‖vk‖ =∞, then

lim
k 7→∞

J(vk) = +∞.

For example, the function f(x) = x2 +2x is coercive, but an affine function f(x) = ax+b
is not.

Proposition 13.1. Let U be a nonempty, closed subset of Rn, and let J : Rn → R be a
continuous function which is coercive if U is unbounded. Then there is a least one element
u ∈ Rn such that

u ∈ U and J(u) = inf
v∈U

J(v).

Proof. Since U 6= ∅, pick any u0 ∈ U . Since J is coercive, there is some r > 0 such that for
all v ∈ Rn, if ‖v‖ > r then J(u0) < J(v). It follows that J is minimized over the set

U0 = U ∩ {v ∈ Rn | ‖v‖ ≤ r}.

Since U is closed and since the closed ball {v ∈ Rn | ‖v‖ ≤ r} is compact, U0 is compact, but
we know that any continuous function on a compact set has a minimum which is achieved.

The key point in the above proof is the fact that U0 is compact. In order to generalize
Proposition 13.1 to the case of an infinite dimensional vector space, we need some additional
assumptions, and it turns out that the convexity of U and of the function J is sufficient. The
key is that convex, closed and bounded subsets of a Hilbert space are “weakly compact.”

Definition 13.2. Let V be a Hilbert space. A sequence (uk)k≥1 of vectors uk ∈ V converges
weakly if there is some u ∈ V such that

lim
k 7→∞
〈v, uk〉 = 〈v, u〉 for every v ∈ V .

Recall that a Hibert space is separable if it has a countable Hilbert basis (see Definition
A.4). Also, in a Euclidean space (of finite dimension) V , the inner product induces an
isomorphism between V and its dual V ∗. In our case, we need the isomorphism ] from V ∗

to V defined such that for every linear form ω ∈ V ∗, the vector ω] ∈ V is uniquely defined
by the equation

ω(v) = 〈v, ω]〉 for all v ∈ V .
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In a Hilbert space, the dual space V ′ is the set of all continuous linear forms ω : V → R,
and the existence of the isomorphism ] between V ′ and V is given by the Riesz representation
theorem; see Proposition 12.9. This theorem allows a generalization of the notion of gradient.
Indeed, if f : V → R is a function defined on the Hilbert space V and if f is differentiable at
some point u ∈ V , then by definition, the derivative dfu : V → R is a continuous linear form,
so by the Riesz representation theorem (Proposition 12.9) there is a unique vector, denoted
∇fu ∈ V , such that

dfu(v) = 〈v,∇fu〉 for all v ∈ V .

Definition 13.3. The unique vector ∇fu such that

dfu(v) = 〈v,∇fu〉 for all v ∈ V

is called the gradient of f at u.

Similarly, since the second derivative D2fu : V → V ′ of f induces a continuous symmetric
billinear form from V ×V to R, by Proposition 12.10, there is a unique continuous self-adjoint
linear map ∇2fu : V → V such that

D2fu(v, w) = 〈∇2fu(v), w〉 for all v, w ∈ V .

The map ∇2fu is a generalization of the Hessian.

The next theorem is a rather general result about the existence of minima of convex
functions defined on convex domains. The proof is quite involved and can be omitted upon
first reading.

Theorem 13.2. Let U be a nonempty, convex, closed subset of a separable Hilbert space V ,
and let J : V → R be a convex, differentiable function which is coercive if U is unbounded.
Then there is a least one element u ∈ V such that

u ∈ U and J(u) = inf
v∈U

J(v).

Proof. As in the proof of Proposition 13.1, since the function J is coercive, we may assume
that U is bounded and convex (however, if V infinite dimensional, then U is not compact in
general). The proof proceeds in four steps.

Step 1 . Consider a minimizing sequence (uk)k≥0, namely a sequence of elements uk ∈ V
such that

uk ∈ U for all k ≥ 0, lim
k 7→∞

J(uk) = inf
v∈U

J(v).

At this stage, it is possible that infv∈U J(v) = −∞, but we will see that this is actually
impossible. However, since U is bounded, the sequence (uk)k≥0 is bounded. Our goal is to
prove that there is some subsequence of (w`)`≥0 of (uk)k≥0 that converges weakly.
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Since the sequence (uk)k≥0 is bounded there is some constant C > 0 such that ‖uk‖ ≤ C
for all k ≥ 0. Then by the Cauchy–Schwarz inequality, for every v ∈ V we have

|〈v, uk〉| ≤ ‖v‖ ‖uk‖ ≤ C ‖v‖ ,

which shows that the sequence (〈v, uk〉)k≥0 is bounded. Since V is a separable Hilbert space,
there is a countable family (vk)k≥0 of vectors vk ∈ V which is dense in V . Since the sequence
(〈v1, uk〉)k≥0 is bounded (in R), we can find a convergent subsequence (〈v1, ui1(j)〉)j≥0. Sim-
ilarly, since the sequence (〈v2, ui1(j)〉)j≥0 is bounded, we can find a convergent subsequence
(〈v2, ui2(j)〉)j≥0, and in general, since the sequence (〈vk, uik−1(j)〉)j≥0 is bounded, we can find
a convergent subsequence (〈vk, uik(j)〉)j≥0.

We obtain the following infinite array:
〈v1, ui1(1)〉 〈v2, ui2(1)〉 · · · 〈vk, uik(1)〉 · · ·
〈v1, ui1(2)〉 〈v2, ui2(2)〉 · · · 〈vk, uik(2)〉 · · ·

...
...

...
...

...
〈v1, ui1(k)〉 〈v2, ui2(k)〉 · · · 〈vk, uik(k)〉 · · ·

...
...

...
...

...


Consider the “diagonal” sequence (w`)`≥0 defined by

w` = ui`(`), ` ≥ 0.

We are going to prove that for every v ∈ V , the sequence (〈v, w`〉)`≥0 has a limit.

By construction, for every k ≥ 0, the sequence (〈vk, w`〉)`≥0 has a limit, which is the
limit of the sequence (〈vk, uik(j)〉)j≥0, since the sequence (i`(`))`≥0 is a subsequence of every
sequence (i`(j))j≥0 for every ` ≥ 0.

Pick any v ∈ V and any ε > 0. Since (vk)k≥0 is dense in V , there is some vk such that

‖v − vk‖ ≤ ε/(4C).

Then we have

|〈v, w`〉 − 〈v, wm〉| = |〈v, w` − wm〉|
= |〈vk + v − vk, w` − wm〉|
= |〈vk, w` − wm〉+ 〈v − vk, w` − wm〉|
≤ |〈vk, w`〉 − 〈vk, wm〉|+ |〈v − vk, w` − wm〉|.

By Cauchy–Schwarz and since ‖w` − wm‖ ≤ ‖w`‖+ ‖wm‖ ≤ C + C = 2C,

|〈v − vk, w` − wm〉| ≤ ‖v − vk‖ ‖w` − wm‖ ≤ (ε/(4C))2C = ε/2,

so
|〈v, w`〉 − 〈v, wm〉| ≤ |〈vk, w` − wm〉|+ ε/2.
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With the element vk held fixed, by a previous argument the sequence (〈vk, w`〉)`≥0 converges,
so it is a Cauchy sequence. Consequently there is some `0 (depending on ε and vk) such that

|〈vk, w`〉 − 〈vk, wm〉| ≤ ε/2 for all `,m ≥ `0,

so we get
|〈v, w`〉 − 〈v, wm〉| ≤ ε/2 + ε/2 = ε for all `,m ≥ `0.

This proves that the sequence (〈v, w`〉)`≥0 is a Cauchy sequence, and thus it converges.

Define the function g : V → R by

g(v) = lim
7̀→∞
〈v, w`〉, for all v ∈ V .

Since
|〈v, w`〉| ≤ ‖v‖ ‖w`‖ ≤ C ‖v‖ for all ` ≥ 0,

we have
|g(v)| ≤ C ‖v‖ ,

so g is a continuous linear map. By the Riesz representation theorem (Proposition 12.9),
there is a unique u ∈ V such that

g(v) = 〈v, u〉 for all v ∈ V ,

which shows that
lim
` 7→∞
〈v, w`〉 = 〈v, u〉 for all v ∈ V ,

namely the subsequence (w`)`≥0 of the sequence (uk)k≥0 converges weakly to u ∈ V .

Step 2 . We prove that the “weak limit” u of the sequence (w`)`≥0 belongs to U .

Consider the projection pU(u) of u ∈ V onto the closed convex set U . Since w` ∈ U , by
Proposition 12.5(2) and the fact that U is convex and closed, we have

〈pU(u)− u,w` − pU(u)〉 ≥ 0 for all ` ≥ 0.

The weak convergence of the sequence (w`)`≥0 to u implies that

0 ≤ lim
` 7→∞
〈pU(u)− u,w` − pU(u)〉 = 〈pU(u)− u, u− pU(u)〉

= −‖pU(u)− u‖ ≤ 0,

so ‖pU(u)− u‖ = 0, which means that pU(u) = u, and so u ∈ U .

Step 3 . We prove that
J(v) ≤ lim inf

`7→∞
J(z`)

for every sequence (z`)`≥0 converging weakly to some element v ∈ V .
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Since J is assumed to be differentiable and convex, by Proposition 4.11(1) we have

J(v) + 〈∇Jv, z` − v〉 ≤ J(z`) for all ` ≥ 0,

and by definition of weak convergence

lim
7̀→∞
〈∇Jv, z`〉 = 〈∇Jv, v〉,

so lim 7̀→∞〈∇Jv, z` − v〉 = 0, and by definition of lim inf we get

J(v) ≤ lim inf
` 7→∞

J(z`)

for every sequence (z`)`≥0 converging weakly to some element v ∈ V .

Step 4 . The weak limit u ∈ U of the subsequence (w`)`≥0 extracted from the minimizing
sequence (uk)k≥0 satisfies the equation

J(u) = inf
v∈U

J(v).

By Step (1) and Step (2) the subsequence (w`)`≥0 of the sequence (uk)k≥0 converges
weakly to some element u ∈ U , so by Step (3) we have

J(u) ≤ lim inf
`7→∞

J(w`).

On the other hand, by definition of (w`)`≥0 as a subsequence of (uk)k≥0, since the sequence
(J(uk))k≥0 converges to J(v), we have

J(u) ≤ lim inf
7̀→∞

J(w`) = lim
k 7→∞

J(uk) = inf
v∈U

J(v),

which proves that u ∈ U achieves the minimum of J on U .

Remark: Theorem 13.2 still holds if we only assume that J is convex and continuous. It
also holds in a reflexive Banach space, of which Hilbert spaces are a special case; see Brezis
[20], Corollary 3.23.

Theorem 13.2 is a rather general theorem whose proof is quite involved. For functions J
of a certain type, we can obtain existence and uniqueness results that are easier to prove.
This is true in particular for quadratic functionals.
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13.3 Minima of Quadratic Functionals

Definition 13.4. Let V be a real Hilbert space. A function J : V → R is called a quadratic
functional if it is of the form

J(v) =
1

2
a(v, v)− h(v),

where a : V × V → R is a bilinear form which is symmetric and continuous, and h : V → R
is a continuous linear form.

Definition 13.4 is a natural extension of the notion of a quadratic functional on Rn.
Indeed, by Proposition 12.10, there is a unique continuous self-adjoint linear map A : V → V
such that

a(u, v) = 〈Au, v〉 for all u, v ∈ V ,
and by the Riesz representation theorem (Proposition 12.9), there is a unique b ∈ V such
that

h(v) = 〈b, v〉 for all v ∈ V .
Consequently, J can be written as

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 for all v ∈ V . (1)

Since a is bilinear and h is linear, by Propositions 3.3 and 3.5, observe that the derivative
of J is given by

dJu(v) = a(u, v)− h(v) for all v ∈ V ,
or equivalently by

dJu(v) = 〈Au, v〉 − 〈b, v〉 = 〈Au− b, v〉, for all v ∈ V .

Thus the gradient of J is given by

∇Ju = Au− b, (2)

just as in the case of a quadratic function of the form J(v) = (1/2)v>Av − b>v, where A
is a symmetric n × n matrix and b ∈ Rn. To find the second derivative D2Ju of J at u we
compute

dJu+v(w)− dJu(w) = a(u+ v, w)− h(w)− (a(u,w)− h(w)) = a(v, w),

so
D2Ju(v, w) = a(v, w) = 〈Av,w〉,

which yields
∇2Ju = A. (3)

We will also make use of the following formula.
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Proposition 13.3. If J is a quadratic functional, then

J(u+ ρv) =
ρ2

2
a(v, v) + ρ(a(u, v)− h(v)) + J(u).

Proof. Since a is symmetric bilinear and h is linear, we have

J(u+ ρv) =
1

2
a(u+ ρv, u+ ρv)− h(u+ ρv)

=
ρ2

2
a(v, v) + ρa(u, v) +

1

2
a(u, u)− h(u)− ρh(v)

=
ρ2

2
a(v, v) + ρ(a(u, v)− h(v)) + J(u).

Since dJu(v) = a(u, v)− h(v) = 〈Au− b, v〉 and ∇Ju = Au− b, we can also write

J(u+ ρv) =
ρ2

2
a(v, v) + ρ〈∇Ju, v〉+ J(u),

as claimed.

We have the following theorem about the existence and uniqueness of minima of quadratic
functionals.

Theorem 13.4. Given any real Hilbert space V , let J : V → R be a quadratic functional of
the form

J(v) =
1

2
a(v, v)− h(v).

Assume that there is some real number α > 0 such that

a(v, v) ≥ α ‖v‖2 for all v ∈ V . (∗α)

If U is any nonempty, closed, convex subset of V , then there is a unique u ∈ U such that

J(u) = inf
v∈U

J(v).

The element u ∈ U satisfies the condition

a(u, v − u) ≥ h(v − u) for all v ∈ U. (∗)

Conversely (with the same assumptions on U as above), if an element u ∈ U satisfies (∗),
then

J(u) = inf
v∈U

J(v).

If U is a subspace of V , then the above inequalities are replaced by the equations

a(u, v) = h(v) for all v ∈ U. (∗∗)
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Proof. The key point is that the bilinear form a is actually an inner product in V . This is
because it is positive definite, since (∗α) implies that

√
α ‖v‖ ≤ (a(v, v))1/2,

and on the other hand the continuity of a implies that

a(v, v) ≤ ‖a‖ ‖v‖2 ,

so we get √
α ‖v‖ ≤ (a(v, v))1/2 ≤

√
‖a‖ ‖v‖ .

The above also shows that the norm v 7→ (a(v, v))1/2 induced by the inner product a is
equivalent to the norm induced by the inner product 〈−,−〉 on V . Thus h is still continu-
ous with respect to the norm v 7→ (a(v, v))1/2. Then by the Riesz representation theorem
(Proposition 12.9), there is some unique c ∈ V such that

h(v) = a(c, v) for all v ∈ V .

Consequently, we can express J(v) as

J(v) =
1

2
a(v, v)− a(c, v) =

1

2
a(v − c, v − c)− 1

2
a(c, c).

But then minimizing J(v) over U is equivalent to minimizing (a(v− c, v− c))1/2 over v ∈ U ,
and by the projection lemma (Proposition 12.5(1)) this is equivalent to finding the projection
pU(c) of c on the closed convex set U with respect to the inner product a. Therefore, there
is a unique u = pU(c) ∈ U such that

J(u) = inf
v∈U

J(v).

Also by Proposition 12.5(2), this unique element u ∈ U is characterized by the condition

a(u− c, v − u) ≥ 0 for all v ∈ U.

Since
a(u− c, v − u) = a(u, v − u)− a(c, v − u) = a(u, v − u)− h(v − u),

the above inequality is equivalent to

a(u, v − u) ≥ h(v − u) for all v ∈ U. (∗)

If U is a subspace of V , then by Proposition 12.5(3) we have the condition

a(u− c, v) = 0 for all v ∈ U,

which is equivalent to
a(u, v) = a(c, v) = h(v) for all v ∈ U, (∗∗)

a claimed.
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Note that the symmetry of the bilinear form a played a crucial role. Also, the inequalities

a(u, v − u) ≥ h(v − u) for all v ∈ U

are sometimes called variational inequalities.

Definition 13.5. A bilinear form a : V × V → R such that there is some real α > 0 such
that

a(v, v) ≥ α ‖v‖2 for all v ∈ V

is said to be coercive.

Theorem 13.4 is the special case of Stampacchia’s theorem and the Lax–Milgram theorem
when U = V , and where a is a symmetric bilinear form. To prove Stampacchia’s theorem in
general, we need to recall the contraction mapping theorem.

Definition 13.6. Let (E, d) be a metric space. A map f : E → E is a contraction (or a
contraction mapping) if there is some real number k such that 0 ≤ k < 1 and

d(f(u), f(v)) ≤ kd(u, v) for all u, v ∈ E.

The number k is often called a Lipschitz constant .

The following theorem is proven in Section 2.10; see Theorem 2.33. A proof can be also
found in Apostol [2], Dixmier [29], or Schwartz [69], among many sources. For the reader’s
convenience we restate this theorem.

Theorem 13.5. (Contraction Mapping Theorem) Let (E, d) be a complete metric space.
Every contraction f : E → E has a unique fixed point (that is, an element u ∈ E such that
f(u) = u).

The contraction mapping theorem is also known as the Banach fixed point theorem.

Theorem 13.6. (Lions–Stampacchia) Given a Hilbert space V , let a : V × V → R be a
continuous bilinear form (not necessarily symmetric), let h ∈ V ′ be a continuous linear
form, and let J be given by

J(v) =
1

2
a(v, v)− h(v), v ∈ V.

If a is coercive, then for every nonempty, closed, convex subset U of V , there is a unique
u ∈ U such that

a(u, v − u) ≥ h(v − u) for all v ∈ U. (∗)

If a is symmetric, then u ∈ U is the unique element of U such that

J(u) = inf
v∈U

J(v).
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Proof. As discussed just after Definition 13.4, by Proposition 12.10, there is a unique con-
tinuous linear map A : V → V such that

a(u, v) = 〈Au, v〉 for all u, v ∈ V ,

with ‖A‖ = ‖a‖ = C, and by the Riesz representation theorem (Proposition 12.9), there is
a unique b ∈ V such that

h(v) = 〈b, v〉 for all v ∈ V .
Consequently, J can be written as

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 for all v ∈ V . (∗1)

Since ‖A‖ = ‖a‖ = C, we have ‖Av‖ ≤ ‖A‖ ‖v‖ = C ‖v‖ for all v ∈ V . Using (∗1), the
inequality (∗) is equivalent to finding u such that

〈Au, v − u〉 ≥ 〈b, v − u〉 for all v ∈ U. (∗2)

Let ρ > 0 be a constant to be determined later. Then (∗2) is equivalent to

〈ρb− ρAu+ u− u, v − u〉 ≤ 0 for all v ∈ U. (∗3)

By the projection lemma (Proposition 12.5 (1) and (2)), (∗3) is equivalent to finding u ∈ U
such that

u = pU(ρb− ρAu+ u). (∗4)

We are led to finding a fixed point of the function F : U → U given by

F (v) = pU(ρb− ρAv + v).

By Proposition 12.6, the projection map pU does not increase distance, so

‖F (v1)− F (v2)‖ ≤ ‖v1 − v2 − ρ(Av1 − Av2)‖ .

Since a is coercive we have
a(v, v) ≥ α ‖v‖2 ,

since a(v, v) = 〈Av, v〉 we have

〈Av, v〉 ≥ α ‖v‖2 for all v ∈ V , (∗5)

and since
‖Av‖ ≤ C ‖v‖ for all v ∈ V , (∗6)

we get

‖F (v1)− F (v2)‖2 ≤ ‖v1 − v2‖2 − 2ρ〈Av1 − Av2, v1 − v2〉+ ρ2 ‖Av1 − Av2‖2

≤
(

1− 2ρα + ρ2C2
)
‖v1 − v2‖2 .
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If we pick ρ > 0 such that ρ < 2α/C2, then

k2 = 1− 2ρα + ρ2C2 < 1,

and then
‖F (v1)− F (v2)‖ ≤ k ‖v1 − v2‖ , (∗7)

with 0 ≤ k < 1, which shows that F is a contraction. By Theorem 13.5, the map F has
a unique fixed point u ∈ U , which concludes the proof of the first statement. If a is also
symmetric, then the second statement is just the first part of Theorem 13.4.

Remark: Many physical problems can be expressed in terms of an unknown function u that
satisfies some inequality

a(u, v − u) ≥ h(v − u) for all v ∈ U,

for some set U of “admissible” functions which is closed and convex. The bilinear form a
and the linear form h are often given in terms of integrals. The above inequality is called a
variational inequality .

In the special case where U = V we obtain the Lax–Milgram theorem.

Theorem 13.7. (Lax–Milgram’s Theorem) Given a Hilbert space V , let a : V × V → R be
a continuous bilinear form (not necessarily symmetric), let h ∈ V ′ be a continuous linear
form, and let J be given by

J(v) =
1

2
a(v, v)− h(v), v ∈ V.

If a is coercive, which means that there is some α > 0 such that

a(v, v) ≥ α ‖v‖2 for all v ∈ V ,

then there is a unique u ∈ V such that

a(u, v) = h(v) for all v ∈ V .

If a is symmetric, then u ∈ V is the unique element of V such that

J(u) = inf
v∈V

J(v).

The Lax–Milgram theorem plays an important role in solving linear elliptic partial dif-
ferential equations; see Brezis [20].

We now consider various methods, known as gradient descents, to find minima of certain
types of functionals.
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13.4 Elliptic Functionals

We begin by defining the notion of an elliptic functional which generalizes the notion of a
quadratic function defined by a symmetric positive definite matrix. Elliptic functionals are
well adapted to the types of iterative methods described in this section and lend themselves
well to an analysis of the convergence of these methods.

Definition 13.7. Given a Hilbert space V , a functional J : V → R is said to be elliptic if it
is continuously differentiable on V , and if there is some constant α > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V .

The following proposition gathers properties of elliptic functionals that will be used later
to analyze the convergence of various gradient descent methods.

Theorem 13.8. Let V be a Hilbert space.

(1) An elliptic functional J : V → R is strictly convex and coercive. Furthermore, it satis-
fies the identity

J(v)− J(u) ≥ 〈∇Ju, v − u〉+
α

2
‖v − u‖2 for all u, v ∈ V .

(2) If U is a nonempty, convex, closed subset of the Hilbert space V and if J is an elliptic
functional, then Problem (P ),

find u

such that u ∈ U and J(u) = inf
v∈U

J(v)

has a unique solution.

(3) Suppose the set U is convex and that the functional J is elliptic. Then an element
u ∈ U is a solution of Problem (P ) if and only if it satisfies the condition

〈∇Ju, v − u〉 ≥ 0 for every v ∈ U

in the general case, or

∇Ju = 0 if U = V .

(4) A functional J which is twice differentiable in V is elliptic if and only if

〈∇2Ju(w), w〉 ≥ α ‖w‖2 for all u,w ∈ V .



13.4. ELLIPTIC FUNCTIONALS 341

Proof. (1) Since J is a C1-function, by Taylor’s formula with integral remainder in the case
m = 0 (Theorem 3.24), we get

J(v)− J(u) =

∫ 1

0

dJu+t(v−u)(v − u)dt

=

∫ 1

0

〈∇Ju+t(v−u), v − u〉dt

= 〈∇Ju, v − u〉+

∫ 1

0

〈∇Ju+t(v−u) −∇Ju, v − u〉dt

= 〈∇Ju, v − u〉+

∫ 1

0

〈∇Ju+t(v−u) −∇Ju, t(v − u)〉
t

dt

≥ 〈∇Ju, v − u〉+

∫ 1

0

αt ‖v − u‖2 dt since J is elliptic

= 〈∇Ju, v − u〉+
α

2
‖v − u‖2 .

Using the inequality

J(v)− J(u) ≥ 〈∇Ju, v − u〉+
α

2
‖v − u‖2 for all u, v ∈ V ,

by Proposition 4.11(2), since

J(v) > J(u) + 〈∇Ju, v − u〉 for all u, v ∈ V , v 6= u,

the function J is strictly convex. It is coercive because (using Cauchy–Schwarz)

J(v) ≥ J(0) + 〈∇J0, v〉+
α

2
‖v‖2

≥ J(0)− ‖∇J0‖ ‖v‖+
α

2
‖v‖2 ,

and the term (−‖∇J0‖+ α
2
‖v‖) ‖v‖ goes to +∞ when ‖v‖ tends to +∞.

(2) Since by (1) the functional J is coercive, by Theorem 13.2, Problem (P) has a solution.
Since J is strictly convex, by Theorem 4.13(2), it has a unique minimum.

(3) These are just the conditions of Theorem 4.13(3, 4).

(4) If J is twice differentiable, we showed in Section 3.5 that we have

D2Ju(w,w) = Dw(DJ)(u) = lim
θ 7→0

DJu+θw(w)−DJu(w)

θ
,

and since

D2Ju(w,w) = 〈∇2Ju(w), w〉
DJu+θw(w) = 〈∇Ju+θw, w〉

DJu(w) = 〈∇Ju, w〉,
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and since J is elliptic, for all u,w ∈ V we can write

〈∇2Ju(w), w〉 = lim
θ 7→0

〈∇Ju+θw −∇Ju, w〉
θ

= lim
θ 7→0

〈∇Ju+θw −∇Ju, θw〉
θ2

≥ θ ‖w‖2 .

Conversely, assume that the condition

〈∇2Ju(w), w〉 ≥ α ‖w‖2 for all u,w ∈ V

holds. If we define the function g : V → R by

g(w) = 〈∇Jw, v − u〉 = dJw(v − u) = Dv−uJ(w),

where u and v are fixed vectors in V , then we have

dgu+θ(v−u)(v−u) = Dv−ug(u+θ(v−u)) = Dv−uDv−uJ(u+θ(v−u)) = D2Ju+θ(v−u)(v−u, v−u)

and we can apply the Taylor–MacLaurin formula (Theorem 3.23 with m = 0) to g, and we
get

〈∇Jv −∇Ju, v − u〉 = g(v)− g(u)

= dgu+θ(v−u)(v − u) (0 < θ < 1)

= D2Ju+θ(v−u)(v − u, v − u)

= 〈∇2Ju+θ(v−u)(v − u), v − u〉
≥ α ‖v − u‖2 ,

which shows that J is elliptic.

Corollary 13.9. If J : Rn → R is a quadratic function given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉

(where A is a symmetric n× n matrix and 〈−,−〉 is the standard Eucidean inner product),
then J is elliptic iff A is positive definite.

This a consequence of Theorem 13.8 because

〈∇2Ju(w), w〉 = 〈Aw,w〉 ≥ λ1 ‖w‖2

where λ1 is the smallest eigenvalue of A; see Proposition 16.24 (Rayleigh–Ritz, Vol. I). Note
that by Proposition 16.24 (Rayleigh–Ritz, Vol. I), we also have the folllowing corollary.
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Corollary 13.10. If J : Rn → R is a quadratic function given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉

then
〈∇2Ju(w), w〉 ≤ λn ‖w‖2

where λn is the largest eigenvalue of A;

The above fact will be useful later on.

Similarly, given a quadratic functional J defined on a Hilbert space V , where

J(v) =
1

2
a(v, v)− h(v),

by Theorem 13.8 (4), the functional J is elliptic iff there is some α > 0 such that

〈∇2Ju(v), v〉 = a(v, v) ≥ α ‖v‖2 for all v ∈ V .

This is precisely the hypothesis (∗α) used in Theorem 13.4.

13.5 Iterative Methods for Unconstrained

Problems

We will now describe methods for solving unconstrained minimization problems, that is,
finding the minimum (or minima) of a functions J over the whole space V . These methods
are iterative, which means that given some initial vector u0, we construct a sequence (uk)k≥0

that converges to a minimum u of the function J .

The key step is define uk+1 from uk, and a first idea is to reduce the problem to a simpler
problem, namely the minimization of a function of a single (real) variable. For this, we need
two perform two steps:

(1) Find a descent direction at uk, which is a some nonzero vector dk which is usually
determined from the gradient of J at various points. The descent direction dk must
satisfy the inequality 〈∇Juk , dk〉 < 0.

(2) Exact line search: Find the minimum of the restriction of the function J along the
line through uk and parallel to the direction dk. This means finding a real ρk ∈ R
(depending on uk and dk) such that

J(uk + ρkdk) = inf
ρ∈R

J(uk + ρdk).

Typically, ρk > 0. This problem only succeeds if ρk is unique, in which case we set

uk+1 = uk + ρkdk.

This step is often called a line search or line minimization, and ρk is called the stepsize
parameter. See Figure 13.1.
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uk

k
d

J (uk)

k+1d

uk+1

J (uk+1)

J (uk+1)

J (uk+
dkρ )

J (u )k+2

Figure 13.1: Let J : R2 → R be the function whose graph is represented by the pink surface.
Given a point uk in the xy-plane, and a direction dk, we calculate first uk+1 and then uk+2.

Proposition 13.11. If J is a quadratic elliptic functional of the form

J(v) =
1

2
a(v, v)− h(v),

then given dk, there is a unique ρk solving the line search in Step (2).

Proof. This is because, by Proposition 13.3, we have

J(uk + ρdk) =
ρ2

2
a(dk, dk) + ρ〈∇Juk , dk〉+ J(uk),

and since a(dk, dk) > 0 (because J is elliptic), the above function of ρ has a unique minimum
when its derivative is zero, namely

ρ a(dk, dk) + 〈∇Juk , dk〉 = 0.

Since Step (2) is often too costly, an alternative is

(3) Backtracking line search: Pick two constants α and β such that 0 < α < 1/2 and
0 < β < 1, and set t = 1. Given a descent direction dk at uk ∈ dom(J),

while J(uk + tdk) > J(uk) + αt〈∇Juk , dk〉 do t := βt;
ρk = t; uk+1 = uk + ρkdk.
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Since dk is a descent direction, we must have 〈∇Juk , dk〉 < 0, so for t small enough
the condition J(uk + tdk) ≤ J(uk) + αt〈∇Juk , dk〉 will hold and the search will stop.
It can be shown that the exit inequality J(uk + tdk) ≤ J(uk) + αt〈∇Juk , dk〉 holds
for all t ∈ (0, t0], for some t0 > 0. Thus the backtracking line search stops with a
step length ρk that satisfies ρk = 1 or ρk ∈ (βt0, t0]. Care has to be exercised so that
uk + ρkdk ∈ dom(J). For more details, see Boyd and Vandenberghe [18] (Section 9.2).

We now consider one of the simplest methods for choosing the directions of descent in
the case where V = Rn, which is to pick the directions of the coordinate axes in a cyclic
fashion. Such a method is called the method of relaxation.

If we write
uk = (uk1, u

k
2, . . . , u

k
n),

then the components uk+1
i of uk+1 are computed in terms of uk by solving from top down

the following system of equations:

J(uk+1
1 , uk2, u

k
3, . . . , u

k
n) = inf

λ∈R
J(λ, uk2, u

k
3, . . . , u

k
n)

J(uk+1
1 ,uk+1

2 , uk3, . . . , u
k
n) = inf

λ∈R
J(uk+1

1 , λ, uk3, . . . , u
k
n)

...

J(uk+1
1 , . . . , uk+1

n−1,u
k+1
n ) = inf

λ∈R
J(uk+1

1 , . . . , uk+1
n−1, λ).

Another and more informative way to write the above system is to define the vectors uk;i

by

uk;0 = (uk1, u
k
2, . . . , u

k
n)

uk;1 = (uk+1
1 , uk2, . . . , u

k
n)

...

uk;i = (uk+1
1 , . . . , uk+1

i , uki+1, . . . , u
k
n)

...

uk;n = (uk+1
1 , uk+1

2 , . . . , uk+1
n ).

Note that uk;0 = uk and uk;n = uk+1. Then our minimization problem can be written as

J(uk;1) = inf
λ∈R

J(uk;0 + λe1)

...

J(uk;i) = inf
λ∈R

J(uk;i−1 + λei)

...

J(uk;n) = inf
λ∈R

J(uk;n−1 + λen),
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where ei denotes the ith canonical basis vector in Rn. If J is differentiable, necessary condi-
tions for a minimum, which are also sufficient if J is convex, is that the directional derivatives
dJv(ei) be all zero, that is,

〈∇Jv, ei〉 = 0 i = 0, . . . , n.

The following result regarding the convergence of the mehod of relaxation is proven in
Ciarlet [25] (Chapter 8, Theorem 8.4.2).

Proposition 13.12. If the functional J : Rn → R is elliptic, then the relaxation method
converges.

Remarks: The proof of Proposition 13.12 uses Theorem 13.8. The finite dimensionality of
Rn also plays a crucial role. The differentiability of the function J is also crucial. Examples
where the method loops forever if J is not differentiable can be given; see Ciarlet [25]
(Chapter 8, Section 8.4). The proof of Proposition 13.12 yields an a priori bound on the
error ‖u− uk‖. If J is a quadratic functional

J(v) =
1

2
v>Av − b>v,

where A is a symmetric positive definite matrix, then ∇Jv = Av − b, so the above method
for solving for uk+1 in terms of uk becomes the Gauss–Seidel method for solving a linear
system; see Section 9.3 (Vol. I).

We now discuss gradient methods.

13.6 Gradient Descent Methods for Unconstrained

Problems

The intuition behind these methods is that the convergence of an iterative method ought
to be better if the difference J(uk) − J(uk+1) is as large as possible during every iteration
step. To achieve this, it is natural to pick the descent direction to be the one in the opposite
direction of the gradient vector ∇Juk . This choice is justified by the fact that we can write

J(uk + w) = J(uk) + 〈∇Juk , w〉+ ε(w) ‖w‖ , with limw 7→0 ε(w) = 0.

If ∇Juk 6= 0, the first-order part of the variation of the function J is bounded in absolute
value by ‖∇Juk‖ ‖w‖ (by the Cauchy–Schwarz inequality), with equality if ∇Juk and w are
collinear.

Gradient descent methods pick the direction of descent to be dk = −∇Juk , so that we
have

uk+1 = uk − ρk∇Juk ,
where we put a negative sign in front of of the variable ρk as a reminder that the descent
direction is opposite to that of the gradient; a positive value is expected for the scalar ρk.

There are four standard methods to pick ρk:



13.6. GRADIENT DESCENT METHODS FOR UNCONSTRAINED PROBLEMS 347

(1) Gradient method with fixed stepsize parameter . This is the simplest and cheapest
method which consists of using the same constant ρk = ρ for all iterations.

(2) Gradient method with variable stepsize parameter . In this method, the parameter ρk
is adjusted in the course of iterations according to various criteria.

(3) Gradient method with optimal stepsize parameter , also called steepest descent method
for the Euclidean norm. This is a version of Method 2 in which ρk is determined by
the following line search:

J(uk − ρk∇Juk) = inf
ρ∈R

J(uk − ρ∇Juk).

This optimization problem only succeeds if the above minimization problem has a
unique solution.

(4) Gradient descent method with backtracking line search. In this method, the step pa-
rameter is obtained by performing a backtracking line search.

We have the following useful result about the convergence of the gradient method with
optimal parameter.

Proposition 13.13. Let J : Rn → R be an elliptic functional. Then the gradient method
with optimal stepsize parameter converges.

Proof. Since J is elliptic, by Theorem 13.8(3), the functional J has a unique minimum u
characterized by ∇Ju = 0. Our goal is to prove that the sequence (uk)k≥0 constructed using
the gradient method with optimal parameter converges to u, starting from any initial vector
u0. Without loss of generality we may assume that uk+1 6= uk and ∇Juk 6= 0 for all k, since
otherwise the method converges in a finite number of steps.

Step 1 . Show that any two consecutive descent directions are orthogonal and

J(uk)− J(uk+1) ≥ α

2
‖uk − uk+1‖2 .

Let ϕk : R→ R be the function given by

ϕk(ρ) = J(uk − ρ∇Juk).

Since the function ϕk is strictly convex and coercive, by Theorem 13.8(2), it has a unique
minimum ρk which is the unique solution of the equation ϕ′k(ρ) = 0. By the chain rule

ϕ′k(ρ) = dJuk−ρ∇Juk (−∇Juk)
= −〈∇Juk−ρ∇Juk ,∇Juk〉,
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and since uk+1 = uk − ρk∇Juk we get

〈∇Juk+1
,∇Juk〉 = 0,

which shows that two consecutive descent directions are orthogonal.

Since uk+1 = uk − ρk∇Juk and we assumed that that uk+1 6= uk, we have ρk 6= 0, and we
also get

〈∇Juk+1
, uk+1 − uk〉 = 0.

By the inequality of Theorem 13.8(1) we have

J(uk)− J(uk+1) ≥ α

2
‖uk − uk+1‖2 .

Step 2 . Show that limk 7→∞ ‖uk − uk+1‖ = 0.

It follows from the inequality proven in Step 1 that the sequence (J(uk))k≥0 is decreasing
and bounded below (by J(u), where u is the minimum of J), so it converges and we conclude
that

lim
k 7→∞

(J(uk)− J(uk+1)) = 0,

which combined with the preceding inequality shows that

lim
k 7→∞
‖uk − uk+1‖ = 0.

Step 3 . Show that ‖∇Juk‖ ≤
∥∥∇Juk −∇Juk+1

∥∥.

Using the orthogonality of consecutive descent directions, by Cauchy–Schwarz we have

‖∇Juk‖
2 = 〈∇Juk ,∇Juk −∇Juk+1

〉
≤ ‖∇Juk‖

∥∥∇Juk −∇Juk+1

∥∥ ,
so that

‖∇Juk‖ ≤
∥∥∇Juk −∇Juk+1

∥∥ .
Step 4 . Show that limk 7→∞ ‖∇Juk‖ = 0.

Since the sequence (J(uk))k≥0 is decreasing and the functional J is coercive, the sequence
(uk)k≥0 must be bounded. By hypothesis, the derivative dJ is of J is continuous, so it is
uniformly continuous over compact subsets of Rn; here we are using the fact that Rn is
finite dimensional. Hence, we deduce that for every ε > 0, there is some δ > 0 such that if
‖uk − uk+1‖ < δ then ∥∥dJuk − dJuk+1

∥∥
2
< ε.
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But by definition of the operator norm and using the Cauchy–Schwarz inequality∥∥dJuk − dJuk+1

∥∥
2

= sup
‖w‖=1

|dJuk(w)− dJuk+1
(w)|

= sup
‖w‖=1

|〈∇Juk −∇Juk+1
, w〉|

≤
∥∥∇Juk −∇Juk+1

∥∥ .
But we also have∥∥∇Juk −∇Juk+1

∥∥2
= 〈∇Juk −∇Juk+1

,∇Juk −∇Juk+1
〉

= dJuk(∇Juk −∇Juk+1
)− dJuk+1

(∇Juk −∇Juk+1
)

≤
∥∥dJuk − dJuk+1

∥∥2

2
,

and so ∥∥dJuk − dJuk+1

∥∥
2

=
∥∥∇Juk −∇Juk+1

∥∥ .
It follows that since

lim
k 7→∞
‖uk − uk+1‖ = 0

then

lim
k 7→∞

∥∥∇Juk −∇Juk+1

∥∥ = lim
k 7→∞

∥∥dJuk − dJuk+1

∥∥
2

= 0,

and using the fact that

‖∇Juk‖ ≤
∥∥∇Juk −∇Juk+1

∥∥ ,
we obtain

lim
k 7→∞
‖∇Juk‖ = 0.

Step 5 . Finally we can prove the convergence of the sequence (uk)k≥0.

Since J is elliptic and since ∇Ju = 0 (since u is the minimum of J over Rn), we have

α ‖uk − u‖2 ≤ 〈∇Juk −∇Ju, uk − u〉
= 〈∇Juk , uk − u〉
≤ ‖∇Juk‖ ‖uk − u‖ .

Hence, we obtain

‖uk − u‖ ≤
1

α
‖∇Juk‖ , (b)

and since we showed that

lim
k 7→∞
‖∇Juk‖ = 0,

we see that the sequence (uk)k≥0 converges to the mininum u.
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Remarks: As with the previous proposition, the assumption of finite dimensionality is
crucial. The proof provides an a priori bound on the error ‖uk − u‖.

If J is a an elliptic quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

we can use the orthogonality of the descent directions ∇Juk and ∇Juk+1
to compute ρk.

Indeed, we have ∇Jv = Av − b, so

0 = 〈∇Juk+1
,∇Juk〉 = 〈A(uk − ρk(Auk − b))− b, Auk − b〉,

which yields

ρk =
‖wk‖2

〈Awk, wk〉
, with wk = Auk − b = ∇Juk .

Consequently, a step of the iteration method takes the following form:

(1) Compute the vector

wk = Auk − b.

(2) Compute the scalar

ρk =
‖wk‖2

〈Awk, wk〉
.

(3) Compute the next vector uk+1 by

uk+1 = uk − ρkwk.

This method is of particular interest when the computation of Aw for a given vector w is
cheap, which is the case if A is sparse.

Example 13.1. For a particular illustration of this method, we turn to the example provided

by Shewchuk, with A =

(
3 2
2 6

)
and b =

(
2
−8

)
, namely

J(x, y) =
1

2

(
x y

)(3 2
2 6

)(
x
y

)
−
(
2 −8

)(x
y

)
=

3

2
x2 + 2xy + 3y2 − 2x+ 8y.

This quadratic ellipsoid, which is illustrated in Figure 13.2, has a unique minimum at
(2,−2). In order to find this minimum via the gradient descent with optimal step size
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Figure 13.2: The ellipsoid J(x, y) = 3
2
x2 + 2xy + 3y2 − 2x+ 8y.

x
K4 K2 0 2 4

y

K4

K2

2

4

Figure 13.3: The level curves of J(x, y) = 3
2
x2 + 2xy + 3y2 − 2x + 8y and the associated

gradient vector field ∇J(x, y) = (3x+ 2y − 2, 2x+ 6y + 8).

parameter, we pick a starting point, say uk = (−2,−2), and calculate the search direction
wk = ∇J(−2,−2) = (−12,−8). Note that

∇J(x, y) = (3x+ 2y − 2, 2x+ 6y + 8) =

(
3 2
2 6

)(
x
y

)
−
(

2
−8

)

is perpendicular to the appropriate elliptical level curve; see Figure 13.3. We next perform
the line search along the line given by the equation −8x+ 12y = −8 and determine ρk. See
Figures 13.4 and 13.5.
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x
K4 K2 0 2 4

y

K4

K2

2

4

Figure 13.4: The level curves of J(x, y) = 3
2
x2 + 2xy+ 3y2− 2x+ 8y and the red search line

with direction ∇J(−2,−2) = (−12,−8)

x
K4 K2 0 2 4

y

K4

K2

2

4

(-2,-2)

(2/25, -46/75)

Figure 13.5: Let uk = (−2,−2). When traversing along the red search line, we look for
the green perpendicular gradient vector. This gradient vector, which occurs at uk+1 =
(2/25,−46/75), provides a minimal ρk, since it has no nonzero projection on the search line.

In particular, we find that

ρk =
‖wk‖2

〈Awk, wk〉
=

13

75
.

This in turn gives us the new point

uk+1 = uk −
13

75
wk = (−2,−2)− 13

75
(−12,−8) =

(
2

25
,−46

75

)
,
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and we continue the procedure by searching along the gradient direction∇J(2/25,−46/75) =
(−224/75, 112/25). Observe that uk+1 = ( 2

25
,−46

75
) has a gradient vector which is perpen-

dicular to the search line with direction vector wk = ∇J(−2,−2) = (−12 − 8); see Figure
13.5. Geometrically this procedure corresponds to intersecting the plane −8x + 12y =
−8 with the ellipsoid J(x, y) = 3

2
x2 + 2xy + 3y2 − 2x + 8y to form the parabolic curve

f(x) = 25/6x2− 2/3x− 4, and then locating the x-coordinate of its apex which occurs when
f ′(x) = 0, i.e when x = 2/25; see Figure 13.6. After 31 iterations, this procedure stabi-

Figure 13.6: Two views of the intersection between the plane −8x + 12y = −8 and the
ellipsoid J(x, y) = 3

2
x2 + 2xy + 3y2 − 2x + 8y. The point uk+1 is the minimum of the

parabolic intersection.

lizes to point (2,−2), which as we know, is the unique minimum of the quadratic ellipsoid
J(x, y) = 3

2
x2 + 2xy + 3y2 − 2x+ 8y.

A proof of the convergence of the gradient method with backtracking line search, under
the hypothesis that J is strictly convex, is given in Boyd and Vandenberghe[18] (Section
9.3.1). More details on this method and the steepest descent method for the Euclidean norm
can also be found in Boyd and Vandenberghe [18] (Section 9.3).
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13.7 Convergence of Gradient Descent with Variable

Stepsize

We now give a sufficient condition for the gradient method with variable stepsize parameter
to converge. In addition to requiring J to be an elliptic functional, we add a Lipschitz
condition on the gradient of J . This time the space V can be infinite dimensional.

Proposition 13.14. Let J : V → R be a continuously differentiable functional defined on a
Hilbert space V . Suppose there exists two constants α > 0 and M > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V ,

and the Lipschitz condition

‖∇Jv −∇Ju‖ ≤M ‖v − u‖ for all u, v ∈ V .

If there exists two real numbers a, b ∈ R such that

0 < a ≤ ρk ≤ b ≤ 2α

M2
for all k ≥ 0,

then the gradient method with variable stepsize parameter converges. Furthermore, there is
some constant β > 0 (depending on α,M, a, b) such that

β < 1 and ‖uk − u‖ ≤ βk ‖u0 − u‖ ,

where u ∈ V is the unique minimum of J .

Proof. By hypothesis the functional J is elliptic, so by Theorem 13.8(2) it has a unique
minimum u characterized by the fact that ∇Ju = 0. Then since uk+1 = uk−ρk∇Juk , we can
write

uk+1 − u = (uk − u)− ρk(∇Juk −∇Ju). (∗)

Using the inequalities
〈∇Juk −∇Ju, uk − u〉 ≥ α ‖uk − u‖2

and
‖∇Juk −∇Ju‖ ≤M ‖uk − u‖ ,

and assuming that ρk > 0, it follows that

‖uk+1 − u‖2 = ‖uk − u‖2 − 2ρk〈∇Juk −∇Ju, uk − u〉+ ρ2
k ‖∇Juk −∇Ju‖

2

≤
(

1− 2αρk +M2ρ2
k

)
‖uk − u‖2 .

Consider the function
T (ρ) = M2ρ2 − 2αρ+ 1.
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Its graph is a parabola intersecting the y-axis at y = 1 for ρ = 0, it has a minimum for
ρ = α/M2, and it also has the value y = 1 for ρ = 2α/M2; see Figure 13.7. Therefore if we
pick a, b and ρk such that

0 < a ≤ ρk ≤ b <
2α

M2
,

we ensure that for ρ ∈ [a, b] we have

T (ρ)1/2 = (M2ρ2 − 2αρ+ 1)1/2 ≤ (max{T (a), T (b)})1/2 = β < 1.

Then by induction we get
‖uk+1 − u‖ ≤ βk+1 ‖u0 − u‖ ,

which proves convergence.

(0,1)

a b
α

M
2

α

M
2

α

M
2( 1 -, )

α
M

2
2

y = 1

Figure 13.7: The parabola T (ρ) used in the proof of Proposition 13.14.

Remarks: In the proof of Proposition 13.14, it is the fact that V is complete which plays
a crucial role. If J is twice differentiable, the hypothesis

‖∇Jv −∇Ju‖ ≤M ‖v − u‖ for all u, v ∈ V

can be expressed as
sup
v∈V

∥∥∇2Jv
∥∥ ≤M.

In the case of a quadratic elliptic functional defined over Rn,

J(v) = 〈Av, v〉 − 〈b, v〉,

the upper bound 2α/M2 can be improved. In this case we have

∇Jv = Av − b,
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and we know that α = λ1 and M = λn do the job, where λ1 is the smallest eigenvalue of A
and λn is the largest eigenvalue of A. Hence we can pick a, b such that

0 < a ≤ ρk ≤ b <
2λ1

λ2
n

.

Since uk+1 = uk − ρk∇Juk and ∇Juk = Auk − b, we have

uk+1 − u = (uk − u)− ρk(Auk − Au) = (I − ρkA)(uk − u),

so we get
‖uk+1 − u‖ ≤ ‖I − ρkA‖2 ‖uk − u‖ .

However, since I − ρkA is a symmetric matrix, ‖I − ρkA‖2 is the largest absolute value of
its eigenvalues, so

‖I − ρkA‖2 ≤ max{|1− ρkλ1|, |1− ρkλn|}.

The function
µ(ρ) = max{|1− ρλ1|, |1− ρλn|}

is a piecewise affine function, and it is easy to see that if we pick a, b such that

0 < a ≤ ρk ≤ b <
2

λn
,

then
max
ρ∈[a,b]

µ(ρ) ≤ max{µ(a), µ(b)} < 1.

Therefore, the upper bound 2λ1/λ
2
n can be replaced by 2/λn, which is typically much larger.

A “good” pick for ρk is 2/(λ1 + λn) (as opposed to λ1/λ
2
n for the first version). In this case

|1− ρkλ1| = |1− ρkλn| =
λn − λ1

λn + λ1

,

so we get

β =
λn − λ1

λn + λ1

=
λn
λ1
− 1

λn
λ1

+ 1
=

cond2(A)− 1

cond2(A) + 1
,

where cond2(A) = λn/λ1 is the condition number of the matrix A with respect to the spectral
norm. Thus we see that the larger the condition number of A is, the slower the convergence
of the method will be. This is not surprising since we already know that linear systems
involving ill-conditioned matrices (matrices with a large condition number) are problematic
and prone to numerical instability. One way to deal with this problem is to use a method
known as preconditioning.

We only described the most basic gradient descent methods. There are numerous variants,
and we only mention a few of these methods.
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The method of scaling consists in using −ρkDk∇Juk as descent direction, where Dk is
some suitably chosen symmetric positive definite matrix.

In the gradient method with extrapolation, uk+1 is determined by

uk+1 = uk − ρk∇Juk + βk(uk − uk−1).

Another rule for choosing the stepsize is Armijo’s rule.

These methods, and others, are discussed in detail in Berstekas [10].

Boyd and Vandenberghe discuss steepest descent methods for various types of norms
besides the Euclidean norm; see Boyd and Vandenberghe [18] (Section 9.4). Here is brief
summary.

13.8 Steepest Descent for an Arbitrary Norm

The idea is to make 〈∇Juk , dk〉 as negative as possible. To make the question sensible, we
have to limit the size of dk or normalize by the length of dk.

Let ‖ ‖ be any norm on Rn. Recall from Section 13.7 in Volume I that the dual norm is
defined by

‖y‖D = sup
x∈Rn
‖x‖=1

|〈x, y〉|.

Definition 13.8. A normalized steepest descent direction (with respect to the norm ‖ ‖) is
any unit vector dnsd,k which achieves the minimum of the set of reals

{〈∇Juk , d〉 | ‖d‖ = 1}.

By definition, ‖dnsd,k‖ = 1.

A unnormalized steepest descent direction dsd,k is defined as

dsd,k = ‖∇Juk‖
D dnsd,k.

It can be shown that
〈∇Juk , dsd,k〉 = −(‖∇Juk‖

D)2;

see Boyd and Vandenberghe [18] (Section 9.4).

The steepest descent method (with respect to the norm ‖ ‖) consists of the following steps:
Given a starting point u0 ∈ dom(J) do:

repeat

(1) Compute the steepest descent direction dsd,k.
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(2) Line search. Perform an exact or backtracking line search to find ρk.

(3) Update. uk+1 = uk + ρkdsd,k.

until stopping criterion is satisfied.

If ‖ ‖ is the `2-norm, then we see immediately that dsd,k = −∇Juk , so in this case the
method coincides with the steepest descent method for the Euclidean norm as defined at the
beginning of Section 13.6 in (3) and (4).

If P is a symmetric positive definite matrix, it is easy to see that ‖z‖P = (z>Pz)1/2 =∥∥P 1/2z
∥∥

2
is a norm. Then it can be shown that the normalized steepest descent direction is

dnsd,k = −(∇J>ukP
−1∇Juk)−1/2P−1∇Juk ,

the dual norm is ‖z‖D =
∥∥P−1/2z

∥∥
2
, and the steepest descent direction with respect to ‖ ‖P

is given by
dsd,k = −P−1∇Juk .

A judicious choice for P can speed up the rate of convergence of the gradient descent
method; see see Boyd and Vandenberghe [18] (Section 9.4.1 and Section 9.4.4).

If ‖ ‖ is the `1-norm, then it can be shown that dnsd,k is determined as follows: let i be
any index for which ‖∇Juk‖∞ = |(∇Juk)i|. Then

dnsd,k = −sign

(
∂J

∂xi
(uk)

)
ei,

where ei is the ith canonical basis vector, and

dsd,k = − ∂J
∂xi

(uk)ei.

For more details, see Boyd and Vandenberghe [18] (Section 9.4.2 and Section 9.4.4). It is
also shown in Boyd and Vandenberghe [18] (Section 9.4.3) that the steepest descent method
converges for any norm ‖ ‖ and any strictly convex function J .

One of the main goals in designing a gradient descent method is to ensure that the
convergence factor is as small as possible, which means that the method converges as quickly
as possible. Machine learning has been a catalyst for finding such methods. A method
discussed in Strang [77] (Chapter VI, Section 4) consists in adding a momentum term to the
gradient. In this method, uk+1 and dk+1 are determined by the following system of equations:

uk+1 = uk − ρdk
dk+1 −∇Juk+1

= βdk.

Of course the trick is to choose ρ and β in such a way that the convergence factor
is as small as possible. If J is given by a quadratic functional, say (1/2)u>Au − b>u, then



13.9. NEWTON’S METHOD FOR FINDING A MINIMUM 359

∇Juk+1
= Auk+1−b so we obtain a linear system. It turns out that the rate of convergence of

the method is determined by the largest and the smallest eigenvalues of A. Strang discusses
this issue in the case of a 2× 2 matrix. Convergence is significantly accelerated.

Another method is known as Nesterov acceleration. In this method,

uk+1 = uk + β(uk − uk−1)− ρ∇Juk+γ(uk−uk−1),

where β, ρ, γ are parameters. For details, see Strang [77] (Chapter VI, Section 4).

Lax also discusses other methods in which the step ρk is chosen using roots of Chebyshev
polynomials; see Lax [51], Chapter 17, Sections 2–4.

A variant of Newton’s method described in Section 5.2 can be used to find the minimum
of a function belonging to a certain class of strictly convex functions. This method is the
special case of the case where the norm is induced by a symmetric positive definite matrix
P , namely P = ∇2J(x), the Hessian of J at x.

13.9 Newton’s Method For Finding a Minimum

If J : Ω → R is a convex function defined on some open subset Ω of Rn which is twice
differentiable and if its Hessian ∇2J(x) is symmetric positive definite for all x ∈ Ω, then by
Proposition 4.12(2), the function J is strictly convex. In this case, for any x ∈ Ω, we have
the quadratic norm induced by P = ∇2J(x) as defined in the previous section, given by

‖u‖∇2J(x) = (u>∇2J(x)u)1/2.

The steepest descent direction for this quadratic norm is given by

dnt = −(∇2J(x))−1∇Jx.

The norm of dnt for the the quadratic norm defined by ∇2J(x) is given by

(d>nt∇2J(x) dnt)
1/2 =

(
−(∇Jx)>(∇2J(x))−1∇2J(x)(−(∇2J(x))−1∇Jx)

)1/2

=
(
(∇Jx)>(∇2J(x))−1∇Jx

)1/2
.

Definition 13.9. Given a function J : Ω→ R as above, for any x ∈ Ω, the Newton step dnt

is defined by

dnt = −(∇2J(x))−1∇Jx,

and the Newton decrement λ(x) is defined by

λ(x) =
(
(∇Jx)>(∇2J(x))−1∇Jx

)1/2
.
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Observe that

〈∇Jx, dnt〉 = (∇Jx)>(−(∇2J(x))−1∇Jx) = −λ(x)2.

If ∇Jx 6= 0, we have λ(x) 6= 0, so 〈∇Jx, dnt〉 < 0, and dnt is indeed a descent direction. The
number 〈∇Jx, dnt〉 is the constant that shows up during a backtracking line search.

A nice feature of the Newton step and of the Newton decrement is that they are affine
invariant. This means that if T is an invertible matrix and if we define g by g(y) = J(Ty),
if the Newton step associated with J is denoted by dJ,nt and similarly the Newton step
associated with g is denoted by dg,nt, then it is shown in Boyd and Vandenberghe [18]
(Section 9.5.1) that

dg,nt = T−1dJ,nt,

and so
x+ dJ,nt = T (y + dg,nt).

A similar properties applies to the Newton decrement.

Newton’s method consists of the following steps: Given a starting point u0 ∈ dom(J) and
a tolerance ε > 0 do:

repeat

(1) Compute the Newton step and decrement
dnt,k = −(∇2J(uk))

−1∇Juk and λ(uk)
2 = (∇Juk)>(∇2J(uk))

−1∇Juk .

(2) Stopping criterion. quit if λ(uk)
2/2 ≤ ε.

(3) Line Search. Perform an exact or backtracking line search to find ρk.

(4) Update. uk+1 = uk + ρkdnt,k.

Observe that this is essentially the descent procedure of Section 13.8 using the Newton
step as search direction, except that the stopping criterion is checked just after computing
the search direction, rather than after the update (a very minor difference).

The convergence of Newton’s method is thoroughly analyzed in Boyd and Vandenberghe
[18] (Section 9.5.3). This analysis is made under the following assumptions:

(1) The function J : Ω → R is a convex function defined on some open subset Ω of Rn

which is twice differentiable and its Hessian ∇2J(x) is symmetric positive definite for
all x ∈ Ω. This implies that there are two constants m > 0 and M > 0 such that
mI � ∇2J(x) �MI for all x ∈ Ω, which means that the eigenvalues of ∇2J(x) belong
to [m,M ].

(2) The Hessian is Lipschitzian, which means that there is some L ≥ 0 such that∥∥∇2J(x)−∇2J(y)
∥∥

2
≤ L ‖x, y‖2 for all x, y ∈ Ω.
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It turns out that the iterations of Newton’s method fall into two phases, depending
whether ‖∇Juk‖2 ≥ η or ‖∇Juk‖2 < η, where η is a number which depends on m,L, and the
constant α used in the backtracking line search, and η ≤ m2/L.

(1) The first phase, called the damped Newton phase, occurs while ‖∇Juk‖2 ≥ η. During
this phase, the procedure can choose a step size ρk = t < 1, and there is some constant
γ > 0 such that

J(uk+1)− J(uk) ≤ −γ.

(2) The second phase, called the quadratically convergent phase or pure Newton phase,
occurs while ‖∇Juk‖2 < η. During this phase, the step size ρk = t = 1 is always
chosen, and we have

L

2m2

∥∥∇Juk+1

∥∥
2
≤
(

L

2m2
‖∇Juk‖2

)2

. (∗1)

If we denote the minimal value of f by p∗, then the number of damped Newton steps is
at most

J(u0)− p∗

γ
.

Equation (∗1) and the fact that η ≤ m2/L shows that if ‖∇Juk‖2 < η, then
∥∥∇Juk+1

∥∥
2
<

η. It follows by induction that for all ` ≥ k, we have

L

2m2

∥∥∇Ju`+1

∥∥
2
≤
(

L

2m2
‖∇Ju`‖2

)2

, (∗2)

and thus (since η ≤ m2/L and ‖∇Juk‖2 < η, we have (L/m2) ‖∇Juk‖2 < (L/m2)η ≤ 1), so

L

2m2
‖∇Ju`‖2 ≤

(
L

2m2
‖∇Juk‖2

)2`−k

≤
(

1

2

)2`−k

, ` ≥ k. (∗3)

It is shown in Boyd and Vandenberghe [18] (Section 9.1.2) that the hypothesis mI � ∇2J(x)
implies that

J(x)− p∗ ≤ 1

2m
‖∇Jx‖2

2 x ∈ Ω.

As a consequence, by (∗3), we have

J(u`)− p∗ ≤
1

2m
‖∇Ju`‖

2
2 ≤

2m3

L2

(
1

2

)2`−k+1

. (∗4)

Equation (∗4) shows that the convergence during the quadratically convergence phase is
very fast. If we let

ε0 =
2m3

L2
,
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then Equation (∗4) implies that we must have J(u`)− p∗ ≤ ε after no more than

log2 log2(ε0/ε)

iterations. The term log2 log2(ε0/ε) grows extremely slowly as ε goes to zero, and for practical
purposes it can be considered constant, say five or six (six iterations gives an accuracy of
about ε ≈ 5 · 10−20ε0).

In summary, the number of Newton iterations required to find a minimum of J is ap-
proximately bounded by

J(u0)− p∗

γ
+ 6.

Examples of the application of Newton’s method and further discussion of its efficiency
are given in Boyd and Vandenberghe [18] (Section 9.5.4). Basically, Newton’s method has
a faster convergence rate than gradient or steepest descent. Its main disadvantage is the
cost for forming and storing the Hessian, and of computing the Newton step, which requires
solving a linear system.

There are two major shortcomings of the convergence analysis of Newton’s method as
sketched above. The first is a pracical one. The complexity estimates involve the constants
m,M , and L, which are almost never known in practice. As a result, the bound on the
number of steps required is almost never known specifically.

The second shortcoming is that although Newton’s method itself is affine invariant, the
analysis of convergence is very much dependent on the choice of coordinate system. If the
coordinate system is changed, the constants m,M,L also change. This can be viewed as an
aesthetic problem, but it would be nice if an analysis of convergence independent of an affine
change of coordinates could be given.

Nesterov and Nemirovski discovered a condition on functions that allows an affine-
invariant convergence analysis. This property, called self-concordance, is unfortunately not
very intuitive.

Definition 13.10. A (partial) convex function f defined on R is self-concordant if

|f ′′′(x)| ≤ 2(f ′′(x))3/2 for all x ∈ R.

A (partial) convex function f defined on Rn is self-concordant if for every nonzero v ∈ Rn

and all x ∈ Rn, the function t 7→ J(x+ tv) is self-concordant.

Affine and convex quadratic functions are obviously self-concordant, since f ′′′ = 0. There
are many more interesting self-concordant functions, for example, the function
X 7→ − log det(X), where X is a symmetric positive definite matrix.

Self-concordance is discussed extensively in Boyd and Vandenberghe [18] (Section 9.6).
The main point of self-concordance is that a coordinate system-invariant proof of convergence
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can be given for a certain class of strictly convex self-concordant functions. This proof is
given in Boyd and Vandenberghe [18] (Section 9.6.4). Given a starting value u0, we assume
that the sublevel set {x ∈ Rn | J(x) ≤ J(u0)} is closed and that J is bounded below. Then
there are two parameters η and γ as before, but depending only on the parameters α, β
involved in the line search, such that:

(1) If λ(uk) > η, then
J(uk+1)− J(uk) ≤ −γ.

(2) If λ(uk) ≤ η, then the backtracking line search selects t = 1 and we have

2λ(uk+1) ≤ (2λ(uk))
2 .

As a consequence, for all ` ≥ k, we have

J(u`)− p∗ ≤ λ(u`)
2 ≤

(
1

2

)2`−k+1

.

In the end, accuracy ε > 0 is achieved in at most

20− 8α

αβ(1− 2α)2
(J(u0)− p∗) + log2 log2(1/ε)

iterations, where α and β are the constants involved in the line search. This bound is
obviously independent of the chosen coordinate system.

Contrary to intuition, the descent direction dk = −∇Juk given by the opposite of the
gradient is not always optimal. In the next section we will see how a better direction can be
picked; this is the method of conjugate gradients .

13.10 Conjugate Gradient Methods for Unconstrained

Problems

The conjugate gradient method due to Hestenes and Stiefel (1952) is a gradient descent
method that applies to an elliptic quadratic functional J : Rn → R given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

where A is an n × n symmetric positive definite matrix. Although it is presented as an
iterative method, it terminates in at most n steps.

As usual, the conjugate gradient method starts with some arbitrary initial vector u0 and
proceeds through a sequence of iteration steps generating (better and better) approximations
uk of the optimal vector u minimizing J . During an iteration step, two vectors need to be
determined:
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(1) The descent direction dk.

(2) The next approximation uk+1. To find uk+1, we need to find the stepsize ρk > 0 and
then

uk+1 = uk − ρkdk.
Typically, ρk is found by performing a line search along the direction dk, namely we
find ρk as the real number such that the function ρ 7→ J(uk − ρdk) is minimized.

We saw in Proposition 13.13 that during execution of the gradient method with optimal
stepsize parameter that any two consecutive descent directions are orthogonal. The new
twist with the conjugate gradient method is that given u0, u1, . . . , uk, the next approximation
uk+1 is obtained as the solution of the problem which consists in minimizing J over the affine
subspace uk + Gk, where Gk is the subspace of Rn spanned by the gradients

∇Ju0 ,∇Ju1 , . . . ,∇Juk .

We may assume that ∇Ju` 6= 0 for ` = 0, . . . , k, since the method terminates as soon as
∇Juk = 0. A priori the subspace Gk has dimension ≤ k + 1, but we will see that in fact it
has dimension k + 1. Then we have

uk + Gk =

{
uk +

k∑
i=0

αi∇Jui

∣∣∣∣∣ αi ∈ R, 0 ≤ i ≤ k

}
,

and our minimization problem is to find uk+1 such that

uk+1 ∈ uk + Gk and J(uk+1) = inf
v∈uk+Gk

J(v).

In the gradient method with optimal stepsize parameter the descent direction dk is pro-
portional to the gradient ∇Juk , but in the conjugate gradient method, dk is equal to ∇Juk
corrected by some multiple of dk−1.

The conjugate gradient method is superior to the gradient method with optimal stepsize
parameter for the following reasons proved correct later:

(a) The gradients∇Jui and∇Juj are orthogonal for all i, j with 0 ≤ i 6= j ≤ k. This implies
that if ∇Jui 6= 0 for i = 0, . . . , k, then the vectors ∇Jui are linearly independent, so
the method stops in at most n steps.

(b) If we write ∆` = u`+1 − u` = −ρ`d`, the second remarkable fact about the conjugate
gradient method is that the vectors ∆` satisfy the following conditions:

〈A∆`,∆i〉 = 0 0 ≤ i < ` ≤ k.

The vectors ∆` and ∆i are said to be conjugate with respect to the matrix A (or
A-conjugate). As a consequence, if ∆` 6= 0 for ` = 0, . . . , k, then the vectors ∆` are
linearly independent.



13.10. CONJUGATE GRADIENT METHODS; UNCONSTRAINED PROBLEMS 365

(c) There is a simple formula to compute dk+1 from dk, and to compute ρk.

We now prove the above facts. We begin with (a).

Proposition 13.15. Assume that ∇Jui 6= 0 for i = 0, . . . , k. Then the minimization prob-
lem, find uk+1 such that

uk+1 ∈ uk + Gk and J(uk+1) = inf
v∈uk+Gk

J(v),

has a unique solution, and the gradients ∇Jui and ∇Juj are orthogonal for all i, j with
0 ≤ i 6= j ≤ k + 1.

Proof. The affine space u` + G` is closed and convex, and since J is a quadratic elliptic
functional it is coercive and strictly convex, so by Theorem 13.8(2) it has a unique minimum
in u` + G`. This minimum u`+1 is also the minimum of the problem, find u`+1 such that

u`+1 ∈ u` + G` and J(u`+1) = inf
v∈G`

J(u` + v),

and since G` is a subspace, by Corollary 4.10 we must have

dJu`+1
(w) = 0 for all w ∈ G`,

that is
〈∇Ju`+1

, w〉 = 0 for all w ∈ G`.

Since G` is spanned by (∇Ju0 ,∇Ju1 , . . . ,∇Ju`), we obtain

〈∇Ju`+1
,∇Juj〉 = 0, 0 ≤ j ≤ `,

and since this holds for ` = 0, . . . , k, we get

〈∇Jui ,∇Juj〉 = 0, 0 ≤ i 6= j ≤ k + 1,

which shows the second part of the proposition.

As a corollary of Proposition 13.15, if ∇Jui 6= 0 for i = 0, . . . , k, then the vectors ∇Jui are
linearly independent and Gk has dimension k+ 1. Therefore, the conjugate gradient method
terminates in at most n steps. Here is an example of a problem for which the gradient
descent with optimal stepsize parameter does not converge in a finite number of steps.

Example 13.2. Let J : R2 → R be the function given by

J(v1, v2) =
1

2
(α1v

2
1 + α2v

2
2),

where 0 < α1 < α2. The minimum of J is attained at (0, 0). Unless the initial vector
u0 = (u0

1, u
0
2) has the property that either u0

1 = 0 or u0
2 = 0, we claim that the gradient
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descent with optimal stepsize parameter does not converge in a finite number of steps.
Observe that

∇J(v1,v2) =

(
α1v1

α2v2

)
.

As a consequence, given uk, the line search for finding ρk and uk+1 yields uk+1 = (0, 0) iff
there is some ρ ∈ R such that

uk1 = ρα1u
k
1 and uk2 = ρα2u

k
2.

Since α1 6= α2, this is only possible if either uk1 = 0 or uk2 = 0. The formulae given just before
Proposition 13.14 yield

uk+1
1 =

α2
2(α2 − α1)uk1(uk2)2

α3
1(uk1)2 + α3

2(uk2)2
, uk+1

2 =
α2

1(α1 − α2)uk2(uk1)2

α3
1(uk1)2 + α3

2(uk2)2
,

which implies that if uk1 6= 0 and uk2 6= 0, then uk+1
1 6= 0 and uk+1

2 6= 0, so the method runs
forever from any initial vector u0 = (u0

1, u
0
2) such that u0

1 6= 0 and, u0
2 6= 0.

We now prove (b).

Proposition 13.16. Assume that ∇Jui 6= 0 for i = 0, . . . , k, and let ∆` = u`+1 − u`, for
` = 0, . . . , k. Then ∆` 6= 0 for ` = 0, . . . , k, and

〈A∆`,∆i〉 = 0, 0 ≤ i < ` ≤ k.

The vectors ∆0, . . . ,∆k are linearly independent.

Proof. Since J is a quadratic functional we have

∇Jv+w = A(v + w)− b = Av − b+ Aw = ∇Jv + Aw.

It follows that

∇Ju`+1
= ∇Ju`+∆`

= ∇Ju` + A∆`, 0 ≤ ` ≤ k. (∗1)

By Proposition 13.15, since

〈∇Jui ,∇Juj〉 = 0, 0 ≤ i 6= j ≤ k,

we get

0 = 〈∇Ju`+1,∇Ju`〉 = ‖∇Ju`‖
2 + 〈A∆`,∇Ju`〉, ` = 0, . . . , k,

and since by hypothesis ∇Jui 6= 0 for i = 0, . . . , k, we deduce that

∆` 6= 0, ` = 0, . . . , k.
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If k ≥ 1, for i = 0, . . . , `− 1 and ` ≤ k we also have

0 = 〈∇Ju`+1
,∇Jui〉 = 〈∇Ju` ,∇Jui〉+ 〈A∆`,∇Jui〉

= 〈A∆`,∇Jui〉.

Since ∆j = uj+1 − uj ∈ Gj and Gj is spanned by (∇Ju0 ,∇Ju1 , . . . ,∇Juj), we obtain

〈A∆`,∆j〉 = 0, 0 ≤ j < ` ≤ k.

For the last statement of the proposition, let w0, w1, . . . , wk be any k+ 1 nonzero vectors
such that

〈Awi, wj〉 = 0, 0 ≤ i < j ≤ k.

We claim that w0, w1, . . . , wk are linearly independent.

If we have a linear dependence
∑k

i=0 λiwi = 0, then we have

0 =

〈
A

( k∑
i=0

λiwi

)
, wj

〉
=

k∑
i=0

λi〈Awi, wj〉 = λj〈Awj, wj〉,

where we form these inner products for j = 0, . . . , k, in that order. Since A is symmet-
ric positive definite (because J is a quadratic elliptic functional) and wj 6= 0, we have
〈Awj, wj〉 > 0, and so λj = 0 for j = 0, . . . , k. Therefore the vectors w0, w1, . . . , wk are
linearly independent.

Remarks:

(1) Since A is symmetric positive definite, the bilinear map (u, v) 7→ 〈Au, v〉 is an inner
product 〈−,−〉A on Rn. Consequently, two vectors u, v are conjugate with respect to
the matrix A (or A-conjugate), which means that 〈Au, v〉 = 0, iff u and v are orthogonal
with respect to the inner product 〈−,−〉A.

(2) By picking the descent direction to be −∇Juk , the gradient descent method with
optimal stepsize parameter treats the level sets {u | J(u) = J(uk)} as if they were
spheres. The conjugate gradient method is more subtle, and takes the “geometry”
of the level set {u | J(u) = J(uk)} into account, through the notion of conjugate
directions.

(3) The notion of conjugate direction has its origins in the theory of projective conics and
quadrics where A is a 2 × 2 or a 3 × 3 matrix and where u and v are conjugate iff
u>Av = 0.

(4) The terminology conjugate gradient is somewhat misleading. It is not the gradients
who are conjugate directions, but the descent directions.
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By definition of the vectors ∆` = u`+1 − u`, we can write

∆` =
∑̀
i=0

δ`i ∇Jui , 0 ≤ ` ≤ k. (∗2)

In matrix form, we can write

(
∆0 ∆1 · · · ∆k

)
=
(
∇Ju0 ∇Ju1 · · · ∇Juk

)

δ0

0 δ1
0 · · · δk−1

0 δk0
0 δ1

1 · · · δk−1
1 δk1

0 0 · · · δk−1
2 δk2

...
...

. . .
...

...
0 0 · · · 0 δkk

 ,

which implies that δ`` 6= 0 for ` = 0, . . . , k.

In view of the above fact, since ∆` and d` are collinear, it is convenient to write the
descent direction d` as

d` =
`−1∑
i=0

λ`i ∇Jui +∇Ju` , 0 ≤ ` ≤ k. (∗3)

Our next goal is to compute uk+1, assuming that the coefficients λki are known for i =
0, . . . , k, and then to find simple formulae for the λki .

The problem reduces to finding ρk such that

J(uk − ρkdk) = inf
ρ∈R

J(uk − ρdk),

and then uk+1 = uk − ρkdk. In fact, by (∗2), since

∆k =
k∑
i=0

δki ∇Jui = δkk

(k−1∑
i=0

δki
δkk
∇Jui +∇Juk

)
,

we must have

∆k = δkkdk and ρk = −δkk . (∗4)

Remarkably, the coefficients λki and the descent directions dk can be computed easily
using the following formulae.

Proposition 13.17. Assume that ∇Jui 6= 0 for i = 0, . . . , k. If we write

d` =
`−1∑
i=0

λ`i ∇Jui +∇Ju` , 0 ≤ ` ≤ k,
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then we have

(†)



λki =
‖∇Juk‖

2

‖∇Jui‖
2 , 0 ≤ i ≤ k − 1,

d0 = ∇Ju0

d` = ∇Ju` +
‖∇Ju`‖

2∥∥∇Ju`−1

∥∥2 d`−1, 1 ≤ ` ≤ k.

Proof. Since by (∗4) we have ∆k = δkkdk, δ
k
k 6= 0, (by Proposition 13.16) we have

〈Ad`,∆i〉 = 0, 0 ≤ i < ` ≤ k.

By (∗1) we have ∇Ju`+1
= ∇Ju` + A∆`, and since A is a symmetric matrix, we have

0 = 〈Adk,∆`〉 = 〈dk, A∆`〉 = 〈dk,∇Ju`+1
−∇Ju`〉,

for ` = 0, . . . , k − 1. Since

dk =
k−1∑
i=0

λki ∇Jui +∇Juk ,

we have 〈k−1∑
i=0

λki ∇Jui +∇Juk ,∇Ju`+1
−∇Ju`

〉
= 0, 0 ≤ ` ≤ k − 1.

Since by Proposition 13.15 the gradients ∇Jui are pairwise orthogonal, the above equations
yield

−λkk−1

∥∥∇Juk−1

∥∥2
+ ‖∇Juk‖

2 = 0

−λk` ‖∇Ju`‖
2 + λk`+1

∥∥∇Ju`+1

∥∥2
= 0, 0 ≤ ` ≤ k − 2, k ≥ 2,

and an easy induction yields

λki =
‖∇Juk‖

2

‖∇Jui‖
2 , 0 ≤ i ≤ k − 1.

Consequently, using (∗3) we have

dk =
k−1∑
i=0

‖∇Juk‖
2

‖∇Jui‖
2 ∇Jui +∇Juk

= ∇Juk +
‖∇Juk‖

2∥∥∇Juk−1

∥∥2

(
k−2∑
i=0

∥∥∇Juk−1

∥∥2

‖∇Jui‖
2 ∇Jui +∇Juk−1

)

= ∇Juk +
‖∇Juk‖

2∥∥∇Juk−1

∥∥2 dk−1,

which concludes the proof.
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It remains to compute ρk, which is the solution of the line search

J(uk − ρkdk) = inf
ρ∈R

J(uk − ρdk).

Since J is a quadratic functional, a basic computation left to the reader shows that the
function to be minimized is

ρ 7→ ρ2

2
〈Adk, dk〉 − ρ〈∇Juk , dk〉+ J(uk),

whose mininum is obtained when its derivative is zero, that is,

ρk =
〈∇Juk , dk〉
〈Adk, dk〉

. (∗5)

In summary, the conjugate gradient method finds the minimum u of the elliptic quadratic
functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉

by computing the sequence of vectors u1, d1, . . . , uk−1, dk−1, uk, starting from any vector u0,
with

d0 = ∇Ju0 .

If ∇Ju0 = 0, then the algorithm terminates with u = u0. Otherwise, for k ≥ 0, assuming
that ∇Jui 6= 0 for i = 1, . . . , k, compute

(∗6)



ρk =
〈∇Juk , dk〉
〈Adk, dk〉

uk+1 = uk − ρkdk

dk+1 = ∇Juk+1
+

∥∥∇Juk+1

∥∥2

‖∇Juk‖
2 dk.

If ∇Juk+1
= 0, then the algorihm terminates with u = uk+1.

As we showed before, the algorithm terminates in at most n iterations.

Example 13.3. Let us take the example of Section 13.6 and apply the conjugate gradient
procedure. Recall that

J(x, y) =
1

2

(
x y

)( 3 2
2 6

)(
x
y

)
−
(

2 −8
)( x

y

)
=

3

2
x2 + 2xy + 3y2 − 2x+ 8y.

Note that ∇Jv = (3x+ 2y − 2, 2x+ 6y + 8),
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Initialize the procedure by setting

u0 = (−2,−2), d0 = ∇Ju0 = (−12,−8)

Step 1 involves calculating

ρ0 =
〈∇Ju0 , d0〉
〈Ad0, d0〉

=
13

75

u1 = u0 − ρ0d0 = (−2,−2)− 13

75
(−12,−8) =

(
2

25
,−46

75

)
d1 = ∇Ju1 +

||∇Ju1||2

||∇Ju0||2
d0 =

(
−2912

625
,
18928

5625

)
.

Observe that ρ0 and u1 are precisely the same as in the case the case of gradient descent with
optimal step size parameter. The difference lies in the calculation of d1. As we will see, this
change will make a huge difference in the convergence to the unique minimum u = (2,−2).

We continue with the conjugate gradient procedure and calculate Step 2 as

ρ1 =
〈∇Ju1 , d1〉
〈Ad1, d1〉

=
75

82

u2 = u1 − ρ1d1 =

(
2

25
,−46

75

)
− 75

82

(
−2912

625
,
18928

5625

)
= (2,−2)

d2 = ∇Ju2 +
||∇Ju2||2

||∇Ju1||2
d1 = (0, 0).

Since ∇Ju2 = 0, the procedure terminates in two steps, as opposed to the 31 steps needed
for gradient descent with optimal step size parameter.

Hestenes and Stiefel realized that Equations (∗6) can be modified to make the computa-
tions more efficient, by having only one evaluation of the matrix A on a vector, namely dk.
The idea is to compute ∇uk inductively.

Since by (∗1) and (∗4) we have ∇Ju`+1
= ∇Ju` + A∆` = ∇Ju` − ρ`Ad`, the gradient

∇Ju`+1
can be computed iteratively:

∇J0 = Au0 − b
∇Ju`+1

= ∇Ju` − ρ`Ad`.

Since by Proposition 13.17 we have

dk = ∇Juk +
‖∇Juk‖

2∥∥∇Juk−1

∥∥2 dk−1
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and since dk−1 is a linear combination of the gradients ∇Jui for i = 0, . . . , k − 1, which are
all orthogonal to ∇Juk , we have

ρk =
〈∇Juk , dk〉
〈Adk, dk〉

=
‖∇Juk‖

2

〈Adk, dk〉
.

It is customary to introduce the term rk defined as

rk = ∇Juk = Auk − b (∗7)

and to call it the residual . Then the conjugate gradient method consists of the following
steps. We intitialize the method starting from any vector u0 and set

d0 = r0 = Au0 − b.

The main iteration step is (k ≥ 0):

(∗8)



ρk =
‖rk‖2

〈Adk, dk〉
uk+1 = uk − ρkdk
rk+1 = rk − ρkAdk

βk+1 =
‖rk+1‖2

‖rk‖2

dk+1 = rk+1 + βk+1 dk.

� Beware that some authors define the residual rk as rk = b−Auk and the descent direction
dk as −dk. In this case, the second equation becomes

uk+1 = uk + ρkdk.

Since d0 = r0, the equations

rk+1 = rk − ρkAdk
dk+1 = rk+1 + βk+1dk

imply by induction that the subspace Gk is spanned by (r0, r1, . . . , rk) and (d0, d1, . . . , dk) is
the subspace spanned by

(r0, Ar0, A
2r0, . . . , A

kr0).

Such a subspace is called a Krylov subspace.

If we define the error ek as ek = uk − u, then e0 = u0 − u and Ae0 = Au0 − Au =
Au0 − b = d0 = r0, and then because

uk+1 = uk − ρkdk
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we see that
ek+1 = ek − ρkdk.

Since dk belongs to the subspace spanned by (r0, Ar0, A
2r0, . . . , A

kr0) and r0 = Ae0, we see
that dk belongs to the subspace spanned by (Ae0, A

2e0, A
3e0, . . . , A

k+1e0), and then by induc-
tion we see that ek+1 belongs to the subspace spanned by (e0, Ae0, A

2e0, A
3e0, . . . , A

k+1e0).
This means that there is a polynomial Pk of degree ≤ k such that Pk(0) = 1 and

ek = Pk(A)e0.

This is an important fact because it allows for an analysis of the convergence of the
conjugate gradient method; see Trefethen and Bau [78] (Lecture 38). For this, since A is
symmetric positive definite, we know that 〈u, v〉A = 〈Av, u〉 is an inner product on Rn whose
associated norm is denoted by ‖v‖A. Then observe that if e(v) = v − u, then

‖e(v)‖2
A = 〈Av − Au, v − u〉

= 〈Av, v〉 − 2〈Au, v〉+ 〈Au, u〉
= 〈Av, v〉 − 2〈b, v〉+ 〈b, u〉
= 2J(v) + 〈b, u〉.

It follows that v = uk minimizes ‖e(v)‖A on uk−1 +Gk−1 since uk minimizes J on uk−1 +Gk−1.
Since ek = Pk(A)e0 for some polynomial Pk of degree ≤ k such that Pk(0) = 1, if we let Pk
be the set of polynomials P (t) of degree ≤ k such that P (0) = 1, then we have

‖ek‖A = inf
P∈Pk

‖P (A)e0‖A .

Since A is a symmetric positive definite matrix it has real positive eigenvalues λ1, . . . , λn and
there is an orthonormal basis of eigenvectors h1, . . . , hn so that if we write e0 =

∑n
j=1 ajhj.

then we have

‖e0‖2
A = 〈Ae0, e0〉 =

〈 n∑
i=1

aiλihi,
n∑
j=1

ajhj

〉
=

n∑
j=1

a2
jλj

and

‖P (A)e0‖2
A = 〈AP (A)e0, P (A)e0〉 =

〈 n∑
i=1

aiλiP (λi)hi,
n∑
j=1

ajP (λj)hj

〉
=

n∑
j=1

a2
jλj(P (λj))

2.

These equations imply that

‖ek‖A ≤
(

inf
P∈Pk

max
1≤i≤n

|P (λi)|
)
‖e0‖A .

It can be shown that the conjugate gradient method requires of the order of
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n3 additions,

n3 multiplications,

2n divisions.

In theory, this is worse than the number of elementary operations required by the
Cholesky method. Even though the conjugate gradient method does not seem to be the
best method for full matrices, it usually outperforms other methods for sparse matrices.
The reason is that the matrix A only appears in the computation of the vector Adk. If the
matrix A is banded (for example, tridiagonal), computing Adk is very cheap and there is no
need to store the entire matrix A, in which case the conjugate gradient method is fast. Also,
although in theory, up to n iterations may be required, in practice, convergence may occur
after a much smaller number of iterations.

Using the inequality

‖ek‖A ≤
(

inf
P∈Pk

max
1≤i≤n

|P (λi)|
)
‖e0‖A ,

by choosing P to be a shifted Chebyshev polynomial, it can be shown that

‖ek‖A ≤ 2

(√
κ− 1√
κ+ 1

)k
‖e0‖A ,

where κ = cond2(A); see Trefethen and Bau [78] (Lecture 38, Theorem 38.5). Thus the rate
of convergence of the conjugate gradient method is governed by the ratio√

cond2(A)− 1√
cond2(A) + 1

,

where cond2(A) = λn/λ1 is the condition number of the matrix A. Since A is positive
definite, λ1 is its smallest eigenvalue and λn is its largest eigenvalue.

The above fact leads to the process of preconditioning , a method which consists in replac-
ing the matrix of a linear system Ax = b by an “equivalent” one for example M−1A (since
M is invertible, the system Ax = b is equivalent to the system M−1Ax = M−1b), where M is
chosen so that M−1A is still symmetric positive definite and has a smaller condition number
than A; see Trefethen and Bau [78] (Lecture 40) and Demmel [28] (Section 6.6.5).

The method of conjugate gradients can be generalized to functionals that are not neces-
sarily quadratic. The stepsize parameter ρk is still determined by a line search which consists
in finding ρk such that

J(uk − ρkdk) = inf
ρ∈R

J(uk − ρdk).

This is more difficult than in the quadratic case and in general there is no guarantee that ρk
is unique, so some criterion to pick ρk is needed. Then

uk+1 = uk − ρkdk,

and the next descent direction can be chosen in two ways:
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(1) (Polak–Ribière)

dk = ∇Juk +
〈∇Juk ,∇Juk −∇Juk−1

〉∥∥∇Juk−1

∥∥2 dk−1,

(2) (Fletcher–Reeves)

dk = ∇Juk +
‖∇Juk‖

2∥∥∇Juk−1

∥∥2 dk−1.

Consecutive gradients are no longer orthogonal so these methods may run forever. There
are various sufficient criteria for convergence. In practice, the Polak–Ribière method con-
verges faster. There is no longer any guarantee that these methods converge to a global
minimum.

13.11 Gradient Projection Methods for Constrained

Optimization

We now consider the problem of finding the minimum of a convex functional J : V → R
over a nonempty, convex, closed subset U of a Hilbert space V . By Theorem 4.13(3), the
functional J has a minimum at u ∈ U iff

dJu(v − u) ≥ 0 for all v ∈ U,

which can be expressed as

〈∇Ju, v − u〉 ≥ 0 for all v ∈ U.

On the other hand, by the projection lemma (Proposition 12.5), the condition for a vector
u ∈ U to be the projection of an element w ∈ V onto U is

〈u− w, v − u〉 ≥ 0 for all v ∈ U.

These conditions are obviously analogous, and we can make this analogy more precise as
follows. If pU : V → U is the projection map onto U , we have the following chain of equiva-
lences:

u ∈ U and J(u) = inf
v∈U

J(v) iff

u ∈ U and 〈∇Ju, v − u〉 ≥ 0 for every v ∈ U , iff

u ∈ U and 〈u− (u− ρ∇Ju), v − u〉 ≥ 0 for every v ∈ U and every ρ > 0, iff

u = pU(u− ρ∇Ju) for every ρ > 0.

In other words, for every ρ > 0, u ∈ V is a fixed-point of the function g : V → U given by

g(v) = pU(v − ρ∇Jv).
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The above suggests finding u by the method of successive approximations for finding the
fixed-point of a contracting mapping, namely given any initial u0 ∈ V , to define the sequence
(uk)k≥0 such that

uk+1 = pU(uk − ρk∇Juk),
where the parameter ρk > 0 is chosen at each step. This method is called the projected-
gradient method with variable stepsize parameter . Observe that if U = V , then this is just the
gradient method with variable stepsize. We have the following result about the convergence
of this method.

Proposition 13.18. Let J : V → R be a continuously differentiable functional defined on
a Hilbert space V , and let U be nonempty, convex, closed subset of V . Suppose there exists
two constants α > 0 and M > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V ,

and
‖∇Jv −∇Ju‖ ≤M ‖v − u‖ for all u, v ∈ V .

If there exists two real nunbers a, b ∈ R such that

0 < a ≤ ρk ≤ b ≤ 2α

M2
for all k ≥ 0,

then the projected-gradient method with variable stepsize parameter converges. Furthermore,
there is some constant β > 0 (depending on α,M, a, b) such that

β < 1 and ‖uk − u‖ ≤ βk ‖u0 − u‖ ,

where u ∈M is the unique minimum of J .

Proof. For every ρk ≥ 0, define the function gk : V → U by

gk(v) = pU(v − ρk∇Jv).

By Proposition 12.6, the projection map pU has Lipschitz constant 1, so using the inequalities
assumed to hold in the proposition, we have

‖gk(v1)− gk(v2)‖2 = ‖pU(v1 − ρk∇Jv1)− pU(v2 − ρk∇Jv2)‖
2

≤ ‖(v1 − v2)− ρk(∇Jv1 −∇Jv2)‖
2

= ‖v1 − v2‖2 − 2ρk〈∇Jv1 −∇Jv2 , v1 − v2〉+ ρ2
k ‖∇Jv1 −∇Jv2‖

2

≤
(

1− 2αρk +M2ρ2
k

)
‖v1 − v2‖2 .

As in the proof of Proposition 13.14, we know that if a and b satisfy the conditions 0 < a ≤
ρk ≤ b ≤ 2α

M2 , then there is some β such that(
1− 2αρk +M2ρ2

k

)1/2

≤ β < 1 for all k ≥ 0.
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Since the minimizing point u ∈ U is a fixed point of gk for all k, by letting v1 = uk and
v2 = u, we get

‖uk+1 − u‖ = ‖gk(uk)− gk(u)‖ ≤ β ‖uk − u‖ ,

which proves the convergence of the sequence (uk)k≥0.

In the case of an elliptic quadratic functional

J(v) =
1

2
〈Av, a〉 − 〈b, v〉

defined on Rn, the reasoning just after the proof of Proposition 13.14 can be immediately
adapted to show that convergence takes place as long as a, b and ρk are chosen such that

0 < a ≤ ρk ≤ b ≤ 2

λn
.

In theory, Proposition 13.18 gives a guarantee of the convergence of the projected-gradient
method. Unfortunately, because computing the projection pU(v) effectively is generally
impossible, the range of practical applications of Proposition 13.18 is rather limited. One
exception is the case where U is a product

∏m
i=1[ai, bi] of closed intervals (where ai = −∞

or bi = +∞ is possible). In this case, it is not hard to show that

pU(w)i =


ai if wi < ai

wi if ai ≤ wi ≤ bi

bi if bi < wi.

In particular, this is the case if

U = Rn
+ = {v ∈ Rn | v ≥ 0}

and if

J(v) =
1

2
〈Av, a〉 − 〈b, v〉

is an elliptic quadratic functional on Rn. Then the vector uk+1 = (uk+1
1 , . . . , uk+1

n ) is given
in terms of uk = (uk1, . . . , u

k
n) by

uk+1
i = max{uki − ρk(Auk − b)i, 0}, 1 ≤ i ≤ n.

13.12 Penalty Methods for Constrained Optimization

In the case where V = Rn, another method to deal with constrained optimization is to
incorporate the domain U into the objective function J by adding a penalty function.
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Definition 13.11. Given a nonempty closed convex subset U of Rn, a function ψ : Rn → R
is called a penalty function for U if ψ is convex and continuous and if the following conditions
hold:

ψ(v) ≥ 0 for all v ∈ Rn, and ψ(v) = 0 iff v ∈ U.

The following proposition shows that the use of penalty functions reduces a constrained
optimization problem to a sequence of unconstrained optimization problems.

Proposition 13.19. Let J : Rn → R be a continuous, coercive, strictly convex function, U
be a nonempty, convex, closed subset of Rn, ψ : Rn → R be a penalty function for U , and let
Jε : Rn → R be the penalized objective function given by

Jε(v) = J(v) +
1

ε
ψ(v) for all v ∈ Rn.

Then for every ε > 0, there exists a unique element uε ∈ Rn such that

Jε(uε) = inf
v∈Rn

Jε(v).

Furthermore, if u ∈ U is the unique minimizer of J over U , so that J(u) = infv∈U J(v), then

lim
ε7→0

uε = u.

Proof. Observe that since J is coercive, since ψ(v) ≥ 0 for all v ∈ Rn, and Jε = J + (1/ε)ψ,
we have Jε(v) ≥ J(v) for all v ∈ Rn, so Jε is also coercive. Since J is strictly convex and
(1/ε)ψ is convex, it is immediately checked that Jε = J + (1/ε)ψ is also strictly convex.
Then by Proposition 13.1 (and the fact that J and Jε are strictly convex), J has a unique
minimizer u ∈ U , and Jε has a unique minimizer uε ∈ Rn.

Since ψ(u) = 0 iff u ∈ U , and ψ(v) ≥ 0 for all v ∈ Rn, we have Jε(u) = J(u), and since
uε is the minimizer of Jε we have Jε(uε) ≤ Jε(u), so we obtain

J(uε) ≤ J(uε) +
1

ε
ψ(uε) = Jε(uε) ≤ Jε(u) = J(u),

that is,
Jε(uε) ≤ J(u). (∗1)

Since J is coercive, the family (uε)ε>0 is bounded. By compactness (since we are in Rn),
there exists a subsequence (uε(i))i≥0 with limi 7→∞ ε(i) = 0 and some element u′ ∈ Rn such
that

lim
i 7→∞

uε(i) = u′.

From the inequality J(uε) ≤ J(u) proven in (∗1) and the continuity of J , we deduce that

J(u′) = lim
i 7→∞

J(uε(i)) ≤ J(u). (∗2)
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By definition of Jε(uε) and (∗1), we have

0 ≤ ψ(uε(i)) ≤ ε(i)(J(u)− J(uε(i))),

and since the sequence (uε(i))i≥0 converges, the numbers J(u) − J(uε(i)) are bounded inde-
pendently of i. Consequently, since limi 7→∞ ε(i) = 0 and since the function ψ is continuous,
we have

0 = lim
i 7→∞

ψ(uε(i)) = ψ(u′),

which shows that u′ ∈ U . Since by (∗2) we have J(u′) ≤ J(u), and since both u, u′ ∈ U
and u is the unique minimizer of J over U we must have u′ = u. Therfore u′ is the unique
minimizer of J over U . But then the whole family (uε)ε>0 converges to u since we can use
the same argument as above for every subsequence of (uε)ε>0.

Note that a convex function ψ : Rn → R is automatically continuous, so the assumption
of continuity is redundant.

As an application of Proposition 13.19, if U is given by

U = {v ∈ Rn | ϕi(v) ≤ 0, i = 1, . . . ,m},

where the functions ϕi : Rn → R are convex, we can take ψ to be the function given by

ψ(v) =
m∑
i=1

max{ϕi(v), 0}.

In practice, the applicability of the penalty-function method is limited by the difficulty
to construct effectively “good” functions ψ, for example, differentiable ones. Note that in
the above example the function ψ is not diferentiable. A better penalty function is

ψ(v) =
m∑
i=1

(max{ϕi(v), 0})2.

Another way to deal with constrained optimization problems is to use duality . This
approach is investigated in Chapter 14.

13.13 Summary

The main concepts and results of this chapter are listed below:

• Minimization, minimizer.

• Coercive functions.
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• Minima of quadratic functionals.

• The theorem of Lions and Stampacchia.

• Lax–Milgram’s theorem.

• Elliptic functionals.

• Descent direction, exact line search, backtracking line search.

• Method of relaxation.

• Gradient descent.

• Gradient descent method with fixed stepsize parameter.

• Gradient descent method with variable stepsize parameter.

• Steepest descent method for the Euclidean norm.

• Gradient descent method with backtracking line search.

• Normalized steepest descent direction.

• Unormalized steepest descent direction.

• Steepest descent method (with respect to the norm ‖ ‖).

• Momentum term.

• Newton’s method.

• Newton step.

• Newton decrement.

• Damped Newton phase.

• Quadratically convergent phase.

• Self-concordant functions.

• Conjugate gradient method.

• Projected gradient methods.

• Penalty methods.
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13.14 Problems

Problem 13.1. Consider the function J : Rn → R given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉+ g(v),

where A is a real n × n symmetric positive definite matrix, b ∈ Rn, and g : Rn → R is a
continuous (not necessarily differentiable) convex function such that g(v) ≥ 0 for all v ∈ Rn,
and let U be a nonempty, bounded, closed, convex subset of Rn.

(1) Prove that there is a unique element u ∈ U such that

J(u) = inf
v∈U

J(v).

Hint . Prove that J is strictly convex on Rn.

(2) Check that

J(v)− J(u) = 〈Au− b, v − u〉+ g(v)− g(u) +
1

2
〈A(v − u), v − u〉.

Prove that an element u ∈ U minimizes J in U iff

〈Au− b, v − u〉+ g(v)− g(u) ≥ 0 for all v ∈ U.

Problem 13.2. Consider n piecewise C1 functions ϕi : [0, 1] → R and assume that these
functions are linearly independent and that

n∑
i=1

ϕi(x) = 1 for all x ∈ [0, 1].

Let J : Rn → R be the function given by

J(v) =
n∑

i,j=1

aiijvivj +
n∑
i=1

bivi,

where v = (v1, . . . , vn) and

aij =

∫ 1

0

ϕ′i(t)ϕ
′
j(t)dt, bi =

∫ 1

0

ϕi(t)dt.

(1) Let U1 be the subset of Rn given by

U1 =

{
v ∈ Rn |

n∑
i=1

bivi = 0

}
.
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Consider the problem of finding a minimum of J over U1. Prove that the Lagrange multiplier
λ for which the Lagrangian has a critical point is λ = −1.

(2) Prove that the map defined on U1 by

‖v‖ =

∫ 1

0

(
n∑
i=1

viϕ
′
i(x)

)2

dx

1/2

is a norm. Prove that J is elliptic on U1 with this norm. Prove that J has a unique minimum
on U1.

(3) Consider the the subset of Rn given by

U2 =

{
v ∈ Rn |

n∑
i=1

(ϕi(1) + ϕi(0))vi = 0

}
.

Consider the problem of finding a minimum of J over U2. Prove that the Lagrange multiplier
λ for which the Lagrangian has a critical point is λ = −1/2. Prove that J is elliptic on U2

with the same norm as in (2). Prove that J has a unique minimum on U2.

(4) Consider the the subset of Rn given by

U3 =

{
v ∈ Rn |

n∑
i=1

(ϕi(1)− ϕi(0))vi = 0

}
.

This time show that the necessary condition for having a minimum on U3 yields the equation
1 + λ(1− 1) = 0. Conclude that J does not have a minimum on U3.

Problem 13.3. Let A be a real n× n symmetric positive definite matrix and let b ∈ Rn.

(1) Prove that if we apply the steepest descent method (for the Euclidean norm) to

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

and if we define the norm ‖v‖A by

‖v‖A = 〈Av, v〉1/2,

we get the inequality

‖uk+1 − u‖2
A ≤ ‖uk − u‖

2
A

(
1− ‖A(uk − u)‖4

2

‖uk − u‖2
A ‖A(uk − u)‖2

A

)
.

(2) Using a diagonalization of A, where the eigenvalues of A are denoted 0 < λ1 ≤ λ2 ≤
· · · ≤ λn, prove that

‖uk+1 − u‖A ≤
cond2(A)− 1

cond2(A) + 1
‖uk − u‖A ,
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where cond2(A) = λn/λ1, and thus

‖uk − u‖A ≤
(

cond2(A)− 1

cond2(A) + 1

)k
‖u0 − u‖A .

(3) Prove that when cond2(A) = 1, then A = I and the method converges in one step.

Problem 13.4. Prove that the method of Polak–Ribière converges if J : Rn → R is elliptic
and a C2 function.

Problem 13.5. Prove that the backtracking line search method described in Section 13.5 has
the property that for t small enough the condition J(uk+tdk) ≤ J(uk)+αt〈∇Juk , dk〉 will hold
and the search will stop. Prove that the exit inequality J(uk + tdk) ≤ J(uk) + αt〈∇Juk , dk〉
holds for all t ∈ (0, t0], for some t0 > 0, so the backtracking line search stops with a step
length ρk that satisfies ρk = 1 or ρk ∈ (βt0, t0].

Problem 13.6. Let dnsd,k and dsd,k be the normalized and unnormalized descent directions
of the steepest descent method for an arbitrary norm (see Section 13.8). Prove that

〈∇Juk , dnsd,k〉 = −‖∇Juk‖
D

〈∇Juk , dsd,k〉 = −(‖∇Juk‖
D)2

dsd,k = arg min
v

(
〈∇Juk , v〉+

1

2
‖v‖2

)
.

Problem 13.7. If P is a symmetric positive definite matrix, prove that ‖z‖P = (z>Pz)1/2 =∥∥P 1/2z
∥∥

2
is a norm. Prove that the normalized steepest descent direction is

dnsd,k = −(∇J>ukP
−1∇Juk)−1/2P−1∇Juk ,

the dual norm is ‖z‖D =
∥∥P−1/2z

∥∥
2
, and the steepest descent direction with respect to ‖ ‖P

is given by

dsd,k = −P−1∇Juk .

Problem 13.8. If ‖ ‖ is the `1-norm, then show that dnsd,k is determined as follows: let i
be any index for which ‖∇Juk‖∞ = |(∇Juk)i|. Then

dnsd,k = −sign

(
∂J

∂xi
(uk)

)
ei,

where ei is the ith canonical basis vector, and

dsd,k = − ∂J
∂xi

(uk)ei.
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Problem 13.9. (From Boyd and Vandenberghe [18], Problem 9.12). If ∇2f(x) is singular
(or very ill-conditioned), the Newton step dnt = −(∇2J(x))−1∇Jx is not well defined. Instead
we can define a search direction dtr as the solution of the problem

minimize (1/2)〈Hv, v〉+ 〈g, v〉
subject to ‖v‖2 ≤ γ,

where H = ∇2fx, g = ∇fx, and γ is some positive constant. The idea is to use a trust
region, which is the closed ball {v | ‖v‖2 ≤ γ}. The point x+dtr minimizes the second-order
approximation of f at x, subject to the constraint that

‖x+ dtr − x‖2 ≤ γ.

The parameter γ, called the trust parameter , reflects our confidence in the second-order
approximation.

Prove that dtr minimizes

1

2
〈Hv, v〉+ 〈g, v〉+ β̂ ‖v‖2

2 ,

for some β̂.

Problem 13.10. (From Boyd and Vandenberghe [18], Problem 9.9). Prove that the Newton
decrement λ(x) is given by

λ(x) = sup
v 6=0
− 〈∇Jx, v〉

(〈∇2Jxv, v〉)1/2
.

Problem 13.11. Show that the function f given by f(x) = log(ex + e−x) has a unique
minimum for x∗ = 0. Run Newton’s method with fixed step size t = 1, starting with x0 = 1,
and then x0 = 1.1. What do you observe?

Problem 13.12. Write a Matlab program implementing the conjugate gradient method.
Test your program with the n× n matrix

An =


2 −1 0 · · · 0
−1 2 −1 . . . 0
...

. . . . . . . . .
...

0 · · · −1 2 −1
0 · · · 0 −1 2


and various right-hand sides, for various values of n. Verify that the running time is O(n3/2).



Chapter 14

Introduction to Nonlinear
Optimization

This chapter contains the most important results of nonlinear optimization theory.

In Chapter 4 we investigated the problem of determining when a function J : Ω → R
defined on some open subset Ω of a normed vector space E has a local extremum in a subset
U of Ω defined by equational constraints, namely

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω → R are continuous (and usually differentiable). Theorem 4.2
gave a necessary condition in terms of the Lagrange multipliers. In Section 4.3 we assumed
that U was a convex subset of Ω; then Theorem 4.9 gave us a necessary condition for the
function J : Ω→ R to have a local minimum at u with respect to U if dJu exists, namely

dJu(v − u) ≥ 0 for all v ∈ U.

Our first goal is to find a necessary criterion for a function J : Ω→ R to have a minimum
on a subset U , even is this subset is not convex. This can be done by introducing a notion
of “tangent cone” at a point u ∈ U . We define the cone of feasible directions and then
state a necessary condition for a function to have local minimum on a set U that is not
necessarily convex in terms of the cone of feasible directions. The cone of feasible directions
is not always convex, but it is if the constraints are inequality constraints. An inequality
constraint ϕ(u) ≤ 0 is said to be active if ϕ(u) = 0. One can also define the notion of
qualified constraint . Theorem 14.5 gives necessary conditions for a function J to have a
minimum on a subset U defined by qualified inequality constraints in terms of the Karush–
Kuhn–Tucker conditions (for short KKT conditions), which involve nonnegative Lagrange
multipliers. The proof relies on a version of the Farkas–Minkowski lemma. Some of the KTT
conditions assert that λiϕi(u) = 0, where λi ≥ 0 is the Lagrange multiplier associated with
the constraint ϕi ≤ 0. To some extent, this implies that active constaints are more important
than inactive constraints, since if ϕi(u) < 0 is an inactive constraint, then λi = 0. In general,

385
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the KKT conditions are useless unlesss the constraints are convex. In this case, there is a
manageable notion of qualified constraint given by Slater’s conditions. Theorem 14.6 gives
necessary conditions for a function J to have a minimum on a subset U defined by convex
inequality constraints in terms of the Karush–Kuhn–Tucker conditions. Furthermore, if J is
also convex and if the KKT conditions hold, then J has a global minimum.

In Section 14.4, we apply Theorem 14.6 to the special case where the constraints are
equality constraints, which can be expressed as Ax = b. In the special case where the convex
objective function J is a convex quadratic functional of the form

J(x) =
1

2
x>Px+ q>x+ r,

where P is a n × n symmetric positive semidefinite matrix, the necessary and sufficient
conditions for having a minimum are expressed by a linear system involving a matrix called
the KKT matrix. We discuss conditions that guarantee that the KKT matrix is invertible,
and how to solve the KKT system. We also briefly discuss variants of Newton’s method
dealing with equality constraints.

We illustrate the KKT conditions on an interesting example, the so-called hard margin
support vector machine; see Sections 14.5 and 14.6. The problem is a classification problem,
or more accurately a separation problem. Suppose we have two nonempty disjoint finite sets
of p blue points {ui}pi=1 and q red points {vj}qj=1 in Rn. Our goal is to find a hyperplane H

of equation w>x − b = 0 (where w ∈ Rn is a nonzero vector and b ∈ R), such that all the
blue points ui are in one of the two open half-spaces determined by H, and all the red points
vj are in the other open half-space determined by H.

If the two sets are indeed separable, then in general there are infinitely many hyperplanes
separating them. Vapnik had the idea to find a hyperplane that maximizes the smallest
distance between the points and the hyperplane. Such a hyperplane is indeed unique and
is called a maximal hard margin hyperplane, or hard margin support vector machine. The
support vectors are those for which the constraints are active.

Section 14.7 contains the most important results of the chapter. The notion of Lagrangian
duality is presented. Given a primal optimization problem (P ) consisting in minimizing an
objective function J(v) with respect to some inequality constraints ϕi(v) ≤ 0, i = 1, . . . ,m,
we define the dual function G(µ) as the result of minimizing the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v)

with respect to v, with µ ∈ Rm
+ . The dual program (D) is then to maximize G(µ) with

respect to µ ∈ Rm
+ . It turns out that G is a concave function, and the dual program is an

unconstrained maximization. This is actually a misleading statement because G is generally
a partial function, so maximizing G(µ) is equivalent to a constrained maximization problem
in which the constraints specify the domain of G, but in many cases, we obtain a dual
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program simpler than the primal program. If d∗ is the optimal value of the dual program
and if p∗ is the optimal value of the primal program, we always have

d∗ ≤ p∗,

which is known as weak duality . Under certain conditions, d∗ = p∗, that is, the duality gap
is zero, in which case we say that strong duality holds. Also, under certain conditions, a
solution of the dual yields a solution of the primal, and if the primal has an optimal solution,
then the dual has an optimal solution, but beware that the converse is generally false (see
Theorem 14.17). We also show how to deal with equality constraints, and discuss the use of
conjugate functions to find the dual function. Our coverage of Lagrangian duality is quite
thorough, but we do not discuss more general orderings such as the semidefinite ordering.
For these topics which belong to convex optimization, the reader is referred to Boyd and
Vandenberghe [18].

Our approach in this chapter is very much inspired by Ciarlet [25] because we find it
one of the more direct, and it is general enough to accomodate Hilbert spaces. The field
of nonlinear optimization and convex optimization is vast and there are many books on the
subject. Among those we recommend (in alphabetic order) Bertsekas [9, 10, 11], Bertsekas,
Nedić, and Ozdaglar [12], Boyd and Vandenberghe [18], Luenberger [52], and Luenberger
and Ye [53].

14.1 The Cone of Feasible Directions

Let V be a normed vector space and let U be a nonempty subset of V . For any point u ∈ U ,
consider any converging sequence (uk)k≥0 of vectors uk ∈ U having u as their limit, with
uk 6= u for all k ≥ 0, and look at the sequence of “unit chords,”

uk − u
‖uk − u‖

.

This sequence could oscillate forever, or it could have a limit, some unit vector ŵ ∈ V . In
the second case, all nonzero vectors λŵ for all λ > 0, belong to an object called the cone of
feasible directions at u. First, we need to define the notion of cone.

Definition 14.1. Given a (real) vector space V , a nonempty subset C ⊆ V is a cone with
apex 0 (for short, a cone), if for any v ∈ V , if v ∈ C, then λv ∈ C for all λ > 0 (λ ∈ R). For
any u ∈ V , a cone with apex u is any nonempty subset of the form u+C = {u+ v | v ∈ C},
where C is a cone with apex 0; see Figure 14.1.

Observe that a cone with apex 0 (or u) is not necessarily convex, and that 0 does not
necessarily belong to C (resp. u does not necessarily belong to u+C) (although in the case
of the cone of feasible directions C(u) we have 0 ∈ C(u)). The condition for being a cone
only asserts that if a nonzero vector v belongs to C, then the open ray {λv | λ > 0} (resp.
the affine open ray u+ {λv | λ > 0}) also belongs to C.
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(0,0,1)

V

C

(0,0,0)

(0.25, 0.5, 0.5) = u

(0.25, 0.5, 1.5)

u + C

Figure 14.1: Let C be the cone determined by the bold orange curve through (0, 0, 1) in the
plane z = 1. Then u+C, where u = (0.25, 0.5, 0.5), is the affine translate of C via the vector
u.

Definition 14.2. Let V be a normed vector space and let U be a nonempty subset of V .
For any point u ∈ U , the cone C(u) of feasible directions at u is the union of {0} and the
set of all nonzero vectors w ∈ V for which there exists some convergent sequence (uk)k≥0 of
vectors such that

(1) uk ∈ U and uk 6= u for all k ≥ 0, and limk 7→∞ uk = u.

(2) limk 7→∞
uk − u
‖uk − u‖

=
w

‖w‖
, with w 6= 0.

Condition (2) can also be expressed as follows: there is a sequence (δk)k≥0 of vectors δk ∈ V
such that

uk = u+ ‖uk − u‖
w

‖w‖
+ ‖uk − u‖ δk, lim

k 7→∞
δk = 0, w 6= 0.

Figure 14.2 illustrates the construction of w in C(u).

Clearly, the cone C(u) of feasible directions at u is a cone with apex 0, and u+C(u) is a
cone with apex u. Obviously, it would be desirable to have conditions on U that imply that
C(u) is a convex cone. Such conditions will be given later on.

Observe that the cone C(u) of feasible directions at u contains the velocity vectors at u of
all curves γ in U through u. If γ : (−1, 1)→ U is such a curve with γ(0) = u, and if γ′(u) 6= 0



14.1. THE CONE OF FEASIBLE DIRECTIONS 389

U
uu1

u1

u

- u

u1 - u
u1 - u

u - uk

u2

u - u2

u - u2

k

u - uk

w
w

Figure 14.2: Let U be the pink region in R2 with fuchsia point u ∈ U . For any sequence
(uk)k≥0 of points in U which converges to u, form the chords uk − u and take the limit to
construct the red vector w.

exists, then there is a sequence (uk)k≥0 of vectors in U converging to u as in Definition 14.2,
with uk = γ(tk) for some sequence (tk)k≥0 of reals tk > 0 such that limk 7→∞ tk = 0, so that

uk − u = tkγ
′(0) + tkεk, lim

k 7→∞
εk = 0,

and we get

lim
k 7→∞

uk − u
‖uk − u‖

=
γ′(0)

‖γ′(0)‖
.

For an illustration of this paragraph in R2, see Figure 14.3.

Example 14.1. In V = R2, let ϕ1 and ϕ2 be given by

ϕ1(u1, u2) = −u1 − u2

ϕ2(u1, u2) = u1(u2
1 + u2

2)− (u2
1 − u2

2),

and let
U = {(u1, u2) ∈ R2 | ϕ1(u1, u2) ≤ 0, ϕ2(u1, u2) ≤ 0}.

The region U is shown in Figure 14.4 and is bounded by the curve given by the equation
ϕ1(u1, u2) = 0, that is, −u1 − u2 = 0, the line of slope −1 through the origin, and the curve
given by the equation u1(u2

1 + u2
2) − (u2

1 − u2
2) = 0, a nodal cubic through the origin. We

obtain a parametric definition of this curve by letting u2 = tu1, and we find that

u1(t) =
u2

1(t)− u2
2(t)

u2
1(t) + u2

2(t)
=

1− t2

1 + t2
, u2(t) =

t(1− t2)

1 + t2
.

The tangent vector at t is given by (u′1(t), u′2(t)) with

u′1(t) =
−2t(1 + t2)− (1− t2)2t

(1 + t2)2
=

−4t

(1 + t2)2
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0

0

ttt 12k

t1t2tk

uuuu
12k

u1 u2

uk

(i.)

(0)γ ‘

(0)γ ‘

γ

γ

C(u)

(ii.)

U

Figure 14.3: Let U be purple region in R2 and u be the designated point on the boundary of
U . Figure (i.) illustrates two curves through u and two sequences (uk)k≥0 converging to u.
The limit of the chords uk − u corresponds to the tangent vectors for the appropriate curve.
Figure (ii.) illustrates the half plane C(u) of feasible directions.

and

u′2(t) =
(1− 3t2)(1 + t2)− (t− t3)2t

(1 + t2)2
=

1− 2t2 − 3t4 − 2t2 + 2t4

(1 + t2)2
=

1− 4t2 − t4

(1 + t2)2
.

The nodal cubic passes through the origin for t = ±1, and for t = −1 the tangent vector is
(1,−1), and for t = 1 the tangent vector is (−1,−1). The cone of feasible directions C(0)
at the origin is given by

C(0) = {(u1, u2) ∈ R2 | u1 + u2 ≥ 0, |u1| ≥ |u2|}.

This is not a convex cone since it contains the sector delineated by the lines u2 = u1 and
u2 = −u1, but also the ray supported by the vector (−1, 1).

The two crucial properties of the cone of feasible directions are shown in the following
proposition.
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(i.)

(ii.)

Figure 14.4: Figure (i.) illustrates U as the shaded gray region which lies between the line
y = −x and nodal cubic. Figure (ii.) shows the cone of feasible directions, C(0), as the
union of the turquoise triangular cone and the turquoise directional ray (−1, 1).

Proposition 14.1. Let U be any nonempty subset of a normed vector space V .

(1) For any u ∈ U , the cone C(u) of feasible directions at u is closed.

(2) Let J : Ω→ R be a function defined on an open subset Ω containing U . If J has a local
minimum with respect to the set U at a point u ∈ U , and if J ′u exists at u, then

J ′u(v − u) ≥ 0 for all v ∈ u+ C(u).

Proof. (1) Let (wn)n≥0 be a sequence of vectors wn ∈ C(u) converging to a limit w ∈ V . We
may assume that w 6= 0, since 0 ∈ C(u) by definition, and thus we may also assume that
wn 6= 0 for all n ≥ 0. By definition, for every n ≥ 0, there is a sequence (unk)k≥0 of vectors
in V and some wn 6= 0 such that

(1) unk ∈ U and unk 6= u for all k ≥ 0, and limk 7→∞ u
n
k = u.

(2) There is a sequence (δnk )k≥0 of vectors δnk ∈ V such that

unk = u+ ‖unk − u‖
wn
‖wn‖

+ ‖unk − u‖ δnk , lim
k 7→∞

δnk = 0, wn 6= 0.

Let (εn)n≥0 be a sequence of real numbers εn > 0 such that limn7→∞ εn = 0 (for example,
εn = 1/(n + 1)). Due to the convergence of the sequences (unk) and (δnk ) for every fixed n,
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there exist an integer k(n) such that∥∥unk(n) − u
∥∥ ≤ εn,

∥∥δnk(n)

∥∥ ≤ εn.

Consider the sequence (unk(n))n≥0. We have

unk(n) ∈ U, unk(n) 6= 0, for all n ≥ 0, lim
n7→∞

unk(n) = u,

and we can write

unk(n) = u+
∥∥unk(n) − u

∥∥ w

‖w‖
+
∥∥unk(n) − u

∥∥(δnk(n) +

(
wn
‖wn‖

− w

‖w‖

))
.

Since limk 7→∞(wn/ ‖wn‖) = w/ ‖w‖, we conclude that w ∈ C(u). See Figure 14.5.

w1

w2

wn

w

u1

u1
1

2

u1k

w1

w1

w

u2

uk
2

2

u21

uk
n

un
un2

1

w

u

U

Figure 14.5: Let U be the mint green region in R2 with u = (0, 0). Let (wn)n≥0 be a sequence
of vectors (points) along the upper dashed curve which converge to w. By following the
dashed orange longitudinal curves, and selecting an appropriate vector(point), we construct
the dark green curve in U , which passes through u, and at u has tangent vector proportional
to w.

(2) Let w = v−u be any nonzero vector in the cone C(u), and let (uk)k ≥0 be a sequence
of vectors in U − {u} such that

(1) limk 7→∞ uk = u.

(2) There is a sequence (δk)k≥0 of vectors δk ∈ V such that

uk − u = ‖uk − u‖
w

‖w‖
+ ‖uk − u‖ δk, lim

k 7→∞
δk = 0, w 6= 0,

(3) J(u) ≤ J(uk) for all k ≥ 0.
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Since J is differentiable at u, we have

0 ≤ J(uk)− J(u) = J ′u(uk − u) + ‖uk − u‖ εk, (∗)

for some sequence (εk)k≥0 such that limk 7→∞ εk = 0. Since J ′u is linear and continuous, and
since

uk − u = ‖uk − u‖
w

‖w‖
+ ‖uk − u‖ δk, lim

k 7→∞
δk = 0, w 6= 0,

(∗) implies that

0 ≤ ‖uk − u‖
‖w‖

(J ′u(w) + ηk),

with
ηk = ‖w‖ (J ′u(δk) + εk).

Since J ′u is continuous, we have limk 7→∞ ηk = 0. But then J ′u(w) ≥ 0, since if J ′u(w) < 0,
then for k large enough the expression J ′u(w) + ηk would be negative, and since uk 6= u, the
expression (‖uk − u‖ / ‖w‖)(J ′u(w) + ηk) would also be negative, a contradiction.

From now on we assume that U is defined by a set of inequalities, that is

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable). As we explained
earlier, an equality constraint ϕi(x) = 0 is treated as the conjunction of the two inequalities
ϕi(x) ≤ 0 and −ϕi(x) ≤ 0. Later on we will see that when the functions ϕi are convex, since
−ϕi is not necessarily convex, it is desirable to treat equality constraints separately, but for
the time being we won’t.

14.2 Active Constraints and Qualified Constraints

Our next goal is find sufficient conditions for the cone C(u) to be convex, for any u ∈ U . For
this we assume that the functions ϕi are differentiable at u. It turns out that the constraints
ϕi that matter are those for which ϕi(u) = 0, namely the constraints that are tight, or as
we say, active.

Definition 14.3. Given m functions ϕi : Ω → R defined on some open subset Ω of some
vector space V , let U be the set defined by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m}.

For any u ∈ U , a constraint ϕi is said to be active at u if ϕi(u) = 0, else inactive at u if
ϕi(u) < 0.

If a constraint ϕi is active at u, this corresponds to u being on a piece of the boundary
of U determined by some of the equations ϕi(u) = 0; see Figure 14.6.
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y   =  x2

y = x 2

(1,1)

(1/4, 1/2)
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Figure 14.6: Let U be the light purple planar region which lies between the curves y = x2 and
y2 = x. Figure (i.) illustrates the boundary point (1, 1) given by the equalities y−x2 = 0 and
y2−x = 0. The affine translate of cone of feasible directions, C(1, 1), is illustrated by the pink
triangle whose sides are the tangent lines to the boundary curves. Figure (ii.) illustrates
the boundary point (1/4, 1/2) given by the equality y2 − x = 0. The affine translate of
C(1/4, 1/2) is the lilac half space bounded by the tangent line to y2 = x through (1/4, 1/2).

Definition 14.4. For any u ∈ U , with

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

we define I(u) as the set of indices

I(u) = {i ∈ {1, . . . ,m} | ϕi(u) = 0}

where the constraints are active. We define the set C∗(u) as

C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}.

Since each (ϕ′i)u is a linear form, the subset

C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}
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is the intersection of half spaces passing through the origin, so it is a convex set, and obviously
it is a cone. If I(u) = ∅, then C∗(u) = V .

The special kinds of H-polyhedra of the form C∗(u) cut out by hyperplanes through the
origin are called H-cones . It can be shown that every H-cone is a polyhedral cone (also
called a V-cone), and conversely. The proof is nontrivial; see Gallier [35] and Ziegler [84].

We will prove shortly that we always have the inclusion

C(u) ⊆ C∗(u).

However, the inclusion can be strict, as in Example 14.1. Indeed for u = (0, 0) we have
I(0, 0) = {1, 2} and since

(ϕ′1)(u1,u2) = (−1 − 1), (ϕ′2)(u1,u2) = (3u2
1 + u2

2 − 2u1 2u1u2 + 2u2),

we have (ϕ′2)(0,0) = (0 0), and thus C∗(0) = {(u1, u2) ∈ R2 | u1 + u2 ≥ 0} as illustrated in
Figure 14.7.

x
K2 K1 0 1 2

y

K2

K1

1

2

C  (u)*

C(u)

Figure 14.7: For u = (0, 0), C∗(u) is the sea green half space given by u1 + u2 ≥ 0. This
half space strictly contains C(u), namely the union of the turquoise triangular cone and the
directional ray (−1, 1).

The conditions stated in the following definition are sufficient conditions that imply that
C(u) = C∗(u), as we will prove next.

Definition 14.5. For any u ∈ U , with

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

if the functions ϕi are differentiable at u (in fact, we only this for i ∈ I(u)), we say that the
constraints are qualified at u if the following conditions hold:
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(a) Either the constraints ϕi are affine for all i ∈ I(u), or

(b) There is some nonzero vector w ∈ V such that the following conditions hold for all
i ∈ I(u):

(i) (ϕ′i)u(w) ≤ 0.

(ii) If ϕi is not affine, then (ϕ′i)u(w) < 0.

Condition (b)(ii) implies that u is not a critical point of ϕi for every i ∈ I(u), so there
is no singularity at u in the zero locus of ϕi. Intuitively, if the constraints are qualified at u
then the boundary of U near u behaves “nicely.”

The boundary points illustrated in Figure 14.6 are qualified. Observe that
U = {x ∈ R2 | ϕ1(x, y) = y2 − x ≤ 0, ϕ2(x, y) = x2 − y ≤ 0}. For u = (1, 1), I(u) = {1, 2},
(ϕ′1)(1,1) = (−1 2), (ϕ′2)(1,1) = (2 − 1), and w = (−1,−1) ensures that (ϕ′1)(1,1) and (ϕ′1)(1,1)

satisfy Condition (b) of Definition 14.5. For u = (1/4, 1/2), I(u) = {1}, (ϕ′1)(1,1) = (−1 1),
and w = (1, 0) will satisfy Condition (b).

In Example 14.1, the constraint ϕ2(u1, u2) = 0 is not qualified at the origin because
(ϕ′2)(0,0) = (0, 0); in fact, the origin is a self-intersection. In the example below, the origin is
also a singular point, but for a different reason.

Example 14.2. Consider the region U ⊆ R2 determined by the two curves given by

ϕ1(u1, u2) = u2 −max(0, u3
1)

ϕ2(u1, u2) = u4
1 − u2.

We have I(0, 0) = {1, 2}, and since (ϕ1)′(0,0)(w1, w2) = (0 1)
(
w1

w2

)
= w2 and (ϕ′2)(0,0)(w1, w2) =

(0 − 1)
(
w1

w2

)
= −w2, we have C∗(0) = {(u1, u2) ∈ R2 | u2 = 0}, but the constraints are

not qualified at (0, 0) since it is impossible to have simultaneously (ϕ′1)(0,0)(w1, w2) < 0 and
(ϕ′2)(0,0)(w1, w2) < 0, so in fact C(0) = {(u1, u2) ∈ R2 | u1 ≥ 0, u2 = 0} is strictly contained
in C∗(0); see Figure 14.8.

Proposition 14.2. Let u be any point of the set

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where Ω is an open subset of the normed vector space V , and assume that the functions ϕi
are differentiable at u (in fact, we only this for i ∈ I(u)). Then the following facts hold:

(1) The cone C(u) of feasible directions at u is contained in the convex cone C∗(u); that
is,

C(u) ⊆ C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}.
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Figure 14.8: Figures (i.) and (ii.) illustrate the purple moon shaped region associated with
Example 14.2. Figure (i.) also illustrates C(0), the cone of feasible directions, while Figure
(ii.) illustrates the strict containment of C(0) in C∗(0).

(2) If the constraints are qualified at u (and the functions ϕi are continuous at u for all
i /∈ I(u) if we only assume ϕi differentiable at u for all i ∈ I(u)), then

C(u) = C∗(u).

Proof. (1) For every i ∈ I(u), since ϕi(v) ≤ 0 for all v ∈ U and ϕi(u) = 0, the function −ϕi
has a local minimum at u with respect to U , so by Proposition 14.1(2), we have

(−ϕ′i)u(v) ≥ 0 for all v ∈ C(u),

which is equivalent to (ϕ′i)u(v) ≤ 0 for all v ∈ C(u) and for all i ∈ I(u), that is, u ∈ C∗(u).

(2)(a) First, let us assume that ϕi is affine for every i ∈ I(u). Recall that ϕi must be
given by ϕi(v) = hi(v) + ci for all v ∈ V , where hi is a linear form and ci ∈ R. Since the
derivative of a linear map at any point is itself,

(ϕ′i)u(v) = hi(v) for all v ∈ V .
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Pick any nonzero w ∈ C∗(u), which means that (ϕ′i)u(w) ≤ 0 for all i ∈ I(u). For any
sequence (εk)k≥0 of reals εk > 0 such that limk 7→∞ εk = 0, let (uk)k≥0 be the sequence of
vectors in V given by

uk = u+ εkw.

We have uk−u = εkw 6= 0 for all k ≥ 0 and limk 7→∞ uk = u. Furthermore, since the functions
ϕi are continuous for all i /∈ I, we have

0 > ϕi(u) = lim
k 7→∞

ϕi(uk),

and since ϕi is affine and ϕi(u) = 0 for all i ∈ I, we have ϕi(u) = hi(u) + ci = 0, so

ϕi(uk) = hi(uk) + ci = hi(uk)− hi(u) = hi(uk − u) = (ϕ′i)u(uk − u) = εk(ϕ
′
i)u(w) ≤ 0, (∗0)

which implies that uk ∈ U for all k large enough. Since

uk − u
‖uk − u‖

=
w

‖w‖
for all k ≥ 0,

we conclude that w ∈ C(u). See Figure 14.9.

x + y - 1 = 0

w = (-1/3,-1/3)

u

u1

u2

u

u3

k

w
w

Figure 14.9: Let U be the peach triangle bounded by the lines y = 0, x = 0, and y = −x+1.
Let u satisfy the affine constraint ϕ(x, y) = y+ x− 1. Since ϕ′(x,y) = (1 1), set w = (−1,−1)
and approach u along the line u+ tw.

(2)(b) Let us now consider the case where some function ϕi is not affine for some i ∈ I(u).
Let w 6= 0 be some vector in V such that Condition (b) of Definition 14.5 holds, namely: for
all i ∈ I(u), we have

(i) (ϕ′i)u(w) ≤ 0.

(ii) If ϕi is not affine, then (ϕ′i)u(w) < 0.
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Pick any nonzero vector v ∈ C∗(u), which means that (ϕ′i)u(v) ≤ 0 for all i ∈ I(u), and let
δ > 0 be any positive real number such that v + δw 6= 0. For any sequence (εk)k≥0 of reals
εk > 0 such that limk 7→∞ εk = 0, let (uk)k≥0 be the sequence of vectors in V given by

uk = u+ εk(v + δw).

We have uk − u = εk(v + δw) 6= 0 for all k ≥ 0 and limk 7→∞ uk = u. Furthermore, since the
functions ϕi are continuous for all i /∈ I(u), we have

0 > ϕi(u) = lim
k 7→∞

ϕi(uk) for all i /∈ I(u). (∗1)

Equation (∗0) of the previous case shows that for all i ∈ I(u) such that ϕi is affine, since
(ϕ′i)u(v) ≤ 0, (ϕ′i)u(w) ≤ 0, and εk, δ > 0, we have

ϕi(uk) = εk((ϕ
′
i)u(v) + δ(ϕ′i)u(w)) ≤ 0 for all i ∈ I(u) and ϕi affine. (∗2)

Furthermore, since ϕi is differentiable and ϕi(u) = 0 for all i ∈ I(u), if ϕi is not affine we
have

ϕi(uk) = εk((ϕ
′
i)u(v) + δ(ϕ′i)u(w)) + εk ‖uk − u‖ ηk(uk − u)

with lim‖uk−u‖7→0 ηk(uk − u) = 0, so if we write αk = ‖uk − u‖ ηk(uk − u), we have

ϕi(uk) = εk((ϕ
′
i)u(v) + δ(ϕ′i)u(w) + αk)

with limk 7→∞ αk = 0, and since (ϕ′i)u(v) ≤ 0, we obtain

ϕi(uk) ≤ εk(δ(ϕ
′
i)u(w) + αk) for all i ∈ I(u) and ϕi not affine. (∗3)

Equations (∗1), (∗2), (∗3) show that uk ∈ U for k sufficiently large, where in (∗3), since
(ϕ′i)u(w) < 0 and δ > 0, even if αk > 0, when limk 7→∞ αk = 0, we will have δ(ϕ′i)u(w)+αk < 0
for k large enough, and thus εk(δ(ϕ

′
i)u(w) + αk) < 0 for k large enough.

Since
uk − u
‖uk − u‖

=
v + δw

‖v + δw‖
for all k ≥ 0, we conclude that v+ δw ∈ C(u) for δ > 0 small enough. But now the sequence
(vn)n≥0 given by

vn = v + εnw

converges to v, and for n large enough, vn ∈ C(u). Since by Proposition 14.1(1), the cone
C(u) is closed, we conclude that v ∈ C(u). See Figure 14.10.

In all cases, we proved that C∗(u) ⊆ C(u), as claimed.

In the case of m affine constraints aix ≤ bi, for some linear forms ai and some bi ∈ R,
for any point u ∈ Rn such that aiu = bi for all i ∈ I(u), the cone C(u) consists of all v ∈ Rn

such that aiv ≤ 0, so u+ C(u) consists of all points u+ v such that

ai(u+ v) ≤ bi for all i ∈ I(u),

which is the cone cut out by the hyperplanes determining some face of the polyhedron defined
by the m constraints aix ≤ bi.

We are now ready to prove one of the most important results of nonlinear optimization.
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Figure 14.10: Let U be the pink lounge in R2. Let u satisfy the non-affine constraint ϕ1(u).
Choose vectors v and w in the half space (ϕ′1)u ≤ 0. Figure (i.) approaches u along the line
u + t(δw + v) and shows that v + δw ∈ C(u) for fixed δ. Figure (ii.) varies δ in order that
the purple vectors approach v as δ →∞.

14.3 The Karush–Kuhn–Tucker Conditions

If the domain U is defined by inequality constraints satisfying mild differentiability conditions
and if the constraints at u are qualified, then there is a necessary condition for the function
J to have a local minimum at u ∈ U involving generalized Lagrange multipliers. The proof
uses a version of Farkas lemma. In fact, the necessary condition stated next holds for infinite-
dimensional vector spaces because there a version of Farkas lemma holding for real Hilbert
spaces, but we will content ourselves with the version holding for finite dimensional normed
vector spaces. For the more general version, see Theorem 12.12 (or Ciarlet [25], Chapter 9).

We will be using the following version of Farkas lemma.

Proposition 14.3. (Farkas Lemma, Version I) Let A be a real m×n matrix and let b ∈ Rm

be any vector. The linear system Ax = b has no solution x ≥ 0 iff there is some nonzero
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linear form y ∈ (Rm)∗ such that yA ≥ 0>n and yb < 0.

We will use the version of Farkas lemma obtained by taking a contrapositive, namely: if
yA ≥ 0>n implies yb ≥ 0 for all linear forms y ∈ (Rm)∗, then the linear system Ax = b has
some solution x ≥ 0.

Actually, it is more convenient to use a version of Farkas lemma applying to a Euclidean
vector space (with an inner product denoted 〈−,−〉). This version also applies to an infinite
dimensional real Hilbert space; see Theorem 12.12. Recall that in a Euclidean space V the
inner product induces an isomorphism between V and V ′, the space of continuous linear
forms on V . In our case, we need the isomorphism ] from V ′ to V defined such that for
every linear form ω ∈ V ′, the vector ω] ∈ V is uniquely defined by the equation

ω(v) = 〈v, ω]〉 for all v ∈ V .

In Rn, the isomorphism between Rn and (Rn)∗ amounts to transposition: if y ∈ (Rn)∗ is
a linear form and v ∈ Rn is a vector, then

yv = v>y>.

The version of the Farkas–Minskowski lemma in term of an inner product is as follows.

Proposition 14.4. (Farkas–Minkowski) Let V be a Euclidean space of finite dimension with
inner product 〈−,−〉 (more generally, a Hilbert space). For any finite family (a1, . . . , am) of
m vectors ai ∈ V and any vector b ∈ V , for any v ∈ V ,

if 〈ai, v〉 ≥ 0 for i = 1, . . . ,m implies that 〈b, v〉 ≥ 0,

then there exist λ1, . . . , λm ∈ R such that

λi ≥ 0 for i = 1, . . . ,m, and b =
m∑
i=1

λiai,

that is, b belong to the polyhedral cone cone(a1, . . . , am).

Proposition 14.4 is the special case of Theorem 12.12 which holds for real Hilbert spaces.

We can now prove the following theorem.

Theorem 14.5. Let ϕi : Ω→ R be m constraints defined on some open subset Ω of a finite-
dimensional Euclidean vector space V (more generally, a real Hilbert space V ), let J : Ω→ R
be some function, and let U be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m}.
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For any u ∈ U , let
I(u) = {i ∈ {1, . . . ,m} | ϕi(u) = 0},

and assume that the functions ϕi are differentiable at u for all i ∈ I(u) and continuous at u
for all i /∈ I(u). If J is differentiable at u, has a local minimum at u with respect to U , and
if the constraints are qualified at u, then there exist some scalars λi(u) ∈ R for all i ∈ I(u),
such that

J ′u +
∑
i∈I(u)

λi(u)(ϕ′i)u = 0, and λi(u) ≥ 0 for all i ∈ I(u).

The above conditions are called the Karush–Kuhn–Tucker optimality conditions. Equiva-
lently, in terms of gradients, the above conditions are expressed as

∇Ju +
∑
i∈I(u)

λi(u)∇(ϕi)u = 0, and λi(u) ≥ 0 for all i ∈ I(u).

Proof. By Proposition 14.1(2), we have

J ′u(w) ≥ 0 for all w ∈ C(u), (∗1)

and by Proposition 14.2(2), we have C(u) = C∗(u), where

C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}, (∗2)

so (∗1) can be expressed as: for all w ∈ V ,

if w ∈ C∗(u) then J ′u(w) ≥ 0,

or
if − (ϕ′i)u(w) ≥ 0 for all i ∈ I(u), then J ′u(w) ≥ 0. (∗3)

Under the isomorphism ], the vector (J ′u)
] is the gradient ∇Ju, so that

J ′u(w) = 〈w,∇Ju〉, (∗4)

and the vector ((ϕ′i)u)
] is the gradient ∇(ϕi)u, so that

(ϕ′i)u(w) = 〈w,∇(ϕi)u〉. (∗5)

Using Equations (∗4) and (∗5), Equation (∗3) can be written as: for all w ∈ V ,

if 〈w,−∇(ϕi)u〉 ≥ 0 for all i ∈ I(u), then 〈w,∇Ju〉 ≥ 0. (∗6)

By the Farkas–Minkowski proposition (Proposition 14.4), there exist some sacalars λi(u) for
all i ∈ I(u), such that λi(u) ≥ 0 and

∇Ju =
∑
i∈I(u)

λi(u)(−∇(ϕi)u),
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that is

∇Ju +
∑
i∈I(u)

λi(u)∇(ϕi)u = 0,

and using the inverse of the isomorphism ] (which is linear), we get

J ′u +
∑
i∈I(u)

λi(u)(ϕ′i)u = 0,

as claimed.

Since the constraints are inequalities of the form ϕi(x) ≤ 0, there is a way of expressing
the Karush–Kuhn–Tucker optimality conditions, often abbreviated as KKT conditions , in a
way that does not refer explicitly to the index set I(u):

J ′u +
m∑
i=1

λi(u)(ϕ′i)u = 0, (KKT1)

and
m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m. (KKT2)

Indeed, if we have the strict inequality ϕi(u) < 0 (the constraint ϕi is inactive at u),
since all the terms λi(u)ϕi(u) are nonpositive, we must have λi(u) = 0; that is, we only need
to consider the λi(u) for all i ∈ I(u). Yet another way to express the conditions in (KKT2)
is

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m. (KKT′2)

In other words, for any i ∈ {1, . . . ,m}, if ϕi(u) < 0, then λi(u) = 0; that is,

• if the constraint ϕi is inactive at u, then λi(u) = 0.

By contrapositive, if λi(u) 6= 0, then ϕi(u) = 0; that is,

• if λi(u) 6= 0, then the constraint ϕi is active at u.

The conditions in (KKT′2) are referred to as complementary slackness conditions.

The scalars λi(u) are often called generalized Lagrange multipliers . If V = Rn, the
necessary conditions of Theorem 14.5 are expressed as the following system of equations and
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inequalities in the unknowns (u1, . . . , un) ∈ Rn and (λ1, . . . , λm) ∈ Rm
+ :

∂J

∂x1

(u) + λ1
∂ϕ1

∂x1

(u) + · · ·+ λm
∂ϕm
∂x1

(u) = 0

...
...

∂J

∂xn
(u) + λ1

∂ϕn
∂x1

(u) + · · ·+ λm
∂ϕm
∂xn

(u) = 0

λ1ϕ1(u) + · · ·+ λmϕm(u) = 0

ϕ1(u) ≤ 0

...
...

ϕm(u) ≤ 0

λ1, . . . , λm ≥ 0.

Example 14.3. Let J , ϕ1 and ϕ2 be the functions defined on R by

J(x) = x

ϕ1(x) = −x
ϕ2(x) = x− 1.

In this case
U = {x ∈ R | −x ≤ 0, x− 1 ≤ 0} = [0, 1].

Since the constraints are affine, they are automatically qualified for any u ∈ [0, 1]. The
system of equations and inequalities shown above becomes

1− λ1 + λ2 = 0

−λ1x+ λ2(x− 1) = 0

−x ≤ 0

x− 1 ≤ 0

λ1, λ2 ≥ 0.

The first equality implies that λ1 = 1 + λ2. The second equality then becomes

−(1 + λ2)x+ λ2(x− 1) = 0,

which implies that λ2 = −x. Since 0 ≤ x ≤ 1, or equivalently −1 ≤ −x ≤ 0, and λ2 ≥ 0,
we conclude that λ2 = 0 and λ1 = 1 is the solution associated with x = 0, the minimum of
J(x) = x over [0, 1]. Observe that the case x = 1 corresponds to the maximum and not a
minimum of J(x) = x over [0, 1].

Remark: Unless the linear forms (ϕ′i)u for i ∈ I(u) are linearly independent, the λi(u) are
generally not unique. Also, if I(u) = ∅, then the KKT conditions reduce to J ′u = 0. This is
not surprising because in this case u belongs to the relative interior of U .
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If the constraints are all affine equality constraints, then the KKT conditions are a bit
simpler. We will consider this case shortly.

The conditions for the qualification of nonaffine constraints are hard (if not impossible)
to use in practice, because they depend on u ∈ U and on the derivatives (ϕ′i)u. Thus it is
desirable to find simpler conditions. Fortunately, this is possible if the nonaffine functions
ϕi are convex.

Definition 14.6. Let U ⊆ Ω ⊆ V be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where Ω is an open subset of the Euclidean vector space V . If the functions ϕi : Ω→ R are
convex, we say that the constraints are qualified if the following conditions hold:

(a) Either the constraints ϕi are affine for all i = 1, . . . ,m and U 6= ∅, or

(b) There is some vector v ∈ Ω such that the following conditions hold for i = 1, . . . ,m:

(i) ϕi(v) ≤ 0.

(ii) If ϕi is not affine, then ϕi(v) < 0.

The above qualification conditions are known as Slater’s conditions .

Condition (b)(i) also implies that U has nonempty relative interior. If Ω is convex, then
U is also convex. This is because for all u, v ∈ Ω, if u ∈ U and v ∈ U , that is ϕi(u) ≤ 0 and
ϕi(v) ≤ 0 for i = 1, . . . ,m, since the functions ϕi are convex, for all θ ∈ [0, 1] we have

ϕi((1− θ)u+ θv) ≤ (1− θ)ϕi(u) + θϕi(v) since ϕi is convex

≤ 0 since 1− θ ≥ 0, θ ≥ 0, ϕi(u) ≤ 0, ϕi(v) ≤ 0,

and any intersection of convex sets is convex.

� It is important to observe that a nonaffine equality constraint ϕi(u) = 0 is never qualified.

Indeed, ϕi(u) = 0 is equivalent to ϕi(u) ≤ 0 and −ϕi(u) ≤ 0, so if these constraints
are qualified and if ϕi is not affine then there is some nonzero vector v ∈ Ω such that both
ϕi(v) < 0 and −ϕi(v) < 0, which is impossible. For this reason, equality constraints are
often assumed to be affine.

The following theorem yields a more flexible version of Theorem 14.5 for constraints given
by convex functions. If in addition, the function J is also convex, then the KKT conditions
are also a sufficient condition for a local minimum.
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Theorem 14.6. Let ϕi : Ω→ R be m convex constraints defined on some open convex subset
Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V ),
let J : Ω→ R be some function, let U be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

and let u ∈ U be any point such that the functions ϕi and J are differentiable at u.

(1) If J has a local minimum at u with respect to U , and if the constraints are qualified,
then there exist some scalars λi(u) ∈ R, such that the KKT condition hold:

J ′u +
m∑
i=1

λi(u)(ϕ′i)u = 0

and
m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.

Equivalently, in terms of gradients, the above conditions are expressed as

∇Ju +
m∑
i=1

λi(u)∇(ϕi)u = 0,

and
m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.

(2) Conversely, if the restriction of J to U is convex and if there exist scalars (λ1, . . . , λm) ∈
Rm

+ such that the KKT conditions hold, then the function J has a (global) minimum
at u with respect to U .

Proof. (1) It suffices to prove that if the convex constraints are qualified according to Def-
inition 14.6, then they are qualified according to Definition 14.5, since in this case we can
apply Theorem 14.5.

If v ∈ Ω is a vector such that Condition (b) of Definition 14.6 holds and if v 6= u, for any
i ∈ I(u), since ϕi(u) = 0 and since ϕi is convex, by Proposition 4.11(1),

ϕi(v) ≥ ϕi(u) + (ϕ′i)u(v − u) = (ϕ′i)u(v − u),

so if we let w = v − u then
(ϕ′i)u(w) ≤ ϕi(v),

which shows that the nonaffine constraints ϕi for i ∈ I(u) are qualified according to Definition
14.5, by Condition (b) of Definition 14.6.
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If v = u, then the constraints ϕi for which ϕi(u) = 0 must be affine (otherwise, Condition
(b)(ii) of Definition 14.6 would be false), and in this case we can pick w = 0.

(2) Let v be any arbitrary point in the convex subset U . Since ϕi(v) ≤ 0 and λi ≥ 0 for
i = 1, . . . ,m, we have

∑m
i=1 λiϕi(v) ≤ 0, and using the fact that

m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m,

we have λi = 0 if i /∈ I(u) and ϕi(u) = 0 if i ∈ I(u), so we have

J(u) ≤ J(u)−
m∑
i=1

λiϕi(v)

≤ J(u)−
∑
i∈I(u)

λi(ϕi(v)− ϕi(u)) λi = 0 if i /∈ I(u), ϕi(u) = 0 if i ∈ I(u)

≤ J(u)−
∑
i∈I(u)

λi(ϕ
′
i)u(v − u) (by Proposition 4.11)(1)

≤ J(u) + J ′u(v − u) (by the KKT conditions)

≤ J(v) (by Proposition 4.11)(1),

and this shows that u is indeed a (global) minimum of J over U .

It is important to note that when both the constraints, the domain of definition Ω, and
the objective function J are convex , if the KKT conditions hold for some u ∈ U and some
λ ∈ Rm

+ , then Theorem 14.6 implies that J has a (global) minimum at u with respect to U ,
independently of any assumption on the qualification of the constraints.

The above theorem suggests introducing the function L : Ω× Rm
+ → R given by

L(v, λ) = J(v) +
m∑
i=1

λiϕi(v),

with λ = (λ1, . . . , λm). The function L is called the Lagrangian of the Minimization Problem
(P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m.

The KKT conditions of Theorem 14.6 imply that for any u ∈ U , if the vector λ =
(λ1, . . . , λm) is known and if u is a minimum of J on U , then

∂L

∂u
(u) = 0

J(u) = L(u, λ).
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The Lagrangian technique “absorbs” the constraints into the new objective function L and
reduces the problem of finding a constrained minimum of the function J , to the problem
of finding an unconstrained minimum of the function L(v, λ). This is the main point of
Lagrangian duality which will be treated in the next section.

A case that arises often in practice is the case where the constraints ϕi are affine. If so,
the m constraints aix ≤ bi can be expressed in matrix form as Ax ≤ b, where A is an m× n
matrix whose ith row is the row vector ai. The KKT conditions of Theorem 14.6 yield the
following corollary.

Proposition 14.7. If U is given by

U = {x ∈ Ω | Ax ≤ b},

where Ω is an open convex subset of Rn and A is an m× n matrix, and if J is differentiable
at u and J has a local minimum at u, then there exist some vector λ ∈ Rm, such that

∇Ju + A>λ = 0

λi ≥ 0 and if aiu < bi, then λi = 0, i = 1, . . . ,m.

If the function J is convex, then the above conditions are also sufficient for J to have a
minimum at u ∈ U .

Another case of interest is the generalization of the minimization problem involving the
affine constraints of a linear program in standard form, that is, equality constraints Ax = b
with x ≥ 0, where A is an m× n matrix. In our formalism, this corresponds to the 2m+ n
constraints

aix− bi ≤ 0, i = 1, . . . ,m

−aix+ bi ≤ 0, i = 1, . . . ,m

−xj ≤ 0, i = 1, . . . , n.

In matrix form, they can be expressed as A
−A
−In


x1

...
xn

 ≤
 b
−b
0n

 .

If we introduce the generalized Lagrange multipliers λ+
i and λ−i for i = 1, . . . ,m and µj

for j = 1, . . . , n, then the KKT conditions are

∇Ju +
(
A> −A> −In

)λ+

λ−

µ

 = 0n,
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that is,
∇Ju + A>λ+ − A>λ− − µ = 0,

and λ+, λ−, µ ≥ 0, and if aiu < bi, then λ+
i = 0, if −aiu < −bi, then λ−i = 0, and if −uj < 0,

then µj = 0. But the constraints aiu = bi hold for i = 1, . . . ,m, so this places no restriction
on the λ+

i and λ−i , and if we write λi = λ+
i − λ−i , then we have

∇Ju + A>λ = µ,

with µj ≥ 0, and if uj > 0 then µj = 0, for j = 1, . . . , n.

Thus we proved the following proposition (which is slight generalization of Proposition
8.7.2 in Matousek and Gardner [54]).

Proposition 14.8. If U is given by

U = {x ∈ Ω | Ax = b, x ≥ 0},

where Ω is an open convex subset of Rn and A is an m× n matrix, and if J is differentiable
at u and J has a local minimum at u, then there exist two vectors λ ∈ Rm and µ ∈ Rn, such
that

∇Ju + A>λ = µ,

with µj ≥ 0, and if uj > 0 then µj = 0, for j = 1, . . . , n. Equivalently, there exists a vector
λ ∈ Rm such that

(∇Ju)j + (Aj)>λ

{
= 0 if uj > 0

≥ 0 if uj = 0,

where Aj is the jth column of A. If the function J is convex, then the above conditions are
also sufficient for J to have a minimum at u ∈ U .

Yet another special case that arises frequently in practice is the minimization problem
involving the affine equality constraints Ax = b, where A is an m × n matrix, with no
restriction on x. Reviewing the proof of Proposition 14.8, we obtain the following proposition.

Proposition 14.9. If U is given by

U = {x ∈ Ω | Ax = b},

where Ω is an open convex subset of Rn and A is an m× n matrix, and if J is differentiable
at u and J has a local minimum at u, then there exist some vector λ ∈ Rm such that

∇Ju + A>λ = 0.

Equivalently, there exists a vector λ ∈ Rm such that

(∇Ju)j + (Aj)>λ = 0,

where Aj is the jth column of A. If the function J is convex, then the above conditions are
also sufficient for J to have a minimum at u ∈ U .
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Observe that in Proposition 14.9, the λi are just standard Lagrange multipliers, with no
restriction of positivity. Thus, Proposition 14.9 is a slight generalization of Theorem 4.2 that
requires A to have rank m, but in the case of equational affine constraints, this assumption
is unnecessary.

Here is an application of Proposition 14.9 to the interior point method in linear program-
ming.

Example 14.4. In linear programming, the interior point method using a central path uses
a logarithmic barrier function to keep the solutions x ∈ Rn of the equation Ax = b away
from boundaries by forcing x > 0, which means that xi > 0 for all i; see Matousek and
Gardner [54] (Section 7.2). Write

Rn
++ = {x ∈ Rn | xi > 0, i = 1, . . . , n}.

Observe that Rn
++ is open and convex. For any µ > 0, we define the function fµ defined on

Rn
++ by

fµ(x) = c>x+ µ
n∑
i=1

lnxi,

where c ∈ Rn.

We would like to find necessary conditions for fµ to have a maximum on

U = {x ∈ Rn
++ | Ax = b},

or equivalently to solve the following problem:

maximize fµ(x)

subject to

Ax = b

x > 0.

Since maximizing fµ is equivalent to minimizing −fµ, by Proposition 14.9, if x is an
optimal of the above problem then there is some y ∈ Rm such that

−∇fµ(x) + A>y = 0.

Since

∇fµ(x) =

c1 + µ
x1

...
cn + µ

xn

 ,

we obtain the equation

c+ µ


1
x1
...
1
xn

 = A>y.
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To obtain a more convenient formulation, we define s ∈ Rn
++ such that

s = µ


1
x1
...
1
xn


which implies that (

s1x1 · · · snxn
)

= µ1>n ,

and we obtain the following necessary conditions for fµ to have a maximum:

Ax = b

A>y − s = c(
s1x1 · · · snxn

)
= µ1>n

s, x > 0.

It is not hard to show that if the primal linear program with objective function c>x
and equational constraints Ax = b and the dual program with objective function b>y and
inequality constraints A>y ≥ c have interior feasible points x and y, which means that x > 0
and s > 0 (where s = A>y − c), then the above system of equations has a unique solution
such that x is the unique maximizer of fµ on U ; see Matousek and Gardner [54] (Section
7.2, Lemma 7.2.1).

A particularly important application of Proposition 14.9 is the situation where Ω = Rn.

14.4 Equality Constrained Minimization

In this section we consider the following Program (P ):

minimize J(v)

subject to Av = b, v ∈ Rn,

where J is a convex differentiable function and A is an m × n matrix of rank m < n (the
number of equality constraints is less than the number of variables, and these constraints
are independent), and b ∈ Rm.

According to Proposition 14.9 (with Ω = Rn), Program (P ) has a minimum at x ∈ Rn if
and only if there exist some Lagrange multipliers λ ∈ Rm such that the following equations
hold:

Ax = b (pfeasibilty)

∇Jx + A>λ = 0. (dfeasibility)
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The set of linear equations Ax = b is called the primal feasibility equations and the set of
(generally nonlinear) equations ∇Jx +A>λ = 0 is called the set of dual feasibility equations .

In general, it is impossible to solve these equations analytically, so we have to use numer-
ical approximation procedures, most of which are variants of Newton’s method. In special
cases, for example if J is a quadratic functional, the dual feasibility equations are also linear,
a case that we consider in more detail.

Suppose J is a convex quadratic functional of the form

J(x) =
1

2
x>Px+ q>x+ r,

where P is a n× n symmetric positive semidefinite matrix, q ∈ Rn and r ∈ R. In this case

∇Jx = Px+ q,

so the feasibility equations become

Ax = b

Px+ q + A>λ = 0,

which in matrix form become (
P A>

A 0

)(
x
λ

)
=

(
−q
b

)
. (KKT-eq)

The matrix of the linear system is usually called the KKT-matrix . Observe that the
KKT matrix was already encountered in Proposition 6.3 with a different notation; there we
had P = A−1, A = B>, q = b, and b = f .

If the KKT matrix is invertible, then its unique solution (x∗, λ∗) yields a unique minimum
x∗ of Problem (P ). If the KKT matrix is singular but the System (KKT-eq) is solvable, then
any solution (x∗, λ∗) yields a minimum x∗ of Problem (P ).

Proposition 14.10. If the System (KKT-eq) is not solvable, then Program (P ) is unbounded
below.

Proof. We use the fact shown in Section 10.8 of Volume I, that a linear system Bx = c has
no solution iff there is some y that B>y = 0 and y>c 6= 0. By changing y to −y if necessary,
we may assume that y>c > 0. We apply this fact to the linear system (KKT-eq), so B is the
KKT-matrix, which is symmetric, and we obtain the condition that there exist v ∈ Rn and
λ ∈ Rm such that

Pv + A>λ = 0, Av = 0, −q>v + b>λ > 0.

Since the m × n matrix A has rank m and b ∈ Rm, the system Ax = b, is solvable, so for
any feasible x0 (which means that Ax0 = b), since Av = 0, the vector x = x0 + tv is also
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a feasible solution for all t ∈ R. Using the fact that Pv = −A>λ, v>P = −λ>A, Av = 0,
x>0 A

> = b>, and P is symmetric, we have

J(x0 + tv) = J(x0) + (v>Px0 + q>v)t+ (1/2)(v>Pv)t2

= J(x0) + (x>0 Pv + q>v)t− (1/2)(λ>Av)t2

= J(x0) + (−x>0 A>λ+ q>v)t

= J(x0)− (b>λ− q>v)t,

and since −q>v + b>λ > 0, the above expression goes to −∞ when t goes to +∞.

It is obviously important to have criteria to decide whether the KKT-matrix is invertible.
There are indeed such criteria, as pointed in Boyd and Vandenberghe [18] (Chapter 10,
Exercise 10.1).

Proposition 14.11. The invertibility of the KKT-matrix(
P A>

A 0

)
is equivalent to the following conditions:

(1) For all x ∈ Rn, if Ax = 0 with x 6= 0, then x>Px > 0; that is, P is positive definite
on the kernel of A.

(2) The kernels of A and P only have 0 in common ((KerA) ∩ (KerP ) = {0}).

(3) There is some n×(n−m) matrix F such that Im(F ) = Ker (A) and F>PF is symmetric
positive definite.

(4) There is some symmetric positive semidefinite matrix Q such that P +A>QA is sym-
metric positive definite. In fact, Q = I works.

Proof sketch. Recall from Proposition 5.11 in Volume I that a square matrix B is invertible
iff its kernel is reduced to {0}; equivalently, for all x, if Bx = 0, then x = 0. Assume that
Condition (1) holds. We have (

P A>

A 0

)(
v
w

)
=

(
0
0

)
iff

Pv + A>w = 0, Av = 0. (∗)
We deduce that

v>Pv + v>A>w = 0,

and since
v>A>w = (Av)>w = 0w = 0,
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we obtain v>Pv = 0. Since Condition (1) holds, because v ∈ KerA, we deduce that v = 0.
Then A>w = 0, but since the m × n matrix A has rank m, the n ×m matrix A> also has
rank m, so its columns are linearly independent, and so w = 0. Therefore the KKT-matrix
is invertible.

Conversely, assume that the KKT-matrix is invertible, yet the assumptions of Condition
(1) fail. This means there is some v 6= 0 such that Av = 0 and v>Pv = 0. We claim that
Pv = 0. This is because if P is a symmetric positive semidefinite matrix, then for any v, we
have v>Pv = 0 iff Pv = 0.

If Pv = 0, then obviously v>Pv = 0, so assume the converse, namely v>Pv = 0. Since
P is a symmetric positive semidefinite matrix, it can be diagonalized as

P = R>ΣR,

where R is an orthogonal matrix and Σ is a diagonal matrix

Σ = diag(λ1, . . . , λs, 0, . . . , 0),

where s is the rank of P and λ1 ≥ · · · ≥ λs > 0. Then v>Pv = 0 is equivalent to

v>R>ΣRv = 0,

equivalently

(Rv)>ΣRv = 0.

If we write Rv = y, then we have

0 = (Rv)>ΣRv = y>Σy =
s∑
i=1

λiy
2
i ,

and since λi > 0 for i = 1, . . . , s, this implies that yi = 0 for i = 1, . . . , s. Consequently,
Σy = ΣRv = 0, and so Pv = R>ΣRv = 0, as claimed. Since v 6= 0, the vector (v, 0) is a
nontrivial solution of Equations (∗), a contradiction of the invertibility assumption of the
KKT-matrix.

Observe that we proved that Av = 0 and Pv = 0 iff Av = 0 and v>Pv = 0, so we easily
obtain the fact that Condition (2) is equivalent to the invertibility of the KKT-matrix. Parts
(3) and (4) are left as an exercise.

In particular, if P is positive definite, then Proposition 14.11(4) applies, as we already
know from Proposition 6.3. In this case, we can solve for x by elimination. We get

x = −P−1(A>λ+ q), where λ = −(AP−1A>)−1(b+ AP−1q).
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In practice, we do not invert P and AP−1A>. Instead, we solve the linear systems

Pz = q

PE = A>

(AE)λ = −(b+ Az)

Px = −(A>λ+ q).

Observe that (AP−1A>)−1 is the Schur complement of P in the KKT matrix.

Since the KKT-matrix is symmetric, if it is invertible, we can convert it to LDL> form
using Proposition 7.6 of Volume I. This method is only practical when the problem is small
or when A and P are sparse.

If the KKT-matrix is invertible but P is not, then we can use a trick involving Proposition
14.11. We find a symmetric positive semidefinite matrix Q such that P+A>QA is symmetric
positive definite, and since a solution (v, w) of the KKT-system should have Av = b, we also
have A>QAv = A>Qb, so the KKT-system is equivalent to(

P + A>QA A>

A 0

)(
v
w

)
=

(
−q + A>Qb

b

)
,

and since P +A>QA is symmetric positive definite, we can solve this system by elimination.

Another way to solve Problem (P ) is to use variants of Newton’s method as described
in Section 13.9 dealing with equality constraints. Such methods are discussed extensively in
Boyd and Vandenberghe [18] (Chapter 10, Sections 10.2-10.4).

There are two variants of this method:

(1) The first method, called feasible start Newton method , assumes that the starting point
u0 is feasible, which means that Au0 = b. The Newton step dnt is a feasible direction,
which means that Adnt = 0.

(2) The second method, called infeasible start Newton method , does not assume that the
starting point u0 is feasible, which means that Au0 = b may not hold. This method is
a little more complicated than the other method.

We only briefly discuss the feasible start Newton method, leaving it to the reader to
consult Boyd and Vandenberghe [18] (Chapter 10, Section 10.3) for a discussion of the
infeasible start Newton method.

The Newton step dnt is the solution of the linear system(
∇2J(x) A>

A 0

)(
dnt

w

)
=

(
−∇Jx

0

)
.

The Newton decrement λ(x) is defined as in Section 13.9 as

λ(x) = (d>nt∇2J(x) dnt)
1/2 =

(
(∇Jx)>(∇2J(x))−1∇Jx

)1/2
.
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Newton’s method with equality constraints (with feasible start) consists of the following
steps: Given a starting point u0 ∈ dom(J) with Au0 = b, and a tolerance ε > 0 do:

repeat

(1) Compute the Newton step and decrement
dnt,k = −(∇2J(uk))

−1∇Juk and λ(uk)
2 = (∇Juk)>(∇2J(uk))

−1∇Juk .

(2) Stopping criterion. quit if λ(uk)
2/2 ≤ ε.

(3) Line Search. Perform an exact or backtracking line search to find ρk.

(4) Update. uk+1 = uk + ρkdnt,k.

Newton’s method requires that the KKT-matrix be invertible. Under some mild assump-
tions, Newton’s method (with feasible start) converges; see Boyd and Vandenberghe [18]
(Chapter 10, Section 10.2.4).

We now give an example illustrating Proposition 14.7, the Support Vector Machine (ab-
breviated as SVM).

14.5 Hard Margin Support Vector Machine; Version I

In this section we describe the following classification problem, or perhaps more accurately,
separation problem (into two classes). Suppose we have two nonempty disjoint finite sets of
p blue points {ui}pi=1 and q red points {vj}qj=1 in Rn (for simplicity, you may assume that
these points are in the plane, that is, n = 2). Our goal is to find a hyperplane H of equation
w>x− b = 0 (where w ∈ Rn is a nonzero vector and b ∈ R), such that all the blue points ui
are in one of the two open half-spaces determined by H, and all the red points vj are in the
other open half-space determined by H; see Figure 14.11.

Without loss of generality, we may assume that

w>ui − b > 0 for i = 1, . . . , p

w>vj − b < 0 for j = 1, . . . , q.

Of course, separating the blue and the red points may be impossible, as we see in Figure
14.12 for four points where the line segments (u1, u2) and (v1, v2) intersect. If a hyper-
plane separating the two subsets of blue and red points exists, we say that they are linearly
separable.

Remark: Write m = p + q. The reader should be aware that in machine learning the
classification problem is usually defined as follows. We assign m so-called class labels yk = ±1
to the data points in such a way that yi = +1 for each blue point ui, and yp+j = −1 for
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Figure 14.11: Two examples of the SVM separation problem. The left figure is SVM in R2,
while the right figure is SVM in R3.

each red point vj, and we denote the m points by xk, where xk = uk for k = 1, . . . , p and
xk = vk−p for k = p+ 1, . . . , p+ q. Then the classification constraints can be written as

yk(w
>xk − b) > 0 for k = 1, . . . ,m.

The set of pairs {(x1, y1), . . . , (xm, ym)} is called a set of training data (or training set).

In the sequel, we will not use the above method, and we will stick to our two subsets of
p blue points {ui}pi=1 and q red points {vj}qj=1.

Since there are infinitely many hyperplanes separating the two subsets (if indeed the two
subsets are linearly separable), we would like to come up with a “good” criterion for choosing
such a hyperplane.

The idea that was advocated by Vapnik (see Vapnik [81]) is to consider the distances
d(ui, H) and d(vj, H) from all the points to the hyperplane H, and to pick a hyperplane
H that maximizes the smallest of these distances. In machine learning this strategy is
called finding a maximal margin hyperplane, or hard margin support vector machine, which
definitely sounds more impressive.

Since the distance from a point x to the hyperplane H of equation w>x− b = 0 is

d(x,H) =
|w>x− b|
‖w‖

,

(where ‖w‖ =
√
w>w is the Euclidean norm of w), it is convenient to temporarily assume

that ‖w‖ = 1, so that

d(x,H) = |w>x− b|.
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Figure 14.12: Two examples in which it is impossible to find purple hyperplanes which
separate the red and blue points.

See Figure 14.13. Then with our sign convention, we have

d(ui, H) = w>ui − b i = 1, . . . , p

d(vj, H) = −w>vj + b j = 1, . . . , q.

If we let
δ = min{d(ui, H), d(vj, H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q},

then the hyperplane H should chosen so that

w>ui − b ≥ δ i = 1, . . . , p

−w>vj + b ≥ δ j = 1, . . . , q,

and such that δ > 0 is maximal. The distance δ is called the margin associated with the
hyperplane H. This is indeed one way of formulating the two-class separation problem
as an optimization problem with a linear objective function J(δ, w, b) = δ, and affine and
quadratic constraints (SVMh1):

maximize δ

subject to

w>ui − b ≥ δ i = 1, . . . , p

− w>vj + b ≥ δ j = 1, . . . , q

‖w‖ ≤ 1.
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Figure 14.13: In R3, the distance from a point to the plane w>x − b = 0 is given by the
projection onto the normal w.

Observe that the Problem (SVMh1) has an optimal solution δ > 0 iff the two subsets are
linearly separable. We used the constraint ‖w‖ ≤ 1 rather than ‖w‖ = 1 because the former
is qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then ‖w‖ = 1,
as shown in the following proposition.

Proposition 14.12. If (w, b, δ) is an optimal solution of Problem (SVMh1), so in particular
δ > 0, then we must have ‖w‖ = 1.

Proof. First, if w = 0, then we get the two inequalities

−b ≥ δ, b ≥ δ,

which imply that b ≤ −δ and b ≥ δ for some positive δ, which is impossible. But then, if
w 6= 0 and ‖w‖ < 1, by dividing both sides of the inequalities by ‖w‖ < 1 we would obtain
the better solution (w/ ‖w‖ , b/ ‖w‖ , δ/ ‖w‖), since ‖w‖ < 1 implies that δ/ ‖w‖ > δ.

We now prove that if the two subsets are linearly separable, then Problem (SVMh1) has
a unique optimal solution.

Theorem 14.13. If two disjoint subsets of p blue points {ui}pi=1 and q red points {vj}qj=1

are linearly separable, then Problem (SVMh1) has a unique optimal solution consisting of a
hyperplane of equation w>x − b = 0 separating the two subsets with maximum margin δ.
Furthermore, if we define c1(w) and c2(w) by

c1(w) = min
1≤i≤p

w>ui

c2(w) = max
1≤j≤q

w>vj,
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then w is the unique maximum of the function

ρ(w) =
c1(w)− c2(w)

2

over the convex subset U of Rn given by the inequalities

w>ui − b ≥ δ i = 1, . . . , p

−w>vj + b ≥ δ j = 1, . . . , q

‖w‖ ≤ 1,

and

b =
c1(w) + c2(w)

2
.

Proof. Our proof is adapted from Vapnik [81] (Chapter 10, Theorem 10.1). For any sepa-
rating hyperplane H, since

d(ui, H) = w>ui − b i = 1, . . . , p

d(vj, H) = −w>vj + b j = 1, . . . , q,

and since the smallest distance to H is

δ = min{d(ui, H), d(vj, H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q}
= min{w>ui − b, −w>vj + b | 1 ≤ i ≤ p, 1 ≤ j ≤ q}
= min{min{w>ui − b | 1 ≤ i ≤ p},min{−w>vj + b | 1 ≤ j ≤ q}}
= min{min{w>ui | 1 ≤ i ≤ p} − b},min{−w>vj | 1 ≤ j ≤ q}+ b}
= min{min{w>ui | 1 ≤ i ≤ p} − b},−max{w>vj | 1 ≤ j ≤ q}+ b}
= min{c1(w)− b,−c2(w) + b},

in order for δ to be maximal we must have

c1(w)− b = −c2(w) + b,

which yields

b =
c1(w) + c2(w)

2
.

In this case,

c1(w)− b =
c1(w)− c2(w)

2
= −c2(w) + b,

so the maximum margin δ is indeed obtained when ρ(w) = (c1(w) − c2(w))/2 is maximal
over U . Conversely, it is easy to see that any hyperplane of equation w>x− b = 0 associated
with a w maximizing ρ over U and b = (c1(w) + c2(w))/2 is an optimal solution.
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It remains to show that an optimal separating hyperplane exists and is unique. Since the
unit ball is compact, U (as defined in Theorem 14.13) is compact, and since the function
w 7→ ρ(w) is continuous, it achieves its maximum for some w0 such that ‖w0‖ ≤ 1. Actually,
we must have ‖w0‖ = 1, since otherwise, by the reasoning used in Proposition 14.12, w0/ ‖w0‖
would be an even better solution. Therefore, w0 is on the boundary of U . But ρ is a concave
function (as an infimum of affine functions), so if it had two distinct maxima w0 and w′0 with
‖w0‖ = ‖w′0‖ = 1, these would be global maxima since U is also convex, so we would have
ρ(w0) = ρ(w′0) and then ρ would also have the same value along the segment (w0, w

′
0) and

in particular at (w0 + w′0)/2, an interior point of U , a contradiction.

We can proceed with the above formulation (SVMh1) but there is a way to reformulate
the problem so that the constraints are all affine, which might be preferable since they will
be automatically qualified.

14.6 Hard Margin Support Vector Machine; Version II

Since δ > 0 (otherwise the data would not be separable into two disjoint sets), we can divide
the affine constraints by δ to obtain

w′>ui − b′ ≥ 1 i = 1, . . . , p

−w′>vj + b′ ≥ 1 j = 1, . . . , q,

except that now, w′ is not necessarily a unit vector. To obtain the distances to the hyperplane
H, we need to divide by ‖w′‖ and then we have

w′>ui − b′

‖w′‖
≥ 1

‖w′‖
i = 1, . . . , p

−w′>vj + b′

‖w′‖
≥ 1

‖w′‖
j = 1, . . . , q,

which means that the shortest distance from the data points to the hyperplane is 1/ ‖w′‖.
Therefore, we wish to maximize 1/ ‖w′‖, that is, to minimize ‖w′‖, so we obtain the following
optimization Problem (SVMh2):

Hard margin SVM (SVMh2):

minimize
1

2
‖w‖2

subject to

w>ui − b ≥ 1 i = 1, . . . , p

− w>vj + b ≥ 1 j = 1, . . . , q.
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The objective function J(w) = 1/2 ‖w‖2 is convex, so Proposition 14.7 applies and gives
us a necessary and sufficient condition for having a minimum in terms of the KKT conditions.
First observe that the trivial solution w = 0 is impossible, because the blue constraints would
be

−b ≥ 1,

that is b ≤ −1, and the red constraints would be

b ≥ 1,

but these are contradictory. Our goal is to find w and b, and optionally, δ. We proceed
in four steps first demonstrated on the following example.

Suppose that p = q = n = 2, so that we have two blue points

u>1 = (u11, u12) u>2 = (u21, u22),

two red points
v>1 = (v11, v12) v>2 = (v21, v22),

and
w> = (w1, w2).

Step 1: Write the constraints in matrix form. Let

C =


−u11 −u12 1
−u21 −u22 1
v11 v12 −1
v21 v22 −1

 d =


−1
−1
−1
−1

 . (M)

The constraints become

C

(
w
b

)
=


−u11 −u12 1
−u21 −u22 1
v11 v12 −1
v21 v22 −1


w1

w2

b

 ≤

−1
−1
−1
−1

 . (C)

Step 2: Write the objective function in matrix form.

J(w1, w2, b) =
1

2

(
w1 w2 b

)1 0 0
0 1 0
0 0 0

w1

w2

b

 . (O)

Step 3: Apply Proposition 14.7 to solve for w in terms of λ and µ. We obtainw1

w2

0

+

−u11 −u21 v11 v21

−u12 −u22 v12 v22

1 1 −1 −1



λ1

λ2

µ1

µ2

 =

0
0
0

 ,
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i.e.

∇J(w,b) + C>
(
λ
µ

)
= 03, λ> = (λ1, λ2), µ> = (µ1, µ2).

Then w1

w2

0

 =

u11 u21 −v11 −v21

u12 u22 −v12 −v22

−1 −1 1 1



λ1

λ2

µ1

µ2

 ,

which implies

w =

(
w1

w2

)
= λ1

(
u11

u12

)
+ λ2

(
u21

u22

)
− µ1

(
v11

v12

)
− µ2

(
v21

v22

)
(∗1)

with respect to
µ1 + µ2 − λ1 − λ2 = 0. (∗2)

Step 4: Rewrite the constraints at (C) using (∗1). In particular C

(
w
b

)
≤ d becomes


−u11 −u12 1
−u21 −u22 1
v11 v12 −1
v21 v22 −1


u11 u21 −v11 −v21 0
u12 u22 −v21 −v22 0
0 0 0 0 1



λ1

λ2

µ1

µ2

b

 ≤

−1
−1
−1
−1

 .

Rewriting the previous equation in “block” format gives us

−


−u11 −u12

−u21 −u22

v11 v12

v21 v22

(−u11 −u21 v11 v21

−u12 −u22 v21 v22

)
λ1

λ2

µ1

µ2

+ b


1
1
−1
−1

+


1
1
1
1

 ≤


0
0
0
0

 ,

which with the definition

X =

(
−u11 −u21 v11 v21

−u12 −u22 v21 v22

)
yields

−X>X
(
λ
µ

)
+ b

(
12

−12

)
+ 14 ≤ 04. (∗3)

Let us now consider the general case.

Step 1: Write the constraints in matrix form. First we rewrite the constraints as

−u>i w + b ≤ −1 i = 1, . . . , p

v>j w − b ≤ −1 j = 1, . . . , q,
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and we get the (p+ q)× (n+ 1) matrix C and the vector d ∈ Rp+q given by

C =



−u>1 1
...

...
−u>p 1
v>1 −1
...

...
v>q −1


, d =

−1
...
−1

 ,

so the set of inequality constraints is

C

(
w
b

)
≤ d.

Step 2: The objective function in matrix form is given by

J(w, b) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
.

Note that the corresponding matrix is symmetric positive semidefinite, but it is not invertible.
Thus, the function J is convex but not strictly convex. This will cause some minor trouble
in finding the dual function of the problem.

Step 3: If we introduce the generalized Lagrange multipliers λ ∈ Rp and µ ∈ Rq,
according to Proposition 14.7, the first KKT condition is

∇J(w,b) + C>
(
λ
µ

)
= 0n+1,

with λ ≥ 0, µ ≥ 0. By the result of Example 3.5,

∇J(w,b) =

(
In 0n
0>n 0

)(
w
b

)
=

(
w
0

)
,

so we get (
w
0

)
= −C>

(
λ
µ

)
,

that is, (
w
0

)
=

(
u1 · · · up −v1 · · · −vq
−1 · · · −1 1 · · · 1

)(
λ
µ

)
.

Consequently,

w =

p∑
i=1

λiui −
q∑
j=1

µjvj, (∗1)
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and
q∑
j=1

µj −
p∑
i=1

λi = 0. (∗2)

Step 4: Rewrite the constraint using (∗1). Plugging the above expression for w into the

constraints C

(
w
b

)
≤ d we get



−u>1 1
...

...
−u>p 1
v>1 −1
...

...
v>q −1


(
u1 · · · up −v1 · · · −vq 0n
0 · · · 0 0 · · · 0 1

)λµ
b

 ≤
−1

...
−1

 ,

so if let X be the n× (p+ q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
,

we obtain

w = −X
(
λ
µ

)
, (∗′1)

and the above inequalities are written in matrix form as(
X>

1p
−1q

)(
−X 0n
0>p+q 1

)λµ
b

 ≤ −1p+q;

that is,

−X>X
(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q ≤ 0p+q. (∗3)

Equivalently, the ith inequality is

−
p∑
j=1

u>i ujλj +

q∑
k=1

u>i vkµk + b+ 1 ≤ 0 i = 1, . . . , p,

and the (p+ j)th inequality is

p∑
i=1

v>j uiλi −
q∑

k=1

v>j vkµk − b+ 1 ≤ 0 j = 1, . . . , q.

We also have λ ≥ 0, µ ≥ 0. Furthermore, if the ith inequality is inactive, then λi = 0, and if
the (p+ j)th inequality is inactive, then µj = 0. Since the constraints are affine and since J
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is convex, if we can find λ ≥ 0, µ ≥ 0, and b such that the inequalities in (∗3) are satisfied,
and λi = 0 and µj = 0 when the corresponding constraint is inactive, then by Proposition
14.7 we have an optimum solution.

Remark: The second KKT condition can be written as

(
λ> µ>

)(
−X>X

(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q

)
= 0;

that is,

−
(
λ> µ>

)
X>X

(
λ
µ

)
+ b
(
λ> µ>

)( 1p
−1q

)
+
(
λ> µ>

)
1p+q = 0.

Since (∗2) says that
∑p

i=1 λi =
∑q

j=1 µj, the second term is zero, and by (∗′1) we get

w>w =
(
λ> µ>

)
X>X

(
λ
µ

)
=

p∑
i=1

λi +

q∑
j=1

µj.

Thus, we obtain a simple expression for ‖w‖2 in terms of λ and µ.

The vectors ui and vj for which the i-th inequality is active and the (p+ j)th inequality
is active are called support vectors . For every vector ui or vj that is not a support vector,
the corresponding inequality is inactive, so λi = 0 and µj = 0. Thus we see that only the
support vectors contribute to a solution. If we can guess which vectors ui and vj are support
vectors, namely, those for which λi 6= 0 and µj 6= 0, then for each support vector ui we have
an equation

−
p∑
j=1

u>i ujλj +

q∑
k=1

u>i vkµk + b+ 1 = 0,

and for each support vector vj we have an equation

p∑
i=1

v>j uiλi −
q∑

k=1

v>j vkµk − b+ 1 = 0,

with λi = 0 and µj = 0 for all non-support vectors, so together with the Equation (∗2) we
have a linear system with an equal number of equations and variables, which is solvable if
our separation problem has a solution. Thus, in principle we can find λ, µ, and b by solving
a linear system.

Remark: We can first solve for λ and µ (by eliminating b), and by (∗1) and since w 6= 0,
there is a least some nonzero λi0 and thus some nonzero µj0 , so the corresponding inequalities
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are equations

−
p∑
j=1

u>i0ujλj +

q∑
k=1

u>i0vkµk + b+ 1 = 0

p∑
i=1

v>j0uiλi −
q∑

k=1

v>j0vkµk − b+ 1 = 0,

so b is given in terms of λ and µ by

b =
1

2
(u>i0 + v>j0)

(
p∑
i=1

λiui −
p∑
j=1

µjvj

)
.

Using the dual of the Lagrangian, we can solve for λ and µ, but typically b is not determined,
so we use the above method to find b.

The above nondeterministic procedure in which we guess which vectors are support vec-
tors is not practical. We will see later that a practical method for solving for λ and µ consists
in maximizing the dual of the Lagrangian.

If w is an optimal solution, then δ = 1/ ‖w‖ is the shortest distance from the support
vectors to the separating hyperplane Hw,b of equation w>x − b = 0. If we consider the two
hyperplanes Hw,b+1 and Hw,b−1 of equations

w>x− b− 1 = 0 and w>x− b+ 1 = 0,

then Hw,b+1 and Hw,b−1 are two hyperplanes parallel to the hyperplane Hw,b and the distance
between them is 2δ. Furthermore, Hw,b+1 contains the support vectors ui, Hw,b−1 contains
the support vectors vj, and there are no data points ui or vj in the open region between
these two hyperplanes containing the separating hyperplane Hw,b (called a “slab” by Boyd
and Vandenberghe; see [18], Section 8.6). This situation is illustrated in Figure 14.14.

Even if p = 1 and q = 2, a solution is not obvious. In the plane, there are four possibilities:

(1) If u1 is on the segment (v1, v2), there is no solution.

(2) If the projection h of u1 onto the line determined by v1 and v2 is between v1 and v2,
that is h = (1− α)v1 + α2v2 with 0 ≤ α ≤ 1, then it is the line parallel to v2 − v1 and
equidistant to u and both v1 and v2, as illustrated in Figure 14.15.

(3) If the projection h of u1 onto the line determined by v1 and v2 is to the right of v2, that
is h = (1− α)v1 + α2v2 with α > 1, then it is the bisector of the line segment (u1, v2).

(4) If the projection h of u1 onto the line determined by v1 and v2 is to the left of v1, that
is h = (1− α)v1 + α2v2 with α < 0, then it is the bisector of the line segment (u1, v1).



428 CHAPTER 14. INTRODUCTION TO NONLINEAR OPTIMIZATION

vv

v

12

j

v

v

v

3

4

5

w   x - b
 = 0

w  x - b
 + 1 = 0

T

T

w  x - b
 - 1

 = 0

T

u

u

u

u

u1

2

3
4

i

Figure 14.14: In R3, the solution to Hard Margin SVMh2 is the purple plane sandwiched
between the red plane w>x− b + 1 = 0 and the blue plane w>x− b− 1 = 0, each of which
contains the appropriate support vectors ui and vj.

If p = q = 1, we can find a solution explicitly. Then (∗2) yields

λ = µ,

and if we guess that the constraints are active, the corresponding equality constraints are

−u>uλ+ u>vµ+ b+ 1 = 0

u>vλ− v>vµ− b+ 1 = 0,

so we get

(−u>u+ u>v)λ+ b+ 1 = 0

(u>v − v>v)λ− b+ 1 = 0,

Adding up the two equations we find

(2u>v − u>u− v>v)λ+ 2 = 0,

that is

λ =
2

(u− v)>(u− v)
.

By subtracting the first equation from the second, we find

(u>u− v>v)λ− 2b = 0,
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u

v2

v1

Figure 14.15: The purple line, which is the bisector of the altitude of the isosceles triangle,
separates the two red points from the blue point in a manner which satisfies Hard Margin
SVMh2.

which yields

b = λ
(u>u− v>v)

2
=

u>u− v>v
(u− v)>(u− v)

.

Then by (∗1) we obtain

w =
2(u− v)

(u− v)>(u− v)
.

We verify easily that

2(u1 − v1)x1 + · · ·+ 2(un − vn)xn = (u2
1 + · · ·+ u2

n)− (v2
1 + · · ·+ v2

n)

is the equation of the bisector hyperplane between u and v; see Figure 14.16.

In the next section we will derive the dual of the optimization problem discussed in this
section. We will also consider a more flexible solution involvlng a soft margin.

14.7 Lagrangian Duality and Saddle Points

In this section we investigate methods to solve the Minimization Problem (P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m.

It turns out that under certain conditions the original Problem (P ), called primal problem,
can be solved in two stages with the help another Problem (D), called the dual problem. The
Dual Problem (D) is a maximization problem involving a function G, called the Lagrangian
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u

p

v

Figure 14.16: In R3, the solution to Hard Margin SVMh2 for the points u and v is the purple
perpendicular planar bisector of u− v.

dual , and it is obtained by minimizing the Lagrangian L(v, µ) of Problem (P ) over the
variable v ∈ Rn, holding µ fixed, where L : Ω× Rm

+ → R is given by

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),

with µ ∈ Rm
+ .

The two steps of the method are:

(1) Find the dual function µ 7→ G(µ) explictly by solving the minimization problem of
finding the minimum of L(v, µ) with respect to v ∈ Ω, holding µ fixed. This is an
unconstrained minimization problem (with v ∈ Ω). If we are lucky, a unique minimizer
uµ such that G(µ) = L(uµ, µ) can be found. We will address the issue of uniqueness
later on.

(2) Solve the maximization problem of finding the maximum of the function µ 7→ G(µ)
over all µ ∈ Rm

+ . This is basically an unconstrained problem, except for the fact that
µ ∈ Rm

+ .

If Steps (1) and (2) are successful, under some suitable conditions on the function J and
the constraints ϕi (for example, if they are convex), for any solution λ ∈ Rm

+ obtained in
Step (2), the vector uλ obtained in Step (1) is an optimal solution of Problem (P ). This is
proven in Theorem 14.17.

In order to prove Theorem 14.17, which is our main result, we need two intermediate
technical results of independent interest involving the notion of saddle point.
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The local minima of a function J : Ω → R over a domain U defined by inequality con-
straints are saddle points of the Lagrangian L(v, µ) associated with J and the constraints
ϕi. Then, under some mild hypotheses, the set of solutions of the Minimization Problem
(P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

coincides with the set of first arguments of the saddle points of the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v).

This is proved in Theorem 14.15. To prove Theorem 14.17, we also need Proposition 14.14,
a basic property of saddle points.

Definition 14.7. Let L : Ω ×M → R be a function defined on a set of the form Ω ×M ,
where Ω and M are open subsets of two normed vector spaces. A point (u, λ) ∈ Ω×M is a
saddle point of L if u is a minimum of the function L(−, λ) : Ω → R given by v 7→ L(v, λ)
for all v ∈ Ω and λ fixed, and λ is a maximum of the function L(u,−) : M → R given by
µ 7→ L(u, µ) for all µ ∈M and u fixed; equivalently,

sup
µ∈M

L(u, µ) = L(u, λ) = inf
v∈Ω

L(v, λ).

Note that the order of the arguments u and λ is important. The second set M will be the
set of generalized multipliers, and this is why we use the symbol M . Typically, M = Rm

+ .

A saddle point is often depicted as a mountain pass, which explains the terminology; see
Figure 14.17. However, this is a bit misleading since other situations are possible; see Figure
14.18.

Proposition 14.14. If (u, λ) is a saddle point of a function L : Ω×M → R, then

sup
µ∈M

inf
v∈Ω

L(v, µ) = L(u, λ) = inf
v∈Ω

sup
µ∈M

L(v, µ).

Proof. First we prove that the following inequality always holds:

sup
µ∈M

inf
v∈Ω

L(v, µ) ≤ inf
v∈Ω

sup
µ∈M

L(v, µ). (∗1)

Pick any w ∈ Ω and any ρ ∈ M . By definition of inf (the greatest lower bound) and sup
(the least upper bound), we have

inf
v∈Ω

L(v, ρ) ≤ L(w, ρ) ≤ sup
µ∈M

L(w, µ).
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> > 

x
y

L(u, λ)

Figure 14.17: A three-dimensional rendition of a saddle point L(u, λ) for the function
L(u, λ) = u2 − λ2. The plane x = u provides a maximum as the apex of a downward
opening parabola, while the plane y = λ provides a minimum as the apex of an upward
opening parabola.

The cases where infv∈Ω L(v, ρ) = −∞ or where supµ∈M L(w, µ) = +∞ may arise, but this is
not a problem. Since

inf
v∈Ω

L(v, ρ) ≤ sup
µ∈M

L(w, µ)

and the right-hand side is independent of ρ, it is an upper bound of the left-hand side for
all ρ, so

sup
µ∈M

inf
v∈Ω

L(v, µ) ≤ sup
µ∈M

L(w, µ).

Since the left-hand side is independent of w, it is a lower bound for the right-hand side for
all w, so we obtain (∗1):

sup
µ∈M

inf
v∈Ω

L(v, µ) ≤ inf
v∈Ω

sup
µ∈M

L(v, µ).

To obtain the reverse inequality, we use the fact that (u, λ) is a saddle point, so

inf
v∈Ω

sup
µ∈M

L(v, µ) ≤ sup
µ∈M

L(u, µ) = L(u, λ)

and
L(u, λ) = inf

v∈Ω
L(v, λ) ≤ sup

µ∈M
inf
v∈Ω

L(v, µ),

and these imply that
inf
v∈Ω

sup
µ∈M

L(v, µ) ≤ sup
µ∈M

inf
v∈Ω

L(v, µ), (∗2)

as desired.
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M

Ω M

Ω

(0, λ)

M
Ω

x = u

(u,0)

L(u, λ)

(0, λ)

(u,0)

(i.)

M

Ω

(0, λ)

y = λ

y = λ x = u

(u,0)

(0, λ)

L(u, λ)

(ii.)

Figure 14.18: Let Ω = {[t, 0, 0] | 0 ≤ t ≤ 1} and M = {[0, t, 0] | 0 ≤ t ≤ 1}. In Figure (i.),
L(u, λ) is the blue slanted quadrilateral whose forward vertex is a saddle point. In Figure
(ii.), L(u, λ) is the planar green rectangle composed entirely of saddle points.

We now return to our main Minimization Problem (P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where J : Ω → R and the constraints ϕi : Ω → R are some functions defined on some open
subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert
space V ).

Definition 14.8. The Lagrangian of the Minimization Problem (P ) defined above is the
function L : Ω× Rm

+ → R given by

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),
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with µ = (µ1, . . . , µm). The numbers µi are called generalized Lagrange multipliers .

The following theorem shows that under some suitable conditions, every solution u of
the Problem (P ) is the first argument of a saddle point (u, λ) of the Lagrangian L, and
conversely, if (u, λ) is a saddle point of the Lagrangian L, then u is a solution of the Problem
(P ).

Theorem 14.15. Consider Problem (P ) defined above where J : Ω→ R and the constraints
ϕi : Ω → R are some functions defined on some open subset Ω of some finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ). The following facts hold.

(1) If (u, λ) ∈ Ω×Rm
+ is a saddle point of the Lagrangian L associated with Problem (P ),

then u ∈ U , u is a solution of Problem (P ), and J(u) = L(u, λ).

(2) If Ω is convex (open), if the functions ϕi (1 ≤ i ≤ m) and J are convex and differen-
tiable at the point u ∈ U , if the constraints are qualified, and if u ∈ U is a minimum of
Problem (P ), then there exists some vector λ ∈ Rm

+ such that the pair (u, λ) ∈ Ω×Rm
+

is a saddle point of the Lagrangian L.

Proof. (1) Since (u, λ) is a saddle point of L we have supµ∈Rm+ L(u, µ) = L(u, λ) which implies

that L(u, µ) ≤ L(u, λ) for all µ ∈ Rm
+ , which means that

J(u) +
m∑
i=1

µiϕi(u) ≤ J(u) +
m∑
i=1

λiϕi(u),

that is,
m∑
i=1

(µi − λi)ϕi(u) ≤ 0 for all µ ∈ Rm
+ .

If we let each µi be large enough, then µi − λi > 0, and if we had ϕi(u) > 0, then the term
(µi − λi)ϕi(u) could be made arbitrarily large and positive, so we conclude that ϕi(u) ≤ 0
for i = 1, . . . ,m, and consequently, u ∈ U . For µ = 0, we conclude that

∑m
i=1 λiϕi(u) ≥ 0.

However, since λi ≥ 0 and ϕi(u) ≤ 0, (since u ∈ U), we have
∑m

i=1 λiϕi(u) ≤ 0. Combining
these two inequalities shows that

m∑
i=1

λiϕi(u) = 0. (∗1)

This shows that J(u) = L(u, λ). Since the inequality L(u, λ) ≤ L(v, λ) is

J(u) +
m∑
i=1

λiϕi(u) ≤ J(v) +
m∑
i=1

λiϕi(v),

by (∗1) we obtain

J(u) ≤ J(v) +
m∑
i=1

λiϕi(v) for all v ∈ Ω

≤ J(v) for all v ∈ U (since ϕi(v) ≤ 0 and λi ≥ 0),
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which shows that u is a minimum of J on U .

(2) The hypotheses required to apply Theorem 14.6(1) are satisfied. Consequently if
u ∈ U is a solution of Problem (P ), then there exists some vector λ ∈ Rm

+ such that the
KKT conditions hold:

J ′(u) +
m∑
i=1

λi(ϕ
′
i)u = 0 and

m∑
i=1

λiϕi(u) = 0.

The second equation yields

L(u, µ) = J(u) +
m∑
i=1

µiϕi(u) ≤ J(u) = J(u) +
m∑
i=1

λiϕi(u) = L(u, λ),

that is,
L(u, µ) ≤ L(u, λ) for all µ ∈ Rm

+ (∗2)

(since ϕi(u) ≤ 0 as u ∈ U), and since the function v 7→ J(v) +
∑

i=1 λiϕi(v) = L(v, λ) is
convex as a sum of convex functions, by Theorem 4.13(4), the first equation is a sufficient
condition for the existence of minimum. Consequently,

L(u, λ) ≤ L(v, λ) for all v ∈ Ω, (∗3)

and (∗2) and (∗3) show that (u, λ) is a saddle point of L.

To recap what we just proved, under some mild hypotheses, the set of solutions of the
Minimization Problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

coincides with the set of first arguments of the saddle points of the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),

and for any optimum u ∈ U of Problem (P ), we have J(u) = L(u, λ).

Therefore, if we knew some particular second argument λ of these saddle points, then
the constrained Problem (P ) would be replaced by the unconstrained Problem (Pλ):

find uλ ∈ Ω such that

L(uλ, λ) = inf
v∈Ω

L(v, λ).

How do we find such an element λ ∈ Rm
+ ?
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For this, remember that for a saddle point (uλ, λ), by Proposition 14.14, we have

L(uλ, λ) = inf
v∈Ω

L(v, λ) = sup
µ∈Rm+

inf
v∈Ω

L(v, µ),

so we are naturally led to introduce the function G : Rm
+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+ ,

and then λ will be a solution of the problem

find λ ∈ Rm
+ such that

G(λ) = sup
µ∈Rm+

G(µ),

which is equivalent to the Maximization Problem (D):

maximize G(µ)

subject to µ ∈ Rm
+ .

Definition 14.9. Given the Minimization Problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where J : Ω → R and the constraints ϕi : Ω → R are some functions defined on some open
subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert
space V ), the function G : Rm

+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+ ,

is called the Lagrange dual function (or simply dual function). The Problem (D)

maximize G(µ)

subject to µ ∈ Rm
+

is called the Lagrange dual problem. The Problem (P ) is often called the primal problem,
and (D) is the dual problem. The variable µ is called the dual variable. The variable µ ∈ Rm

+

is said to be dual feasible if G(µ) is defined (not −∞). If λ ∈ Rm
+ is a maximum of G, then

we call it a dual optimal or an optimal Lagrange multiplier .
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Since

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),

the function G(µ) = infv∈Ω L(v, µ) is the pointwise infimum of some affine functions of µ,
so it is concave, even if the ϕi are not convex. One of the main advantages of the dual
problem over the primal problem is that it is a convex optimization problem, since we wish
to maximize a concave objective function G (thus minimize −G, a convex function), and the
constraints µ ≥ 0 are convex. In a number of practical situations, the dual function G can
indeed be computed.

To be perfectly rigorous, we should mention that the dual function G is actually a partial
function, because it takes the value −∞ when the map v 7→ L(v, µ) is unbounded below.

Example 14.5. Consider the Linear Program (P )

minimize c>v

subject to Av ≤ b, v ≥ 0,

where A is an m×n matrix. The constraints v ≥ 0 are rewritten as −vi ≤ 0, so we introduce
Lagrange multipliers µ ∈ Rm

+ and ν ∈ Rn
+, and we have the Lagrangian

L(v, µ, ν) = c>v + µ>(Av − b)− ν>v
= −b>µ+ (c+ A>µ− ν)>v.

The linear function v 7→ (c + A>µ − ν)>v is unbounded below unless c + A>µ − ν = 0, so
the dual function G(µ, ν) = infv∈Rn L(v, µ, ν) is given for all µ ≥ 0 and ν ≥ 0 by

G(µ, ν) =

{
−b>µ if A>µ− ν + c = 0,

−∞ otherwise.

The domain of G is a proper subset of Rm
+ × Rn

+.

Observe that the value G(µ, ν) of the function G, when it is defined, is independent of
the second argument ν. Since we are interested in maximizing G, this suggests introducing
the function Ĝ of the single argument µ given by

Ĝ(µ) = −b>µ,

which is defined for all µ ∈ Rm
+ .

Of course, supµ∈Rm+ Ĝ(µ) and sup(µ,ν)∈Rm+×Rn+ G(µ, ν) are generally different, but note that

Ĝ(µ) = G(µ, ν) iff there is some ν ∈ Rn
+ such that A>µ−ν+c = 0 iff A>µ+c ≥ 0. Therefore,

finding sup(µ,ν)∈Rm+×Rn+ G(µ, ν) is equivalent to the constrained Problem (D1)

maximize − b>µ
subject to A>µ ≥ −c, µ ≥ 0.

The above problem is the dual of the Linear Program (P ).
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In summary, the dual function G of a primary Problem (P ) often contains hidden inequal-
ity constraints that define its domain, and sometimes it is possible to make these domain
constraints ψ1(µ) ≤ 0, . . . , ψp(µ) ≤ 0 explicit, to define a new function Ĝ that depends only
on q < m of the variables µi and is defined for all values µi ≥ 0 of these variables, and
to replace the Maximization Problem (D), find supµ∈Rm+ G(µ), by the constrained Problem

(D1)

maximize Ĝ(µ)

subject to ψi(µ) ≤ 0, i = 1, . . . , p.

Problem (D1) is different from the Dual Program (D), but it is equivalent to (D) as a
maximization problem.

14.8 Weak and Strong Duality

Another important property of the dual function G is that it provides a lower bound on the
value of the objective function J . Indeed, we have

G(µ) ≤ L(u, µ) ≤ J(u) for all u ∈ U and all µ ∈ Rm
+ , (†)

since µ ≥ 0 and ϕi(u) ≤ 0 for i = 1, . . . ,m, so

G(µ) = inf
v∈Ω

L(v, µ) ≤ L(u, µ) = J(u) +
m∑
i=1

µiϕi(u) ≤ J(u).

If the Primal Problem (P ) has a minimum denoted p∗ and the Dual Problem (D) has a
maximum denoted d∗, then the above inequality implies that

d∗ ≤ p∗ (†w)

known as weak duality . Equivalently, for every optimal solution λ∗ of the dual problem and
every optimal solution u∗ of the primal problem, we have

G(λ∗) ≤ J(u∗). (†w′)

In particular, if p∗ = −∞, which means that the primal problem is unbounded below, then
the dual problem is unfeasible. Conversely, if d∗ = +∞, which means that the dual problem
is unbounded above, then the primal problem is unfeasible.

Definition 14.10. The difference p∗−d∗ ≥ 0 is called the optimal duality gap. If the duality
gap is zero, that is, p∗ = d∗, then we say that strong duality holds.
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Even when the duality gap is strictly positive, the inequality (†w) can be helpful to find
a lower bound on the optimal value of a primal problem that is difficult to solve, since the
dual problem is always convex.

If the primal problem and the dual problem are feasible and if the optimal values p∗ and
d∗ are finite and p∗ = d∗ (no duality gap), then the complementary slackness conditions hold
for the inequality constraints.

Proposition 14.16. (Complementary Slackness) Given the Minimization Problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

and its Dual Problem (D)

maximize G(µ)

subject to µ ∈ Rm
+ ,

if both (P ) and (D) are feasible, u ∈ U is an optimal solution of (P ), λ ∈ Rm
+ is an optimal

solution of (D), and J(u) = G(λ), then

m∑
i=1

λiϕi(u) = 0.

In other words, if the constraint ϕi is inactive at u, then λi = 0.

Proof. Since J(u) = G(λ) we have

J(u) = G(λ)

= inf
v∈Ω

(
J(v) +

m∑
i=1

λiϕi(v)

)
by definition of G

≤ J(u) +
m∑
i=1

λiϕi(u) the greatest lower bound is a lower bound

≤ J(u) since λi ≥ 0, ϕi(u) ≤ 0.

which implies that
∑m

i=1 λiϕi(u) = 0.

Going back to Example 14.5, we see that weak duality says that for any feasible solution
u of the Primal Problem (P ), that is, some u ∈ Rn such that

Au ≤ b, u ≥ 0,

and for any feasible solution µ ∈ Rm of the Dual Problem (D1), that is,

A>µ ≥ −c, µ ≥ 0,
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we have
−b>µ ≤ c>u.

Actually, if u and λ are optimal, then we know from Theorem 11.7 that strong duality holds,
namely −b>µ = c>u, but the proof of this fact is nontrivial.

The following theorem establishes a link between the solutions of the Primal Problem
(P ) and those of the Dual Problem (D). It also gives sufficient conditions for the duality
gap to be zero.

Theorem 14.17. Consider the Minimization Problem (P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where the functions J and ϕi are defined on some open subset Ω of a finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ).

(1) Suppose the functions ϕi : Ω → R are continuous, and that for every µ ∈ Rm
+ , the

Problem (Pµ):

minimize L(v, µ)

subject to v ∈ Ω,

has a unique solution uµ, so that

L(uµ, µ) = inf
v∈Ω

L(v, µ) = G(µ),

and the function µ 7→ uµ is continuous (on Rm
+ ). Then the function G is differentiable

for all µ ∈ Rm
+ , and

G′µ(ξ) =
m∑
i=1

ξiϕi(uµ) for all ξ ∈ Rm.

If λ is any solution of Problem (D):

maximize G(µ)

subject to µ ∈ Rm
+ ,

then the solution uλ of the corresponding problem (Pλ) is a solution of Problem (P ).

(2) Assume Problem (P ) has some solution u ∈ U , and that Ω is convex (open), the
functions ϕi (1 ≤ i ≤ m) and J are convex and differentiable at u, and that the
constraints are qualified. Then Problem (D) has a solution λ ∈ Rm

+ , and J(u) = G(λ);
that is, the duality gap is zero.
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Proof. (1) Our goal is to prove that for any solution λ of Problem (D), the pair (uλ, λ) is a
saddle point of L. By Theorem 14.15(1), the point uλ ∈ U is a solution of Problem (P ).

Since λ ∈ Rm
+ is a solution of Problem (D), by definition of G(λ) and since uλ satisfies

Problem (Pλ), we have
G(λ) = inf

v∈Ω
L(v, λ) = L(uλ, λ),

which is one of the two equations characterizing a saddle point. In order to prove the second
equation characterizing a saddle point,

sup
µ∈Rm+

L(uµ, µ) = L(uλ, λ),

we will begin by proving that the function G is differentiable for all µ ∈ Rm
+ , in order to be

able to apply Theorem 4.9 to conclude that since G has a maximum at λ, that is, −G has
minimum at λ, then −G′λ(µ− λ) ≥ 0 for all µ ∈ Rm

+ . In fact, we prove that

G′µ(ξ) =
m∑
i=1

ξiϕi(uµ) for all ξ ∈ Rm. (∗deriv)

Consider any two points µ and µ+ ξ in Rm
+ . By definition of uµ we have

L(uµ, µ) ≤ L(uµ+ξ, µ),

which means that

J(uµ) +
m∑
i=1

µiϕi(uµ) ≤ J(uµ+ξ) +
m∑
i=1

µiϕi(uµ+ξ), (∗1)

and since G(µ) = L(uµ, µ) = J(uµ) +
∑m

i=1 µiϕi(uµ) and G(µ + ξ) = L(uµ+ξ, µ + ξ) =
J(uµ+ξ) +

∑m
i=1(µi + ξi)ϕi(uµ+ξ), we have

G(µ+ ξ)−G(µ) = J(uµ+ξ)− J(uµ) +
m∑
i=1

(µi + ξi)ϕi(uµ+ξ)−
m∑
i=1

µiϕi(uµ). (∗2)

Since (∗1) can be written as

0 ≤ J(uµ+ξ)− J(uµ) +
m∑
i=1

µiϕi(uµ+ξ)−
m∑
i=1

µiϕi(uµ),

by adding
∑m

i=1 ξiϕi(uµ+ξ) to both sides of the above inequality and using (∗2) we get

m∑
i=1

ξiϕi(uµ+ξ) ≤ G(µ+ ξ)−G(µ). (∗3)
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By definition of uµ+ξ we have

L(uµ+ξ, µ+ ξ) ≤ L(uµ, µ+ ξ),

which means that

J(uµ+ξ) +
m∑
i=1

(µi + ξi)ϕi(uµ+ξ) ≤ J(uµ) +
m∑
i=1

(µi + ξi)ϕi(uµ). (∗4)

This can be written as

J(uµ+ξ)− J(uµ) +
m∑
i=1

(µi + ξi)ϕi(uµ+ξ)−
m∑
i=1

(µi + ξi)ϕi(uµ) ≤ 0,

and by adding
∑m

i=1 ξiϕi(uµ) to both sides of the above inequality and using (∗2) we get

G(µ+ ξ)−G(µ) ≤
m∑
i=1

ξiϕi(uµ). (∗5)

By putting (∗3) and (∗5) together we obtain

m∑
i=1

ξiϕi(uµ+ξ) ≤ G(µ+ ξ)−G(µ) ≤
m∑
i=1

ξiϕi(uµ). (∗6)

Consequently there is some θ ∈ [0, 1] such that

G(µ+ ξ)−G(µ) = (1− θ)
( m∑
i=1

ξiϕi(uµ)

)
+ θ

( m∑
i=1

ξiϕi(uµ+ξ)

)
=

m∑
i=1

ξiϕi(uµ) + θ

( m∑
i=1

ξi(ϕi(uµ+ξ)− ϕi(uµ))

)
.

Since by hypothesis the functions µ 7→ uµ (from Rm
+ to Ω) and ϕi : Ω → R are continuous,

for any µ ∈ Rm
+ we can write

G(µ+ ξ)−G(µ) =
m∑
i=1

ξiϕi(uµ) + ‖ξ‖ ε(ξ), with limξ 7→0 ε(ξ) = 0, (∗7)

for any ‖ ‖ norm on Rm. Equation (∗7) show that G is differentiable for any µ ∈ Rm
+ , and

that

G′µ(ξ) =
m∑
i=1

ξiϕi(uµ) for all ξ ∈ Rm. (∗8)

Actually there is a small problem, namely that the notion of derivative was defined for a
function defined on an open set, but Rm

+ is not open. The difficulty only arises to ensure
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that the derivative is unique, but in our case we have a unique expression for the derivative
so there is no problem as far as defining the derivative. There is still a potential problem,
which is that we would like to apply Theorem 4.9 to conclude that since G has a maximum
at λ, that is, −G has a minimum at λ, then

−G′λ(µ− λ) ≥ 0 for all µ ∈ Rm
+ , (∗9)

but the hypotheses of Theorem 4.9 require the domain of the function to be open. Fortu-
nately, close examination of the proof of Theorem 4.9 shows that the proof still holds with
U = Rm

+ . Therefore, (∗8) holds, Theorem 4.9 is valid, which in turn implies

G′λ(µ− λ) ≤ 0 for all µ ∈ Rm
+ , (∗10)

which, using the expression for G′λ given in (∗8) gives

m∑
i=1

µiϕi(uλ) ≤
m∑
i=1

λiϕi(uλ), for all µ ∈ Rm
+ . (∗11)

As a consequence of (∗11), we obtain

L(uλ, µ) = J(uλ) +
m∑
i=1

µiϕi(uλ)

≤ J(uλ) +
m∑
i=1

λiϕi(uλ) = L(uλ, λ),

for all µ ∈ Rm
+ , that is,

L(uλ, µ) ≤ L(uλ, λ), for all µ ∈ Rm
+ , (∗12)

which implies the second inequality

sup
µ∈Rm+

L(uµ, µ) = L(uλ, λ)

stating that (uλ, λ) is a saddle point. Therefore, (uλ, λ) is a saddle point of L, as claimed.

(2) The hypotheses are exactly those required by Theorem 14.15(2), thus there is some
λ ∈ Rm

+ such that (u, λ) is a saddle point of the Lagrangian L, and by Theorem 14.15(1) we
have J(u) = L(u, λ). By Proposition 14.14, we have

J(u) = L(u, λ) = inf
v∈Ω

L(v, λ) = sup
µ∈Rm+

inf
v∈Ω

L(v, µ),

which can be rewritten as
J(u) = G(λ) = sup

µ∈Rm+
G(µ).

In other words, Problem (D) has a solution, and J(u) = G(λ).
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Remark: Note that Theorem 14.17(2) could have already be obtained as a consequence of
Theorem 14.15(2), but the dual function G was not yet defined. If (u, λ) is a saddle point of
the Lagrangian L (defined on Ω×Rm

+ ), then by Proposition 14.14, the vector λ is a solution
of Problem (D). Conversely, under the hypotheses of Part (1) of Theorem 14.17, if λ is a
solution of Problem (D), then (uλ, λ) is a saddle point of L. Consequently, under the above
hypotheses, the set of solutions of the Dual Problem (D) coincide with the set of second
arguments λ of the saddle points (u, λ) of L. In some sense, this result is the “dual” of the
result stated in Theorem 14.15, namely that the set of solutions of Problem (P ) coincides
with set of first arguments u of the saddle points (u, λ) of L.

Informally, in Theorem 14.17(1), the hypotheses say that if G(µ) can be “computed
nicely,” in the sense that there is a unique minimizer uµ of L(v, µ) (with v ∈ Ω) such that
G(µ) = L(uµ, µ), and if a maximizer λ of G(µ) (with µ ∈ Rm

+ ) can be determined, then uλ
yields the minimum value of J , that is, p∗ = J(uλ). If the constraints are qualified and if
the functions J and ϕi are convex and differentiable, then since the KKT conditions hold,
the duality gap is zero; that is,

G(λ) = L(uλ, λ) = J(uλ).

Example 14.6. Going back to Example 14.5 where we considered the linear program (P )

minimize c>v

subject to Av ≤ b, v ≥ 0,

with A an m× n matrix, the Lagrangian L(v, µ, ν) is given by

L(v, µ, ν) = −b>µ+ (c+ A>µ− ν)>v,

and we found that the dual function G(µ, ν) = infv∈Rn L(v, µ, ν) is given for all µ ≥ 0 and
ν ≥ 0 by

G(µ, ν) =

{
−b>µ if A>µ− ν + c = 0,

−∞ otherwise.

The hypotheses of Theorem 14.17(1) certainly fail since there are infinitely uµ,ν ∈ Rn such
that G(µ, ν) = infv∈Rn L(v, µ, ν) = L(uµ,ν , µ, ν). Therefore, the dual function G is no help in
finding a solution of the Primal Problem (P ). As we saw earlier, if we consider the modified
dual Problem (D1) then strong duality holds, but this does not follow from Theorem 14.17,
and a different proof is required.

Thus, we have the somewhat counter-intuitive situation that the general theory of La-
grange duality does not apply, at least directly, to linear programming, a fact that is not
sufficiently emphasized in many expositions. A separate treatment of duality is required.

Unlike the case of linear programming, which needs a separate treatment, Theorem 14.17
applies to the optimization problem involving a convex quadratic objective function and a set
of affine inequality constraints. So in some sense, convex quadratic programming is simpler
than linear programming!
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Example 14.7. Consider the quadratic objective function

J(v) =
1

2
v>Av − v>b,

where A is an n×n matrix which is symmetric positive definite, b ∈ Rn, and the constraints
are affine inequality constraints of the form

Cv ≤ d,

where C is an m × n matrix and d ∈ Rm. For the time being, we do not assume that
C has rank m. Since A is symmetric positive definite, J is strictly convex, as implied by
Proposition 4.11 (see Example 4.6). The Lagrangian of this quadratic optimization problem
is given by

L(v, µ) =
1

2
v>Av − v>b+ (Cv − d)>µ

=
1

2
v>Av − v>(b− C>µ)− µ>d.

Since A is symmetric positive definite, by Proposition 6.2, the function v 7→ L(v, µ) has a
unique minimum obtained for the solution uµ of the linear system

Av = b− C>µ;

that is,
uµ = A−1(b− C>µ).

This shows that the Problem (Pµ) has a unique solution which depends continuously on µ.
Then for any solution λ of the dual problem, uλ = A−1(b − C>λ) is an optimal solution of
the primal problem.

We compute G(µ) as follows:

G(µ) = L(uµ, µ) =
1

2
u>µAuµ − u>µ (b− C>µ)− µ>d

=
1

2
u>µ (b− C>µ)− u>µ (b− C>µ)− µ>d

= −1

2
u>µ (b− C>µ)− µ>d

= −1

2
(b− C>µ)>A−1(b− C>µ)− µ>d

= −1

2
µ>CA−1C>µ+ µ>(CA−1b− d)− 1

2
b>A−1b.

Since A is symmetric positive definite, the matrix CA−1C> is symmetric positive semidef-
inite. Since A−1 is also symmetric positive definite, µ>CA−1C>µ = 0 iff (C>µ)>A−1(C>µ) =
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0 iff C>µ = 0 implies µ = 0, that is, KerC> = (0), which is equivalent to Im(C) = Rm,
namely if C has rank m (in which case, m ≤ n). Thus CA−1C> is symmetric positive definite
iff C has rank m.

We showed just after Theorem 13.8 that the functional v 7→ (1/2)v>Av is elliptic iff
A is symmetric positive definite, and Theorem 13.8 shows that an elliptic functional is
coercive, which is the hypothesis used in Theorem 13.4. Therefore, by Theorem 13.4, if the
inequalities Cx ≤ d have a solution, the primal problem has a unique solution. In this case,
as a consequence, by Theorem 14.17(2), the function −G(µ) always has a minimum, which
is unique if C has rank m. The fact that −G(µ) has a minimum is not obvious when C has
rank < m, since in this case CA−1C> is not invertible.

We also verify easily that the gradient of G is given by

∇Gµ = Cuµ − d = −CA−1C>µ+ CA−1b− d.

Observe that since CA−1C> is symmetric positive semidefinite, −G(µ) is convex.

Therefore, if C has rank m, a solution of Problem (P ) is obtained by finding the unique
solution λ of the equation

−CA−1C>µ+ CA−1b− d = 0,

and then the minimum uλ of Problem (P ) is given by

uλ = A−1(b− C>λ).

If C has rank < m, then we can find λ ≥ 0 by finding a feasible solution of the linear program
whose set of constraints is given by

−CA−1C>µ+ CA−1b− d = 0,

using the standard method of adding nonnegative slack variables ξ1, . . . , ξm and maximizing
−(ξ1 + · · ·+ ξm).

14.9 Handling Equality Constraints Explicitly

Sometimes it is desirable to handle equality constraints explicitly (for instance, this is what
Boyd and Vandenberghe do, see [18]). The only difference is that the Lagrange multipliers
associated with equality constraints are not required to be nonnegative, as we now show.

Consider the Optimization Problem (P ′)

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

ψj(v) = 0, j = 1, . . . , p.
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We treat each equality constraint ψj(u) = 0 as the conjunction of the inequalities ψj(u) ≤ 0
and −ψj(u) ≤ 0, and we associate Lagrange multipliers λ ∈ Rm

+ , and ν+, ν− ∈ Rp
+. Assuming

that the constraints are qualified, by Theorem 14.5, the KKT conditions are

J ′u +
m∑
i=1

λi(ϕ
′
i)u +

p∑
j=1

ν+
j (ψ′j)u −

p∑
j=1

ν−j (ψ′j)u = 0,

and
m∑
i=1

λiϕi(u) +

p∑
j=1

ν+
j ψj(u)−

p∑
j=1

ν−j ψj(u) = 0,

with λ ≥ 0, ν+ ≥ 0, ν− ≥ 0. Since ψj(u) = 0 for j = 1, . . . , p, these equations can be
rewritten as

J ′u +
m∑
i=1

λi(ϕ
′
i)u +

p∑
j=1

(ν+
j − ν−j )(ψ′j)u = 0,

and
m∑
i=1

λiϕi(u) = 0

with λ ≥ 0, ν+ ≥ 0, ν− ≥ 0, and if we introduce νj = ν+
j − ν−j we obtain the following KKT

conditions for programs with explicit equality constraints:

J ′u +
m∑
i=1

λi(ϕ
′
i)u +

p∑
j=1

νj(ψ
′
j)u = 0,

and
m∑
i=1

λiϕi(u) = 0

with λ ≥ 0 and ν ∈ Rp arbitrary.

Let us now assume that the functions ϕi and ψj are convex. As we explained just after
Definition 14.6, nonaffine equality constraints are never qualified. Thus, in order to generalize
Theorem 14.6 to explicit equality constraints, we assume that the equality constraints ψj are
affine.

Theorem 14.18. Let ϕi : Ω → R be m convex inequality constraints and ψj : Ω → R be
p affine equality constraints defined on some open convex subset Ω of a finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ), let J : Ω → R be some
function, let U be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, ψj(x) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ p},

and let u ∈ U be any point such that the functions ϕi and J are differentiable at u.
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(1) If J has a local minimum at u with respect to U , and if the constraints are qualified,
then there exist some vectors λ ∈ Rm

+ and ν ∈ Rp, such that the KKT condition hold:

J ′u +
m∑
i=1

λi(u)(ϕ′i)u +

p∑
j=1

νj(ψ
′
j)u = 0,

and
m∑
i=1

λi(u)ϕi(u) = 0, λi ≥ 0, i = 1, . . . ,m.

Equivalently, in terms of gradients, the above conditions are expressed as

∇Ju +
m∑
i=1

λi∇(ϕi)u +

p∑
j=1

νj∇(ψj)u = 0

and
m∑
i=1

λi(u)ϕi(u) = 0, λi ≥ 0, i = 1, . . . ,m.

(2) Conversely, if the restriction of J to U is convex and if there exist vectors λ ∈ Rm
+ and

ν ∈ Rp such that the KKT conditions hold, then the function J has a (global) minimum
at u with respect to U .

The Lagrangian L(v, λ, ν) of Problem (P ′) is defined as

L(v, µ, ν) = J(v) +
m∑
i=1

µiϕi(v) +

p∑
j=1

νiψj(v),

where v ∈ Ω, µ ∈ Rm
+ , and ν ∈ Rp.

The function G : Rm
+ × Rp → R given by

G(µ, ν) = inf
v∈Ω

L(v, µ, ν) µ ∈ Rm
+ , ν ∈ Rp

is called the Lagrange dual function (or dual function), and the Dual Problem (D′) is

maximize G(µ, ν)

subject to µ ∈ Rm
+ , ν ∈ Rp.

Observe that the Lagrange multipliers ν are not restricted to be nonnegative.

Theorem 14.15 and Theorem 14.17 are immediately generalized to Problem (P ′). We
only state the new version of 14.17, leaving the new version of Theorem 14.15 as an exercise.
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Theorem 14.19. Consider the minimization problem (P ′):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

ψj(v) = 0, j = 1, . . . , p.

where the functions J , ϕi are defined on some open subset Ω of a finite-dimensional Euclidean
vector space V (more generally, a real Hilbert space V ), and the functions ψj are affine.

(1) Suppose the functions ϕi : Ω→ R are continuous, and that for every µ ∈ Rm
+ and every

ν ∈ Rp, the Problem (Pµ,ν):

minimize L(v, µ, ν)

subject to v ∈ Ω,

has a unique solution uµ,ν, so that

L(uµ,ν , µ, ν) = inf
v∈Ω

L(v, µ, ν) = G(µ, ν),

and the function (µ, ν) 7→ uµ,ν is continuous (on Rm
+ × Rp). Then the function G is

differentiable for all µ ∈ Rm
+ and all ν ∈ Rp, and

G′µ,ν(ξ, ζ) =
m∑
i=1

ξiϕi(uµ,ν) +

p∑
j=1

ζjψj(uµ,ν) for all ξ ∈ Rm and all ζ ∈ Rp .

If (λ, η) is any solution of Problem (D):

maximize G(µ, ν)

subject to µ ∈ Rm
+ , ν ∈ Rp,

then the solution uλ,η of the corresponding Problem (Pλ,η) is a solution of Problem (P ′).

(2) Assume Problem (P ′) has some solution u ∈ U , and that Ω is convex (open), the
functions ϕi (1 ≤ i ≤ m) and J are convex, differentiable at u, and that the constraints
are qualified. Then Problem (D′) has a solution (λ, η) ∈ Rm

+ ×Rp, and J(u) = G(λ, η);
that is, the duality gap is zero.

In the next section we derive the dual function and the dual program of the optimization
problem of Section 14.6 (Hard margin SVM), which involves both inequality and equality
constraints. We also derive the KKT conditions associated with the dual program.
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14.10 Dual of the Hard Margin Support Vector Ma-

chine

Recall the Hard margin SVM problem (SVMh2):

minimize
1

2
‖w‖2 , w ∈ Rn

subject to

w>ui − b ≥ 1 i = 1, . . . , p

− w>vj + b ≥ 1 j = 1, . . . , q.

We proceed in six steps.

Step 1: Write the constraints in matrix form.

The inequality constraints are written as

C

(
w
b

)
≤ d,

where C is a (p+ q)× (n+ 1) matrix C and d ∈ Rp+q is the vector given by

C =



−u>1 1
...

...
−u>p 1
v>1 −1
...

...
v>q −1


, d =

−1
...
−1

 = −1p+q.

If we let X be the n× (p+ q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
,

then

C =

(
X>

1p
−1q

)
and so

C> =

(
X

1>p −1>q

)
.

Step 2: Write the objective function in matrix form.

The objective function is given by

J(w, b) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
.
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Note that the corresponding matrix is symmetric positive semidefinite, but it is not invertible.
Thus the function J is convex but not strictly convex.

Step 3: Write the Lagrangian in matrix form.

As in Example 14.7, we obtain the Lagrangian

L(w, b, λ, µ) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
−
(
w> b

)(
0n+1 − C>

(
λ
µ

))
+
(
λ> µ>

)
1p+q,

that is,

L(w, b, λ, µ) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
+
(
w> b

) X

(
λ
µ

)
1>p λ −1>q µ

+
(
λ> µ>

)
1p+q.

Step 4: Find the dual function G(λ, µ).

In order to find the dual function G(λ, µ), we need to minimize L(w, b, λ, µ) with respect
to w and b and for this, since the objective function J is convex and since Rn+1 is convex
and open, we can apply Theorem 4.13, which gives a necessary and sufficient condition for
a minimum. The gradient of L(w, b, λ, µ) with respect to w and b is

∇Lw,b =

(
In 0n
0>n 0

)(
w
b

)
+

 X

(
λ
µ

)
1>p λ −1>q µ


=

(
w
0

)
+

 X

(
λ
µ

)
1>p λ −1>q µ

 .

The necessary and sufficient condition for a minimum is

∇Lw,b = 0,

which yields

w = −X
(
λ
µ

)
(∗1)

and

1>p λ− 1>q µ = 0. (∗2)

The second equation can be written as

p∑
i=1

λi =

q∑
j=1

µj. (∗3)
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Plugging back w from (∗1) into the Lagrangian and using (∗2) we get

G(λ, µ) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q; (∗4)

of course,
(
λ> µ>

)
1p+q =

∑p
i=1 λi +

∑q
j=1 µj. Actually, to be perfectly rigorous G(λ, µ) is

only defined on the intersection of the hyperplane of equation
∑p

i=1 λi =
∑q

j=1 µj with the
convex octant in Rp+q given by λ ≥ 0, µ ≥ 0, so for all λ ∈ Rp

+ and all µ ∈ Rq
+, we have

G(λ, µ) =

−
1
2

(
λ> µ>

)
X>X

(
λ

µ

)
+
(
λ> µ>

)
1p+q if

∑p
i=1 λi =

∑q
j=1 µj

−∞ otherwise.

Note that the condition
p∑
i=1

λi =

q∑
j=1

µj

is Condition (∗2) of Example 14.6, which is not surprising.

Step 5: Write the dual program in matrix form.

Maximizing the dual function G(λ, µ) over its domain of definition is equivalent to max-
imizing

Ĝ(λ, µ) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q

subject to the constraint
p∑
i=1

λi =

q∑
j=1

µj,

so we formulate the dual program as,

maximize − 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

λ ≥ 0, µ ≥ 0,



14.10. DUAL OF THE HARD MARGIN SUPPORT VECTOR MACHINE 453

or equivalently,

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

λ ≥ 0, µ ≥ 0.

The constraints of the dual program are a lot simpler than the constraints(
X>

1p
−1q

)(
w
b

)
≤ −1p+q

of the primal program because these constraints have been “absorbed” by the objective
function Ĝ(λ, ν) of the dual program which involves the matrix X>X. The matrix X>X is
symmetric positive semidefinite, but not invertible in general.

Step 6: Solve the dual program.

This step involves using numerical procedures typically based on gradient descent to
find λ and µ, for example, ADMM from Section 16.6. Once λ and µ are determined, w is
determined by (∗1) and b is determined as in Section 14.6 using the fact that there is at least
some i0 such that λi0 > 0 and some j0 such that µj0 > 0.

Remarks:

(1) Since the constraints are affine and the objective function is convex, by Theorem
14.19(2) the duality gap is zero, so for any minimum w of J(w, b) = (1/2)w>w and
any maximum (λ, µ) of G, we have

J(w, b) =
1

2
w>w = G(λ, µ).

But by (∗1)

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,

so (
λ> µ>

)
X>X

(
λ
µ

)
= w>w,

and we get

1

2
w>w = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q = −1

2
w>w +

(
λ> µ>

)
1p+q,
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so

w>w =
(
λ> µ>

)
1p+q =

p∑
i=1

λi +

q∑
j=1

µj,

which yields

G(λ, µ) =
1

2

(
p∑
i=1

λi +

q∑
j=1

µj

)
.

The above formulae are stated in Vapnik [81] (Chapter 10, Section 1).

(2) It is instructive to compute the Lagrangian of the dual program and to derive the KKT
conditions for this Lagrangian.

The conditions λ ≥ 0 being equivalent to −λ ≤ 0, and the conditions µ ≥ 0 being
equivalent to −µ ≤ 0, we introduce Lagrange multipliers α ∈ Rp

+ and β ∈ Rq
+ as well

as a multiplier ρ ∈ R for the equational constraint, and we form the Lagrangian

L(λ, µ, α, β, ρ) =
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

−
p∑
i=1

αiλi −
q∑
j=1

βjµj + ρ

( q∑
j=1

µj −
p∑
i=1

λi

)
.

It follows that the KKT conditions are

X>X

(
λ
µ

)
− 1p+q −

(
α
β

)
+ ρ

(
−1p
1q

)
= 0p+q, (∗4)

and αiλi = 0 for i = 1, . . . , p and βjµj = 0 for j = 1, . . . , q.

But (∗4) is equivalent to

−X>X
(
λ
µ

)
+ ρ

(
1p
−1q

)
+ 1p+q +

(
α
β

)
= 0p+q,

which is precisely the result of adding α ≥ 0 and β ≥ 0 as slack variables to the
inequalities (∗3) of Example 14.6, namely

−X>X
(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q ≤ 0p+q,

to make them equalities, where ρ plays the role of b.

When the constraints are affine, the dual function G(λ, ν) can be expressed in terms of
the conjugate of the objective function J .
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14.11 Conjugate Function and Legendre Dual Func-

tion

The notion of conjugate function goes back to Legendre and plays an important role in
classical mechanics for converting a Lagrangian to a Hamiltonian; see Arnold [3] (Chapter
3, Sections 14 and 15).

Definition 14.11. Let f : A → R be a function defined on some subset A of Rn. The
conjugate f ∗ of the function f is the partial function f ∗ : Rn → R defined by

f ∗(y) = sup
x∈A

(〈y, x〉 − f(x)) = sup
x∈A

(y>x− f(x)), y ∈ Rn.

The conjugate of a function is also called the Fenchel conjugate, or Legendre transform when
f is differentiable.

As the pointwise supremum of a family of affine functions in y, the conjugate function
f ∗ is convex, even if the original function f is not convex.

By definition of f ∗ we have

f(x) + f ∗(y) ≥ 〈x, y〉 = x>y,

whenever the left-hand side is defined. The above is known as Fenchel’s inequality (or
Young’s inequality if f is differentiable).

If f : A→ R is convex (so A is convex) and if epi(f) is closed, then it can be shown that
f ∗∗ = f . In particular, this is true if A = Rn.

The domain of f ∗ can be very small, even if the domain of f is big. For example, if
f : R → R is the affine function given by f(x) = ax + b (with a, b ∈ R), then the function
x 7→ yx− ax− b is unbounded above unless y = a, so

f ∗(y) =

{
−b if y = a

+∞ otherwise.

The domain of f ∗ can also be bigger than the domain of f ; see Example 14.8(3).

The conjugates of many functions that come up in optimization are derived in Boyd and
Vandenberghe; see [18], Section 3.3. We mention a few that will be used in this chapter.

Example 14.8.

(1) Negative logarithm: f(x) = − log x, with dom(f) = {x ∈ R | x > 0}. The function
x 7→ yx+ log x is unbounded above if y ≥ 0, and when y < 0, its maximum is obtained
iff its derivative is zero, namely

y +
1

x
= 0.
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Substituting for x = −1/y in yx + log x, we obtain −1 + log(−1/y) = −1 − log(−y),
so we have

f ∗(y) = − log(−y)− 1,

with dom(f ∗) = {y ∈ R | y < 0}.

(2) Exponential : f(x) = ex, with dom(f) = R. The function x 7→ yx− ex is unbounded if
y < 0. When y > 0, it reaches a maximum iff its derivative is zero, namely

y − ex = 0.

Substituting for x = log y in yx− ex, we obtain y log y − y, so we have

f ∗(y) = y log y − y,

with dom(f ∗) = {y ∈ R | y ≥ 0}, with the convention that 0 log 0 = 0.

(3) Negative Entropy : f(x) = x log x, with dom(f) = {x ∈ R | x ≥ 0}, with the convention
that 0 log 0 = 0. The function x 7→ yx− x log x is bounded above for all y > 0, and it
attains its maximum when its derivative is zero, namely

y − log x− 1 = 0.

Substituting for x = ey−1 in yx− x log x, we obtain yey−1 − ey−1(y − 1) = ey−1, which
yields

f ∗(y) = ey−1,

with dom(f ∗) = R.

(4) Strictly convex quadratic function: f(x) = 1
2
x>Ax, where A is an n × n symmetric

positive definite matrix, with dom(f) = Rn. The function x 7→ y>x − 1
2
x>Ax has a

unique maximum when is gradient is zero, namely

y = Ax.

Substituting for x = A−1y in y>x− 1
2
x>Ax, we obtain

y>A−1y − 1

2
y>A−1y = −1

2
y>A−1y,

so

f ∗(y) = −1

2
y>A−1y

with dom(f ∗) = Rn.

(5) Log-determinant : f(X) = log det(X−1), whereX is an n×n symmetric positive definite
matrix. Then

f(Y ) = log det((−Y )−1)− n,
where Y is an n× n symmetric negative definite matrix; see Boyd and Vandenberghe;
see [18], Section 3.3.1, Example 3.23.
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(6) Norm on Rn: f(x) = ‖x‖ for any norm ‖ ‖ on Rn, with dom(f) = Rn. Recall from
Section 13.7 in Vol I. that the dual norm ‖ ‖D of the norm ‖ ‖ (with respect to the
canonical inner product x · y = y>x on Rn is given by

‖y‖D = sup
‖x‖=1

|y>x|,

and that
|y>x| ≤ ‖x‖ ‖y‖D .

We have

f ∗(y) = sup
x∈Rn

(y>x− ‖x‖)

= sup
x∈Rn,x 6=0

(
y>

x

‖x‖
− 1

)
‖x‖

≤ sup
x∈Rn,x 6=0

(‖y‖D − 1) ‖x‖ ,

so if ‖y‖D > 1 this last term goes to +∞, but if ‖y‖D ≤ 1, then its maximum is 0.
Therefore,

f ∗(y) = ‖y‖∗ =

{
0 if ‖y‖D ≤ 1

+∞ otherwise.

(7) Norm squared : f(x) = 1
2
‖x‖2 for any norm ‖ ‖ on Rn, with dom(f) = Rn. Since

|y>x| ≤ ‖x‖ ‖y‖D, we have

y>x− (1/2) ‖x‖2 ≤ ‖y‖D ‖x‖ − (1/2) ‖x‖2 .

The right-hand side is a quadratic function of ‖x‖ which achieves its maximum at
‖x‖ = ‖y‖D, with maximum value (1/2)(‖y‖D)2. Therefore

y>x− (1/2) ‖x‖2 ≤ (1/2)
(
‖y‖D

)2

for all x, which shows that

f ∗(y) ≤ (1/2)
(
‖y‖D

)2

.

By definition of the dual norm and because the unit sphere is compact, for any y ∈ Rn,
there is some x ∈ Rn such that ‖x‖ = 1 and y>x = ‖y‖D, so multiplying both sides by
‖y‖D we obtain

y> ‖y‖D x =
(
‖y‖D

)2

and for z = ‖y‖D x, since ‖x‖ = 1 we have ‖z‖ = ‖y‖D ‖x‖ = ‖y‖D, so we get

y>z − (1/2)(‖z‖)2 =
(
‖y‖D

)2

− (1/2)
(
‖y‖D

)2

= (1/2)
(
‖y‖D

)2

,
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which shows that the upper bound (1/2)
(
‖y‖D

)2

is achieved. Therefore,

f ∗(y) =
1

2

(
‖y‖D

)2

,

and dom(f ∗) = Rn.

(8) Log-sum-exp function: f(x) = log

(∑n
i=1 e

xi

)
, where x = (x1, . . . , xn) ∈ Rn. To

determine the values of y ∈ Rn for which the maximum of g(x) = y>x − f(x) over
x ∈ Rn is attained, we compute its gradient and we find

∇fx =


y1 −

ex1∑n
i=1 e

xi

...

yn −
exn∑n
i=1 e

xi

 .

Therefore, (y1, . . . , yn) must satisfy the system of equations

yj =
exj∑n
i=1 e

xi
, j = 1, . . . , n. (∗)

The condition
∑n

i=1 yi = 1 is obviously necessary, as well as the conditions yi > 0, for
i = 1, . . . , n. Conversely, if 1>y = 1 and y > 0, then xj = log yi for i = 1, . . . , n is a
solution. Since (∗) implies that

xi = log yi + log

( n∑
i=1

exi
)
, (∗∗)

we get

y>x− f(x) =
n∑
i=1

yixi − log

( n∑
i=1

exi
)

=
n∑
i=1

yi log yi +
n∑
i=1

yi log

( n∑
i=1

exi
)
− log

( n∑
i=1

exi
)

by (∗∗)

=
n∑
i=1

yi log yi +

( n∑
i=1

yi − 1

)
log

( n∑
i=1

exi
)

=
n∑
i=1

yi log yi since
∑n

i=1 yi = 1.
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Consequently, if f ∗(y) is defined, then f ∗(y) =
∑n

i=1 yi log yi. If we agree that 0 log 0 =
0, then it is an easy exercise (or, see Boyd and Vandenberghe [18], Section 3.3, Example
3.25) to show that

f ∗(y) =

{∑n
i=1 yi log yi if 1>y = 1 and y ≥ 0

∞ otherwise.

Thus we obtain the negative entropy restricted to the domain 1>y = 1 and y ≥ 0.

If f : Rn → R is convex and differentiable, then x∗ maximizes x>y−f(x) iff x∗ minimizes
−x>y + f(x) iff

∇fx∗ = y,

and so
f ∗(y) = (x∗)>∇fx∗ − f(x∗).

Consequently, if we can solve the equation

∇fz = y

for z given y, then we obtain f ∗(y).

It can be shown that if f is twice differentiable, strictly convex, and surlinear, which
means that

lim
‖y‖7→+∞

f(y)

‖y‖
= +∞,

then there is a unique xy such that ∇fxy = y, so that

f ∗(y) = x>y∇fxy − f(xy),

and f ∗ is differentiable with
∇f ∗y = xy.

We now return to our optimization problem.

Proposition 14.20. Consider Problem (P ),

minimize J(v)

subject to Av ≤ b

Cv = d,

with affine inequality and equality constraints (with A an m× n matrix, C an p× n matrix,
b ∈ Rm, d ∈ Rp). The dual function G(λ, ν) is given by

G(λ, ν) =

{
−b>λ− d>ν − J∗(−A>λ− C>ν) if −A>λ− C>ν ∈ dom(J∗),

−∞ otherwise,

for all λ ∈ Rm
+ and all ν ∈ Rp, where J∗ is the conjugate of J .
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Proof. The Lagrangian associated with the above program is

L(v, λ, ν) = J(v) + (Av − b)>λ+ (Cv − d)>ν

= −b>λ− d>ν + J(v) + (A>λ+ C>ν)>v,

with λ ∈ Rm
+ and ν ∈ Rp. By definition

G(λ, ν) = −b>λ− d>ν + inf
v∈Rn

(J(v) + (A>λ+ C>ν)>v)

= −b>λ− d>ν − sup
v∈Rn

(−(A>λ+ C>ν)>v − J(v))

= −b>λ− d>ν − J∗(−A>λ− C>ν).

Therefore, for all λ ∈ Rm
+ and all ν ∈ Rp, we have

G(λ, ν) =

{
−b>λ− d>ν − J∗(−A>λ− C>ν) if −A>λ− C>ν ∈ dom(J∗),

−∞ otherwise,

as claimed.

As application of Proposition 14.20, consider the following example.

Example 14.9. Consider the following problem:

minimize ‖v‖
subject to Av = b,

where ‖ ‖ is any norm on Rn. Using the result of Example 14.8(6), we obtain

G(ν) = −b>ν −
∥∥−A>ν∥∥∗ ,

that is,

G(ν) =

{
−b>ν if

∥∥A>ν∥∥D ≤ 1

−∞ otherwise.

In the special case where ‖ ‖ = ‖ ‖2, we also have ‖ ‖D = ‖ ‖2.

Another interesting application is to the entropy minimization problem.

Example 14.10. Consider the following problem known as entropy minimization:

minimize f(x) =
n∑
i=1

xi log xi

subject to Ax ≤ b

1>x = 1,
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where dom(f) = {x ∈ Rn | x ≥ 0}. By Example 14.8(3), the conjugate of the negative
entropy function u log u is ev−1, so we easily see that

f ∗(y) =
n∑
i=1

eyi−1,

which is defined on Rn. Proposition 14.20 implies that the dual function G(λ, µ) of the
entropy minimization problem is given by

G(λ, µ) = −b>λ− µ− e−µ−1

n∑
i=1

e−(Ai)>λ,

for all λ ∈ Rn
+ and all µ ∈ R, where Ai is the ith column of A. It follows that the dual

program is:

maximize − b>λ− µ− e−µ−1

n∑
i=1

e−(Ai)>λ

subject to λ ≥ 0.

We can simplify this problem by maximizing over the variable µ ∈ R. For fixed λ, the
objective function is maximized when the derivative is zero, that is,

−1 + e−µ−1

n∑
i=1

e−(Ai)>λ = 0,

which yields

µ = log

( n∑
i=1

e−(Ai)>λ

)
− 1.

By plugging the above value back into the objective function of the dual, we obtain the
following program:

maximize − b>λ− log

( n∑
i=1

e−(Ai)>λ

)
subject to λ ≥ 0.

The entropy minimization problem is another problem for which Theorem 14.18 applies,
and thus can be solved using the dual program. Indeed, the Lagrangian of the primal
program is given by

L(x, λ, µ) =
n∑
i−1

xi log xi + λ>(Ax− b) + µ(1>x− 1).
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Using the second derivative criterion for convexity, we see that L(x, λ, µ) is strictly convex
for x ∈ Rn

+ and is bounded below, so it has a unique minimum which is obtain by setting
the gradient ∇Lx to zero. We have

∇Lx =

 log x1 + 1 + (A1)>λ+ µ
...

log xn + 1 + (An)>λ+ µ.


so by setting ∇Lx to 0 we obtain

xi = e−((An)>λ+µ+1), i = 1, . . . , n. (∗)

By Theorem 14.18, since the objective function is convex and the constraints are affine, if
the primal has a solution then so does the dual, and λ and µ constitute an optimal solution
of the dual, then x = (x1, . . . , xn) given by the equations in (∗) is an optimal solution of the
primal.

Other examples are given in Boyd and Vandenberghe; see [18], Section 5.1.6.

The derivation of the dual function of Problem (SVMh1) from Section 14.5 involves a
similar type of reasoning.

Example 14.11. Consider the Hard Margin Problem (SVMh1):

maximize δ

subject to

w>ui − b ≥ δ i = 1, . . . , p

− w>vj + b ≥ δ j = 1, . . . , q

‖w‖2 ≤ 1,

which is converted to the following minimization problem:

minimize − 2δ

subject to

w>ui − b ≥ δ i = 1, . . . , p

− w>vj + b ≥ δ j = 1, . . . , q

‖w‖2 ≤ 1.

We replaced δ by 2δ because this will make it easier to find a nice geometric interpretation.
Recall from Section 14.5 that Problem (SVMh1) has a an optimal solution iff δ > 0, in which
case ‖w‖ = 1.
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The corresponding Lagrangian with λ ∈ Rp
+, µ ∈ Rq

+, γ ∈ R+, is

L(w, b, δ, λ, µ, γ) = −2δ +

p∑
i=1

λi(δ + b− w>ui) +

q∑
j=1

µj(δ − b+ w>vj) + γ(‖w‖2 − 1)

= w>
(
−

p∑
i=1

λiui +

q∑
j=1

µjvj

)
+ γ ‖w‖2 +

( p∑
i=1

λi −
q∑
j=1

µj

)
b

+

(
−2 +

p∑
i=1

λi +

q∑
j=1

µj

)
δ − γ.

Next to find the dual function G(λ, µ, γ) we need to minimize L(w, b, δ, λ, µ, γ) with respect
to w, b and δ, so its gradient with respect to w, b and δ must be zero. This implies that

p∑
i=1

λi −
q∑
j=1

µj = 0

−2 +

p∑
i=1

λi +

q∑
j=1

µj = 0,

which yields
p∑
i=1

λi =

q∑
j=1

µj = 1.

Observe that we did not compute the partial derivative with respect to w because it does
not yield any useful information due to the presence of the term ‖w‖2 (as opposed to ‖w‖2

2).
Our minimization problem is reduced to: find

inf
w,‖w‖≤1

(
w>
( q∑
j=1

µjvj −
p∑
i=1

λiui

)
+ γ ‖w‖2 − γ

)

= −γ − γ inf
w,‖w‖≤1

(
−w> 1

γ

( q∑
j=1

µjvj −
p∑
i=1

λiui

)
+ ‖−w‖2

)

=

−γ if

∥∥∥∥ 1
γ

(∑q
j=1 µjvj −

∑p
i=1 λiui

)∥∥∥∥D
2

≤ 1

−∞ otherwise

by Example 14.8(6)

=

{
−γ if

∥∥∥∑q
j=1 µjvj −

∑p
i=1 λiui

∥∥∥
2
≤ γ

−∞ otherwise.
since ‖ ‖D2 = ‖ ‖2 and γ > 0

It is immediately verified that the above formula is still correct if γ = 0. Therefore

G(λ, µ, γ) =

{
−γ if

∥∥∥∑q
j=1 µjvj −

∑p
i=1 λiui

∥∥∥
2
≤ γ

−∞ otherwise.
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Since
∥∥∥∑q

j=1 µjvj −
∑p

i=1 λiui

∥∥∥
2
≤ γ iff −γ ≤ −

∥∥∥∑q
j=1 µjvj −

∑p
i=1 λiui

∥∥∥
2
, the dual pro-

gram, maximizing G(λ, µ, γ), is equivalent to

maximize −

∥∥∥∥∥
q∑
j=1

µjvj −
p∑
i=1

λiui

∥∥∥∥∥
2

subject to
p∑
i=1

λi = 1, λ ≥ 0

q∑
j=1

µj = 1, µ ≥ 0,

equivalently

minimize

∥∥∥∥∥
q∑
j=1

µjvj −
p∑
i=1

λiui

∥∥∥∥∥
2

subject to
p∑
i=1

λi = 1, λ ≥ 0

q∑
j=1

µj = 1, µ ≥ 0.

Geometrically,
∑p

i=1 λiui with
∑p

i=1 λi = 1 and λ ≥ 0 is a convex combination of the uis,
and

∑q
j=1 µjvj with

∑q
j=1 µj = 1 and µ ≥ 0 is a convex combination of the vjs, so the dual

program is to minimize the distance between the polyhedron conv(u1, . . . , up) (the convex
hull of the uis) and the polyhedron conv(v1, . . . , vq) (the convex hull of the vjs). Since both
polyhedra are compact, the shortest distance between then is achieved. In fact, there is some
vertex ui such that if P (ui) is its projection onto conv(v1, . . . , vq) (which exists by Hilbert
space theory), then the length of the line segment (ui, P (ui)) is the shortest distance between
the two polyhedra (and similarly there is some vertex vj such that if P (vj) is its projection
onto conv(u1, . . . , up) then the length of the line segment (vj, P (vj)) is the shortest distance
between the two polyhedra).

If the two subsets are separable, in which case Problem (SVMh1) has an optimal solution
δ > 0, because the objective function is convex and the convex constraint ‖w‖2 ≤ 1 is quali-
fied since δ may be negative, by Theorem 14.17(2) the duality gap is zero, so δ is half of the
minimum distance between the two convex polyhedra conv(u1, . . . , up) and conv(v1, . . . , vq);
see Figure 14.19.

It should be noted that the constraint ‖w‖ ≤ 1 yields a formulation of the dual problem
which has the advantage of having a nice geometric interpretation: finding the minimal



14.12. SOME TECHNIQUES TO OBTAIN A MORE USEFUL DUAL PROGRAM 465

u

u

u
u

u

u

1

2
3

4

p

i

v

v

v
v1

2

3

p

Figure 14.19: In R2 the convex hull of the uis, namely the blue hexagon, is separated from
the convex hull of the vjs, i.e. the red square, by the purple hyperplane (line) which is
the perpendicular bisector to the blue line segment between ui and v1, where this blue line
segment is the shortest distance between the two convex polygons.

distance between the convex polyhedra conv(u1, . . . , up) and conv(v1, . . . , vq). Unfortunately
this formulation is not useful for actually solving the problem. However, if the equivalent
constraint ‖w‖2 (= w>w) ≤ 1 is used, then the dual problem is much more useful as a solving
tool.

In Chapter 18 we consider the case where the sets of points {u1, . . . , up} and {v1, . . . , vq}
are not linearly separable.

14.12 Some Techniques to Obtain a More Useful Dual

Program

In some cases, it is advantageous to reformulate a primal optimization problem to obtain a
more useful dual problem. Three different reformulations are proposed in Boyd and Van-
denberghe; see [18], Section 5.7:

(1) Introducing new variables and associated equality constraints.

(2) Replacing the objective function with an increasing function of the the original func-
tion.

(3) Making explicit constraints implicit, that is, incorporating them into the domain of
the objective function.
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We only give illustrations of (1) and (2) and refer the reader to Boyd and Vandenberghe
[18] (Section 5.7) for more examples of these techniques.

Consider the unconstrained program:

minimize f(Ax+ b),

where A is an m × n matrix and b ∈ Rm. While the conditions for a zero duality gap are
satisfied, the Lagrangian is

L(x) = f(Ax+ b),

so the dual function G is the constant function whose value is

G = inf
x∈Rn

f(Ax+ b),

which is not useful at all.

Let us reformulate the problem as

minimize f(y)

subject to

Ax+ b = y,

where we introduced the new variable y ∈ Rm and the equality constraint Ax+ b = y. The
two problems are obviously equivalent. The Lagrangian of the reformulated problem is

L(x, y, µ) = f(y) + µ>(Ax+ b− y)

where µ ∈ Rm. To find the dual function G(µ) we minimize L(x, y, µ) over x and y. Mini-
mizing over x we see that G(µ) = −∞ unless A>µ = 0, in which case we are left with

G(µ) = b>µ+ inf
y

(f(y)− µ>y) = b>µ− inf
y

(µ>y − f(y)) = b>µ− f ∗(µ),

where f ∗ is the conjugate of f . It follows that the dual program can be expressed as

maximize b>µ− f ∗(µ)

subject to

A>µ = 0.

This formulation of the dual is much more useful than the dual of the original program.

Example 14.12. As a concrete example, consider the following unconstrained program:

minimize f(x) = log

( n∑
i=1

e(Ai)>x+bi

)
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where Ai is a column vector in Rn. We reformulate the problem by introducing new variables
and equality constraints as follows:

minimize f(y) = log

( n∑
i=1

eyi
)

subject to

Ax+ b = y,

where A is the n × n matrix whose columns are the vectors Ai and b = (b1, . . . , bn). Since

by Example 14.8(8), the conjugate of the log-sum-exp function f(y) = log

(∑n
i=1 e

yi

)
is

f ∗(µ) =

{∑n
i=1 µi log µi if 1>µ = 1 and µ ≥ 0

∞ otherwise,

the dual of the reformulated problem can be expressed as

maximize b>µ− log

( n∑
i=1

µi log µi

)
subject to

1>µ = 1

A>µ = 0

µ ≥ 0,

an entropy maximization problem.

Example 14.13. Similarly the unconstrained norm minimization problem

minimize ‖Ax− b‖ ,

where ‖ ‖ is any norm on Rm, has a dual function which is a constant, and is not useful.
This problem can be reformulated as

minimize ‖y‖
subject to

Ax− b = y.

By Example 14.8(6), the conjugate of the norm is given by

‖y‖∗ =

{
0 if ‖y‖D ≤ 1

+∞ otherwise,
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so the dual of the reformulated program is:

maximize b>µ

subject to

‖µ‖D ≤ 1

A>µ = 0.

Here is now an example of (2), replacing the objective function with an increasing function
of the the original function.

Example 14.14. The norm minimization of Example 14.13 can be reformulated as

minimize
1

2
‖y‖2

subject to

Ax− b = y.

This program is obviously equivalent to the original one. By Example 14.8(7), the conjugate
of the square norm is given by

1

2

(
‖y‖D

)2

,

so the dual of the reformulated program is

maximize − 1

2

(
‖µ‖D

)2

+ b>µ

subject to

A>µ = 0.

Note that this dual is different from the dual obtained in Example 14.13.

The objective function of the dual program in Example 14.13 is linear, but we have
the nonlinear constraint ‖µ‖D ≤ 1. On the other hand, the objective function of the dual
program of Example 14.14 is quadratic, whereas its constraints are affine. We have other
examples of this trade-off with the Programs (SVMh2) (quadratic objective function, affine
constraints), and (SVMh1) (linear objective function, one nonlinear constraint).

Sometimes, it is also helpful to replace a constraint by an increasing function of this
constraint; for example, to use the constraint ‖w‖2

2 (= w>w) ≤ 1 instead of ‖w‖2 ≤ 1.

In Chapter 19 we revisit the problem of solving an overdetermined or underdetermined
linear system Ax = b considered in Volume I, Section 21.1 from a different point of view.
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14.13 Uzawa’s Method

Let us go back to our Minimization Problem

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where the functions J and ϕi are defined on some open subset Ω of a finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ). As usual, let

U = {v ∈ V | ϕi(v) ≤ 0, 1 ≤ i ≤ m}.

If the functional J satisfies the inequalities of Proposition 13.18 and if the functions ϕi are
convex, in theory, the projected-gradient method converges to the unique minimizer of J
over U . Unfortunately, it is usually impossible to compute the projection map pU : V → U .

On the other hand, the domain of the Lagrange dual function G : Rm
+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+ ,

is Rm
+ , where

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v)

is the Lagrangian of our problem. Now the projection p+ from Rm to Rm
+ is very simple,

namely

(p+(λ))i = max{λi, 0}, 1 ≤ i ≤ m.

It follows that the projection-gradient method should be applicable to the Dual Problem
(D):

maximize G(µ)

subject to µ ∈ Rm
+ .

If the hypotheses of Theorem 14.17 hold, then a solution λ of the Dual Program (D) yields
a solution uλ of the primal problem.

Uzawa’s method is essentially the gradient method with fixed stepsize applied to the Dual
Problem (D). However, it is designed to yield a solution of the primal problem.

Uzawa’s method:

Given an arbitrary initial vector λ0 ∈ Rm
+ , two sequences (λk)k≥0 and (uk)k≥0 are con-

structed, with λk ∈ Rm
+ and uk ∈ V .

Assuming that λ0, λ1, . . . , λk are known, uk and λk+1 are determined as follows:
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uk is the unique solution of the minimization problem, find uk ∈ V such that

(UZ)

J(uk) +
m∑
i=1

λkiϕi(u
k) = inf

v∈V

(
J(v) +

m∑
i=1

λkiϕi(v)

)
; and

λk+1
i = max{λki + ρϕi(u

k), 0}, 1 ≤ i ≤ m,

where ρ > 0 is a suitably chosen parameter.

Recall that in the proof of Theorem 14.17 we showed (∗deriv), namely

G′λk(ξ) = 〈∇Gλk , ξ〉 =
m∑
i=1

ξiϕi(u
k),

which means that (∇Gλk)i = ϕi(u
k). Then the second equation in (UZ) corresponds to the

gradient-projection step
λk+1 = p+(λk + ρ∇Gλk).

Note that because the problem is a maximization problem we use a positive sign instead of
a negative sign. Uzawa’s method is indeed a gradient method.

Basically, Uzawa’s method replaces a constrained optimization problem by a sequence of
unconstrained optimization problems involving the Lagrangian of the (primal) problem.

Interestingly, under certain hypotheses, it is possible to prove that the sequence of ap-
proximate solutions (uk)k≥0 converges to the minimizer u of J over U , even if the sequence
(λk)k≥0 does not converge. We prove such a result when the constraints ϕi are affine.

Theorem 14.21. Suppose J : Rn → R is an elliptic functional, which means that J is
continuously differentiable on Rn, and there is some constant α > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ Rn,

and that U is a nonempty closed convex subset given by

U = {v ∈ Rn | Cv ≤ d},

where C is a real m× n matrix and d ∈ Rm. If the scalar ρ satisfies the condition

0 < ρ <
2α

‖C‖2
2

,

where ‖C‖2 is the spectral norm of C, then the sequence (uk)k≥0 computed by Uzawa’s method
converges to the unique minimizer u ∈ U of J .

Furthermore, if C has rank m, then the sequence (λk)k≥0 converges to the unique maxi-
mizer of the Dual Problem (D).



14.13. UZAWA’S METHOD 471

Proof.

Step 1 . We establish algebraic conditions relating the unique minimizer u ∈ U of J over
U and some λ ∈ Rm

+ such that (u, λ) is a saddle point.

Since J is elliptic and U is nonempty closed and convex, by Theorem 13.8, the functional
J is strictly convex, so it has a unique minimizer u ∈ U . Since J is convex and the constraints
are affine, by Theorem 14.17(2) the Dual Problem (D) has at least one solution. By Theorem
14.15(2), there is some λ ∈ Rm

+ such that (u, λ) is a saddle point of the Lagrangian L.

If we define the affine function ϕ by

ϕ(v) = (ϕ1(v), . . . , ϕm(v)) = Cv − d,

then the Lagrangian L(v, µ) can be written as

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v) = J(v) + 〈C>µ, v〉 − 〈µ, d〉.

Since
L(u, λ) = inf

v∈Rn
L(v, λ),

by Theorem 4.13(4) we must have

∇Ju + C>λ = 0, (∗1)

and since
G(λ) = L(u, λ) = sup

µ∈Rm+
L(u, µ),

by Theorem 4.13(3) (and since maximing a function g is equivalent to minimizing −g), we
must have

G′λ(µ− λ) ≤ 0 for all µ ∈ Rm
+ ,

and since as noted earlier ∇Gλ = ϕ(u), we get

〈ϕ(u), µ− λ〉 ≤ 0 for all µ ∈ Rm
+ . (∗2)

As in the proof of Proposition 13.18, (∗2) can be expressed as follows for every ρ > 0:

〈λ− (λ+ ρϕ(u)), µ− λ〉 ≥ 0 for all µ ∈ Rm
+ , (∗∗2)

which shows that λ can be viewed as the projection onto Rm
+ of the vector λ + ρϕ(u). In

summary we obtain the equations

(†1)

{
∇Ju + C>λ = 0

λ = p+(λ+ ρϕ(u)).
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Step 2 . We establish algebraic conditions relating the unique solution uk of the mini-
mization problem arising during an iteration of Uzawa’s method in (UZ) and λk.

Observe that the Lagrangian L(v, µ) is strictly convex as a function of v (as the sum of
a strictly convex function and an affine function). As in the proof of Theorem 13.8(1) and
using Cauchy–Schwarz, we have

J(v) + 〈C>µ, v〉 ≥ J(0) + 〈∇J0, v〉+
α

2
‖v‖2 + 〈C>µ, v〉

≥ J(0)− ‖∇J0‖ ‖v‖ −
∥∥C>µ∥∥ ‖v‖+

α

2
‖v‖2 ,

and the term (−‖∇J0‖ −
∥∥C>µ∥∥ ‖v‖ + α

2
‖v‖) ‖v‖ goes to +∞ when ‖v‖ tends to +∞, so

L(v, µ) is coercive as a function of v. Therefore, the minimization problem find uk such that

J(uk) +
m∑
i=1

λkiϕi(u
k) = inf

v∈Rn

(
J(v) +

m∑
i=1

λkiϕi(v)

)
has a unique solution uk ∈ Rn. It follows from Theorem 4.13(4) that the vector uk must
satisfy the equation

∇Juk + C>λk = 0, (∗3)

and since by definition of Uzawa’s method

λk+1 = p+(λk + ρϕ(uk)), (∗4)

we obtain the equations

(†2)

{
∇Juk + C>λk = 0

λk+1 = p+(λk + ρϕ(uk)).

Step 3 . By subtracting the first of the two equations of (†1) and (†2) we obtain

∇Juk −∇Ju + C>(λk − λ) = 0,

and by subtracting the second of the two equations of (†1) and (†2) and using Proposition
12.6, we obtain ∥∥λk+1 − λ

∥∥ ≤ ∥∥λk − λ+ ρC(uk − u)
∥∥ .

In summary, we proved

(†)

{
∇Juk −∇Ju + C>(λk − λ) = 0∥∥λk+1 − λ

∥∥ ≤ ∥∥λk − λ+ ρC(uk − u)
∥∥ .

Step 4 . Convergence of the sequence (uk)k≥0 to u.
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Squaring both sides of the inequality in (†) we obtain∥∥λk+1 − λ
∥∥2 ≤

∥∥λk − λ∥∥2
+ 2ρ〈C>(λk − λ), uk − u〉+ ρ2

∥∥C(uk − u)
∥∥2
.

Using the equation in (†) and the inequality

〈∇Juk −∇Ju, uk − u〉 ≥ α
∥∥uk − u∥∥2

,

we get ∥∥λk+1 − λ
∥∥2 ≤

∥∥λk − λ∥∥2 − 2ρ〈∇Juk −∇Ju, uk − u〉+ ρ2
∥∥C(uk − u)

∥∥2

≤
∥∥λk − λ∥∥2 − ρ(2α− ρ ‖C‖2

2)
∥∥uk − u∥∥2

.

Consequently, if

0 ≤ ρ ≤ 2α

‖C‖2
2

,

we have ∥∥λk+1 − λ
∥∥ ≤ ∥∥λk − λ∥∥ , for all k ≥ 0. (∗5)

By (∗5), the sequence (
∥∥λk − λ∥∥)k≥0 is nonincreasing and bounded below by 0, so it con-

verges, which implies that

lim
k 7→∞

(∥∥λk+1 − λ
∥∥− ∥∥λk − λ∥∥) = 0,

and since ∥∥λk+1 − λ
∥∥2 ≤

∥∥λk − λ∥∥2 − ρ(2α− ρ ‖C‖2
2)
∥∥uk − u∥∥2

,

we also have
ρ(2α− ρ ‖C‖2

2)
∥∥uk − u∥∥2 ≤

∥∥λk − λ∥∥2 −
∥∥λk+1 − λ

∥∥2
.

So if

0 < ρ <
2α

‖C‖2
2

,

then ρ(2α− ρ ‖C‖2
2) > 0, and we conclude that

lim
k 7→∞

∥∥uk − u∥∥ = 0,

that is, the sequence (uk)k≥0 converges to u.

Step 5 . Convergence of the sequence (λk)k≥0 to λ if C has rank m.

Since the sequence (
∥∥λk − λ∥∥)k≥0 is nonincreasing, the sequence (λk)k≥0 is bounded, and

thus it has a convergent subsequence (λi(k))i≥0 whose limit is some λ′ ∈ Rm
+ . Since J ′ is

continuous, by (†2) we have

∇Ju + C>λ′ = lim
i 7→∞

(∇Jui(k) + C>λi(k)) = 0. (∗6)

If C has rank m, then Im(C) = Rm, which is equivalent to Ker (C>) = (0), so C> is
injective and since by (†1) we also have ∇Ju+C>λ = 0, we conclude that λ′ = λ. The above
reasoning applies to any subsequence of (λk)k≥0, so (λk)k≥0 converges to λ.
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In the special case where J is an elliptic quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

where A is symmetric positive definite, by (†2) an iteration of Uzawa’s method gives

Auk − b+ C>λk = 0

λk+1
i = max{(λk + ρ(Cuk − d))i, 0}, 1 ≤ i ≤ m.

Theorem 14.21 implies that Uzawa’s method converges if

0 < ρ <
2λ1

‖C‖2
2

,

where λ1 is the smallest eigenvalue of A.

If we solve for uk using the first equation, we get

λk+1 = p+(λk + ρ(−CA−1C>λk + CA−1b− d)). (∗7)

In Example 14.7 we showed that the gradient of the dual function G is given by

∇Gµ = Cuµ − d = −CA−1C>µ+ CA−1b− d,

so (∗7) can be written as
λk+1 = p+(λk + ρ∇Gλk);

this shows that Uzawa’s method is indeed the gradient method with fixed stepsize applied
to the dual program.

14.14 Summary

The main concepts and results of this chapter are listed below:

• The cone of feasible directions.

• Cone with apex.

• Active and inactive constraints.

• Qualified constraint at u.

• Farkas lemma.

• Farkas–Minkowski lemma.

• Karush–Kuhn–Tucker optimality conditions (or KKT-conditions).
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• Complementary slackness conditions.

• Generalized Lagrange multipliers.

• Qualified convex constraint.

• Lagrangian of a minimization problem.

• Equality constrained minimization.

• KKT matrix.

• Newton’s method with equality constraints (feasible start and infeasible start).

• Hard margin support vector machine

• Training data

• Linearly separable sets of points.

• Maximal margin hyperplane.

• Support vectors

• Saddle points.

• Lagrange dual function.

• Lagrange dual program.

• Duality gap.

• Weak duality.

• Strong duality.

• Handling equality constraints in the Lagrangian.

• Dual of the Hard Margin SVM (SVMh2).

• Conjugate functions and Legendre dual functions.

• Dual of the Hard Margin SVM (SVMh1).

• Uzawa’s Method.
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14.15 Problems

Problem 14.1. Prove (3) and (4) of Proposition 14.11.

Problem 14.2. Assume that in Theorem 14.17, V = Rn, J is elliptic and the constraints
ϕi are of the form

n∑
j=1

cijvj ≤ di,

that is, affine. Prove that the Problem (Pµ) has a unique solution which is continuous in µ.

Problem 14.3. (1) Prove that the set of saddle points of a function L : Ω ×M → R is of
the form V0 ×M0, for some V0 ⊆ Ω and some M0 ⊆M .

(2) Assume that Ω and M are convex subsets of some normed vector spaces, assume that
for any fixed v ∈ Ω the map

µ 7→ L(v, µ) is concave,

and for any fixed µ ∈M the map

v 7→ L(v, µ) is convex.

Prove that V0 ×M0 is convex.

(3) Prove that if for every fixed µ ∈M the map

v 7→ L(v, µ) is strictly convex,

then V0 has a most one element.

Problem 14.4. Prove that the conjugate of the function f given by f(X) = log det(X−1),
where X is an n× n symmetric positive definite matrix, is

f ∗(Y ) = log det((−Y )−1)− n,

where Y is an n× n symmetric negative definite matrix.

Problem 14.5. (From Boyd and Vandenberghe [18], Problem 5.12) Given an m×n matrix
A and any vector b ∈ Rn, consider the problem

minimize −
m∑
i=1

log(bi − aix)

subject to Ax < b,

where ai is the ith row of A. This is called the analytic centering problem. It can be shown
that the problem has a unique solution iff the open polyhedron {x ∈ Rn | Ax < b} is
nonempty and bounded.
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(1) Prove that necessary and sufficient conditions for the problem to have an optimal
solution are

Ax < b,

m∑
i=1

a>i
bi − axx

= 0.

(2) Derive a dual program for the above program.
Hint . First introduce new variables yi and equations yi = bi − aix.

Problem 14.6. (From Boyd and Vandenberghe [18], Problem 5.13) A Boolean linear pro-
gram is the following optimization problem:

minimize c>x

subject to Ax ≤ b

xi ∈ {0, 1}, i = 1, . . . , n,

where A is an m × n matrix, c ∈ Rn and b ∈ Rm. The fact that the solutions x ∈ Rn are
constrained to have coordinates xi taking the values 0 or 1 makes it a hard problem. The
above problem can be stated as a program with quadratic constraints:

minimize c>x

subject to Ax ≤ b

xi(1− xi) = 0, i = 1, . . . , n.

(1) Derive the Lagrangian dual of the above program.

(2) A way to approximate a solution of the Boolean linear program is to consider its
linear relaxation where the constraints xi ∈ {0, 1} are replaced by the linear constraints
0 ≤ xi ≤ 1:

minimize c>x

subject to Ax ≤ b

0 ≤ xi ≤ 1, i = 1, . . . , n.

Find the dual linear program of the above linear program. Show that the maxima of the
dual programs in (1) and (2) are the same.
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Chapter 15

Subgradients and Subdifferentials of
Convex Functions ~

In this chapter we consider some deeper aspects of the theory of convex functions that are
not necessarily differentiable at every point of their domain. Some substitute for the gradient
is needed. Fortunately, for convex functions, there is such a notion, namely subgradients.
Geometrically, given a (proper) convex function f , the subgradients at x are vectors normal
to supporting hyperplanes to the epigraph of the function at (x, f(x)). The subdifferential
∂f(x) to f at x is the set of all subgradients at x. A crucial property is that f is differentiable
at x iff ∂f(x) = {∇fx}, where ∇fx is the gradient of f at x. Another important property is
that a (proper) convex function f attains its minimum at x iff 0 ∈ ∂f(x). A major motivation
for developing this more sophisticated theory of “differentiation” of convex functions is to
extend the Lagrangian framework to convex functions that are not necessarily differentiable.

Experience shows that the applicability of convex optimization is significantly increased
by considering extended real-valued functions, namely functions f : S → R ∪ {−∞,+∞},
where S is some subset of Rn (usually convex). This is reminiscent of what happens in
measure theory, where it is natural to consider functions that take the value +∞. We
already encountered functions that take the value −∞ as a result of a minimization that
does not converge. For example, if J(u, v) = u, and we have the affine constraint v = 0, for
any fixed λ, the minimization problem

minimize u+ λv

subject to v = 0,

yields the solution u = −∞ and v = 0.

Until now, we chose not to consider functions taking the value −∞, and instead we
considered partial functions, but it turns out to be convenient to admit functions taking the
value −∞.

Allowing functions to take the value +∞ is also a convenient alternative to dealing with
partial functions. This situation is well illustrated by the indicator function of a convex set.

479
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Definition 15.1. Let C ⊆ Rn be any subset of Rn. The indicator function IC of C is the
function given by

IC(u) =

{
0 if u ∈ C
+∞ if u /∈ C.

The indicator function IC is a variant of the characteristic function χC of the set C
(defined such that χC(u) = 1 if u ∈ C and χC(u) = 0 if u /∈ C). Rockafellar denotes the
indicator function IC by δ(−|C); that is, δ(u|C) = IC(u); see Rockafellar [61], Page 28.

Given a partial function f : Rn → R ∪ {−∞}, by setting f(u) = +∞ if u /∈ dom(f), we
convert the partial function f into a total function with values in R ∪ {−∞,+∞}. Still,
one has to remember that such functions are really partial functions, but −∞ and +∞ play
different roles. The value f(x) = −∞ indicates that computing f(x) using a minimization
procedure did not terminate, but f(x) = +∞ means that the function f is really undefined
at x.

The definition of a convex function f : S → R∪{−∞,+∞} needs to be slightly modified
to accommodate the infinite values ±∞. The cleanest definition uses the notion of epigraph.

A remarkable and very useful fact is that the optimization problem

minimize J(u)

subject to u ∈ C,

where C is a closed convex set in Rn and J is a convex function can be rewritten in term of
the indicator function IC of C, as

minimize J(u) + IC(z)

subject to u− z = 0.

But J(u) + IC(z) is not differentiable, even if J is, which forces us to deal with convex
functions which are not differentiable

Convex functions are not necessarily differentiable, but if a convex function f has a finite
value f(u) at u (which means that f(u) ∈ R), then it has a one-sided directional derivative
at u. Another crucial notion is the notion of subgradient, which is a substitute for the notion
of gradient when the function f is not differentiable at u.

In Section 15.1, we introduce extended real-valued functions, which are functions that
may also take the values ±∞. In particular, we define proper convex functions, and the
closure of a convex function. Subgradients and subdifferentials are defined in Section 15.2.
We discuss some properties of subgradients in Section 15.3 and Section 15.4. In particular,
we relate subgradients to one-sided directional derivatives. In Section 15.5, we discuss the
problem of finding the minimum of a proper convex function and give some criteria in terms
of subdifferentials. In Section 15.6, we sketch the generalization of the results presented in
Chapter 14 about the Lagrangian framework to programs allowing an objective function and



15.1. EXTENDED REAL-VALUED CONVEX FUNCTIONS 481

inequality constraints which are convex but not necessarily differentiable. In fact, it is fair to
say that the theory of extended real-valued convex functions and the notions of subgradient
and subdifferential developed in this chapter constitute the machinery needed to extend the
Lagrangian framework to convex functions that are not necessarily differentiable.

This chapter relies heavily on Rockafellar [61]. Some of the results in this chapter are
also discussed in Bertsekas [9, 12, 10]. It should be noted that Bertsekas has developed a
framework to discuss duality that he refers to as the min common/max crossing framework,
for short MC/MC. Although this framework is elegant and interesting in its own right, the
fact that Bertsekas relies on it to prove properties of subdifferentials makes it little harder
for a reader to “jump in.”

15.1 Extended Real-Valued Convex Functions

We extend the ordering on R by setting

−∞ < x < +∞, for all x ∈ R.

Definition 15.2. A (total) function f : Rn → R ∪ {−∞,+∞} is called an extended real-
valued function. For any x ∈ Rn, we say that f(x) is finite if f(x) ∈ R (equivalently,
f(x) 6= ±∞). The function f is finite if f(x) is finite for all x ∈ Rn.

Adapting slightly Definition 4.8, given a function f : Rn → R∪{−∞,+∞}, the epigraph
of f is the subset of Rn+1 given by

epi(f) = {(x, y) ∈ Rn+1 | f(x) ≤ y}.

See Figure 15.1.
If S is a nonempty subset of Rn, the epigraph of the restriction of f to S is defined as

epi(f |S) = {(x, y) ∈ Rn+1 | f(x) ≤ y, x ∈ S}.

Observe the following facts:

1. For any x ∈ S, if f(x) = −∞, then epi(f) contains the “vertical line” {(x, y) | y ∈ R}
in Rn+1.

2. For any x ∈ S, if f(x) ∈ R, then epi(f) contains the ray {(x, y)} | f(x) ≤ y} in Rn+1.

3. For any x ∈ S, if f(x) = +∞, then epi(f) does not contain any point (x, y), with
y ∈ R.

4. We have epi(f) = ∅ iff f corresponds to the partial function undefined everywhere;
that is, f(x) = +∞ for all x ∈ Rn.
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> > 

(x, x  )3

Figure 15.1: Let f : R→ R ∪ {−∞,+∞} be given by f(x) = x3 for x ∈ R. Its graph in R2

is the magenta curve, and its epigraph is the union of the magenta curve and blue region
“above” this curve. For any point x ∈ R, epi(f) contains the ray which starts at (x, x3) and
extends upward.

Definition 15.3. Given a nonempty subset S of Rn, a (total) function f : Rn → R ∪
{−∞,+∞} is convex on S if its epigraph epi(f |S) is convex as a subset of Rn+1. See Figure
15.2. The function f is concave on S if −f is convex on S. The function f is affine on S if
it is finite, convex, and concave. If S = Rn, we simply that f is convex (resp. concave, resp.
affine).

Definition 15.4. Given any function f : Rn → R∪{−∞,+∞}, the effective domain dom(f)
of f is given by

dom(f) = {x ∈ Rn | (∃y ∈ R)((x, y) ∈ epi(f))} = {x ∈ Rn | f(x) < +∞}.

Observe that the effective domain of f contains the vectors x ∈ Rn such that f(x) = −∞,
but excludes the vectors x ∈ Rn such that f(x) = +∞.

Example 15.1. The above fact is illustrated by the function f : R→ R∪{−∞,+∞} where

f(x) =

{
−x2 if x ≥ 0

+∞ if x < 0.

The epigraph of this function is illustrated Figure 15.3. By definition dom(f) = [0,∞).

If f is a convex function, since dom(f) is the image of epi(f) by a linear map (a projec-
tion), it is convex .
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  , ;

Figure 15.2: Let f : R→ R ∪ {−∞,+∞} be given by f(x) = x2 for x ∈ R. Its graph in R2

is the magenta curve, and its epigraph is the union of the magenta curve and blue region
“above” this curve. Observe that epi(f) is a convex set of R2 since the aqua line segment
connecting any two points is contained within the epigraph.

By definition, epi(f |S) is convex iff for any (x1, y1) and (x2, y2) with x1, x2 ∈ S and
y1, y2 ∈ R such that f(x1) ≤ y1 and f(x2) ≤ y2, for every λ such that 0 ≤ λ ≤ 1, we have

(1− λ)(x1, y1) + λ(x2, y2) = ((1− λ)x1 + λx2, (1− λ)y1 + λy2) ∈ epi(f |S),

which means that (1− λ)x1 + λx2 ∈ S and

f((1− λ)x1 + λx2) ≤ (1− λ)y1 + λy2. (∗)

Thus S must be convex and f((1 − λ)x1 + λx2) < +∞. Condition (∗) is a little awkward,
since it does not refer explicitly to f(x1) and f(x2), as these values may be −∞, in which
case it is not clear what the expression (1− λ)f(x1) + λf(x2) means.

In order to perform arithmetic operations involving −∞ and +∞, we adopt the following
conventions:

α + (+∞) = +∞+ α = +∞ −∞ < α ≤ +∞
α +−∞ = −∞+ α = −∞ −∞ ≤ α < +∞
α(+∞) = (+∞)α = +∞ 0 < α ≤ +∞
α(−∞) = (−∞)α = −∞ 0 < α ≤ +∞
α(+∞) = (+∞)α = −∞ −∞ ≤ α < 0

α(−∞) = (−∞)α = +∞ −∞ ≤ α < 0

0(+∞) = (+∞)0 = 0 0(−∞) = (−∞)0 = 0

−(−∞) = +∞
inf ∅ = +∞ sup ∅ = −∞.
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Figure 15.3: The epigraph of the concave function f(x) = −x2 if x ≥ 0 and +∞ otherwise.

The expressions +∞+ (−∞) and −∞+ (+∞) are meaningless.

The following characterizations of convex functions are easy to show.

Proposition 15.1. Let C be a nonempty convex subset of Rn.

(1) A function f : C → Rn ∪ {+∞} is convex on C iff

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ C and all λ such that 0 < λ < 1.

(2) A function f : Rn → Rn ∪ {−∞,+∞} is convex iff

f((1− λ)x+ λy) < (1− λ)α + λβ

for all α, β ∈ R, all x, y ∈ Rn such that f(x) < α and f(y) < β, and all λ such that
0 < λ < 1.

The “good” convex functions that we would like to deal with are defined below.

Definition 15.5. A convex function f : Rn → R ∪ {−∞,+∞} is proper1 if its epigraph is
nonempty and does not contain any vertical line. Equivalently, a convex function f is proper
if f(x) > −∞ for all x ∈ Rn and f(x) < +∞ for some x ∈ Rn. A convex function which is
not proper is called an improper function.

1This terminology is unfortunate because it clashes with the notion of a proper function from topology,
which has to do with the preservation of compact subsets under inverse images.
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Observe that a convex function f is proper iff dom(f) 6= ∅ and if the restriction of f to
dom(f) is a finite function.

It is immediately verified that a set C is convex iff its indicator function IC is convex,
and clearly, the indicator function of a convex set is proper.

The important object of study is the set of proper functions, but improper functions
can’t be avoided.

Example 15.2. Here is an example of an improper convex function f : R→ R∪{−∞,+∞}:

f(x) =


−∞ if |x| < 1

0 if |x| = 1

+∞ if |x| > 1

Observe that dom(f) = [−1, 1], and that epi(f) is not closed. See Figure 15.4.

-1 1
-1 1

Figure 15.4: The improper convex function of Example 15.2 and its epigraph depicted as a
rose colored region of R2.

Functions whose epigraph are closed tend to have better properties. To characterize such
functions we introduce sublevel sets.

Definition 15.6. Given a function f : Rn → R ∪ {−∞,+∞}, for any α ∈ R ∪ {−∞,+∞},
the sublevel sets sublevα(f) and sublev<α(f) are the sets

sublevα(f) = {x ∈ Rn | f(x) ≤ α} and sublev<α(f) = {x ∈ Rn | f(x) < α}.

For the improper convex function of Example 15.2, we have

sublev−∞(f) = (−1, 1) while sublev<−∞(f) = ∅.
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sublevα(f) = (−1, 1) = sublev<α(f) whenever −∞ < α < 0.

sublev0(f) = [−1, 1] while sublev<0(f) = (−1, 1).

sublevα(f) = [−1, 1] = sublev<α(f) whenever 0 < α < +∞.

sublev+∞(f) = R while sublev<+∞(f) = [−1, 1].

A useful corollary of Proposition 15.1 is the following result whose (easy) proof can be
found in Rockafellar [61] (Theorem 4.6).

Proposition 15.2. If f is any convex function on Rn, then for every α ∈ R ∪ {−∞,+∞},
the sublevel sets sublevα(f) and sublev<α(f) are convex.

Definition 15.7. A function f : Rn → R ∪ {−∞,+∞} is lower semi-continuous if the
sublevel sets sublevα(f) = {x ∈ Rn | f(x) ≤ α} are closed for all α ∈ R.

Observe that the improper convex function of Example 15.2 is not lower semi-continuous
since sublevα(f) = (−1, 1) whenever −∞ < α < 0. This result reflects the fact that the
epigraph is not closed as shown in the following proposition; see Rockafellar [61] (Theorem
7.1).

Proposition 15.3. Let f : Rn → R∪ {−∞,+∞} be any function. The following properties
are equivalent:

(1) The function f is lower semi-continuous.

(2) The epigraph of f is a closed set in Rn+1.

The notion of the closure of convex function plays an important role. It is a bit subtle
because a convex function may be improper.

Definition 15.8. Let f : Rn → R ∪ {−∞,+∞} be any function. The function whose
epigraph is the closure of the epigraph epi(f) of f (in Rn+1) is called the lower semi-
continuous hull of f . If f is a convex function and if f(x) > −∞ for all x ∈ Rn, then the
closure cl(f) of f is equal to its lower semi-continuous hull, else if f(x) = −∞ for some
x ∈ Rn, then the closure cl(f) of f is the constant function with value −∞. A convex
function f is closed if f = cl(f).

Definition 15.8 implies that there are only two closed improper convex functions: the
constant function with value −∞ and the constant function with value +∞. Also, by
Proposition 15.3, a proper convex function is closed iff it is equal to its lower semi-continuous
hull iff its epigraph is nonempty and closed .

Given a convex set C in Rn, the interior int(C) of C (the largest open subset of Rn

contained in C) is often not interesting because C may have dimension smaller than n. For
example, a (closed) triangle in R3 has empty interior.
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The remedy is to consider the affine hull aff(C) of C, which is the smallest affine set
containing C; see Section 8.2. The dimension of C is the dimension of aff(C). Then the
relative interior of C is the interior of C in aff(C) endowed with the subspace topology
induced on aff(C). More explicitly, we can make the following definition.

Definition 15.9. Let C be a subset of Rn. The relative interior of C is the set

relint(C) = {x ∈ C | Bε(x) ∩ aff(C) ⊆ C for some ε > 0},

where Bε(x) = {y ∈ Rn | ‖x− y‖2 < ε}, the open ball of center x and radius ε. The relative
boundary of C is defined as C − relint(C), where C is the closure of C in Rn (the smallest
closed subset of Rn containing C).

Remark. Observe that int(C) ⊆ relint(C). Rockafellar denotes the relative interior of a
set C by ri(C).

The following result from Rockafellar [61] (Theorem 7.2) tells us that an improper con-
vex function mostly takes infinite values, except perhaps at relative boundary points of its
effective domain.

Proposition 15.4. If f is an improper convex function, then f(x) = −∞ for every x ∈
relint(dom(f)). Thus an improper convex function takes infinite values, except at relative
boundary points of its effective domain.

Example 15.2 illustrates Proposition 15.4.

The following result also holds; see Rockafellar [61] (Corollary 7.2.3).

Proposition 15.5. If f is a convex function whose effective domain is relatively open, which
means that relint(dom(f)) = dom(f), then either f(x) > −∞ for all x ∈ Rn, or f(x) = ±∞
for all x ∈ Rn.

We also have the following result showing that the closure of a proper convex function
does not differ much from the original function; see Rockafellar [61] (Theorem 7.4).

Proposition 15.6. Let f : Rn → R ∪ {+∞} be a proper convex function. Then cl(f) is a
closed proper convex function, and cl(f) agrees with f on dom(f) except possibly at relative
boundary points.

Example 15.3. For an example of Propositions 15.6 and 15.5, let f : R → R ∪ {+∞} be
the proper convex function

f(x) =

{
x2 if x < 1

+∞ if |x| ≥ 1.

Then cl(f) is

clf(x) =

{
x2 if x ≤ 1

+∞ if |x| > 1,

and clf(x) = f(x) whenever x ∈ (−∞, 1) = relint(dom(f)) = dom(f). Furthermore, since
relint(dom(f)) = dom(f), f(x) > −∞ for all x ∈ R. See Figure 15.5.
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Figure 15.5: The proper convex function of Example 15.3 and its closure. These two functions
only differ at the relative boundary point of dom(f), namely x = 1.

Small miracle: the indicator function IC of any closed convex set is proper and closed .
Indeed, for any α ∈ R the sublevel set {x ∈ Rn | IC(x) ≤ α} is either empty if α < 0, or
equal to C if α ≥ 0, and C is closed.

We now discuss briefly continuity properties of convex functions. The fact that a convex
function f can take the values ±∞ causes a difficulty, so we consider the restriction of f
to its effective domain. There is still a problem because an improper function may take the
value −∞. However, if we consider any subset C of dom(f) which is relatively open, which
means that relint(C) = C, then C ⊆ relint(dom(f)), so by Proposition 15.4, the function
f has the constant value −∞ on C, and so it can be considered to be continuous on C. Thus
we are led to consider proper functions.

Definition 15.10. Given a proper convex function f , for any subset S ⊆ dom(f), we say
that f is continuous relative to S if the restriction of f to S is continuous, with S endowed
with the subspace topology.

The following result is proven in Rockafellar [61] (Theorem 10.1).

Proposition 15.7. If f is a proper convex function, then f is continuous on any convex rela-
tively open subset C (relint(C) = C) contained in its effective domain dom(f), in particular
relative to relint(dom(f)).

As a corollary, any convex function f which is finite on Rn is continuous.

The behavior of a convex function at relative boundary points of the effective domain
can be tricky. Here is an example due to Rockafellar [61] illustrating the problems.
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Example 15.4. Consider the proper convex function (on R2) given by

f(x, y) =


y2/(2x) if x > 0

0 if x = 0, y = 0

+∞ otherwise.

We have
dom(f) = {(x, y) ∈ R2 | x > 0} ∪ {(0, 0)}.

See Figure 15.6.

x = 1

x = 1/2

Figure 15.6: The proper convex function of Example 15.4. When intersected by vertical
planes of the form x = α, for α > 0, the trace is an upward parabola. When α is close to
zero, this parabola approximates the positive z axis.

The function f is continuous on the open right half-plane {(x, y) ∈ R2 | x > 0}, but
not at (0, 0). The limit of f(x, y) when (x, y) approaches (0, 0) on the parabola of equation
x = y2/(2α) is α for any α > 0. See Figure 15.7 However, it is easy to see that the limit
along any line segment from (0, 0) to a point in the open right half-plane is 0.

We conclude this quick tour of the basic properties of convex functions with a result
involving the Lipschitz condition.

Definition 15.11. Let f : E → F be a function between normed vector spaces E and F ,
and let U be a nonempty subset of E. We say that f Lipschitzian on U (or has the Lipschitz
condition on U) if there is some c ≥ 0 such that

‖f(x)− f(y)‖F ≤ c ‖x− y‖E for all x, y ∈ U.
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Figure a

Figure b

Figure 15.7: Figure (a) illustrates the proper convex function of Example 15.4. Figure
(b) illustrates the approach to (0, 0) along the planar parabolic curve (y2/2, y). Then
f(y2/2, y) = 1 and Figure b shows the intersection of the surface with the plane z = 1.

Obviously, if f is Lipschitzian on U it is uniformly continuous on U . The following result
is proven in Rockafellar [61] (Theorem 10.4).

Proposition 15.8. Let f be a proper convex function, and let S be any (nonempty) closed
bounded subset of relint(dom(f)). Then f is Lipschitzian on S.

In particular, a finite convex function on Rn is Lipschitzian on every compact subset of
Rn. However, such a function may not be Lipschitzian on Rn as a whole.

15.2 Subgradients and Subdifferentials

We saw in the previous section that proper convex functions have “good” continuity prop-
erties. Remarkably, if f is a convex function, for any x ∈ Rn such that f(x) is finite, the
one-sided derivative f ′(x;u) exists for all u ∈ Rn; This result has been shown at least since
1893, as noted by Stoltz (see Rockafellar [61], page 428). Directional derivatives will be
discussed in Section 15.3. If f is differentitable at x, then of course

dfx(u) = 〈∇fx, u〉 for all u ∈ Rn,

where ∇fx is the gradient of f at x.
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But even if f is not differentiable at x, it turns out that for “most” x ∈ dom(f), in
particular if x ∈ relint(dom(f)), there is a nonempty closed convex set ∂f(x) which may
be viewed as a generalization of the gradient ∇fx. This convex set of Rn, ∂f(x), called the
subdifferential of f at x, has some of the properties of the gradient ∇fx. The vectors in ∂f(x)
are called subgradients at x. For example, if f is a proper convex function, then f achieves
its minimum at x ∈ Rn iff 0 ∈ ∂f(x). Some of the theorems of Chapter 14 can be generalized
to convex functions that are not necessarily differentiable by replacing conditions involving
gradients by conditions involving subdifferentials. These generalizations are crucial for the
justification that various iterative methods for solving optimization programs converge. For
example, they are used to prove the convergence of the ADMM method discussed in Chapter
16.

One should note that the notion of subdifferential is not just a gratuitous mathematical
generalization. The remarkable fact that the optimization problem

minimize J(u)

subject to u ∈ C,

where C is a closed convex set in Rn can be rewritten as

minimize J(u) + IC(z)

subject to u− z = 0,

where IC is the indicator function of C, forces us to deal with functions such as J(u) + IC(z)
which are not differentiable, even if J is. ADMM can cope with this situation (under certain
conditions), and subdifferentials cannot be avoided in justifying its convergence. However,
it should be said that the subdifferential ∂f(x) is a theoretical tool that is never computed
in practice (except in very special simple cases).

To define subgradients we need to review (affine) hyperplanes.

Recall that an affine form ϕ : Rn → R is a function of the form

ϕ(x) = h(x) + c, x ∈ Rn,

where h : Rn → R is a linear form and c ∈ R is some constant. An affine hyperplane H ⊆ Rn

is the kernel of any nonconstant affine form ϕ : Rn → R (which means that the linear form
h defining ϕ is not the zero linear form),

H = ϕ−1(0) = {x ∈ Rn | ϕ(x) = 0}.

Any two nonconstant affine forms ϕ and ψ defining the same (affine) hyperplane H, in the
sense that H = ϕ−1(0) = ψ−1(0), must be proportional, which means that there is some
nonzero α ∈ R such that ψ = αϕ.

A nonconstant affine form ϕ also defines the two half spaces H+ and H− given by

H+ = {x ∈ Rn | ϕ(x) ≥ 0}, H− = {x ∈ Rn | ϕ(x) ≤ 0}.
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Clearly, H+ ∩ H− = H, their common boundary. See Figure 15.8. The choice of sign is
somewhat arbitrary, since the affine form αϕ with α < 0 defines the half spaces with H−
and H+ (the half spaces are swapped).

(0,0,5)

(5,0,0) (0,5,0)

Figure 15.8: The affine hyperplane H = {x ∈ R3 | x + y + z − 2 = 0}. The half space H+

faces the viewer and contains the point (0, 0, 10), while the half space H− is behind H and
contains the point (0, 0, 0).

By the duality induced by the Euclidean inner product on Rn, a linear form h : Rn → R
corresponds to a unique vector u ∈ Rn such that

h(x) = 〈x, u〉 for all x ∈ Rn.

Then if ϕ is the affine form given by ϕ(x) = 〈x, u〉 + c, this affine form is nonconstant iff
u 6= 0, and u is normal to the hyperplane H, in the sense that if x0 ∈ H is any fixed vector
in H, and x is any vector in H, then 〈x− x0, u〉 = 0.

Indeed, x0 ∈ H means that 〈x0, u〉 + c = 0, and x ∈ H means that 〈x, u〉 + c = 0, so we
get 〈x0, u〉 = 〈x, u〉, which implies 〈x− x0, u〉 = 0.

Here is an observation which plays a key role in defining the notion of subgradient. An
illustration of the following proposition is provided by Figure 15.9.

Proposition 15.9. Let ϕ : Rn → R be a nonconstant affine form. Then the map ω : Rn+1 →
R given by

ω(x, α) = ϕ(x)− α, x ∈ Rn, α ∈ R,

is a nonconstant affine form defining a hyperplane H = ω−1(0) which is the graph of the
affine form ϕ. Furthermore, this hyperplane is nonvertical in Rn+1, in the sense that H
cannot be defined by a nonconstant affine form (x, α) 7→ ψ(x) which does not depend on α.
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ω(x, α) = x+1 - α

Figure 15.9: Let ϕ : R → R be the affine form ϕ(x) = x + 1. Let ω : R2 → R be the
affine form ω(x, α) = x + 1 − α. The hyperplane H = ω−1(0) is the red line with equation
x− α + 1 = 0.

Proof. Indeed, ϕ is of the form ϕ(x) = h(x) + c for some nonzero linear form h, so

ω(x, α) = h(x)− α + c.

Since h is linear, the map (x, α) = h(x) − α is obviously linear and nonzero, so ω is a
nonconstant affine form defining a hyperplane H in Rn+1. By definition,

H = {(x, α) ∈ Rn+1 | ω(x, α) = 0} = {(x, α) ∈ Rn+1 | ϕ(x)− α = 0},

which is the graph of ϕ. If H was a vertical hyperplane, then H would be defined by a
nonconstant affine form ψ independent of α, but the affine form ω given by ω(x, α) = ϕ(x)−α
and the affine form ψ(x) can’t be proportional, a contradiction.

We say that H is the hyperplane (in Rn+1) induced by the affine form ϕ : Rn → R. Also
recall the notion of supporting hyperplane to a convex set.

Definition 15.12. If C is a nonempty convex set in Rn and x is a vector in C, an affine
hyperplane H is a supporting hyperplane to C at x if

(1) x ∈ H.

(2) Either C ⊆ H+ or C ⊆ H−.

See Figure 15.10. Equivalently, there is some nonconstant affine form ϕ such that ϕ(z) =
〈z, u〉 − c for all z ∈ Rn, for some nonzero u ∈ Rn and some c ∈ R, such that

(1) 〈x, u〉 = c.



494 CHAPTER 15. SUBGRADIENTS AND SUBDIFFERENTIALS ~

x

H

C

Figure 15.10: Let C be the solid peach tetrahedron in R3. The green plane H is a supporting
hyperplane to the point x since x ∈ H and C ⊆ H+, i.e. H only intersects C on the edge
containing x and so the tetrahedron lies in “front” of H.

(2) 〈z, u〉 ≤ c for all z ∈ C

The notion of vector normal to a convex set is defined as follows.

Definition 15.13. Given a nonempty convex set C in Rn, for any a ∈ C, a vector u ∈ Rn

is normal to C at a if
〈z − a, u〉 ≤ 0 for all z ∈ C.

In other words, u does not make an acute angle with any line segment in C with a as
endpoint. The set of all vectors u normal to C is called the normal cone to C at a and is
denoted by NC(a). See Figure 15.11.

It is easy to check that the normal cone to C at a is a convex cone. Also, if the hyperplane
H defined by an affine form ϕ(z) = 〈z, u〉 − c with u 6= 0 is a supporting hyperplane to C at
x, since 〈z, u〉 ≤ c for all z ∈ C and 〈x, u〉 = c, we have 〈z − x, u〉 ≤ 0 for all z ∈ C, which
means that u is normal to C at x. This concept is illustrated by Figure 15.12.

The notion of subgradient can be motived as follows. A function f : Rn → R is differen-
tiable at x ∈ Rn if

f(x+ y) = f(x) + dfx(y) + ε(y) ‖y‖2 ,

for all y ∈ Rn in some nonempty subset containing x, where dfx : Rn → R is a linear form,
and ε is some function such that lim‖y‖7→0 ε(y) = 0. Furthermore,

dfx(y) = 〈y,∇fx〉 for all y ∈ Rn,

where ∇fx is the gradient of f at x, so

f(x+ y) = f(x) + 〈y,∇fx〉+ ε(y) ‖y‖2 .
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Figure a

Figure 15.11: Let C be the solid peach tetrahedron in R3. The small upside-down magenta
tetrahedron is the translate of NC(a). Figure (a) shows that the normal cone is separated
from C by the horizontal green supporting hyperplane. Figure (b) shows that any vector
u ∈ NC(a) does not make an acute angle with a line segment in C emanating from a.

If we assume that f is convex, it makes sense to replace the equality sign by the inequality
sign ≥ in the above equation and to drop the “error term” ε(y) ‖y‖2, so a vector u is a
subgradient of f at x if

f(x+ y) ≥ f(x) + 〈y, u〉 for all y ∈ Rn.

Thus we are led to the following definition.

Definition 15.14. Let f : Rn → R ∪ {−∞,+∞} be a convex function. For any x ∈ Rn, a
subgradient of f at x is any vector u ∈ Rn such that

f(z) ≥ f(x) + 〈z − x, u〉, for all z ∈ Rn. (∗subgrad)

The above inequality is called the subgradient inequality . The set of all subgradients of f at
x is denoted ∂f(x) and is called the subdifferential of f at x. If ∂f(x) 6= ∅, then we say
that f is subdifferentiable at x.

Assume that f(x) is finite. Observe that the subgradient inequality says that 0 is a
subgradient at x iff f has a global minimum at x. In this case, the hyperplane H (in Rn+1)
defined by the affine form ω(y, α) = f(x) − α is a horizontal supporting hyperplane to
the epigraph epi(f) at (x, f(x)). If u ∈ ∂f(x) and u 6= 0, then (∗subgrad) says that the
hyperplane induced by the affine form z 7→ 〈z − x, u〉 + f(x) as in Proposition 15.9 is a
nonvertical supporting hyperplane H (in Rn+1) to the epigraph epi(f) at (x, f(x)). The
vector (u,−1) ∈ Rn+1 is normal to the hyperplane H. See Figure 15.13.

Indeed, if u 6= 0, the hyperplane H is given by

H = {(y, α) ∈ Rn+1 | ω(y, α) = 0}
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H = <z,u> - c

Figure 15.12: Let C be the solid peach tetrahedron in R3. The green plane H defined by
ϕ(z) = 〈z, u〉 − c is a supporting hyperplane to C at a. The pink normal to H, namely the
vector u, is also normal to C at a.

with ω(y, α) = 〈y − x, u〉 + f(x) − α, so ω(x, f(x)) = 0, which means that (x, f(x)) ∈ H.
Also, for any (z, β) ∈ epi(f), by (∗subgrad), we have

ω(z, β) = 〈z − x, u〉+ f(x)− β ≤ f(z)− β ≤ 0,

since (z, β) ∈ epi(f), so epi(f) ⊆ H−, and H is a nonvertical supporting hyperplane (in
Rn+1) to the epigraph epi(f) at (x, f(x)). Since

ω(y, α) = 〈y − x, u〉+ f(x)− α = 〈(y − x, α), (u,−1)〉+ f(x),

the vector (u,−1) is indeed normal to the hyperplane H.

The above facts are important and recorded as the following proposition.

Proposition 15.10. For every x ∈ Rn, if f(x) is finite, then f is subdifferentiable at x if
and only if there is a nonvertical supporting hyperplane (in Rn+1) to the epigraph epi(f) at
(x, f(x)). In this case there is an affine form ϕ (over Rn) such that f(y) ≥ ϕ(y) for all
y ∈ Rn. We can pick ϕ given by ϕ(y) = 〈y − x, u〉+ f(x) for all y ∈ Rn.

It is easy to see that ∂f(x) is closed and convex. The set ∂f(x) may be empty, or reduced
to a single element. In ∂f(x) consists of a single element it can be shown that f is finite
near x, differentiable at x, and that ∂f(x) = {∇fx}, the gradient of f at x.

Example 15.5. The `2 norm f(x) = ‖x‖2 is subdifferentiable for all x ∈ Rn, in fact
differentiable for all x 6= 0. For x = 0, the set ∂f(0) consists of all u ∈ Rn such that

‖z‖2 ≥ 〈z, u〉 for all z ∈ Rn,

namely (by Cauchy–Schwarz), the Euclidean unit ball {u ∈ Rn | ‖u‖2 ≤ 1}. See Figure
15.14.
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(0,3/2) u = 0
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Figure 15.13: Let f : R→ R∪{−∞,+∞} be the piecewise function defined by f(x) = x+ 1
for x ≥ 1 and f(x) = −1

2
x+ 3

2
for x < 1. Its epigraph is the shaded blue region in R2. Since

f has minimum at x = 1, 0 ∈ ∂f(1), and the graph of f(x) has a horizontal supporting
hyperplane at (1, 1). Since {1

2
,−1

4
} ⊂ ∂f(1), the maroon line 1

2
(x − 1) + 1 (with normal

(1
2
,−1)) and the violet line −1

4
(x−1)+1 (with normal (−1

4
,−1)) are supporting hyperplanes

to the graph of f(x) at (1, 1).

Example 15.6. For the `∞ norm if f(x) = ‖x‖∞, we leave it as an exercise to show that
∂f(0) is the polyhedron

∂f(0) = conv{±e1, . . . ,±en}.

See Figure 15.15. One can also work out what is ∂f(x) if x 6= 0, but this is more complicated;
see Rockafellar [61], page 215.

Example 15.7. The following function is an example of a proper convex function which is
not subdifferentiable everywhere:

f(x) =

{
−(1− |x|2)1/2 if |x| ≤ 1

+∞ otherwise.

See Figure 15.16. We leave it as an exercise to show that f is subdifferentiable (in fact
differentiable) at x when |x| < 1, but ∂f(x) = ∅ when |x| ≥ 1, even though x ∈ dom(f) for
|x| = 1.

Example 15.8. The subdifferential of an indicator function is interesting. Let C be a
nonempty convex set. By definition, u ∈ ∂IC(x) iff

IC(z) ≥ IC(x) + 〈z − x, u〉 for all z ∈ Rn.
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Figure 1

Figure 2

Figure 15.14: Figure (1) shows the graph in R3 of f(x, y) = ‖(x, y)‖2 =
√
x2 + y2. Figure

(2) shows the supporting hyperplane with normal ( 1√
2
, 1√

2
,−1), where ( 1√

2
, 1√

2
) ∈ ∂f(0).

Since C is nonempty, there is some z ∈ C such that IC(z) = 0, so the above condition implies
that x ∈ C (otherwise IC(x) = +∞ but 0 ≥ +∞+ 〈z−u, u〉 is impossible), so 0 ≥ 〈z−x, u〉
for all z ∈ C, which means that z is normal to C at x. Therefore, ∂IC(x) is the normal cone
NC(x) to C at x.

Example 15.9. The subdifferentials of the indicator function f of the nonnegative orthant
of Rn reveal a connection to complementary slackness conditions. Recall that this indicator
function is given by

f(x1, . . . , xn) =

{
0 if xi ≥ 0, 1 ≤ i ≤ n,

+∞ otherwise.

By Example 15.8, the subgradients y of f at x ≥ 0 form the normal cone to the nonnegative
orthant at x. This means that y ∈ NC(x) iff

〈z − x, y〉 ≤ 0 for all z ≥ 0

iff
〈z, y〉 ≤ 〈x, y〉 for all z ≥ 0.

In particular, for z = 0 we get 〈x, y〉 ≥ 0, and for z = 2x ≥ 0, we have 〈x, y〉 ≤ 0, so
〈x, y〉 = 0. As a consequence, y ∈ NC(x) iff 〈x, y〉 = 0 and

〈z, y〉 ≤ 0 for all z ≥ 0.
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Figure 1

Figure 2

Figure 15.15: Figure (1) shows the graph in R3 of f(x, y) = ‖(x, y)‖∞ = sup{|x|, |y|}. Figure
(2) shows the supporting hyperplane with normal (1

2
, 1

2
,−1), where (1

2
, 1

2
) ∈ ∂f(0).

For z = ej ≥ 0, we get yj ≤ 0. Conversely, if y ≤ 0 and 〈x, y〉 = 0, since x ≥ 0, we get
〈z, y〉 ≤ 0 for all z ≥ 0, and so

∂f(x) = {y = (y1, . . . , yn) ∈ Rn | y ≤ 0, 〈x, y〉 = 0}.

But for x ≥ 0 and y ≤ 0 we have 〈x, y〉 =
∑n

j=1 xjyj = 0 iff xjyj = 0 for j = 1, . . . , n, thus
we see that y ∈ ∂f(x) iff we have

xj ≥ 0, yj ≤ 0, xjyj = 0, 1 ≤ j ≤ n,

which are complementary slackness conditions.

Supporting hyperplanes to the epigraph of a proper convex function f can be used to
prove a property which plays a key role in optimization theory. The proof uses a classical
result of convex geometry, namely the Minkowski supporting hyperplane theorem.

Theorem 15.11. (Minkowski) Let C be a nonempty convex set in Rn. For any point a ∈
C − relint(C), there is a supporting hyperplane H to C at a.

Theorem 15.11 is proven in Rockafellar [61] (Theorem 11.6). See also Berger [6] (Propo-
sition 11.5.2). The proof is not as simple as one might expect, and is based on a geometric
version of the Hahn–Banach theorem.

In order to prove Theorem 15.14 below we need two technical propositions.
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Figure 15.16: The graph of the function in Example 15.7.

Proposition 15.12. Let C be any nonempty convex set in Rn. For any x ∈ relint(C) and
any y ∈ C, we have (1−λ)x+λy ∈ relint(C) for all λ such that 0 ≤ λ < 1. In other words,
the line segment from x to y including x and excluding y lies entirely within relint(C).

Proposition 15.12 is proven in Rockafellar [61] (Theorem 6.1). The proof is not difficult
but quite technical.

Proposition 15.13. For any proper convex function f on Rn, we have

relint(epi(f)) = {(x, µ) ∈ Rn+1 | x ∈ relint(dom(f)), f(x) < µ}.

Proof. Proposition 15.13 is proven in Rockafellar [61] (Lemma 7.3). By working in the affine
hull of epi(f), the statement of Proposition 15.13 is equivalent to

int(epi(f)) = {(x, µ) ∈ Rm+1 | x ∈ int(dom(f)), f(x) < µ},

assuming that the affine hull of epi(f) has dimension m + 1. See Figure (1) of Figure
15.17. The inclusion ⊆ is obvious, so we only need to prove the reverse inclusion. Then for
any z ∈ int(dom(f)), we can find a convex polyhedral subset P = conv(a1, . . . , am+1) with
a1, . . . , am+1 ∈ dom(f) such that z ∈ int(P ). Let

α = max{f(a1), . . . , f(am+1)}.

Since any x ∈ P can be expressed as

x = λ1a1 + · · ·+ λm+1am+1, λ1 + · · ·+ λm+1 = 1, λi ≥ 0,

and since f is convex we have

f(x) ≤ λ1f(a1) + · · ·+ λm+1f(am+1) ≤ (λ1 + · · ·+ λm+1)α = α for all x ∈ P .
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The above shows that the open subset

{(x, µ) ∈ Rm+1 | x ∈ int(P ), α < µ}

is contained in epi(f). See Figure (2) of Figure 15.17. In particular, for every µ > α, we
have

(z, µ) ∈ int(epi(f)).

Thus for any β ∈ R such that β > f(z), we see that (z, β) belongs to the relative interior of
the vertical line segment {(z, µ) ∈ Rm+1 | f(z) ≤ µ ≤ α + β + 1} which meets int(epi(f)).
See Figure (3) of Figure 15.17. By Proposition 15.12, (z, β) ∈ int(epi(f)).

z

f(a  ) =α
2

a2

a
1

Figure 1

f(a  ) =α
2

a2

a
1

(x,μ)

Figure 2

f(a  ) =α
2

a2

a
1 z

(z, f(z))

(z, α + β + 1)

Figure 3

Figure 15.17: Figure (1) illustrates epi(f), where epi(f) is contained in a vertical plane
of affine dimension 2. Figure (2) illustrates the magenta open subset {(x, µ) ∈ R2 | x ∈
int(P ), α < µ} of epi(f). Figure (3) illustrates the vertical line segment {(z, µ) ∈ R2 |
f(z) ≤ µ ≤ α + β + 1}.

We can now prove the following important theorem.

Theorem 15.14. Let f be a proper convex function on Rn. For any x ∈ relint(dom(f)),
there is a nonvertical supporting hyperplane H to epi(f) at (x, f(x)). Consequently f is
subdiffentiable for all x ∈ relint(dom(f)), and there is some affine form ϕ : Rn → R such
that f(y) ≥ ϕ(y) for all y ∈ Rn.
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Proof. By Proposition 15.14, for any x ∈ relint(dom(f)), we have (x, µ) ∈ relint(epi(f))
for all µ ∈ R such that f(x) < µ. Since by definition of epi(f) we have (x, f(x)) ∈ epi(f)−
relint(epi(f)), by Minkowski’s theorem (Theorem 15.11), there is a supporting hyperplane
H to epi(f) through (x, f(x)). Since x ∈ relint(dom(f)) and f is proper, the hyperplane
H is not a vertical hyperplane. By Definition 15.14, the function f is subdifferentiable
at any x ∈ relint(dom(f)), and the subgradient inequality shows that if we pick some
x ∈ relint(dom(f)) and if we let ϕ(z) = f(x) + 〈z−x, u〉, then ϕ is an affine form such that
f(z) ≥ ϕ(z) for all z ∈ Rn.

Intuitively, a proper convex function can’t decrease faster than an affine function. It is
surprising how much work it takes to prove such an “obvious” fact.

Remark: Consider the proper convex function f : R→ R ∪ {+∞} given by

f(x) =

{
−
√
x if x ≥ 0

+∞ if x < 0.

We have dom(f) = [0,+∞), f is differentiable for all x > 0, but it is not subdifferentiable
at x = 0. The only supporting hyperplane to epi(f) at (0, 0) is the vertical line of equation
x = 0 (the y-axis) as illustrated by Figure 15.18.

Figure 15.18: The graph of the partial function f(x) = −
√
x and its red vertical supporting

hyperplane at x = 0.

15.3 Basic Properties of Subgradients and

Subdifferentials

A major tool to prove properties of subgradients is a variant of the notion of directional
derivative.
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Definition 15.15. Let f : Rn → R ∪ {−∞,+∞} be any function. For any x ∈ Rn such
that f(x) is finite (f(x) ∈ R), for any u ∈ Rn, the one-sided directional derivative f ′(x;u) is
defined to be the limit

f ′(x;u) = lim
λ↓0

f(x+ λu)− f(x)

λ

if it exists (−∞ and +∞ being allowed as limits). See Figure 15.19. The above notation for
the limit means that we consider the limit when λ > 0 tends to 0.

u

x

x + λu

(x,f(x))

x + λu f(x + λu)( , )

u

x

x + λu

(x,f(x))

x + λu f(x + λu)( , )

λ> 0

λ< 0

Figure 15.19: Let f : R2 → R∪{−∞,+∞} be the function whose graph (in R3) is the surface
of the peach pyramid. The top figure illustrates that f ′(x;u) is the slope of the slanted burnt

orange line, while the bottom figure depicts the line associated with limλ↑0
f(x+λu)−f(x)

λ
.

Note that

lim
λ↑0

f(x+ λu)− f(x)

λ

denotes the one-sided limit when λ < 0 tends to zero, and that

−f ′(x;−u) = lim
λ↑0

f(x+ λu)− f(x)

λ
,

so the (two-sided) directional derivative Duf(x) exists iff −f ′(x;−u) = f ′(x;u). Also, if f is
differentiable at x, then

f ′(x;u) = 〈∇fx, u〉, for all u ∈ Rn,

where ∇fx is the gradient of f at x. Here is the first remarkable result.
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Proposition 15.15. Let f : Rn → R ∪ {−∞,+∞} be a convex function. For any x ∈ Rn,
if f(x) is finite, then the function

λ 7→ f(x+ λu)− f(x)

λ

is a nondecreasing function of λ > 0, so that f ′(x;u) exists for any u ∈ Rn, and

f ′(x;u) = inf
λ>0

f(x+ λu)− f(x)

λ
.

Furthermore, f ′(x;u) is a positively homogeneous convex function of u (which means that
f ′(x;αu) = αf ′(x;u) for all α ∈ R with α > 0 and all u ∈ Rn), f ′(x; 0) = 0, and

−f ′(x;−u) ≤ f ′(x;u) for all u ∈ Rn

Proposition 15.15 is proven in Rockafellar [61] (Theorem 23.1). The proof is not difficult
but not very informative.

Remark: As a convex function of u, it can be shown that the effective domain of the
function u 7→ f ′(x;u) is the convex cone generated by dom(f)− x.

We will now state without proof some of the most important properties of subgradients
and subdifferentials. Complete details can be found in Rockafellar [61] (Part V, Section 23).

In order to state the next proposition, we need the following definition.

Definition 15.16. For any convex set C in Rn, the support function δ∗(−|C) of C is defined
by

δ∗(x|C) = sup
y∈C
〈x, y〉, x ∈ Rn.

According to Definition 14.11, the conjugate of the indicator function IC of a convex set
C is given by

I∗C(x) = sup
y∈Rn

(〈x, y〉 − IC(y)) = sup
y∈C
〈x, y〉 = δ∗(x|C).

Thus δ∗(−|C) = I∗C, the conjugate of the indicator function IC .

The following proposition relates directional derivatives at x and the subdifferential at x.

Proposition 15.16. Let f : Rn → R ∪ {−∞,+∞} be a convex function. For any x ∈ Rn,
if f(x) is finite, then a vector u ∈ Rn is a subgradient to f at x if and only if

f ′(x; y) ≥ 〈y, u〉 for all y ∈ Rn.

Furthermore, the closure of the convex function y 7→ f ′(x; y) is the support function of the
closed convex set ∂f(x), the subdifferential of f at x:

cl(f ′(x;−)) = δ∗(−|∂f(x)).
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Sketch of proof. Proposition 15.16 is proven in Rockafellar [61] (Theorem 23.2). We prove
the inequality. If we write z = x+ λy with λ > 0, then the subgradient inequality implies

f(x+ λu) ≥ f(x) + 〈z − x, u〉 = f(x) + λ〈y, u〉,

so we get
f(x+ λy)− f(x)

λ
≥ 〈y, u〉.

Since the expression on the left tends to f ′(x; y) as λ > 0 tends to zero, we obtain the desired
inequality. The second part follows from Corollary 13.2.1 in Rockafellar [61].

If f is a proper function on R, then its effective domain being convex is an interval whose
relative interior is an open interval (a, b). In Proposition 15.16, we can pick y = 1 so 〈y, u〉 =
u, and for any x ∈ (a, b), since the limits f ′−(x) = −f ′(x;−1) and f ′+(x) = f ′(x; 1) exist, with
f ′−(x) ≤ f ′+(x), we deduce that ∂f(x) = [f ′−(x), f ′+(x)]. The numbers α ∈ [f ′−(x), f ′+(x)] are
the slopes of nonvertical lines in R2 passing through (x, f(x)) that are supporting lines to
the epigraph epi(f) of f .

Example 15.10. If f is the celebrated ReLU function (ramp function) from deep learning
defined so that

ReLU(x) = max{x, 0} =

{
0 if x < 0

x if x ≥ 0,

then ∂ ReLU(0) = [0, 1]. See Figure 15.20. The function ReLU is differentiable for x 6= 0,
with ReLU′(x) = 0 if x < 0 and ReLU′(x) = 1 if x > 0.

Figure 15.20: The graph of the ReLU function.

Proposition 15.16 has several interesting consequences.
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Proposition 15.17. Let f : Rn → R∪{−∞,+∞} be a convex function. For any x ∈ Rn, if
f(x) is finite and if f is subdifferentiable at x, then f is proper. If f is not subdifferentiable
at x, then there is some y 6= 0 such that

f ′(x; y) = −f ′(x;−y) = −∞.

Proposition 15.17 is proven in Rockafellar [61] (Theorem 23.3). It confirms that improper
convex functions are rather pathological objects, because if a convex function is subdifferen-
tiable for some x such that f(x) is finite, then f must be proper. This is because if f(x) is
finite, then the subgradient inequality implies that f majorizes an affine function, which is
proper.

The next theorem is one of the most important results about the connection between one-
sided directional derivatives and subdifferentials. It sharpens the result of Theorem 15.14.

Theorem 15.18. Let f : Rn → R∪{+∞} be a proper convex function. For any x /∈ dom(f),
we have ∂f(x) = ∅. For any x ∈ relint(dom(f)), we have ∂f(x) 6= ∅, the map y 7→ f ′(x; y)
is convex, closed and proper, and

f ′(x; y) = sup
u∈∂f(x)

〈y, u〉 = δ∗(y|∂f(x)) for all y ∈ Rn.

The subdifferential ∂f(x) is nonempty and bounded (also closed and convex) if and only if
x ∈ int(dom(f)), in which case f ′(x; y) is finite for all y ∈ Rn.

Theorem 15.18 is proven in Rockafellar [61] (Theorem 23.4). If we write

dom(∂f) = {x ∈ Rn | ∂f(x) 6= ∅},

then Theorem 15.18 implies that

relint(dom(f)) ⊆ dom(∂f) ⊆ dom(f).

However, dom(∂f) is not necessarily convex as shown by the following counterexample.

Example 15.11. Consider the proper convex function defined on R2 given by

f(x, y) = max{g(x), |y|},

where

g(x) =

{
1−
√
x if x ≥ 0

+∞ if x < 0.

See Figure 15.21. It is easy to see that dom(f) = {(x, y) ∈ R2 | x ≥ 0}, but
dom(∂f) = {(x, y) ∈ R2 | x ≥ 0} − {(0, y) | −1 < y < 1}, which is not convex.



15.3. BASIC PROPERTIES OF SUBGRADIENTS AND SUBDIFFERENTIALS 507

Figure 15.21: The graph of the function from Example 15.11 with a view along the positive
x axis.

The following theorem is important because it tells us when a convex function is differ-
entiable in terms of its subdifferential, as shown in Rockafellar [61] (Theorem 25.1).

Theorem 15.19. Let f be a convex function on Rn, and let x ∈ Rn such that f(x) is finite.
If f is differentiable at x then ∂f(x) = {∇fx} (where ∇fx is the gradient of f at x) and we
have

f(z) ≥ f(x) + 〈z − x,∇fx〉 for all z ∈ Rn.

Conversely, if ∂f(x) consists of a single vector, then ∂f(x) = {∇fx} and f is differentiable
at x.

The first direction is easy to prove. Indeed, if f is differentiable at x, then

f ′(x; y) = 〈y,∇fx〉 for all y ∈ Rn,

so by Proposition 15.16, a vector u is a subgradient at x iff

〈y,∇fx〉 ≥ 〈y, u〉 for all y ∈ Rn,

so 〈y,∇fx − u〉 ≥ 0 for all y, which implies that u = ∇fx.

We obtain the following corollary.

Corollary 15.20. Let f be a convex function on Rn, and let x ∈ Rn such that f(x) is finite.
If f is differentiable at x, then f is proper and x ∈ int(dom(f)).

The following theorem shows that proper convex functions are differentiable almost ev-
erywhere.
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Theorem 15.21. Let f be a proper convex function on Rn, and let D be the set of vectors
where f is differentiable. Then D is a dense subset of int(dom(f)), and its complement in
int(dom(f)) has measure zero. Furthermore, the gradient map x 7→ ∇fx is continuous on
D.

Theorem 15.21 is proven in Rockafellar [61] (Theorem 25.5).

Remark: If f : (a, b)→ R is a finite convex function on an open interval of R, then the set
D where f is differentiable is dense in (a, b), and (a, b)−D is at most countable. The map
f ′ is continuous and nondecreasing on D. See Rockafellar [61] (Theorem 25.3).

We also have the following result showing that in “most cases” the subdifferential ∂f(x)
can be constructed from the gradient map; see Rockafellar [61] (Theorem 25.6).

Theorem 15.22. Let f be a closed proper convex function on Rn. If int(dom(f)) 6= ∅, then
for every x ∈ dom(f), we have

∂f(x) = conv(S(x)) +Ndom(f)(x)

where Ndom(f)(x) is the normal cone to dom(f) at x, and S(x) is the set of all limits of
sequences of the form ∇fx1 ,∇fx2 , . . . ,∇fxp , . . ., where x1, x2, . . . , xp, . . . is a sequence in
dom(f) converging to x such that each ∇fxp is defined.

The next two results generalize familiar results about derivatives to subdifferentials.

Proposition 15.23. Let f1, . . . , fn be proper convex functions on Rn, and let f = f1+· · ·+fn.
For x ∈ Rn, we have

∂f(x) ⊇ ∂f1(x) + · · ·+ ∂fn(x).

If
⋂n
i=1 relint(dom(fi)) 6= ∅, then

∂f(x) = ∂f1(x) + · · ·+ ∂fn(x).

Proposition 15.23 is proven in Rockafellar [61] (Theorem 23.8).

The next result can be viewed as a generalization of the chain rule.

Proposition 15.24. Let f be the function given by f(x) = h(Ax) for all x ∈ Rn, where h
is a proper convex function on Rm and A is an m× n matrix. Then

∂f(x) ⊇ A>(∂h(Ax)) for all x ∈ Rn.

If the range of A contains a point of relint(dom(h)), then

∂f(x) = A>(∂h(Ax)).

Proposition 15.24 is proven in Rockafellar [61] (Theorem 23.9).
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15.4 Additional Properties of Subdifferentials

In general, if f : Rn → R is a function (not necessarily convex) and f is differentiable at x,
we expect that the gradient ∇fx of f at x is normal to the level set {z ∈ Rn | f(z) = f(x)} at
f(x). An analogous result, as illustrated in Figure 15.22, holds for proper convex functions
in terms of subdifferentials.

x

(x, f(x)) graph of f: R  ->  R2

x

sublevel set C

x

sublevel set C

cone spanned by vf(x)

N  (x)C

Figure 15.22: Let f be the proper convex function whose graph in R3 is the peach polyhedral
surface. The sublevel set C = {z ∈ R2 | f(z) ≤ f(x)} is the orange square which is closed
on three sides. Then the normal cone NC(x) is the closure of the convex cone spanned by
∂f(x).

Proposition 15.25. Let f be a proper convex function on Rn, and let x ∈ Rn be a vector
such that f is subdifferentiable at x but f does not achieve its minimum at x. Then the
normal cone NC(x) at x to the sublevel set C = {z ∈ Rn | f(z) ≤ f(x)} is the closure of the
convex cone spanned by ∂f(x).

Proposition 15.25 is proven in Rockafellar [61] (Theorem 23.7).

The following result sharpens Proposition 15.8.

Proposition 15.26. Let f be a closed proper convex function on Rn, and let S be a nonempty
closed and bounded subset of int(dom(f)). Then

∂f(S) =
⋃
x∈S

∂f(x)
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is nonempty, closed and bounded. If

α = sup
y∈∂f(S)

‖y‖2 < +∞,

then f is Lipschitizan on S, and we have

f ′(x; z) ≤ α ‖z‖2 for all x ∈ S and all z ∈ Rn

|f(y)− f(x)| ≤ α ‖y − z‖2 for all x, y ∈ S.

Proposition 15.24 is proven in Rockafellar [61] (Theorem 24.7).

The subdifferentials of a proper convex function f and its conjugate f ∗ are closely related.
First, we have the following proposition from Rockafellar [61] (Theorem 12.2).

Proposition 15.27. Let f be convex function on Rn. The conjugate function f ∗ of f
is a closed and convex function, proper iff f is proper. Furthermore, (cl(f))∗ = f ∗, and
f ∗∗ = cl(f).

As a corollary of Proposition 15.27, it can be shown that

f ∗(y) = sup
x∈relint(dom(f))

(〈x, y〉 − f(x)).

The following result is proven in Rockafellar [61] (Theorem 23.5).

Proposition 15.28. For any proper convex function f on Rn and for any vector x ∈ Rn,
the following conditions on a vector y ∈ Rn are equivalent.

(a) y ∈ ∂f(x).

(b) The function 〈z, y〉 − f(z) achieves its supremum in z at z = x.

(c) f(x) + f ∗(y) ≤ 〈x, y〉.

(d) f(x) + f ∗(y) = 〈x, y〉.

If (cl(f))(x) = f(x), then there are three more conditions all equivalent to the above condi-
tions.

(a∗) x ∈ ∂f ∗(y).

(b∗) The function 〈x, z〉 − f ∗(z) achieves its supremum in z at z = y.

(a∗∗) y ∈ ∂(cl(f))(x).

The following results are corollaries of Proposition 15.28; see Rockafellar [61] (Corollaries
23.5.1, 23.5.2, 23.5.3).
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Corollary 15.29. For any proper convex function f on Rn, if f is closed, then y ∈ ∂f(x)
iff x ∈ ∂f ∗(y), for all x, y ∈ Rn.

Corollary 15.29 states a sort of adjunction property.

Corollary 15.30. For any proper convex function f on Rn, if f is subdifferentiable at
x ∈ Rn, then (cl(f))(x) = f(x) and ∂(cl(f))(x) = ∂f(x).

Corollary 15.30 shows that the closure of a proper convex function f agrees with f
whereever f is subdifferentiable.

Corollary 15.31. For any proper convex function f on Rn, for any nonempty closed convex
subset C of Rn, for any y ∈ Rn, the set ∂δ∗(y|C) = ∂I∗C(y) consists of the vectors x ∈ Rn (if
any) where the linear form z 7→ 〈z, y〉 achieves its maximum over C.

There is a notion of approximate subgradient which turns out to be useful in optimization
theory; see Bertsekas [12, 10].

Definition 15.17. Let f : Rn → R ∪ {+∞} be any proper convex function. For any ε > 0,
for any x ∈ Rn, if f(x) is finite, then an ε-subgradient of f at x is any vector u ∈ Rn such
that

f(z) ≥ f(x)− ε+ 〈z − x, u〉, for all z ∈ Rn.

See Figure 15.23. The set of all ε-subgradients of f at x is denoted ∂εf(x) and is called the
ε-subdifferential of f at x.

The set ∂εf(x) can be defined in terms of the conjugate of the function hx given by

hx(y) = f(x+ y)− f(x), for all y ∈ Rn.

Proposition 15.32. Let f : Rn → R∪{+∞} be any proper convex function. For any ε > 0,
if hx is given by

hx(y) = f(x+ y)− f(x), for all y ∈ Rn,

then
h∗x(y) = f ∗(y) + f(x)− 〈x, y〉 for all y ∈ Rn

and
∂εf(x) = {u ∈ Rn | h∗x(u) ≤ ε}.

Proof. We have

h∗x(y) = sup
z∈Rn

(〈y, z〉 − hx(z))

= sup
z∈Rn

(〈y, z〉 − f(x+ z) + f(x))

= sup
x+z∈Rn

(〈y, x+ z〉 − f(x+ z)− 〈y, x〉+ f(x))

= f ∗(y) + f(x)− 〈x, y〉.
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(1,1)
(0,3/2)

(1/2,-1)

(1,1)
(0,3/2) <z-x,u> +f(x)     u

 = 1/2

(1/2,-1)
ε f(x) -ε + <z-x,u>

subgradient ε-subgradient

Figure 15.23: Let f : R→ R∪{−∞,+∞} be the piecewise function defined by f(x) = x+ 1
for x ≥ 1 and f(x) = −1

2
x+ 3

2
for x < 1. Its epigraph is the shaded blue region in R2. The

line 1
2
(x − 1) + 1 (with normal (1

2
,−1) is a supporting hyperplane to the graph of f(x) at

(1, 1) while the line 1
2
(x− 1) + 1− ε is the hyperplane associated with the ε-subgradient at

x = 1 and shows that u = 1
2
∈ ∂εf(x).

Observe that u ∈ ∂εf(x) iff for every y ∈ Rn,

f(x+ y) ≥ f(x)− ε+ 〈y, u〉

iff

ε ≥ 〈y, u〉 − f(x+ y) + f(x) = 〈y, u〉 − hx(y).

Since by definition

h∗x(u) = sup
y∈Rn

(〈y, u〉 − hx(y)),

we conclude that

∂εf(x) = {u ∈ Rn | h∗x(u) ≤ ε},

as claimed.

Remark: By Fenchel’s inequality h∗x(y) ≥ 0, and by Proposition 15.28(d), the set of vectors
where h∗x vanishes is ∂f(x).

The equation ∂εf(x) = {u ∈ Rn | h∗x(u) ≤ ε} shows that ∂εf(x) is a closed convex set.
As ε gets smaller, the set ∂εf(x) decreases, and we have

∂f(x) =
⋂
ε>0

∂εf(x).



15.5. THE MINIMUM OF A PROPER CONVEX FUNCTION 513

However δ∗(y|∂εf(x)) = I∗∂εf(x)(y) does not necessarily decrease to δ∗(y|∂f(x)) = I∗∂f(x)(y) as

ε decreases to zero. The discrepancy corresponds to the discrepancy between f ′(x; y) and
δ∗(y|∂f(x)) = I∗∂f(x)(y) and is due to the fact that f is not necessarily closed (see Proposition

15.16) as shown by the following result proven in Rockafellar [61] (Theorem 23.6).

Proposition 15.33. Let f be a closed and proper convex function, and let x ∈ Rn such that
f(x) is finite. Then

f ′(x; y) = lim
ε↓0

δ∗(y|∂εf(x)) = lim
ε↓0

I∗∂εf(x)(y) for all y ∈ Rn.

The theory of convex functions is rich and we have only given a sample of some of the
most significant results that are relevant to optimization theory. There are a few more
results regarding the minimum of convex functions that are particularly important due to
their applications to optimization theory.

15.5 The Minimum of a Proper Convex Function

Let h be a proper convex function on Rn. The general problem is to study the minimum of
h over a nonempty convex set C in Rn, possibly defined by a set of inequality and equality
constraints. We already observed that minimizing h over C is equivalent to minimizing the
proper convex function f given by

f(x) = h(x) + IC(x) =

{
h(x) if x ∈ C
+∞ if x /∈ C.

Therefore it makes sense to begin by considering the problem of minimizing a proper convex
function f over Rn. Of course, minimizing over Rn is equivalent to minimizing over dom(f).

Definition 15.18. Let f be a proper convex function on Rn. We denote by inf f the quantity

inf f = inf
x∈dom(f)

f(x).

This is the minimum of the function f over Rn (it may be equal to −∞).

For every α ∈ R, we have the sublevel set

sublevα(f) = {x ∈ Rn | f(x) ≤ α}.

By Proposition 15.2, we know that the sublevel sets sublevα(f) are convex and that

dom(f) =
⋃
α∈R

sublevα(f).

Observe that sublevα(f) = ∅ if α < inf f . If inf f > −∞, then for α = inf f , the sublevel
set sublevα(f) consists of the set of vectors where f achieves it minimum.
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Definition 15.19. Let f be a proper convex function on Rn. If inf f > −∞, then the
sublevel set sublevinf f (f) is called the minimum set of f (this set may be empty). See
Figure 15.24.

(x,f(x))

graph of f: R  ->  R2

y

f (x;y)≥0‘

minimum set of f

x

Figure 15.24: Let f be the proper convex function whose graph is the surface of the upward
facing pink trough. The minimum set of f is the light pink square of R2 which maps to
the bottom surface of the trough in R3. For any x in the minimum set, f ′(x; y) ≥ 0, a fact
substantiated by Proposition 15.34.

It is important to determine whether the minimum set is empty or nonempty, or whether
it contains a single point. As we noted in Theorem 4.13(2), if f is strictly convex then the
minimum set contains at most one point.

In any case, we know from Proposition 15.2 and Proposition 15.3 that the minimum set
of f is convex, and closed iff f is closed.

Subdifferentials provide the first criterion for deciding whether a vector x ∈ Rn belongs
to the minimum set of f . Indeed, the very definition of a subgradient says that x ∈ Rn

belongs to the minimum set of f iff 0 ∈ ∂f(x). Using Proposition 15.16, we obtain the
following result.

Proposition 15.34. Let f be a proper convex function over Rn. A vector x ∈ Rn belongs
to the minimum set of f iff

0 ∈ ∂f(x)

iff f(x) is finite and
f ′(x; y) ≥ 0 for all y ∈ Rn.

Of course, if f is differentiable at x, then ∂f(x) = {∇fx}, and we obtain the well-known
condition ∇fx = 0.
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There are many ways of expressing the conditions of Proposition 15.34, and the minimum
set of f can even be characterized in terms of the conjugate function f ∗. The notion of
direction of recession plays a key role.

Definition 15.20. Let f : Rn → R ∪ {+∞} be any function. A direction of recession of f
is any non-zero vector u ∈ Rn such that for every x ∈ dom(f), the function λ 7→ f(x + λu)
is nonincreasing (this means that for all λ1, λ2 ∈ R, if λ1 < λ2, then x + λ1u ∈ dom(f),
x+ λ2u ∈ dom(f), and f(x+ λ2u) ≤ f(x+ λ1u)).

Example 15.12. Consider the function f : R2 → R given by f(x, y) = 2x+ y2. Since

f(x+ λu, y + λv) = 2(x+ λu) + (y + λv)2 = 2x+ y2 + 2(u+ yv)λ+ v2λ2,

if v 6= 0, we see that the above quadratic function of λ increases for λ ≥ −(u + yv)/v2. If
v = 0, then the function λ 7→ 2x+ y2 + 2uλ decreases to −∞ when λ goes to +∞ if u < 0,
so all vectors (−u, 0) with u > 0 are directions of recession. See Figure 15.25.

The function f(x, y) = 2x+ x2 + y2 does not have any direction of recession, because

f(x+ λu, y + λv) = 2x+ x2 + y2 + 2(u+ ux+ yv)λ+ (u2 + v2)λ2,

and since (u, v) 6= (0, 0), we have u2 + v2 > 0, so as a function of λ, the above quadratic
function increases for λ ≥ −(u+ ux+ yv)/(u2 + v2). See Figure 15.25.

In fact, the above example is typical. For any symmetric positive definite n×n matrix A
and any vector b ∈ Rn, the quadratic strictly convex function q given by q(x) = x>Ax+ b>x
has no directions of recession. For any u ∈ Rn, with u 6= 0, we have

q(x+ λu) = (x+ λu)>A(x+ λu) + b>(x+ λu)

= x>Ax+ b>x+ (2x>Au+ b>u)λ+ (u>Au)λ2.

Since u 66= 0 and A is SPD, we have u>Au > 0, and the above quadratic function increases
for λ ≥ −(2x>Au+ b>u)/(2u>Au).

The above fact yields an important trick of convex optimization. If f is any proper closed
and convex function, then for any quadratic strictly convex function q, the function h = f+q
is a proper and closed strictly convex function that has a minimum which is attained for a
unique vector. This trick is at the core of the method of augmented Lagrangians, and in
particular ADMM. Surprisingly, a rigorous proof requires the deep theorem below.

One should be careful not to conclude hastily that if a convex function is proper and
closed, then dom(f) and Im(f) are also closed. Also, a closed and proper convex function
may not attain its minimum. For example, the function f : R→ R ∪ {+∞} given by

f(x) =


1

x
if x > 0

+∞ if x ≤ 0
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f(x,y) = 2x + y2

f(x,y) = 2x + x   + y2 2

Figure 15.25: The graphs of the two functions discussed in Example 15.12. The graph of
f(x, y) = 2x+y2 slopes ”downward” along the negative x-axis, reflecting the fact that (−u, 0)
is a direction of recession.

is a proper, closed and convex function, but dom(f) = (0,+∞) and Im(f) = (0,+∞). Note
that inf f = 0 is not attained. The problem is that f has 1 has a direction of recession as
evidenced by the graph provided in Figure 15.26.

The following theorem is proven in Rockafellar [61] (Theorem 27.1).

Theorem 15.35. Let f be a proper and closed convex function over Rn. The following
statements hold:

(1) We have inf f = −f ∗(0). Thus f is bounded below iff 0 ∈ dom(f ∗).

(2) The minimum set of f is equal to ∂f ∗(0). Thus the infimum of f is attained (which
means that there is some x ∈ Rn such that f(x) = inf f) iff f ∗ is subdifferentiable
at 0. This condition holds in particular when 0 ∈ relint(dom(f ∗)). Moreover, 0 ∈
relint(dom(f ∗)) iff every direction of recession of f is a direction in which f is con-
stant.

(3) For the infimum of f to be finite but unattained, it is necessary and sufficient that
f ∗(0) be finite and (f ∗)′(0; y) = −∞ for some y ∈ Rn.

(4) The minimum set of f is a nonempty bounded set iff 0 ∈ int(dom(f ∗)). This condition
holds iff f has no directions of recession.
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Figure 15.26: The graph of the partial function f(x) = 1
x

for x > 0. The graph of this
function decreases along the x-axis since 1 is a direction of recession.

(5) The minimum set of f consists of a unique vector x iff f ∗ is differentiable at x and
x = ∇f ∗0 .

(6) For each α ∈ R, the support function of sublevα(f) is the closure of the positively
homogeneous convex function generated by f ∗ + α. If f is bounded below, then the
support function of the minimum set of f is the closure of the directional derivative
map y 7→ (f ∗)′(0; y).

In view of the importance of Theorem 15.35(4), we state this property as the following
corollary.

Corollary 15.36. Let f be a closed proper convex function on Rn. Then the minimal set of
f is a non-empty bounded set iff f has no directions of recession. In particular, if f has no
directions of recession, then the minimum inf f of f is finite and attained for some x ∈ Rn.

Theorem 15.14 implies the following result which is very important for the design of
optimization procedures.

Proposition 15.37. Let f be a proper and closed convex function over Rn. The function
h given by h(x) = f(x) + q(x) obtained by adding any strictly convex quadratic function q
of the form q(x) = x>Ax + b>x (where A is symmetric positive definite) is a proper closed
strictly convex function such that inf h is finite, and there is a unique x∗ ∈ Rn such that h
attains its minimum in x∗ (that is, h(x∗) = inf h).

Proof. By Theorem 15.14 there is some affine form ϕ given by ϕ(x) = c>x+α (with α ∈ R)
such that f(x) ≥ ϕ(x) for all x ∈ Rn. Then we have

h(x) = f(x) + q(x) ≥ x>Ax+ (b> + c>)x+ α for all x ∈ Rn.
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Since A is symmetric positive definite, by Example 15.12, the quadratic function Q given
by Q(x) = x>Ax + (b> + c>)x + α has no directions of recession. Since h(x) ≥ Q(x) for
all x ∈ Rn, we claim that h has no directions of recession. Otherwise, there would be some
nonzero vector u, such that the function λ 7→ h(x+ λu) is nonincreasing for all x ∈ dom(h),
so h(x+ λu) ≤ β for some β for all λ. But we showed that for λ large enough, the function
λ 7→ Q(x + λu) increases like λ2, so for λ large enough, we will have Q(x + λu) > β,
contradicting the fact that h majorizes Q. By Corollary 15.36, h has a finite minimum x∗

which is attained.

If f and g are proper convex functions and if g is strictly convex, then f + g is a proper
function. For all x, y ∈ Rn, for any λ such that 0 < λ < 1, since f is convex and g is strictly
convex, we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

g((1− λ)x+ λy) < (1− λ)g(x) + λg(y),

so we deduce that

f((1− λ)x+ λy) + g((1− λ)x+ λy) < ((1− λ)(f(x) + g(x)) + λ(f(x) + g(x))),

which shows that f + g is strictly convex. Then, as f + q is strictly convex, it has a unique
minimum at x∗.

We now come back to the problem of minimizing a proper convex function h over a
nonempty convex subset C . Here is a nice characterization.

Proposition 15.38. Let h be a proper convex function on Rn, and let C be a nonempty
convex subset of Rn.

(1) For any x ∈ Rn, if there is some y ∈ ∂h(x) such that −y ∈ NC(x), that is, −y is
normal to C at x, then h attains its minimum on C at x.

(2) If relint(dom(h)) ∩ relint(C) 6= ∅, then the converse of (1) holds. This means that if
h attains its minimum on C at x, then there is some y ∈ ∂h(x) such that −y ∈ NC(x).

Proposition 15.38 is proven in Rockafellar [61] (Theorem 27.4). The proof is actually
quite simple.

Proof. (1) By Proposition 15.34, h attains its minimum on C at x iff

0 ∈ ∂(h+ IC)(x).

By Proposition 15.23, since

∂h(x) + ∂IC(x) ⊆ ∂(h+ IC)(x),
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if 0 ∈ ∂h(x) + ∂IC(x), then h attains its minimum on C at x. But we saw in Section 15.2
that ∂IC(x) = NC(x), the normal cone to C at x. Then the condition 0 ∈ ∂h(x) + ∂IC(x)
says that there is some y ∈ ∂h(x) such that y + z = 0 for some z ∈ NC(x), and this is
equivalent to −y ∈ NC(x).

(2) By definition of IC , the condition relint(dom(h)) ∩ relint(C) 6= ∅ is the hypothesis
of Proposition 15.23 to have

∂(h+ IC)(x) = ∂h(x) + ∂IC(x).

If h attains its minimum on C at x, then by Proposition 15.34 we have 0 ∈ ∂(h + IC)(x),
so 0 ∈ ∂h(x) + ∂IC(x) = ∂h(x) + NC(x), and by the reasoning of Part (1), this means that
there is some y ∈ ∂h(x) such that −y ∈ NC(x).

Remark: A polyhedral function is a convex function whose epigraph is a polyhedron. It is
easy to see that Proposition 15.38(2) also holds in the following cases

(1) C is a H-polyhedron and relint(dom(h)) ∩ C 6= ∅

(2) h is polyhedral and dom(h) ∩ relint(C) 6= ∅.

(3) Both h and C are polyhedral, and dom(h) ∩ C 6= ∅.

15.6 Generalization of the Lagrangian Framework

Essentially all the results presented in Section 14.3, Section 14.7, Section 14.8, and Section
14.9 about Lagrangians and Lagrangian duality generalize to programs involving a proper
and convex objective function J , proper and convex inequality constraints, and affine equality
constraints. The extra generality is that it is no longer assumed that these functions are
differentiable. This theory is thoroughly discussed in Part VI, Section 28, of Rockafellar [61],
for programs called ordinary convex programs. We do not have the space to even sketch this
theory but we will spell out some of the key results.

We will be dealing with programs consisting of an objective function J : Rn → R∪{+∞}
which is convex and proper, subject to m ≥ 0 inequality contraints ϕi(v) ≤ 0, and p ≥ 0
affine equality constraints ψj(v) = 0. The constraint functions ϕi are also convex and proper,
and we assume that

relint(dom(J)) ⊆ relint(dom(ϕi)), dom(J) ⊆ dom(ϕi), i = 1, . . . ,m.

Such programs are called ordinary convex programs . Let

U = dom(J) ∩ {v ∈ Rn | ϕi(v) ≤ 0, ψj(v) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ p},

be the set of feasible solutions . We are seeking elements in u ∈ U that minimize J over U .
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A generalized version of Theorem 14.18 holds under the above hypotheses on J and the
constraints ϕi and ψj, except that in the KKT conditions, the equation involving gradients
must be replaced by the following condition involving subdifferentials:

0 ∈ ∂

(
J +

m∑
i=1

λiϕi +

p∑
j=1

µjψj

)
(u),

with λi ≥ 0 for i = 1, . . . ,m and µj ∈ R for j = 1, . . . , p (where u ∈ U and J attains its
minimum at u).

The Lagrangian L(v, λ, ν) of our problem is defined as follows: Let

Em = {x ∈ Rm+p | xi ≥ 0, 1 ≤ i ≤ m}.

Then

L(v, λ, µ) =


J(v) +

∑m
i=1 λiϕi(v) +

∑p
j=1 µjψj(v) if (λ, µ) ∈ Em, v ∈ dom(J)

−∞ if (λ, µ) /∈ Em, v ∈ dom(J)

+∞ if v /∈ dom(J).

For fixed values (λ, µ) ∈ Rm
+ ×Rp, we also define the function h : Rn → R ∪ {+∞} given

by

h(x) = J(x) +
m∑
i=1

λiϕi(x) +

p∑
j=1

µjψj(x),

whose effective domain is dom(J) (since we are assuming that dom(J) ⊆ dom(ϕi), i =
1, . . . ,m). Thus h(x) = L(x, λ, µ), but h is a function only of x, so we denote it differently
to avoid confusion (also, technically, L(x, λ, µ) may take the value −∞, but h does not).
Since J and the ϕi are proper convex functions and the ψj are affine, the function h is a
proper convex function.

A proof of a generalized version of Theorem 14.18 can be obtained by putting together
Theorem 28.1, Theorem 28.2, and Theorem 28.3, in Rockafellar [61]. For the sake of com-
pleteness, we state these theorems. Here is Theorem 28.1.

Theorem 15.39. (Theorem 28.1, Rockafellar) Let (P ) be an ordinary convex program. Let
(λ, µ) ∈ Rm

+ × Rp be Lagrange multipliers such that the infimum of the function h = J +∑m
i=1 λiϕi +

∑p
j=1 µjψj is finite and equal to the optimal value of J over U . Let D be the

minimal set of h over Rn, and let I = {i ∈ {1, . . . ,m} | λi = 0}. If D0 is the subset of D
consisting of vectors x such that

ϕi(x) ≤ 0 for all i ∈ I
ϕi(x) = 0 for all i /∈ I
ψj(x) = 0 for all j = 1, . . . , p,

then D0 is the set of minimizers of (P ) over U .
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And now here is Theorem 28.2.

Theorem 15.40. (Theorem 28.2, Rockafellar) Let (P ) be an ordinary convex program, and
let I ⊆ {1, . . . ,m} be the subset of indices of inequality constraints that are not affine.
Assume that the optimal value of (P ) is finite, and that (P ) has at least one feasible solution
x ∈ relint(dom(J)) such that

ϕi(x) < 0 for all i ∈ I.

Then there exist some Lagrange multipliers (λ, µ) ∈ Rm
+ × Rp (not necessarily unique) such

that

(a) The infimum of the function h = J +
∑m

i=1 λiϕi +
∑p

j=1 µjψj is finite and equal to the
optimal value of J over U .

The hypotheses of Theorem 15.40 are qualification conditions on the constraints, essen-
tially Slater’s conditions from Definition 14.6.

Definition 15.21. Let (P ) be an ordinary convex program, and let I ⊆ {1, . . . ,m} be the
subset of indices of inequality constraints that are not affine. The constraints are qualified
is there is a feasible solution x ∈ relint(dom(J)) such that

ϕi(x) < 0 for all i ∈ I.

Finally, here is Theorem 28.3 from Rockafellar [61].

Theorem 15.41. (Theorem 28.3, Rockafellar) Let (P ) be an ordinary convex program. If
x ∈ Rn and (λ, µ) ∈ Rm

+ × Rp, then (λ, µ) and x have the property that

(a) The infimum of the function h = J +
∑m

i=1 λiϕi +
∑p

j=1 µjψj is finite and equal to the
optimal value of J over U , and

(b) The vector x is an optimal solution of (P ) (so x ∈ U),

iff (x, λ, µ) is a saddle point of the Lagrangian L(x, λ, µ) of (P ).

Moreover, this condition holds iff the following KKT conditions hold:

(1) λ ∈ Rm
+ , ϕi(x) ≤ 0, and λiϕi(x) = 0 for i = 1, . . . ,m.

(2) ψj(x) = 0 for j = 1, . . . , p.

(3) 0 ∈ ∂J(x) +
∑m

i=1 λi∂ϕi(x) +
∑p

j=1 µj∂ψj(x).

Observe that by Theorem 15.40, if the optimal value of (P ) is finite and if the constraints
are qualified, then Condition (a) of Theorem 15.41 holds for (λ, µ). As a consequence we
obtain the following corollary of Theorem 15.41 attributed to Kuhn and Tucker, which is
one of the main results of the theory. It is a generalized version of Theorem 14.18.
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Theorem 15.42. (Theorem 28.3.1, Rockafellar) Let (P ) be an ordinary convex program
satisfying the hypothesis of Theorem 15.40, which means that the optimal value of (P ) is
finite, and that the constraints are qualified. In order that a vector x ∈ Rn be an optimal
solution to (P ), it is necessary and sufficient that there exist Lagrange multipliers (λ, µ) ∈
Rm

+ × Rp such that (x, λ, µ) is a saddle point of L(x, λ, µ). Equivalently, x is an optimal
solution of (P ) if and only if there exist Lagrange multipliers (λ, µ) ∈ Rm

+ × Rp, which,
together with x, satisfy the KKT conditions from Theorem 15.41.

Theorem 15.42 has to do with the existence of an optimal solution for (P ), but it does
not say anything about the optimal value of (P ). To establish such a result, we need the
notion of dual function.

The dual function G is defined by

G(λ, µ) = inf
v∈Rn

L(v, λ, µ).

It is a concave function (so −G is convex) which may take the values ±∞. Note that
maximizing G, which is equivalent to minimizing −G, runs into troubles if G(λ, µ) = +∞
for some λ, µ, but that G(λ, µ) = −∞ does not cause a problem. At first glance, this seems
counterintuitive, but remember that G is concave, not convex . It is −G that is convex, and
−∞ and +∞ get flipped.

Then a generalized and stronger version of Theorem 14.19(2) also holds. A proof can
be obtained by putting together Corollary 28.3.1, Theorem 28.4, and Corollary 28.4.1, in
Rockafellar [61]. For the sake of completeness, we state the following results from Rockafellar
[61].

Theorem 15.43. (Theorem 28.4, Rockafellar) Let (P ) be an ordinary convex program with
Lagrangian L(x, λ, µ). If the Lagrange multipliers (λ∗, µ∗) ∈ Rm

+ ×Rp and the vector x∗ ∈ Rn

have the property that

(a) The infimum of the function h = J +
∑m

i=1 λ
∗
iϕi +

∑p
j=1 µ

∗
jψj is finite and equal to the

optimal value of J over U , and

(b) The vector x∗ is an optimal solution of (P ) (so x∗ ∈ U),

then the saddle value L(x∗, λ∗, µ∗) is the optimal value J(x∗) of (P ).

More generally, the Lagrange multipliers (λ∗, µ∗) ∈ Rm
+ × Rp have Property (a) iff

−∞ < inf
x
L(x, λ∗, µ∗) ≤ sup

λ,µ
inf
x
L(x, λ, µ) = inf

x
sup
λ,µ

L(x, λ, µ),

in which case, the common value of the extremum value is the optimal value of (P ). In
particular, if x∗ is an optimal solution for (P ), then supλ,µG(λ, µ) = L(x∗, λ∗, µ∗) = J(x∗)
(zero duality gap).
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Observe that Theorem 15.43 gives sufficient Conditions (a) and (b) for the duality gap to
be zero. In view of Theorem 15.41, these conditions are equivalent to the fact that (x∗, λ∗, µ∗)
is a saddle point of L, or equivalently that the KKT conditions hold.

Again, by Theorem 15.40, if the optimal value of (P ) is finite and if the constraints are
qualified, then Condition (a) of Theorem 15.43 holds for (λ, µ). Then the following corollary
of Theorem 15.43 holds.

Theorem 15.44. (Theorem 28.4.1, Rockafellar) Let (P ) be an ordinary convex program
satisfying the hypothesis of Theorem 15.40, which means that the optimal value of (P ) is
finite, and that the constraints are qualified. The Lagrange multipliers (λ, µ) ∈ Rm

+ ×Rp that
have the property that the infimum of the function h = J +

∑m
i=1 λiϕi +

∑p
j=1 µjψj is finite

and equal to the optimal value of J over U are exactly the vectors where the dual function G
attains is supremum over Rn.

Theorem 15.44 is a generalized and stronger version of Theorem 14.19(2). Part (1) of
Theorem 14.19 requires J and the ϕi to be differentiable, so it does not generalize.

More results can shown about ordinary convex programs, and another class of programs
called generalized convex programs . However, we do not need such resuts for our purposes,
in particular to discuss the ADMM method. The interested reader is referred to Rockafellar
[61] (Part VI, Sections 28 and 29).

15.7 Summary

The main concepts and results of this chapter are listed below:

• Extended real-valued functions.

• Epigraph (epi(f)).

• Convex and concave (extended real-valued) functions.

• Effective domain (dom(f)).

• Proper and improper convex functions.

• Sublevel sets.

• Lower semi-continuous functions.

• Lower semi-continuous hull; closure of a convex function.

• Relative interior (relint(C)).

• Indicator function.
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• Lipschitz condition.

• Affine form, affine hyperplane.

• Half spaces.

• Supporting hyperplane.

• Normal cone at a.

• Subgradient, subgradient inequality, subdifferential.

• Minkowski’s supporting hyperplane theorem.

• One-sided directional derivative.

• Support function.

• ReLU function.

• ε-subgradient.

• Minimum set of a convex function.

• Direction of recession.

• Ordinary convex programs.

• Set of feasible solutions.

• Lagrangian.

• Saddle point.

• KKT conditions.

• Qualified constraints.

• Duality gap.

15.8 Problems

Problem 15.1. Prove Proposition 15.1.

Problem 15.2. Prove Proposition 15.2.

Problem 15.3. Prove Proposition 15.3.
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Problem 15.4. Prove that the convex function defined in Example 15.4 has the property
that the limit along any line segment from (0, 0) to a point in the open right half-plane is 0.

Problem 15.5. Check that the normal cone to C at a is a convex cone.

Problem 15.6. Prove that ∂f(x) is closed and convex.

Problem 15.7. For Example 15.6, with f(x) = ‖x‖∞, prove that ∂f(0) is the polyhedron

∂f(0) = conv{±e1, . . . ,±en}.

Problem 15.8. For Example 15.7, with

f(x) =

{
−(1− |x|2)1/2 if |x| ≤ 1

+∞ otherwise.

prove that f is subdifferentiable (in fact differentiable) at x when |x| < 1, but ∂f(x) = ∅
when |x| ≥ 1, even though x ∈ dom(f) for |x| = 1

Problem 15.9. Prove Proposition 15.15.

Problem 15.10. Prove that as a convex function of u, the effective domain of the function
u 7→ f ′(x;u) is the convex cone generated by dom(f)− x.

Problem 15.11. Prove Proposition 15.28.

Problem 15.12. Prove Proposition 15.33.

Problem 15.13. Prove that Proposition 15.38(2) also holds in the following cases:

(1) C is a H-polyhedron and relint(dom(h)) ∩ C 6= ∅

(2) h is polyhedral and dom(h) ∩ relint(C) 6= ∅.

(3) Both h and C are polyhedral, and dom(h) ∩ C 6= ∅.
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Chapter 16

Dual Ascent Methods; ADMM

This chapter is devoted to the presentation of one of the best methods known at the present
for solving optimization problems involving equality constraints. In fact, this method can
also handle more general constraints, namely, membership in a convex set. It can also be used
to solve a range of problems arising in machine learning including lasso minimization, elastic
net regression, support vector machine (SVM), and ν-SV regression. In order to obtain a
good understanding of this method, called the alternating direction method of multipliers , for
short ADMM , we review two precursors of ADMM, the dual ascent method and the method
of multipliers .

ADMM is not a new method. In fact, it was developed in the 1970’s. It has been revived
as a very effective method to solve problems in statistical and machine learning dealing with
very large data because it is well suited to distributed (convex) optimization. An extensive
presentation of ADMM, its variants, and its applications, is given in the excellent paper by
Boyd, Parikh, Chu, Peleato and Eckstein [17]. This paper is essentially a book on the topic
of ADMM, and our exposition is deeply inspired by it.

In this chapter, we consider the problem of minimizing a convex function J (not neces-
sarily differentiable) under the equality constraints Ax = b. In Section 16.1 we discuss the
dual ascent method. It is essentially gradient descent applied to the dual function G, but
since G is maximized, gradient descent becomes gradient ascent.

In order to make the minimization step of the dual ascent method more robust, one can
use the trick of adding the penalty term (ρ/2) ‖Au− b‖2

2 to the Lagrangian. We obtain the
augmented Lagrangian

Lρ(u, λ) = J(u) + λ>(Au− b) + (ρ/2) ‖Au− b‖2
2 ,

with λ ∈ Rm, and where ρ > 0 is called the penalty parameter . We obtain the minimization
Problem (Pρ),

minimize J(u) + (ρ/2) ‖Au− b‖2
2

subject to Au = b,

527
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which is equivalent to the original problem.

The benefit of adding the penalty term (ρ/2) ‖Au− b‖2
2 is that by Proposition 15.37,

Problem (Pρ) has a unique optimal solution under mild conditions on A. Dual ascent applied
to the dual of (Pρ) is called the method of multipliers and is discussed in Section 16.2.

The alternating direction method of multipliers, for short ADMM, combines the decom-
posability of dual ascent with the superior convergence properties of the method of multipli-
ers. The idea is to split the function J into two independent parts, as J(x, z) = f(x) + g(z),
and to consider the Minimization Problem (Padmm),

minimize f(x) + g(z)

subject to Ax+Bz = c,

for some p× n matrix A, some p×m matrix B, and with x ∈ Rn, z ∈ Rm, and c ∈ Rp. We
also assume that f and g are convex. Further conditions will be added later.

As in the method of multipliers, we form the augmented Lagrangian

Lρ(x, z, λ) = f(x) + g(z) + λ>(Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2
2 ,

with λ ∈ Rp and for some ρ > 0. The major difference with the method of multipliers is that
instead of performing a minimization step jointly over x and z, ADMM first performs an
x-minimization step and then a z-minimization step. Thus x and z are updated in an alter-
nating or sequential fashion, which accounts for the term alternating direction. Because the
Lagrangian is augmented, some mild conditions on A and B imply that these minimization
steps are guaranteed to terminate. ADMM is presented in Section 16.3.

In Section 16.4 we prove the convergence of ADMM under the following assumptions:

(1) The functions f : R→ R∪{+∞} and g : R→ R∪{+∞} are proper and closed convex
functions (see Section 15.1) such that relint(dom(f)) ∩ relint(dom(g)) 6= ∅.

(2) The n× n matrix A>A is invertible and the m×m matrix B>B is invertible. Equiv-
alently, the p× n matrix A has rank n and the p×m matrix has rank m.

(3) The unaugmented Lagrangian L0(x, z, λ) = f(x)+g(z)+λ>(Ax+Bz−c) has a saddle
point, which means there exists x∗, z∗, λ∗ (not necessarily unique) such that

L0(x∗, z∗, λ) ≤ L0(x∗, z∗, λ∗) ≤ L0(x, z, λ∗)

for all x, z, λ.

By Theorem 15.41, Assumption (3) is equivalent to the fact that the KKT equations are
satisfied by some triple (x∗, z∗, λ∗), namely

Ax∗ +Bz∗ − c = 0 (∗)
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and
0 ∈ ∂f(x∗) + ∂g(z∗) + A>λ∗ +B>λ∗, (†)

Assumption (3) is also equivalent to Conditions (a) and (b) of Theorem 15.41. In particular,
our program has an optimal solution (x∗, z∗). By Theorem 15.43, λ∗ is maximizer of the dual
function G(λ) = infx,z L0(x, z, λ) and strong duality holds, that is, G(λ∗) = f(x∗) + g(z∗)
(the duality gap is zero).

We will show after the proof of Theorem 16.1 that Assumption (2) is actually implied by
Assumption (3). This allows us to prove a convergence result stronger than the convergence
result proven in Boyd et al. [17] (under the exact same assumptions (1) and (3)). In
particular, we prove that all of the sequences (xk), (zk), and (λk) converge to optimal

solutions (x̃, z̃), and λ̃. The core of our proof is due to Boyd et al. [17], but there are new
steps because we have the stronger hypothesis (2).

In Section 16.5, we discuss stopping criteria.

In Section 16.6 we present some applications of ADMM, in particular, minimization of a
proper closed convex function f over a closed convex set C in Rn and quadratic program-
ming. The second example provides one of the best methods for solving quadratic problems,
including the SVM problems discussed in Chapter 18, the elastic net method in Section 19.6,
and ν-SV regression in Chapter 20.

Section 16.8 gives applications of ADMM to `1-norm problems, in particular, lasso regu-
larization, which plays an important role in machine learning.

16.1 Dual Ascent

Our goal is to solve the minimization problem, Problem (P ),

minimize J(u)

subject to Au = b,

with affine equality constraints (with A an m × n matrix and b ∈ Rm). The Lagrangian
L(u, λ) of Problem (P) is given by

L(u, λ) = J(u) + λ>(Au− b).

with λ ∈ Rm. From Proposition 14.20, the dual function G(λ) = infu∈Rn L(u, λ) is given by

G(λ) =

{
−b>λ− J∗(−A>λ) if −A>λ ∈ dom(J∗),

−∞ otherwise,

for all λ ∈ Rm, where J∗ is the conjugate of J . Recall that by Definition 14.11, the conjugate
f ∗ of a function f : U → R defined on a subset U of Rn is the partial function f ∗ : Rn → R
defined by

f ∗(y) = sup
x∈U

(y>x− f(x)), y ∈ Rn.
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If the conditions of Theorem 14.19(1) hold, which in our case means that for every
λ ∈ Rm, there is a unique uλ ∈ Rn such that

G(λ) = L(uλ, λ) = inf
u∈Rn

L(u, λ),

and that the function λ 7→ uλ is continuous, then G is differentiable. Furthermore, we have

∇Gλ = Auλ − b,

and for any solution µ = λ∗ of the dual problem

maximize G(λ)

subject to λ ∈ Rm,

the vector u∗ = uµ is a solution of the primal Problem (P). Furthermore, J(u∗) = G(λ∗),
that is, the duality gap is zero.

The dual ascent method is essentially gradient descent applied to the dual function G.
But since G is maximized, gradient descent becomes gradient ascent. Also, we no longer
worry that the minimization problem infu∈Rn L(u, λ) has a unique solution, so we denote by
u+ some minimizer of the above problem, namely

u+ = arg min
u

L(u, λ).

Given some initial dual variable λ0, the dual ascent method consists of the following two
steps:

uk+1 = arg min
u

L(u, λk)

λk+1 = λk + αk(Auk+1 − b),

where αk > 0 is a step size. The first step is used to compute the “new gradient” (indeed,
if the minimizer uk+1 is unique, then ∇Gλk = Auk+1 − b), and the second step is a dual
variable update.

Example 16.1. Let us look at a very simple example of the gradient ascent method applied
to a problem we first encountered in Section 6.1, namely minimize J(x, y) = (1/2)(x2 + y2)
subject to 2x− y = 5. The Lagrangian is

L(x, y, λ) =
1

2
(x2 + y2) + λ(2x− y − 5).

See Figure 16.1.
The method of Lagrangian duality says first calculate

G(λ) = inf
(x,y)∈R2

L(x, y, λ).
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Figure 16.1: The graph of J(x, y) = (1/2)(x2 + y2) is the parabolic surface while the graph
of 2x − y = 5 is the transparent blue plane. The solution to Example 16.1 is apex of the
intersection curve, namely the point (2,−1, 5

2
).

Since

J(x, y) =
1

2

(
x y

)(1 0
0 1

)(
x
y

)
,

we observe that J(x, y) is a quadratic function determined by the positive definite matrix(
1 0
0 1

)
, and hence to calculate G(λ), we must set ∇Lx,y = 0. By calculating ∂J

∂x
= 0 and

∂J
∂y

= 0, we find that x = −2λ and y = λ. Then G(λ) = −5/2λ2 − 5λ, and we must

calculate the maximum of G(λ) with respect to λ ∈ R. This means calculating G′(λ) = 0
and obtaining λ = −1 for the solution of (x, y, λ) = (−2λ, λ, λ) = (2,−1,−1).

Instead of solving directly for λ in terms of (x, y), the method of dual assent begins with
a numerical estimate for λ, namely λ0, and forms the “numerical” Lagrangian

L(x, y, λ0) =
1

2
(x2 + y2) + λ0(2x− y − 5).

With this numerical value λ0, we minimize L(x, y, λ0) with respect to (x, y). This calculation
will be identical to that used to form G(λ) above, and as such, we obtain the iterative step
(x1, y1) = (−2λ0, λ0). So if we replace λ0 by λk, we have the first step of the dual ascent
method, namely

uk+1 =

(
xk+1

yk+1

)
=

(
−2
1

)
λk.

The second step of the dual ascent method refines the numerical estimate of λ by calculating

λk+1 = λk + αk
((

2 −1
)(xk+1

yk+1

)
− 5

)
.



532 CHAPTER 16. DUAL ASCENT METHODS; ADMM

(Recall that in our original problem the constraint is 2x − y = 5 or
(
2 −1

)(x
y

)
− 5, so

A =
(
2 −1

)
and b = 5.) By simplifying the above equation, we find that

λk+1 = (1− β)λk − β, β = 5αk.

Back substituting for λk in the preceding equation shows that

λk+1 = (1− β)k+1λ0 + (1− β)k+1 − 1.

If 0 < β ≤ 1, the preceding line implies that λk+1 converges to λ = −1, which coincides with
the answer provided by the original Lagrangian duality method. Observe that if β = 1 or
αk = 1

5
, the dual ascent method terminates in one step.

With an appropriate choice of αk, we have G(λk+1) > G(λk), so the method makes
progress. Under certain assumptions, for example, that J is strictly convex and some condi-
tions of the αk, it can be shown that dual ascent converges to an optimal solution (both for
the primal and the dual). However, the main flaw of dual ascent is that the minimization
step may diverge. For example, this happens is J is a nonzero affine function of one of its
components. The remedy is to add a penalty term to the Lagrangian.

On the positive side, the dual ascent method leads to a decentralized algorithm if the
function J is separable. Suppose that u can be split as u =

∑N
i=1 ui, with ui ∈ Rni and

n =
∑N

i=1 ni, that

J(u) =
N∑
i=1

Ji(ui),

and that A is split into N blocks Ai (with Ai a m× ni matrix) as A = [A1 · · · AN ], so that
Au =

∑N
k=1Aiui. Then the Lagrangian can be written as

L(u, λ) =
N∑
i=1

Li(ui, λ),

with

Li(ui, λ) = Ji(ui) + λ>
(
Aiui −

1

N
b

)
.

it follows that the minimization of L(u, λ) with respect to the primal variable u can be split
into N separate minimization problems that can be solved in parallel. The algorithm then
performs the N updates

uk+1
i = arg min

ui

Li(ui, λ
k)

in parallel, and then the step

λk+1 = λk + αk(Auk+1 − b).
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16.2 Augmented Lagrangians and the Method of

Multipliers

In order to make the minimization step of the dual ascent method more robust, one can use
the trick of adding the penalty term (ρ/2) ‖Au− b‖2

2 to the Lagrangian.

Definition 16.1. Given the Optimization Problem (P),

minimize J(u)

subject to Au = b,

the augmented Lagrangian is given by

Lρ(u, λ) = J(u) + λ>(Au− b) + (ρ/2) ‖Au− b‖2
2 ,

with λ ∈ Rm, and where ρ > 0 is called the penalty parameter .

The augmented Lagrangian Lρ(u, λ) can be viewed as the ordinary Lagrangian of the
Minimization Problem (Pρ),

minimize J(u) + (ρ/2) ‖Au− b‖2
2

subject to Au = b.

The above problem is equivalent to Program (P), since for any feasible solution of (Pρ), we
must have Au− b = 0.

The benefit of adding the penalty term (ρ/2) ‖Au− b‖2
2 is that by Proposition 15.37,

Problem (Pρ) has a unique optimal solution under mild conditions on A.

Dual ascent applied to the dual of (Pρ) yields the the method of multipliers , which consists
of the following steps, given some initial λ0:

uk+1 = arg min
u

Lρ(u, λ
k)

λk+1 = λk + ρ(Auk+1 − b).

Observe that the second step uses the parameter ρ. The reason is that it can be shown
that choosing αk = ρ guarantees that (uk+1, λk+1) satisfies the equation

∇Juk+1 + A>λk+1 = 0,

which means that (uk+1, λk+1) is dual feasible; see Boyd, Parikh, Chu, Peleato and Eckstein
[17], Section 2.3.
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Figure 16.2: Two views of the graph of y2 + 2x intersected with the transparent red plane
2x−y = 0. The solution to Example 16.2 is apex of the intersection curve, namely the point
(−1

4
,−1

2
,−15

16
).

Example 16.2. Consider the minimization problem

minimize y2 + 2x

subject to 2x− y = 0.

See Figure 16.2.
The quadratic function

J(x, y) = y2 + 2x =
(
x y

)(0 0
0 1

)(
x
y

)
+
(
2 0

)(x
y

)
is convex but not strictly convex. Since y = 2x, the problem is equivalent to minimizing
y2 + 2x = 4x2 + 2x, whose minimum is achieved for x = −1/4 (since setting the derivative
of the function x 7→ 4x2 + 2 yields 8x + 2 = 0). Thus, the unique minimum of our problem
is achieved for (x = −1/4, y = −1/2). The Lagrangian of our problem is

L(x, y, λ) = y2 + 2x+ λ(2x− y).

If we apply the dual ascent method, minimization of L(x, y, λ) with respect to x and y
holding λ constant yields the equations

2 + 2λ = 0

2y − λ = 0,
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obtained by setting the gradient of L (with respect to x and y) to zero. If λ 6= −1, the
problem has no solution. Indeed, if λ 6= −1, minimizing L(x, y, λ) = y2 + 2x + λ(2x − y)
with respect to x and y yields −∞.

The augmented Lagrangian is

Lρ(x, y, λ) = y2 + 2x+ λ(2x− y) + (ρ/2)(2x− y)2

= 2ρx2 − 2ρxy + 2(1 + λ)x− λy +
(

1 +
ρ

2

)
y2,

which in matrix form is

Lρ(x, y, λ) =
(
x y

)(2ρ2 −ρ
−ρ 1 +

ρ

2

)(
x
y

)
+
(
2(1 + λ) −λ

)(x
y

)
.

The trace of the above matrix is 1 + ρ
2

+ 2ρ2 > 0, and the determinant is

2ρ2
(

1 +
ρ

2

)
− ρ2 = ρ2(1 + ρ) > 0,

since ρ > 0. Therefore, the above matrix is symmetric positive definite. Minimizing
Lρ(x, y, λ) with respect to x and y, we set the gradient of Lρ(x, y, λ) (with respect to x
and y) to zero, and we obtain the equations:

2ρx− ρy + (1 + λ) = 0

−2ρx+ (2 + ρ)y − λ = 0.

The solution is

x = −1

4
− 1 + λ

2ρ
, y = −1

2
.

Thus the steps for the method of multipliers are

xk+1 = −1

4
− 1 + λk

2ρ

yk+1 = −1

2

λk+1 = λk + ρ
(
2 −1

)(−1
4
− 1+λk

2ρ

−1
2

)
,

and the second step simplifies to
λk+1 = −1.

Consequently, we see that the method converges after two steps for any initial value of λ0,
and we get

x = −1

4
y = −1

2
, λ = −1.
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The method of multipliers also converges for functions J that are not even convex, as
illustrated by the next example.

Example 16.3. Consider the minimization problem

minimize 2βxy

subject to 2x− y = 0,

with β > 0. See Figure 16.3.

Figure 16.3: Two views of the graph of the saddle of 2xy (β = 1) intersected with the trans-
parent magenta plane 2x− y = 0. The solution to Example 16.3 is apex of the intersection
curve, namely the point (0, 0, 0).

The quadratic function

J(x, y) = 2βxy =
(
x y

)(0 β
β 0

)(
x
y

)
is not convex because the above matrix is not even positive semidefinite (the eigenvalues of
the matrix are −β and +β). The augmented Lagrangian is

Lρ(x, y, λ) = 2βxy + λ(2x− y) + (ρ/2)(2x− y)2

= 2ρx2 + 2(β − ρ)xy + 2λx− λy +
ρ

2
y2,
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which in matrix form is

Lρ(x, y, λ) =
(
x y

)( 2ρ β − ρ
β − ρ ρ

2

)(
x
y

)
+
(
2λ −λ

)(x
y

)
.

The trace of the above matrix is 2ρ+ ρ
2

= 5
2
ρ > 0, and the determinant is

ρ2 − (β − ρ)2 = β(2ρ− β).

This determinant is positive if ρ > β/2, in which case the matrix is symmetric positive
definite. Minimizing Lρ(x, y, λ) with respect to x and y, we set the gradient of Lρ(x, y, λ)
(with respect to x and y) to zero, and we obtain the equations:

2ρx+ (β − ρ)y + λ = 0

2(β − ρ)x+ ρy − λ = 0.

Since we are assuming that ρ > β/2, the solutions are

x = − λ

2(2ρ− β)
, y =

λ

(2ρ− β)
.

Thus the steps for the method of multipliers are

xk+1 = − λk

2(2ρ− β)

yk+1 =
λk

(2ρ− β)

λk+1 = λk +
ρ

2(2ρ− β)

(
2 −1

)(−λk
2λk

)
,

and the second step simplifies to

λk+1 = λk +
ρ

2(2ρ− β)
(−4λk),

that is,

λk+1 = − β

2ρ− β
λk.

If we pick ρ > β > 0, which implies that ρ > β/2, then

β

2ρ− β
< 1,

and the method converges for any intial value λ0 to the solution

x = 0, y = 0, λ = 0.
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Indeed, since the constraint 2x−y = 0 holds, 2βxy = 4βx2, and the minimum of the function
x 7→ 4βx2 is achieved for x = 0 (since β > 0).

As an exercise, the reader should verify that dual ascent (with αk = ρ) yields the equations

xk+1 =
λk

2β

yk+1 = −λ
k

β

λk+1 =

(
1 +

2ρ

β

)
λk,

and so the method diverges, except for λ0 = 0, which is the optimal solution.

The method of multipliers converges under conditions that are far more general than the
dual ascent. However, the addition of the penalty term has the negative effect that even if J
is separable, then the Lagrangian Lρ is not separable. Thus the basic method of multipliers
cannot be used for decomposition and is not parallelizable. The next method deals with the
problem of separability.

16.3 ADMM: Alternating Direction Method of

Multipliers

The alternating direction method of multipliers, for short ADMM, combines the decompos-
ability of dual ascent with the superior convergence properties of the method of multipliers.
It can be viewed as an approximation of the method of multipliers, but it is generally supe-
rior.

The idea is to split the function J into two independent parts, as J(x, z) = f(x) + g(z),
and to consider the Minimization Problem (Padmm),

minimize f(x) + g(z)

subject to Ax+Bz = c,

for some p× n matrix A, some p×m matrix B, and with x ∈ Rn, z ∈ Rm, and c ∈ Rp. We
also assume that f and g are convex. Further conditions will be added later.

As in the method of multipliers, we form the augmented Lagrangian

Lρ(x, z, λ) = f(x) + g(z) + λ>(Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2
2 ,

with λ ∈ Rp and for some ρ > 0.
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Given some initial values (z0, λ0), the ADMM method consists of the following iterative
steps:

xk+1 = arg min
x

Lρ(x, z
k, λk)

zk+1 = arg min
z

Lρ(x
k+1, z, λk)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c).

Instead of performing a minimization step jointly over x and z, as the method of multi-
pliers would in the step

(xk+1, zk+1) = arg min
x,z

Lρ(x, z, λ
k),

ADMM first performs an x-minimization step, and then a z-minimization step. Thus x and
z are updated in an alternating or sequential fashion, which accounts for the term alternating
direction.

The algorithm state in ADMM is (zk, λk), in the sense that (zk+1, λk+1) is a function
of (zk, λk). The variable xk+1 is an auxiliary variable which is used to compute zk+1 from
(zk, λk). The roles of x and z are not quite symmetric, since the update of x is done before
the update of λ. By switching x and z, f and g and A and B, we obtain a variant of ADMM
in which the order of the x-update step and the z-update step are reversed.

Example 16.4. Let us reconsider the problem of Example 16.2 to solve it using ADMM.
We formulate the problem as

minimize 2x+ z2

subject to 2x− z = 0,

with f(x) = 2x and g(z) = z2. The augmented Lagrangian is given by

Lρ(x, z, λ) = 2x+ z2 + 2λx− λz + 2ρx2 − 2ρxz +
ρ

2
z2.

The ADMM steps are as follows. The x-update is

xk+1 = arg min
x

(
2ρx2 − 2ρxzk + 2λkx+ 2x

)
,

and since this is a quadratic function in x, its minimum is achieved when the derivative of
the above function (with respect to x) is zero, namely

xk+1 =
1

2
zk − 1

2ρ
λk − 1

2ρ
. (1)

The z-update is

zk+1 = arg min
z

(
z2 +

ρ

2
z2 − 2ρxk+1z − λkz

)
,
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and as for the x-step, the minimum is achieved when the derivative of the above function
(with respect to z) is zero, namely

zk+1 =
2ρxk+1

ρ+ 2
+

λk

ρ+ 2
. (2)

The λ-update is
λk+1 = λk + ρ(2xk+1 − zk+1). (3)

Substituting the right hand side of (1) for xk+1 in (2) yields

zk+1 =
ρzk

ρ+ 2
− 1

ρ+ 2
. (4)

Using (2), we obtain

2xk+1 − zk+1 =
4xk+1

ρ+ 2
− λk

ρ+ 2
, (5)

and then using (3) we get

λk+1 =
2λk

ρ+ 2
+

4ρxk+1

ρ+ 2
. (6)

Substituting the right hand side of (1) for xk+1 in (6), we obtain

λk+1 =
2ρzk

ρ+ 2
− 2

ρ+ 2
. (7)

Equation (7) shows that zk determines λk+1, and Equation (1) for k+2, along with Equation
(4), shows that zk also determines xk+2. In particular, we find that

xk+2 =
1

2
zk+1 − 1

2ρ
λk+1 − 1

2ρ

=
(ρ− 2)zk

2(ρ+ 2)
− 1

ρ+ 2
.

Thus is suffices to find the limit of the sequence (zk). Since we already know from Example
16.2 that this limit is −1/2, using (4), we write

zk+1 = −1

2
+

ρzk

ρ+ 2
− 1

ρ+ 2
+

1

2
= −1

2
+

ρ

ρ+ 2

(
1

2
+ zk

)
.

By induction, we deduce that

zk+1 = −1

2
+

(
ρ

ρ+ 2

)k+1(
1

2
+ z0

)
,

and since ρ > 0, we have ρ/(ρ + 2) < 1, so the limit of the sequence (zk+1) is indeed −1/2,
and consequently the limit of (λk+1) is −1 and the limit of xk+2 is −1/4.
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For ADMM to be practical, the x-minimization step and the z-minimization step have
to be doable efficiently.

It is often convenient to write the ADMM updates in terms of the scaled dual variable
µ = (1/ρ)λ. If we define the residual as

r = Ax+ bz − c,

then we have

λ>r + (ρ/2) ‖r‖2
2 = (ρ/2) ‖r + (1/ρ)λ‖2

2 − (1/(2ρ)) ‖λ‖2
2

= (ρ/2) ‖r + µ‖2
2 − (ρ/2) ‖µ‖2

2 .

The scaled form of ADMM consists of the following steps:

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥Ax+Bzk − c+ µk
∥∥2

2

)
zk+1 = arg min

z

(
g(z) + (ρ/2)

∥∥Axk+1 +Bz − c+ µk
∥∥2

2

)
µk+1 = µk + Axk+1 +Bzk+1 − c.

If we define the residual rk at step k as

rk = Axk +Bzk − c = µk − µk−1 = (1/ρ)(λk − λk−1),

then we see that

r = u0 +
k∑
j=1

rj.

The formulae in the scaled form are often shorter than the formulae in the unscaled form.

We now discuss the convergence of ADMM.

16.4 Convergence of ADMM ~

Let us repeat the steps of ADMM: Given some initial (z0, λ0), do:

xk+1 = arg min
x

Lρ(x, z
k, λk) (x-update)

zk+1 = arg min
z

Lρ(x
k+1, z, λk) (z-update)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c). (λ-update)

The convergence of ADMM can be proven under the following three assumptions:

(1) The functions f : R→ R∪{+∞} and g : R→ R∪{+∞} are proper and closed convex
functions (see Section 15.1) such that relint(dom(f)) ∩ relint(dom(g)) 6= ∅.
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(2) The n× n matrix A>A is invertible and the m×m matrix B>B is invertible. Equiv-
alently, the p× n matrix A has rank n and the p×m matrix has rank m.

(3) The unaugmented Lagrangian L0(x, z, λ) = f(x)+g(z)+λ>(Ax+Bz−c) has a saddle
point, which means there exists x∗, z∗, λ∗ (not necessarily unique) such that

L0(x∗, z∗, λ) ≤ L0(x∗, z∗, λ∗) ≤ L0(x, z, λ∗)

for all x, z, λ.

Recall that the augmented Lagrangian is given by

Lρ(x, z, λ) = f(x) + g(z) + λ>(Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2
2 .

For z (and λ) fixed, we have

Lρ(x, z, λ) = f(x) + g(z) + λ>(Ax+Bz − c) + (ρ/2)(Ax+Bz − c)>(Ax+Bz − c)
= f(x) + (ρ/2)x>A>Ax+ (λ> + ρ(Bz − c)>)Ax

+ g(z) + λ>(Bz − c) + (ρ/2)(Bz − c)>(Bz − c).

Assume that (1) and (2) hold. Since A>A is invertible, then it is symmetric positive
definite, and by Proposition 15.37 the x-minimization step has a unique solution (the mini-
mization problem succeeds with a unique minimizer).

Similarly, for x (and λ) fixed, we have

Lρ(x, z, λ) = f(x) + g(z) + λ>(Ax+Bz − c) + (ρ/2)(Ax+Bz − c)>(Ax+Bz − c)
= g(z) + (ρ/2)z>B>Bz + (λ> + ρ(Ax− c)>)Bz

+ f(x) + λ>(Ax− c) + (ρ/2)(Ax− c)>(Ax− c).

Since B>B is invertible, then it is symmetric positive definite, and by Proposition 15.37
the z-minimization step has a unique solution (the minimization problem succeeds with a
unique minimizer).

By Theorem 15.41, Assumption (3) is equivalent to the fact that the KKT equations are
satisfied by some triple (x∗, z∗, λ∗), namely

Ax∗ +Bz∗ − c = 0 (∗)

and
0 ∈ ∂f(x∗) + ∂g(z∗) + A>λ∗ +B>λ∗, (†)

Assumption (3) is also equivalent to Conditions (a) and (b) of Theorem 15.41. In particular,
our program has an optimal solution (x∗, z∗). By Theorem 15.43, λ∗ is maximizer of the dual
function G(λ) = infx,z L0(x, z, λ) and strong duality holds, that is, G(λ∗) = f(x∗) + g(z∗)
(the duality gap is zero).
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We will see after the proof of Theorem 16.1 that Assumption (2) is actually implied by
Assumption (3). This allows us to prove a convergence result stronger than the convergence
result proven in Boyd et al. [17] under the exact same assumptions (1) and (3).

Let p∗ be the minimum value of f+g over the convex set {(x, z) ∈ Rm+p | Ax+Bz−c = 0},
and let (pk) be the sequence given by pk = f(xk)+g(zk), and recall that rk = Axk+Bzk−c.

Our main goal is to prove the following result.

Theorem 16.1. Suppose the following assumptions hold:

(1) The functions f : R→ R∪{+∞} and g : R→ R∪{+∞} are proper and closed convex
functions (see Section 15.1) such that relint(dom(f)) ∩ relint(dom(g)) 6= ∅.

(2) The n× n matrix A>A is invertible and the m×m matrix B>B is invertible. Equiv-
alently, the p × n matrix A has rank n and the p × m matrix has rank m. (This
assumption is actually redundant, because it is implied by Assumption (3)).

(3) The unaugmented Lagrangian L0(x, z, λ) = f(x)+g(z)+λ>(Ax+Bz− c) has a saddle
point, which means there exists x∗, z∗, λ∗ (not necessarily unique) such that

L0(x∗, z∗, λ) ≤ L0(x∗, z∗, λ∗) ≤ L0(x, z, λ∗)

for all x, z, λ.

Then for any initial values (z0, λ0), the following properties hold:

(1) The sequence (rk) converges to 0 (residual convergence).

(2) The sequence (pk) converge to p∗ (objective convergence).

(3) The sequences (xk) and (zk) converge to an optimal solution (x̃, z̃) of Problem (Padmm)

and the sequence (λk) converges an optimal solution λ̃ of the dual problem (primal and
dual variable convergence).

Proof. The core of the proof is due to Boyd et al. [17], but there are new steps because we
have the stronger hypothesis (2), which yield the stronger result (3).

The proof consists of several steps. It is not possible to prove directly that the sequences
(xk), (zk), and (λk) converge, so first we prove that the sequence (rk+1) converges to zero,
and that the sequences (Axk+1) and (Bzk+1) also converge.

Step 1 . Prove the inequality (A1) below.

Consider the sequence of reals (V k) given by

V k = (1/ρ)
∥∥λk − λ∗∥∥2

2
+ ρ

∥∥B(zk − z∗)
∥∥2

2
.
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It can be shown that the V k satisfy the following inequality:

V k+1 ≤ V k − ρ
∥∥rk+1

∥∥2

2
− ρ

∥∥B(zk+1 − zk)
∥∥2

2
. (A1)

This is rather arduous. Since a complete proof is given in Boyd et al. [17], we will only
provide some of the key steps later.

Inequality (A1) shows that the sequence (V k) in nonincreasing. If we write these inequal-
ities for k, k − 1, . . . , 0, we have

V k+1 ≤ V k − ρ
∥∥rk+1

∥∥2

2
− ρ

∥∥B(zk+1 − zk)
∥∥2

2

V k ≤ V k−1 − ρ
∥∥rk∥∥2

2
− ρ

∥∥B(zk − zk−1)
∥∥2

2

...

V 1 ≤ V 0 − ρ
∥∥r1
∥∥2

2
− ρ

∥∥B(z1 − z0)
∥∥2

2
,

and by adding up these inequalities, we obtain

V k+1 ≤ V 0 − ρ
k∑
j=0

(∥∥rj+1
∥∥2

2
+
∥∥B(zj+1 − zj)

∥∥2

2

)
,

which implies that

ρ
k∑
j=0

(∥∥rj+1
∥∥2

2
+
∥∥B(zj+1 − zj)

∥∥2

2

)
≤ V0 − V k+1 ≤ V 0, (B)

since V k+1 ≤ V 0.

Step 2 . Prove that the sequence (rk) converges to 0, and that the sequences (Axk+1) and
(Bzk+1) also converge.

Inequality (B) implies that the series
∑∞

k=1 r
k and

∑∞
k=0B(zk+1−zk) converge absolutely.

In particular, the sequence (rk) converges to 0.

The nth partial sum of the series
∑∞

k=0B(zk+1 − zk) is

n∑
k=0

B(zk+1 − zk) = B(zn+1 − z0),

and since the series
∑∞

k=0B(zk+1 − zk) converges, we deduce that the sequence (Bzk+1)
converges. Since Axk+1 + Bzk+1 − c = rk+1, the convergence of (rk+1) and (Bzk+1) implies
that the sequence (Axk+1) also converges.

Step 3 . Prove that the sequences (xk+1) and (zk+1) converge. By Assumption (2), the
matrices A>A and B>B are invertible, so multiplying each vector Axk+1 by (A>A)−1A>, if
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the sequence (Axk+1) converges to u, then the sequence (xk+1) converges to (A>A)−1A>u.
Siimilarly, if the sequence (Bzk+1) converges to v, then the sequence (zk+1) converges to
(B>B)−1B>v.

Step 4 . Prove that the sequence (λk) converges.

Recall that
λk+1 = λk + ρrk+1.

It follows by induction that

λk+p = λk + ρ(rk+1 + · · ·+ ρk+p), p ≥ 2.

As a consequence, we get∥∥λk+p − λk
∥∥ ≤ ρ(

∥∥rk+1
∥∥+ · · ·+

∥∥rk+p
∥∥).

Since the series
∑∞

k=1

∥∥rk∥∥ converges, the partial sums form a Cauchy sequence, and this
immediately implies that for any ε > 0 we can find N > 0 such that

ρ(
∥∥rk+1

∥∥+ · · ·+
∥∥rk+p

∥∥) < ε, for all k, p+ k ≥ N,

so the sequence (λk) is also a Cauchy sequence, thus it converges.

Step 5 . Prove that the sequence (pk) converges to p∗.

For this, we need two more inequalities. Following Boyd et al. [17], we need to prove
that

pk+1 − p∗ ≤ −(λk+1)>rk+1 − ρ(B(zk+1 − zk))>(−rk+1 +B(zk+1 − z∗)) (A2)

and
p∗ − pk+1 ≤ (λ∗)>rk+1. (A3)

Since we proved that the sequence (rk) and B(zk+1 − zk) converge to 0, and that the
sequence (λk+1) converges, from

(λk+1)>rk+1 + ρ(B(zk+1 − zk))>(−rk+1 +B(zk+1 − z∗)) ≤ p∗ − pk+1 ≤ (λ∗)>rk+1,

we deduce that in the limit, pk+1 converges to p∗.

Step 6 . Prove (A3).

Since (x∗, y∗, λ∗) is a saddle point, we have

L0(x∗, z∗, λ∗) ≤ L0(xk+1, zk+1, λ∗).

Since Ax∗ + Bz∗ = c, we have L0(x∗, z∗, λ∗) = p∗, and since pk+1 = f(xk+1) + g(zk+1), we
have

L0(xk+1, zk+1, λ∗) = pk+1 + (λ∗)>rk+1,
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so we obtain
p∗ ≤ pk+1 + (λ∗)>rk+1,

which yields (A3).

Step 7 . Prove (A2).

By Proposition 15.34, zk+1 minimizes Lρ(x
k+1, z, λk) iff

0 ∈ ∂g(zk+1) +B>λk + ρB>(Axk+1 +Bzk+1 − c)
= ∂g(zk+1) +B>λk + ρB>rk+1

= ∂g(zk+1) +B>λk+1,

since rk+1 = Axk+1 +Bzk+1 − c and λk+1 = λk + ρ(Axk+1 +Bzk+1 − c).
In summary, we have

0 ∈ ∂g(zk+1) +B>λk+1, (†1)

which shows that zk+1 minimizes the function

z 7→ g(z) + (λk+1)>Bz.

Consequently, we have

g(zk+1) + (λk+1)>Bzk+1 ≤ g(z∗) + (λk+1)>Bz∗. (B1)

Similarly, xk+1 minimizes Lρ(x, z
k, λk) iff

0 ∈ ∂f(xk+1) + A>λk + ρA>(Axk+1 +Bzk − c)
= ∂f(xk+1) + A>(λk + ρrk+1 + ρB(zk − zk+1))

= ∂f(xk+1) + A>λk+1 + ρA>B(zk − zk+1)

since rk+1 −Bzk+1 = Axk+1 − c and λk+1 = λk + ρ(Axk+1 +Bzk+1 − c) = λk + ρrk+1.

Equivalently, the above derivation shows that

0 ∈ ∂f(xk+1) + A>(λk+1 − ρB(zk+1 − zk)), (†2)

which shows that xk+1 minimizes the function

x 7→ f(x) + (λk+1 − ρB(zk+1 − zk))>Ax.

Consequently, we have

f(xk+1) + (λk+1 − ρB(zk+1 − zk))>Axk+1 ≤ f(x∗) + (λk+1 − ρB(zk+1 − zk))>Ax∗. (B2)

Adding up Inequalities (B1) and (B2), using the equation Ax∗ + Bz∗ = c, and rearranging,
we obtain inequality (A2).
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Step 8 . Prove that (xk), (zk), and (λk) converge to optimal solutions.

Recall that (rk) converges to 0, and that (xk), (zk), and (λk) converge to limits x̃, z̃, and

λ̃. Since rk = Axk +Bzk − c, in the limit, we have

Ax̃+Bz̃ − c = 0. (∗1)

Using (†1), in the limit, we obtain

0 ∈ ∂g(z̃) +B>λ̃. (∗2)

Since (B(zk+1 − zk)) converges to 0, using (†2), in the limit, we obtain

0 ∈ ∂f(x̃) + A>λ̃. (∗3)

From (∗2) and (∗3), we obtain

0 ∈ ∂f(x̃) + ∂g(z̃) + A>λ̃+B>λ̃. (∗4)

But (∗1) and (∗4) are exactly the KKT equations, and by Theorem 15.41, we conclude that

x̃, z̃, λ̃ are optimal solutions.

Step 9 . Prove (A1). This is the most tedious step of the proof. We begin by adding up
(A2) and (A3), and then perform quite a bit or rewriting and manipulation. The complete
derivation can be found in Boyd et al. [17].

Remarks:

(1) In view of Theorem 15.42, we could replace Assumption (3) by the slightly stronger
assumptions that the optimum value of our program is finite and that the constraints
are qualified. Since the constraints are affine, this means that there is some feasible
solution in relint(dom(f)) ∩ relint(dom(g)). These assumptions are more practical
than Assumption (3).

(2) Actually, Assumption (3) implies Assumption (2). Indeed, we know from Theorem
15.41 that the existence of a saddle point implies that our program has a finite optimal
solution. However, if either A>A or B>B is not invertible, then Program (P ) may not
have a finite optimal solution, as shown by the following counterexample.

Example 16.5. Let

f(x, y) = x, g(z) = 0, y − z = 0.

Then
Lρ(x, y, z, λ) = x+ λ(y − z) + (ρ/2)(y − z)2,
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f(x,y) = x intersected with y=z,
z fixed.

graph of f(x,y) = x

Figure 16.4: A graphical representation of the Example 16.5. This is an illustration of the
x minimization step when z is held fixed. Since the intersection of the two planes is an
unbounded line, we “see” that minimizing over x yields −∞.

but minimizing over (x, y) with z held constant yields −∞, which implies that the
above program has no finite optimal solution. See Figure 16.4.

The problem is that

A =
(
0 1

)
, B =

(
−1
)
,

but

A>A =

(
0 0
0 1

)
is not invertible.

(3) Proving (A1), (A2), (A3), and the convergence of (rk) to 0 and of (pk) to p∗ does not
require Assumption (2). The proof, using the ingeneous Inequality (A1) (and (B))
is the proof given in Boyd et al. [17]. We were also able to prove that (λk), (Axk)
and (Bzk) converge without Assumption (2), but to prove that (xk), (yk), and (λk)
converge to optimal solutions, we had to use Assumption (2).
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(4) Bertsekas discusses ADMM in [10], Sections 2.2 and 5.4. His formulation of ADMM is
slightly different, namely

minimize f(x) + g(z)

subject to Ax = z.

Bertsekas states a convergence result for this version of ADMM under the hypotheses
that either dom(f) is compact or that A>A is invertible, and that a saddle point exists;
see Proposition 5.4.1. The proof is given in Bertsekas [13], Section 3.4, Proposition
4.2. It appears that the proof makes use of gradients, so it is not clear that it applies
in the more general case where f and g are not differentiable.

(5) Versions of ADMM are discussed in Gabay [27] (Sections 4 and 5). They are more gen-
eral than the version discussed here. Some convergence proofs are given, but because
Gabay’s framework is more general, it is not clear that they apply to our setting. Also,
these proofs rely on earlier result by Lions and Mercier, which makes the comparison
difficult.

(5) Assumption (2) does not imply that the system Ax + Bz = c has any solution. For
example, if

A =

(
1
1

)
, B =

(
−1
−1

)
, c =

(
1
0

)
,

the system

x− z = 1

x− z = 0

has no solution. However, since Assumption (3) implies that the program has an
optimal solution, it implies that c belongs to the column space of the p × (n + m)
matrix

(
A B

)
.

Here is an example where ADMM diverges for a problem whose optimum value is −∞.

Example 16.6. Consider the problem given by

f(x) = x, g(z) = 0, x− z = 0.

Since f(x) + g(z) = x, and x = z, the variable x is unconstrained and the above function
goes to −∞ when x goes to −∞. The augmented Lagrangian is

Lρ(x, z, λ) = x+ λ(x− z) +
ρ

2
(x− z)2

=
ρ

2
x2 − ρxz +

ρ

2
z2 + x+ λx− λz.



550 CHAPTER 16. DUAL ASCENT METHODS; ADMM

The matrix (
1
2
−1

2

−1
2

1
2

)
is singular and Lρ(x, z, λ) goes to −∞ in when (x, z) = t(1, 1) and t goes to −∞. The
ADMM steps are:

xk+1 = zk − 1

ρ
λk − 1

ρ

zk+1 = xk+1 +
1

ρ
λk

λk+1 = λk + ρ(xk+1 − zk+1),

and these equations hold for all k ≥ 0. From the last two equations we deduce that

λk+1 = λk + ρ(xk+1 − zk+1) = λk + ρ(−1

ρ
λk) = 0, for all k ≥ 0,

so

zk+2 = xk+2 +
1

ρ
λk+1 = xk+2, for all k ≥ 0.

Consequently we find that

xk+3 = zk+2 +
1

ρ
λk+2 − 1

ρ
= xk+2 − 1

ρ
.

By induction, we obtain

xk+3 = x2 − k + 1

ρ
, for all k ≥ 0,

which shows that xk+3 goes to −∞ when k goes to infinity, and since xk+2 = zk+2, similarly
zk+3 goes to −∞ when k goes to infinity.

16.5 Stopping Criteria

Going back to Inequality (A2),

pk+1 − p∗ ≤ −(λk+1)>rk+1 − ρ(B(zk+1 − zk))>(−rk+1 +B(zk+1 − z∗)), (A2)

using the fact that Ax∗ +Bz∗ − c = 0 and rk+1 = Axk+1 +Bzk+1 − c, we have

−rk+1 +B(zk+1 − z∗) = −Axk+1 −Bzk+1 + c+B(zk+1 − z∗)
= −Axk+1 + c−Bz∗

= −Axk+1 + Ax∗ = −A(xk+1 − x∗),
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so (A2) can be rewritten as

pk+1 − p∗ ≤ −(λk+1)>rk+1 + ρ(B(zk+1 − zk))>A(xk+1 − x∗),

or equivalently as

pk+1 − p∗ ≤ −(λk+1)>rk+1 + (xk+1 − x∗)>ρA>B(zk+1 − zk). (s1)

We define the dual residual as

sk+1 = ρA>B(zk+1 − zk),

the quantity rk+1 = Axk+1 +Bzk+1 − c being the primal residual . Then (s1) can be written
as

pk+1 − p∗ ≤ −(λk+1)>rk+1 + (xk+1 − x∗)>sk+1. (s)

Inequality (s) shows that when the residuals rk and sk are small, then pk is close to p∗

from below. Since x∗ is unknown, we can’t use this inequality, but if we have a guess that∥∥xk − x∗∥∥ ≤ d, then using Cauchy–Schwarz we obtain

pk+1 − p∗ ≤
∥∥λk+1

∥∥∥∥rk+1
∥∥+ d

∥∥sk+1
∥∥ .

The above suggests that a reasonable termination criterion is that
∥∥rk∥∥ and

∥∥sk∥∥ should be
small, namely that ∥∥rk∥∥ ≤ εpri and

∥∥sk∥∥ ≤ εdual,

for some chosen feasibility tolerances εpri and εdual. Further discussion for choosing these
parameters can be found in Boyd et al. [17] (Section 3.3.1).

Various extensions and variations of ADMM are discussed in Boyd et al. [17] (Section
3.4). In order to accelerate convergence of the method, one may choose a different ρ at each
step (say ρk), although proving the convergence of such a method may be difficult. If we
assume that ρk becomes constant after a number of iterations, then the proof that we gave
still applies. A simple scheme is this:

ρk+1 =


τ incrρk if

∥∥rk∥∥ > µ
∥∥sk∥∥

ρk/τdecr if
∥∥sk∥∥ > µ

∥∥rk∥∥
ρk otherwise,

where τ incr > 1, τdecr > 1, and µ > 1 are some chosen parameters. Again, we refer the
interested reader to Boyd et al. [17] (Section 3.4).
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16.6 Some Applications of ADMM

Structure in f, g, A, and B can often be exploited to yield more efficient methods for per-
forming the x-update and the z-update. We focus on the x-update, but the discussion applies
just as well to the z-update. Since z and λ are held constant during minimization over x, it
is more convenient to use the scaled form of ADMM. Recall that

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥Ax+Bzk − c+ uk
∥∥2

2

)
(here we use u instead of µ), so we can express the x-update step as

x+ = arg min
x

(
f(x) + (ρ/2) ‖Ax− v‖2

2

)
,

with v = −Bzk + c− uk.

Example 16.7. A first simplification arises when A = I, in which case the x-update is

x+ = arg min
x

(
f(x) + (ρ/2) ‖x− v‖2

2

)
= proxf,ρ(v).

The map v 7→ proxf,ρ(v) is known as the proximity operator of f with penalty ρ. The above
minimization is generally referred to as proximal minimization.

Example 16.8. When the function f is simple enough, the proximity operator can be
computed analytically. This is the case in particular when f = IC , the indicator function of
a nonempty closed convex set C. In this case, it is easy to see that

x+ = arg min
x

(
IC(x) + (ρ/2) ‖x− v‖2

2

)
= ΠC(v),

the orthogonal projection of v onto C. In the special case where C = Rn
+ (the first orthant),

then
x+ = (v)+,

the vector obtained by setting the negative components of v to zero.

Example 16.9. A second case where simplifications arise is the case where f is a convex
quadratic functional of the form

f(x) =
1

2
x>Px+ q>x+ r,

where P is an n× n symmetric positive semidefinite matrix, q ∈ Rn and r ∈ R. In this case
the gradient of the map

x 7→ f(x) + (ρ/2) ‖Ax− v‖2
2 =

1

2
x>Px+ q>x+ r +

ρ

2
x>(A>A)x− ρx>A>v +

ρ

2
v>v
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is given by
(P + ρA>A)x+ q − ρA>v,

and since A has rank n, the matrix A>A is symmetric positive definite, so we get

x+ = (P + ρA>A))−1(ρA>v − q).

Methods from numerical linear algebra can be used so compute x+ fairly efficiently; see Boyd
et al. [17] (Section 4).

Example 16.10. A third case where simplifications arise is the variation of the previous
case where f is a convex quadratic functional of the form

f(x) =
1

2
x>Px+ q>x+ r,

except that f is constrained by equality constraints Cx = b, as in Section 14.4, which means
that dom(f) = {x ∈ Rn | Cx = b}, and A = I. The x-minimization step consists in
minimizing the function

J(x) =
1

2
x>Px+ q>x+ r +

ρ

2
x>x− ρx>v +

ρ

2
v>v

subject to the constraint
Cx = b,

so by the results of Section 14.4, x+ is a component of the solution of the KKT-system(
P + ρI C>

C 0

)(
x+

y

)
=

(
−q + ρv

b

)
.

The matrix P + ρI is symmetric positive definite, so the KKT-matrix is invertible.

We can now describe how ADMM is used to solve two common problems of convex
optimization.

(1) Minimization of a proper closed convex function f over a closed convex set C in Rn.
This is the following problem

minimize f(x)

subject to x ∈ C,

which can be rewritten in ADMM form as

minimize f(x) + IC(z)

subject to x− z = 0.
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Using the scaled dual variable u = λ/ρ, the augmented Lagrangian is

Lρ(x, z, u) = f(x) + IC(z) +
ρ

2
‖x− z + u‖2

2 −
ρ

2
‖u‖2 .

In view of Example 16.8, the scaled form of ADMM for this problem is

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 = ΠC(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1.

The x-update involves evaluating a proximal operator. Note that the function f need
not be differentiable. Of course, these minimizations depend on having efficient com-
putational procedures for the proximal operator and the projection operator.

(2) Quadratic Programming, Version 1 . Here the problem is

minimize
1

2
x>Px+ q>x+ r

subject to Ax = b, x ≥ 0,

where P is an n × n symmetric positive semidefinite matrix, q ∈ Rn, r ∈ R, and A is
an m× n matrix of rank m.

The above program is converted in ADMM form as follows:

minimize f(x) + g(z)

subject to x− z = 0,

with

f(x) =
1

2
x>Px+ q>x+ r, dom(f) = {x ∈ Rn | Ax = b},

and
g = IRn+ ,

the indicator function of the positive orthant Rn
+. In view of Example 16.8 and Example

16.10, the scaled form of ADMM consists of the following steps:

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 = (xk+1 + uk)+

uk+1 = uk + xk+1 − zk+1.

The x-update involves solving the KKT equations(
P + ρI A>

A 0

)(
xk+1

y

)
=

(
−q + ρ(zk − uk)

b

)
.

This is an important example because it provides one of the best methods for solving
quadratic problems, in particular, the SVM problems discussed in Chapter 18.
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(3) Quadratic Programming, Version 2 . This problem is similar to the previous one, except
that the variable x ∈ Rn is not restricted to be nonnegative. The problem is

minimize
1

2
x>Px+ q>x+ r

subject to Ax = b,

where P is an n × n symmetric positive semidefinite matrix, q ∈ Rn, r ∈ R, and A is
an m× n matrix of rank m.

The above program is converted in ADMM form as follows:

minimize f(x) + g(z)

subject to x− z = 0,

with

f(x) =
1

2
x>Px+ q>x+ r, dom(f) = {x ∈ Rn | Ax = b},

and
g = 1,

the constant function which is the indicator function of the convex set C = Rn. In
view of Example 16.8 and (1), since ΠRn(xk+1 + uk) = xk+1 + uk, the scaled form of
ADMM consists of the following steps:

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 = xk+1 + uk

uk+1 = uk + xk+1 − zk+1 = 0,

for all k ≥ 0, so

uk = 0

zk+1 = xk+1

for all k ≥ 1. Consequently we have

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 = xk+1 + uk

u1 = 0,

for k = 0, 1, and for k ≥ 2 we have uk = 0 and zk = xk, with

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x− xk∥∥2

2

)
.
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As before, the x-update involves solving the KKT equations(
P + ρI A>

A 0

)(
xk+1

y

)
=

(
−q + ρ(zk − uk)

b

)
,

with uk = 0 if k ≥ 1 and zk = xk if k ≥ 2.

We programmed the above method in Matlab as the function qsolve1, see Appendix B,
Section B.1. Here are two examples.

Example 16.11. Consider the quadratic program for which

P1 =

4 1 0
1 4 1
0 1 4

 q1 = −

4
4
4


A1 =

(
1 1 −1
1 −1 −1

)
b1 =

(
0
0

)
.

We see immediately that the constraints

x+ y − z = 0

x− y − z = 0

imply that z = x and y = 0. Then it is easy using calculus to find that the unique
minimum is given by (x, y, z) = (1, 0, 1). Running qsolve1 on P1, q1, A1, b1 with ρ = 10,
tolr = tols = 10−12 and iternum = 10000, we find that after 83 iterations the primal and
the dual residuals are less than 10−12, and we get

(x, y, z) = (1.000000000000149, 0.000000000000000, 1.000000000000148).

Example 16.12. Consider the quadratic program for which

P2 =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

 q2 = −


4
4
4
4


A2 =

(
1 1 −1 0
1 −1 −1 0

)
b2 =

(
0
0

)
.

Again, we see immediately that the constraints imply that z = x and y = 0. Then it is easy
using calculus to find that the unique minimum is given by (x, y, z) = (28/31, 0, 28/31, 24/31).
Running qsolve1 on P2, q2, A2, b2 with ρ = 10, tolr = tols = 10−12 and iternum = 10000,
we find that after 95 iterations the primal and the dual residuals are less than 10−12, and we
get

(x, y, z, t) = (0.903225806451495, 0.000000000000000, 0.903225806451495,

0.774193548387264),

which agrees with the answer found earlier up to 11 decimals.
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As an illustration of the wide range of applications of ADMM we show in the next section
how to solve the hard margin SVM (SVMh2) discussed in Section 14.6.

16.7 Solving Hard Margin (SVMh2) Using ADMM

Recall that we would like to solve the following optimization problem (see Section 14.6):

Hard margin SVM (SVMh2):

minimize
1

2
‖w‖2

subject to

w>ui − b ≥ 1 i = 1, . . . , p

− w>vj + b ≥ 1 j = 1, . . . , q.

The margin is δ = 1/ ‖w‖. The separating hyperplane Hw,b is the hyperplane of equation
w>x− b = 0, and the margin hyperplanes are the hyperplanes Hw,b+1 (the blue hyperplane)
of equation w>x− b− 1 = 0 and Hw,b−1 (the red hyperplane) of equation w>x− b+ 1 = 0.
The dual program derived in Section 14.10 is the following program:

Dual of the Hard margin SVM (SVMh2):

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

λ ≥ 0, µ ≥ 0,

where X is the n× (p+ q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
.

Then w is determined as follows:

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj.

To solve the dual using ADMM we need to determine the matrices P, q A and c as in
Section 16.6(2). We renamed b as c to avoid a clash since b is already used. We have

P = X>X, q = −1p+q,
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and since the only constraint is
p∑
i=1

λi −
q∑
j=1

µj = 0,

the matrix A is the 1× (p+ q) row vector

A =
(
1>p −1>q

)
,

and the right-hand side c is the scalar

c = 0.

Obviously the matrix A has rank 1. We obtain b using any i0 such that λi0 > 0 and any j0

such that µj0 > 0. Since the corresponding constraints are active, we have

w>ui0 − b = 1, −w>vj0 + b = 1,

so we obtain

b = w>(ui0 + vj0)/2.

For improved numerical stability, we can average over the sets of indices defined as Iλ>0 =
{i ∈ {1, . . . , p} | λi > 0} and Iµ>0 = {j ∈ {1, . . . , q} | µj > 0}. We obtain

b = w>

( ∑
i∈Iλ>0

ui

)
/|Iλ>0|+

( ∑
j∈Iµ>0

vj

)
/|Iµ>0|

 /2.

The Matlab programs implementing the above method are given in Appendix B, Section
B.1. This should convince the reader that there is very little gap between theory and practice,
although it is quite consuming to tune the tolerance parameters needed to deal with floating-
point arithmetric.

Figure 16.5 shows the result of running the Matlab program implementing the above
method using ADMM on two sets of points of 50 points each generated at random using the
following Matlab code.

u14 = 10.1*randn(2,50)+18;

v14 = -10.1*randn(2,50)-18;

The function SVMhard2 is called with ρ = 10 as follows

[lamb,mu,w] = SVMhard2(10,u14,v14)

and produces the output shown in Figure 16.5. Observe that there is one blue support vector
and two red support vectors.



16.8. APPLICATIONS OF ADMM TO `1-NORM PROBLEMS 559

-50 -40 -30 -20 -10 0 10 20 30 40
-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 16.5: An example of hard margin SVM.

16.8 Applications of ADMM to `1-Norm Problems

Another important application of ADMM is to `1-norm minimization problems, especially
lasso minimization, discussed below and in Section 19.4. This involves the special case of
ADMM where f(x) = τ ‖x‖1 and A = I. In particular, in the one-dimensional case, we need
to solve the minimization problem: find

x∗ = arg min
x

(
τ |x|+ (ρ/2)(x− v)2

)
,

with x, v ∈ R, and ρ, τ > 0. Let c = τ/ρ and write

f(x) =
τ

2c

(
2c|x|+ (x− v)2

)
.

Minimizing f over x is equivalent to minimizing

g(x) = 2c|x|+ (x− v)2 = 2c|x|+ x2 − 2xv + v2,

which is equivalent to minimizing

h(x) = x2 + 2(c|x| − xv)

over x. If x ≥ 0, then

h(x) = x2 + 2(cx− xv) = x2 + 2(c− v)x = (x− (v − c))2 − (v − c)2.
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If v − c > 0, that is, v > c, since x ≥ 0, the function x 7→ (x− (v − c))2 has a minimum for
x = v − c > 0, else if v − c ≤ 0, then the function x 7→ (x − (v − c))2 has a minimum for
x = 0.

If x ≤ 0, then

h(x) = x2 + 2(−cx− xv) = x2 − 2(c+ v)x = (x− (v + c))2 − (v + c)2.

if v+ c < 0, that is, v < −c, since x ≤ 0, the function x 7→ (x− (v+ c))2 has a minimum for
x = v + c, else if v + c ≥ 0, then the function x 7→ (x− (v + c))2 has a minimum for x = 0.

In summary, infx h(x) is the function of v given by

Sc(v) =


v − c if v > c

0 if |v| ≤ c

v + c if v < −c.

The function Sc is known as a soft thresholding operator . The graph of Sc shown in Figure
16.6.

Figure 16.6: The graph of Sc (when c = 2).

One can check that
Sc(v) = (v − c)+ − (−v − c)+,

and also
Sc(v) = (1− c/|v|)+v, v 6= 0,

which shows that Sc is a shrinkage operator (it moves a point toward zero).

The operator Sc is extended to vectors in Rn component wise, that is, if x = (x1, . . . , xn),
then

Sc(x) = (Sc(x1), . . . , Sc(xn)).

We now consider several `1-norm problems.
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(1) Least absolute deviation.

This is the problem of minimizing ‖Ax− b‖1, rather than ‖Ax− b‖2. Least absolute
deviation is more robust than least squares fit because it deals better with outliers.
The problem can be formulated in ADMM form as follows:

minimize ‖z‖1

subject to Ax− z = b,

with f = 0 and g = ‖ ‖1. As usual, we assume that A is an m × n matrix of rank n,
so that A>A is invertible. ADMM (in scaled form) can be expressed as

xk+1 = (A>A)−1A>(b+ zk − uk)
zk+1 = S1/ρ(Ax

k+1 − b+ uk)

uk+1 = uk + Axk+1 − zk+1 − b.

(2) Basis pursuit .

This is the following minimization problem:

minimize ‖x‖1

subject to Ax = b,

where A is an m × n matrix of rank m < n, and b ∈ Rm, x ∈ Rn. The problem is to
find a sparse solution to an underdetermined linear system, which means a solution x
with many zero coordinates. This problem plays a central role in compressed sensing
and statistical signal processing.

Basis pursuit can be expressed in ADMM form as the problem

minimize IC(x) + ‖z‖1

subject to x− z = 0,

with C = {x ∈ Rn | Ax = b}. It is easy to see that the ADMM procedure (in scaled
form) is

xk+1 = ΠC(zk − uk)
zk+1 = S1/ρ(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1,

where ΠC is the orthogonal projection onto the subspace C. In fact, it is not hard to
show that

xk+1 = (I − A>(AA>)−1A)(zk − uk) + A>(AA>)−1b.

In some sense, an `1-minimization problem is reduced to a sequence of `2-norm prob-
lems. There are ways of improving the efficiency of the method; see Boyd et al. [17]
(Section 6.2)
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(3) General `1-regularized loss minimization.

This is the following minimization problem:

minimize l(x) + τ ‖x‖1 ,

where l is any proper closed and convex loss function, and τ > 0. We convert the
problem to the ADMM problem:

minimize l(x) + τ ‖z‖1

subject to x− z = 0.

The ADMM procedure (in scaled form) is

xk+1 = arg min
x

(
l(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 = Sτ/ρ(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1.

The x-update is a proximal operator evaluation. In general, one needs to apply a
numerical procedure to compute xk+1, for example, a version of Newton’s method.
The special case where l(x) = (1/2) ‖Ax− b‖2

2 is particularly important.

(4) Lasso regularization.

This is the following minimization problem:

minimize (1/2) ‖Ax− b‖2
2 + τ ‖x‖1 .

This is a linear regression with the regularizing term τ ‖x‖1 instead of τ ‖x‖2, to en-
courage a sparse solution. This method was first proposed by Tibshirani around 1996,
under the name lasso, which stands for “least absolute selection and shrinkage opera-
tor.” This method is also known as `1-regularized regression, but this is not as cute as
“lasso,” which is used predominantly. This method is discussed extensively in Hastie,
Tibshirani, and Wainwright [40].

The lasso minimization is converted to the following problem in ADMM form:

minimize
1

2
‖Ax− b‖2

2 + τ ‖z‖1

subject to x− z = 0.

Then the ADMM procedure (in scaled form) is

xk+1 = (A>A+ ρI)−1(A>b+ ρ(zk − uk))
zk+1 = Sτ/ρ(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1.



16.8. APPLICATIONS OF ADMM TO `1-NORM PROBLEMS 563

Since ρ > 0, the matrix A>A+ρI is symmetric positive definite. Note that the x-update
looks like a ridge regression step (see Section 19.1).

There are various generalizations of lasso.

(5) Generalized Lasso regularization.

This is the following minimization problem:

minimize (1/2) ‖Ax− b‖2
2 + τ ‖Fx‖1 ,

where A is an m × n matrix, F is a p × n matrix, and either A has rank n or F has
rank n. This problem is converted to the ADMM problem

minimize ‖Ax− b‖2
2 + τ ‖z‖1

subject to Fx− z = 0,

and the corresponding ADMM procedure (in scaled form) is

xk+1 = (A>A+ ρF>F )−1(A>b+ ρF>(zk − uk))
zk+1 = Sτ/ρ(Fx

k+1 + uk)

uk+1 = uk + Fxk+1 − zk+1.

(6) Group Lasso.

This a generalization of (3). Here we assume that x is split as x = (x1, . . . , xN),
with xi ∈ Rni and n1 + · · · + xN = n, and the regularizing term ‖x‖1 is replaced by∑N

i=1 ‖xi‖2. When ni = 1, this reduces to (3). The z-update of the ADMM procedure
needs to modified. We define the soft thresholding operator Sc : Rm → Rm given by

Sc(v) =

(
1− c

‖v‖2

)
+

v,

with Sc(0) = 0. Then the z-update consists of the N updates

zk+1
i = Sτ/ρ(xk+1

i + uk), i = 1, . . . , N.

The method can be extended to deal with overlapping groups; see Boyd et al. [17]
(Section 6.4).

There are many more applications of ADMM discussed in Boyd et al. [17], including
consensus and sharing. See also Strang [77] for a brief overview.
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16.9 Summary

The main concepts and results of this chapter are listed below:

• Dual ascent.

• Augmented Lagrangian.

• Penalty parameter.

• Method of multipliers.

• ADMM (alternating direction method of multipliers).

• x-update, z-update, λ-update.

• Scaled form of ADMM.

• Residual, dual residual.

• Stopping criteria.

• Proximity operator, proximal minimization.

• Quadratic programming.

• KKT equations.

• Soft thresholding operator.

• Shrinkage operator.

• Least absolute deviation.

• Basis pursuit.

• General `1-regularized loss minimization.

• Lasso regularization.

• Generalized lasso regularization.

• Group lasso.
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16.10 Problems

Problem 16.1. In the method of multipliers described in Section 16.2, prove that choosing
αk = ρ guarantees that (uk+1, λk+1) satisfies the equation

∇Juk+1 + A>λk+1 = 0.

Problem 16.2. Prove that the Inequality (A1) follows from the Inequalities (A2) and (A3)
(see the proof of Theorem 16.1). For help consult Appendix A of Boyd et al. [17].

Problem 16.3. Consider Example 16.8. Prove that if f = IC , the indicator function of a
nonempty closed convex set C, then

x+ = arg min
x

(
IC(x) + (ρ/2) ‖x− v‖2

2

)
= ΠC(v),

the orthogonal projection of v onto C. In the special case where C = Rn
+ (the first orthant),

then
x+ = (v)+,

the vector obtained by setting the negative components of v to zero.

Problem 16.4. Prove that the soft thresholding operator Sc from Section 16.8 satisfies the
equations

Sc(v) = (v − c)+ − (−v − c)+,

and
Sc(v) = (1− c/|v|)+v, v 6= 0.

Problem 16.5. Rederive the formula

Sc(v) =


v − c if v > c

0 if |v| ≤ c

v + c if v < −c

using subgradients.

Problem 16.6. In basis pursuit (see Section 16.8 (2)) prove that

xk+1 = (I − A>(AA>)−1A)(zk − uk) + A>(AA>)−1b.

Problem 16.7. Implement (in Matlab) ADMM applied to lasso regularization as described
in Section 16.6 (4). The stopping criterion should be based on feasibility tolerances εpri

and εdual, say 10−4, and on a maximum number of iteration steps, say 10000. There is a
build in Matlab function wthresh implementing soft thresholding. You may use the Matlab

command randn to create a random data set X and a random response vector y (see the
help menu in Matlab under lasso). Try various values of ρ and τ . You will observe that
the choice of ρ greatly affects the rate of convergence of the procedure.
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Chapter 17

Positive Definite Kernels

This chapter is an introduction to positive definite kernels and the use of kernel functions in
machine learning.

Let X be a nonempty set. If the set X represents a set of highly nonlinear data, it
may be advantageous to map X into a space F of much higher dimension called the feature
space, using a function ϕ : X → F called a feature map. This idea is that ϕ “unwinds” the
description of the objects in F in an attempt to make it linear. The space F is usually a
vector space equipped with an inner product 〈−,−〉. If F is infinite dimensional, then we
assume that it is a Hilbert space.

Many algorithms that analyze or classify data make use of the inner products 〈ϕ(x), ϕ(y)〉,
where x, y ∈ X. These algorithms make use of the function κ : X ×X → C given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X,

called a kernel function.

The kernel trick is to pretend that we have a feature embedding ϕ : X → F (actually
unknown), but to only use inner products 〈ϕ(x), ϕ(y)〉 that can be evaluated using the
original data through the known kernel function κ. It turns out that the functions of the
form κ as above can be defined in terms of a condition which is reminiscent of positive
semidefinite matrices (see Definition 17.2). Furthermore, every function satisfying Definition
17.2 arises from a suitable feature map into a Hilbert space; see Theorem 17.8.

We illustrate the kernel methods on kernel PCA (see Section 17.4).

17.1 Feature Maps and Kernel Functions

Definition 17.1. Let X be a nonempty set, let H be a (complex) Hilbert space, and let
ϕ : X → H be a function called a feature map. The function κ : X ×X → C given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X,

is called a kernel function.

569
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Remark: A feature map is often called a feature embedding , but this terminology is a bit
misleading because it suggests that such a map is injective, which is not necessarily the case.
Unfortunately this terminology is used by most people.

Example 17.1. Suppose we have two feature maps ϕ1 : X → Rn1 and ϕ2 : X → Rn2 , and let
κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 and κ2(x, y) = 〈ϕ2(x), ϕ2(y)〉 be the corresponding kernel functions
(where 〈−,−〉 is the standard inner product on Rn). Define the feature map ϕ : X → Rn1+n2

by
ϕ(x) = (ϕ1(x), ϕ2(x)),

an (n1 + n2)-tuple. We have

〈ϕ(x), ϕ(y)〉 = 〈(ϕ1(x), ϕ2(x)), (ϕ1(y), ϕ2(y))〉 = 〈ϕ1(x), ϕ1(y)〉+ 〈ϕ2(x), ϕ2(y)〉
= κ1(x, y) + κ2(x, y),

which shows that the map κ given by

κ(x, y) = κ1(x, y) + κ2(x, y)

is the kernel function corresponding to the feature map ϕ : X → Rn1+n2 .

Example 17.2. Let X be a subset of R2, and let ϕ1 : X → R3 be the map given by

ϕ1(x1, x2) = (x2
1, x

2
2,
√

2x1x2).

Figure 17.1 illustrates ϕ1 : X → R3 when X = {((x1, x2) | −10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10}.
Observe that linear relations in the feature space H = R3 correspond to quadratic rela-

tions in the input space (of data). We have

〈ϕ1(x), ϕ1(y)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (y2
1, y

2
2,
√

2y1y2)〉
= x2

1y
2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2 = 〈x, y〉2,

where 〈x, y〉 is the usual inner product on R2. Hence the function

κ(x, y) = 〈x, y〉2

is a kernel function associated with the feature space R3.

If we now consider the map ϕ2 : X → R4 given by

ϕ2(x1, x2) = (x2
1, x

2
2, x1x2, x1x2),

we check immediately that

〈ϕ2(x), ϕ2(y)〉 = κ(x, y) = 〈x, y〉2,

which shows that the same kernel can arise from different maps into different feature spaces.
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Figure 17.1: The parametric surface ϕ1(x1, x2) = (x2
1, x

2
2,
√

2x1x2) where −10 ≤ x1 ≤ 10 and
−10 ≤ x2 ≤ 10.

Example 17.3. Example 17.2 can be generalized as follows. Suppose we have a feature map
ϕ1 : X → Rn and let κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 be the corresponding kernel function (where
〈−,−〉 is the standard inner product on Rn). Define the feature map ϕ : X → Rn × Rn by
its n2 components

ϕ(x)(i,j) = (ϕ1(x))i(ϕ1(x))j, 1 ≤ i, j ≤ n,

with the inner product on Rn × Rn given by

〈u, v〉 =
n∑

i,j=1

u(i,j)v(i,j).

Then we have

〈ϕ(x), ϕ(y)〉 =
n∑

i,j=1

ϕ(i,j)(x)ϕ(i,j)(y)

=
n∑

i,j=1

(ϕ1(x))i(ϕ1(x))j(ϕ1(y))i(ϕ1(y))j

=
n∑
i=1

(ϕ1(x))i(ϕ1(y))i

n∑
j=1

(ϕ1(x))j(ϕ1(y))j

= (κ1(x, y))2.
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Thus the map κ given by κ(x, y) = (κ1(x, y))2 is a kernel map associated with the feature
map ϕ : X → Rn × Rn. The feature map ϕ is a direct generalization of the feature map ϕ2

of Example 17.2.

The above argument is immediately adapted to show that if ϕ1 : X → Rn1 and ϕ2 : X →
Rn2 are two feature maps and if κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 and κ2(x, y) = 〈ϕ2(x), ϕ2(y)〉 are
the corresponding kernel functions, then the map defined by

κ(x, y) = κ1(x, y)κ2(x, y)

is a kernel function for the feature space Rn1 × Rn2 and the feature map

ϕ(x)(i,j) = (ϕ1(x))i(ϕ2(x))j, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Example 17.4. Note that the feature map ϕ : X → Rn×Rn is not very economical because
if i 6= j then the components ϕ(i,j)(x) and ϕ(j,i)(x) are both equal to (ϕ1(x))i(ϕ1(x))j.

Therefore we can define the more economical embedding ϕ′ : X → R(n+1
2 ) given by

ϕ′(x)(i,j) =

{
(ϕ1(x))2

i i = j,√
2(ϕ1(x))i(ϕ1(x))j i < j,

where the pairs (i, j) with 1 ≤ i ≤ j ≤ n are ordered lexicographically. The feature map ϕ
is a direct generalization of the feature map ϕ1 of Example 17.2.

Observe that ϕ′ can also be defined in the following way which makes it easier to come
up with the generalization to any power:

ϕ′(i1,...,in)(x) =

(
2

i1 · · · in

)1/2

(ϕ1(x))i11 (ϕ1(x))i21 · · · (ϕ1(x))in1 , i1 + i2 + · · ·+ in = 2, ij ∈ N,

where the n-tuples (i1, . . . , in) are ordered lexicographically. Recall that for any m ≥ 1 and
any (i1, . . . , in) ∈ Nm such that i1 + i2 + · · ·+ in = m, we have(

m

i1 · · · in

)
=

m!

i1! · · · in!
.

More generally, for any m ≥ 2, using the multinomial theorem, we can define a feature

embedding ϕ : X → R(n+m−1
m ) defining the kernel function κ given by κ(x, y) = (κ1(x, y))m,

with ϕ given by

ϕ(i1,...,in)(x) =

(
m

i1 · · · in

)1/2

(ϕ1(x))i11 (ϕ1(x))i21 · · · (ϕ1(x))in1 , i1 + i2 + · · ·+ in = m, ij ∈ N,

where the n-tuples (i1, . . . , in) are ordered lexicographically.
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Example 17.5. For any positive real constant R > 0, the constant function κ(x, y) = R is
a kernel function corresponding to the feature map ϕ : X → R given by ϕ(x, y) =

√
R.

By definition, the function κ′1 : Rn → R given by κ′1(x, y) = 〈x, y〉 is a kernel function
(the feature map is the identity map from Rn to itself). We just saw that for any positive
real constant R > 0, the constant κ′2(x, y) = R is a kernel function. By Example 17.1, the
function κ′3(x, y) = κ′1(x, y) + κ′2(x, y) is a kernel function, and for any integer d ≥ 1, by
Example 17.4, the function κd given by

κd(x, y) = (κ′3(x, y))d = (〈x, y〉+R)d,

is a kernel function on Rn. By the binomial formula,

κd(x, y) =
d∑

m=0

Rd−m〈x, y〉m.

By Example 17.1, the feature map of this kernel function is the concatenation of the features
of the d+ 1 kernel maps Rd−m〈x, y〉m. By Example 17.3, the components of the feature map
of the kernel map Rd−m〈x, y〉m are reweightings of the functions

ϕ(i1,...,in)(x) = xi11 x
i2
2 · · ·xinn , i1 + i2 + · · ·+ in = m,

with (i1, . . . , in) ∈ Nn. Thus the components of the feature map of the kernel function κd
are reweightings of the functions

ϕ(i1,...,in)(x) = xi11 x
i2
2 · · ·xinn , i1 + i2 + · · ·+ in ≤ d,

with (i1, . . . , in) ∈ Nn. It is easy to see that the dimension of this feature space is
(
m+d
d

)
.

There are a number of variations of the polynomial kernel κd; all-subsets embedding
kernels, ANOVA kernels; see Shawe–Taylor and Christianini [74], Chapter III.

In the next example the set X is not a vector space.

Example 17.6. Let D be a finite set and let X = 2D be its power set. If |D| = n,
let H = RX ∼= R2n . We are assuming that the subsets of D are enumerated in some
fashion so that each coordinate of R2n corresponds to one of these subsets. For example, if
D = {1, 2, 3, 4}, let

U1 = ∅ U2 = {1} U3 = {2} U4 = {3}
U5 = {4} U6 = {1, 2} U7 = {1, 3} U8 = {1, 4}
U9 = {2, 3} U10 = {2, 4} U11 = {3, 4} U12 = {1, 2, 3}
U13 = {1, 2, 4} U14 = {1, 3, 4} U15 = {2, 3, 4} U16 = {1, 2, 3, 4}.

Let ϕ : X → H be the feature map defined as follows: for any subsets A,U ∈ X,

ϕ(A)U =

{
1 if U ⊆ A

0 otherwise.
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For example, if A1 = {1, 2, 3}, we obtain the vector

ϕ({1, 2, 3}) = (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0),

and if A2 = {2, 3, 4}, we obtain the vector

ϕ({2, 3, 4}) = (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0).

For any two subsets A1 and A2 of D, it is easy to check that

〈ϕ(A1), ϕ(A2)〉 = 2|A1∩A2|,

the number of common subsets of A1 and A2. For example, A1 ∩ A2 = {2, 3}, and

〈ϕ(A1), ϕ(A2)〉 = 4.

Therefore, the function κ : X ×X → R given by

κ(A1, A2) = 2|A1∩A2|, A1, A2 ⊆ D

is a kernel function.

Kernels on collections of sets can be defined in terms of measures.

Example 17.7. Let (D,A) be a measurable space, where D is a nonempty set and A is a
σ-algebra on D (the measurable sets). Let X be a subset of A. If µ is a positive measure
on (D,A) and if µ is finite, which means that µ(D) is finite, then we can define the map
κ1 : X ×X → R given by

κ1(A1, A2) = µ(A1 ∩ A2), A1, A2 ∈ X.

We can show that κ is a kernel function as follows. Let H = L2
µ(D,A,R) be the Hilbert

space of µ-square-integrable functions with the inner product

〈f, g〉 =

∫
D

f(s)g(s) dµ(s),

and let ϕ : X → H be the feature embedding given by

ϕ(A) = χA, A ∈ X,

the characteristic function of A. Then we have

κ1(A1, A2) = µ(A1 ∩ A2) =

∫
D

χA1∩A2(s) dµ(s)

=

∫
D

χA1(s)χA2(s) dµ(s) = 〈χA1 , χA2〉

= 〈ϕ(A1), ϕ(A2)〉.
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The above kernel is called the intersection kernel . If we assume that µ is normalized so
that µ(D) = 1, then we also have the union complement kernel :

κ2(A1, A2) = µ(A1 ∩ A2) = 1− µ(A1 ∪ A2).

The sum κ3 of the kernels κ1 and κ2 is the agreement kernel :

κs(A1, A2) = 1− µ(A1 − A2)− µ(A2 − A1).

Many other kinds of kernels can be designed, in particular, graph kernels. For com-
prehensive presentations of kernels, see Schölkopf and Smola [64] and Shawe–Taylor and
Christianini [74].

Kernel functions have the following important property.

Proposition 17.1. Let X be any nonempty set, let H be any (complex) Hilbert space, let
ϕ : X → H be any function, and let κ : X ×X → C be the kernel given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X.

For any finite subset S = {x1, . . . , xp} of X, if KS is the p× p matrix

KS = (κ(xj, xi))1≤i,j≤p = (〈ϕ(xj), ϕ(xi)〉)1≤i,j≤p,

then we have
u∗KS u ≥ 0, for all u ∈ Cp.

Proof. We have

u∗KS u = u>K>S u =

p∑
i,j=1

κ(xi, xj)uiuj

=

p∑
i,j=1

〈ϕ(x), ϕ(y)〉uiuj

=

〈
p∑
i=1

uiϕ(xi),

p∑
j=1

ujϕ(xj)

〉
=

∥∥∥∥∥
p∑
i=1

uiϕ(xi)

∥∥∥∥∥
2

≥ 0,

as claimed.

17.2 Basic Properties of Positive Definite Kernels

Proposition 17.1 suggests a second approach to kernel functions which does not assume that
a feature space and a feature map are provided. We will see in Section 17.3 that the two
approaches are equivalent. The second approach is useful in practice because it is often
difficult to define a feature space and a feature map in a simple manner.
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Definition 17.2. Let X be a nonempty set. A function κ : X×X → C is a positive definite
kernel if for every finite subset S = {x1, . . . , xp} of X, if KS is the p× p matrix

KS = (κ(xj, xi))1≤i,j≤p

called a Gram matrix , then we have

u∗KS u =

p∑
i,j=1

κ(xi, xj)uiuj ≥ 0, for all u ∈ Cp.

Observe that Definition 17.2 does not require that u∗KS u > 0 if u 6= 0, so the terminology
positive definite is a bit abusive, and it would be more appropriate to use the terminology
positive semidefinite. However, it seems customary to use the term positive definite kernel ,
or even positive kernel .

Proposition 17.2. Let κ : X ×X → C be a positive definite kernel. Then κ(x, x) ≥ 0 for
all x ∈ X, and for any finite subset S = {x1, . . . , xp} of X, the p× p matrix KS given by

KS = (κ(xj, xi))1≤i,j≤p

is Hermitian, that is, K∗S = KS.

Proof. The first property is obvious by choosing S = {x}. To prove that KS is Hermitian,
observe that we have

(u+ v)∗KS(u+ v) = u∗KSu+ u∗KSv + v∗KSu+ v∗KSv,

and since (u+ v)∗KS(u+ v), u∗KSu, v
∗KSv ≥ 0, we deduce that

2A = u∗KSv + v∗KSu (1)

must be real. By replacing u by iu, we see that

2B = −iu∗KSv + iv∗KSu (2)

must also be real. By multiplying Equation (2) by i and adding it to Equation (1) we get

u∗KSv = A+ iB. (3)

By subtracting Equation (3) from Equation (1) we get

v∗KSu = A− iB.

Then
u∗K∗Sv = v∗KSu = A− iB = A+ iB = u∗KSv,

for all u, v ∈ C∗, which implies K∗S = KS.
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If the map κ : X ×X → R is real-valued, then we have the following criterion for κ to be
a positive definite kernel that only involves real vectors.

Proposition 17.3. If κ : X ×X → R, then κ is a positive definite kernel iff for any finite
subset S = {x1, . . . , xp} of X, the p× p real matrix KS given by

KS = (κ(xk, xj))1≤j,k≤p

is symmetric, that is, K>S = KS, and

u>KS u =

p∑
j,k=1

κ(xj, xk)ujuk ≥ 0, for all u ∈ Rp.

Proof. If κ is a real-valued positive definite kernel, then the proposition is a trivial conse-
quence of Proposition 17.2.

For the converse assume that κ is symmetric and that it satisfies the second condition of
the proposition. We need to show that κ is a positive definite kernel with respect to complex
vectors. If we write uk = ak + ibk, then

u∗KS u =

p∑
j,k=1

κ(xj, xk)(aj + ibj)(ak − ibk)

=

p∑
j,k=1

(ajak + bjbk)κ(xj, xk) + i

p∑
j,k=1

(bjak − ajbk)κ(xj, xk)

=

p∑
j,k=1

(ajak + bjbk)κ(xj, xk) + i
∑

1≤j<k≤p

bjak(κ(xj, xk)− κ(xk, xj)).

Thus u∗KSu is real iff KS is symmetric.

Consequently we make the following definition.

Definition 17.3. Let X be a nonempty set. A function κ : X ×X → R is a (real) positive
definite kernel if κ(x, y) = κ(y, x) for all x, y ∈ X, and for every finite subset S = {x1, . . . , xp}
of X, if KS is the p× p real symmetric matrix

KS = (κ(xi, xj))1≤i,j≤p,

then we have

u>KS u =

p∑
i,j=1

κ(xi, xj)uiuj ≥ 0, for all u ∈ Rp.

Among other things, the next proposition shows that a positive definite kernel satisfies
the Cauchy–Schwarz inequality.
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Proposition 17.4. A Hermitian 2× 2 matrix

A =

(
a b
b d

)
is positive semidefinite if and only if a ≥ 0, d ≥ 0, and ad− |b|2 ≥ 0.

Let κ : X ×X → C be a positive definite kernel. For all x, y ∈ X, we have

|κ(x, y)|2 ≤ κ(x, x)κ(y, y).

Proof. For all x, y ∈ C, we have

(
x y

)(a b
b d

)(
x
y

)
=
(
x y

)(ax+ by
bx+ dy

)
= a|x|2 + bxy + bxy + d|y|2.

If A is positive semidefinite, then we already know that a ≥ 0 and d ≥ 0. If a = 0, then
we must have b = 0, since otherwise we can make bxy + bxy, which is twice the real part of
bxy, as negative as we want. In this case, ad− |b|2 = 0.

If a > 0, then

a|x|2 + bxy + bxy + d|y|2 = a

∣∣∣∣x+
b

a
y

∣∣∣∣2 +
|y|2

a
(ad− |b|2).

If ad−|b|2 < 0, we can pick y 6= 0 and x = −(by)/a, so that the above expression is negative.
Therefore, ad− |b|2 ≥ 0. The converse is trivial.

If x = y, the inequality |κ(x, y)|2 ≤ κ(x, x)κ(y, y) is trivial. If x 6= y, the inequality
follows by applying the criterion for being positive semidefinite to the matrix(

κ(x, x) κ(x, y)
κ(x, y) κ(y, y)

)
,

as claimed.

The following property due to I. Schur (1911) shows that the pointwise product of two
positive definite kernels is also a positive definite kernel.

Proposition 17.5. (I. Schur) If κ1 : X × X → C and κ2 : X × X → C are two positive
definite kernels, then the function κ : X ×X → C given by κ(x, y) = κ1(x, y)κ2(x, y) for all
x, y ∈ X is also a positive definite kernel.
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Proof. It suffices to prove that if A = (ajk) and B = (bjk) are two Hermitian positive
semidefinite p × p matrices, then so is their pointwise product C = A ◦ B = (ajkbjk) (also
known as Hadamard or Schur product). Recall that a Hermitian positive semidefinite matrix
A can be diagonalized as A = UΛU∗, where Λ is a diagonal matrix with nonnegative entries
and U is a unitary matrix. Let Λ1/2 be the diagonal matrix consisting of the positive square
roots of the diagonal entries in Λ. Then we have

A = UΛU∗ = UΛ1/2Λ1/2U∗ = UΛ1/2(UΛ1/2)∗.

Thus if we set R = UΛ1/2, we have
A = RR∗,

which means that

ajk =

p∑
h=1

rjhrkh.

Then for any u ∈ Cp, we have

u∗(A ◦B)u =

p∑
j,k=1

ajkbjkujuk

=

p∑
j,k=1

p∑
h=1

rjhrkhbjkujuk

=

p∑
h=1

p∑
j,k=1

bjkujrjhukrkh.

Since B is positive semidefinite, for each fixed h, we have

p∑
j,k=1

bjkujrjhukrkh =

p∑
j,k=1

bjkzjzk ≥ 0,

as we see by letting z = (u1r1h, . . . , uprph),

In contrast, the ordinary product AB of two symmetric positive semidefinite matrices
A and B may not be symmetric positive semidefinite; see Section 7.9 in Volume I for an
example.

Here are other ways of obtaining new positive definite kernels from old ones.

Proposition 17.6. Let κ1 : X×X → C and κ2 : X×X → C be two positive definite kernels,
f : X → C be a function, ψ : X → RN be a function, κ3 : RN ×RN → C be a positive definite
kernel, and a ∈ R be any positive real number. Then the following functions are positive
definite kernels:

(1) κ(x, y) = κ1(x, y) + κ2(x, y).



580 CHAPTER 17. POSITIVE DEFINITE KERNELS

(2) κ(x, y) = aκ1(x, y).

(3) κ(x, y) = f(x)f(y).

(4) κ(x, y) = κ3(ψ(x), ψ(y)).

(5) If B is a symmetric positive semidefinite n× n matrix, then the map
κ : Rn × Rn → R given by

κ(x, y) = x>By

is a positive definite kernel.

Proof. (1) For every finite subset S = {x1, . . . , xp} of X, if K1 is the p× p matrix

K1 = (κ1(xk, xj))1≤j,k≤p

and if if K2 is the p× p matrix

K2 = (κ2(xk, xj))1≤j,k≤p,

then for any u ∈ Cp, we have

u∗(K1 +K2)u = u∗K1u+ u∗K2u ≥ 0,

since u∗K1u ≥ 0 and u∗K2u ≥ 0 because κ2 and κ2 are positive definite kernels, which means
that K1 and K2 are positive semidefinite.

(2) We have

u∗(aK1)u = au∗K1u ≥ 0,

since a > 0 and u∗K1u ≥ 0.

(3) For every finite subset S = {x1, . . . , xp} of X, if K is the p× p matrix

K = (κ(xk, xj))1≤j,k≤p = (f(xk)f(xj))1≤j,k≤p

then we have

u∗Ku = u>K>u =

p∑
j,k=1

κ(xj, xk)ujuk =

p∑
j,k=1

ujf(xj)ukf(xk) =

∣∣∣∣∣
p∑
j=1

ujf(xj)

∣∣∣∣∣
2

≥ 0.

(4) For every finite subset S = {x1, . . . , xp} of X, the p× p matrix K given by

K = (κ(xk, xj))1≤j,k≤p = (κ3(ψ(xk), ψ(xj)))1≤j,k≤p

is symmetric positive semidefinite since κ3 is a positive definite kernel.
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(5) As in the proof of Proposition 17.5 (adapted to the real case) there is a matrix R
such that

B = RR>,

so
κ(x, y) = x>By = x>RR>y = (R>x)>R>y = 〈R>x,R>y〉,

so κ is the kernel function given by the feature map ϕ(x) = R>x from Rn to itself, and by
Proposition 17.1, it is a symmetric positive definite kernel.

Proposition 17.7. Let κ1 : X × X → C be a positive definite kernel, and let p(z) be a
polynomial with nonnegative coefficients. Then the following functions κ defined below are
also positive definite kernels.

(1) κ(x, y) = p(κ1(x, y)).

(2) κ(x, y) = eκ1(x,y).

(3) If X is real Hilbert space with inner product 〈−,−〉X and corresponding norm ‖ ‖X ,

κ(x, y) = e−
‖x−y‖2X

2σ2

for any σ > 0.

Proof. (1) If p(z) = amz
m + · · ·+ a1z + a0, then

p(κ1(x, y)) = amκ1(x, y)m + · · ·+ a1κ1(x, y) + a0.

Since ak ≥ 0 for k = 0, . . . ,m, by Proposition 17.5 and Proposition 17.6(2), each func-
tion akκi(x, y)k with 1 ≤ k ≤ m is a positive definite kernel, by Proposition 17.6(3) with
f(x) =

√
a0, the constant function a0 is a positive definite kernel, and by Proposition 17.6(1),

p(κ1(x, y)) is a positive definite kernel.

(2) We have

eκ1(x,y) =
∞∑
k=0

κ1(x, y)k

k!
.

By (1), the partial sums
m∑
k=0

κ1(x, y)k

k!

are positive definite kernels, and since eκ1(x,y) is the (uniform) pointwise limit of positive
definite kernels, it is also a positive definite kernel.

(3) By Proposition 17.6(2), since the map (x, y) 7→ 〈x, y〉X is obviously a positive definite
kernel (the feature map is the identity) and since σ 6= 0, the function (x, y) 7→ 〈x, y〉X/σ2 is
a positive definite kernel (by Proposition 17.6(2)), so by (2),

κ1(x, y) = e
〈x,y〉X
σ2
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is a positive definite kernel. Let f : X → R be the function given by

f(x) = e−
‖x‖2

2σ2 .

Then by Proposition 17.6(3),

κ2(x, y) = f(x)f(y) = e−
‖x‖2

2σ2 e−
‖y‖2

2σ2 = e−
‖x‖2X+‖y‖2X

2σ2

is a positive definite kernel. By Proposition 17.5, the function κ1κ2 is a positive definite
kernel, that is

κ1(x, y)κ2(x, y) = e
〈x,y〉X
σ2 e−

‖x‖2X+‖y‖2X
2σ2 = e

〈x,y〉X
σ2

− ‖x‖
2
X+‖y‖2X
2σ2 = e−

‖x−y‖2X
2σ2

is a positive definite kernel.

Definition 17.4. The positive definite kernel

κ(x, y) = e−
‖x−y‖2X

2σ2

is called a Gaussian kernel .

This kernel requires a feature map in an infinite-dimensional space because it is an infinite
sum of distinct kernels.

Remark: If κ1 is a positive definite kernel, the proof of Proposition 17.7(3) is immediately
adapted to show that

κ(x, y) = e−
κ1(x,x)+κ1(y,y)−2κ1(x,y)

2σ2

is a positive definite kernel.

Next we prove that every positive definite kernel arises from a feature map in a Hilbert
space which is a function space.

17.3 Hilbert Space Representation of a Positive

Definite Kernel

The following result shows how to construct a so-called reproducing kernel Hilbert space, for
short RKHS, from a positive definite kernel.

Theorem 17.8. Let κ : X ×X → C be a positive definite kernel on a nonempty set X. For
every x ∈ X, let κx : X → C be the function given by

κx(y) = κ(x, y), y ∈ X.
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Let H0 be the subspace of the vector space CX of functions from X to C spanned by the
family of functions (κx)∈X , and let ϕ : X → H0 be the map given by ϕ(x) = κx. There is a
Hermitian inner product 〈−,−〉 on H0 such that

κ(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X.

The completion H of H0 is a Hilbert space, and the map η : H → CX given by

η(f)(x) = 〈f, κx〉, x ∈ X,

is linear and injective, so H can be identified with a subspace of CX . We also have

κ(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X.

For all f ∈ H0 and all x ∈ X,
〈f, κx〉 = f(x), (∗)

a property known as the reproducing property.

Proof.

Step 1. Define a candidate inner product.

For any two linear combinations f =
∑p

j=1 αjκxj and g =
∑q

k=1 βkκyk in H0, with
xj, yk ∈ X and αj, βk ∈ C, define 〈f, g〉 by

〈f, g〉 =

p∑
j=1

q∑
k=1

αjβkκ(xj, yk). (†)

At first glance, the above expression appears to depend on the expression of f and g as linear
combinations, but since κ(xj, yk) = κ(yk, xj), observe that

q∑
k=1

βkf(yk) =

p∑
j=1

q∑
k=1

αjβkκ(xj, yk) =

p∑
j=1

αjg(xj), (∗)

and since the first and the third term are equal for all linear combinations representing f
and g, we conclude that (†) depends only on f and g and not on their representation as a
linear combination.

Step 2. Prove that the inner product defined by (†) is Hermitian semidefinite.

Obviously (†) defines a Hermitian sequilinear form. For every f ∈ H0, we have

〈f, f〉 =

p∑
j,k=1

αjαkκ(xj, xk) ≥ 0,

since κ is a positive definite kernel.
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Step 3. Prove that the inner product defined by (†) is positive definite.

For any finite subset {f1, . . . , fn} of H0 and any z ∈ Cn, we have

n∑
j,k=1

〈fj, fk〉zjzk =

〈
n∑
j=1

zjfj,

n∑
j=1

zjfj

〉
≥ 0,

which shows that the map (f, g) 7→ 〈f, g〉 from H0 ×H0 to C is a positive definite kernel.

Observe that for all f ∈ H0 and all x ∈ X, (†) implies that

〈f, κx〉 =
k∑
j=1

αjκ(xj, x) = f(x),

a property known as the reproducing property . The above implies that

〈κx, κy〉 = κ(x, y). (∗∗)

By Proposition 17.4 applied to the positive definite kernel (f, g) 7→ 〈f, g〉, we have

|〈f, κx〉|2 ≤ 〈f, f〉〈κx, κx〉,

that is,
|f(x)|2 ≤ 〈f, f〉κ(x, x),

so 〈f, f〉 = 0 implies that f(x) = 0 for all x ∈ X, which means that 〈−,−〉 as defined by (†)
is positive definite. Therefore, 〈−,−〉 is a Hermitian inner product on H0, and by (∗∗) and
since ϕ(x) = κx, we have

κ(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X.

Step 4. Define the embedding η.

Let H be the Hilbert space which is the completion of H0, so that H0 is dense in H. The
map η : H → CX given by

η(f)(x) = 〈f, κx〉

is obviously linear, and it is injective because the family (κx)x∈X spans H0 which is dense in
H, thus it is also dense in H, so if 〈f, κx〉 = 0 for all x ∈ X, then f = 0.

Corollary 17.9. If we identify a function f ∈ H with the function η(f), then we have the
reproducing property

〈f, κx〉 = f(x), for all f ∈ H and all x ∈ X.

If X is finite, then CX is finite-dimensional. If X is a separable topological space and if κ is
continuous, then it can be shown that H is a separable Hilbert space.
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Also, if κ : X × X → R is a real symmetric positive definite kernel, then we see im-
mediately that Theorem 17.8 holds with H0 a real Euclidean space and H a real Hilbert
space.

~ Remark: If X = G, where G is a locally compact group, then a function p : G→ C (not
necessarily continuous) is positive semidefinite if for all s1, . . . , sn ∈ G and all ξ1, . . . , ξn ∈ C,
we have

n∑
j,k=1

p(s−1
j sk)ξkξj ≥ 0.

So if we define κ : G×G→ C by

κ(s, t) = p(t−1s),

then κ is a positive definite kernel on G. If p is continuous, then it is known that p arises
from a unitary representation U : G → U(H) of the group G in a Hilbert space H with
inner product 〈−,−〉 (a homomorphism with a certain continuity property), in the sense
that there is some vector x0 ∈ H such that

p(s) = 〈U(s)(x0), x0〉, for all s ∈ G.

Since the U(s) are unitary operators on H,

p(t−1s) = 〈U(t−1s)(x0), x0〉 = 〈U(t−1)(U(s)(x0)), x0〉
= 〈U(t)∗(U(s)(x0)), x0〉 = 〈U(s)(x0), U(t)(x0)〉,

which shows that
κ(s, t) = 〈U(s)(x0), U(t)(x0)〉,

so the map ϕ : G→ H given by
ϕ(s) = U(s)(x0)

is a feature map into the feature space H. This theorem is due to Gelfand and Raikov (1943).

The proof of Theorem 17.8 is essentially identical to part of Godement’s proof of the
above result about the correspondence between functions of positive type and unitary rep-
resentations; see Helgason [41], Chapter IV, Theorem 1.5. Theorem 17.8 is a little more
general since it does not assume that X is a group, but when G is a group, the feature map
arises from a unitary representation.

17.4 Kernel PCA

As an application of kernel functions, we discuss a generalization of the method of principal
component analysis (PCA). Suppose we have a set of data S = {x1, . . . , xn} in some input
space X , and pretend that we have an embedding ϕ : X → F of X in a (real) feature space
(F, 〈−,−〉), but that we only have access to the kernel function κ(x, y) = 〈ϕ(x), ϕ(y)〉. We
would like to do PCA analysis on the set ϕ(S) = {ϕ(x1), . . . , ϕ(xn)}.

There are two obstacles:
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(1) We need to center the data and compute the inner products of pairs of centered data.
More precisely, if the centroid of ϕ(S) is

µ =
1

n
(ϕ(x1) + · · ·+ ϕ(xn)),

then we need to compute the inner products 〈ϕ(x)− µ, ϕ(y)− µ〉.

(2) Let us assume that F = Rd with the standard Euclidean inner product and that
the data points ϕ(xi) are expressed as row vectors Xi of an n × d matrix X (as it
is customary). Then the inner products κ(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 are given by the
kernel matrix K = XX>. Be aware that with this representation, in the expression
〈ϕ(xi), ϕ(xj)〉, ϕ(xi) is a d-dimensional column vector, while ϕ(xi) = X>i . However, the
jth component (Yk)j of the principal component Yk (viewed as a n-dimensional column

vector) is given by the projection of X̂j = Xj −µ onto the direction uk (viewing µ as a
d-dimensional row vector), which is a unit eigenvector of the matrix (X − µ)>(X − µ)

(where X̂ = X − µ is the matrix whose jth row is X̂j = Xj − µ), is given by the inner
product

〈Xj − µ, uk〉 = (Yk)j;

see Definition 21.2 (Vol. I) and Theorem 21.11 (Vol. I). The problem is that we know
what the matrix (X − µ)(X − µ)> is from (1), because it can be expressed in terms
of K, but we don’t know what (X − µ)>(X − µ) is because we don’t have access to

X̂ = X − µ.

Both difficulties are easily overcome. For (1) we have

〈ϕ(x)− µ, ϕ(y)− µ〉 =

〈
ϕ(x)− 1

n

n∑
k=1

ϕ(xk), ϕ(y)− 1

n

n∑
k=1

ϕ(xk)

〉

= κ(x, y)− 1

n

n∑
i=1

κ(x, xi)−
1

n

n∑
j=1

κ(xj, y) +
1

n2

n∑
i,j=1

κ(xi, xj).

For (2), if K is the kernel matrix K = (κ(xi, xj)), then the kernel matrix K̂ corresponding
to the kernel function κ̂ given by

κ̂(x, y) = 〈ϕ(x)− µ, ϕ(y)− µ〉

can be expressed in terms of K. Let 1 be the column vector (of dimension n) whose entries
are all 1. Then 11> is the n×n matrix whose entries are all 1. If A is an n×n matrix, then
1>A is the row vector consisting of the sums of the columns of A, A1 is the column vector
consisting of the sums of the rows of A, and 1>A1 is the sum of all the entries in A. Then
it is easy to see that the kernel matrix corresponding to the kernel function κ̂ is given by

K̂ = K− 1

n
11>K− 1

n
K11> +

1

n2
(1>K1)11>.
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Suppose X̂ = X − µ has rank r. To overcome the second problem, note that if

X̂ = V DU>

is an SVD for X̂, then
X̂> = UD>V >

is an SVD for X̂>, and the r×r submatrix of D> consisting of the first r rows and r columns
of D> (and D), is the diagonal Σr matrix consisting of the singular values σ1 ≥ · · · ≥ σr of

X̂, so we can express the matrix Ur consisting of the first r columns uk of U in terms of the
matrix Vr consisting of the first r columns vk of V (1 ≤ k ≤ r) as

Ur = X̂>VrΣ
−1
r .

Furthermore, σ2
1 ≥ · · · ≥ σ2

r are the nonzero eigenvalues of K̂ = X̂X̂>, and the columns of

Vr are corresponding unit eigenvectors of K̂. From

Ur = X̂>VrΣ
−1
r

the kth column uk of Ur (which is a unit eigenvector of X̂>X̂ associated with the eigenvalue
σ2
k) is given by

uk =
n∑
i=1

σ−1
k (vk)iX̂

>
i =

n∑
i=1

σ−1
k (vk)iϕ̂(xi), 1 ≤ k ≤ r,

so the projection of ϕ̂(x) onto uk is given by

〈ϕ̂(x), uk〉 =

〈
ϕ̂(x),

n∑
i=1

σ−1
k (vk)iϕ̂(xi)

〉

=
n∑
i=1

σ−1
k (vk)i

〈
ϕ̂(x), ϕ̂(xi)

〉
=

n∑
i=1

σ−1
k (vk)iκ̂(x, xi).

Therefore, the jth component of the principal component Yk in the principal direction uk is
given by

(Yk)j = 〈Xj − µ, uk〉 =
n∑
i=1

σ−1
k (vk)iκ̂(xj, xi) =

n∑
i=1

σ−1
k (vk)iK̂ij.

The generalization of kernel PCA to a general embedding ϕ : X → F of X in a (real)
feature space (F, 〈−,−〉) (where F is not restricted to be equal to Rd) with the kernel matrix
K given by

Kij = 〈ϕ(xi), ϕ(xj)〉,

goes as follows.
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• Let r be the rank of K̂, where

K̂ = K− 1

n
11>K− 1

n
K11> +

1

n2
(1>K1)11>,

let σ2
1 ≥ · · · ≥ σ2

r be the nonzero eigenvalues of K̂, and let v1, . . . , vr be corresponding
unit eigenvectors. The notation

αk = σ−1
k vk

is often used, where the αk are called the dual variables .

• The column vector Yk (1 ≤ k ≤ r) defined by

Yk =

(
n∑
i=1

(αk)iK̂ij

)n

j=1

is called the kth kernel principal component (for short kth kernel PCA) of the data set

S = {x1, . . . , xn} in the direction uk =
∑n

i=1 σ
−1
k (vk)iX̂

>
i (even though the matrix X̂

is not known).

17.5 Summary

The main concepts and results of this chapter are listed below:

• Feature map, feature embedding, feature space.

• Kernel function.

• Positive definite kernel, real positive definite kernel.

• Gram matrix.

• Hadamard product, Schur product.

• Gaussian kernel.

• Reproducing kernel Hilbert space (RKHS).

• Reproducing property.

• Intersection kernel, union complement kernel, agreement kernel.

• Kernel PCA.

• k-th kernel PCA.
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17.6 Problems

Problem 17.1. Referring back to Example 17.3, prove that if ϕ1 : X → Rn1 and ϕ2 : X →
Rn2 are two feature maps and if κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 and κ2(x, y) = 〈ϕ2(x), ϕ2(y)〉 are
the corresponding kernel functions, then the map defined by

κ(x, y) = κ1(x, y)κ2(x, y)

is a kernel function, for the feature space Rn1 × Rn2 and the feature map

ϕ(x)(i,j) = (ϕ1(x))i(ϕ2(x))j, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Problem 17.2. Referring back to Example 17.3, prove that the feature embedding ϕ : X →
R(n+m−1

m ) given by

ϕ(i1,...,in)(x) =

(
m

i1 · · · in

)1/2

(ϕ1(x))i11 (ϕ1(x))i21 · · · (ϕ1(x))in1 , i1 + i2 + · · ·+ in = m, ij ∈ N,

where the n-tuples (i1, . . . , in) are ordered lexicographically, defines the kernel function κ
given by κ(x, y) = (κ1(x, y))m.

Problem 17.3. In Example 17.6, prove that for any two subsets A1 and A2 of D,

〈ϕ(A1), ϕ(A2)〉 = 2|A1∩A2|,

the number of common subsets of A1 and A2.

Problem 17.4. Prove that the pointwise limit of positive definite kernels is also a positive
definite kernel.

Problem 17.5. Prove that if κ1 is a positive definite kernel, then

κ(x, y) = e−
κ1(x,x)+κ1(y,y)−2κ1(x,y)

2σ2

is a positive definite kernel.



590 CHAPTER 17. POSITIVE DEFINITE KERNELS



Chapter 18

Soft Margin Support Vector Machines

In Sections 14.5 and 14.6 we considered the problem of separating two nonempty disjoint
finite sets of p blue points {ui}pi=1 and q red points {vj}qj=1 in Rn. The goal is to find a

hyperplane H of equation w>x − b = 0 (where w ∈ Rn is a nonzero vector and b ∈ R),
such that all the blue points ui are in one of the two open half-spaces determined by H, and
all the red points vj are in the other open half-space determined by H; see Figure 18.1.

w
   x - b = 0

u

u
u

u

1

2

3

p

v

v

v

v

v1

2

3

4

T

w    x - b = 0
T

up
u3

u1

u2

v
1

q

qv

v
2

v3

Figure 18.1: Two examples of the SVM separation problem. The left figure is SVM in R2,
while the right figure is SVM in R3.

SVM picks a hyperplane which maximizes the minimum distance from these points to the
hyperplane.

In this chapter we return to the problem of separating two disjoint sets of points, {ui}pi=1

and {vj}qj=1, but this time we do not assume that these two sets are separable. To cope with
nonseparability, we allow points to invade the safety zone around the separating hyperplane,
and even points on the wrong side of the hyperplane. Such a method is called soft margin
support vector machine. We discuss variations of this method, including ν-SV classification.

591
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In each case we present a careful derivation of the dual.

If the sets of points {u1, . . . , up} and {v1, . . . , vq} are not linearly separable (with ui, vj ∈
Rn), we can use a trick from linear programming which is to introduce nonnegative “slack
variables” ε = (ε1, . . . , εp) ∈ Rp and ξ = (ξ1, . . . , ξq) ∈ Rq to relax the “hard” constraints

w>ui − b ≥ δ i = 1, . . . , p

−w>vj + b ≥ δ j = 1, . . . , q

of Problem (SVMh1) from Section 14.5 to the “soft” constraints

w>ui − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

−w>vj + b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q.

Recall that w ∈ Rn and b, δ ∈ R.

If εi > 0, the point ui may be misclassified, in the sense that it can belong to the margin
(the slab), or even to the wrong half-space classifying the negative (red) points. See Figures
18.5 (2) and (3). Similarly, if ξj > 0, the point vj may be misclassified, in the sense that it
can belong to the margin (the slab), or even to the wrong half-space classifying the positive
(blue) points. We can think of εi as a measure of how much the constraint w>ui − b ≥ δ
is violated, and similarly of ξj as a measure of how much the constraint −w>vj + b ≥ δ is
violated. If ε = 0 and ξ = 0, then we recover the original constraints. By making ε and ξ
large enough, these constraints can always be satisfied. We add the constraint w>w ≤ 1 and
we minimize −δ.

If instead of the constraints of Problem (SVMh1) we use the hard constraints

w>ui − b ≥ 1 i = 1, . . . , p

−w>vj + b ≥ 1 j = 1, . . . , q

of Problem (SVMh2) (see Example 14.6), then we relax to the soft constraints

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

−w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

In this case there is no constraint on w, but we minimize (1/2)w>w.

Ideally we would like to find a separating hyperplane that minimizes the number of
misclassified points , which means that the variables εi and ξj should be as small as possible,
but there is a trade-off in maximizing the margin (the thickness of the slab), and minimizing
the number of misclassified points. This is reflected in the choice of the objective function,
and there are several options, depending on whether we minimize a linear function of the
variables εi and ξj, or a quadratic functions of these variables, or whether we include the term
(1/2)b2 in the objective function. These methods are known as support vector classification
algorithms (for short SVC algorithms).
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SVC algorithms seek an “optimal” separating hyperplane H of equation w>x− b = 0. If
some new data x ∈ Rn comes in, we can classify it by determining in which of the two half
spaces determined by the hyperplane H they belong by computing the sign of the quantity
w>x− b. The function sgn: R→ {−1, 1} is given by

sgn(x) =

{
+1 if x ≥ 0

−1 if x < 0.

Then we define the (binary) classification function associated with the hyperplane H of
equation w>x− b = 0 as

f(x) = sgn(w>x− b).

Remarkably, all the known optimization problems for finding this hyperplane share the
property that the weight vector w and the constant b are given by expressions that only
involves inner products of the input data points ui and vj, and so does the classification
function

f(x) = sgn(w>x− b).
This is a key fact that allows a far reaching generalization of the support vector machine

using the method of kernels .

The method of kernels consists in assuming that the input space Rn is embedded in
a larger (possibly infinite dimensional) Euclidean space F (with an inner product 〈−,−〉)
usually called a feature space, using a function

ϕ : Rn → F

called a feature map. The function κ : Rn × Rn → R given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉

is the kernel function associated with the embedding ϕ; see Chapter 17. The idea is that
the feature map ϕ “unwinds” the input data, making it somehow more linear in the higher
dimensional space F . Now even if we don’t know what the feature space F is and what the
embedding map ϕ is, we can pretend to solve our separation problem in F for the embedded
data points ϕ(ui) and ϕ(vj). Thus we seek a hyperplane H of equation

〈w, ζ〉 − b = 0, ζ ∈ F,

in the feature space F , to attempt to separate the points ϕ(ui) and the points ϕ(vj). As we
said, it turns out that w and b are given by expression involving only the inner products
κ(ui, uj) = 〈ϕ(ui), ϕ(uj)〉, κ(ui, vj) = 〈ϕ(ui), ϕ(vj)〉, and κ(vi, vj) = 〈ϕ(vi), ϕ(vj)〉, which
form the symmetric (p+ q)× (p+ q) matrix K (a kernel matrix) given by

Kij =


κ(ui, uj) 1 ≤ i ≤ p, 1 ≤ j ≤ q

−κ(ui, vj−p) 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q

−κ(vi−p, uj) p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ p

κ(vi−p, vj−q) p+ 1 ≤ i ≤ p+ q, p+ 1 ≤ j ≤ p+ q.
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For example, if p = 2 and q = 3, we have the matrix

K =


κ(u1, u1) κ(u1, u2) −κ(u1, v1) −κ(u1, v2) −κ(u1, v3)
κ(u2, u1) κ(u2, u2) −κ(u2, v1) −κ(u2, v2) −κ(u2, v3)
−κ(v1, u1) −κ(v1, u2) κ(v1, v1) κ(v1, v2) κ(v1, v3)
−κ(v2, u1) −κ(v2, u2) κ(v2, v1) κ(v2, v2) κ(v2, v3)
−κ(v3, u1) −κ(v3, u2) κ(v3, v1) κ(v3, v2) κ(v3, v3)

 .

Then the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

for points in the original data space Rn is also expressed solely in terms of the matrix K and
the inner products κ(ui, x) = 〈ϕ(ui), ϕ(x)〉 and κ(vj, x) = 〈ϕ(vj), ϕ(x)〉. As a consequence,
in the original data space Rn, the hypersurface

S = {x ∈ Rn | 〈w,ϕ(x)〉 − b = 0}

separates the data points ui and vj, but it is not an affine subspace of Rn. The classification
function f tells us on which “side” of S is a new data point x ∈ Rn. Thus, we managed
to separate the data points ui and vj that are not separable by an affine hyperplane, by a
nonaffine hypersurface S, by assuming that an embdedding ϕ : Rn → F exists, even though
we don’t know what it is, but having access to F through the kernel function κ : Rn×Rn → R
given by the inner products κ(x, y) = 〈ϕ(x), ϕ(y)〉.

In practice the art of using the kernel method is to choose the right kernel (as the knight
says in Indiana Jones, to “choose wisely.”).

The method of kernels is very flexible. It also applies to the soft margin versions of
SVM, but also to regression problems, to principal component analysis (PCA), and to other
problems arising in machine learning.

We discussed the method of kernels in Chapter 17. Other comprehensive presentations
of the method of kernels are found in Schölkopf and Smola [64] and Shawe–Taylor and
Christianini [74]. See also Bishop [15].

We first consider the soft margin SVM arising from Problem (SVMh1).

18.1 Soft Margin Support Vector Machines; (SVMs1)

In this section we derive the dual function G associated with the following version of the
soft margin SVM coming from Problem (SVMh1), where the maximization of the margin δ
has been replaced by the minimization of −δ, and where we added a “regularizing term”

K
(∑p

i=1 εi +
∑q

j=1 ξj

)
whose purpose is to make ε ∈ Rp and ξ ∈ Rq sparse (that is, try to

make εi and ξj have as many zeros as possible), where K > 0 is a fixed constant that can be
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adjusted to determine the influence of this regularizing term. If the primal problem (SVMs1)
has an optimal solution (w, δ, b, ε, ξ), we attempt to use the dual function G to obtain it, but
we will see that with this particular formulation of the problem, the constraint w>w ≤ 1
causes troubles even though it is convex.

Soft margin SVM (SVMs1):

minimize − δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
subject to

w>ui − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q

w>w ≤ 1.

It is customary to write ` = p + q. Figure 18.2 illustrates the correct margin half space
associated with w>x− b− δ = 0 while Figure 18.3 illustrates the correct margin half space
associated with w>x − b + δ = 0. Ideally, all the points should be contained in one of the
two correct shifted margin regions described by affine constraints w>ui − b ≥ δ − εi, or
−w>vj + b ≥ δ − ξj.

 w  x - b - δ = 0

T

w   x - b - δ < 0T

T T

 w  x - b + δ = 0

T

Incorrect side of Blue Margin

w   x - b - δ > 0

Correct side of Blue Margin

 w  x - b - δ = 0

separting hyperplane

 w  x - b = 0

T

Figure 18.2: The blue margin half space associated with w>x− b− δ = 0.

For this problem, the primal problem may have an optimal solution (w, δ, b, ε, ξ) with
‖w‖ = 1 and δ > 0, but if the sets of points are not linearly separable then an optimal
solution of the dual may not yield w.
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 w  x - b - δ = 0

T

T

0 = w  x - bT

T
T w  x -b + δ = 0

Correct side of Red Margin 

w   x -b + δ > 0

w   x -b + δ < 0

Incorrect side of Red Margin

Figure 18.3: The red margin half space associated with w>x− b+ δ = 0.

The objective function of our problem is affine and the only nonaffine constraint w>w ≤ 1
is convex. This constraint is qualified because for any w 6= 0 such that w>w < 1 and for
any δ > 0 and any b we can pick ε and ξ large enough so that the constraints are satisfied.
Consequently, by Theorem 14.17(2) if the primal problem (SVMs1) has an optimal solution,
then the dual problem has a solution too, and the duality gap is zero.

Unfortunately this does not imply that an optimal solution of the dual yields an optimal
solution of the primal because the hypotheses of Theorem 14.17(1) fail to hold. In general,
there may not be a unique vector (w, ε, ξ, b, δ) such that

inf
w,ε,ξ,b,δ

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = G(λ, µ, α, β, γ).

If the sets {ui} and {vj} are not linearly separable, then the dual problem may have a
solution for which γ = 0,

p∑
i=1

λi =

q∑
j=1

µj =
1

2
,

and
p∑
i=1

λiui =

q∑
j=1

µjvj,

so that the dual function G(λ, µ, α, β, γ), which is a partial function, is defined and has the
value G(λ, µ, α, β, 0) = 0. Such a pair (λ, µ) corresponds to the coefficients of two convex
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combinations
p∑
i=1

2λiui =

q∑
j=1

2µjvj

which correspond to the same point in the (nonempty) intersection of the convex hulls
conv(u1, . . . , up) and conv(v1, . . . , vq). It turns out that the only connection between w
and the dual function is the equation

2γw =

p∑
i=1

λiui −
q∑
j=1

µjvj,

and when γ = 0 this is equation is 0 = 0, so the dual problem is useless to determine w.
This point seems to have been missed in the literature (for example, in Shawe–Taylor and
Christianini [74], Section 7.2). What the dual problem does show is that δ ≥ 0. However, if
γ 6= 0, then w is determined by any solution (λ, µ) of the dual.

It still remains to compute δ and b, which can be done under a mild hypothesis that we
call the Standard Margin Hypothesis.

Let λ ∈ Rp
+ be the Lagrange multipliers associated with the inequalities w>ui−b ≥ δ−εi,

let µ ∈ Rq
+ be the Lagrange multipliers are associated with the inequalities−w>vj+b ≥ δ−ξj,

let α ∈ Rp
+ be the Lagrange multipliers associated with the inequalities εi ≥ 0, β ∈ Rq

+ be
the Lagrange multipliers associated with the inequalities ξj ≥ 0, and let γ ∈ R+ be the
Lagrange multiplier associated with the inequality w>w ≤ 1.

The linear constraints are given by the 2(p + q)× (n + p + q + 2) matrix given in block
form by

C =

 X> −Ip+q
1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q

 ,

where X is the n× (p+ q) matrix

X =
(
−u1 · · · −up v1 · · · vq

)
,

and the linear constraints are expressed by

 X> −Ip+q
1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q



w
ε
ξ
b
δ

 ≤
(

0p+q
0p+q

)
.



598 CHAPTER 18. SOFT MARGIN SUPPORT VECTOR MACHINES

More explicitly, C is the following matrix:

C =



−u>1 −1 · · · 0 0 · · · 0 1 1
...

...
. . .

...
...

. . .
...

...
...

−u>p 0 · · · −1 0 · · · 0 1 1
v>1 0 · · · 0 −1 · · · 0 −1 1
...

...
. . .

...
...

. . .
...

...
...

v>q 0 · · · 0 0 · · · −1 −1 1
0 −1 · · · 0 0 · · · 0 0 0
...

...
. . .

...
...

. . .
...

...
...

0 0 · · · −1 0 · · · 0 0 0
0 0 · · · 0 −1 · · · 0 0 0
...

...
. . .

...
...

. . .
...

...
...

0 0 · · · 0 0 · · · −1 0 0



.

The objective function is given by

J(w, ε, ξ, b, δ) = −δ +K
(
ε> ξ>

)
1p+q.

The Lagrangian L(w, ε, ξ, b, δ, λ, µ, α, β, γ) with λ, α ∈ Rp
+, µ, β ∈ Rq

+, and γ ∈ R+ is given
by

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = −δ +K
(
ε> ξ>

)
1p+q

+
(
w>

(
ε> ξ>

)
b δ

)
C>


λ
µ
α
β

+ γ(w>w − 1).

Since

(
w>

(
ε> ξ>

)
b δ

)
C>


λ
µ
α
β

 = w>X

(
λ
µ

)
− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ)

+ δ(1>p λ+ 1>q µ),

the Lagrangian can be written as

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = −δ +K(ε>1p + ξ>1q) + w>X

(
λ
µ

)
+ γ(w>w − 1)

− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ) + δ(1>p λ+ 1>q µ)

= (1>p λ+ 1>q µ− 1)δ + w>X

(
λ
µ

)
+ γ(w>w − 1)

+ ε>(K1p − (λ+ α)) + ξ>(K1q − (µ+ β)) + b(1>p λ− 1>q µ).
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To find the dual function G(λ, µ, α, β, γ) we minimize L(w, ε, ξ, b, δ, λ, µ, α, β, γ) with
respect to w, ε, ξ, b, and δ. Since the Lagrangian is convex and (w, ε, ξ, b, δ) ∈ Rn×Rp×Rq×
R× R, a convex open set, by Theorem 4.13, the Lagrangian has a minimum in (w, ε, ξ, b, δ)
iff ∇Lw,ε,ξ,b,δ = 0, so we compute the gradient with respect to w, ε, ξ, b, δ, and we get

∇Lw,ε,ξ,b,δ =


X

(
λ
µ

)
+ 2γw

K1p − (λ+ α)
K1q − (µ+ β)

1>p λ− 1>q µ
1>p λ+ 1>q µ− 1

 .

By setting ∇Lw,ε,ξ,b,δ = 0 we get the equations

2γw = −X
(
λ
µ

)
λ+ α = K1p (∗w)

µ+ β = K1q

1>p λ = 1>q µ

1>p λ+ 1>q µ = 1.

The second and third equations are equivalent to the inequalities

0 ≤ λi, µj ≤ K, i = 1, . . . , p, j = 1, . . . , q,

often called box constraints , and the fourth and fifth equations yield

1>p λ = 1>q µ =
1

2
.

First let us consider the singular case γ = 0. In this case, (∗w) implies that

X

(
λ
µ

)
= 0,

and the term γ(w>w − 1) is missing from the Lagrangian, which in view of the other four
equations above reduces to

L(w, ε, ξ, b, δ, λ, µ, α, β, 0) = w>X

(
λ
µ

)
= 0.

In summary, we proved that if γ = 0, then

G(λ, µ, α, β, 0) =


0 if


∑p

i=1 λi =
∑q

j=1 µj = 1
2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q

−∞ otherwise

and
∑p

i=1 λiui −
∑q

j=1 µjvj = 0.



600 CHAPTER 18. SOFT MARGIN SUPPORT VECTOR MACHINES

Geometrically, (λ, µ) corresponds to the coefficients of two convex combinations

p∑
i=1

2λiui =

q∑
j=1

2µjvj

which correspond to the same point in the intersection of the convex hulls conv(u1, . . . , up)
and conv(v1, . . . , vq) iff the sets {ui} and {vj} are not linearly separable. If the sets {ui} and
{vj} are linearly separable, then the convex hulls conv(u1, . . . , up) and conv(v1, . . . , vq) are
disjoint, which implies that γ > 0.

Let us now assume that γ > 0. Plugging back w from equation (∗w) into the Lagrangian,
after simplifications we get

G(λ, µ, α, β, γ) = − 1

2γ

(
λ> µ>

)
X>X

(
λ
µ

)
+

γ

4γ2

(
λ> µ>

)
X>X

(
λ
µ

)
− γ

= − 1

4γ

(
λ> µ>

)
X>X

(
λ
µ

)
− γ,

so if γ > 0 the dual function is independent of α, β and is given by

G(λ, µ, α, β, γ) =


− 1

4γ

(
λ> µ>

)
X>X

(
λ

µ

)
− γ if


∑p

i=1 λi =
∑q

j=1 µj = 1
2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q

−∞ otherwise.

Since X>X is symmetric positive semidefinite and γ ≥ 0, obviously

G(λ, µ, α, β, γ) ≤ 0

for all γ > 0.

The dual program is given by

maximize − 1

4γ

(
λ> µ>

)
X>X

(
λ
µ

)
− γ if γ > 0

0 if γ = 0

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = 1

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.
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Also, if γ = 0, then X

(
λ
µ

)
= 0.

Maximizing with respect to γ > 0 by setting ∂
∂γ
G(λ, µ, α, β, γ) = 0 yields

γ2 =
1

4

(
λ> µ>

)
X>X

(
λ
µ

)
,

so we obtain

G(λ, µ) = −
((
λ> µ>

)
X>X

(
λ
µ

))1/2

.

Finally, since G(λ, µ) = 0 and X

(
λ
µ

)
= 0 if γ = 0, the dual program is equivalent to

the following minimization program:

Dual of Soft margin SVM (SVMs1):

minimize
(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = 1

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

Observe that the constraints imply that K must be chosen so that

K ≥ max

{
1

2p
,

1

2q

}
.

If (w, δ, b, ε, ξ) is an optimal solution of Problem (SVMs1), then the complementary slack-
ness conditions yield a classification of the points ui and vj in terms of the values of λ and
µ. Indeed, we have εiαi = 0 for i = 1, . . . , p and ξjβj = 0 for j = 1, . . . , q. Also, if λi > 0,
then corresponding constraint is active, and similarly if µj > 0. Since λi +αi = K, it follows
that εiαi = 0 iff εi(K − λi) = 0, and since µj + βj = K, we have ξjβj = 0 iff ξj(K − µj) = 0.
Thus if εi > 0, then λi = K, and if ξj > 0, then µj = K. Consequently, if λi < K, then
εi = 0 and ui is correctly classified, and similarly if µj < K, then ξj = 0 and vj is correctly
classified. We have the following classification:
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(1) If 0 < λi < K, then εi = 0 and the i-th inequality is active, so

w>ui − b− δ = 0.

This means that ui is on the blue margin (the hyperplane Hw,b+δ of equation w>x =
b+ δ) and is classified correctly.

Similarly, if 0 < µj < K, then ξj = 0 and

w>vj − b+ δ = 0,

so vj is on the red margin (the hyperplane Hw,b−δ of equation w>x = b − δ) and is
classified correctly. See Figure 18.4.

  w  x  b
T

   u   
i

0 <      < Kλ i

 

=
 w  x  b

T
v

  
0 <      < Kμ

Case (1)

w   x  - b - δ = 0T

w   x -b - δ = 0T

w   x -b + δ = 0T
w   x -b +δ = 0T

=

j

j

Figure 18.4: When 0 < λi < K, ui is contained within the blue margin hyperplane. When
0 < µj < K, vj is contained within the red margin hyperplane.

(2) If λi = K, then the i-th inequality is active, so

w>ui − b− δ = −εi.

If εi = 0, then the point ui is on the blue margin. If εi > 0, then ui is within the
open half space bounded by the blue margin hyperplane Hw,b+δ and containing the
separating hyperplane Hw,b; if εi ≤ δ, then ui is classified correctly, and if εi > δ, then
ui is misclassified (ui lies on the wrong side of the separating hyperplane, the red side).
See Figure 18.5.

Similarly, if µj = K, then
w>vj − b+ δ = ξj.

If ξj = 0, then the point vj is on the red margin. If ξj > 0, then vj is within the
open half space bounded by the red margin hyperplane Hw,b−δ and containing the
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Misclassifiedjvξ > δ

Є > δi
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Figure 18.5: Figure (1) illustrates the case of ui contained in the margin and occurs when
εi = 0. Figure (1) also illustrates the case of vj contained in the margin when ξj = 0. The
left illustration of Figure (2) is when ui is inside the margin yet still on the correct side of
the separating hyperplane w>x − b = 0. Similarly, vj is inside the margin on the correct
side of the separating hyperplane. The right illustration depicts ui and vj on the separating
hyperplane. Figure (3) illustrations a misclassification of ui and vj.

separating hyperplane Hw,b; if ξj ≤ δ, then vj is classified correctly, and if ξj > δ, then
vj is misclassified (vj lies on the wrong side of the separating hyperplane, the blue
side). See Figure 18.5.

(3) If λi = 0, then εi = 0 and the i-th inequality may or may not be active, so

w>ui − b− δ ≥ 0.

Thus ui is in the closed half space on the blue side bounded by the blue margin
hyperplane Hw,b+δ (of course, classified correctly).

Similarly, if µj = 0, then
w>vj − b+ δ ≤ 0

and vj is in the closed half space on the red side bounded by the red margin hyperplane
Hw,b−δ (of course, classified correctly). See Figure 18.6.



604 CHAPTER 18. SOFT MARGIN SUPPORT VECTOR MACHINES
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Figure 18.6: When λi = 0, ui is correctly classified outside the blue margin. When µj = 0,
vj is correctly classified outside the red margin.

Definition 18.1. The vectors ui on the blue margin Hw,b+δ and the vectors vj on the red
margin Hw,b−δ are called support vectors . Support vectors correspond to vectors ui for which
w>ui − b− δ = 0 (which implies εi = 0), and vectors vj for which w>vj − b + δ = 0 (which
implies ξj = 0). Support vectors ui such that 0 < λi < K and support vectors vj such that
0 < µj < K are support vectors of type 1 . Support vectors of type 1 play a special role so
we denote the sets of indices associated with them by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < K}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < K}.

We denote their cardinalities by numsvl1 = |Iλ| and numsvm1 = |Iµ|. Support vectors ui
such that λi = K and support vectors vj such that µj = K are support vectors of type 2 .
Those support vectors ui such that λi = 0 and those support vectors vj such that µj = 0 are
called exceptional support vectors .

The vectors ui for which λi = K and the vectors vj for which µj = K are said to fail the
margin. The sets of indices associated with the vectors failing the margin are denoted by

Kλ = {i ∈ {1, . . . , p} | λi = K}
Kµ = {j ∈ {1, . . . , q} | µj = K}.

We denote their cardinalities by pf = |Kλ| and qf = |Kµ|.
Vectors ui such that λi > 0 and vectors vj such that µj > 0 are said to have margin at

most δ. The sets of indices associated with these vectors are denoted by

Iλ>0 = {i ∈ {1, . . . , p} | λi > 0}
Iµ>0 = {j ∈ {1, . . . , q} | µj > 0}.

We denote their cardinalities by pm = |Iλ>0| and qm = |Iµ>0|.
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Obviously, Iλ>0 = Iλ ∪ Kλ and Iµ>0 = Iµ ∪ Kµ, so pf ≤ pm and qf ≤ qm. Intuitively a
blue point that fails the margin is on the wrong side of the blue margin and a red point that
fails the margin is on the wrong side of the red margin. The points in Iλ>0 not in Kλ are on
the blue margin and the points in Iµ>0 not in Kµ are on the red margin. There are p− pm
points ui classified correctly on the blue side and outside the δ-slab and there are q − qm
points vj classified correctly on the red side and outside the δ-slab.

It is easy to show that we have the following bounds on K:

max

{
1

2pm
,

1

2qm

}
≤ K ≤ min

{
1

2pf
,

1

2qf

}
.

These inequalities restrict the choice of K quite heavily.

It will also be useful to understand how points are classified in terms of εi (or ξj).

(1) If εi > 0, then by complementary slackness λi = K, so the ith equation is active and
by (2) above,

w>ui − b− δ = −εi.
Since εi > 0, the point ui is within the open half space bounded by the blue margin
hyperplane Hw,b+δ and containing the separating hyperplane Hw,b; if εi ≤ δ, then ui is
classified correctly, and if εi > δ, then ui is misclassified.

Similarly, if ξj > 0, then vj is within the open half space bounded by the red margin
hyperplane Hw,b−δ and containing the separating hyperplane Hw,b; if ξj ≤ δ, then vj is
classified correctly, and if ξj > δ, then vj is misclassified.

(2) If εi = 0, then the point ui is correctly classified. If λi = 0, then by (3) above, ui is in
the closed half space on the blue side bounded by the blue margin hyperplane Hw,b+δ.
If λi > 0, then by (1) and (2) above, the point ui is on the blue margin.

Similarly, if ξj = 0, then the point vj is correctly classified. If µj = 0, then vj is in the
closed half space on the red side bounded by the red margin hyperplane Hw,b−δ, and if
µj > 0, then the point vj is on the red margin.

It shown in Section 18.2 how the dual program is solved using ADMM from Section 16.6.
If the primal problem is solvable, this yields solutions for λ and µ.

If the optimal value is 0, then γ = 0 and X

(
λ
µ

)
= 0, so in this case it is not possible

to determine w. However, if the optimal value is > 0, then once a solution for λ and µ is
obtained, by (∗w), we have

γ =
1

2

((
λ> µ>

)
X>X

(
λ
µ

))1/2

w =
1

2γ

( p∑
i=1

λiui −
q∑
j=1

µjvj

)
,
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so we get

w =

p∑
i=1

λiui −
q∑
j=1

µjvj((
λ> µ>

)
X>X

(
λ
µ

))1/2
,

which is the result of making
∑p

i=1 λiui −
∑q

j=1 µjvj a unit vector, since

X =
(
−u1 · · · −up v1 · · · vq

)
.

It remains to find b and δ, which are not given by the dual program and for this we use
the complementary slackness conditions.

The equations
p∑
i=1

λi =

q∑
j=1

µj =
1

2

imply that there is some i0 such that λi0 > 0 and some j0 such that µj0 > 0, but a priori,
nothing prevents the situation where λi = K for all nonzero λi or µj = K for all nonzero
µj. If this happens, we can rerun the optimization method with a larger value of K. If the
following mild hypothesis holds, then b and δ can be found.

Standard Margin Hypothesis for (SVMs1). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0 is a
support vector of type 1 on the blue margin, and some vj0 is a support of type 1 on the red
margin.

If the Standard Margin Hypothesis for (SVMs1) holds, then εi0 = 0 and µj0 = 0, and
then we have the active equations

w>ui0 − b = δ and − w>vj0 + b = δ,

and we obtain the values of b and δ as

b =
1

2
(w>ui0 + w>vj0)

δ =
1

2
(w>ui0 − w>vj0).

Due to numerical instability, when writing a computer program it is preferable to compute
the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < K}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < K}.
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Then it is easy to see that we can compute b and δ using the following averaging formulae:

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

δ = w>

(∑
i∈Iλ

ui

)
/|Iλ| −

(∑
j∈Iµ

vj

)
/|Iµ|

 /2.

As we said earlier, the hypotheses of Theorem 14.17(2) hold, so if the primal problem
(SVMs1) has an optimal solution with w 6= 0, then the dual problem has a solution too, and
the duality gap is zero. Therefore, for optimal solutions we have

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = G(λ, µ, α, β, γ),

which means that

−δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −

((
λ> µ>

)
X>X

(
λ
µ

))1/2

,

so we get

δ = K

( p∑
i=1

εi +

q∑
j=1

ξj

)
+

((
λ> µ>

)
X>X

(
λ
µ

))1/2

.

Therefore, we confirm that δ ≥ 0.

It is important to note that the objective function of the dual program

−G(λ, µ) =

((
λ> µ>

)
X>X

(
λ
µ

))1/2

only involves the inner products of the ui and the vj through the matrix X>X, and similarly,
the equation of the optimal hyperplane can be written as

p∑
i=1

λiu
>
i x−

q∑
j=1

µjv
>
j x−

((
λ> µ>

)
X>X

(
λ
µ

))1/2

b = 0,

an expression that only involves inner products of x with the ui and the vj and inner products
of the ui and the vj.

As explained at the beginning of this chapter, this is a key fact that allows a generalization
of the support vector machine using the method of kernels . We can define the following
“kernelized” version of Problem (SVMs1):
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Soft margin kernel SVM (SVMs1):

minimize − δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
subject to

〈w,ϕ(ui)〉 − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q

〈w,w〉 ≤ 1.

Tracing through the computation that led us to the dual program with ui replaced by
ϕ(ui) and vj replaced by ϕ(vj), we find the following version of the dual program:

Dual of Soft margin kernel SVM (SVMs1):

minimize
(
λ> µ>

)
K

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = 1

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

where K is the `× ` kernel symmetric matrix (with ` = p+ q) given by

Kij =


κ(ui, uj) 1 ≤ i ≤ p, 1 ≤ j ≤ q

−κ(ui, vj−p) 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q

−κ(vi−p, uj) p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ p

κ(vi−p, vj−q) p+ 1 ≤ i ≤ p+ q, p+ 1 ≤ j ≤ p+ q.

We also find that

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj)((
λ> µ>

)
K

(
λ
µ

))1/2
.
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Under the Standard Margin Hypothesis, there is some index i0 such that 0 < λi0 < K
and there is some index j0 such that 0 < µj0 < K, and we obtain the value of b and δ as

b =
1

2
(〈w,ϕ(ui0〉+ 〈w,ϕ(vj0)〉)

δ =
1

2
(〈w,ϕ(ui0)〉 − 〈w,ϕ(vj0)〉).

Using the above value for w, we obtain

b =

∑p
i=1 λi(κ(ui, ui0) + κ(ui, vj0))−

∑q
j=1 µj(κ(vj, ui0) + κ(vj, vj0))

2

((
λ> µ>

)
K

(
λ
µ

))1/2
.

It follows that the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(2κ(ui, x)− κ(ui, ui0)− κ(ui, vj0))

−
q∑
j=1

µj(2κ(vj, x)− κ(vj, ui0)− κ(vj, vj0))

)
,

which is solely expressed in terms of the kernel κ.

Kernel methods for SVM are discussed in Schölkopf and Smola [64] and Shawe–Taylor
and Christianini [74].

18.2 Solving SVM (SVMs1) Using ADMM

In order to solve (SVMs1) using ADMM we need to write the matrix corresponding to the
constraints in equational form,

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = 1

λi + αi = K, i = 1, . . . , p

µj + βj = K, j = 1, . . . , q.
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This is the (p+ q + 2)× 2(p+ q) matrix A given by

A =


1>p −1>q 0>p 0>q

1>p 1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

 .

We leave it as an exercise to prove that A has rank p+ q + 2. The right-hand side is

c =

 0
1

K1p+q

 .

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = 2X>X, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.

Since there are 2(p+ q) Lagrange multipliers (λ, µ, α, β), the (p+ q)× (p+ q) matrix X>X
must be augmented with zero’s to make it a 2(p+ q)× 2(p+ q) matrix Pa given by

Pa =

(
X>X 0p+q,p+q

0p+q,p+q 0p+q,p+q

)
,

and similarly q is augmented with zeros as the vector qa = 02(p+q).

Since the constraint w>w ≤ 1 causes troubles, we trade it for a different objective function
in which −δ is replaced by (1/2) ‖w‖2

2. This way we are left with purely affine constraints.
In the next section we discuss a generalization of Problem (SVMh2) obtained by adding a
linear regularizing term.

18.3 Soft Margin Support Vector Machines; (SVMs2)

In this section we consider the generalization of Problem (SVMh2) where we minimize

(1/2)w>w by adding the “regularizing term” K
(∑p

i=1 εi +
∑q

j=1 ξj,
)

for some K > 0.

Recall that the margin δ is given by δ = 1/ ‖w‖.
Soft margin SVM (SVMs2):

minimize
1

2
w>w +K

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.
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This is the classical problem discussed in all books on machine learning or pattern anal-
ysis, for instance Vapnik [81], Bishop [15], and Shawe–Taylor and Christianini [74]. The
trivial solution where all variables are 0 is ruled out because of the presence of the 1 in the
inequalities, but it is not clear that if (w, b, ε, ξ) is an optimal solution, then w 6= 0.

We prove that if the primal problem has an optimal solution (w, ε, ξ, b) with w 6= 0, then
w is determined by any optimal solution (λ, µ) of the dual. We also prove that there is some
i for which λi > 0 and some j for which µj > 0. Under a mild hypothesis that we call the
Standard Margin Hypothesis, b can be found.

Note that this framework is still somewhat sensitive to outliers because the penalty for
misclassification is linear in ε and ξ.

First we write the constraints in matrix form. The 2(p + q)× (n + p + q + 1) matrix C
is written in block form as

C =

 X> −Ip+q
1p
−1q

0p+q,n −Ip+q 0p+q

 ,

where X is the n× (p+ q) matrix

X =
(
−u1 · · · −up v1 · · · vq

)
,

and the constraints are expressed by

 X> −Ip+q
1p
−1q

0p+q,n −Ip+q 0p+q



w
ε
ξ
b

 ≤ (−1p+q
0p+q

)
.

The objective function J(w, ε, ξ, b) is given by

J(w, ε, ξ, b) =
1

2
w>w +K

(
ε> ξ>

)
1p+q.

The Lagrangian L(w, ε, ξ, b, λ, µ, α, β) with λ, α ∈ Rp
+ and with µ, β ∈ Rq

+ is given by

L(w, ε, ξ, b, λ, µ, α, β) =
1

2
w>w +K

(
ε> ξ>

)
1p+q

+
(
w>

(
ε> ξ>

)
b
)
C>


λ
µ
α
β

+
(
1>p+q 0>p+q

)
λ
µ
α
β

 .
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Since

(
w>

(
ε> ξ>

)
b
)
C>


λ
µ
α
β

 =
(
w>

(
ε> ξ>

)
b
) X 0n,p+q

−Ip+q −Ip+q
1>p −1>q 0>p+q



λ
µ
α
β

 ,

we get

(
w>

(
ε> ξ>

)
b
)
C>


λ
µ
α
β

 =
(
w>

(
ε> ξ>

)
b
)


X

(
λ
µ

)
−
(
λ+ α
µ+ β

)
1>p λ− 1>q µ


= w>X

(
λ
µ

)
− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ),

and since

(
1>p+q 0>p+q

)
λ
µ
α
β

 = 1>p+q

(
λ
µ

)
=
(
λ> µ>

)
1p+q,

the Lagrangian can be rewritten as

L(w, ε, ξ, b, λ, µ, α, β) =
1

2
w>w + w>X

(
λ
µ

)
+ ε>(K1p − (λ+ α)) + ξ>(K1q − (µ+ β))

+ b(1>p λ− 1>q µ) +
(
λ> µ>

)
1p+q.

To find the dual function G(λ, µ, α, β) we minimize L(w, ε, ξ, b, λ, µ, α, β) with respect to
w, ε, ξ and b. Since the Lagrangian is convex and (w, ε, ξ, b) ∈ Rn × Rp × Rq × R, a convex
open set, by Theorem 4.13, the Lagrangian has a minimum in (w, ε, ξ, b) iff ∇Lw,ε,ξ,b = 0, so
we compute its gradient with respect to w, ε, ξ and b, and we get

∇Lw,ε,ξ,b =


w +X

(
λ
µ

)
K1p − (λ+ α)
K1q − (µ+ β)

1>p λ− 1>q µ

 .

By setting ∇Lw,ε,ξ,b = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

λ+ α = K1p

µ+ β = K1q

1>p λ = 1>q µ.



18.3. SOFT MARGIN SUPPORT VECTOR MACHINES; (SVMs2) 613

The first and the fourth equation are identical to the Equations (∗1) and (∗2) that we obtained
in Example 14.10. Since λ, µ, α, β ≥ 0, the second and the third equation are equivalent to
the box constraints

0 ≤ λi, µj ≤ K, i = 1, . . . , p, j = 1, . . . , q.

Using the equations that we just derived, after simplifications we get

G(λ, µ, α, β) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q,

which is independent of α and β and is identical to the dual function obtained in (∗4) of
Example 14.10. To be perfectly rigorous,

G(λ, µ) =


−1

2

(
λ> µ>

)
X>X

(
λ

µ

)
+
(
λ> µ>

)
1p+q if


∑p

i=1 λi =
∑q

j=1 µj

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q

−∞ otherwise.

As in Example 14.10, the the dual program can be formulated as

maximize − 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

or equivalently

Dual of Soft margin SVM (SVMs2):

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

If (w, ε, ξ, b) is an optimal solution of Problem (SVMs2), then the complementary slackness
conditions yield a classification of the points ui and vj in terms of the values of λ and µ.
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Indeed, we have εiαi = 0 for i = 1, . . . , p and ξjβj = 0 for j = 1, . . . , q. Also, if λi > 0, then
corresponding constraint is active, and similarly if µj > 0. Since λi +αi = K, it follows that
εiαi = 0 iff εi(K−λi) = 0, and since µj +βj = K, we have ξjβj = 0 iff ξj(K−µj) = 0. Thus
if εi > 0, then λi = K, and if ξj > 0, then µj = K. Consequently, if λi < K, then εi = 0 and
ui is correctly classified, and similarly if µj < K, then ξj = 0 and vj is correctly classified.

We have a classification of the points ui and vj in terms of λ and µ obtained from the
classification given in Section 18.1 by replacing δ with 1. Since it is so similar, it is omitted.
Let us simply recall that the vectors ui on the blue margin and the vectors vj on the red
margin are called support vectors ; these are the vectors ui for which w>ui− b−1 = 0 (which
implies εi = 0), and the vectors vj for which w>vj − b+ 1 = 0 (which implies ξj = 0). Those
support vectors ui such that λi = 0 and those support vectors such that µj = 0 are called
exceptional support vectors .

We also have the following classification of the points ui and vj terms of εi (or ξj) obtained
by replacing δ with 1.

(1) If εi > 0, then by complementary slackness λi = K, so the ith equation is active and
by (2) above,

w>ui − b− 1 = −εi.

Since εi > 0, the point ui is within the open half space bounded by the blue margin
hyperplane Hw,b+1 and containing the separating hyperplane Hw,b; if εi ≤ 1, then ui is
classified correctly, and if εi > 1, then ui is misclassified.

Similarly, if ξj > 0, then vj is within the open half space bounded by the red margin
hyperplane Hw,b−1 and containing the separating hyperplane Hw,b; if ξj ≤ 1, then vj is
classified correctly, and if ξj > 1, then vj is misclassified.

(2) If εi = 0, then the point ui is correctly classified. If λi = 0, then by (3) above, ui is in
the closed half space on the blue side bounded by the blue margin hyperplane Hw,b+η.
If λi > 0, then by (1) and (2) above, the point ui is on the blue margin.

Similarly, if ξj = 0, then the point vj is correctly classified. If µj = 0, then vj is in the
closed half space on the red side bounded by the red margin hyperplane Hw,b−η, and if
µj > 0, then the point vj is on the red margin. See Figure 18.5 (3).

Vectors ui for which λi = K and vectors vj such that ξj = K are said to fail the margin.

It is shown in Section 18.4 how the dual program is solved using ADMM from Section
16.6. If the primal problem is solvable, this yields solutions for λ and µ.

Remark: The hard margin Problem (SVMh2) corresponds to the special case of Problem
(SVMs2) in which ε = 0, ξ = 0, and K = +∞. Indeed, in Problem (SVMh2) the terms
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involving ε and ξ are missing from the Lagrangian and the effect is that the box constraints
are missing; we simply have λi ≥ 0 and µj ≥ 0.

We can use the dual program to solve the primal. Once λ ≥ 0, µ ≥ 0 have been found,
w is given by

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj.

To find b we use the complementary slackness conditions.

If the primal has a solution w 6= 0, then the equation

w =

p∑
i=1

λiui −
q∑
j=1

µjvj

implies that either there is some index i0 such that λi0 > 0 or there is some index j0 such
that µj0 > 0. The constraint

p∑
i=1

λi −
q∑
j=1

µj = 0

implies that there is some index i0 such that λi0 > 0 and there is some index j0 such that
µj0 > 0. However, a priori, nothing prevents the situation where λi = K for all nonzero λi
or µj = K for all nonzero µj. If this happens, we can rerun the optimization method with a
larger value of K. Observe that the equation

p∑
i=1

λi −
q∑
j=1

µj = 0

implies that if there is some index i0 such that 0 < λi0 < K, then there is some index j0

such that 0 < µj0 < K, and vice-versa. If the following mild hypothesis holds, then b can be
found.

Standard Margin Hypothesis for (SVMs2). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0 is a
support vector of type 1 on the blue margin, and some vj0 is a support vector of type 1 on
the red margin.

If the Standard Margin Hypothesis for (SVMs2) holds, then εi0 = 0 and µj0 = 0, and
then we have the active equations

w>ui0 − b = 1 and − w>vj0 + b = 1,

and we obtain

b =
1

2
(w>ui0 + w>vj0).
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Due to numerical instability, when writing a computer program it is preferable to compute
the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < K}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < K}.

Then it is easy to see that we can compute b using the following averaging formula

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2.

Recall that δ = 1/ ‖w‖.

Remark: There is a cheap version of Problem (SVMs2) which consists in dropping the term
(1/2)w>w from the objective function:

Soft margin classifier (SVMs2l):

minimize

p∑
i=1

εi +

q∑
j=1

ξj

subject to

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

The above program is a linear program that minimizes the number of misclassified points
but does not care about enforcing a minimum margin. An example of its use is given in
Boyd and Vandenberghe; see [18], Section 8.6.1.

The “kernelized” version of Problem (SVMs2) is the following:

Soft margin kernel SVM (SVMs2):

minimize
1

2
〈w,w〉+K

(
ε> ξ>

)
1p+q

subject to

〈w,ϕ(ui)〉 − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

Redoing the computation of the dual function, we find that the dual program is given by
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Dual of Soft margin kernel SVM (SVMs2):

minimize
1

2

(
λ> µ>

)
K

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

where K is the ` × ` kernel symmetric matrix (with ` = p + q) given at the end of Section
18.1. We also find that

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj),

so

b =
1

2

( p∑
i=1

λi(κ(ui, ui0) + κ(ui, vj0))−
q∑
j=1

µj(κ(vj, ui0) + κ(vj, vj0))

)
,

and the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(2κ(ui, x)− κ(ui, ui0)− κ(ui, vj0))

−
q∑
j=1

µj(2κ(vj, x)− κ(vj, ui0)− κ(vj, vj0))

)
.

18.4 Solving SVM (SVMs2) Using ADMM

In order to solve (SVMs2) using ADMM we need to write the matrix corresponding to the
constraints in equational form,

p∑
i=1

λi −
q∑
j=1

µj = 0

λi + αi = K, i = 1, . . . , p

µj + βj = K, j = 1, . . . , q.
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This is the (p+ q + 1)× 2(p+ q) matrix A given by

A =


1>p −1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

 .

We leave it as an exercise to prove that A has rank p+ q + 1. The right-hand side is

c =

(
0

K1p+q

)
.

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = X>X, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and

q = −1p+q.

Since there are 2(p+ q) Lagrange multipliers (λ, µ, α, β), the (p+ q)× (p+ q) matrix X>X
must be augmented with zero’s to make it a 2(p+ q)× 2(p+ q) matrix Pa given by

Pa =

(
X>X 0p+q,p+q

0p+q,p+q 0p+q,p+q

)
,

and similarly q is augmented with zeros as the vector

qa =

(
−1p+q
0p+q.

)

18.5 Soft Margin Support Vector Machines; (SVMs2′)

In this section we consider a generalization of Problem (SVMs2) for a version of the soft
margin SVM coming from Problem (SVMh2) by adding an extra degree of freedom, namely
instead of the margin δ = 1/ ‖w‖, we use the margin δ = η/ ‖w‖ where η is some positive
constant that we wish to maximize. To do so, we add a term −Kmη to the objective function

(1/2)w>w as well as the “regularizing term” Ks

(∑p
i=1 εi +

∑q
j=1 ξj

)
whose purpose is to

make ε and ξ sparse, where Km > 0 (m refers to margin) and Ks > 0 (s refers to sparse)
are fixed constants that can be adjusted to determine the influence of η and the regularizing
term.
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Soft margin SVM (SVMs2′):

minimize
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q

η ≥ 0.

This version of the SVM problem was first discussed in Schölkopf, Smola, Williamson,
and Bartlett [66] under the name of ν-SVC (or ν-SVM ), and also used in Schölkopf, Platt,
Shawe–Taylor, and Smola [65]. The ν-SVC method is also presented in Schölkopf and Smola
[64] (which contains much more). The difference between the ν-SVC method and the method
presented in Section 18.3, sometimes called the C-SVM method, was thoroughly investigated
by Chan and Lin [22].

For this problem it is no longer clear that if (w, η, b, ε, ξ) is an optimal solution, then
w 6= 0 and η > 0. In fact, if the sets of points are not linearly separable and if Ks is chosen
too big, Problem (SVMs2′) may fail to have an optimal solution.

We show that in order for the problem to have a solution we must pick Km and Ks so
that

Km ≤ min{2pKs, 2qKs}.

If we define ν by

ν =
Km

(p+ q)Ks

,

then Km ≤ min{2pKs, 2qKs} is equivalent to

ν ≤ min

{
2p

p+ q
,

2q

p+ q

}
≤ 1.

The reason for introducing ν is that ν(p+ q)/2 can be interpreted as the maximum number
of points failing to achieve the margin δ = η/ ‖w‖. We will show later that if the points ui
and vj are not separable, then we must pick ν so that ν ≥ 2/(p+ q) for the method to have
a solution for which w 6= 0 and η > 0.

The objective function of our problem is convex and the constraints are affine. Conse-
quently, by Theorem 14.17(2) if the Primal Problem (SVMs2′) has an optimal solution, then
the dual problem has a solution too, and the duality gap is zero. This does not immediately
imply that an optimal solution of the dual yields an optimal solution of the primal because
the hypotheses of Theorem 14.17(1) fail to hold.

We show that if the primal problem has an optimal solution (w, η, ε, ξ, b) with w 6= 0,
then any optimal solution of the dual problem determines λ and µ, which in turn determine
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w via the equation

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj, (∗w)

and η ≥ 0.

It remains to determine b, η, ε and ξ. The solution of the dual does not determine b, η, ε, ξ
directly, and we are not aware of necessary and sufficient conditions that ensure that they
can be determined. The best we can do is to use the KKT conditions.

The simplest sufficient condition is what we call the

Standard Margin Hypothesis for (SVMs2′): There is some i0 such that 0 < λi0 < Ks,
and there is some µj0 such that 0 < µj0 < Ks. This means that there is some support vector
ui0 of type 1 and there is some support vector vj0 of type 1.

In this case, then by complementary slackness, it can be shown that εi0 = 0, ξi0 = 0, and
the corresponding inequalities are active, that is we have the equations

w>ui0 − b = η, −w>vj0 + b = η,

so we can solve for b and η. Then since by complementary slackness, if εi > 0, then λi = Ks

and if ξj > 0, then µj = Ks, all inequalities corresponding to such εi > 0 and µj > 0 are
active, and we can solve for εi and ξj.

The linear constraints are given by the (2(p + q) + 1) × (n + p + q + 2) matrix given in
block form by

C =

 X> −Ip+q
1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q

0>n 0>p+q 0 −1

 ,

where X is the n× (p+ q) matrix

X =
(
−u1 · · · −up v1 · · · vq

)
,

and the linear constraints are expressed by

 X> −Ip+q
1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q

0>n 0>p+q 0 −1



w
ε
ξ
b
η

 ≤
0p+q

0p+q
0

 .

The objective function is given by

J(w, ε, ξ, b, η) =
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q.



18.5. SOFT MARGIN SUPPORT VECTOR MACHINES; (SVMs2′) 621

The Lagrangian L(w, ε, ξ, b, η, λ, µ, α, β, γ) with λ, α ∈ Rp
+, µ, β ∈ Rq

+, and γ ∈ R+ is given
by

L(w, ε, ξ, b, η, λ, µ, α, β, γ) =
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q

+
(
w>

(
ε> ξ>

)
b η

)
C>


λ
µ
α
β
γ

 .

Since

(
w>

(
ε> ξ>

)
b η

)
C>


λ
µ
α
β
γ

 = w>X

(
λ
µ

)
− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ)

+ η(1>p λ+ 1>q µ)− γη,

the Lagrangian can be written as

L(w, ε, ξ, b, η, λ, µ, α, β, γ) =
1

2
w>w −Kmη +Ks(ε

>1p + ξ>1q) + w>X

(
λ
µ

)
− ε>(λ+ α)

− ξ>(µ+ β) + b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)− γη

=
1

2
w>w + w>X

(
λ
µ

)
+ (1>p λ+ 1>q µ−Km − γ)η

+ ε>(Ks1p − (λ+ α)) + ξ>(Ks1q − (µ+ β)) + b(1>p λ− 1>q µ).

To find the dual function G(λ, µ, α, β, γ) we minimize L(w, ε, ξ, b, η, λ, µ, α, β, γ) with
respect to w, ε, ξ, b, and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×
R×R, a convex open set, by Theorem 4.13, the Lagrangian has a minimum in (w, ε, ξ, b, η)
iff ∇Lw,ε,ξ,b,η = 0, so we compute its gradient with respect to w, ε, ξ, b, η, and we get

∇Lw,ε,ξ,b,η =


X

(
λ
µ

)
+ w

Ks1p − (λ+ α)
Ks1q − (µ+ β)

1>p λ− 1>q µ
1>p λ+ 1>q µ−Km − γ

 .

By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)
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λ+ α = Ks1p

µ+ β = Ks1q

1>p λ = 1>q µ,

and

1>p λ+ 1>q µ = Km + γ. (∗γ)

The second and third equations are equivalent to the box constraints

0 ≤ λi, µj ≤ Ks, i = 1, . . . , p, j = 1, . . . , q,

and since γ ≥ 0 equation (∗γ) is equivalent to

1>p λ+ 1>q µ ≥ Km.

Plugging back w from (∗w) into the Lagrangian, after simplifications we get

G(λ, µ, α, β) =
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
X>X

(
λ
µ

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

so the dual function is independent of α, β and is given by

G(λ, µ) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
.

The dual program is given by

maximize − 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

Finally, the dual program is equivalent to the following minimization program:
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Dual of Soft margin SVM (SVMs2′):

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

If (w, η, ε, ξ, b) is an optimal solution of Problem (SVMs2′) with w 6= 0 and η 6= 0, then the
complementary slackness conditions yield a classification of the points ui and vj in terms of
the values of λ and µ. Indeed, we have εiαi = 0 for i = 1, . . . , p and ξjβj = 0 for j = 1, . . . , q.
Also, if λi > 0, then the corresponding constraint is active, and similarly if µj > 0. Since
λi + αi = Ks, it follows that εiαi = 0 iff εi(Ks − λi) = 0, and since µj + βj = Ks, we have
ξjβj = 0 iff ξj(Ks − µj) = 0. Thus if εi > 0, then λi = Ks, and if ξj > 0, then µj = Ks.
Consequently, if λi < Ks, then εi = 0 and ui is correctly classified, and similarly if µj < Ks,
then ξj = 0 and vj is correctly classified.

We have the following classification which is basically the classification given in Section
18.1 obtained by replacing δ with η (recall that η > 0 and δ = η/ ‖w‖) .

(1) If 0 < λi < Ks, then εi = 0 and the i-th inequality is active, so

w>ui − b− η = 0.

This means that ui is on the blue margin (the hyperplane Hw,b+η of equation w>x =
b+ η) and is classified correctly.

Similarly, if 0 < µj < Ks, then ξj = 0 and

w>vj − b+ η = 0,

so vj is on the red margin (the hyperplane Hw,b−η of equation w>x = b − η) and is
classified correctly.

(2) If λi = Ks, then the i-th inequality is active, so

w>ui − b− η = −εi.

If εi = 0, then the point ui is on the blue margin. If εi > 0, then ui is within the
open half space bounded by the blue margin hyperplane Hw,b+η and containing the
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separating hyperplane Hw,b; if εi ≤ η, then ui is classified correctly, and if εi > η, then
ui is misclassified (ui lies on the wrong side of the separating hyperplane, the red side).

Similarly, if µj = Ks, then
w>vj − b+ η = ξj.

If ξj = 0, then the point vj is on the red margin. If ξj > 0, then vj is within the
open half space bounded by the red margin hyperplane Hw,b−η and containing the
separating hyperplane Hw,b; if ξj ≤ η, then vj is classified correctly, and if ξj > η,
then vj is misclassified (vj lies on the wrong side of the separating hyperplane, the blue
side).

(3) If λi = 0, then εi = 0 and the i-th inequality may or may not be active, so

w>ui − b− η ≥ 0.

Thus ui is in the closed half space on the blue side bounded by the blue margin
hyperplane Hw,b+η (of course, classified correctly).

Similarly, if µj = 0, then
w>vj − b+ η ≤ 0

and vj is in the closed half space on the red side bounded by the red margin hyperplane
Hw,b−η (of course, classified correctly).

Definition 18.2. The vectors ui on the blue margin Hw,b+η and the vectors vj on the red
margin Hw,b−η are called support vectors . Support vectors correspond to vectors ui for which
w>ui − b− η = 0 (which implies εi = 0), and vectors vj for which w>vj − b + η = 0 (which
implies ξj = 0). Support vectors ui such that 0 < λi < Ks and support vectors vj such that
0 < µj < Ks are support vectors of type 1 . Support vectors of type 1 play a special role so
we denote the sets of indices associated with them by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < Ks}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < Ks}.

We denote their cardinalities by numsvl1 = |Iλ| and numsvm1 = |Iµ|. Support vectors ui
such that λi = Ks and support vectors vj such that µj = Ks are support vectors of type 2 .
Those support vectors ui such that λi = 0 and those support vectors vj such that µj = 0 are
called exceptional support vectors .

The vectors ui for which λi = Ks and the vectors vj for which µj = Ks are said to fail
the margin. The sets of indices associated with the vectors failing the margin are denoted
by

Kλ = {i ∈ {1, . . . , p} | λi = Ks}
Kµ = {j ∈ {1, . . . , q} | µj = Ks}.

We denote their cardinalities by pf = |Kλ| and qf = |Kµ|.
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It will also be useful to understand how points are classified in terms of εi (or ξj).

(1) If εi > 0, then by complementary slackness λi = Ks, so the ith equation is active and
by (2) above,

w>ui − b− η = −εi.

Since εi > 0, the point ui is strictly within the open half space bounded by the blue
margin hyperplane Hw,b+η and containing the separating hyperplane Hw,b (excluding
the blue hyperplane Hw,b+η); if εi ≤ η, then ui is classified correctly, and if εi > η, then
ui is misclassified.

Similarly, if ξj > 0, then vj is strictly within the open half space bounded by the red
margin hyperplane Hw,b−η and containing the separating hyperplane Hw,b (excluding
the red hyperplane Hw,b−η); if ξj ≤ η, then vj is classified correctly, and if ξj > η, then
vj is misclassified.

(2) If εi = 0, then the point ui is correctly classified. If λi = 0, then by (3) above, ui is in
the closed half space on the blue side bounded by the blue margin hyperplane Hw,b+η.
If λi > 0, then by (1) and (2) above, the point ui is on the blue margin.

Similarly, if ξj = 0, then the point vj is correctly classified. If µj = 0, then vj is in the
closed half space on the red side bounded by the red margin hyperplane Hw,b−η, and if
µj > 0, then the point vj is on the red margin.

Also observe that if λi > 0, then ui is in the closed half space bounded by the blue hyper-
plane Hw,b+η and containing the separating hyperplane Hw,b (including the blue hyperplane
Hw,b+η).

Similarly, if µj > 0, then vj is in the closed half space bounded by the red hyperplane
Hw,b+η and containing the separating hyperplane Hw,b (including the red hyperplane Hw,b+η).

Definition 18.3. Vectors ui such that λi > 0 and vectors vj such that µj > 0 are said to
have margin at most δ. The sets of indices associated with these vectors are denoted by

Iλ>0 = {i ∈ {1, . . . , p} | λi > 0}
Iµ>0 = {j ∈ {1, . . . , q} | µj > 0}.

We denote their cardinalities by pm = |Iλ>0| and qm = |Iµ>0|.
Vectors ui such that εi > 0 and vectors vj such that ξj > 0 are said to strictly fail the

margin. The corresponding sets of indices are denoted by

Eλ = {i ∈ {1, . . . , p} | εi > 0}
Eµ = {j ∈ {1, . . . , q} | ξj > 0}.

We write psf = |Eλ| and qsf = |Eµ|.
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We have the inclusions Eλ ⊆ Kλ and Eµ ⊆ Kµ. The difference between the first sets and
the second sets is that the second sets may contain support vectors such that λi = Ks and
εi = 0, or µj = Ks and ξj = 0. We also have the equations Iλ∪Kλ = Iλ>0 and Iµ∪Kµ = Iµ>0,
and the inequalities psf ≤ pf ≤ pm and qsf ≤ qf ≤ qm.

It is shown in Section 18.8 how the dual program is solved using ADMM from Section
16.6. If the primal problem is solvable, this yields solutions for λ and µ. Once a solution for
λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj.

As we said earlier, the hypotheses of Theorem 14.17(2) hold, so if the primal problem
(SVMs2′) has an optimal solution with w 6= 0, then the dual problem has a solution too, and
the duality gap is zero. Therefore, for optimal solutions we have

L(w, ε, ξ, b, η, λ, µ, α, β, γ) = G(λ, µ, α, β, γ),

which means that

1

2
w>w −Kmη +Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

and since

w = −X
(
λ
µ

)
,

we get

1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−Kmη +Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

which yields

η =
Ks

Km

( p∑
i=1

εi +

q∑
j=1

ξj

)
+

1

Km

(
λ> µ>

)
X>X

(
λ
µ

)
. (∗)

Therefore, we confirm that η ≥ 0.

Remarks: Since we proved that if the Primal Problem (SVMs2′) has an optimal solution
with w 6= 0, then η ≥ 0, one might wonder why the constraint η ≥ 0 was included. If we
delete this constraint, it is easy to see that the only difference is that instead of the equation

1>p λ+ 1>q µ = Km + γ (∗1)

we obtain the equation
1>p λ+ 1>q µ = Km. (∗2)
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If η > 0, then by complementary slackness γ = 0, in which case (∗1) and (∗2) are equivalent.
But if η = 0, then γ could be strictly positive.

The option to omit the constraint η ≥ 0 in the primal is slightly advantageous because
then the dual involves 2(p+ q) instead of 2(p+ q) + 1 Lagrange multipliers, so the constraint
matrix is a (p + q + 2) × 2(p + q) matrix instead of a (p + q + 2) × (2(p + q) + 1) matrix
and the matrix defining the quadratic functional is a 2(p+ q)× 2(p+ q) matrix instead of a
(2(p+ q) + 1)× (2(p+ q) + 1) matrix; see Section 18.8.

Under the Standard Margin Hypothesis for (SVMs2′), there is some i0 such that
0 < λi0 < Ks and some j0 such that 0 < µj0 < Ks, and by the complementary slackness
conditions εi0 = 0 and ξj0 = 0, so we have the two active constraints

w>ui0 − b = η, −w>vj0 + b = η,

and we can solve for b and η and we get

b =
w>ui0 + w>vj0

2

η =
w>ui0 − w>vj0

2

δ =
η

‖w‖
.

Due to numerical instability, when writing a computer program it is preferable to compute
the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < Ks}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < Ks}.

Then it is easy to see that we can compute b and η using the following averaging formulae:

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

η = w>

(∑
i∈Iλ

ui

)
/|Iλ| −

(∑
j∈Iµ

vj

)
/|Iµ|

 /2.

The “kernelized” version of Problem (SVMs2′) is the following:

Soft margin kernel SVM (SVMs2′):

minimize
1

2
〈w,w〉 −Kmη +Ks

(
ε> ξ>

)
1p+q

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q

η ≥ 0.
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Tracing through the derivation of the dual program we obtain

Dual of the Soft margin kernel SVM (SVMs2′):

minimize
1

2

(
λ> µ>

)
K

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

As in Section 18.3, we obtain

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj),

so

b =
1

2

( p∑
i=1

λi(κ(ui, ui0) + κ(ui, vj0))−
q∑
j=1

µj(κ(vj, ui0) + κ(vj, vj0))

)
,

and the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(2κ(ui, x)− κ(ui, ui0)− κ(ui, vj0))

−
q∑
j=1

µj(2κ(vj, x)− κ(vj, ui0)− κ(vj, vj0))

)
.

18.6 Classification of the Data Points in Terms

of ν (SVMs2′)

For a finer classification of the points it turns out to be convenient to consider the ratio

ν =
Km

(p+ q)Ks

.
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First note that in order for the constraints to be satisfied, some relationship between Ks and
Km must hold. In addition to the constraints

0 ≤ λi ≤ Ks, 0 ≤ µj ≤ Ks,

we also have the constraints

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

which imply that
p∑
i=1

λi ≥
Km

2
and

q∑
j=1

µj ≥
Km

2
. (†)

Since λ, µ are all nonnegative, if λi = Ks for all i and if µj = Ks for all j, then

Km

2
≤

p∑
i=1

λi ≤ pKs and
Km

2
≤

q∑
j=1

µj ≤ qKs,

so these constraints are not satisfied unless Km ≤ min{2pKs, 2qKs}, so we assume that
Km ≤ min{2pKs, 2qKs}. The equations in (†) also imply that there is some i0 such that
λi0 > 0 and some j0 such that µj0 > 0, and so pm ≥ 1 and qm ≥ 1.

For a finer classification of the points we find it convenient to define ν > 0 such that

ν =
Km

(p+ q)Ks

,

so that the objective function J(w, ε, ξ, b, η) is given by

J(w, ε, ξ, b, η) =
1

2
w>w + (p+ q)Ks

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
.

Observe that the condition Km ≤ min{2pKs, 2qKs} is equivalent to

ν ≤ min

{
2p

p+ q
,

2q

p+ q

}
≤ 1.

Since we obtain an equivalent problem by rescaling by a common positive factor, theo-
retically it is convenient to normalize Ks as

Ks =
1

p+ q
,
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in which case Km = ν. This method is called the ν-support vector machine. Actually, to
program the method, it may be more convenient assume that Ks is arbitrary. This helps in
avoiding λi and µj to become to small when p+ q is relatively large.

The equations (†) and the box inequalities

0 ≤ λi ≤ Ks, 0 ≤ µj ≤ Ks

also imply the following facts:

Proposition 18.1. If Problem (SVMs2′) has an optimal solution with w 6= 0 and η > 0,
then the following facts hold:

(1) Let pf be the number of points ui such that λi = Ks, and let qf the number of points
vj such that µj = Ks. Then pf , qf ≤ ν(p+ q)/2.

(2) Let pm be the number of points ui such that λi > 0, and let qm the number of points vj
such that µj > 0. Then pm, qm ≥ ν(p+ q)/2. We have pm ≥ 1 and qm ≥ 1.

(3) If pf ≥ 1 or qf ≥ 1, then ν ≥ 2/(p+ q).

Proof. (1) Recall that for an optimal solution with w 6= 0 and η > 0, we have γ = 0, so by
(∗γ) we have the equations

p∑
i=1

λi =
Km

2
and

q∑
j=1

µj =
Km

2
.

The point ui fails to achieve the margin iff λi = Ks = Km/(ν(p+ q)), so if there are pf such
points then

Km

2
=

p∑
i=1

λi ≥
Kmpf
ν(p+ q)

,

so

pf ≤
ν(p+ q)

2
.

A similar reasoning applies if vj fails to achieve the margin δ with
∑p

i=1 λi replaced by∑q
j=1 µj.

(2) A point ui has margin at most δ iff λi > 0. If

Iλ>0 = {i ∈ {1, . . . , p} | λi > 0} and pm = |Iλ>0|,

then
Km

2
=

p∑
i=1

λi =
∑
i∈Iλ>0

λi,
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and since λi ≤ Ks = Km/(ν(p+ q)), we have

Km

2
=
∑
i∈Iλ>0

λi ≤
Kmpm
ν(p+ q)

,

which yields

pm ≥
ν(p+ q)

2
.

A similar reasoning applies if a point vj has margin at most δ. We already observed that (†)
implies that pm ≥ 1 and qm ≥ 1.

(3) This follows immediately from (1).

Observe that pf = qf = 0 means that there are no points in the open slab containing
the separating hyperplane, namely, the points ui and the points vj are separable. So if the
points ui and the points vj are not separable, then we must pick ν such that 2/(p+ q) ≤ ν ≤
min{2p/(p + q), 2q/(p + q)} for the method to succeed. Otherwise, the method is trying to
produce a solution where w = 0 and η = 0, and it does not converge (γ is nonzero). Actually,
Proposition 18.1 yields more accurate bounds on ν for the method to converge, namely

max

{
2pf
p+ q

,
2qf
p+ q

}
≤ ν ≤ min

{
2pm
p+ q

,
2qm
p+ q

}
.

By a previous remark, pf ≤ pm and qf ≤ qm, the first inequality being strict if there is some
i such that 0 < λi < K, and the second inequality being strict if there is some j such that
0 < µj < K. This will be the case under the Standard Margin Hypothesis.

Observe that a small value of ν keeps pf and qf small, which is achieved if the δ-slab is
narrow (to avoid having points on the wrong sides of the margin hyperplanes). A large value
of ν allows pm and qm to be fairly large, which is achieved if the δ-slab is wide. Thus the
smaller ν is, the narrower the δ-slab is, and the larger ν is, the wider the δ-slab is. This is
the opposite of the behavior that we witnessed in ν-regression (see Section 20.1).

18.7 Existence of Support Vectors for (SVMs2′)

We now consider the issue of the existence of support vectors. We will show that in the
“generic case” there is always some blue support vector and some red support vector. The
term generic has to do with the choice of ν and will be explained below.

Given any real numbers u, v, x, y, if max{u, v} < min{x, y}, then u < x and v < y. This
is because u, v ≤ max{u, v} < min{x, y} ≤ x, y. Consequently, since by Proposition 18.1,
max{2pf/(p + q), 2qf/(p + q)} ≤ ν, if ν < min{2p/(p + q), 2q/(p + q)}, then pf < p and
qf < q, and since psf ≤ pf and qsf ≤ qf , we also have psf < p and qsf < q. This implies



632 CHAPTER 18. SOFT MARGIN SUPPORT VECTOR MACHINES

that there are constraints corresponding to some i /∈ Eλ (in which case εi = 0) and to some
j /∈ Eµ (in which case ξj = 0), of the form

w>ui − b ≥ η i /∈ Eλ
−w>vj + b ≥ η j /∈ Eµ.

If w>ui − b = η for some i /∈ Eλ and −w>vj + b = η for some j /∈ Eµ, then we have a blue
support vector and a red support vector. Otherwise, we show how to modify b and η to
obtain an optimal solution with a blue support vector and a red support vector.

Proposition 18.2. For every optimal solution (w, b, η, ε, ξ) of Problem (SVMs2′) with w 6= 0
and η > 0, if

ν < min{2p/(p+ q), 2q/(p+ q)}
and if either no ui is a support vector or no vj is a support vector, then there is another
optimal solution (for the same w) with some i0 such that εi0 = 0 and w>ui0 − b = η, and
there is some j0 such that ξj0 = 0 and −w>vj0 + b = η; in other words, some ui0 and some
vj0 is a support vector; in particular, psf < p and qsf < q.

Proof. We just explained that psf < p and qsf < q, so the following constraints hold:

w>ui − b = η − εi εi > 0 i ∈ Eλ
−w>vj + b = η − ξj ξj > 0 j ∈ Eµ
w>ui − b ≥ η i /∈ Eλ
−w>vj + b ≥ η j /∈ Eµ,

where there is some i /∈ Eλ and some j /∈ Eµ.

If our optimal solution does not have a blue support vector and a red support vector,
then either w>ui − b > η for all i /∈ Eλ or −w>vj + b > η for all j /∈ Eµ.

Case 1 . We have

w>ui − b > η i /∈ Eλ
−w>vj + b ≥ η j /∈ Eµ.

There are two subcases.

Case 1a. Assume that there is some j /∈ Eµ such that −w>vj + b = η. Our strategy
is to increase η and b by a small amount θ in such a way that some inequality becomes an
equation for some i /∈ Eλ. Geometrically, this amounts to raising the separating hyperplane
Hw,b and increasing the width of the slab, keeping the red margin hyperplane unchanged.
See Figure 18.7.

Let us pick θ such that

θ = (1/2) min{w>ui − b− η | i /∈ Eλ}.
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θ

η

θ

Figure 18.7: In this illustration points with errors are denoted by open circles. In the original,
upper left configuration, there is no blue support vector. By raising the pink separating
hyperplane and increasing the margin, we end up with a blue support vector.

Our hypotheses imply that θ > 0. We can write

w>ui − (b+ θ) = η + θ − (εi + 2θ) εi > 0 i ∈ Eλ
−w>vj + b+ θ = η + θ − ξj ξj > 0 j ∈ Eµ
w>ui − (b+ θ) ≥ η + θ i /∈ Eλ
−w>vj + b+ θ ≥ η + θ j /∈ Eµ.

By hypothesis

−w>vj + b+ θ = η + θ for some j /∈ Eµ,

and by the choice of θ,

w>ui − (b+ θ) = η + θ for some i /∈ Eλ.

The new value of the objective function is

ω(θ) =
1

2
w>w − ν(η + θ) +

1

p+ q

(∑
i∈Eλ

(εi + 2θ) +
∑
j∈Eµ

ξj

)
=

1

2
w>w − νη +

1

p+ q

(∑
i∈Eλ

εi +
∑
j∈Eµ

ξj

)
−
(
ν − 2psf

p+ q

)
θ.
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By Proposition 18.1 we have

max

{
2pf
p+ q

,
2qf
p+ q

}
≤ ν

and psf ≤ pf and qsf ≤ qf , which implies that

ν − 2psf
p+ q

≥ 0, (∗1)

and so ω(θ) ≤ ω(0). If inequality (∗1) is strict, then this contradicts the optimality of the
original solution. Therefore, ν = 2psf/(p+ q), ω(θ) = ω(0), and (w, b+ θ, η + θ, ε+ 2θ, ξ) is
an optimal solution such that

w>ui − (b+ θ) = η + θ

−w>vj + b+ θ = η + θ

for some i /∈ Eλ and some j /∈ Eµ.

Case 1b. We have −w>vj + b > η for all j /∈ Eµ. Our strategy is to increase η and
the errors by a small θ in such a way that some inequality becomes an equation for some
i /∈ Eλ or for some j /∈ Eµ. Geometrically, this corresponds to increasing the width of the
slab, keeping the separating hyperplane unchanged. See Figures 18.8 and 18.9. Then we are
reduced to Case 1a or Case 2a.

w  x - b
 - η

= 0

T

η

η

T

T

w  x - b
 + η = 0w  x - b

 = 0

no red support vectors

no blue support vectors

T

η

η

T

T

w  x - b
 + (η + θ) = 0

w  x - b
 = 0

red support vector

θ

w  x - b - (η
 + θ) = 0

θ

no blue support vectors

Figure 18.8: In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support vector.
By increasing the margin, we end up with a red support vector and reduce to Case 1a.
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T

w  x - b
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w  x - b - (η
 + θ) = 0
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Case 2a

Figure 18.9: In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support vector.
By increasing the margin, we end up with a blue support vector and reduce to Case 2a.

We have

w>ui − b = η − εi εi > 0 i ∈ Eλ
−w>vj + b = η − ξj ξj > 0 j ∈ Eµ
w>ui − b > η i /∈ Eλ
−w>vj + b > η j /∈ Eµ.

Let us pick θ such that

θ = min{w>ui − b− η, −w>vj + b− η | i /∈ Eλ, j /∈ Eµ}.

Our hypotheses imply that θ > 0. We can write

w>ui − b = η + θ − (εi + θ) εi > 0 i ∈ Eλ
−w>vj + b = η + θ − (ξj + θ) ξj > 0 j ∈ Eµ
w>ui − b ≥ η + θ i /∈ Eλ
−w>vj + b ≥ η + θ j /∈ Eµ,

and by the choice of θ, either

w>ui − b = η + θ for some i /∈ Eλ
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or
−w>vj + b = η + θ for some j /∈ Eµ.

The new value of the objective function is

ω(θ) =
1

2
w>w − ν(η + θ) +

1

p+ q

(∑
i∈Eλ

(εi + θ) +
∑
j∈Eµ

(ξj + θ)

)
=

1

2
w>w − νη +

1

p+ q

(∑
i∈Eλ

εi +
∑
j∈Eµ

ξj

)
−
(
ν − psf + qsf

p+ q

)
θ.

Since max{2pf/(p + q), 2qf/(p + q)} ≤ ν implies that (pf + qf )/(p + q) ≤ ν and psf ≤ pf ,
qsf ≤ qf , we have

ν − psf + qsf
p+ q

≥ 0, (∗2)

and so ω(θ) ≤ ω(0). If inequality (∗2) is strict, then this contradicts the optimality of the
original solution. Therefore, ν = (psf + qsf )/(p+ q), ω(θ) = ω(0) and (w, b, η+ θ, ε+ θ, ξ+ θ)
is an optimal solution such that either

w>ui − b = η + θ for some i /∈ Eλ
or

−w>vj + b = η + θ for some j /∈ Eµ.
We are now reduced to Case 1a or Case 2a.

Case 2 . We have

w>ui − b ≥ η i /∈ Eλ
−w>vj + b > η j /∈ Eµ.

There are two subcases.

Case 2a. Assume that there is some i /∈ Eλ such that w>ui − b = η. Our strategy is to
increase η and decrease b by a small amount θ in such a way that some inequality becomes an
equation for some j /∈ Eµ. Geometrically, this amounts to lowering the separating hyperplane
Hw,b and increasing the width of the slab, keeping the blue margin hyperplane unchanged.
See Figure 18.10.

Let us pick θ such that

θ = (1/2) min{−w>vj + b− η | j /∈ Eµ}.

Our hypotheses imply that θ > 0. We can write

w>ui − (b− θ) = η + θ − εi εi > 0 i ∈ Eλ
−w>vj + b− θ = η + θ − (ξj + 2θ) ξj > 0 j ∈ Eµ
w>ui − (b− θ) ≥ η + θ i /∈ Eλ
−w>vj + b− θ ≥ η + θ j /∈ Eµ.
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Figure 18.10: In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no red support vector. By lowering the pink
separating hyperplane and increasing the margin, we end up with a red support vector.

By hypothesis

w>ui − (b− θ) = η + θ for some i /∈ Eλ,

and by the choice of θ,

−w>vj + b− θ = η + θ for some j /∈ Eµ.

The new value of the objective function is

ω(θ) =
1

2
w>w − ν(η + θ) +

1

p+ q

(∑
i∈Eλ

εi +
∑
j∈Eµ

(ξj + 2θ)

)
=

1

2
w>w − νη +

1

p+ q

(∑
i∈Eλ

εi +
∑
j∈Eµ

ξj

)
−
(
ν − 2qsf

p+ q

)
θ.

The rest of the proof is similar to Case 1a with psf replaced by qsf .

Case 2b. We have w>ui − b > η for all i /∈ Eλ. Since by hypothesis −w>vj + b > η for
all j /∈ Eµ, Case 2b is identical to Case 1b, and we are done.

A subtle point here is that Proposition 18.2 shows that if there is an optimal solution,
then there is one with a blue and a red support vector, but it does not guarantee that these
are support vectors of type 1. Since the dual program does not determine b and η unless
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these support vectors are of type 1, from a practical point of view this proposition is not
helpful.

The proof of Proposition 18.2 reveals that there are three critical values for ν:

2psf
p+ q

,
2qsf
p+ q

,
psf + qsf
p+ q

.

These values can be avoided by requiring the strict inequality

max

{
2psf
p+ q

,
2qsf
p+ q

}
< ν.

Then the following corollary holds.

Theorem 18.3. For every optimal solution (w, b, η, ε, ξ) of Problem (SVMs2′) with w 6= 0
and η > 0, if

max{2pf/(p+ q), 2qf/(p+ q)} < ν < min{2p/(p+ q), 2q/(p+ q)},

then some ui0 and some vj0 is a support vector.

Proof. We proceed by contradiction. Suppose that for every optimal solution with w 6= 0
and η > 0 no ui is a blue support vector or no vj is a red support vector. Since ν <
min{2p/(p + q), 2q/(p + q)}, Proposition 18.2 holds, so there is another optimal solution.
But since the critical values of ν are avoided, the proof of Proposition 18.2 shows that the
value of the objective function for this new optimal solution is strictly smaller than the
original optimal value, a contradiction.

We also have the following proposition that gives a sufficient condition implying that η
and b can be found in terms of an optimal solution (λ, µ) of the dual.

Proposition 18.4. If (w, b, η, ε, ξ) is an optimal solution of Problem (SVMs2′) with w 6= 0
and η > 0, if

max{2pf/(p+ q), 2qf/(p+ q)} < ν < min{2p/(p+ q), 2q/(p+ q)},

then η and b can always be determined from an optimal solution (λ, µ) of the dual in terms
of a single support vector.

Proof. By Theorem 18.3 some ui0 and some vj0 is a support vector. As we already explained,
Problem (SVMs2′) satisfies the conditions for having a zero duality gap. Therefore, for
optimal solutions we have

L(w, ε, ξ, b, η, λ, µ, α, β) = G(λ, µ, α, β),
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which means that

1

2
w>w − νη +

1

p+ q

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

and since

w = −X
(
λ
µ

)
,

we get

1

p+ q

( p∑
i=1

εi +

q∑
j=1

ξj

)
= νη −

(
λ> µ>

)
X>X

(
λ
µ

)
. (∗)

Let Kλ = {i ∈ {1, . . . , p} | λi = Ks} and Kµ = {j ∈ {1, . . . , q} | µj = Ks}. By definition,
pf = |Kλ| and qf = |Kµ| (here we assuming that Ks = 1/(p + q)). By complementary
slackness the following equations are active:

w>ui − b = η − εi i ∈ Kλ

−w>vj + b = η − ξj j ∈ Kµ.

But (∗) can be written as

1

p+ q

(∑
i∈Kλ

εi +
∑
j∈Kµ

ξj

)
= νη −

(
λ> µ>

)
X>X

(
λ
µ

)
, (∗∗)

and since

εi = η − w>ui + b i ∈ Kλ

ξj = η + w>vj − b j ∈ Kµ,

by substituting in the Equation (∗∗) we get(
ν − pf + qf

p+ q

)
η =

pf − qf
p+ q

b+
1

p+ q
w>
(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+
(
λ> µ>

)
X>X

(
λ
µ

)
.

We also know that w>ui0 − b = η and −w>vj0 + b = η for some i0 and some j0. In the first
case b = −η + w>ui0 , and by substituting b in the above equation we get the equation(

ν − pf + qf
p+ q

)
η = −pf − qf

p+ q
η +

pf − qf
p+ q

w>ui0 +
1

p+ q
w>
(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+
(
λ> µ>

)
X>X

(
λ
µ

)
,
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that is, (
ν − 2qf

p+ q

)
η =

pf − qf
p+ q

w>ui0 +
1

p+ q
w>
(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+
(
λ> µ>

)
X>X

(
λ
µ

)
.

In the second case b = η + w>vj0 , and we get the equation(
ν − pf + qf

p+ q

)
η =

pf − qf
p+ q

η +
pf − qf
p+ q

w>vj0 +
1

p+ q
w>
(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+
(
λ> µ>

)
X>X

(
λ
µ

)
,

that is, (
ν − 2pf

p+ q

)
η =

pf − qf
p+ q

w>vj0 +
1

p+ q
w>
(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+
(
λ> µ>

)
X>X

(
λ
µ

)
.

We need to choose ν such that 2pf/(p + q) − ν 6= 0 and 2qf/(p + q) − ν 6= 0. Since by
Proposition 18.1, we have max{2pf/(p+ q), 2qf/(p+ q)} ≤ ν, it suffices to pick ν such that
max{2pf/(p+ q), 2qf/(p+ q)} < ν. If this condition is satisfied we can solve for η, and then
we find b from either b = −η + w>ui0 or b = η + w>vj0 .

Remark: Of course the hypotheses of the proposition imply that w>ui0−b = η and−w>vj0+
b = η for some i0 and some j0. Thus we can also compute b and η using the formulae

b =
w>(ui0 + vj0)

2

η =
w>(ui0 − vj0)

2
.

The interest of Proposition 18.4 lies in the fact that it allows us to compute b and η knowing
only a single support vector.

In practice we can only find support vectors of type 1 so Proposition 18.4 is useful if we
can only find some blue support vector of type 1 or some red support vector of type 1.

As earlier, if we define Iλ and Iµ as

Iλ = {i ∈ {1, . . . , p} | 0 < λi < Ks}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < Ks},

then we have the following cases to compute η and b.
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(1) If Iλ 6= ∅ and Iµ 6= ∅, then

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

η = w>

(∑
i∈Iλ

ui

)
/|Iλ| −

(∑
j∈Iµ

vj

)
/|Iµ|

 /2.

(2) If Iλ 6= ∅ and Iµ = ∅, then

b = −η + w>
(∑
i∈Iλ

ui

)
/|Iλ|

((p+ q)ν − 2qf )η = (pf − qf )w>
(∑
i∈Iλ

ui

)
/|Iλ|+ w>

(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+ (p+ q)

(
λ> µ>

)
X>X

(
λ
µ

)
.

(3) If Iλ = ∅ and Iµ 6= ∅, then

b = η + w>
(∑
j∈Iµ

vj

)
/|Iµ|

((p+ q)ν − 2pf )η = (pf − qf )w>
(∑
j∈Iµ

vj

)
/|Iµ|+ w>

(∑
i∈Kµ

vj −
∑
i∈Kλ

ui

)
+ (p+ q)

(
λ> µ>

)
X>X

(
λ
µ

)
.

The above formulae correspond to Ks = 1/(p + q). In general we have to replace the
rightmost (p+ q) by 1/Ks.

We have examples where there is a single support vector of type 1 and ν = 2qf/(p+ q),
so the above method fails. Curiously, perturbing ν slightly yields a solution with some blue
support vector of type 1 and some red support vector of type 1, and so we have not yet
found an example where the above method succeeds with a single support vector of type 1.
This suggests to conduct some perturbation analysis but it appears to be nontrivial.

Among its advantages, the support vector machinery is conducive to finding interesting
statistical bounds in terms of the VC dimension, a notion invented by Vapnik and Cher-
novenkis. We will not go into this here and instead refer the reader to Vapnik [81] (especially,
Chapter 4 and Chapters 9-13).
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18.8 Solving SVM (SVMs2′) Using ADMM

In order to solve (SVMs2′) using ADMM we need to write the matrix corresponding to the
constraints in equational form,

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj − γ = Km

λi + αi = Ks, i = 1, . . . , p

µj + βj = Ks, j = 1, . . . , q,

with Km = (p+ q)Ksν. This is the (p+ q + 2)× (2(p+ q) + 1) matrix A given by

A =


1>p −1>q 0>p 0>q 0

1>p 1>q 0>p 0>q −1

Ip 0p,q Ip 0p,q 0p

0q,p Iq 0q,p Iq 0q

 .

Observe the remarkable analogy with the matrix arising in ν-regression in Section 20.3,
except that p = q = m and that −1 is replaced by +1. We leave it as an exercise to prove
that A has rank p+ q + 2. The right-hand side is

c =

 0
Km

Ks1p+q

 .

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = X>X, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.

Since there are 2(p+ q) + 1 Lagrange multipliers (λ, µ, α, β, γ), the (p+ q)× (p+ q) matrix
X>X must be augmented with zero’s to make it a (2(p+ q) + 1)× (2(p+ q) + 1) matrix Pa
given by

Pa =

(
X>X 0p+q,p+q+1

0p+q+1,p+q 0p+q+1,p+q+1

)
,

and similarly q is augmented with zeros as the vector qa = 02(p+q)+1.

As we mentioned in Section 18.5, since η ≥ 0 for an optimal solution, we can drop the
constraint η ≥ 0 from the primal problem. In this case there are 2(p+q) Lagrange multipliers
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(λ, µ, α, β). It is easy to see that the objective function of the dual is unchanged and the set
of constraints is

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = Km

λi + αi = Ks, i = 1, . . . , p

µj + βj = Ks, j = 1, . . . , q,

with Km = (p+ q)Ksν. The constraint matrix corresponding to this system of equations is
the (p+ q + 2)× 2(p+ q) matrix A2 given by

A2 =


1>p −1>q 0>p 0>q

1>p 1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

 .

We leave it as an exercise to prove that A2 has rank p+ q + 2. The right-hand side is

c2 =

 0
Km

Ks1p+q

 .

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = X>X, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and

q = 0p+q.

Since there are 2(p + q) Lagrange multipliers the (p + q) × (p + q) matrix X>X must be
augmented with zero’s to make it a 2(p+ q)× 2(p+ q) matrix P2a given by

P2a =

(
X>X 0p+q,p+q

0p+q,p+q 0p+q,p+q

)
,

and similarly q is augmented with zeros as the vector q2a = 02(p+q).

The Matlab programs implementing the above method are given in Appendix B, Section
B.2. We ran our program on two sets of 30 points each generated at random using the
following code which calls the function runSVMs2pbv3:
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rho = 10;

u16 = 10.1*randn(2,30)+7 ;

v16 = -10.1*randn(2,30)-7;

[~,~,~,~,~,~,w3] = runSVMs2pbv3(0.37,rho,u16,v16,1/60)

We picked K = 1/60 and various values of ν starting with ν = 0.37, which appears to be
the smallest value for which the method converges; see Figure 18.11.

In this example, pf = 10, qf = 11, pm = 12, qm = 12. The quadratic solver converged
after 8121 steps to reach primal and dual residuals smaller than 10−10.

Reducing ν below ν = 0.37 has the effect that pf , qf , pm, qm decrease but the following
situation arises. Shrinking η a little bit has the effect that pf = 9, qf = 10, pm = 10, qm = 11.
Then max{pf , qf} = min{pm, qm} = 10, so the only possible value for ν is ν = 20/60 =
1/3 = 0.3333333 · · · . When we run our program with ν = 1/3, it returns a value of η less
than 10−13 and a value of w whose components are also less than 10−13. This is probably
due to numerical precision. Values of ν less than 1/3 cause the same problem. It appears
that the geometry of the problem constrains the values of pf , qf , pm, qm in such a way that
it has no solution other than w = 0 and η = 0.
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-20

-10

0

10

20

30

Figure 18.11: Running (SVMs2′) on two sets of 30 points; ν = 0.37.

Figure 18.12 shows the result of running the program with ν = 0.51. We have pf =
15, qf = 16, pm = 16, qm = 16. Interestingly, for ν = 0.5, we run into the singular situation
where there is only one support vector and ν = 2pf/(p+ q).
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Figure 18.12: Running (SVMs2′) on two sets of 30 points; ν = 0.51.
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Figure 18.13: Running (SVMs2′) on two sets of 30 points; ν = 0.71.

Next Figure 18.13 shows the result of running the program with ν = 0.71. We have
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pf = 21, qf = 21, pm = 22, qm = 23. Interestingly, for ν = 0.7, we run into the singular
situation where there are no support vectors.

For our next to the last run, Figure 18.14 shows the result of running the program with
ν = 0.95. We have pf = 28, qf = 28, pm = 29, qm = 29.
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Figure 18.14: Running (SVMs2′) on two sets of 30 points; ν = 0.95.

Figure 18.15 shows the result of running the program with ν = 0.97. We have pf =
29, qf = 29, pm = 30, qm = 30, which shows that the largest margin has been achieved.
However, after 80000 iterations the dual residual is less than 10−12 but the primal residual is
approximately 10−4 (our tolerance for convergence is 10−10, which is quite high). Nevertheless
the result is visually very good.

18.9 Soft Margin Support Vector Machines; (SVMs3)

In this section we consider a variation of Problem (SVMs2′) by adding the term (1/2)b2 to
the objective function. The result is that in minimizing the Lagrangian to find the dual
function G, not just w but also b is determined and η is determined under a mild condition
on ν. We also suppress the constraint η ≥ 0 which turns out to be redundant.
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Figure 18.15: Running (SVMs2′) on two sets of 30 points; ν = 0.97.

Soft margin SVM (SVMs3):

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q.

To simplify the presentation we assume that Ks = 1/(p+ q). When writing a computer
program it is more convenient to assume that Ks is arbitrary. In this case, ν needs to be
replaced by (p+ q)Ksν in all the formulae.

The Lagrangian L(w, ε, ξ, b, η, λ, µ, α, β) with λ, α ∈ Rp
+, µ, β ∈ Rq

+ is given by

L(w, ε, ξ, b, η, λ, µ, α, β) =
1

2
w>w + w>X

(
λ
µ

)
+
b2

2
− νη +Ks(ε

>1p + ξ>1q)− ε>(λ+ α)

− ξ>(µ+ β) + b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)

=
1

2
w>w + w>X

(
λ
µ

)
+
b2

2
+ b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ− ν)

+ ε>(Ks1p − (λ+ α)) + ξ>(Ks1q − (µ+ β)).
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To find the dual function G(λ, µ, α, β), we minimize L(w, ε, ξ, b, η, λ, µ, α, β) with respect
to w, ε, ξ, b, and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×R×R,
a convex open set, by Theorem 4.13, the Lagrangian has a minimum in (w, ε, ξ, b, η) iff
∇Lw,ε,ξ,b,η = 0, so we compute its gradient with respect to w, ε, ξ, b, η, and we get

∇Lw,ε,ξ,b,η =


X

(
λ
µ

)
+ w

Ks1p − (λ+ α)
Ks1q − (µ+ β)
b+ 1>p λ− 1>q µ
1>p λ+ 1>q µ− ν

 .

By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

λ+ α = Ks1p

µ+ β = Ks1q

1>p λ+ 1>q µ = ν,

and

b = −(1>p λ− 1>q µ). (∗b)

The second and third equations are equivalent to the box constraints

0 ≤ λi, µj ≤ Ks, i = 1, . . . , p, j = 1, . . . , q.

Since we assumed that the primal problem has an optimal solution with w 6= 0, we have

X

(
λ
µ

)
6= 0.

Plugging back w from (∗w) and b from (∗b) into the Lagrangian, we get

G(λ, µ, α, β) =
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
X>X

(
λ
µ

)
+

1

2
b2 − b2

= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
− 1

2
b2

= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
,



18.9. SOFT MARGIN SUPPORT VECTOR MACHINES; (SVMs3) 649

so the dual function is independent of α, β and is given by

G(λ, µ) = −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.

The dual program is given by

maximize − 1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

Finally, the dual program is equivalent to the following minimization program:

Dual of the Soft margin SVM (SVMs3):

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

The classification of the points ui and vj in terms of the values of λ and µ and Definition
18.2 and Definition 18.3 are unchanged.

It is shown in Section 18.12 how the dual program is solved using ADMM from Section
16.6. If the primal problem is solvable, this yields solutions for λ and µ. Once a solution for
λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −(1>p λ− 1>q µ) = −
p∑
i=1

λi +

q∑
j=1

µj.

We can compute η using duality. As we said earlier, the hypotheses of Theorem 14.17(2)
hold, so if the primal problem (SVMs3) has an optimal solution with w 6= 0, then the dual
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problem has a solution too, and the duality gap is zero. Therefore, for optimal solutions we
have

L(w, ε, ξ, b, η, λ, µ, α, β) = G(λ, µ, α, β),

which means that

1

2
w>w +

b2

2
− (p+ q)Ksνη +Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.

We can use the above equation to determine η.

Since
1

2
w>w +

b2

2
=

1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
,

we get

(p+ q)Ksνη = Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
+
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
. (∗)

Since

X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
is positive semidefinite, we confirm that η ≥ 0.

Since nonzero εi and ξj may only occur for vectors ui and vj that fail the margin, namely
λi = Ks, µj = Ks, the corresponding constraints are active and we can solve for εi and ξj in
terms of b and η. Let Kλ and Kµ be the sets of indices corresponding to points failing the
margin,

Kλ = {i ∈ {1, . . . , p} | λi = Ks}
Kµ = {j ∈ {1, . . . , q} | µj = Ks}.

By definition pf = |Kλ|, qf = |Kµ|. Then for every i ∈ Kλ we have

εi = η + b− w>ui

and for every j ∈ Kµ we have

ξj = η − b+ w>vj.
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Using the above formulae we obtain

p∑
i=1

εi +

q∑
j=1

ξj =
∑
i∈Kλ

εi +
∑
j∈Kµ

ξj

=
∑
i∈Kλ

(η + b− w>ui) +
∑
j∈Kµ

(η − b+ w>vj)

= (pf + qf )η + (pf − qf )b+ w>
(∑
j∈Kµ

vj −
∑
i∈Kλ

ui

)
Substituting this expression in (∗) we obtain

(p+ q)Ksνη = Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
+
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
= Ks

(
(pf + qf )η + (pf − qf )b+ w>

(∑
j∈Kµ

vj −
∑
i∈Kλ

ui

))

+
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
,

which yields

((p+ q)ν − pf − qf )η = (pf − qf )b+ w>
(∑
j∈Kµ

vj −
∑
i∈Kλ

ui

)

+
1

Ks

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.

We show in Proposition 18.5 that pf + qf ≤ (p+ q)ν, so if ν > (pf + qf )/(p+ q), we can
solve for η in terms of b, w, and λ, µ. But b and w are expressed in terms of λ, µ as

w = −X
(
λ
µ

)
b = −

p∑
i=1

λi +

q∑
j=1

µj = −1>p λ+ 1>q µ

so η is also expressed in terms of λ, µ.

The condition ν > (pf + qf )/(p+ q) cannot be satisfied if pf + qf = p+ q, but in this case
all points fail the margin, which indicates that δ is too big, so we reduce ν and try again.

Remark: The equation
p∑
i=1

λi +

q∑
j=1

µj = ν
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implies that either there is some i0 such that λi0 > 0 or there is some j0 such that µj0 > 0,
which implies that pm + qm ≥ 1.

Another way to compute η is to assume the Standard Margin Hypothesis for (SVMs3).
Under the Standard Margin Hypothesis for (SVMs3), either there is some i0 such that
0 < λi0 < Ks or there is some j0 such that 0 < µj0 < Ks, in other words, there is some
support vector of type 1. By the complementary slackness conditions εi0 = 0 or ξj0 = 0, so
we have

w>ui0 − b = η, or − w>vj0 + b = η,

and we can solve for η.

Due to numerical instability, when writing a computer program it is preferable to compute
the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < Ks}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < Ks}.

Then it is easy to see that we can compute η using the following averaging formulae: If
Iλ 6= ∅, then

η = w>
(∑
i∈Iλ

ui

)
/|Iλ| − b,

and if Iµ 6= ∅, then

η = b− w>
(∑
j∈Iµ

vj

)
/|Iµ|.

Theoretically the condition ν > (pf + qf )/(p + q) is less restrictive that the Standard
Margin Hypothesis but in practice we have never observed an example for which ν >
(pf + qf )/(p+ q) and yet the Standard Margin Hypothesis fails.

The “kernelized” version of Problem (SVMs3) is the following:

Soft margin kernel SVM (SVMs3):

minimize
1

2
〈w,w〉+

1

2
b2 − νη +Ks

(
ε> ξ>

)
1p+q

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q,

with Ks = 1/(p+ q).

Tracing through the derivation of the dual program, we obtain
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Dual of the Soft margin kernel SVM (SVMs3):

minimize
1

2

(
λ> µ>

)(
K +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

We obtain

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj)

b = −
p∑
i=1

λi +

q∑
j=1

µj.

The classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(κ(ui, x) + 1)−
q∑
j=1

µj(κ(vj, x) + 1)

)
.

18.10 Classification of the Data Points in Terms of ν

(SVMs3)

The equations (†) and the box inequalities

0 ≤ λi ≤ Ks, 0 ≤ µj ≤ Ks

also imply the following facts (recall that δ = η/ ‖w‖):

Proposition 18.5. If Problem (SVMs3) has an optimal solution with w 6= 0 and η > 0 then
the following facts hold:

(1) Let pf be the number of points ui such that λi = Ks, and let qf the number of points
vj such that µj = Ks. Then pf + qf ≤ (p+ q)ν.
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(2) Let pm be the number of points ui such that λi > 0, and let qm the number of points vj
such that µj > 0. Then pm + qm ≥ (p+ q)ν. We have pm + qm ≥ 1.

(3) If pf ≥ 1 or qf ≥ 1, then ν ≥ 1/(p+ q).

Proof. (1) Recall that for an optimal solution with w 6= 0 and η > 0 we have the equation
p∑
i=1

λi +

q∑
j=1

µj = ν.

Since there are pf points ui such that λi = Ks = 1/(p + q) and qf points vj such that
µj = Ks = 1/(p+ q), we have

ν =

p∑
i=1

λi +

q∑
j=1

µj ≥
pf + qf
p+ q

,

so
pf + qf ≤ ν(p+ q).

(2) If
Iλ>0 = {i ∈ {1, . . . , p} | λi > 0} and pm = |Iλ>0|

and
Iµ>0 = {j ∈ {1, . . . , q} | µj > 0} and qm = |Iµ>0|,

then

ν =

p∑
i=1

λi +

q∑
j=1

µj =
∑
i∈Iλ>0

λi +
∑
j∈Iµ>0

µj,

and since λi, µj ≤ Ks = 1/(p+ q), we have

ν =
∑
i∈Iλ>0

λi +
∑
j∈Iµ>0

µj ≤
pm + qm
p+ q

,

which yields
pm + qm ≥ ν(p+ q).

We already noted earlier that pm + qm ≥ 1.

(3) This follows immediately from (1).

Note that if ν is chosen so that ν < 1/(p+ q), then pf = qf = 0, which means that none
of the data points are misclassified; in other words, the uis and vjs are linearly separable.
Thus we see that if the uis and vjs are not linearly separable we must pick ν such that
1/(p + q) ≤ ν ≤ 1 for the method to succeed. In fact, by Proposition 18.5, we must choose
ν so that

pf + qf
p+ q

≤ ν ≤ pm + qm
p+ q

.

Furthermore, in order to be able to determine b, we must have the strict inequality

pf + qf
p+ q

< ν.
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18.11 Existence of Support Vectors for (SVMs3)

The following proposition is the version of Proposition 18.2 for Problem (SVMs3).

Proposition 18.6. For every optimal solution (w, b, η, ε, ξ) of Problem (SVMs3) with w 6= 0
and η > 0, if ν < 1 and if no ui is a support vector and no vj is a support vector, then there
is another optimal solution such that some ui0 or some vj0 is a support vector.

Proof. We may assume that Ks = 1/(p + q) and we proceed by contradiction. Thus we
assume that for all i ∈ {1, . . . , p}, if εi = 0, then the constraint w>ui − b ≥ η is not active,
namely w>ui− b > η, and for all j ∈ {1, . . . , q}, if ξj = 0, then the constraint −w>vj + b ≥ η
is not active, namely −w>vj + b > η.

Let Eλ = {i ∈ {1, . . . , p} | εi > 0} and let Eµ = {j ∈ {1, . . . , q} | ξj > 0}. By definition,
psf = |Eλ|, qsf = |Eµ|, psf ≤ pf and qsf ≤ qf , so by Proposition 18.1,

psf + qsf
p+ q

≤ pf + qf
p+ q

≤ ν.

Therefore, if ν < 1, then psf + qsf < p + q, which implies that either there is some i /∈ Eλ
such that εi = 0 or there is some j /∈ Eµ such that ξj = 0.

By complementary slackness all the constraints for which i ∈ Eλ and j ∈ Eµ are active,
so our hypotheses are

w>ui − b = η − εi εi > 0 i ∈ Eλ
−w>vj + b = η − ξj ξj > 0 j ∈ Eµ
w>ui − b > η i /∈ Eλ
−w>vj + b > η j /∈ Eµ,

and either there is some i /∈ Eλ or there is some j /∈ Eµ. Our strategy, as illustrated in
Figures 18.8 and 18.9, is to increase the width η of the slab keeping the separating hyperplane
unchanged. Let us pick θ such that

θ = min{w>ui − b− η, −w>vj + b− η | i /∈ Eλ, j /∈ Eµ}.

Our hypotheses imply that θ > 0. We can write

w>ui − b = η + θ − (εi + θ) εi + θ > 0 i ∈ Eλ
−w>vj + b = η + θ − (ξj + θ) ξj + θ > 0 j ∈ Eµ
w>ui − b ≥ η + θ i /∈ Eλ
−w>vj + b ≥ η + θ j /∈ Eµ,

and by the choice of θ, either

w>ui − b = η + θ for some i /∈ Eλ
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or
−w>vj + b = η + θ for some j /∈ Eµ.

The original value of the objective function is

ω(0) =
1

2
w>w +

1

2
b2 − νη +

1

p+ q

(∑
i∈Eλ

εi +
∑
j∈Eµ

ξj

)
,

and the new value is

ω(θ) =
1

2
w>w +

1

2
b2 − ν(η + θ) +

1

p+ q

(∑
i∈Eλ

(εi + θ) +
∑
j∈Eµ

(ξj + θ)

)
=

1

2
w>w +

1

2
b2 − νη +

1

p+ q

(∑
i∈Eλ

εi +
∑
j∈Eµ

ξj

)
−
(
ν − psf + qsf

p+ q

)
θ.

By Proposition 18.1,
psf + qsf
p+ q

≤ pf + qf
p+ q

≤ ν,

so

ν − psf + qsf
p+ q

≥ 0,

and so ω(θ) ≤ ω(0). If the inequality is strict, then this contradicts the optimality of the
original solution. Therefore, ω(θ) = ω(0) and (w, b, η + θ, ε+ θ, ξ + θ) is an optimal solution
such that either

w>ui − b = η + θ for some i /∈ Eλ
or

−w>vj + b = η + θ for some j /∈ Eµ,

as desired.

Proposition 18.6 cannot be strengthened to claim that there is some support vector ui0
and some support vector vj0 . We found examples for which the above condition fails for ν
large enough.

The proof of Proposition 18.6 reveals that (psf + qsf )/(p + q) is a critical value for ν. if
this value is avoided we have the following corollary.

Theorem 18.7. For every optimal solution (w, b, η, ε, ξ) of Problem (SVMs3) with w 6= 0
and η > 0, if

(psf + qsf )/(p+ q) < ν < 1,

then some ui0 or some vj0 is a support vector.

The proof proceeds by contradiction using Proposition 18.6 (for a very similar proof, see
the proof of Theorem 18.3).
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18.12 Solving SVM (SVMs3) Using ADMM

In order to solve (SVMs3) using ADMM we need to write the matrix corresponding to the
constraints in equational form,

p∑
i=1

λi +

q∑
j=1

µj = Km

λi + αi = Ks, i = 1, . . . , p

µj + βj = Ks, j = 1, . . . , q

with Km = (p+ q)Ksν. This is the (p+ q + 1)× 2(p+ q) matrix A given by

A =


1>p 1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

 .

We leave it as an exercise to prove that A has rank p+ q + 1. The right-hand side is

c =

(
Km

Ks1p+q

)
.

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
, with X =

(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.

Since there are 2(p+ q) Lagrange multipliers (λ, µ, α, β), the (p+ q)× (p+ q) matrix P must
be augmented with zero’s to make it a 2(p+ q)× 2(p+ q) matrix Pa given by

Pa =

(
P 0p+q,p+q

0p+q,p+q 0p+q,p+q

)
,

and similarly q is augmented with zeros as the vector

qa = 02(p+q).

The Matlab programs implementing the above method are given in Appendix B, Section
B.3. We ran our program on the same input data points used in Section 18.8, namely

u16 = 10.1*randn(2,30)+7 ;

v16 = -10.1*randn(2,30)-7;

[~,~,~,~,~,~,w3] = runSVMs3b(0.365,rho,u16,v16,1/60)
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Figure 18.16: Running (SVMs3) on two sets of 30 points; ν = 0.365.

We picked K = 1/60 and various values of ν starting with ν = 0.365, which appears to
be the smallest value for which the method converges; see Figure 18.16.

We have pf = 10, qf = 10, pm = 12 and qm = 11, as opposed to pf = 10, qf = 11, pm =
12, qm = 12, which was obtained by running (SVMs2′); see Figure 18.11. A slightly narrower
margin is achieved.

Next we ran our program with ν = 0.5, see Figure 18.17. We have pf = 13, qf = 16, pm =
14 and qm = 17.

We also ran our program with ν = 0.71, see Figure 18.18. We have pf = 21, qf = 21, pm =
22 and qm = 22. The value ν = 0.7 is a singular value for which there are no support vectors
and ν = (pf + qf )/(p+ q).

Finally we ran our program with ν = 0.98, see Figure 18.19. We have pf = 28, qf =
30, pm = 29 and qm = 30.

Because the term (1/2)b2 is added to the objective function to be minimized, it turns
out that (SVMs3) yields values of b and η that are smaller than the values returned by
(SVMs2′). This is the reason why a smaller margin width could be obtained for ν = 0.365.
On the other hand, (SVMs3) is unable to achieve as big a margin as (SVMs2′) for values of
ν ≥ 0.97, because the separating line produced by (SVMs3) is lower than the the separating
line produced by (SVMs2′).
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Figure 18.17: Running (SVMs3) on two sets of 30 points; ν = 0.5.
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Figure 18.18: Running (SVMs3) on two sets of 30 points; ν = 0.71.
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Figure 18.19: Running (SVMs3) on two sets of 30 points; ν = 0.98.

18.13 Soft Margin SVM; (SVMs4)

In this section we consider the version of Problem (SVMs2′) in which instead of using the

function K

(∑p
i=1 εi +

∑q
j=1 ξj

)
as a regularizing function we use the quadratic function

K(‖ε‖2
2 + ‖ξ‖2

2).

Soft margin SVM (SVMs4):

minimize
1

2
w>w + (p+ q)Ks

(
−νη +

1

p+ q
(ε>ε+ ξ>ξ)

)
subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q

η ≥ 0,

where ν and Ks are two given positive constants. As we saw earlier, theoretically, it is
convenient to pick Ks = 1/(p + q). When writing a computer program, it is preferable to
assume that Ks is arbitrary. In this case ν needs to be replaced by (p + q)Ksν in all the
formulae obtained with Ks = 1/(p+ q).

The new twist with this formulation of the problem is that if εi < 0, then the correspond-
ing inequality w>ui − b ≥ η − εi implies the inequality w>ui − b ≥ η obtained by setting
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εi to zero while reducing the value of ‖ε‖2, and similarly if ξj < 0, then the corresponding
inequality −w>vj + b ≥ η−ξj implies the inequality −w>vj + b ≥ η obtained by setting ξj to
zero while reducing the value of ‖ξ‖2. Therefore, if (w, b, ε, ξ) is an optimal solution of Prob-
lem (SVMs4), it is not necessary to restrict the slack variables εi and ξj to the nonnegative,
which simplifies matters a bit. In fact, we will see that for an optimal solution, ε = λ/(2Ks)
and ξ = µ/(2Ks). The variable η can also be determined by expressing that the duality gap
is zero.

One of the advantages of this methods is that ε is determined by λ, ξ is determined by
µ, and η and b are determined by λ and µ. This method does not require support vectors
to compute b. We can omit the constraint η ≥ 0, because for an optimal solution it can be
shown using duality that η ≥ 0; see Section 18.14.

A drawback of Program (SVMs4) is that for fixed Ks, the quantity δ = η/ ‖w‖ and the
hyperplanes Hw,b, Hw,b+η and Hw,b−η are independent of ν. This will be shown in Theorem
18.8. Thus this method is less flexible than (SVMs2′) and (SVMs3).

The Lagrangian is given by

L(w, ε, ξ, b, η, λ, µ, γ) =
1

2
w>w − νη +Ks(ε

>ε+ ξ>ξ) + w>X

(
λ
µ

)
− ε>λ− ξ>µ+ b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)− γη

=
1

2
w>w + w>X

(
λ
µ

)
+ η(1>p λ+ 1>q µ− ν − γ)

+Ks(ε
>ε+ ξ>ξ)− ε>λ− ξ>µ+ b(1>p λ− 1>q µ).

To find the dual function G(λ, µ, γ) we minimize L(w, ε, ξ, b, η, λ, µ, γ) with respect to w, ε, ξ,
b, and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×R×R, a convex
open set, by Theorem 4.13, the Lagrangian has a minimum in (w, ε, ξ, b, η) iff ∇Lw,ε,ξ,b,η = 0,
so we compute ∇Lw,ε,ξ,b,η. The gradient ∇Lw,ε,ξ,b,η is given by

∇Lw,ε,ξ,b,η =


w +X

(
λ
µ

)
2Ksε− λ
2Ksξ − µ

1>p λ− 1>q µ
1>p λ+ 1>q µ− ν − γ

 .
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By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
, (∗w)

2Ksε = λ

2Ksξ = µ

1>p λ = 1>q µ

1>p λ+ 1>q µ = ν + γ.

The last two equations are identical to the last two equations obtained in Problem
(SVMs2′). We can use the other equations to obtain the following expression for the dual
function G(λ, µ, γ),

G(λ, µ, γ) = − 1

4Ks

(λ>λ+ µ>µ)− 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
= −1

2

(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
.

Consequently the dual program is equivalent to the minimization program

Dual of the Soft margin SVM (SVMs4):

minimize
1

2

(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

The above program is similar to the program that was obtained for Problem (SVMs2′)
but the matrix X>X is replaced by the matrix X>X+(1/2Ks)Ip+q, which is positive definite
since Ks > 0, and also the inequalities λi ≤ Ks and µj ≤ Ks no longer hold.

It is shown in Section 18.14 how the dual program is solved using ADMM from Section
16.6. If the primal problem is solvable, this yields solutions for λ and µ. We obtain w from
λ and µ, as in Problem (SVMs2′); namely,

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj.
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Since the variables εi and ξj are not restricted to be nonnegative we no longer have
complementary slackness conditions involving them, but we know that

ε =
λ

2Ks

, ξ =
µ

2Ks

.

Also since the constraints
p∑
i=1

λi ≥
ν

2
and

q∑
j=1

µj ≥
ν

2

imply that there is some i0 such that λi0 > 0 and some j0 such that µj0 > 0, we have εi0 > 0
and ξj0 > 0, which means that at least two points are misclassified, so Problem (SVMs4)
should only be used when the sets {ui} and {vj} are not linearly separable.

Because εi = λi/(2Ks), ξj = µj/(2Ks), and there is no upper bound Ks on λi and µj,
the classification of the points is simpler than in the previous cases.

(1) If λi = 0, then εi = 0 and the inequality w>ui− b− η ≥ 0 holds. If equality holds then
ui is a support vector on the blue margin (the hyperplane Hw,b+η). Otherwise ui is
in the blue open half-space bounded by the margin hyperplane Hw,b+η (not containing
the separating hyperplane Hw,b). See Figure 18.20.

Similarly, if µj = 0, then ξj = 0 and the inequality −w>vj + b − η ≥ holds. If
equality holds then vj is a support vector on the red margin (the hyperplane Hw,b−η).
Otherwise vj is in the red open half-space bounded by the margin hyperplane Hw,b−η
(not containing the separating hyperplane Hw,b). See Figure 18.20.

v

w  x - b  = 0T

Tw  x - b + η = 0

w  x  - b -η = 0T

u i
єi = 0

i

j
j

ξ  = 0j

 λ = 0

 μ = 0

Correctly classified on blue margin

1

ui2

1

Correctly classified on red marginvj2

Figure 18.20: When λi = 0, ui is correctly classified on or outside the blue margin. When
µj = 0, vj is correctly classified on or outside outside the red margin.
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(2) If λi > 0, then εi = λi/(2Ks) > 0. The corresponding constraint is active, so we have

w>ui − b = η − εi.

If εi ≤ η, then the points ui is inside the slab bounded by the blue margin hyperplane
Hw,b+η and the separating hyperplane Hw,b. If εi > η, then the point ui belongs to the
open half-space bounded by the separating hyperplane and containing the red margin
hyperplane (the red side); it is misclassified. See Figure 18.21.

Similarly, if µj > 0, then ξj = µj/(2Ks) > 0. The corresponding constraint is active,
so we have

−w>vj + b = η − ξj.
If ξj ≤ η, then the points vj is inside the slab bounded by the red margin hyperplane
Hw,b−η and the separating hyperplane Hw,b. If ξj > η, then the point vj belongs to the
open half-space bounded by the separating hyperplane and containing the blue margin
hyperplane (the blue side); it is misclassified. See Figure 18.21.

v
w  x - b  = 0T

Tw  x - b + η = 0

w  x  - b - η = 0T

u i v

w  x - b  = 0T

Tw  x - b + η = 0

w  x  - b - η = 0T

u i

v

w  x - b  = 0T

Tw  x - b + η = 0

w  x  - b - η= 0T

ui

(2)

λ i

λ i
 Є  < η

j

μ  

j

i

j
ξ < η

jv Є  = ηi

λ i > 0

μ  j
ξ = ηj

Correctly classified in slab(1)

Misclassifiedjvξ > η

Є > ηi

j
μ  j

> 0

> 0
> 0

> 0

> 0

Figure 18.21: The classification of points for SVMs4 when the Lagrange multipliers are
positive. The left illustration of Figure (1) is when ui is inside the margin yet still on the
correct side of the separating hyperplane w>x− b = 0. Similarly, vj is inside the margin on
the correct side of the separating hyperplane. The right illustration depicts ui and vj on the
separating hyperplane. Figure (2) illustrations a misclassification of ui and vj.

We can use the fact that the duality gap is 0 to find η. We have

1

2
w>w − νη +Ks(ε

>ε+ ξ>ξ) = −1

2

(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
,



18.13. SOFT MARGIN SVM; (SVMs4) 665

and since

w = −X
(
λ
µ

)
we get

νη = Ks(ε
>ε+ ξ>ξ) +

(
λ> µ>

)(
X>X +

1

4Ks

Ip+q

)(
λ
µ

)
=
(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
.

The above confirms that at optimality we have η ≥ 0.

Remark: If we do not assume that Ks = 1/(p+q), then the above formula must be replaced
by

(p+ q)Ksνη =
(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
.

Since η is determined independently of the existence of support vectors, the margin
hyperplane Hw,b+η may not contain any point ui and the margin hyperplane Hw,b−η may not
contain any point vj.

We can solve for b using some active constraint corresponding to any i0 such that λi0 > 0
and any j0 such that µj0 > 0 (by a previous remark, the constraints imply that such i0 and
j0 must exist). To improve numerical stability we average over the following sets of indices.
Let Iλ and Iµ be the set of indices given by

Iλ = {i ∈ {1, . . . , p} | λi > 0}
Iµ = {j ∈ {1, . . . , q} | µj > 0},

and let pm = |Iλ| and qm = |Iµ|. We obtain the formula

b =

w>((∑
i∈Iλ

ui

)
/pm +

(∑
j∈Iµ

vj

)
/qm

)
+

(∑
i∈Iλ

εi

)
/pm −

(∑
j∈Iµ

ξj

)
/qm

 /2.

We now prove that for a fixed Ks, the solution to Problem (SVMs4) is unique and
independent of the value of ν.

Theorem 18.8. For Ks and ν fixed, if Problem (SVMs4) succeeds, then it has a unique solu-
tion. If Problem (SVMs4) succeeds and returns (λ, µ, η, w, b) for the value ν and (λκ, µκ, ηκ,
wκ, bκ) for the value κν with κ > 0, then

λκ = κλ, µκ = κµ, ηκ = κη, wκ = κw, bκ = κb.

As a consequence, δ = η/ ‖w‖ = ηκ/ ‖wκ‖ = δκ, and the hyperplanes Hw,b, Hw,b+η and Hw,b−η
are independent of ν.
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Proof. We already observed that for an optimal solution with η > 0, we have γ = 0. This
means that (λ, µ) is a solution of the problem

minimize
1

2

(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

Since Ks > 0 and X>X is symmetric positive semidefinite, the matrix
P = X>X + 1

2Ks
Ip+q is symmetric positive definite. Let Ω = Rp+q and let U be the convex

set given by

U =

{(
λ
µ

)
∈ Rp+q

+

∣∣∣∣∣
(

1>p −1>q

1>p 1>q

)(
λ
µ

)
=

(
0

(p+ q)Ksν

)}
.

Since the matrix P is symmetric positive definite, the functional

F (λ, µ) = −G(λ, µ) =
1

2

(
λ> µ>

)
P

(
λ
µ

)
is strictly convex and U is convex, so by Theorem 4.13(2,4), if it has a minimum, then it is
unique. Consider the convex set

Uκ =

{(
λ
µ

)
∈ Rp+q

+

∣∣∣∣∣
(

1>p −1>q

1>p 1>q

)(
λ
µ

)
=

(
0

(p+ q)Ksκν

)}
.

Observe that

κU =

{(
κλ
κµ

)
∈ Rp+q

+

∣∣∣∣∣
(

1>p −1>q

1>p 1>q

)(
κλ
κµ

)
=

(
0

(p+ q)Ksκν

)}
= Uκ.

By Theorem 4.13(3), (λ, µ) ∈ U is a minimum of F over U iff

dFλ,µ

(
λ′ − λ
µ′ − µ

)
≥ 0 for all

(
λ′

µ′

)
∈ U.

Since

dFλ,µ

(
λ′ − λ
µ′ − µ

)
=
(
λ> µ>

)
P

(
λ′ − λ
µ′ − µ

)
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the above conditions are equivalent to(
λ> µ>

)
P

(
λ′ − λ
µ′ − µ

)
≥ 0(

1>p −1>q

1>p 1>q

)(
λ
µ

)
=

(
0

(p+ q)Ksν

)
λ, λ′ ∈ Rp

+, µ, µ
′ ∈ Rq

+.

Since κ > 0, by multiplying the above inequality by κ2 and the equations by κ, the following
conditions hold: (

κλ> κµ>
)
P

(
κλ′ − κλ
κµ′ − κµ

)
≥ 0(

1>p −1>q

1>p 1>q

)(
κλ
κµ

)
=

(
0

(p+ q)Ksκν

)
κλ, κλ′ ∈ Rp

+, κµ, κµ
′ ∈ Rq

+.

By Theorem 4.13(3), (κλ, κµ) ∈ Uκ is a minimum of F over Uκ, and because F is strictly
convex and Uκ is convex, if F has a minimum over Uκ, then (κλ, κµ) ∈ Uκ is the unique
minimum. Therefore, λκ = κλ, µκ = κµ.

Since w is given by the equation

w = −X
(
λ
µ

)
and since we just showed that λκ = κλ, µκ = κµ, we deduce that wκ = κw.

We showed earlier that η is given by the equation

(p+ q)Ksνη =
(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
.

If we replace ν by κν, since λ is replaced by κλ and µ by κν, we see that ηκ = κη. Finally,
b is given by the equation

b =
w>(ui0 + vj0) + εi0 − ξj0

2

for and i0 such that λi0 > 0 and any j0 such that µj0 > 0. If λ is replaced by κλ and µ by
κµ, since ε = λ/(2Ks) and ξ = µ/(2Ks), we see that ε is replaced by κε and ξ by κξ, so
bκ = κb.

Since wκ = κw and ηκ = κη we obtain δ = η/ ‖w‖ = ηκ/ ‖wκ‖ = δκ. Since wκ = κw,
ηκ = κη and bκ = κb, the normalized equations of the hyperplanes Hw,b, Hw,b+η and Hw,b−η
(obtained by dividing by ‖w‖) are all identical, so the hyperplanes Hw,b, Hw,b+η and Hw,b−η
are independent of ν.
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The width of the slab is controlled by K. The larger K is the smaller is the width of
the slab. Theoretically, since this method does not rely on support vectors to compute b,
it cannot fail if a solution exists, but in practice the quadratic solver does not converge for
values of K that are too large. However, the method handles very small values of K, which
can yield slabs of excessive width.

The “kernelized” version of Problem (SVMs4) is the following:

Soft margin kernel SVM (SVMs4):

minimize
1

2
〈w,w〉 − νη +Ks(ε

>ε+ ξ>ξ)

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, j = 1, . . . , q

η ≥ 0,

with Ks = 1/(p+ q).

By going over the derivation of the dual program, we obtain

Dual of the Soft margin kernel SVM (SVMs4):

minimize
1

2

(
λ> µ>

)(
K +

1

2Ks

Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1. Then w, b, and f(x) are obtained exactly as
in Section 18.5.
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18.14 Solving SVM (SVMs4) Using ADMM

In order to solve (SVMs4) using ADMM we need to write the matrix corresponding to the
constraints in equational form,

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj − γ = Km,

with Km = (p+ q)Ksν. This is the 2× (p+ q + 1) matrix A given by

A =

(
1>p −1>q 0

1>p 1>q −1

)
.

We leave it as an exercise to prove that A has rank 2. The right-hand side is

c =

(
0
Km

)
.

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = X>X +
1

2Ks

Ip+q, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.

Since there are p+ q + 1 Lagrange multipliers (λ, µ, γ), the (p+ q)× (p+ q) matrix P must
be augmented with zero’s to make it a (p+ q + 1)× (p+ q + 1) matrix Pa given by

Pa =

(
X>X 0p+q
0>p+q 0

)
,

and similarly q is augmented with zeros as the vector qa = 0p+q+1.

As in Section 18.8, since η ≥ 0 for an optimal solution, we can drop the constraint η ≥ 0
from the primal problem. In this case, there are p+ q Lagrange multipliers (λ, µ). It is easy
to see that the objective function of the dual is unchanged and the set of constraints is

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = Km,
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with Km = (p+ q)Ksν. The matrix corresponding to the above equations is the 2× (p+ q)
matrix A2 given by

A2 =

(
1>p −1>q

1>p 1>q

)
.

We leave it as an exercise to prove that A2 has rank 2. The right-hand side is

c2 =

(
0
Km

)
.

The symmetric positive semidefinite (p+q)×(p+q) matrix P defining the quadratic functional
is

P = X>X +
1

2Ks

Ip+q, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.

Since there are p+ q Lagrange multipliers (λ, µ), the (p+ q)× (p+ q) matrix P need not be
augmented with zero’s, so P2a = P and similarly q2a = 0p+q.

We ran our Matlab implementation of the above version of (SVMs4) on the data set of
Section 18.12. Since the value of ν is irrelevant, we picked ν = 1. First we ran our program
with K = 190; see Figure 18.22. We have pm = 23 and qm = 18. The program does not
converge for K ≥ 200.
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Figure 18.22: Running (SVMs4) on two sets of 30 points; K = 190.
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Our second run was made with K = 1/12000; see Figure 18.23. We have pm = 30 and
qm = 30 and we see that the width of the slab is a bit excessive. This example demonstrates
that the margin lines need not contain data points.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Figure 18.23: Running (SVMs4) on two sets of 30 points; K = 1/12000.

18.15 Soft Margin SVM; (SVMs5)

In this section we consider the version of Problem (SVMs4) in which we add the term (1/2)b2

to the objective function. We also drop the constraint η ≥ 0 which is redundant.

Soft margin SVM (SVMs5):

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

(
−νη +

1

p+ q
(ε>ε+ ξ>ξ)

)
subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q,

where ν and Ks are two given positive constants. As we saw earlier, it is convenient to pick
Ks = 1/(p + q). When writing a computer program, it is preferable to assume that Ks is
arbitrary. In this case ν must be replaced by (p+ q)Ksν in all the formulae.
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One of the advantages of this methods is that ε is determined by λ, ξ is determined by
µ (as in (SVMs4)), and both η and b determined by λ and µ. As the previous method, this
method does not require support vectors to compute b. We can omit the constraint η ≥ 0,
because for an optimal solution it can be shown using duality that η ≥ 0.

A drawback of Program (SVMs5) is that for fixed Ks, the quantity δ = η/ ‖w‖ and the
hyperplanes Hw,b, Hw,b+η and Hw,b−η are independent of ν. This will be shown in Theorem
18.9. Thus this method is less flexible than (SVMs2′) and (SVMs3).

The Lagrangian is given by

L(w, ε, ξ, b, η, λ, µ) =
1

2
w>w +

1

2
b2 − νη +Ks(ε

>ε+ ξ>ξ) + w>X

(
λ
µ

)
− ε>λ− ξ>µ+ b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)

=
1

2
w>w + w>X

(
λ
µ

)
+ η(1>p λ+ 1>q µ− ν)

+Ks(ε
>ε+ ξ>ξ)− ε>λ− ξ>µ+ b(1>p λ− 1>q µ) +

1

2
b2.

To find the dual function G(λ, µ) we minimize L(w, ε, ξ, b, η, λ, µ) with respect to w, ε, ξ, b,
and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn × Rp × Rq × R× R, a convex
open set, by Theorem 4.13, the Lagrangian has a minimum in (w, ε, ξ, b, η) iff ∇Lw,ε,ξ,b,η = 0,
so we compute ∇Lw,ε,ξ,b,η. The gradient ∇Lw,ε,ξ,b,η is given by

∇Lw,ε,ξ,b,η =


w +X

(
λ
µ

)
2Ksε− λ
2Ksξ − µ

b+ 1>p λ− 1>q µ
1>p λ+ 1>q µ− ν

 .

By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
, (∗w)

2Ksε = λ

2Ksξ = µ

b = −(1>p λ− 1>q µ)

1>p λ+ 1>q µ = ν.

As we said earlier, both w an b are determined by λ and µ. We can use the equations to
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obtain the following expression for the dual function G(λ, µ, γ),

G(λ, µ, γ) = − 1

4Ks

(λ>λ+ µ>µ)− 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
− b2

2

= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
.

Consequently the dual program is equivalent to the minimization program

Dual of the Soft margin SVM (SVMs5):

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

It is shown in Section 18.16 how the dual program is solved using ADMM from Section
16.6. If the primal problem is solvable, this yields solutions for λ and µ.

The constraint
p∑
i=1

λi +

q∑
j=1

µj = ν

implies that either there is some i0 such that λi0 > 0 or there is some j0 such that µj0 > 0,
so we have εi0 > 0 or ξj0 > 0, which means that at least one point is misclassified. Thus
Problem (SVMs5) should only be used when the sets {ui} and {vj} are not linearly separable.

We can use the fact that the duality gap is 0 to find η. We have

1

2
w>w +

b2

2
− νη +Ks(ε

>ε+ ξ>ξ)

= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
,

so we get

νη = Ks(ε
>ε+ ξ>ξ) +

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

4Ks

Ip+q

)(
λ
µ

)
=
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
.
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The above confirms that at optimality we have η ≥ 0.

Remark: If we do not assume that Ks = 1/(p+q), then the above formula must be replaced
by

(p+ q)Ksνη =
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
.

There is a version of Theorem 18.8 stating that for a fixed Ks, the solution to Problem
(SVMs5) is unique and independent of the value of ν.

Theorem 18.9. For Ks and ν fixed, if Problem (SVMs5) succeeds then it has a unique solu-
tion. If Problem (SVMs5) succeeds and returns (λ, µ, η, w, b) for the value ν and (λκ, µκ, ηκ,
wκ, bκ) for the value κν with κ > 0, then

λκ = κλ, µκ = κµ, ηκ = κη, wκ = κw, bκ = κb.

As a consequence, δ = η/ ‖w‖ = ηκ/ ‖wκ‖ = δκ, and the hyperplanes Hw,b, Hw,b+η and Hw,b−η
are independent of ν.

Proof. The proof is an easy adaptation of the proof of Theorem 18.8 so we only give a sketch.
The two crucial points are that the matrix

P = X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

is symmetric positive definite and that we have the single equational constraint

1>p λ+ 1>q µ = (p+ q)Ksν

defining the convex set

U =

{(
λ
µ

)
∈ Rp+q

+ | 1>p λ+ 1>q µ = (p+ q)Ksν

}
.

The proof is essentially the proof of 18.8 using the above SPD matrix and convex set.

The “kernelized” version of Problem (SVMs5) is the following:

Soft margin kernel SVM (SVMs5):

minimize
1

2
〈w,w〉+

1

2
b2 − νη +Ks(ε

>ε+ ξ>ξ)

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, j = 1, . . . , q,

with Ks = 1/(p+ q).
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Tracing through the derivation of the dual program, we obtain

Dual of the Soft margin kernel SVM (SVMs5):

minimize
1

2

(
λ> µ>

)(
K +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1. Then w, b, and f(x) are obtained exactly as
in Section 18.13.

18.16 Solving SVM (SVMs5) Using ADMM

In order to solve (SVM5) using ADMM we need to write the matrix corresponding to the
constraints in equational form,

p∑
i=1

λi +

q∑
j=1

µj = Km,

with Km = (p+ q)Ksν. This is the 1× (p+ q) matrix A given by

A =
(
1>p 1>q

)
.

Obviously, A has rank 1. The right-hand side is

c = Km.

The symmetric positive definite (p+ q)× (p+ q) matrix P defining the quadratic functional
is

P = X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.

Since there are p + q Lagrange multipliers (λ, µ), the (p + q) × (p + q) matrix P does not
have to be augmented with zero’s.

We ran our Matlab implementation of the above version of (SVMs5) on the data set of
Section 18.14. Since the value of ν is irrelevant, we picked ν = 1. First we ran our program
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Figure 18.24: Running (SVMs5) on two sets of 30 points; K = 190.

with K = 190; see Figure 18.24. We have pm = 23 and qm = 18. The program does not
converge for K ≥ 200.
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Figure 18.25: Running (SVMs5) on two sets of 30 points; K = 1/13000.
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Our second run was made with K = 1/13000; see Figure 18.25. We have pm = 30 and
qm = 30 and we see that the width of the slab is a bit excessive. This example demonstrates
that the margin lines need not contain data points.

Method (SVMs5) always returns a value for b and η smaller than the value returned by
(SVMs4) (because of the term (1/2)b2 added to the objective function) but in this example
the difference is too small to be noticed.

18.17 Summary and Comparison of the SVM Methods

In this chapter we considered six variants for solving the soft margin binary classification
problem for two sets of points {ui}pi=1 and {vj}qj=1 using support vector classification meth-

ods. The objective is to find a separating hyperplane Hw,b of equation w>x− b = 0. We also
try to find two “margin hyperplanes” Hw,b+δ of equation w>x− b− δ = 0 (the blue margin
hyperplane) and Hw,b−δ of equation w>x− b+ δ = 0 (the red margin hyperplane) such that
δ is as big as possible and yet the number of misclassified points is minimized, which is
achieved by allowing an error εi ≥ 0 for every point ui, in the sense that the constraint

w>ui − b ≥ δ − εi

should hold, and an error ξj ≥ 0 for every point vj, in the sense that the constraint

−w>vj + b ≥ δ − ξj

should hold.

The goal is to design an objective function that minimizes ε and ξ and maximizes δ.
The optimization problem should also solve for w and b, and for this some constraint has to
be placed on w. Another goal is to try to use the dual program to solve the optimization
problem, because the solutions involve inner products, and thus the problem is amenable to
a generalization using kernel functions.

The first attempt, which is to use the objective function

J(w, ε, ξ, b, δ) = −δ +K
(
ε> ξ>

)
1p+q

and the constraint w>w ≤ 1, does not work very well because this constraint needs to be
guarded by a Lagrange multiplier γ ≥ 0, and as a result, minimizing the Lagrangian L to
find the dual function G gives an equation for solving w of the form

2γw = −X>
(
λ
µ

)
,

but if the sets {ui}pi=1 and {vj}qj=1 are not linearly separable, then an optimal solution may
occurs for γ = 0, in which case it is impossible to determine w. This is Problem (SVMs1)
considered in Section 18.1.
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Soft margin SVM (SVMs1):

minimize − δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
subject to

w>ui − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q

w>w ≤ 1.

It is customary to write ` = p+ q.

It is shown in Section 18.1 that the dual program is equivalent to the following minimiza-
tion program:

Dual of the Soft margin SVM (SVMs1):

minimize
(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = 1

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

The points ui and vj are naturally classified in terms of the values of λi and µj. The
numbers of points in each category have a direct influence on the choice of the parameter
K. Let us summarize some of the keys items from Definition 18.1.

The vectors ui on the blue margin Hw,b+δ and the vectors vj on the red margin Hw,b−δ are
called support vectors . Support vectors correspond to vectors ui for which w>ui − b− δ = 0
(which implies εi = 0), and vectors vj for which w>vj − b + δ = 0 (which implies ξj = 0).
Support vectors ui such that 0 < λi < K and support vectors vj such that 0 < µj < K are
support vectors of type 1 . Support vectors of type 1 play a special role so we denote the sets
of indices associated with them by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < K}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < K}.

We denote their cardinalities by numsvl1 = |Iλ| and numsvm1 = |Iµ|.
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The vectors ui for which λi = K and the vectors vj for which µj = K are said to fail the
margin. The sets of indices associated with the vectors failing the margin are denoted by

Kλ = {i ∈ {1, . . . , p} | λi = K}
Kµ = {j ∈ {1, . . . , q} | µj = K}.

We denote their cardinalities by pf = |Kλ| and qf = |Kµ|.
Vectors ui such that λi > 0 and vectors vj such that µj > 0 are said to have margin at

most δ. The sets of indices associated with these vectors are denoted by

Iλ>0 = {i ∈ {1, . . . , p} | λi > 0}
Iµ>0 = {j ∈ {1, . . . , q} | µj > 0}.

We denote their cardinalities by pm = |Iλ>0| and qm = |Iµ>0|.
Obviously, pf ≤ pm and qf ≤ qm. There are p − pm points ui classified correctly on the

blue side and outside the δ-slab and there are q− qm points vj classified correctly on the red
side and outside the δ-slab. Intuitively a blue point that fails the margin is on the wrong
side of the blue margin and a red point that fails the margin is on the wrong side of the red
margin.

It can be shown that that K must be chosen so that

max

{
1

2pm
,

1

2qm

}
≤ K ≤ min

{
1

2pf
,

1

2qf

}
.

If the optimal value is 0, then γ = 0 and X

(
λ
µ

)
= 0, so in this case it is not possible

to determine w. However, if the optimal value is > 0, then once a solution for λ and µ is
obtained, we have

γ =
1

2

((
λ> µ>

)
X>X

(
λ
µ

))1/2

w =
1

2γ

( p∑
i=1

λiui −
q∑
j=1

µjvj

)
,

so we get

w =

p∑
i=1

λiui −
q∑
j=1

µjvj((
λ> µ>

)
X>X

(
λ
µ

))1/2
,

If the following mild hypothesis holds, then b and δ can be found.
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Standard Margin Hypothesis for (SVMs1). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0 is a
support vector of type 1 on the blue margin, and some vj0 is a support vector of type 1 on
the red margin.

If the Standard Margin Hypothesis for (SVMs1) holds, then εi0 = 0 and µj0 = 0, and
we have the active equations

w>ui0 − b = δ and − w>vj0 + b = δ,

and we obtain the value of b and δ as

b =
1

2
w>(ui0 + vj0)

δ =
1

2
w>(ui0 − vj0).

The second more successful approach is to add the term (1/2)w>w to the objective
function and to drop the constraint w>w ≤ 1. There are several variants of this method,
depending on the choice of the regularizing term involving ε and ξ (linear or quadratic), how
the margin is dealt with (implicitly with the term 1 or explicitly with a term η), and whether
the term (1/2)b2 is added to the objective function or not.

These methods all share the property that if the primal problem has an optimal solution
with w 6= 0, then the dual problem always determines w, and then under mild conditions
which we call standard margin hypotheses, b and η can be determined. Then ε and ξ can
be determined using the constraints that are active. When (1/2)b2 is added to the objective
function, b is determined by the equation

b = −(1>p λ− 1>q µ).

All these problems are convex and the constraints are qualified, so the duality gap is zero,
and if the primal has an optimal solution with w 6= 0, then it follows that η ≥ 0.

We now consider five variants in more details.

(1) Basic soft margin SVM: (SVMs2).

This is the optimization problem in which the regularization term K
(
ε> ξ>

)
1p+q is

linear and the margin δ is given by δ = 1/ ‖w‖:

minimize
1

2
w>w +K

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.
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This problem is the classical one discussed in all books on machine learning or pattern
analysis, for instance Vapnik [81], Bishop [15], and Shawe–Taylor and Christianini [74].
It is shown in Section 18.3 that the dual program is

Dual of the Basic soft margin SVM: (SVMs2):

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

We can use the dual program to solve the primal. Once λ ≥ 0, µ ≥ 0 have been found,
w is given by

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,

but b is not determined by the dual.

The complementary slackness conditions imply that if εi > 0, then λi = K, and if
ξj > 0, then µj = K. Consequently, if λi < K, then εi = 0 and ui is correctly
classified, and similarly if µj < K, then ξj = 0 and vj is correctly classified.

A priori nothing prevents the situation where λi = K for all nonzero λi or µj = K for
all nonzero µj. If this happens, we can rerun the optimization method with a larger
value of K. If the following mild hypothesis holds then b can be found.

Standard Margin Hypothesis for (SVMs2). There is some support vector ui0 of
type 1 on the blue margin, and some support vector vj0 of type 1 on the red margin.

If the Standard Margin Hypothesis for (SVMs2) holds then εi0 = 0 and µj0 = 0,
and then we have the active equations

w>ui0 − b = 1 and − w>vj0 + b = 1,

and we obtain

b =
1

2
w>(ui0 + vj0).
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(2) Basic Soft margin ν-SVM Problem (SVMs2′).

This a generalization of Problem (SVMs2) for a version of the soft margin SVM coming
from Problem (SVMh2), obtained by adding an extra degree of freedom, namely instead
of the margin δ = 1/ ‖w‖, we use the margin δ = η/ ‖w‖ where η is some positive
constant that we wish to maximize. To do so, we add a term −Kmη to the objective
function. We have the following optimization problem:

minimize
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q

η ≥ 0,

where Km > 0 and Ks > 0 are fixed constants that can be adjusted to determine the
influence of η and the regularizing term.

This version of the SVM problem was first discussed in Schölkopf, Smola, Williamson,
and Bartlett [66] under the name of ν-SVC , and also used in Schölkopf, Platt, Shawe–
Taylor, and Smola [65].

In order for the problem to have a solution we must pick Km and Ks so that

Km ≤ min{2pKs, 2qKs}.

It is shown in Section 18.5 that the dual program is

Dual of the Basic Soft margin ν-SVM Problem (SVMs2′):

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

If the primal problem has an optimal solution with w 6= 0, then using the fact that the
duality gap is zero we can show that η ≥ 0. Thus constraint η ≥ 0 could be omitted.
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As in the previous case w is given by

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,

but b and η are not determined by the dual.

If we drop the constraint η ≥ 0, then the inequality

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

is replaced by the equation
p∑
i=1

λi +

q∑
j=1

µj = Km.

It convenient to define ν > 0 such that

ν =
Km

(p+ q)Ks

,

so that the objective function J(w, ε, ξ, b, η) is given by

J(w, ε, ξ, b, η) =
1

2
w>w + (p+ q)Ks

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
.

Since we obtain an equivalent problem by rescaling by a common positive factor, the-
oretically it is convenient to normalize Ks as

Ks =
1

p+ q
,

in which case Km = ν. This method is called the ν-support vector machine.

Under the Standard Margin Hypothesis for (SVMs2′), there is some support vector
ui0 of type 1 and some support vector vj0 of type 1, and by the complementary slackness
conditions εi0 = 0 and ξj0 = 0, so we have the two active constraints

w>ui0 − b = η, −w>vj0 + b = η,

and we can solve for b and η and we get

b =
w>(ui0 + vj0)

2

η =
w>(ui0 − vj0)

2
.
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Due to numerical instability, when writing a computer program it is preferable to
compute the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < Ks}, Iµ = {j ∈ {1, . . . , q} | 0 < µj < Ks}.

Then b and η are given by the following averaging formulae:

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

η = w>

(∑
i∈Iλ

ui

)
/|Iλ| −

(∑
j∈Iµ

vj

)
/|Iµ|

 /2.

Proposition 18.1 yields bounds on ν for the method to converge, namely

max

{
2pf
p+ q

,
2qf
p+ q

}
≤ ν ≤ min

{
2pm
p+ q

,
2qm
p+ q

}
.

In Section 18.7 we investigate conditions on ν that ensure that some point ui0 and
some point vj0 is a support vector. Theorem 18.3 shows that for every optimal solution
(w, b, η, ε, ξ) of Problem (SVMs2′) with w 6= 0 and η > 0, if

max{2pf/(p+ q), 2qf/(p+ q)} < ν < min{2p/(p+ q), 2q/(p+ q)},

then some ui0 and some vj0 is a support vector. Under the same conditions on ν
Proposition 18.4 shows that η and b can always be determined in terms of (λ, µ) using
a single support vector.

(3) Soft margin ν-SVM Problem (SVMs3). This is the variation of Problem (SVMs2′)
obtained by adding the term (1/2)b2 to the objective function. The result is that
in minimizing the Lagrangian to find the dual function G, not just w but also b is
determined. We also suppress the constraint η ≥ 0 which turns out to be redundant.
If ν > (pf +qf )/(p+q), then η is also determined. The fact that b and η are determined
by the dual seems to be an advantage of Problem (SVMs3).

The optimization problem is

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q.
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Theoretically it is convenient to assume that Ks = 1/(p + q). Otherwise, ν needs to
be replaced by (p+ q)Ksν in all the formulae below.

It is shown in Section 18.13 that the dual is given by

Dual of the Soft margin ν-SVM Problem (SVMs3):

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

Once a solution for λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −
p∑
i=1

λi +

q∑
j=1

µj.

Note that the constraint
p∑
i=1

λi −
q∑
j=1

µj = 0

occurring in the dual of Program (SVMs2′) has been traded for the equation

b = −
p∑
i=1

λi +

q∑
j=1

µj

determining b.

If ν > (pf + qf )/(p + q), then η is determined by expressing that the duality gap is
zero. We obtain

((p+ q)ν − pf − qf )η = (pf − qf )b+ w>
(∑
j∈Kµ

vj −
∑
i∈Kλ

ui

)

+
1

Ks

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.
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In practice another way to compute η is to assume the Standard Margin Hypothesis
for (SVMs3). Under the Standard Margin Hypothesis for (SVMs3), either some
ui0 is a support vector of type 1 or some vj0 is a support vector of type 1. By the
complementary slackness conditions εi0 = 0 or ξj0 = 0, so we have

w>ui0 − b = η, or − w>vj0 + b = η,

and we can solve for η. As in (SVMs2′) we get more numerically stable formulae by
averaging over the sets Iλ and Iµ.

Proposition 18.5 gives bounds ν, namely

pf + qf
p+ q

≤ ν ≤ pm + qm
p+ q

.

In Section 18.11 we investigate conditions on ν that ensure that either there is some
blue support vector ui0 or there is some red support vector vj0 . Theorem 18.7 shows
that for every optimal solution (w, b, η, ε, ξ) of Problem (SVMs3) with w 6= 0 and η > 0,
if

(psf + qsf )/(p+ q) < ν < 1,

then some ui0 or some vj0 is a support vector.

(4) Basic Quadratic Soft margin ν-SVM Problem (SVMs4). This is the version of
Problem (SVMs2′) in which instead of using the linear function Ks

(
ε> ξ>

)
1p+q as a

regularizing function we use the quadratic function K(‖ε‖2
2 + ‖ξ‖2

2). The optimization
problem is

minimize
1

2
w>w + (p+ q)Ks

(
−νη +

1

p+ q
(ε>ε+ ξ>ξ)

)
subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q

η ≥ 0,

where ν and Ks are two given positive constants. As we saw earlier, theoretically, it is
convenient to pick Ks = 1/(p+ q). When writing a computer program, it is preferable
to assume that Ks is arbitrary. In this case ν needs to be replaced by (p + q)Ksν in
all the formulae obtained with Ks = 1/(p+ q).

In this method, it is no longer necessary to require ε ≥ 0 and ξ ≥ 0, because an optimal
solution satisfies these conditions.

One of the advantages of this methods is that ε is determined by λ, ξ is determined by
µ, and η and b are determined by λ and µ. We can omit the constraint η ≥ 0, because
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for an optimal solution it can be shown using duality that η ≥ 0; see Section 18.14.
For Ks and ν fixed, if Program (SVMs4) has an optimal solution, then it is unique; see
Theorem 18.8.

A drawback of Program (SVMs4) is that for fixed Ks, the quantity δ = η/ ‖w‖ and the
hyperplanes Hw,b, Hw,b+η and Hw,b−η are independent of ν. This is shown in Theorem
18.8. Thus this method is less flexible than (SVMs2′) and (SVMs3).

It is shown in Section 18.9 that the dual is given by

Dual of the Basic Quadratic Soft margin ν-SVM Problem (SVMs4):

minimize
1

2

(
λ> µ>

)(
X>X +

1

2K
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

The above program is similar to the program that was obtained for Problem (SVMs2′)
but the matrix X>X is replaced by the matrix X>X + (1/2K)Ip+q, which is positive
definite since K > 0, and also the inequalities λi ≤ K and µj ≤ K no longer hold. If
the constraint η ≥ 0 is dropped, then the inequality

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

is replaced by the equation
p∑
i=1

λi +

q∑
j=1

µj = ν.

We obtain w from λ and µ, and γ, as in Problem (SVMs2′); namely,

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj
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and η is given by

(p+ q)Ksνη =
(
λ> µ>

)(
X>X +

1

2Ks

Ip+q

)(
λ
µ

)
.

The constraints imply that there is some io such that λi0 > 0 and some j0 such that
µj0 > 0, which means that at least two points are misclassified, so Problem (SVMs4)
should only be used when the sets {ui} and {vj} are not linearly separable. We can
solve for b using the active constraints corresponding to any i0 such that λi0 > 0 and
any j0 such that µj0 > 0. To improve numerical stability we average over the sets of
indices Iλ and Iµ.

(5) Quadratic Soft margin ν-SVM Problem (SVMs5). This is the variant of Problem
(SVMs4) in which we add the term (1/2)b2 to the objective function. We also drop the
constraint η ≥ 0 which is redundant. We have the following optimization problem:

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

(
−νη +

1

p+ q
(ε>ε+ ξ>ξ)

)
subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q,

where ν and Ks are two given positive constants. As we saw earlier, it is convenient
to pick Ks = 1/(p+ q). When writing a computer program, it is preferable to assume
that Ks is arbitrary. In this case ν must be replaced by (p+ q)Ksν in all the formulae.

One of the advantages of this methods is that ε is determined by λ, ξ is determined
by µ (as in (SVMs4)), and both η and b determined by λ and µ. We can omit the
constraint η ≥ 0, because for an optimal solution it can be shown using duality that
η ≥ 0. For Ks and ν fixed, if Program (SVMs5) has an optimal solution, then it is
unique; see Theorem 18.9.

A drawback of Program (SVMs5) is that for fixed Ks, the quantity δ = η/ ‖w‖ and the
hyperplanes Hw,b, Hw,b+η and Hw,b−η are independent of ν. This is shown in Theorem
18.9. Thus this method is less flexible than (SVMs2′) and (SVMs3).

It is shown in Section 18.15 that the dual of Program (SVMs5) is given by
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Dual of the Quadratic Soft margin ν-SVM Problem (SVMs5):

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2K
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

This time we obtain w, b, η, ε and ξ from λ and µ:

w =

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −
p∑
i=1

λi +

q∑
j=1

µj

ε =
λ

2K

ξ =
µ

2K
,

and

(p+ q)Ksνη =
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2Ks

Ip+q

)(
λ
µ

)
.

The constraint
p∑
i=1

λi +

q∑
j=1

µj = ν

implies that either there is some i0 such that λi0 > 0 or there is some j0 such that
µj0 > 0, we have εi0 > 0 or ξj0 > 0, which means that at least one point is misclassified,
so Problem (SVMs5) should only be used when the sets {ui} and {vj} are not linearly
separable.

These methods all have a kernelized version.

We implemented all these methods in Matlab, solving the dual using ADMM.

From a theoretical point of view, Problems (SVMs4) and (SVMs5) seem to have more
advantages than the others since they determine w, b, η and b without requiring any condition
about support vectors of type 1. However, from a practical point of view, Problems (SVMs4)
and (SVMs5) are less flexible that (SVMs2′) and (SVMs3), and we have observed that (SVMs4)
and (SVMs5) are unable to produce as small a margin δ as (SVMs2′) and (SVMs3).
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18.18 Problems

Problem 18.1. Prove the following inequality

max

{
1

2pm
,

1

2qm

}
≤ K ≤ min

{
1

2pf
,

1

2qf

}
stated just after Definition 18.1.

Problem 18.2. Prove the averaging formulae

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

δ = w>

(∑
i∈Iλ

ui

)
/|Iλ| −

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

stated at the end of Section 18.1.

Problem 18.3. Prove that the matrix

A =


1>p −1>q 0>p 0>q

1>p 1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq


has rank p+ q + 2.

Problem 18.4. Prove that the dual program of the kernel version of (SVMs1) is given by:

Dual of Soft margin kernel SVM (SVMs1):

minimize
(
λ> µ>

)
K

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj =
1

2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

where K is the `× ` kernel symmetric matrix (with ` = p+ q) given by

Kij =


κ(ui, uj) 1 ≤ i ≤ p, 1 ≤ j ≤ q

−κ(ui, vj−p) 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q

−κ(vi−p, uj) p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ p

κ(vi−p, vj−q) p+ 1 ≤ i ≤ p+ q, p+ 1 ≤ j ≤ p+ q.
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Problem 18.5. Prove the averaging formula

b = w>

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

stated in Section 18.3.

Problem 18.6. Prove that the kernel version of Program (SVMs2) is given by:

Dual of Soft margin kernel SVM (SVMs2):

minimize
1

2

(
λ> µ>

)
K

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi −
q∑
j=1

µj = 0

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

where K is the ` × ` kernel symmetric matrix (with ` = p + q) given at the end of Section
18.1.

Problem 18.7. Prove that the matrix

A =


1>p −1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq


has rank p+ q + 1.

Problem 18.8. Prove that the matrices

A =


1>p −1>q 0>p 0>q 0

1>p 1>q 0>p 0>q −1

Ip 0p,q Ip 0p,q 0p

0q,p Iq 0q,p Iq 0q

 and A2 =


1>p −1>q 0>p 0>q

1>p 1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq


have rank p+ q + 2.

Problem 18.9. Prove that the kernel version of Program (SVMs2′) is given by:
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Dual of the Soft margin kernel SVM (SVMs2′):

minimize
1

2

(
λ> µ>

)
K

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

Problem 18.10. Prove the formulae determining b in terms of η stated just before Theorem
18.8.

Problem 18.11. Prove that the matrix

A =


1>p 1>q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq


has rank p+ q + 1.

Problem 18.12. Prove that the kernel version of Program (SVMs3) is given by:

Dual of the Soft margin kernel SVM (SVMs3):

minimize
1

2

(
λ> µ>

)(
K +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

Problem 18.13. Prove that the matrices

A =

(
1>p −1>q 0

1>p 1>q −1

)
and A2 =

(
1>p −1>q

1>p 1>q

)
have rank 2.
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Problem 18.14. Implement Program (SVMs4) in Matlab. You may adapt the programs
given in Section B.2 and Section B.3.

Problem 18.15. Prove that the kernel version of Program (SVMs4) is given by:

Dual of the Soft margin kernel SVM (SVMs4):

minimize
1

2

(
λ> µ>

)(
K +

p+ q

2
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi −
q∑
j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

Problem 18.16. Implement Program (SVMs5) in Matlab. You may adapt the programs
given in Section B.2 and Section B.3.

Problem 18.17. Prove that the kernel version of Program (SVMs5) is given by:

Dual of the Soft margin kernel SVM (SVMs5):

minimize
1

2

(
λ> µ>

)(
K +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+
p+ q

2
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.
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Chapter 19

Ridge Regression, Lasso, Elastic Net

In this chapter we discuss linear regression. This problem can be cast as a learning problem.
We observe a sequence of (distinct) pairs ((x1, y1), . . . , (xm, ym)) called a set of training data
(or predictors), where xi ∈ Rn and yi ∈ R, viewed as input-output pairs of some unknown
function f that we are trying to infer. The simplest kind of function is a linear function
f(x) = x>w, where w ∈ Rn is a vector of coefficients usually called a weight vector . Since
the problem is overdetermined and since our observations may be subject to errors, we can’t
solve for w exactly as the solution of the system Xw = y, where X is the m× n matrix

X =

x
>
1
...
x>m

 ,

where the row vectors x>i are the rows of X, and thus the xi ∈ Rn are column vectors. So
instead we solve the least-squares problem of minimizing ‖Xw − y‖2

2. In general there are
still infinitely many solutions so we add a regularizing term. If we add the term K ‖w‖2

2 to
the objective function J(w) = ‖Xw − y‖2

2, then we have ridge regression. This problem is
discussed in Section 19.1 where we derive the dual program. The dual has a unique solution
which yields a solution of the primal. However, the solution of the dual is given in terms of
the matrix XX> (whereas the solution of the primal is given in terms of X>X), and since
our data points xi are represented by the rows of the matrix X, we see that this solution
only involves inner products of the xi. This observation is the core of the idea of kernel
functions, which were discussed in Chapter 17. We also explain how to solve the problem of
learning an affine function f(x) = x>w + b.

In general the vectors w produced by ridge regression have few zero entries. In practice it
is highly desirable to obtain sparse solutions, that is vectors w with many components equal
to zero. This can be achieved by replacing the regularizing term K ‖w‖2

2 by the regularizing
term K ‖w‖1; that is, to use the `1-norm instead of the `2-norm; see Section 19.4. This
method has the exotic name of lasso regression. This time there is no closed-form solution,
but this is a convex optimization problem and there are efficient iterative methods to solve

695
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it. One of the best methods relies on ADMM (see Section 16.8) and is discussed in Section
19.4. The lasso method has some limitations, in particular when the number m of data is
smaller than the dimension n of the data. This happens in some applications in genetics and
medicine. Fortunately there is a way to combine the best features of ridge regression and
lasso, which is to use two regularizing terms:

1. An `2-term (1/2)K ‖w‖2
2 as in ridge regression (with K > 0).

2. An `1-term τ ‖w‖1 as in lasso.

This method is known as elastic net regression and is discussed in Section 19.6. It retains
most of the desirable features of ridge regression and lasso, and eliminates some of their
weaknesses. Furthermore, it is effectively solved by ADMM.

19.1 Ridge Regression

The problem of solving an overdetermined or underdetermined linear system Aw = y, where
A is an m×n matrix, arises as a “learning problem” in which we observe a sequence of data
((a1, y1), . . . , (am, ym)), viewed as input-output pairs of some unknown function f that we
are trying to infer, where the ai are the rows of the matrix A and yi ∈ R. The values yi
are sometimes called labels or responses . The simplest kind of function is a linear function
f(x) = x>w, where w ∈ Rn is a vector of coefficients usually called a weight vector , or
sometimes an estimator . In the statistical literature w is often denoted by β. Since the
problem is overdetermined and since our observations may be subject to errors, we can’t
solve for w exactly as the solution of the system Aw = y, so instead we solve the least-square
problem of minimizing ‖Aw − y‖2

2.

In Section 21.1 (Vol. I) we showed that this problem can be solved using the pseudo-
inverse. We know that the minimizers w are solutions of the normal equations A>Aw = A>y,
but when A>A is not invertible, such a solution is not unique so some criterion has to be
used to choose among these solutions.

One solution is to pick the unique vector w+ of smallest Euclidean norm ‖w+‖2 that
minimizes ‖Aw − y‖2

2. The solution w+ is given by w+ = A+y, where A+ is the pseudo-
inverse of A. The matrix A+ is obtained from an SVD of A, say A = V ΣU>. Namely,
A+ = UΣ+V >, where Σ+ is the matrix obtained from Σ by replacing every nonzero singular
value σi in Σ by σ−1

i , leaving all zeros in place, and then transposing. The difficulty with
this approach is that it requires knowing whether a singular value is zero or very small but
nonzero. A very small nonzero singular value σ in Σ yields a very large value σ−1 in Σ+, but
σ = 0 remains 0 in Σ+.

This discontinuity phenomenon is not desirable and another way is to control the size of
w by adding a regularization term to ‖Aw − y‖2, and a natural candidate is ‖w‖2.
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It is customary to rename each column vector a>i as xi (where xi ∈ Rn) and to rename
the input data matrix A as X, so that the row vector x>i are the rows of the m× n matrix
X

X =

x
>
1
...
x>m

 .

Our optimization problem, called ridge regression, is

Program (RR1):

minimize ‖y −Xw‖2 +K ‖w‖2 ,

which by introducing the new variable ξ = y −Xw can be rewritten as

Program (RR2):

minimize ξ>ξ +Kw>w

subject to

y −Xw = ξ,

where K > 0 is some constant determining the influence of the regularizing term w>w, and
we minimize over ξ and w.

The objective function of the first version of our minimization problem can be expressed
as

J(w) = ‖y −Xw‖2 +K ‖w‖2

= (y −Xw)>(y −Xw) +Kw>w

= y>y − 2w>X>y + w>X>Xw +Kw>w

= w>(X>X +KIn)w − 2w>X>y + y>y.

The matrixX>X is symmetric positive semidefinite andK > 0, so the matrixX>X+KIn
is positive definite. It follows that

J(w) = w>(X>X +KIn)w − 2w>X>y + y>y

is strictly convex, so by Theorem 4.13(2)-(4), it has a unique minimum iff ∇Jw = 0. Since

∇Jw = 2(X>X +KIn)w − 2X>y,

we deduce that
w = (X>X +KIn)−1X>y. (∗wp)

There is an interesting connection between the matrix (X>X+KIn)−1X> and the pseudo-
inverse X+ of X.
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Proposition 19.1. The limit of the matrix (X>X +KIn)−1X> when K > 0 goes to zero is
the pseudo-inverse X+ of X.

Proof. To show this let X = V ΣU> be a SVD of X. Then

(X>X +KIn) = UΣ>V >V ΣU> +KIn = U(Σ>Σ +KIn)U>,

so

(X>X +KIn)−1X> = U(Σ>Σ +KIn)−1U>UΣ>V > = U(Σ>Σ +KIn)−1Σ>V >.

The diagonal entries in the matrix (Σ>Σ +KIn)−1Σ> are

σi
σ2
i +K

, if σi > 0,

and zero if σi = 0. All nondiagonal entries are zero. When σi > 0 and K > 0 goes to 0,

lim
K 7→0

σi
σ2
i +K

= σ−1
i ,

so
lim
K 7→0

(Σ>Σ +KIn)−1Σ> = Σ+,

which implies that
lim
K 7→0

(X>X +KIn)−1X> = X+.

The dual function of the first formulation of our problem is a constant function (with
value the minimum of J) so it is not useful, but the second formulation of our problem yields
an interesting dual problem. The Lagrangian is

L(ξ, w, λ) = ξ>ξ +Kw>w + (y −Xw − ξ)>λ
= ξ>ξ +Kw>w − w>X>λ− ξ>λ+ λ>y,

with λ, ξ, y ∈ Rm. The Lagrangian L(ξ, w, λ), as a function of ξ and w with λ held fixed, is
obviously convex, in fact strictly convex.

To derive the dual function G(λ) we minimize L(ξ, w, λ) with respect to ξ and w. Since
L(ξ, w, λ) is (strictly) convex as a function of ξ and w, by Theorem 4.13(4), it has a minimum
iff its gradient ∇Lξ,w is zero (in fact, by Theorem 4.13(2), a unique minimum since the
function is strictly convex). Since

∇Lξ,w =

(
2ξ − λ

2Kw −X>λ

)
,

we get

λ = 2ξ

w =
1

2K
X>λ = X>

ξ

K
.
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The above suggests defining the variable α so that ξ = Kα, so we have λ = 2Kα and
w = X>α. Then we obtain the dual function as a function of α by substituting the above
values of ξ, λ and w back in the Lagrangian and we get

G(α) = K2α>α +Kα>XX>α− 2Kα>XX>α− 2K2α>α + 2Kα>y

= −Kα>(XX> +KIm)α + 2Kα>y.

This is a strictly concave function so by Theorem 4.13(4), its maximum is achieved iff
∇Gα = 0, that is,

2K(XX> +KIm)α = 2Ky,

which yields
α = (XX> +KIm)−1y.

Putting everything together we obtain

α = (XX> +KIm)−1y

w = X>α

ξ = Kα,

which yields
w = X>(XX> +KIm)−1y. (∗wd)

Earlier in (∗wp) we found that

w = (X>X +KIn)−1X>y,

and it is easy to check that

(X>X +KIn)−1X> = X>(XX> +KIm)−1.

If n < m it is cheaper to use the formula on the left-hand side, but if m < n it is cheaper to
use the formula on the right-hand side.

19.2 Ridge Regression; Learning an Affine Function

It is easy to adapt the above method to learn an affine function f(x) = x>w + b instead of
a linear function f(x) = x>w, where b ∈ R. We have the following optimization program

Program (RR3):

minimize ξ>ξ +Kw>w

subject to

y −Xw − b1 = ξ,
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with y, ξ,1 ∈ Rm and w ∈ Rn. Note that in Program (RR3) minimization is performed over
ξ, w and b, but b is not penalized in the objective function. As in Section 19.1, the objective
function is convex.

The Lagrangian associated with this program is

L(ξ, w, b, λ) = ξ>ξ +Kw>w − w>X>λ− ξ>λ− b1>λ+ λ>y.

Since L is convex as a function of ξ, b, w, by Theorem 4.13(4), it has a minimum iff ∇Lξ,b,w =
0. We get

λ = 2ξ

1>λ = 0

w =
1

2K
X>λ = X>

ξ

K
.

As before, if we set ξ = Kα we obtain λ = 2Kα, w = X>α, and

G(α) = −Kα>(XX> +KIm)α + 2Kα>y.

Since K > 0 and λ = 2Kα, the dual to ridge regression is the following program

Program (DRR3):

minimize α>(XX> +KIm)α− 2α>y

subject to

1>α = 0,

where the minimization is over α.

Observe that up to the factor 1/2, this problem satisfies the conditions of Proposition
6.3 with

A = (XX> +KIm)−1

b = y

B = 1m

f = 0,

and x renamed as α. Therefore, it has a unique solution (α, µ) (beware that λ = 2Kα is
not the λ used in Proposition 6.3, which we rename as µ), which is the unique solution of
the KKT-equations (

XX> +KIm 1m
1>m 0

)(
α
µ

)
=

(
y
0

)
.

Since the solution given by Proposition 6.3 is

µ = (B>AB)−1(B>Ab− f), α = A(b−Bµ),
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we get

µ = (1>(XX> +KIm)−11)−11>(XX> +KIm)−1y, α = (XX> +KIm)−1(y − µ1).

Note that the matrix B>AB is the scalar 1>(XX>+KIm)−11, which is the negative of the
Schur complement of XX> +KIm.

Interestingly b = µ, which is not obvious a priori.

Proposition 19.2. We have b = µ.

Proof. To prove this result we need to express α differently. Since µ is a scalar, µ1 = 1µ, so

µ1 = 1µ = (1>(XX> +KIm)−11)−111>(XX> +KIm)−1y,

and we obtain

α = (XX> +KIm)−1(Im − (1>(XX> +KIm)−11)−111>(XX> +KIm)−1)y. (∗α3)

Since w = X>α, we have

w = X>(XX> +KIm)−1(Im − (1>(XX> +KIm)−11)−111>(XX> +KIm)−1)y. (∗w3)

From ξ = Kα, we deduce that b is given by the equation

b1 = y −Xw −Kα.

Since w = X>α, using (∗α3) we obtain

b1 = y −Xw −Kα
= y − (XX> +KIm)α

= y − (Im − (1>(XX> +KIm)−11)−111>(XX> +KIm)−1)y

= (1>(XX> +KIm)−11)−111>(XX> +KIm)−1)y

= µ1,

and thus
b = µ = (1>(XX> +KIm)−11)−11>(XX> +KIm)−1y, (∗b3)

as claimed.

In summary the KKT-equations determine both α and µ, and so w = X>α and b as well.

There is also a useful expression of b as an average.

Since 1>1 = m and 1>α = 0, we get

b =
1

m
1>y − 1

m
1>Xw − 1

m
K1>α = y −

n∑
j=1

Xjwj,
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where y is the mean of y and Xj is the mean of the jth column of X. Therefore,

b = y −
n∑
j=1

Xjwj = y − (X1 · · · Xn)w,

where (X1 · · · Xn) is the 1× n row vector whose jth entry is Xj.

We will now show that solving the dual (DRR3) for α and obtaining w = X>α is
equivalent to solving our previous ridge regression Problem (RR2) applied to the centered

data ŷ = y−y1m and X̂ = X−X, where X is the m×n matrix whose jth column is Xj1m,
the vector whose coordinates are all equal to the mean Xj of the jth column Xj of X.

The expression
b = y − (X1 · · · Xn)w

suggests looking for an intercept term b (also called bias) of the above form, namely

Program (RR4):

minimize ξ>ξ +Kw>w

subject to

y −Xw − b1 = ξ

b = b̂+ y − (X1 · · · Xn)w,

with b̂ ∈ R. Again, in Program (RR4), minimization is performed over ξ, w, b and b̂, but b

and b̂ are not penalized.

Since
b1 = b̂1 + y1− (X11 · · · Xn1)w,

if X = (X11 · · · Xn1) is the m × n matrix whose jth column is the vector Xj1, then the
above program is equivalent to the program

Program (RR5):

minimize ξ>ξ +Kw>w

subject to

y −Xw − y1 +Xw − b̂1 = ξ,

where minimization is performed over ξ, w and b̂. If we write ŷ = y − y1 and X̂ = X −X,
then the above program becomes

Program (RR6):

minimize ξ>ξ +Kw>w

subject to

ŷ − X̂w − b̂1 = ξ,
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minimizing over ξ, w and b̂. If the solution to this program is ŵ, then b̂ is given by

b̂ = ŷ − (X̂1 · · · X̂n)ŵ = 0,

since the data ŷ and X̂ are centered. Therefore (RR6) is equivalent to ridge regression

without an intercept term applied to the centered data ŷ = y − y1 and X̂ = X −X,

Program (RR6′):

minimize ξ>ξ +Kw>w

subject to

ŷ − X̂w = ξ,

minimizing over ξ and w.

If ŵ is the optimal solution of this program given by

ŵ = X̂>(X̂X̂> +KIm)−1ŷ, (∗w6)

then b is given by
b = y − (X1 · · · Xn)ŵ.

Remark: Although this is not obvious a priori, the optimal solution w∗ of the Program
(RR3) given by (∗w3) is equal to the optimal solution ŵ of Program (RR6′) given by (∗w6).
We believe that it should be possible to prove the equivalence of these formulae but a proof
eludes us at this time. We leave this as an open problem. In practice the Program (RR6′)
involving the centered data appears to be the preferred one.

Example 19.1. Consider the data set (X, y1) with

X =



−10 11
−6 5
−2 4
0 0
1 2
2 −5
6 −4
10 −6


, y1 =



0
−2.5
0.5
−2
2.5
−4.2

1
4


as illustrated in Figure 19.1. We find that y = −0.0875 and (X1, X2) = (0.125, 0.875). For
the value K = 5, we obtain

w =

(
0.9207
0.8677

)
, b = −0.9618,
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for K = 0.1, we obtain

w =

(
1.1651
1.1341

)
, b = −1.2255,

and for K = 0.01,

w =

(
1.1709
1.1405

)
, b = −1.2318.

See Figure 19.2.

15-4
-2

15

0

10

Z

2
4

10 5

X

5 0

Y

0 -5
-5 -10

-10 -15

Figure 19.1: The data set (X, y1) of Example 19.1.

Figure 19.2: The graph of the plane f(x, y) = 1.1709x+ 1.1405y− 1.2318 as an approximate
fit to the data (X, y1) of Example 19.1.
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We conclude that the points (Xi, yi) (where Xi is the ith row of X) almost lie on the
plane of equation

x+ y − z − 1 = 0,

and that f is almost the function given by f(x, y) = 1.1x+ 1.1y− 1.2. See Figures 19.3 and
19.4.

Figure 19.3: The graph of the plane f(x, y) = 1.1x+ 1.1y− 1.2 as an approximate fit to the
data (X, y1) of Example 19.1.

Figure 19.4: A comparison of how the graphs of the planes corresponding to K = 1, 0.1, 0.01
and the salmon plane of equation f(x, y) = 1.1x + 1.1y − 1.2 approximate the data (X, y1)
of Example 19.1.

If we change y1 to

y2 =
(
0 −2 1 −1 2 −4 1 3

)>
,
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as evidenced by Figure 19.5, the exact solution is

w =

(
1
1

)
, b = −1,

and for K = 0.01, we find that

w =

(
0.9999
0.9999

)
, b = −0.9999.

Figure 19.5: The data (X, y2) of Example 19.1 is contained within the graph of the plane
f(x, y) = x+ y − 1.

We can see how the choice of K affects the quality of the solution (w, b) by computing

the norm ‖ξ‖2 of the error vector ξ = ŷ− X̂w. We notice that the smaller K is, the smaller
is this norm.

It is natural to wonder what happens if we also penalize b in program (RR3). Let us
add the term Kb2 to the objective function. Then we obtain the program

minimize ξ>ξ +Kw>w +Kb2

subject to

y −Xw − b1 = ξ,

minimizing over ξ, w and b.

This suggests treating b an an extra component of the weight vector w and by forming
the m × (n + 1) matrix [X 1] obtained by adding a column of 1’s (of dimension m) to the
matrix X, we obtain
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Program (RR3b):

minimize ξ>ξ +Kw>w +Kb2

subject to

y − [X 1]

(
w
b

)
= ξ,

minimizing over ξ, w and b.

This program is solved just as Program (RR2). In terms of the dual variable α, we get

α = ([X 1][X 1]> +KIm)−1y(
w
b

)
= [X 1]>α

ξ = Kα.

Thus b = 1>α. Observe that [X 1][X 1]> = XX> + 11>.

If n < m, it is preferable to use the formula(
w
b

)
= ([X 1]>[X 1] +KIn+1)−1[X 1]>y.

Since we also have the equation

y −Xw − b1 = ξ,

we obtain
1

m
1>y − 1

m
1>Xw − 1

m
b1>1 =

1

m
1>Kα,

so

y − (X1 · · · Xn)w − b =
1

m
Kb,

which yields

b =
m

m+K
(y − (X1 · · · Xn)w).

Remark: As a least squares problem, the solution is given in terms of the pseudo-inverse
[X 1]+ of [X 1] by (

w
b

)
= [X 1]+y.

Example 19.2. Applying Program (RR3b) to the data set of Example 19.1 with K = 0.01
yields

w =

(
1.1706
1.1401

)
, b = −1.2298.
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Figure 19.6: The graph of the plane f(x, y) = 1.1706x+ 1.1401y− 1.2298 as an approximate
fit to the data (X, y1) of Example 19.1.

See Figure 19.6. We can see how the choice of K affects the quality of the solution (w, b)
by computing the norm ‖ξ‖2 of the error vector ξ = y −Xw− b1m. As in Example 19.1 we
notice that the smaller K is, the smaller is this norm. We also observe that for a given value
of K, Program (RR6′) gives a slightly smaller value of ‖ξ‖2 than (RR3b) does.

As pointed out by Hastie, Tibshirani, and Friedman [39] (Section 3.4), a defect of the
approach where b is also penalized is that the solution for b is not invariant under adding a
constant c to each value yi. This is not the case for the approach using Program (RR6′).

19.3 Kernel Ridge Regression

One interesting aspect of the dual (of either (RR2) or (RR3)) is that it shows that the
solution w being of the form X>α, is a linear combination

w =
m∑
i=1

αixi

of the data points xi, with the coefficients αi corresponding to the dual variable λ = 2Kα
of the dual function, and with

α = (XX> +KIm)−1y.

If m is smaller than n, then it is more advantageous to solve for α. But what really makes
the dual interesting is that with our definition of X as

X =

x
>
1
...
x>m

 ,
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the matrix XX> consists of the inner products x>i xj, and similarly the function learned
f(x) = x>w can be expressed as

f(x) =
m∑
i=1

αix
>
i x,

namely that both w and f(x) are given in terms of the inner products x>i xj and x>i x.

This fact is the key to a generalization to ridge regression in which the input space Rn

is embedded in a larger (possibly infinite dimensional) Euclidean space F (with an inner
product 〈−,−〉) usually called a feature space, using a function

ϕ : Rn → F.

The problem becomes (kernel ridge regression)

Program (KRR2):

minimize ξ>ξ +K〈w,w〉
subject to

yi − 〈w,ϕ(xi)〉 = ξi, i = 1, . . . ,m,

minimizing over ξ and w. Note that w ∈ F . This problem is discussed in Shawe–Taylor and
Christianini [74] (Section 7.3).

We will show below that the solution is exactly the same:

α = (G +KIm)−1y

w =
m∑
i=1

αiϕ(xi)

ξ = Kα,

where G is the Gram matrix given by Gij = 〈ϕ(xi), ϕ(xj)〉. This matrix is also called the
kernel matrix and is often denoted by K instead of G.

In this framework we have to be a little careful in using gradients since the inner product
〈−,−〉 on F is involved and F could be infinite dimensional, but this causes no problem
because we can use derivatives, and by Proposition 3.5 we have

d〈−,−〉(u,v)(x, y) = 〈x, v〉+ 〈u, y〉.

This implies that the derivative of the map u 7→ 〈u, u〉 is

d〈−,−〉u(x) = 2〈x, u〉. (d1)
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Since the map u 7→ 〈u, v〉 (with v fixed) is linear, its derivative is

d〈−, v〉u(x) = 〈x, v〉. (d2)

The derivative of the Lagrangian

L(ξ, w, λ) = ξ>ξ +K〈w,w〉 −
m∑
i=1

λi〈ϕ(xi), w〉 − ξ>λ+ λ>y

with respect to ξ and w is

dLξ,w
(
ξ̃, w̃

)
= 2(ξ̃)>ξ − (ξ̃)>λ+

〈
2Kw −

m∑
i=1

λiϕ(xi), w̃

〉
,

where we used (d1) to calculate the derivative of ξ>ξ + K〈w,w〉 and (d2) to calculate the

derivative of −
∑m

i=1 λi〈ϕ(xi), w〉 − ξ>λ. We have dLξ,w
(
ξ̃, w̃

)
= 0 for all ξ̃ and w̃ iff

2Kw =
m∑
i=1

λiϕ(xi)

λ = 2ξ.

Again we define ξ = Kα, so we have λ = 2Kα, and

w =
m∑
i=1

αiϕ(xi).

Plugging back into the Lagrangian we get

G(α) = K2α>α +K
m∑

i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉 − 2K
m∑

i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉

− 2K2α>α + 2Kα>y

= −K2α>α−K
m∑

i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉+ 2Kα>y.

If G is the matrix given by Gij = 〈ϕ(xi), ϕ(xj)〉, then we have

G(α) = −Kα>(G +KIm)α + 2Kα>y.

The function G is strictly concave, so by Theorem 4.13(4) it has a maximum for

α = (G +KIm)−1y,

as claimed earlier.
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As in the standard case of ridge regression, if F = Rn (but the inner product 〈−,−〉
is arbitrary), we can adapt the above method to learn an affine function f(w) = x>w + b
instead of a linear function f(w) = x>w, where b ∈ R. This time we assume that b is of the
form

b = y − 〈w, (X1 · · · Xn)〉,

where Xj is the j column of the m × n matrix X whose ith row is the transpose of the
column vector ϕ(xi), and where (X1 · · · Xn) is viewed as a column vector. We have the
minimization problem

Program (KRR6′):

minimize ξ>ξ +K〈w,w〉
subject to

ŷi − 〈w, ϕ̂(xi)〉 = ξi, i = 1, . . . ,m,

minimizing over ξ and w, where ϕ̂(xi) is the n-dimensional vector ϕ(xi)− (X1 · · · Xn).

The solution is given in terms of the matrix Ĝ defined by

Ĝij = 〈ϕ̂(xi), ϕ̂(xj)〉,

as before. We get

α = (Ĝ +KIm)−1ŷ,

and according to a previous computation, b is given by

b = y − 1

m
1Ĝα.

We explained in Section 17.4 how to compute the matrix Ĝ from the matrix G.

Since the dimension of the feature space F may be very large, one might worry that
computing the inner products 〈ϕ(xi), ϕ(xj)〉 might be very expensive. This is where kernel
functions come to the rescue. A kernel function κ for an embedding ϕ : Rn → F is a map
κ : Rn × Rn → R with the property that

κ(u, v) = 〈ϕ(u), ϕ(v)〉 for all u, v ∈ Rn.

If κ(u, v) can be computed in a reasonably cheap way, and if ϕ(u) can be computed cheaply,
then the inner products 〈ϕ(xi), ϕ(xj)〉 (and 〈ϕ(xi), ϕ(x)〉) can be computed cheaply; see
Chapter 17. Fortunately there are good kernel functions. Two very good sources on kernel
methods are Schölkopf and Smola [64] and Shawe–Taylor and Christianini [74].
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19.4 Lasso Regression (`1-Regularized Regression)

The main weakness of ridge regression is that the estimated weight vector w usually has
many nonzero coefficients. As a consequence, ridge regression does not scale up well. In
practice we need methods capable of handling millions of parameters, or more. A way to
encourage sparsity of the vector w, which means that many coordinates of w are zero, is to
replace the quadratic penalty function τw>w = τ ‖w‖2

2 by the penalty function τ ‖w‖1, with
the `2-norm replaced by the `1-norm.

This method was first proposed by Tibshirani around 1996, under the name lasso, which
stands for “least absolute selection and shrinkage operator.” This method is also known as
`1-regularized regression, but this is not as cute as “lasso,” which is used predominantly.

Given a set of training data {(x1, y1), . . . , (xm, ym)}, with xi ∈ Rn and yi ∈ R, if X is the
m× n matrix

X =

x
>
1
...
x>m

 ,

in which the row vectors x>i are the rows of X, then lasso regression is the following opti-
mization problem

Program (lasso1):

minimize
1

2
ξ>ξ + τ ‖w‖1

subject to

y −Xw = ξ,

minimizing over ξ and w, where τ > 0 is some constant determining the influence of the
regularizing term ‖w‖1.

The objective function expressed in terms of w is

J(w) =
1

2
(Xw − y)>(Xw − y) + τ ‖w‖1

=
1

2
w>X>Xw − w>X>y +

1

2
y>y + τ ‖w‖1 .

This function is convex, but not necessarily strictly convex. Since it is nonnegative, it has a
minimum, but in general it is not achieved by a unique w.

The difficulty with the regularizing term ‖w‖1 = |w1| + · · · + |wn| is that the map w 7→
‖w‖1 is not differentiable for all w. This difficulty can be overcome by using subgradients,
but the dual of the above program can also be obtained in an elementary fashion by using
a trick that we already used, which is that if x ∈ R, then

|x| = max{x,−x}.
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Using this trick, by introducing a vector ε ∈ Rn of nonnegative variables, we can rewrite
lasso minimization as follows:

Program lasso regularization (lasso2):

minimize
1

2
ξ>ξ + τ1>n ε

subject to

y −Xw = ξ

w ≤ ε

− w ≤ ε.

minimizing over ξ, w and ε, with y, ξ ∈ Rm, and w, ε,1n ∈ Rn.

The constraints w ≤ ε and −w ≤ ε are equivalent to |wi| ≤ εi for i = 1, . . . , n, so for an
optimal solution we must have ε ≥ 0 and |wi| = εi, that is, ‖w‖1 = ε1 + · · ·+ εn.

The Lagrangian L(ξ, w, ε, λ, α+, α−) is given by

L(ξ, w, ε, λ, α+, α−) =
1

2
ξ>ξ + τ1>n ε+ λ>(y −Xw − ξ)

+ α>+(w − ε) + α>−(−w − ε)

=
1

2
ξ>ξ − ξ>λ+ λ>y

+ ε>(τ1n − α+ − α−) + w>(α+ − α− −X>λ),

with λ ∈ Rm and α+, α− ∈ Rn
+. Since the objective function is convex and the constraints

are affine (and thus qualified), the Lagrangian L has a minimum with respect to the primal
variables, ξ, w, ε iff ∇Lξ,w,ε = 0. Since the gradient ∇Lξ,w,ε is given by

∇Lξ,w,ε =

 ξ − λ
α+ − α− −X>λ
τ1n − α+ − α−

 ,

we obtain the equations

ξ = λ

α+ − α− = X>λ

α+ + α− = τ1n.

Using these equations, the dual function G(λ, α+, α−) = minξ,w,ε L is given by

G(λ, α+, α−) =
1

2
ξ>ξ − ξ>λ+ λ>y =

1

2
λ>λ− λ>λ+ λ>y

= −1

2
λ>λ+ λ>y = −1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
,
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so

G(λ, α+, α−) = −1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
.

Since α+, α− ≥ 0, for any i ∈ {1, . . . , n} the minimum of (α+)i − (α−)i is −τ , and the
maximum is τ . If we recall that for any z ∈ Rn,

‖z‖∞ = max
1≤i≤n

|zi|,

it follows that the constraints

α+ + α− = τ1n

X>λ = α+ − α−

are equivalent to ∥∥X>λ∥∥∞ ≤ τ.

The above is equivalent to the 2n constraints

−τ ≤ (X>λ)i ≤ τ, 1 ≤ i ≤ n.

Therefore, the dual lasso program is given by

maximize − 1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
subject to ∥∥X>λ∥∥∞ ≤ τ,

which (since ‖y‖2
2 is a constant term) is equivalent to

Program (Dlasso2):

minimize
1

2
‖y − λ‖2

2

subject to ∥∥X>λ∥∥∞ ≤ τ,

minimizing over λ ∈ Rm.

One way to solve lasso regression is to use the dual program to find λ = ξ, and then to
use linear programming to find w by solving the linear program arising from the lasso primal
by holding ξ constant. The best way is to use ADMM as explained in Section 16.8(4). There
are also a number of variations of gradient descent; see Hastie, Tibshirani, and Wainwright
[40].

In theory, if we know the support of w and the signs of its components, then w is
determined as we now explain.
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In view of the constraint y −Xw = ξ and the fact that for an optimal solution we must
have ξ = λ, the following condition must hold:∥∥X>(Xw − y)

∥∥
∞ ≤ τ. (∗)

Also observe that for an optimal solution, we have

1

2
‖y −Xw‖2

2 + w>X>(y −Xw) =
1

2
‖y‖2 − w>X>y +

1

2
w>X>Xw + w>X>y − w>X>Xw

=
1

2

(
‖y‖2

2 − ‖Xw‖
2
2

)
=

1

2

(
‖y‖2

2 − ‖y − λ‖
2
2

)
= G(λ).

Since the objective function is convex and the constaints are qualified, by Theorem
14.19(2) the duality gap is zero, so for optimal solutions of the primal and the dual, G(λ) =
L(ξ, w, ε), that is

1

2
‖y −Xw‖2

2 + w>X>(y −Xw) =
1

2
‖ξ‖2

2 + τ ‖w‖1 =
1

2
‖y −Xw‖2

2 + τ ‖w‖1 ,

which yields the equation
w>X>(y −Xw) = τ ‖w‖1 . (∗∗1)

The above is the inner product of w and X>(y − Xw), so whenever wi 6= 0, since
‖w‖1 = |w1|+ · · ·+ |wn|, in view of (∗), we must have (X>(y −Xw))i = τsgn(wi). If

S = {i ∈ {1, . . . , n} | wi 6= 0}, (†)

if XS denotes the matrix consisting of the columns of X indexed by S, and if wS denotes
the vector consisting of the nonzero components of w, then we have

X>S (y −XSwS) = τsgn(wS). (∗∗2)

We also have ∥∥X>
S

(y −XSwS)
∥∥
∞ ≤ τ, (∗∗3)

where S is the complement of S.

Equation (∗∗2) yields
X>SXSwS = X>S y − τsgn(wS),

so if X>SXS is invertible (which will be the case if the columns of X are linearly independent),
we get

wS = (X>SXS)−1(X>S y − τsgn(wS)). (∗∗4)

In theory, if we know the support of w and the signs of its components, then wS is
determined, but in practice this is useless since the problem is to find the support and the
sign of the solution.
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19.5 Lasso Regression; Learning an Affine Function

In the preceding section we made the simplifying assumption that we were trying to learn
a linear function f(x) = x>w. To learn an affine function f(x) = x>w + b, we solve the
following optimization problem

Program (lasso3):

minimize
1

2
ξ>ξ + τ1>n ε

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε.

Observe that as in the case of ridge regression, minimization is performed over ξ, w, ε and
b, but b is not penalized in the objective function.

The Lagrangian associated with this optimization problem is

L(ξ, w, ε, b, λ, α+, α−) =
1

2
ξ>ξ − ξ>λ+ λ>y − b1>mλ

+ ε>(τ1n − α+ − α−) + w>(α+ − α− −X>λ),

so by setting the gradient ∇Lξ,w,ε,b to zero we obtain the equations

ξ = λ

α+ − α− = X>λ

α+ + α− = τ1n

1>mλ = 0.

Using these equations, we find that the dual function is also given by

G(λ, α+, α−) = −1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
,

and the dual lasso program is given by

maximize − 1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
subject to ∥∥X>λ∥∥∞ ≤ τ

1>mλ = 0,

which is equivalent to
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Program (Dlasso3):

minimize
1

2
‖y − λ‖2

2

subject to ∥∥X>λ∥∥∞ ≤ τ

1>mλ = 0,

minimizing over λ ∈ Rm.

Once λ = ξ and w are determined, we obtain b using the equation

b1m = y −Xw − ξ,

and since 1>m1m = m and 1>mξ = 1>mλ = 0, the above yields

b =
1

m
1>my −

1

m
1>mXw −

1

m
1>mξ = y −

n∑
j=1

Xjwj,

where y is the mean of y and Xj is the mean of the jth column of X.

The equation

b = b̂+ y −
n∑
j=1

Xjwj = b̂+ y − (X1 · · · Xn)w,

can be used as in ridge regression, (see Section 19.2), to show that the Program (lasso3) is
equivalent to applying lasso regression (lasso2) without an intercept term to the centered

data, by replacing y by ŷ = y − y1 and X by X̂ = X −X. Then b is given by

b = y − (X1 · · · Xn)ŵ,

where ŵ is the solution given by (lasso2). This is the method described by Hastie, Tibshirani,
and Wainwright [40] (Section 2.2).

Example 19.3. We can create a data set (X, y) where X a 100×5 matrix and y is a 100×1
vector using the following Matlab program in which the command randn creates an array of
normally distributed numbers.

X = randn(100,5);

ww = [0; 2; 0; -3; 0];

y = X*ww + randn(100,1)*0.1;
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The purpose of the third line is to add some small noise to the “output” X ∗ ww. The first
five rows of X are 

−1.1658 −0.0679 −1.6118 0.3199 0.4400
−1.1480 −0.1952 −0.0245 −0.5583 −0.6169
0.1049 −0.2176 −1.9488 −0.3114 0.2748
0.7223 −0.3031 1.0205 −0.5700 0.6011
2.5855 0.0230 0.8617 −1.0257 0.0923

 ,

and the first five rows of y are

y =


−1.0965
1.2155
0.4324
1.1902
3.1346

 .

We ran the program for lasso using ADMM (see Problem 16.7) with various values of ρ and
τ , including ρ = 1 and ρ = 10. We observed that the program converges a lot faster for
ρ = 10 than for ρ = 1. We plotted the values of the five components of w(τ) for values of
τ from τ = 0 to τ = 0.5 by increment of 0.02, and observed that the first, third, and fifth
coordinate drop basically linearly to zero (a value less that 10−4) around τ = 0.2. See Figures
19.7, 19.8, and 19.9. This behavior is also observed in Hastie, Tibshirani, and Wainwright
[40] (Section 2.2).
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Figure 19.7: First and second component of w.

For τ = 0.02, we have

w =


0.00003
2.01056
−0.00004
−2.99821
0.00000

 , b = 0.00135.
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Figure 19.8: Third and fourth component of w.
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Figure 19.9: Fifth component of w.

This weight vector w is very close to the original vector ww = [0; 2; 0;−3; 0] that we
used to create y. For large values of τ , the weight vector is essentially the zero vector. This
happens for τ = 235, where every component of w is less than 10−5.

Another way to find b is to add the term (C/2)b2 to the objective function, for some
positive constant C, obtaining the program

Program(lasso4):

minimize
1

2
ξ>ξ + τ1>n ε+

1

2
Cb2

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε,
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minimizing over ξ, w, ε and b.

This time the Lagrangian is

L(ξ, w, ε, b, λ, α+, α−) =
1

2
ξ>ξ − ξ>λ+ λ>y +

C

2
b2 − b1>mλ

+ ε>(τ1n − α+ − α−) + w>(α+ − α− −X>λ),

so by setting the gradient ∇Lξ,w,ε,b to zero we obtain the equations

ξ = λ

α+ − α− = X>λ

α+ + α− = τ1n

Cb = 1>mλ.

Thus b is also determined, and the dual lasso program is identical to the first lasso dual
(Dlasso2), namely

minimize
1

2
‖y − λ‖2

2

subject to ∥∥X>λ∥∥∞ ≤ τ,

minimizing over λ.

Since the equations ξ = λ and

y −Xw − b1m = ξ

hold, from Cb = 1>mλ we get

1

m
1>my −

1

m
1>mXw − b

1

m
1>m1 =

1

m
1>mλ,

that is

y − (X1 · · · Xn)w − b =
C

m
b,

which yields

b =
m

m+ C
(y − (X1 · · · Xn)w).

As in the case of ridge regression, a defect of the approach where b is also penalized is that
the solution for b is not invariant under adding a constant c to each value yi

It is interesting to compare the behavior of the methods:

1. Ridge regression (RR6′) (which is equivalent to (RR3)).
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2. Ridge regression (RR3b), with b penalized (by adding the term Kb2 to the objective
function).

3. Least squares applied to [X 1].

4. (lasso3).

When n ≤ 2 and K and τ are small and of the same order of magnitude, say 0.1 or
0.01, there is no noticeable difference. We ran out programs on the data set of 200 points

generated by the following Matlab program:

X14 = 15*randn(200,1);

ww14 = 1;

y14 = X14*ww14 + 10*randn(200,1) + 20;

The result is shown in Figure 19.10, with the following colors: Method (1) in magenta,
Method (2) in red, Method (3) in blue, and Method (4) in cyan. All four lines are identical.
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Figure 19.10: Comparison of the four methods with K = τ = 0.1.

In order to see a difference we also ran our programs with K = 1000 and τ = 10000; see
Figure 19.11.

As expected, due to the penalization of b, Method (3) yields a significantly lower line (in
red), and due to the large value of τ , the line corresponding to lasso (in cyan) has a smaller
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Figure 19.11: Comparison of the four methods with K = 1000, τ = 10000.

slope. Method (1) (in magenta) also has a smaller slope but still does not deviate that much
from least squares (in blue). It is also interesting to experiment on data sets where n is
larger (say 20, 50).

19.6 Elastic Net Regression

The lasso method is unsatisfactory when n (the dimension of the data) is much larger than
the number m of data, because it only selects m coordinates and sets the others to values
close to zero. It also has problems with groups of highly correlated variables. A way to
overcome this problem is to add a “ridge-like” term (1/2)Kw>w to the objective function.
This way we obtain a hybrid of lasso and ridge regression called the elastic net method and
defined as follows:

Program (elastic net):

minimize
1

2
ξ>ξ +

1

2
Kw>w + τ1>n ε

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε,

where K > 0 and τ ≥ 0 are two constants controlling the influence of the `2-regularization
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and the `1-regularization.1 Observe that as in the case of ridge regression, minimization is
performed over ξ, w, ε and b, but b is not penalized in the objective function. We can express
the objective function directly in terms of w, b and ‖w‖1, as

J(w, b) =
1

2
(Xw + b1m − y)>(Xw + b1m − y) +

1

2
Kw>w + τ ‖w‖1 .

We leave it as an exercise to show that by expanding the first term we get

J(w, b) =
1

2

(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
−
(
w> b

)(X>y
1>my

)
+

1

2
y>y + τ ‖w‖1 .

We also leave it as an exercise to show that the matrix(
X>X +KIn X>1m

1>mX m

)
is symmetric positive definite, and that as a consequence, J is strictly convex. Since it is
nonnegative, it has a unique minimum, a fact that is not obvious at first glance.

The Lagrangian associated with our first formulation of this optimization problem is

L(ξ, w, ε, b, λ, α+, α−) =
1

2
ξ>ξ − ξ>λ+ λ>y − b1>mλ

+ ε>(τ1n − α+ − α−) + w>(α+ − α− −X>λ) +
1

2
Kw>w,

so by setting the gradient ∇Lξ,w,ε,b to zero we obtain the equations

ξ = λ

Kw = −(α+ − α− −X>λ) (∗w)

α+ + α− − τ1n = 0

1>mλ = 0.

We find that (∗w) determines w. Using these equations, we can find the dual function
but in order to solve the dual using ADMM, since λ ∈ Rm, it is more convenient to write
λ = λ+ − λ−, with λ+, λ− ∈ Rm

+ (recall that α+, α− ∈ Rn
+). As in the derivation of the dual

of ridge regression, we rescale our variables by defining β+, β−, µ+, µ− such that

α+ = Kβ+, α− = Kβ−, λ+ = Kµ+, λ− = Kµ−.

We also let µ = µ+ − µ− so that λ = Kµ. Then 1>mλ = 0 is equivalent to

1>mµ+ − 1>mµ− = 0,

1Some of the literature denotes K by λ2 and τ by λ1, but we prefer not to adopt this notation since we
use λ, µ etc. to denote Lagrange multipliers.
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and since ξ = λ = Kµ, we have

ξ = K(µ+ − µ−)

β+ + β− =
τ

K
1n.

Using (∗w) we can write

w = −(β+ − β− −X>µ) = −β+ + β− +X>µ+ −X>µ−

=
(
−In In X> −X>

)
β+

β−
µ+

µ−

 .

Then we have

(
−In In X> −X>

)> (−In In X> −X>
)

=


−In
In
X
−X

(−In In X> −X>
)

=


In −In −X> X>

−In In X> −X>
−X X XX> −XX>
X −X −XX> XX>

 .

If we define the symmetric positive semidefinite 2(n+m)× 2(n+m) matrix Q as

Q =


In −In −X> X>

−In In X> −X>
−X X XX> −XX>
X −X −XX> XX>

 ,

then

1

2
w>w =

1

2

(
β>+ β>− µ>+ µ>−

)
Q


β+

β−
µ+

µ−

 .

As a consequence, using (∗w) and the fact that ξ = Kµ, we find that the dual function is
given by

G(µ, β+, β−) =
1

2
ξ>ξ − ξ>λ+ λ>y + w>(α+ − α− −X>λ) +

1

2
Kw>w

=
1

2
ξ>ξ −Kξ>µ+Kµ>y +Kw>(β+ − β− −X>µ) +

1

2
Kw>w

=
1

2
K2µ>µ−K2µ>µ+Ky>µ−Kw>w +

1

2
Kw>w

= −1

2
K2µ>µ− 1

2
Kw>w +Ky>µ.
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But

µ =
(
Im −Im

)(µ+

µ−

)
,

so
1

2
µ>µ =

1

2

(
µ>+ µ>−

)( Im −Im
−Im Im

)(
µ+

µ−

)
,

so we get

G(β+, β−, µ+, µ−) = −1

2
K
(
β>+ β>− µ>+ µ>−

)
P


β+

β−
µ+

µ−

−Kq>

β+

β−
µ+

µ−


with

P = Q+K


0n,n 0n,n 0n,m 0n,m
0n,n 0n,n 0n,m 0n,m
0m,n 0m,n Im −Im
0m,n 0m,n −Im Im



=


In −In −X> X>

−In In X> −X>
−X X XX> +KIm −XX> −KIm
X −X −XX> −KIm XX> +KIm

 ,

and

q =


0n
0n
−y
y

 .

The constraints are the equations

β+ + β− =
τ

K
1n

1>mµ+ − 1>mµ− = 0,

which correspond to the (n+ 1)× 2(n+m) matrix

A =

(
In In 0n,m 0n,m
0>n 0>n 1>m −1>m

)
and the right-hand side

c =

(
τ
K

1n
0

)
.

Since K > 0, the dual of elastic net is equivalent to
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Program (Dual Elastic Net):

minimize
1

2

(
β>+ β>− µ>+ µ>−

)
P


β+

β−
µ+

µ−

+ q>


β+

β−
µ+

µ−


subject to

A


β+

β−
µ+

µ−

 = c,

β+, β− ∈ Rn
+, µ+, µ− ∈ Rm

+ .

Once ξ = Kµ = K(µ+ − µ−) and w are determined by (∗w), we obtain b using the
equation

b1m = y −Xw − ξ,

which as in Section 19.5 yields

b = y −
n∑
j=1

Xjwj,

where y is the mean of y and Xj is the mean of the jth column of X.

We leave it as an easy exercise to show that A has rank n + 1. Then we can solve the
above program using ADMM, and we have done so. This very similar to what is done in
Section 20.3, and hence the details are left as an exercise.

Observe that when τ = 0, the elastic net method reduces to ridge regression. As K tends
to 0 the elastic net method tends to lasso, but K = 0 is not an allowable value since τ/0 is
undefined. Anyway, if we get rid of the constraint

β+ + β− =
τ

K
1n

the corresponding optimization program not does determine w. Experimenting with our
program we found that convergence becomes very slow for K < 10−3. What we can do if K
is small, say K < 10−3, is to run lasso. A nice way to “blend” ridge regression and lasso is
to call the elastic net method with K = C(1− θ) and τ = Cθ, where 0 ≤ θ < 1 and C > 0.

Running the elastic net method on the data set (X14, y14) of Section 19.5 with K =
τ = 0.5 shows absolutely no difference, but the reader should conduct more experiments to
see how elastic net behaves as K and τ are varied (the best way to do this is to use θ as
explained above). Here is an example involving a data set (X20, y20) where X20 is a 50×30
matrix generated as follows:
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X20 = randn(50,30);

ww20 = [0; 2; 0; -3; 0; -4; 1; 0; 2; 0; 2; 3; 0; -5; 6; 0; 1; 2; 0; 10;

0; 0; 3; 4; 5; 0; 0; -6; -8; 0];

y20 = X20*ww20 + randn(50,1)*0.1 + 5;

Running our program with K = 0.01 and τ = 0.99, and then with K = 0.99 and τ = 0.01,
we get the following weight vectors (in the left column is the weight vector corresponding to
K = 0.01 and τ = 0.99):

0.0254 0.2007

1.9193 2.0055

0.0766 0.0262

-3.0014 -2.8008

0.0512 0.0089

-3.8815 -3.7670

0.9591 0.8552

-0.0086 -0.3243

1.9576 1.9080

-0.0077 -0.1041

1.9881 2.0566

2.9223 2.8346

-0.0046 -0.0832

-4.9989 -4.8332

5.8640 5.4598

-0.0207 -0.2141

0.8285 0.8585

1.9310 1.8559

0.0046 0.0413

9.9232 9.4836

-0.0216 0.0303

0.0453 -0.0193

2.9384 3.0004

4.0525 3.9753

4.8723 4.6530

0.0767 0.1192

0.0132 -0.0203

-5.9750 -5.7537

-7.9764 -7.7594

-0.0054 0.0528

Generally, the numbers in the left column, which are more “lasso-like,” have clearer zeros
and nonzero values closer to those of the weight vector ww20 that was used to create the
data set. The value of b corresponding to the first call is b = 5.1372, and the value of b
corresponding to the second call is b = 5.208.
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We have observed that lasso seems to converge much faster than elastic net when K <
10−3. For example, running the above data set with K = 10−3 and τ = 0.999 requires 140520
steps to achieve primal and dual residuals less than 10−7, but lasso only takes 86 steps to
achieve the same degree of convergence. We observed that the larger K is the faster is the
convergence. This could be attributed to the fact that the matrix P becomes more “positive
definite.” Another factor is that ADMM for lasso solves an n×n linear system, but ADMM
for elastic net solves a 2(n + m)× 2(n + m) linear system. So even though elastic net does
not suffer from some of the undesirable properties of ridge regression and lasso, it appears to
have a slower convergence rate, in fact much slower when K is small (say K < 10−3). It also
appears that elastic net may be too expensive a choice if m is much larger than n. Further
investigations are required to gain a better understanding of the convergence issue.

19.7 Summary

The main concepts and results of this chapter are listed below:

• Ridge regression.

• Kernel ridge regression.

• Kernel functions.

• Lasso regression.

• Elastic net regression.

19.8 Problems

Problem 19.1. Check the formula

(X>X +KIn)−1X> = X>(XX> +KIm)−1,

stated in Section 19.1.

Problem 19.2. Implement the ridge regression method described in Section 19.1 in Matlab.
Also implement ridge regression with intercept and compare solving Program (DRR3) and
Program (RR6′) using centered data.

Problem 19.3. Implement the ridge regression with intercept method (RR3b) in Matlab

and compare it with solving (RR6′) using centered data.

Problem 19.4. Verify that (lasso3) is equivalent to (lasso2) applied to the centered data

ŷ = y − y1 and X̂ = X −X.

Problem 19.5. Verify the fomulae obtained for the kernel ridge regression program (KRR6′).
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Problem 19.6. Implement in Matlab and test (lasso3) for various values of ρ and τ . Write
a program to plot the coordinates of w as a function of τ . Compare the behavior of lasso
with ridge regression (RR6′), (RR3b) (b penalized), and with least squares.

Problem 19.7. Check the details of the derivation of the dual of elastic net.

Problem 19.8. Write a Matlab program, solving the dual of elastic net; use inspiration
from Section 20.3. Run tests to compare the behavior of ridge regression, lasso, and elastic
net.

Problem 19.9. Prove that the elastic net method has a unique minimizer.

Problem 19.10. Prove that the matrix

P =


In −In −X> X>

−In In X> −X>
−X X XX> +KIm −XX> −KIm
X −X −XX> −KIm XX> +KIm


is almost positive definite, in the sense that

(
β>+ β>− µ>+ µ>−

)
P


β+

β−
µ+

µ−

 = 0

if and only if β+ = β− and µ+ = µ−, that is, β = 0 and µ = 0.
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Chapter 20

ν-SV Regression

20.1 ν-SV Regression; Derivation of the Dual

Let {(x1, y1), . . . , (xm, ym)} be a set of observed data usually called a set of training data,
with xi ∈ Rn and yi ∈ R. As in Chapter 19, we form the m × n matrix X where the
row vectors x>i are the rows of X. Our goal is to learn an affine function f of the form
f(x) = x>w + b that fits the set of training data, but does not penalize errors below some
given ε ≥ 0. Geometrically, we view the pairs (xi, yi) are points in Rn+1, and we try to fit a
hyperplane Hw,b of equation

(w> − 1)

(
x
z

)
+ b = w>x− z + b = 0

that best fits the set of points (xi, yi) (where (x, z) ∈ Rn+1). We seek an ε > 0 such that
most points (xi, yi) are inside the slab (or tube) of width 2ε bounded by the hyperplane
Hw,b−ε of equation

(w> − 1)

(
x
z

)
+ b− ε = w>x− z + b− ε = 0

and the hyperplane Hw,b+ε of equation

(w> − 1)

(
x
z

)
+ b+ ε = w>x− z + b+ ε = 0.

Observe that the hyperplanes Hw,b−ε, Hw,b and Hw,b+ε intersect the z-axis when x = 0 for
the values (b− ε, b, b + ε). Since ε ≥ 0, the hyperplane Hw,b−ε is below the hyperplane Hw,b

which is below the hyperplane Hw,b+ε. We refer to the lower hyperplane Hw,b−ε as the blue
margin, to the upper hyperplane Hw,b+ε as the red margin, and to the hyperplane Hw,b as
the best fit hyperplane. Also note that since the term −z appears in the equations of these
hyperplanes, points for which w>x − z + b ≤ 0 are above the hyperplane Hw,b, and points
for which w>x − z + b ≥ 0 are below the hyperplane Hw,b (and similarly for Hw,b−ε and

731
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Hb+ε). The region bounded by the hyperplanes Hw,b−ε and Hb+ε (which contains the best fit
hyperplane Hw,b) is called the ε-slab.

We also allow errors by allowing the point (xi, yi) to be outside of the ε-slab but in the
slab between the hyperplane Hw,b−ε−ξi of equation

(w> − 1)

(
x
z

)
+ b− ε− ξi = w>x− z + b− ε− ξi = 0

for some ξi > 0 (which is below the blue margin hyperplane Hw,b−ε) and the hyperplane
Hw,b+ε+ξ′i

of equation

(w> − 1)

(
x
z

)
+ b+ ε+ ξ′i = w>xi − z + b+ ε+ ξ′i = 0

for some ξ′i > 0 (which is above the red margin hyperplane Hw,b+ε),
so that w>xi − yi + b− ε− ξi ≤ 0 and w>xi − yi + b+ ε+ ξ′i ≥ 0, that is,

f(x)− yi = w>xi + b− yi ≤ ε+ ξi,

−(f(x)− yi) = −w>xi − b+ yi ≤ ε+ ξ′i.

Our goal is to minimize ε and the errors ξi and ξ′i. See Figure 20.1. The trade off between

w  x -z + b + є = 0

T

є

є

ξ

ξ
i

i

T

T

w  x -z + b - є
 = 0w  x -z + b = 0

‘

Figure 20.1: The ε-slab around the graph of the best fit affine function f(x) = x>w + b.

the size of ε and the size of the slack variables ξi and ξ′i is achieved by using two constants
ν ≥ 0 and C > 0. The method of ν-support vector regression, for short ν-SV regression, is
specified by the following minimization problem:
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Program ν-SV Regression:

minimize
1

2
w>w + C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
subject to

w>xi + b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− w>xi − b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m

ε ≥ 0,

minimizing over the variables w, b, ε, ξ, and ξ′. The constraints are affine. The problem is to
minimize ε and the errors ξi, ξ

′
i so that the `1-error is “squeezed down” to zero as much as

possible, in the sense that the right-hand side of the inequality

m∑
i=1

|yi − x>i w − b| ≤ mε+
m∑
i=1

ξi +
m∑
i=1

ξ′i

is as small as possible. As shown by Figure 20.2, the region associated with the constraint
w>xi − z + b ≤ ε contains the ε-slab. Similarly, as illustrated by Figure 20.3, the region
associated with the constraint w>xi − z + b ≥ −ε, equivalently −w>xi + z − b ≤ ε, also
contains the ε-slab.

 w  x -z + b + є = 0

T

w   x -z + b > єT

z =
 w  x + b

T

ξ i

T

ξ i

T w  x -z + b - є = 0

 w  x -z + b - є = 0

w   x -z + b < єT

Figure 20.2: The two blue half spaces associated with the hyperplane w>xi − z + b = ε.

Observe that if we require ε = 0, then the problem is equivalent to minimizing

‖y −Xw − b1‖1 +
1

2
w>w.
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 w  x -z + b + є = 0

T

ξ i

w   x - z  + b  > - єT

T

ξ i

 w  x -z + b - є = 0

 w  x -z + b + є = 0

T

‘

‘

w   x - z  + b  < - єT

Figure 20.3: The two red half spaces associated with the hyperplane w>xi − z + b = −ε.

Thus it appears that the above problem is the version of Program (RR3) (see Section 19.2)
in which the `2-norm of y−Xw−b1 is replaced by its `1-norm. This a sort of “dual” of lasso
(see Section 19.5) where (1/2)w>w = (1/2) ‖w‖2

2 is replaced by τ ‖w‖1, and ‖y −Xw − b1‖1

is replaced by ‖y −Xw − b1‖2
2.

Proposition 20.1. For any optimal solution, the equations

ξiξ
′
i = 0, i = 1, . . . ,m (ξξ′)

hold. If ε > 0, then the equations

w>xi + b− yi = ε+ ξi

−w>xi − b+ yi = ε+ ξ′i

cannot hold simultaneously.

Proof. For an optimal solution we have

−ε− ξ′i ≤ w>xi + b− yi ≤ ε+ ξi.

If w>xi + b− yi ≥ 0, then ξ′i = 0 since the inequality

−ε− ξ′i ≤ w>xi + b− yi

is trivially satisfied (because ε, ξ′i ≥ 0), and if w>xi + b − yi ≤ 0, then similarly ξi = 0. See
Figure 20.4.
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T

w   x -z +b  < 0T

z = w  x + b
T

ξ i

‘

T

ξ i

T

ξ i

z = w  x + b
T

w  x -z + b + є = 0

ξ i

w   x -z + b  > 0T

T
w  x -z + b - є = 0

w  x -z + b - є = 0

w  x -z + b + є = 0

‘

Figure 20.4: The two pink open half spaces associated with the hyperplane w>xi−z+b = 0.
Note, ξi > 0 is outside of the half space w>xi − z + b − ε < 0, and ξ′i > 0 is outside of the
half space w>xi − z + b+ ε > 0.

Observe that the equations

w>xi + b− yi = ε+ ξi

−w>xi − b+ yi = ε+ ξ′i

can only hold simultaneously if

ε+ ξi = −ε− ξ′,

that is,

2ε+ ξi + ξ′i = 0,

and since ε, ξi, ξ
′
i ≥ 0, this can happen only if ε = ξi = ξ′i = 0, and then

w>xi + b = yi.

In particular, if ε > 0, then the equations

w>xi + b− yi = ε+ ξi

−w>xi − b+ yi = ε+ ξ′i

cannot hold simultaneously.
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Observe that if ν > 1, then an optimal solution of the above program must yield ε = 0.
Indeed, if ε > 0, we can reduce it by a small amount δ > 0 and increase ξi + ξ′i by δ to still
satisfy the constraints, but the objective function changes by the amount −νδ + δ, which is
negative since ν > 1, so ε > 0 is not optimal.

Driving ε to zero is not the intended goal, because typically the data is not noise free so
very few pairs (xi, yi) will satisfy the equation w>xi + b = yi, and then many pairs (xi, yi)
will correspond to an error (ξi > 0 or ξ′i > 0). Thus, typically we assume that 0 < ν ≤ 1.

To construct the Lagrangian, we assign Lagrange multipliers λi ≥ 0 to the constraints
w>xi+ b−yi ≤ ε+ ξi, Lagrange multipliers µi ≥ 0 to the constraints −w>xi− b+yi ≤ ε+ ξ′i,
Lagrange multipliers αi ≥ 0 to the constraints ξi ≥ 0, Lagrange multipliers βi ≥ 0 to
the constraints ξ′i ≥ 0, and the Lagrange multiplier γ ≥ 0 to the constraint ε ≥ 0. The
Lagrangian is

L(w, b, λ, µ, γ, ξ, ξ′, ε, α, β) =
1

2
w>w + C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
− γε−

m∑
i=1

(αiξi + βiξ
′
i)

+
m∑
i=1

λi(w
>xi + b− yi − ε− ξi) +

m∑
i=1

µi(−w>xi − b+ yi − ε− ξ′i).

The Lagrangian can also be written as

L(w, b, λ, µ, γ, ξ, ξ′, ε, α, β) =
1

2
w>w + w>

(
m∑
i=1

(λi − µi)xi

)
+ ε

(
Cν − γ −

m∑
i=1

(λi + µi)

)

+
m∑
i=1

ξi

(
C

m
− λi − αi

)
+

m∑
i=1

ξ′i

(
C

m
− µi − βi

)
+ b

(
m∑
i=1

(λi − µi)

)
−

m∑
i=1

(λi − µi)yi.

To find the dual function G(λ, µ, γ, α, β), we minimize L(w, b, λ, µ, γ, ξ, ξ′, ε, α, β) with
respect to the primal variables w, ε, b, ξ and ξ′. Observe that the Lagrangian is convex, and
since (w, ε, ξ, ξ′, b) ∈ Rn × R × Rm × Rm × R, a convex open set, by Theorem 4.13, the
Lagrangian has a minimum iff ∇Lw,ε,b,ξ,ξ′ = 0, so we compute the gradient ∇Lw,ε,b,ξ,ξ′ . We
obtain

∇Lw,ε,b,ξ,ξ′ =



w +
∑m

i=1(λi − µi)xi
Cν − γ −

∑m
i=1(λi + µi)∑m

i=1(λi − µi)
C
m
− λ− α

C
m
− µ− β


,

where (
C

m
− λ− α

)
i

=
C

m
− λi − αi, and

(
C

m
− µ− β

)
i

=
C

m
− µi − βi.
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Consequently, if we set ∇Lw,ε,b,ξ,ξ′ = 0, we obtain the equations

w =
m∑
i=1

(µi − λi)xi = X>(µ− λ), (∗w)

Cν − γ −
m∑
i=1

(λi + µi) = 0

m∑
i=1

(λi − µi) = 0

C

m
− λ− α = 0,

C

m
− µ− β = 0.

Substituting the above equations in the second expression for the Lagrangian, we find
that the dual function G is independent of the variables γ, α, β and is given by

G(λ, µ) = −1

2

m∑
i,j=1

(λi − µi)(λj − µj)x>i xj −
m∑
i=1

(λi − µi)yi

if
m∑
i=1

λi −
m∑
i=1

µi = 0

m∑
i=1

λi +
m∑
i=1

µi + γ = Cν

λ+ α =
C

m
, µ+ β =

C

m
,

and −∞ otherwise.

The dual program is obtained by maximizing G(α, µ) or equivalently by minimizing
−G(α, µ), over α, µ ∈ Rm

+ . Taking into account the fact that α, β ≥ 0 and γ ≥ 0, we obtain
the following dual program:

Dual Program for ν-SV Regression:

minimize
1

2

m∑
i,j=1

(λi − µi)(λj − µj)x>i xj +
m∑
i=1

(λi − µi)yi

subject to
m∑
i=1

λi −
m∑
i=1

µi = 0

m∑
i=1

λi +
m∑
i=1

µi ≤ Cν

0 ≤ λi ≤
C

m
, 0 ≤ µi ≤

C

m
, i = 1, . . . ,m,
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minimizing over α and µ.

Solving the dual program (for example, using ADMM, see Section 20.3) does not de-
termine b, and for this we use the KKT conditions. The KKT conditions (for the primal
program) are

λi(w
>xi + b− yi − ε− ξi) = 0, i = 1, . . . ,m

µi(−w>xi − b+ yi − ε− ξ′i) = 0, i = 1, . . . ,m

γε = 0

αiξi = 0, i = 1, . . . ,m

βiξ
′
i = 0, i = 1, . . . ,m.

If ε > 0, since the equations

w>xi + b− yi = ε+ ξi

−w>xi − b+ yi = ε+ ξ′i

cannot hold simultaneously, we must have

λiµi = 0, i = 1, . . . ,m. (λµ)

From the equations

λi + αi =
C

m
, µi + βi =

C

m
, αiξi = 0, βiξ

′
i = 0,

we get the equations(
C

m
− λi

)
ξi = 0,

(
C

m
− µi

)
ξ′i = 0, i = 1, . . . ,m. (∗)

Suppose we have optimal solution with ε > 0. Using the above equations and the fact
that λiµi = 0 we obtain the following classification of the points xi in terms of λ and µ.

(1) 0 < λi < C/m. By (∗), ξi = 0, so the equation w>xi + b − yi = ε holds and xi is on
the blue margin hyperplane Hw,b−ε. See Figure 20.5.

(2) 0 < µi < C/m. By (∗), ξ′i = 0, so the equation −w>xi − b + yi = ε holds and xi is on
the red margin hyperplane Hw,b+ε. See Figure 20.5.

(3) λi = C/m. By (λµ), µi = 0, and by (∗), ξ′i = 0. Thus we have

w>xi + b− yi = ε+ ξi

−w>xi − b+ yi ≤ ε.

The second inequality is equivalent to −ε ≤ w>xi + b− yi, and since ε > 0 and ξi ≥ 0
it is trivially satisfied. If ξi = 0, then xi is on the blue margin Hw,b−ε, else xi is an
error and it lies in the open half-space bounded by the blue margin Hw,b−ε and not
containing the best fit hyperplane Hw,b (it is outside of the ε-slab). See Figure 20.5.
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(4) µi = C/m. By (λµ), λi = 0, and by (∗), ξi = 0. Thus we have

w>xi + b− yi ≤ ε

−w>xi − b+ yi = ε+ ξ′i.

The second equation is equivalent to w>xi + b − yi = −ε − ξ′i, and since ε > 0 and
ξ′i ≥ 0, the first inequality it is trivially satisfied. If ξ′i = 0, then xi is on the red margin
Hw,b+ε, else xi is an error and it lies in the open half-space bounded by the red margin
Hw,b−ε and not containing the best fit hyperplane Hw,b (it is outside of the ε-slab). See
Figure 20.5.

(5) λi = 0 and µi = 0. By (∗), ξi = 0 and ξ′i = 0, so we have

w>xi + b− yi ≤ ε

−w>xi − b+ yi ≤ ε,

that is

−ε ≤ w>xi + b− yi ≤ ε.

If w>xi + b− yi = ε, then xi is on the blue margin, and if w>xi + b− yi = −ε, then xi
is on the red margin. If −ε < w>xi + b− yi < ε, then xi is strictly inside of the ε-slab
(bounded by the blue margin and the red margin). See Figure 20.6.

The above classification shows that the point xi is an error iff λi = C/m and ξi > 0 or
or µi = C/m and ξ′i > 0.

As in the case of SVM (see Section 14.6) we define support vectors as follows.

Definition 20.1. A vector xi such that either w>xi + b − yi = ε (which implies ξi = 0) or
−w>xi− b+ yi = ε (which implies ξ′i = 0) is called a support vector . Support vectors xi such
that 0 < λi < C/m and support vectors xj such that 0 < µj < C/m are support vectors
of type 1 . Support vectors of type 1 play a special role so we denote the sets of indices
associated with them by

Iλ = {i ∈ {1, . . . ,m} | 0 < λi < C/m}
Iµ = {j ∈ {1, . . . ,m} | 0 < µj < C/m}.

We denote their cardinalities by numsvl1 = |Iλ| and numsvm1 = |Iµ|. Support vectors xi
such that λi = C/m and support vectors xj such that µj = C/m are support vectors of type
2 . Support vectors for which λi = µi = 0 are called exceptional support vectors .

The following definition also gives a useful classification criterion.
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Figure 20.5: Classifying xi in terms of nonzero λ and µ.

Definition 20.2. A point xi such that either λi = C/m or µi = C/m is said to fail the
margin. The sets of indices associated with the vectors failing the margin are denoted by

Kλ = {i ∈ {1, . . . ,m} | λi = C/m}
Kµ = {j ∈ {1, . . . ,m} | µj = C/m}.

We denote their cardinalities by pf = |Kλ| and qf = |Kµ|.
Vectors ui such that λi > 0 and vectors vj such that µj > 0 are said to have margin at

most ε. A point xi such that either λi > 0 or µi > 0 is said to have margin at most ε. The
sets of indices associated with these vectors are denoted by

Iλ>0 = {i ∈ {1, . . . ,m} | λi > 0}
Iµ>0 = {j ∈ {1, . . . ,m} | µj > 0}.

We denote their cardinalities by pm = |Iλ>0| and qm = |Iµ>0|.

Points that fail the margin and are not on the boundary of the ε-slab lie outside the
closed ε-slab, so they are errors, also called outliers ; they correspond to ξi > 0 or ξ′i > 0.

Observe that we have the equations Iλ ∪ Kλ = Iλ>0 and Iµ ∪ Kµ = Iµ>0, and the
inequalities pf ≤ pm and qf ≤ qm.

We also have the following results showing that pf , qf , pm and qm have a direct influence
on the choice of ν.
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Figure 20.6: The closed ε- tube associated with zero multiplier classification, namely λi = 0
and µi = 0.

Proposition 20.2. (1) Let pf be the number of points xi such that λi = C/m, and let qf
be the number of points xi such that µi = C/m. We have pf , qf ≤ (mν)/2.

(2) Let pm be the number of points xi such that λi > 0, and let qm be the number of points
xi such that µi > 0. We have pm, qm ≥ (mν)/2.

(3) If pf ≥ 1 or qf ≥ 1, then ν ≥ 2/m.

Proof. (1) Recall that for an optimal solution with w 6= 0 and ε > 0 we have γ = 0, so we
have the equations

m∑
i=1

λi =
Cν

2
and

m∑
j=1

µj =
Cν

2
.

If there are pf points such that λi = C/m, then

Cν

2
=

m∑
i=1

λi ≥ pf
C

m
,

so
pf ≤

mν

2
.

A similar reasoning applies if there are qf points such that µi = C/m, and we get

qf ≤
mν

2
.

(2) If Iλ>0 = {i ∈ {1, . . . ,m} | λi > 0} and pm = |Iλ>0|, then

Cν

2
=

m∑
i=1

λi =
∑
i∈Iλ>0

λi,
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and since λi ≤ C/m, we have
Cν

2
=
∑
i∈Iλ>0

λi ≤ pm
C

m
,

which yields

pm ≥
νm

2
.

A similar reasoning applies if µi > 0.

(3) This follows immediately from (1).

Proposition 20.2 yields bounds on ν, namely

max

{
2pf
m
,
2qf
m

}
≤ ν ≤ min

{
2pm
m

,
2qm
m

}
,

with pf ≤ pm, qf ≤ qm, pf + qf ≤ m and pm + qm ≤ m. Also, pf = qf = 0 means that the
ε-slab is wide enough so that there are no errors (no points strictly outside the slab).

Observe that a small value of ν keeps pf and qf small, which is achieved if the ε-slab is
wide. A large value of ν allows pm and qm to be fairly large, which is achieved if the ε-slab
is narrow. Thus the smaller ν is, the wider the ε-slab is, and the larger ν is, the narrower
the ε-slab is.

20.2 Existence of Support Vectors

We now consider the issue of the existence of support vectors. We will show that in the
generic case, for any optimal solution for which ε > 0, there is some support vector on the
blue margin and some support vector on the red margin. Here generic means that there is
an optimal solution for some ν < (m− 1)/m.

If the data set (X, y) is well fit by some affine function f(x) = w>x+ b, in the sense that
for many pairs (xi, yi) we have yi = w>xi + b and the `1-error

m∑
i=1

|w>xi + b− yi|

is small, then an optimal solution may have ε = 0. Geometrically, many points (xi, yi)
belong to the hyperplane Hw,b. The situation in which ε = 0 corresponds to minimizing the
`1-error with a quadratic penalization of w. This is a sort of dual of lasso. The fact that
the affine function f(x) = w>x + b fits perfectly many points corresponds to the fact that
an `1-minimization tends to encourage sparsity. In this case, if C is chosen too small, it is
possible that all points are errors (although “small”) and there are no support vectors. But
if C is large enough, the solution will be sparse and there will be many support vectors on
the hyperplane Hw,b.
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Let Eλ = {i ∈ {1, . . . ,m} | ξi > 0}, Eµ = {j ∈ {1, . . . ,m} | ξ′j > 0}, psf = |Eλ| and
qsf = |Eµ|. Obviously, Eλ and Eµ are disjoint.

Given any real numbers u, v, x, y, if max{u, v} < min{x, y}, then u < x and v < y. This
is because u, v ≤ max{u, v} < min{x, y} ≤ x, y.

Proposition 20.3. If ν < (m− 1)/m, then pf < bm/2c and qf < bm/2c.

Proof. By Proposition 20.2, max{2pf/m, 2qf/m} ≤ ν. If m is even, say m = 2k, then

2pf/m = 2pf/(2k) ≤ ν < (m− 1)/m = (2k − 1)/2k,

so 2pf < 2k − 1, which implies pf < k = bm/2c. A similar argument shows that qf < k =
bm/2c.

If m is odd, say m = 2k + 1, then

2pf/m = 2pf/(2k + 1) ≤ ν < (m− 1)/m = 2k/(2k + 1),

so 2pf < 2k, which implies pf < k = bm/2c. A similar argument shows that qf < k =
bm/2c.

Since psf ≤ pf and qsf ≤ qf , we also have psf < bm/2c and qsf < bm/2c. This
implies that {1, . . . ,m}− (Eλ ∪Eµ) contains at least two elements and there are constraints
corresponding to at least two i /∈ (Eλ ∪ Eµ) (in which case ξi = ξ′i = 0), of the form

w>xi + b− yi ≤ ε i /∈ (Eλ ∪ Eµ)

−w>xi − b+ yi ≤ ε i /∈ (Eλ ∪ Eµ).

If w>xi + b− yi = ε for some i /∈ (Eλ ∪Eµ) and −w>xj − b+ yj = ε for some j /∈ (Eλ ∪Eµ)
with i 6= j, then we have a blue support vector and a red support vector. Otherwise, we
show how to modify b and ε to obtain an optimal solution with a blue support vector and a
red support vector.

Proposition 20.4. For every optimal solution (w, b, ε, ξ, ξ′) with w 6= 0 and ε > 0, if

ν < (m− 1)/m

and if either no xi is a blue support vector or no xi is a red support vector, then there is
another optimal solution (for the same w) with some i0 such that ξi0 = 0 and w>xi0 +b−yi0 =
ε, and there is some j0 such that ξ′j0 = 0 and −w>xj0 − b + yj0 = ε; in other words, some
xi0 is a blue support vector and some xj0 is a red support vector (with i0 6= j0). If all points
(xi, yi) that are not errors lie on one of the margin hyperplanes, then there is an optimal
solution for which ε = 0.
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Proof. By Proposition 20.3 if ν < (m − 1)/m, then pf < bm/2c and qf < bm/2c, so the
following constraints hold:

w>xi + b− yi = ε+ ξi ξi > 0 i ∈ Eλ
−w>xj − b+ yj = ε+ ξ′j ξ′j > 0 j ∈ Eµ
w>xi + b− yi ≤ ε i /∈ (Eλ ∪ Eµ)

−w>xi − b+ yi ≤ ε i /∈ (Eλ ∪ Eµ),

where |{1, . . . ,m} − (Eλ ∪ Eµ)| ≥ 2.

If our optimal solution does not have a blue support vector and a red support vector,
then either w>xi + b−yi < ε for all i /∈ (Eλ∪Eµ) or −w>xi− b+yi < ε for all i /∈ (Eλ∪Eµ).

Case 1 . We have

w>xi + b− yi < ε i /∈ (Eλ ∪ Eµ)

−w>xi − b+ yi ≤ ε i /∈ (Eλ ∪ Eµ).

There are two subcases.

Case 1a. Assume that there is some j /∈ (Eλ ∪ Eµ) such that −w>xj − b + yj = ε.
Our strategy is to decrease ε and increase b by a small amount θ in such a way that some
inequality w>xi + b − yi < ε becomes an equation for some i /∈ (Eλ ∪ Eµ). Geometrically,
this amounts to raising the separating hyperplane Hw,b and decreasing the width of the slab,
keeping the red margin hyperplane unchanged. See Figure 20.7.

The inequalities imply that

−ε ≤ w>xi + b− yi < ε.

Let us pick θ such that

θ = (1/2) min{ε− w>xi − b+ yi | i /∈ (Eλ ∪ Eµ)}.

Our hypotheses imply that θ > 0, and we have θ ≤ ε, because (1/2)(ε−w>xi− b+ yi) ≤ ε is
equivalent to ε− w>xi − b+ yi ≤ 2ε which is equivalent to −w>xi − b+ yi ≤ ε, which holds
for all i /∈ (Eλ ∪ Eµ) by hypothesis.

We can write

w>xi + b+ θ − yi = ε− θ + ξi + 2θ ξi > 0 i ∈ Eλ
−w>xj − (b+ θ) + yj = ε− θ + ξ′j ξ′j > 0 j ∈ Eµ

w>xi + b+ θ − yi ≤ ε− θ i /∈ (Eλ ∪ Eµ)

−w>xi − (b+ θ) + yi ≤ ε− θ i /∈ (Eλ ∪ Eµ).
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Figure 20.7: In this illustration points within the ε-tube are denoted by open circles. In
the original, upper left configuration, there is no blue support vector. By raising the pink
separating hyperplane and decreasing the width of the slab, we end up with a blue support
vector.

By hypothesis

−w>xj − (b+ θ) + yj = ε− θ for some j /∈ (Eλ ∪ Eµ)

and by the choice of θ,

w>xi + b+ θ − yi = ε− θ for some i /∈ (Eλ ∪ Eµ).

The value of C > 0 is irrelevant in the following argument so we may assume that C = 1.
The new value of the objective function is

ω(θ) =
1

2
w>w + ν(ε− θ) +

1

m

(∑
i∈Eλ

(ξi + 2θ) +
∑
j∈Eµ

ξ′j

)
=

1

2
w>w + νε+

1

m

(∑
i∈Eλ

ξi +
∑
j∈Eµ

ξ′j

)
−
(
ν − 2psf

m

)
θ.

By Proposition 20.2 we have

max

{
2pf
m
,
2qf
m

}
≤ ν

and psf ≤ pf and qsf ≤ qf , which implies that

ν − 2psf
m
≥ 0, (∗1)
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and so ω(θ) ≤ ω(0). If inequality (∗1) is strict, then this contradicts the optimality of the
original solution. Therefore, ν = 2psf/m, ω(θ) = ω(0) and (w, b + θ, ε − θ, ξ + 2θ, ξ′) is an
optimal solution such that

w>xi + b+ θ − yi = ε− θ
−w>xj − (b+ θ) + yj = ε− θ

for some i, j /∈ (Eλ ∪ Eµ) with i 6= j.

Observe that the exceptional case in which θ = ε may arise. In this case all points (xi, yi)
that are not errors (strictly outside the ε-slab) are on the red margin hyperplane. This case
can only arise if ν = 2psf/m.

Case 1b. We have −w>xi− b+ yi < ε for all i /∈ (Eλ ∪Eµ). Our strategy is to decrease ε
and increase the errors by a small θ in such a way that some inequality becomes an equation
for some i /∈ (Eλ ∪ Eµ). Geometrically, this corresponds to decreasing the width of the
slab, keeping the separating hyperplane unchanged. See Figures 20.8 and 20.9. Then we are
reduced to Case 1a or Case 2a.
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Figure 20.8: In this illustration points within the ε-tube are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support vector.
By decreasing the width of the slab, we end up with a red support vector and reduce to Case
1a.
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Figure 20.9: In this illustration points within ε-tube are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support vector.
By decreasing the width of the slab, we end up with a blue support vector and reduce to
Case 2a.

We have

w>xi + b− yi = ε+ ξi ξi > 0 i ∈ Eλ
−w>xj − b+ yj = ε+ ξ′j ξ′j > 0 j ∈ Eµ
w>xi + b− yi < ε i /∈ (Eλ ∪ Eµ)

−w>xi − b+ yi < ε i /∈ (Eλ ∪ Eµ).

Let us pick θ such that

θ = min{ε− (w>xi + b− yi), ε+ w>xi + b− yi | i /∈ (Eλ ∪ Eµ)},

Our hypotheses imply that 0 < θ < ε. We can write

w>xi + b− yi = ε− θ + ξi + θ ξi > 0 i ∈ Eλ
−w>xj − b+ yj = ε− θ + ξ′j + θ ξ′j > 0 j ∈ Eµ
w>xi + b− yi ≤ ε− θ i /∈ (Eλ ∪ Eµ)

−w>xi − b+ yi ≤ ε− θ i /∈ (Eλ ∪ Eµ),

and by the choice of θ, either

w>xi + b− yi = ε− θ for some i /∈ (Eλ ∪ Eµ)
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or

−w>xi − b+ yi = ε− θ for some i /∈ (Eλ ∪ Eµ).

The new value of the objective function is

ω(θ) =
1

2
w>w + ν(ε− θ) +

1

m

(∑
i∈Eλ

(ξi + θ) +
∑
j∈Eµ

(ξ′j + θ)

)
=

1

2
w>w + νε+

1

m

(∑
i∈Eλ

ξi +
∑
j∈Eµ

ξ′j

)
−
(
ν − psf + qsf

m

)
θ.

Since max{2pf/m, 2qf/m} ≤ ν implies that (pf + qf )/m ≤ ν and psf ≤ pf , qsf ≤ qf , we
have

ν − psf + qsf
m

≥ 0, (∗2)

and so ω(θ) ≤ ω(0). If inequality (∗2) is strict, then this contradicts the optimality of the
original solution. Therefore, ν = (psf + qsf )/m, ω(θ) = ω(0) and (w, b, ε− θ, ξ + θ, ξ′ + θ) is
an optimal solution such that either

w>xi + b− yi = ε− θ for some i /∈ (Eλ ∪ Eµ)

or

−w>xi − b+ yi = ε− θ for some i /∈ (Eλ ∪ Eµ).

We are now reduced to Case 1a or or Case 2a.

Case 2 . We have

w>xi + b− yi ≤ ε i /∈ (Eλ ∪ Eµ)

−w>xi − b+ yi < ε i /∈ (Eλ ∪ Eµ).

Again there are two subcases.

Case 2a. Assume that there is some i /∈ (Eλ ∪ Eµ) such that w>xi + b − yi = ε. Our
strategy is to decrease ε and decrease b by a small amount θ in such a way that some
inequality −w>xj − b+ yj < ε becomes an equation for some j /∈ (Eλ ∪Eµ). Geometrically,
this amounts to lowering the separating hyperplane Hw,b and decreasing the width of the
slab, keeping the blue margin hyperplane unchanged. See Figure 20.10.

The inequalities imply that

−ε < w>xi + b− yi ≤ ε.

Let us pick θ such that

θ = (1/2) min{ε− (−w>xi − b+ yi) | i /∈ (Eλ ∪ Eµ)}.
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Figure 20.10: In this illustration points within the ε-tube are denoted by open circles. In
the original, upper left configuration, there is no red support vector. By lowering the pink
separating hyperplane and decreasing the width of the slab, we end up with a red support
vector.

Our hypotheses imply that θ > 0, and we have θ ≤ ε, because (1/2)(ε−(−w>xi−b+yi)) ≤ ε
is equivalent to ε − (−w>xi − b + yi) ≤ 2ε which is equivalent to w>xi + b − yi ≤ ε which
holds for all i /∈ (Eλ ∪ Eµ) by hypothesis.

We can write

w>xi + b− θ − yi = ε− θ + ξi ξi > 0 i ∈ Eλ
−w>xj − (b− θ) + yj = ε− θ + ξ′j + 2θ ξ′j > 0 j ∈ Eµ

w>xi + b− θ − yi ≤ ε− θ i /∈ (Eλ ∪ Eµ)

−w>xi − (b− θ) + yi ≤ ε− θ i /∈ (Eλ ∪ Eµ).

By hypothesis

w>xi + (b− θ)− yi = ε− θ for some i /∈ (Eλ ∪ Eµ),

and by the choice of θ,

−w>xj − (b− θ) + yj = ε− θ for some j /∈ (Eλ ∪ Eµ).
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The new value of the objective function is

ω(θ) =
1

2
w>w + ν(ε− θ) +

1

m

(∑
i∈Eλ

ξi +
∑
j∈Eµ

(ξ′j + 2θ)

)
=

1

2
w>w + νε+

1

m

(∑
i∈Eλ

ξi +
∑
j∈Eµ

ξ′j

)
−
(
ν − 2qsf

m

)
θ.

The rest of the proof is similar except that 2psf/m is replaced by 2qsf/m. Observe that the
exceptional case in which θ = ε may arise. In this case all points (xi, yi) that are not errors
(strictly outside the ε-slab) are on the blue margin hyperplane. This case can only arise if
ν = 2qsf/m.

Case 2b. We have w>xi + b − yi < ε for all i /∈ (Eλ ∪ Eµ). Since we also assumed that
−w>xi− b+yi < ε for all i /∈ (Eλ∪Eµ), Case 2b is identical to Case 1b and we are done.

The proof of Proposition 20.4 reveals that there are three critical values for ν:

2psf
m

,
2qsf
m

,
psf + qsf

m
.

These values can be avoided by requiring the strict inequality

max

{
2psf
m

,
2qsf
m

}
< ν.

Then the following corollary holds.

Theorem 20.5. For every optimal solution (w, b, ε, ξ, ξ′) with w 6= 0 and ε > 0, if

max

{
2psf
m

,
2qsf
m

}
< ν < (m− 1)/m,

then some xi0 is a blue support vector and some xj0 is a red support vector (with i0 6= j0).

Proof. We proceed by contradiction. Suppose that for every optimal solution with w 6= 0
and ε > 0 no xi is a blue support vector or no xi is a red support vector. Since ν <
(m − 1)/m, Proposition 20.4 holds, so there is another optimal solution. But since the
critical values of ν are avoided, the proof of Proposition 20.4 shows that the value of the
objective function for this new optimal solution is strictly smaller than the original optimal
value, a contradiction.

Remark: If an optimal solution has ε = 0, then depending on the value of C there may not
be any support vectors, or many.
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If the primal has an optimal solution with w 6= 0 and ε > 0, then by (∗w) and since

m∑
i=1

λi −
m∑
i=1

µi = 0 and λiµi = 0,

there is i0 such that λi0 > 0 and some j0 6= i0 such that µj0 > 0.

Under the mild hypothesis called the Standard Margin Hypothesis that there is some
i0 such that 0 < αi0 <

C
m

and there is some j0 6= i0 such that 0 < µj0 <
C
m

, in other words
there is a blue support vector of type 1 and there is a red support vector of type 1, then by
(∗) we have ξi0 = 0, ξ′j0 = 0, and we have the two equations

w>xi0 + b− yi0 = ε

−w>xj0 − b+ yj0 = ε,

so b and ε can be computed. In particular,

b =
1

2

(
yi0 + yj0 − w>(xi0 + xj0)

)
ε =

1

2

(
yj0 − yi0 + w>(xi0 − xj0)

)
.

The function f(x) = w>x+ b (often called regression estimate) is given by

f(x) =
m∑
i=1

(µi − λi)x>i x+ b.

In practice, due to numerical inaccurracy, it is complicated to write a computer program
that will select two distinct indices as above. It is preferable to compute the list Iλ of indices
i such that 0 < λi < C/m and the list Iµ of indices j such that 0 < µj < C/m. Then it is
easy to see that

b =

(∑
i0∈Iλ

yi0

)
/|Iλ|+

(∑
j0∈Iµ

yj0

)
/|Iµ| − w>

((∑
i0∈Iλ

xi0

)
/|Iλ|+

(∑
j0∈Iµ

xj0

)
/|Iµ|

) /2

ε =

(∑
j0∈Iµ

yj0

)
/|Iµ| −

(∑
i0∈Iλ

yi0

)
/|Iλ|+ w>

((∑
i0∈Iλ

xi0

)
/|Iλ| −

(∑
j0∈Iµ

xj0

)
/|Iµ|

) /2.

These formulae are numerically a lot more stable, but we still have to be cautious to set
suitable tolerance factors to decide whether λi > 0 and λi < C/m (and similarly for µi).

The following result gives sufficient conditions for expressing ε in terms of a single support
vector.
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Proposition 20.6. For every optimal solution (w, b, ε, ξ, ξ′) with w 6= 0 and ε > 0, if

max

{
2psf
m

,
2qsf
m

}
< ν < (m− 1)/m,

then ε and b are determined from a solution (λ, µ) of the dual in terms of a single support
vector.

Proof sketch. If we express that the duality gap is zero we obtain the following equation
expressing ε in terms of b:

C

(
ν − pf + qf

m

)
ε = −

(
λ> µ>

)
P

(
λ
µ

)
−
(
y> −y>

)(λ
µ

)
− C

m

(
w>
(∑
i∈Kλ

xi −
∑
j∈Kµ

xj

)
−
∑
i∈Kλ

yi +
∑
j∈Kµ

yj + (pf − qf )b
)
.

The proof is very similar to the proof of the corresponding formula in Section 20.5. By
Theorem 20.5, there is some suppor vector xi, say

w>xi0 + b− yi0 = ε or − w>xj0 − b+ yj0 = ε.

Then we find an equation expressing ε in terms of λ, µ and w, provided that ν 6= 2pf/m
and ν 6= 2qf/m. The proof is analogous to the proof of Proposition 18.4 and is left as an
exercise.

20.3 Solving ν-Regression Using ADMM

The quadratic functional F (λ, µ) occurring in the dual program given by

F (λ, µ) =
1

2

m∑
i,j=1

(λi − µi)(λj − µj)x>i xj +
m∑
i=1

(λi − µi)yi

is not of the form 1
2

(
λ> µ>

)
P

(
λ
µ

)
+ q>

(
λ
µ

)
, but it can be converted in such a form using

a trick. First, if we let K be the m ×m symmetric matrix K = XX> = (x>i xj), then we
have

F (λ, µ) =
1

2
(λ> − µ>)K(λ− µ) + y>λ− y>µ.

Consequently, if we define the 2m× 2m symmetric matrix P by

P =

(
XX> −XX>
−XX> XX>

)
=

(
K −K
−K K

)
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and the 2m× 1 matrix q by

q =

(
y
−y

)
,

it is easy to check that

F (λ, µ) =
1

2

(
λ> µ>

)
P

(
λ
µ

)
+ q>

(
λ
µ

)
=

1

2
λ>Kλ+

1

2
µ>Kµ− λ>Kµ+ y>λ− y>µ. (∗q)

Since
1

2

(
λ> µ>

)
P

(
λ
µ

)
=

1

2
(λ> − µ>)K(λ− µ)

and the matrix K = XX> is symmetric positive semidefinite, the matrix P is also symmetric
positive semidefinite. Thus we are in a position to apply ADMM since the constraints are

m∑
i=1

λi −
m∑
i=1

µi = 0

m∑
i=1

λi +
m∑
i=1

µi + γ = Cν

λ+ α =
C

m
, µ+ β =

C

m
,

namely affine. We need to check that the (2m + 2) × (4m + 1) matrix A corresponding to
this system has rank 2m + 2. Let us clarify this point. The matrix A corresponding to the
above equations is

A =


1>m −1>m 0>m 0>m 0

1>m 1>m 0>m 0>m 1

Im 0m,m Im 0m,m 0m

0m,m Im 0m,m Im 0m

 .

For example, for m = 3 we have the 8× 13 matrix

1 1 1 −1 −1 −1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0


.

We leave it as an exercise to show that A has rank 2m+ 2. Recall that

q =

(
y
−y

)
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and we also define the vector c (of dimension 2m+ 2) as

c =

 0
Cν
C
m

12m

 .

The constraints are given by the system of affine equations Ax = c, where

x =
(
λ> µ> α> β> γ

)>
.

Since there are 4m+ 1 Lagrange multipliers (λ, µ, α, β, γ), we need to pad the 2m× 2m
matrix P with zeros to make it into a (4m+ 1)× (4m+ 1) matrix

Pa =

(
P 02m,2m+1

02m+1,2m 02m+1,2m+1

)
.

Similarly, we pad q with zeros to make it a vector qa of dimension 4m+ 1,

qa =

(
q

02m+1

)
.

In order to solve our dual program, we apply ADMM to the quadractic functional

1

2
x>Pax+ q>a x,

subject to the constraints
Ax = c, x ≥ 0,

with Pa, qa, A, b and x, as above.

Since for an optimal solution with ε > 0 we must have γ = 0 (from the KKT condi-
tions), we can solve the dual problem with the following set of constraints only involving the
Lagrange multipliers (λ, µ, α, β),

m∑
i=1

λi −
m∑
i=1

µi = 0

m∑
i=1

λi +
m∑
i=1

µi = Cν

λ+ α =
C

m
, µ+ β =

C

m
,

which corresponds to the (2m+ 2)× 4m A2 given by

A2 =


1>m −1>m 0>m 0>m

1>m 1>m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im

 .
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We leave it as an exercise to show that A2 has rank 2m+ 2. We define the vector c2 (of
dimension 2m+ 2) as

c2 = c =

 0
Cν
C
m

12m

 .

Since there are 4m Lagrange multipliers (λ, µ, α, β), we need to pad the 2m× 2m matrix
P with zeros to make it into a 4m× 4m matrix

P2a =

(
P 02m,2m

02m,2m 02m,2m

)
.

Similarly, we pad q with zeros to make it a vector q2a of dimension 4m,

q2a =

(
q

02m

)
.

We implemented the above methods in Matlab; see Appendix B, Section B.4. Choosing
C = m is typically a good choice because then the values of λi and µj are not too small
(C/m = 1). If C is chosen too small, we found that numerical instability increases drastically
and very poor results are obtained. Increasing C tends to encourage sparsity.

We ran our Matlab implementation of the above method on the set of 50 points generated
at random by the program shown below with C = 50 and various values of ν starting with
ν = 0.03:

X13 = 15*randn(50,1);

ww13 = 1;

y13 = X13*ww13 + 10*randn(50,1) + 20;

[~,~,~,~,~,~,~,~,w1] = runuregb(rho,0.03,X13,y13,50)

Figure 20.11 shows the result of running the program with ν = 0.03. We have pf =
0, qf = 0, pm = 2 and qm = 1. There are 47 points strictly inside the slab. The slab is large
enough to contain all the data points, so none of them is considered an error.

The next value of ν is ν = 0.21, see Figure 20.12. We have pf = 4, qf = 5, pm = 6 and
qm = 6. There are 38 points strictly inside the slab.
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Figure 20.11: Running ν-SV regression on a set of 50 points; ν = 0.03.
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Figure 20.12: Running ν-SV regression on a set of 50 points; ν = 0.21.
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The next value of ν is ν = 0.5, see Figure 20.13. We have pf = 12, qf = 12, pm = 13 and
qm = 14. There are 23 points strictly inside the slab.
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Figure 20.13: Running ν-SV regression on a set of 50 points; ν = 0.5.
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Figure 20.14: Running ν-SV regression on a set of 50 points; ν = 0.7.
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The next value of ν is ν = 0.7, see Figure 20.14. We have pf = 17, qf = 17, pm = 18 and
qm = 19. There are 13 points strictly inside the slab.

The last value of ν is ν = 0.97, see Figure 20.15. We have pf = 23, qf = 24, pm = 25
and qm = 25. There are 0 points strictly inside the slab. The slab is so narrow that it does
not contain any of the points xi in it. Running the program with any value ν > 0.97 yields
ε = 0.

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Figure 20.15: Running ν-SV regression on a set of 50 points; ν = 0.97.

20.4 Kernel ν-SV Regression

Since the formulae for w, b, and f(x),

w =
m∑
i=1

(µi − λi)xi

b =
1

2

(
yi0 + yj0 − w>(xi0 + xj0)

)
f(x) =

m∑
i=1

(µi − λi)x>i x+ b,

only involve inner products among the data points xi and x, and since the objective function
−G(α, µ) of the dual program also only involves inner products among the data points xi,
we can kernelize the ν-SV regression method.



20.4. KERNEL ν-SV REGRESSION 759

As in the previous section, we assume that our data points {x1, . . . , xm} belong to a set X
and we pretend that we have feature space (F, 〈−,−〉) and a feature embedding map ϕ : X →
F , but we only have access to the kernel function κ(xi, xj) = 〈ϕ(xi), ϕ(xj)〉. We wish to
perform ν-SV regression in the feature space F on the data set {(ϕ(x1), y1), . . . , (ϕ(xm), ym)}.
Going over the previous computation, we see that the primal program is given by

Program kernel ν-SV Regression:

minimize
1

2
〈w,w〉+ C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
subject to

〈w,ϕ(xi)〉+ b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− 〈w,ϕ(xi)〉 − b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m

ε ≥ 0,

minimizing over the variables w, ε, b, ξ, and ξ′.

The Lagrangian is given by

L(w, b, λ, µ, γ, ξ, ξ′, ε, α, β) =
1

2
〈w,w〉+

〈
w,

m∑
i=1

(λi − µi)ϕ(xi)

〉

+ ε

(
Cν − γ −

m∑
i=1

(λi + µi)

)
+

m∑
i=1

ξi

(
C

m
− λi − αi

)

+
m∑
i=1

ξ′i

(
C

m
− µi − βi

)
+ b

(
m∑
i=1

(λi − µi)

)
−

m∑
i=1

(λi − µi)yi.

Setting the gradient ∇Lw,ε,b,ξ,ξ′ of the Lagrangian to zero, we also obtain the equations

w =
m∑
i=1

(µi − λi)ϕ(xi), (∗w)

m∑
i=1

λi −
m∑
i=1

µi = 0

m∑
i=1

λi +
m∑
i=1

µi + γ = Cν

λ+ α =
C

m
, µ+ β =

C

m
.

Using the above equations, we find that the dual functionG is independent of the variables
β, α, β, and we obtain the following dual program:
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Dual Program kernel ν-SV Regression:

minimize
1

2

m∑
i,j=1

(λi − µi)(λj − µj)κ(xi, xj) +
m∑
i=1

(λi − µi)yi

subject to
m∑
i=1

λi −
m∑
i=1

µi = 0

m∑
i=1

λi +
m∑
i=1

µi ≤ Cν

0 ≤ λi ≤
C

m
, 0 ≤ µi ≤

C

m
, i = 1, . . . ,m,

minimizing over α and µ.
Everything we said before also applies to the kernel ν-SV regression method, except that

xi is replaced by ϕ(xi) and that the inner product 〈−,−〉 must be used, and we have the
formulae

w =
m∑
i=1

(µi − λi)ϕ(xi)

b =
1

2

(
yi0 + yj0 −

m∑
i=1

(µi − λi)(κ(xi, xi0) + κ(xi, xj0))

)

f(x) =
m∑
i=1

(µi − λi)κ(xi, x) + b,

expressions that only involve κ.

Remark: There is a variant of ν-SV regression obtained by setting ν = 0 and holding ε > 0
fixed. This method is called ε-SV regression or (linear) ε-insensitive SV regression. The
corresponding optimization program is

Program ε-SV Regression:

minimize
1

2
w>w +

C

m

m∑
i=1

(ξi + ξ′i)

subject to

w>xi + b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− w>xi − b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m,

minimizing over the variables w, b, ξ, and ξ′, holding ε fixed.

It is easy to see that the dual program is
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Dual Program ε-SV Regression:

minimize
1

2

m∑
i,j=1

(λi − µi)(λj − µj)x>i xj +
m∑
i=1

(λi − µi)yi + ε

m∑
i=1

(λi + µi)

subject to
m∑
i=1

λi −
m∑
i=1

µi = 0

0 ≤ λi ≤
C

m
, 0 ≤ µi ≤

C

m
, i = 1, . . . ,m,

minimizing over α and µ.

The constraint
m∑
i=1

λi +
m∑
i=1

µi ≤ Cν

is gone but the extra term ε
∑m

i=1(λi + µi) has been added to the dual function, to prevent
λi and µi from blowing up.

There is an obvious kernelized version of ε-SV regression. It is easy to show that ν-SV
regression subsumes ε-SV regression, in the sense that if ν-SV regression succeeds and yields
w, b, ε > 0, then ε-SV regression with the same C and the same value of ε also succeeds
and returns the same pair (w, b). For more details on these methods, see Schölkopf, Smola,
Williamson, and Bartlett [66].

Remark: The linear penalty function
∑m

i=1(ξi+ξ
′
i) can be replaced by the quadratic penalty

function
∑m

i=1(ξ2
i + ξ′2i ); see Shawe–Taylor and Christianini [74] (Chapter 7). In this case, it

is easy to see that for an optimal solution we must have ξi ≥ 0 and ξ′i ≥ 0, so we may omit
the constraints ξi ≥ 0 and ξ′i ≥ 0. We must also have γ = 0 so we omit the variable γ as
well. It can be shown that ξ = (m/2C)λ and ξ′ = (m/2C)µ. This problem is very similar
to the Soft Margin SVM (SVMs4) discussed in Section 18.13.

20.5 ν-Regression Version 2; Penalizing b

Yet another variant of ν-SV regression is to add the term 1
2
b2 to the objective function.

We will see that solving the dual not only determines w but also b and ε (provided a mild
condition on ν). We wish to solve the following program:
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Program ν-SV Regression Version 2

minimize
1

2
w>w +

1

2
b2 + C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
subject to

w>xi + b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− w>xi − b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m,

minimizing over the variables w, b, ε, ξ, and ξ′. The constraint ε ≥ 0 is omitted since the
problem has no solution if ε < 0.

We leave it as an exercise to show that the new Lagrangian is

L(w, b, λ, µ, ξ, ξ′, ε, α, β) =
1

2
w>w + w>

(
m∑
i=1

(λi − µi)xi

)

+ ε

(
Cν −

m∑
i=1

(λi + µi)

)
+

m∑
i=1

ξi

(
C

m
− λi − αi

)

+
m∑
i=1

ξ′i

(
C

m
− µi − βi

)
+

1

2
b2 + b

(
m∑
i=1

(λi − µi)

)
−

m∑
i=1

(λi − µi)yi.

If we set the Laplacian ∇Lw,ε,b,ξ,ξ′ to zero we obtain the equations

w =
m∑
i=1

(µi − λi)xi = X>(µ− λ) (∗w)

Cν −
m∑
i=1

(λi + µi) = 0

b+
m∑
i=1

(λi − µi) = 0

C

m
− λ− α = 0,

C

m
− µ− β = 0.

We obtain the new equation

b = −
m∑
i=1

(λi − µi) = −(1>mλ− 1>mµ) (∗b)

determining b, which replaces the equation

m∑
i=1

λi −
m∑
i=1

µi = 0.
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Plugging back w from (∗w) and b from (∗b) into the Lagrangian we get

G(λ, µ, α, β) = −1

2

(
λ> µ>

)
P

(
λ
µ

)
− q>

(
λ
µ

)
+

1

2
b2 − b2

= −1

2

(
λ> µ>

)
P

(
λ
µ

)
− q>

(
λ
µ

)
− 1

2
b2

= −1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
− q>

(
λ
µ

)
,

with

P =

(
XX> −XX>
−XX> XX>

)
=

(
K −K
−K K

)
and

q =

(
y
−y

)
.

The new dual program is

Dual Program ν-SV Regression Version 2

minimize
1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
+ q>

(
λ
µ

)
subject to

m∑
i=1

λi +
m∑
i=1

µi = Cν

0 ≤ λi ≤
C

m
, 0 ≤ µi ≤

C

m
, i = 1, . . . ,m.

Definition 20.1 and Definition 20.2 are unchanged. We have the following version of
Proposition 20.2 showing that pf , qf , pm an qm have direct influence on the choice of ν.

Proposition 20.7. (1) Let pf be the number of points xi such that λi = C/m, and let qf
be the number of points xi such that µi = C/m. We have pf + qf ≤ mν.

(2) Let pm be the number of points xi such that λi > 0, and let qm be the number of points
xi such that µi > 0. We have pm + qm ≥ mν.

(3) If pf ≥ 1 or qf ≥ 1, then ν ≥ 1/m.

Proof. (1) Let Kλ and Kµ be the sets of indices corresponding to points failing the margin,

Kλ = {i ∈ {1, . . . ,m} | λi = C/m}
Kµ = {i ∈ {1, . . . ,m} | µi = C/m}.



764 CHAPTER 20. ν-SV REGRESSION

By definition pf = |Kλ|, qf = |Kµ|. Since the equation

m∑
i=1

λi +
m∑
j=1

µj = Cν

holds, by definition of Kλ and Kµ we have

(pf + qf )
C

m
=
∑
i∈Kλ

λi +
∑
j∈Kµ

µj ≤
m∑
i=1

λi +
m∑
j=1

µj = Cν,

which implies that

pf + qf ≤ mν.

(2) Let Iλ>0 and Iµ>0 be the sets of indices

Iλ>0 = {i ∈ {1, . . . ,m} | λi > 0}
Iµ>0 = {i ∈ {1, . . . ,m} | µi > 0}.

By definition pm = |Iλ>0|, qm = |Iµ>0|. We have

m∑
i=1

λi +
m∑
j=1

µj =
∑
i∈Iλ>0

λi +
∑
j∈Iµ>0

µj = Cν.

Since λi ≤ C/m and µj ≤ C/m, we obtain

Cν ≤ (pm + qm)
C

m
,

that is, pm + qm ≥ mν.

(3) follows immediately from (1).

Proposition 20.7 yields the following bounds on ν:

pf + qf
m

≤ ν ≤ pm + qm
m

.

Again, the smaller ν is, the wider the ε-slab is, and the larger ν is, the narrower the ε-slab
is.

Remark: It can be shown that for any optimal solution with w 6= 0 and ε > 0, if the
inequalities (pf + qf )/m < ν < 1 hold, then some point xi is a support vector. The proof is
essentially Case 1b in the proof of Proposition 20.4. We leave the details as an exercise.
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The new dual program is solved using ADMM. The (2m+1)×4mmatrix A3 corresponding
to the equational constraints

m∑
i=1

λi +
m∑
i=1

µi = Cν

λ+ α =
C

m
, µ+ β =

C

m
,

is given by

A3 =


1>m 1>m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im

 .

We leave it as an exercise to show that A3 has rank 2m+ 1. We define the vector c3 (of
dimension 2m+ 1) as

c3 =

(
Cν
C
m

12m

)
.

Since there are 4m Lagrange multipliers (λ, µ, α, β), we need to pad the 2m× 2m matrix

P3 = P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

)
with zeros to make it into a 4m× 4m matrix

P3a =

(
P3 02m,2m

02m,2m 02m,2m

)
.

Similarly, we pad q with zeros to make it a vector q3a of dimension 4m,

q3a =

(
q

02m

)
.

It remains to compute ε. Ther are two methods to do this.

The first method assumes the Standard Margin Hypothesis, which is that there is
some i0 such that 0 < λi0 < C/m or there is some j0 such that 0 < µj0 < C/m; in other
words, there is some support vector of type 1. By the complementary slackness conditions,
ξi0 = 0 or ξ′j0 = 0, so we have either w>xi0 + b − yi0 = ε or −w>xj0 − b + yj0 = ε, which
determines ε.

Due to numerical instability, when writing a computer program it is preferable to compute
the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . ,m} | 0 < λi < C/m}
Iµ = {j ∈ {1, . . . ,m} | 0 < µj < C/m}.
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Then it is easy to see that we can compute ε using the following averaging formulae: if
Iλ 6= ∅, then

ε = w>
(∑
i∈Iλ

xi

)
/|Iλ|+ b−

(∑
i∈Iλ

yi

)
/|Iλ|,

and if Iµ 6= ∅, then

ε = −w>
(∑
j∈Iµ

xj

)
/|Iµ| − b+

(∑
i∈Iµ

yi

)
/|Iµ|.

The second method uses duality. Under a mild condition, expressing that the duality
gap is zero, we can determine ε in terms of λ, µ and b. This is because points xi that fail the
margin, which means that λi = C/m or µi = C/m, are the only points for which ξi > 0 or
ξ′i > 0. But in this case we have an active constraint

w>xi + b− yi = ε+ ξi (∗ξ)

or

−w>xi − b+ yi = ε+ ξ′i, (∗ξ′)

so ξi and ξ′i can be expressed in terms of w and b. Since the duality gap is zero for an optimal
solution, the optimal value of the primal is equal to the optimal value of the dual. Using the
fact that

w = X>(µ− λ)

b = −(1>mλ− 1>mµ) =
(
λ> µ>

)(−1m
1m

)
we obtain an expression for the optimal value of the primal. First we have

1

2
w>w +

1

2
b2 =

1

2
(λ> − µ>)XX>(λ− µ) +

1

2

(
λ> µ>

)( 1m1>m −1m1>m
−1m1>m 1m1>m

)(
λ
µ

)
=

1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
,

with

P =

(
XX> −XX>
−XX> XX>

)
.

Let Kλ and Kµ be the sets of indices corresponding to points failing the margin,

Kλ = {i ∈ {1, . . . ,m} | λi = C/m}
Kµ = {i ∈ {1, . . . ,m} | µi = C/m}.
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Because λiµi = 0, the sets Kλ and Kµ are disjoint. Observe that from Definition 20.2 we
have pf = |Kλ| and qf = |Kµ|. Then by (∗ξ) and (∗ξ′), we have

m∑
i=1

(ξi + ξ′i) =
∑
i∈Kλ

ξi +
∑
j∈Kµ

ξ′j

=
∑
i∈Kλ

(w>xi + b− yi − ε) +
∑
j∈Kµ

(−w>xj − b+ yj − ε)

= w>
(∑
i∈Kλ

xi −
∑
j∈Kµ

xj

)
−
∑
i∈Kλ

yi +
∑
j∈Kµ

yj + (pf − qf )b− (pf + qf )ε.

The optimal value of the dual is given by

−1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
− q>

(
λ
µ

)
,

with

q =

(
y
−y

)
.

Expressing that the duality gap is zero we have

1

2
w>w +

1

2
b2 + Cνε+

C

m

m∑
i=1

(ξi + ξ′i)

= −1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
− q>

(
λ
µ

)
,

that is,

1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
+ Cνε

+
C

m

(
w>
(∑
i∈Kλ

xi −
∑
j∈Kµ

xj

)
−
∑
i∈Kλ

yi +
∑
j∈Kµ

yj + (pf − qf )b− (pf + qf )ε

)
= −1

2

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
− q>

(
λ
µ

)
.

Solving for ε we get

C

(
ν − pf + qf

m

)
ε = −

(
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
−
(
y> −y>

)(λ
µ

)
− C

m

(
w>
(∑
i∈Kλ

xi −
∑
j∈Kµ

xj

)
−
∑
i∈Kλ

yi +
∑
j∈Kµ

yj + (pf − qf )b
)
,
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so we get

ε = −

(
m

C

((
λ> µ>

)(
P +

(
1m1>m −1m1>m
−1m1>m 1m1>m

))(
λ
µ

)
+
(
y> −y>

)(λ
µ

))

+ w>
(∑
i∈Kλ

xi −
∑
j∈Kµ

xj

)
−
∑
i∈Kλ

yi +
∑
j∈Kµ

yj + (pf − qf )b

)/
(mν − pf − qf ).

Using the equations

w = X>(µ− λ)

b = −(1>mλ− 1>mµ) =
(
λ> µ>

)(−1m
1m

)
,

we see that ε is determined by λ and µ provided that (pf + qf )/m < ν.

By Proposition 20.7(1),
pf + qf
m

≤ ν,

therefore the condition (pf + qf )/m < ν is very natural.

We have implemented this method in Matlab, and we have observed that for some ex-
amples the choice of ν caused the equation ν(pf + qf ) = m to hold. In such cases, running
the program again with a slightly perturbed value of ν always succeeded.

The other observation we made is that b tends to be smaller and ε tends to be bigger in
ν-SV Regression Version 2, so the fit is actually not as good as in ν-SV Regression without
penalizing b. Figure 20.16 shows the result of running our program on the data set of Section
20.3. Compare with Figure 20.13.

20.6 Summary

The main concepts and results of this chapter are listed below:

• ν-support vector regression (ν-SV regression).

• Regression estimate.

• Kernel ν-SV regression.

• ε-SV regression, ε-insensitive SV regression,

• ν-SV regression Version 2; penalizing b.
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Figure 20.16: Running ν-SV regression version 2 on a set of 50 points; ν = 0.5.

20.7 Problems

Problem 20.1. Prove that if ν-SV regression succeeds and yields w, b, ε > 0, then ε-SV
regression with the same C and the same value of ε also succeeds and returns the same pair
(w, b).

Problem 20.2. Prove the formulae

b =

(∑
i0∈Iλ

yi0

)
/|Iλ|+

(∑
j0∈Iµ

yj0

)
/|Iµ| − w>

((∑
i0∈Iλ

xi0

)
/|Iλ|+

(∑
j0∈Iµ

xj0

)
/|Iµ|

) /2

ε =

(∑
j0∈Iµ

yj0

)
/|Iµ| −

(∑
i0∈Iλ

yi0

)
/|Iλ|+ w>

((∑
i0∈Iλ

xi0

)
/|Iλ| −

(∑
j0∈Iµ

xj0

)
/|Iµ|

) /2

stated just before Proposition 20.6.

Problem 20.3. Give the details of the proof of Proposition 20.6. In particular, prove that

C

(
ν − pf + qf

m

)
ε = −

(
λ> µ>

)
P

(
λ
µ

)
−
(
y> −y>

)(λ
µ

)
− C

m

(
w>
(∑
i∈Kλ

xi −
∑
j∈Kµ

xj

)
−
∑
i∈Kλ

yi +
∑
j∈Kµ

yj + (pf − qf )b
)
.
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Problem 20.4. Prove that the matrices

A =


1>m −1>m 0>m 0>m 0

1>m 1>m 0>m 0>m 1

Im 0m,m Im 0m,m 0m

0m,m Im 0m,m Im 0m

 , A2 =


1>m −1>m 0>m 0>m

1>m 1>m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im


have rank 2m+ 2.

Problem 20.5. Derive the version of ν-SV regression in which the linear penalty function∑m
i=1(ξi + ξ′i) is replaced by the quadratic penalty function

∑m
i=1(ξ2

i + ξ′2i ). Derive the dual
program.

Problem 20.6. The linear penalty function
∑m

i=1(ξi + ξ′i) can be replaced by the quadratic
penalty function

∑m
i=1(ξ2

i + ξ′2i ). Prove that for an optimal solution we must have ξi ≥ 0 and
ξ′i ≥ 0, so we may omit the constraints ξi ≥ 0 and ξ′i ≥ 0. We must also have γ = 0 so we
may omit the variable γ as well. Prove that ξ = (m/2C)λ and ξ′ = (m/2C)µ. This problem
is very similar to the Soft Margin SVM (SVMs4) discussed in Section 18.13.

Problem 20.7. Consider the version of ν-SV regression in Section 20.5. Prove that for any
optimal solution with w 6= 0 and ε > 0, if the inequalities (pf + qf )/m < ν < 1 hold, then
some point xi is a support vector.

Problem 20.8. Prove that the matrix

A3 =


1>m 1>m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im


has rank 2m+ 1.

Problem 20.9. Consider the version of ν-SV regression in Section 20.5. Prove the following
formulae: If Iλ 6= ∅, then

ε = w>
(∑
i∈Iλ

xi

)
/|Iλ|+ b−

(∑
i∈Iλ

yi

)
/|Iλ|,

and if Iµ 6= ∅, then

ε = −w>
(∑
j∈Iµ

xj

)
/|Iµ| − b+

(∑
i∈Iµ

yi

)
/|Iµ|.

Problem 20.10. Implement ν-Regression Version 2 described in Section 20.5. Run examples
using both the original version and version 2 and compare the results.
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Appendix A

Total Orthogonal Families in Hilbert
Spaces

A.1 Total Orthogonal Families (Hilbert Bases),

Fourier Coefficients

We conclude our quick tour of Hilbert spaces by showing that the notion of orthogonal basis
can be generalized to Hilbert spaces. However, the useful notion is not the usual notion of
a basis, but a notion which is an abstraction of the concept of Fourier series. Every element
of a Hilbert space is the “sum” of its Fourier series.

Definition A.1. Given a Hilbert space E, a family (uk)k∈K of nonnull vectors is an or-
thogonal family iff the uk are pairwise orthogonal, i.e., 〈ui, uj〉 = 0 for all i 6= j (i, j ∈ K),
and an orthonormal family iff 〈ui, uj〉 = δi, j, for all i, j ∈ K. A total orthogonal family (or
system) or Hilbert basis is an orthogonal family that is dense in E. This means that for
every v ∈ E, for every ε > 0, there is some finite subset I ⊆ K and some family (λi)i∈I of
complex numbers, such that ∥∥∥v −∑

i∈I

λiui

∥∥∥ < ε.

Given an orthogonal family (uk)k∈K , for every v ∈ E, for every k ∈ K, the scalar ck =
〈v, uk〉 /‖uk‖2 is called the k-th Fourier coefficient of v over (uk)k∈K .

Remark: The terminology Hilbert basis is misleading because a Hilbert basis (uk)k∈K is
not necessarily a basis in the algebraic sense. Indeed, in general, (uk)k∈K does not span E.
Intuitively, it takes linear combinations of the uk’s with infinitely many nonnull coefficients
to span E. Technically, this is achieved in terms of limits. In order to avoid the confusion
between bases in the algebraic sense and Hilbert bases, some authors refer to algebraic bases
as Hamel bases and to total orthogonal families (or Hilbert bases) as Schauder bases .
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Given an orthogonal family (uk)k∈K , for any finite subset I of K, we often call sums of
the form

∑
i∈I λiui partial sums of Fourier series , and if these partial sums converge to a

limit denoted as
∑

k∈K ckuk, we call
∑

k∈K ckuk a Fourier series .

However, we have to make sense of such sums! Indeed, when K is unordered or uncount-
able, the notion of limit or sum has not been defined. This can be done as follows (for more
details, see Dixmier [29]):

Definition A.2. Given a normed vector space E (say, a Hilbert space), for any nonempty
index set K, we say that a family (uk)k∈K of vectors in E is summable with sum v ∈ E iff
for every ε > 0, there is some finite subset I of K, such that,∥∥∥v −∑

j∈J

uj

∥∥∥ < ε

for every finite subset J with I ⊆ J ⊆ K. We say that the family (uk)k∈K is summable
iff there is some v ∈ E such that (uk)k∈K is summable with sum v. A family (uk)k∈K is a
Cauchy family iff for every ε > 0, there is a finite subset I of K, such that,∥∥∥∑

j∈J

uj

∥∥∥ < ε

for every finite subset J of K with I ∩ J = ∅,

If (uk)k∈K is summable with sum v, we usually denote v as
∑

k∈K uk. The following
technical proposition will be needed:

Proposition A.1. Let E be a complete normed vector space (say, a Hilbert space).

(1) For any nonempty index set K, a family (uk)k∈K is summable iff it is a Cauchy family.

(2) Given a family (rk)k∈K of nonnegative reals rk ≥ 0, if there is some real number B > 0
such that

∑
i∈I ri < B for every finite subset I of K, then (rk)k∈K is summable and∑

k∈K rk = r, where r is least upper bound of the set of finite sums
∑

i∈I ri (I ⊆ K).

Proof. (1) If (uk)k∈K is summable, for every finite subset I of K, let

uI =
∑
i∈I

ui and u =
∑
k∈K

uk

For every ε > 0, there is some finite subset I of K such that

‖u− uL‖ < ε/2

for all finite subsets L such that I ⊆ L ⊆ K. For every finite subset J of K such that
I ∩ J = ∅, since I ⊆ I ∪ J ⊆ K and I ∪ J is finite, we have

‖u− uI∪J‖ < ε/2 and ‖u− uI‖ < ε/2,
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and since
‖uI∪J − uI‖ ≤ ‖uI∪J − u‖+ ‖u− uI‖

and uI∪J − uI = uJ since I ∩ J = ∅, we get

‖uJ‖ = ‖uI∪J − uI‖ < ε,

which is the condition for (uk)k∈K to be a Cauchy family.

Conversely, assume that (uk)k∈K is a Cauchy family. We define inductively a decreasing
sequence (Xn) of subsets of E, each of diameter at most 1/n, as follows: For n = 1, since
(uk)k∈K is a Cauchy family, there is some finite subset J1 of K such that

‖uJ‖ < 1/2

for every finite subset J of K with J1 ∩ J = ∅. We pick some finite subset J1 with the above
property, and we let I1 = J1 and

X1 = {uI | I1 ⊆ I ⊆ K, I finite}.

For n ≥ 1, there is some finite subset Jn+1 of K such that

‖uJ‖ < 1/(2n+ 2)

for every finite subset J of K with Jn+1 ∩ J = ∅. We pick some finite subset Jn+1 with the
above property, and we let In+1 = In ∪ Jn+1 and

Xn+1 = {uI | In+1 ⊆ I ⊆ K, I finite}.

Since In ⊆ In+1, it is obvious that Xn+1 ⊆ Xn for all n ≥ 1. We need to prove that each Xn

has diameter at most 1/n. Since Jn was chosen such that

‖uJ‖ < 1/(2n)

for every finite subset J of K with Jn ∩ J = ∅, and since Jn ⊆ In, it is also true that

‖uJ‖ < 1/(2n)

for every finite subset J of K with In ∩ J = ∅ (since In ∩ J = ∅ and Jn ⊆ In implies that
Jn ∩ J = ∅). Then for every two finite subsets J, L such that In ⊆ J, L ⊆ K, we have

‖uJ−In‖ < 1/(2n) and ‖uL−In‖ < 1/(2n),

and since
‖uJ − uL‖ ≤ ‖uJ − uIn‖+ ‖uIn − uL‖ = ‖uJ−In‖+ ‖uL−In‖,

we get
‖uJ − uL‖ < 1/n,
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which proves that δ(Xn) ≤ 1/n. Now if we consider the sequence of closed sets (Xn), we
still have Xn+1 ⊆ Xn, and by Proposition 12.4, δ(Xn) = δ(Xn) ≤ 1/n, which means that
limn→∞ δ(Xn) = 0, and by Proposition 12.4,

⋂∞
n=1 Xn consists of a single element u. We

claim that u is the sum of the family (uk)k∈K .

For every ε > 0, there is some n ≥ 1 such that n > 2/ε, and since u ∈ Xm for all m ≥ 1,
there is some finite subset J0 of K such that In ⊆ J0 and

‖u− uJ0‖ < ε/2,

where In is the finite subset of K involved in the definition of Xn. However, since δ(Xn) ≤
1/n, for every finite subset J of K such that In ⊆ J , we have

‖uJ − uJ0‖ ≤ 1/n < ε/2,

and since

‖u− uJ‖ ≤ ‖u− uJ0‖+ ‖uJ0 − uJ‖,

we get

‖u− uJ‖ < ε

for every finite subset J of K with In ⊆ J , which proves that u is the sum of the family
(uk)k∈K .

(2) Since every finite sum
∑

i∈I ri is bounded by the uniform bound B, the set of these
finite sums has a least upper bound r ≤ B. For every ε > 0, since r is the least upper bound
of the finite sums

∑
i∈I ri (where I finite, I ⊆ K), there is some finite I ⊆ K such that∣∣∣∣∣r −∑

i∈I

ri

∣∣∣∣∣ < ε,

and since rk ≥ 0 for all k ∈ K, we have∑
i∈I

ri ≤
∑
j∈J

rj

whenever I ⊆ J , which shows that∣∣∣∣∣r −∑
j∈J

rj

∣∣∣∣∣ ≤
∣∣∣∣∣r −∑

i∈I

ri

∣∣∣∣∣ < ε

for every finite subset J such that I ⊆ J ⊆ K, proving that (rk)k∈K is summable with sum∑
k∈K rk = r.
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Remark: The notion of summability implies that the sum of a family (uk)k∈K is independent
of any order on K. In this sense it is a kind of “commutative summability.” More precisely,
it is easy to show that for every bijection ϕ : K → K (intuitively, a reordering of K), the
family (uk)k∈K is summable iff the family (ul)l∈ϕ(K) is summable, and if so, they have the
same sum.

The following proposition gives some of the main properties of Fourier coefficients. Among
other things, at most countably many of the Fourier coefficient may be nonnull, and the
partial sums of a Fourier series converge. Given an orthogonal family (uk)k∈K , we let Uk =
Cuk, and pUk : E → Uk is the projection of E onto Uk.

Proposition A.2. Let E be a Hilbert space, (uk)k∈K an orthogonal family in E, and V the
closure of the subspace generated by (uk)k∈K. The following properties hold:

(1) For every v ∈ E, for every finite subset I ⊆ K, we have∑
i∈I

|ci|2 ≤ ‖v‖2,

where the ck are the Fourier coefficients of v.

(2) For every vector v ∈ E, if (ck)k∈K are the Fourier coefficients of v, the following
conditions are equivalent:

(2a) v ∈ V

(2b) The family (ckuk)k∈K is summable and v =
∑

k∈K ckuk.

(2c) The family (|ck|2)k∈K is summable and ‖v‖2 =
∑

k∈K |ck|2;

(3) The family (|ck|2)k∈K is summable, and we have the Bessel inequality:∑
k∈K

|ck|2 ≤ ‖v‖2.

As a consequence, at most countably many of the ck may be nonzero. The family
(ckuk)k∈K forms a Cauchy family, and thus, the Fourier series

∑
k∈K ckuk converges

in E to some vector u =
∑

k∈K ckuk. Furthermore, u = pV (v).

See Figure A.1.

Proof. (1) Let

uI =
∑
i∈I

ciui
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E

V = span(u  )k

v

 form c  = k

v, uk

uk
2u =  c k uk

k       K
Σ
e

E

V = span(u  )k

v
 form c  = k

v, uk

uk
2 c k uk

k       K
Σ
e

=

(i.)

(ii.)

Figure A.1: A schematic illustration of Proposition A.2. Figure (i.) illustrates Condition
(2b), while Figure (ii.) illustrates Condition (3). Note E is the purple oval and V is the
magenta oval. In both cases, take a vector of E, form the Fourier coefficients ck, then form
the Fourier series

∑
k∈K ckuk. Condition (2b) ensures v equals its Fourier series since v ∈ V .

However, if v /∈ V , the Fourier series does not equal v. Eventually, we will discover that
V = E, which implies that that Fourier series converges to its vector v.

for any finite subset I of K. We claim that v−uI is orthogonal to ui for every i ∈ I. Indeed,

〈v − uI , ui〉 =

〈
v −

∑
j∈I

cjuj, ui

〉
= 〈v, ui〉 −

∑
j∈I

cj 〈uj, ui〉

= 〈v, ui〉 − ci‖ui‖2

= 〈v, ui〉 − 〈v, ui〉 = 0,
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since 〈uj, ui〉 = 0 for all i 6= j and ci = 〈v, ui〉 /‖ui‖2. As a consequence, we have

‖v‖2 =
∥∥∥v −∑

i∈I

ciui +
∑
i∈I

ciui

∥∥∥2

=
∥∥∥v −∑

i∈I

ciui

∥∥∥2

+
∥∥∥∑
i∈I

ciui

∥∥∥2

=
∥∥∥v −∑

i∈I

ciui

∥∥∥2

+
∑
i∈I

|ci|2,

since the ui are pairwise orthogonal, that is,

‖v‖2 =
∥∥∥v −∑

i∈I

ciui

∥∥∥2

+
∑
i∈I

|ci|2.

Thus, ∑
i∈I

|ci|2 ≤ ‖v‖2,

as claimed.

(2) We prove the chain of implications (a)⇒ (b) ⇒ (c) ⇒ (a).

(a)⇒ (b): If v ∈ V , since V is the closure of the subspace spanned by (uk)k∈K , for every
ε > 0, there is some finite subset I of K and some family (λi)i∈I of complex numbers, such
that ∥∥∥v −∑

i∈I

λiui

∥∥∥ < ε.

Now for every finite subset J of K such that I ⊆ J , we have∥∥∥v −∑
i∈I

λiui

∥∥∥2

=
∥∥∥v −∑

j∈J

cjuj +
∑
j∈J

cjuj −
∑
i∈I

λiui

∥∥∥2

=
∥∥∥v −∑

j∈J

cjuj

∥∥∥2

+
∥∥∥∑
j∈J

cjuj −
∑
i∈I

λiui

∥∥∥2

,

since I ⊆ J and the uj (with j ∈ J) are orthogonal to v−
∑

j∈J cjuj by the argument in (1),
which shows that ∥∥∥v −∑

j∈J

cjuj

∥∥∥ ≤ ∥∥∥v −∑
i∈I

λiui

∥∥∥ < ε,

and thus, that the family (ckuk)k∈K is summable with sum v, so that

v =
∑
k∈K

ckuk.
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(b)⇒ (c): If v =
∑

k∈K ckuk, then for every ε > 0, there some finite subset I of K, such
that ∥∥∥v −∑

j∈J

cjuj

∥∥∥ < √ε,
for every finite subset J of K such that I ⊆ J , and since we proved in (1) that

‖v‖2 =
∥∥∥v −∑

j∈J

cjuj

∥∥∥2

+
∑
j∈J

|cj|2,

we get

‖v‖2 −
∑
j∈J

|cj|2 < ε,

which proves that (|ck|2)k∈K is summable with sum ‖v‖2.

(c) ⇒ (a): Finally, if (|ck|2)k∈K is summable with sum ‖v‖2, for every ε > 0, there is
some finite subset I of K such that

‖v‖2 −
∑
j∈J

|cj|2 < ε2

for every finite subset J of K such that I ⊆ J , and again, using the fact that

‖v‖2 =
∥∥∥v −∑

j∈J

cjuj

∥∥∥2

+
∑
j∈J

|cj|2,

we get ∥∥∥v −∑
j∈J

cjuj

∥∥∥ < ε,

which proves that (ckuk)k∈K is summable with sum
∑

k∈K ckuk = v, and v ∈ V .

(3) Since
∑

i∈I |ci|2 ≤ ‖v‖2 for every finite subset I of K, by Proposition A.1(2), the
family (|ck|2)k∈K is summable. The Bessel inequality∑

k∈K

|ck|2 ≤ ‖v‖2

is an obvious consequence of the inequality
∑

i∈I |ci|2 ≤ ‖v‖2 (for every finite I ⊆ K). Now
for every natural number n ≥ 1, if Kn is the subset of K consisting of all ck such that
|ck| ≥ 1/n, the number of elements in Kn is at most∑

k∈Kn

|nck|2 ≤ n2
∑
k∈K

|ck|2 ≤ n2‖v‖2,

which is finite, and thus, at most a countable number of the ck may be nonzero.
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Since (|ck|2)k∈K is summable with sum c, by Proposition A.1(1) we know that for every
ε > 0, there is some finite subset I of K such that∑

j∈J

|cj|2 < ε2

for every finite subset J of K such that I ∩ J = ∅. Since∥∥∥∑
j∈J

cjuj

∥∥∥2

=
∑
j∈J

|cj|2,

we get ∥∥∥∑
j∈J

cjuj

∥∥∥ < ε.

This proves that (ckuk)k∈K is a Cauchy family, which, by Proposition A.1(1), implies that
(ckuk)k∈K is summable since E is complete. Thus, the Fourier series

∑
k∈K ckuk is summable,

with its sum denoted u ∈ V .

Since
∑

k∈K ckuk is summable with sum u, for every ε > 0, there is some finite subset I1

of K such that ∥∥∥u−∑
j∈J

cjuj

∥∥∥ < ε

for every finite subset J of K such that I1 ⊆ J . By the triangle inequality, for every finite
subset I of K, ∥∥∥u− v∥∥∥ ≤ ∥∥∥u−∑

i∈I

ciui

∥∥∥+
∥∥∥∑
i∈I

ciui − v
∥∥∥.

By (2), every w ∈ V is the sum of its Fourier series
∑

k∈K λkuk, and for every ε > 0, there
is some finite subset I2 of K such that∥∥∥w −∑

j∈J

λjuj

∥∥∥ < ε

for every finite subset J of K such that I2 ⊆ J . By the triangle inequality, for every finite
subset I of K, ∥∥∥v −∑

i∈I

λiui

∥∥∥ ≤ ‖v − w‖+
∥∥∥w −∑

i∈I

λiui

∥∥∥.
Letting I = I1 ∪ I2, since we showed in (2) that∥∥∥v −∑

i∈I

ciui

∥∥∥ ≤ ∥∥∥v −∑
i∈I

λiui

∥∥∥
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for every finite subset I of K, we get

‖u− v‖ ≤
∥∥∥u−∑

i∈I

ciui

∥∥∥+
∥∥∥∑
i∈I

ciui − v
∥∥∥

≤
∥∥∥u−∑

i∈I

ciui

∥∥∥+
∥∥∥∑
i∈I

λiui − v
∥∥∥

≤
∥∥∥u−∑

i∈I

ciui

∥∥∥+ ‖v − w‖+
∥∥∥w −∑

i∈I

λiui

∥∥∥,
and thus

‖u− v‖ ≤ ‖v − w‖+ 2ε.

Since this holds for every ε > 0, we have

‖u− v‖ ≤ ‖v − w‖

for all w ∈ V , i.e. ‖v − u‖ = d(v, V ), with u ∈ V , which proves that u = pV (v).

A.2 The Hilbert Space `2(K) and the Riesz–Fischer

Theorem

Proposition A.2 suggests looking at the space of sequences (zk)k∈K (where zk ∈ C) such that
(|zk|2)k∈K is summable. Indeed, such spaces are Hilbert spaces, and it turns out that every
Hilbert space is isomorphic to one of those. Such spaces are the infinite-dimensional version
of the spaces Cn under the usual Euclidean norm.

Definition A.3. Given any nonempty index set K, the space `2(K) is the set of all sequences
(zk)k∈K , where zk ∈ C, such that (|zk|2)k∈K is summable, i.e.,

∑
k∈K |zk|2 <∞.

Remarks:

(1) When K is a finite set of cardinality n, `2(K) is isomorphic to Cn.

(2) When K = N, the space `2(N) corresponds to the space `2 of Example 2 in Section
13.1 (Vol. I). In that example, we claimed that `2 was a Hermitian space, and in fact,
a Hilbert space. We now prove this fact for any index set K.

Proposition A.3. Given any nonempty index set K, the space `2(K) is a Hilbert space
under the Hermitian product

〈(xk)k∈K , (yk)k∈K〉 =
∑
k∈K

xkyk.

The subspace consisting of sequences (zk)k∈K such that zk = 0, except perhaps for finitely
many k, is a dense subspace of `2(K).
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Proof. First we need to prove that `2(K) is a vector space. Assume that (xk)k∈K and (yk)k∈K
are in `2(K). This means that (|xk|2)k∈K and (|yk|2)k∈K are summable, which, in view of
Proposition A.1(2), is equivalent to the existence of some positive bounds A and B such
that

∑
i∈I |xi|2 < A and

∑
i∈I |yi|2 < B, for every finite subset I of K. To prove that

(|xk + yk|2)k∈K is summable, it is sufficient to prove that there is some C > 0 such that∑
i∈I |xi + yi|2 < C for every finite subset I of K. However, the parallelogram inequality

implies that ∑
i∈I

|xi + yi|2 ≤
∑
i∈I

2(|xi|2 + |yi|2) ≤ 2(A+B),

for every finite subset I of K, and we conclude by Proposition A.1(2). Similarly, for every
λ ∈ C, ∑

i∈I

|λxi|2 ≤
∑
i∈I

|λ|2|xi|2 ≤ |λ|2A,

and (λkxk)k∈K is summable. Therefore, `2(K) is a vector space.

By the Cauchy-Schwarz inequality,∑
i∈I

|xiyi| ≤
∑
i∈I

|xi||yi| ≤
(∑
i∈I

|xi|2
)1/2(∑

i∈I

|xyi|2
)1/2 ≤

∑
i∈I

(|xi|2 + |yi|2)/2 ≤ (A+B)/2,

for every finite subset I of K. For the third inequality we used the fact that

4CD ≤ (C +D)2,

(with C =
∑

i∈I |xi|2 and D =
∑

i∈I |yi|2) which is equivalent to

(C −D)2 ≥ 0.

By Proposition A.1(2), (|xkyk|)k∈K is summable. The customary language is that (xkyk)k∈K
is absolutely summable. However, it is a standard fact that this implies that (xkyk)k∈K is
summable (For every ε > 0, there is some finite subset I of K such that∑

j∈J

|xjyj| < ε

for every finite subset J of K such that I ∩ J = ∅, and thus

|
∑
j∈J

xjyj| ≤
∑
i∈J

|xjyj| < ε,

proving that (xkyk)k∈K is a Cauchy family, and thus summable). We still have to prove that
`2(K) is complete.

Consider a sequence ((λnk)k∈K)n≥1 of sequences (λnk)k∈K ∈ `2(K), and assume that it is a
Cauchy sequence. This means that for every ε > 0, there is some N ≥ 1 such that∑

k∈K

|λmk − λnk |2 < ε2
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for all m,n ≥ N . For every fixed k ∈ K, this implies that

|λmk − λnk | < ε

for all m,n ≥ N , which shows that (λnk)n≥1 is a Cauchy sequence in C. Since C is complete,
the sequence (λnk)n≥1 has a limit λk ∈ C. We claim that (λk)k∈K ∈ `2(K) and that this is
the limit of ((λnk)k∈K)n≥1.

Given any ε > 0, the fact that ((λnk)k∈K)n≥1 is a Cauchy sequence implies that there is
some N ≥ 1 such that for every finite subset I of K, we have∑

i∈I

|λmi − λni |2 < ε/4

for all m,n ≥ N . Let p = |I|. Then

|λmi − λni | <
√
ε

2
√
p

for every i ∈ I. Since λi is the limit of (λni )n≥1, we can find some n large enough so that

|λni − λi| <
√
ε

2
√
p

for every i ∈ I. Since
|λmi − λi| ≤ |λmi − λni |+ |λni − λi|,

we get

|λmi − λi| <
√
ε
√
p
,

and thus, ∑
i∈I

|λmi − λi|2 < ε,

for all m ≥ N . Since the above holds for every finite subset I of K, by Proposition A.1(2),
we get ∑

k∈K

|λmk − λk|2 < ε,

for all m ≥ N . This proves that (λmk − λk)k∈K ∈ `2(K) for all m ≥ N , and since `2(K) is a
vector space and (λmk )k∈K ∈ `2(K) for all m ≥ 1, we get (λk)k∈K ∈ `2(K). However,∑

k∈K

|λmk − λk|2 < ε

for all m ≥ N , means that the sequence (λmk )k∈K converges to (λk)k∈K ∈ `2(K). The fact
that the subspace consisting of sequences (zk)k∈K such that zk = 0 except perhaps for finitely
many k is a dense subspace of `2(K) is left as an easy exercise.
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Remark: The subspace consisting of all sequences (zk)k∈K such that zk = 0, except perhaps
for finitely many k, provides an example of a subspace which is not closed in `2(K). Indeed,
this space is strictly contained in `2(K), since there are countable sequences of nonnull
elements in `2(K) (why?).

We just need two more propositions before being able to prove that every Hilbert space
is isomorphic to some `2(K).

Proposition A.4. Let E be a Hilbert space, and (uk)k∈K an orthogonal family in E. The
following properties hold:

(1) For every family (λk)k∈K ∈ `2(K), the family (λkuk)k∈K is summable. Furthermore,
v =

∑
k∈K λkuk is the only vector such that ck = λk for all k ∈ K, where the ck are the

Fourier coefficients of v.

(2) For any two families (λk)k∈K ∈ `2(K) and (µk)k∈K ∈ `2(K), if v =
∑

k∈K λkuk and
w =

∑
k∈K µkuk, we have the following equation, also called Parseval identity:

〈v, w〉 =
∑
k∈K

λkµk.

Proof. (1) The fact that (λk)k∈K ∈ `2(K) means that (|λk|2)k∈K is summable. The proof
given in Proposition A.2 (3) applies to the family (|λk|2)k∈K (instead of (|ck|2)k∈K), and yields
the fact that (λkuk)k∈K is summable. Letting v =

∑
k∈K λkuk, recall that ck = 〈v, uk〉 /‖uk‖2.

Pick some k ∈ K. Since 〈−,−〉 is continuous, for every ε > 0, there is some η > 0 such that

| 〈v, uk〉 − 〈w, uk〉 | < ε‖uk‖2

whenever
‖v − w‖ < η.

However, since for every η > 0, there is some finite subset I of K such that∥∥∥v −∑
j∈J

λjuj

∥∥∥ < η

for every finite subset J of K such that I ⊆ J , we can pick J = I ∪ {k} and letting
w =

∑
j∈J λjuj we get ∣∣∣∣∣〈v, uk〉 −

〈∑
j∈J

λjuj, uk

〉∣∣∣∣∣ < ε‖uk‖2.

However,

〈v, uk〉 = ck‖uk‖2 and

〈∑
j∈J

λjuj, uk

〉
= λk‖uk‖2,

and thus, the above proves that |ck − λk| < ε for every ε > 0, and thus, that ck = λk.
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(2) Since 〈−,−〉 is continuous, for every ε > 0, there are some η1 > 0 and η2 > 0, such
that

| 〈x, y〉 | < ε

whenever ‖x‖ < η1 and ‖y‖ < η2. Since v =
∑

k∈K λkuk and w =
∑

k∈K µkuk, there is some
finite subset I1 of K such that ∥∥∥v −∑

j∈J

λjuj

∥∥∥ < η1

for every finite subset J of K such that I1 ⊆ J , and there is some finite subset I2 of K such
that ∥∥∥w −∑

j∈J

µjuj

∥∥∥ < η2

for every finite subset J of K such that I2 ⊆ J . Letting I = I1 ∪ I2, we get∣∣∣∣∣
〈
v −

∑
i∈I

λiui, w −
∑
i∈I

µiui

〉∣∣∣∣∣ < ε.

Furthermore,

〈v, w〉 =

〈
v −

∑
i∈I

λiui +
∑
i∈I

λiui, w −
∑
i∈I

µiui +
∑
i∈I

µiui

〉

=

〈
v −

∑
i∈I

λiui, w −
∑
i∈I

µiui

〉
+
∑
i∈I

λiµi,

since the ui are orthogonal to v−
∑

i∈I λiui and w−
∑

i∈I µiui for all i ∈ I. This proves that
for every ε > 0, there is some finite subset I of K such that∣∣∣∣∣〈v, w〉 −∑

i∈I

λiµi

∣∣∣∣∣ < ε.

We already know from Proposition A.3 that (λkµk)k∈K is summable, and since ε > 0 is
arbitrary we get

〈v, w〉 =
∑
k∈K

λkµk.

The next proposition states properties characterizing Hilbert bases (total orthogonal
families).

Proposition A.5. Let E be a Hilbert space, and let (uk)k∈K be an orthogonal family in E.
The following properties are equivalent:
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(1) The family (uk)k∈K is a total orthogonal family.

(2) For every vector v ∈ E, if (ck)k∈K are the Fourier coefficients of v, then the family
(ckuk)k∈K is summable and v =

∑
k∈K ckuk.

(3) For every vector v ∈ E, we have the Parseval identity:

‖v‖2 =
∑
k∈K

|ck|2.

(4) For every vector u ∈ E, if 〈u, uk〉 = 0 for all k ∈ K, then u = 0.

See Figure A.2.

E V = span(u  )k

v
 form c  = k

v, uk

uk
2 c k uk

k       K
Σ
e

=

=

Figure A.2: A schematic illustration of Proposition A.5. Since (uk)k∈K is a Hilbert basis,
V = E. Then given a vector of E, if we form the Fourier coefficients ck, then form the
Fourier series

∑
k∈K ckuk, we are ensured that v is equal to its Fourier series.

Proof. The equivalence of (1), (2), and (3) is an immediate consequence of Proposition A.2
and Proposition A.4.

(4) If (uk)k∈K is a total orthogonal family and 〈u, uk〉 = 0 for all k ∈ K, since u =∑
k∈K ckuk where ck = 〈u, uk〉/‖uk‖2, we have ck = 0 for all k ∈ K, and u = 0.

Conversely, assume that the closure V of (uk)k∈K is different from E. Then by Proposition
12.7, we have E = V ⊕ V ⊥, where V ⊥ is the orthogonal complement of V , and V ⊥ is
nontrivial since V 6= E. As a consequence, there is some nonnull vector u ∈ V ⊥. But then
u is orthogonal to every vector in V , and in particular,

〈u, uk〉 = 0

for all k ∈ K, which, by assumption, implies that u = 0, contradicting the fact that u 6=
0.
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Remarks:

(1) If E is a Hilbert space and (uk)k∈K is a total orthogonal family in E, there is a simpler
argument to prove that u = 0 if 〈u, uk〉 = 0 for all k ∈ K based on the continuity
of 〈−,−〉. The argument is to prove that the assumption implies that 〈v, u〉 = 0 for
all v ∈ E. Since 〈−,−〉 is positive definite, this implies that u = 0. By continuity of
〈−,−〉, for every ε > 0, there is some η > 0 such that for every finite subset I of K,
for every family (λi)i∈I , for every v ∈ E,∣∣∣∣∣〈v, u〉 −

〈∑
i∈I

λiui, u

〉∣∣∣∣∣ < ε

whenever ∥∥∥v −∑
i∈I

λiui

∥∥∥ < η.

Since (uk)k∈K is dense in E, for every v ∈ E, there is some finite subset I of K and
some family (λi)i∈I such that ∥∥∥v −∑

i∈I

λiui

∥∥∥ < η,

and since by assumption,
〈∑

i∈I λiui, u
〉

= 0, we get

|〈v, u〉| < ε.

Since this holds for every ε > 0, we must have 〈v, u〉 = 0

(2) If V is any nonempty subset of E, the kind of argument used in the previous remark
can be used to prove that V ⊥ is closed (even if V is not), and that V ⊥⊥ is the closure
of V .

We will now prove that every Hilbert space has some Hilbert basis. This requires using
a fundamental theorem from set theory known as Zorn’s lemma, which we quickly review.

Given any set X with a partial ordering ≤, recall that a nonempty subset C of X is a
chain if it is totally ordered (i.e., for all x, y ∈ C, either x ≤ y or y ≤ x). A nonempty subset
Y of X is bounded iff there is some b ∈ X such that y ≤ b for all y ∈ Y . Some m ∈ X is
maximal iff for every x ∈ X, m ≤ x implies that x = m. We can now state Zorn’s lemma.
For more details, see Rudin [62], Lang [47], or Artin [4].

Proposition A.6. (Zorn’s lemma) Given any nonempty partially ordered set X, if every
(nonempty) chain in X is bounded, then X has some maximal element.



A.2. THE HILBERT SPACE `2(K) AND THE RIESZ–FISCHER THEOREM 789

We can now prove the existence of Hilbert bases. We define a partial order on families
(uk)k∈K as follows: for any two families (uk)k∈K1 and (vk)k∈K2 , we say that

(uk)k∈K1 ≤ (vk)k∈K2

iff K1 ⊆ K2 and uk = vk for all k ∈ K1. This is clearly a partial order.

Proposition A.7. Let E be a Hilbert space. Given any orthogonal family (uk)k∈K in E,
there is a total orthogonal family (ul)l∈L containing (uk)k∈K.

Proof. Consider the set S of all orthogonal families greater than or equal to the family
B = (uk)k∈K . We claim that every chain in S is bounded. Indeed, if C = (Cl)l∈L is a chain
in S, where Cl = (uk,l)k∈Kl , the union family

(uk)k∈⋃l∈LKl , where uk = uk,l whenever k ∈ Kl,

is clearly an upper bound for C, and it is immediately verified that it is an orthogonal family.
By Zorn’s Lemma A.6, there is a maximal family (ul)l∈L containing (uk)k∈K . If (ul)l∈L is
not dense in E, then its closure V is strictly contained in E, and by Proposition 12.7, the
orthogonal complement V ⊥ of V is nontrivial since V 6= E. As a consequence, there is some
nonnull vector u ∈ V ⊥. But then u is orthogonal to every vector in (ul)l∈L, and we can form
an orthogonal family strictly greater than (ul)l∈L by adding u to this family, contradicting
the maximality of (ul)l∈L. Therefore, (ul)l∈L is dense in E, and thus it is a Hilbert basis.

Remark: It is possible to prove that all Hilbert bases for a Hilbert space E have index sets
K of the same cardinality. For a proof, see Bourbaki [16].

Definition A.4. A Hilbert space E is separable if its Hilbert bases are countable.

At last, we can prove that every Hilbert space is isomorphic to some Hilbert space `2(K)
for some suitable K.

Theorem A.8. (Riesz–Fischer) For every Hilbert space E, there is some nonempty set K
such that E is isomorphic to the Hilbert space `2(K). More specifically, for any Hilbert basis
(uk)k∈K of E, the maps f : `2(K)→ E and g : E → `2(K) defined such that

f ((λk)k∈K) =
∑
k∈K

λkuk and g(u) =
(
〈u, uk〉/‖uk‖2

)
k∈K = (ck)k∈K ,

are bijective linear isometries such that g ◦ f = id and f ◦ g = id.

Proof. By Proposition A.4 (1), the map f is well defined, and it is clearly linear. By Propo-
sition A.2 (3), the map g is well defined, and it is also clearly linear. By Proposition A.2
(2b), we have

f(g(u)) = u =
∑
k∈K

ckuk,
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and by Proposition A.4 (1), we have

g(f ((λk)k∈K)) = (λk)k∈K ,

and thus g ◦ f = id and f ◦ g = id. By Proposition A.4 (2), the linear map g is an isometry.
Therefore, f is a linear bijection and an isometry between `2(K) and E, with inverse g.

Remark: The surjectivity of the map g : E → `2(K) is known as the Riesz–Fischer theorem.

Having done all this hard work, we sketch how these results apply to Fourier series. Again
we refer the readers to Rudin [62] or Lang [49, 50] for a comprehensive exposition.

Let C(T ) denote the set of all periodic continuous functions f : [−π, π]→ C with period
2π. There is a Hilbert space L2(T ) containing C(T ) and such that C(T ) is dense in L2(T ),
whose inner product is given by

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

The Hilbert space L2(T ) is the space of Lebesgue square-integrable periodic functions (of
period 2π).

It turns out that the family (eikx)k∈Z is a total orthogonal family in L2(T ), because it is
already dense in C(T ) (for instance, see Rudin [62]). Then the Riesz–Fischer theorem says
that for every family (ck)k∈Z of complex numbers such that∑

k∈Z

|ck|2 <∞,

there is a unique function f ∈ L2(T ) such that f is equal to its Fourier series

f(x) =
∑
k∈Z

cke
ikx,

where the Fourier coefficients ck of f are given by the formula

ck =
1

2π

∫ π

−π
f(t)e−iktdt.

The Parseval theorem says that

+∞∑
k=−∞

ckdk =
1

2π

∫ π

−π
f(t)g(t)dt

for all f, g ∈ L2(T ), where ck and dk are the Fourier coefficients of f and g.
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Thus, there is an isomorphism between the two Hilbert spaces L2(T ) and `2(Z), which is
the deep reason why the Fourier coefficients “work.” Theorem A.8 implies that the Fourier
series

∑
k∈Z cke

ikx of a function f ∈ L2(T ) converges to f in the L2-sense, i.e., in the mean-
square sense. This does not necessarily imply that the Fourier series converges to f pointwise!
This is a subtle issue, and for more on this subject, the reader is referred to Lang [49, 50] or
Schwartz [71, 72].

We can also consider the set C([−1, 1]) of continuous functions f : [−1, 1]→ C. There is a
Hilbert space L2([−1, 1]) containing C([−1, 1]) and such that C([−1, 1]) is dense in L2([−1, 1]),
whose inner product is given by

〈f, g〉 =

∫ 1

−1

f(x)g(x)dx.

The Hilbert space L2([−1, 1]) is the space of Lebesgue square-integrable functions over [−1, 1].
The Legendre polynomials Pn(x) defined in Example 5 of Section 11.2 (Chapter 11, Vol. I)
form a Hilbert basis of L2([−1, 1]). Recall that if we let fn be the function

fn(x) = (x2 − 1)n,

Pn(x) is defined as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),

where f
(n)
n is the nth derivative of fn. The reason for the leading coefficient is to get

Pn(1) = 1. It can be shown with much efforts that

Pn(x) =
∑

0≤k≤n/2

(−1)k
(2(n− k))!

2n(n− k)!k!(n− 2k)!
xn−2k.

A.3 Summary

The main concepts and results of this chapter are listed below:

• Hilbert space

• Orthogonal family, total orthogonal family.

• Hilbert basis.

• Fourier coefficients.

• Hamel bases, Schauder bases.

• Fourier series.
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• Cauchy family, summable family.

• Bessel inequality.

• The Hilbert space `2(K).

• Parseval identity.

• Zorn’s lemma.

• Riesz–Fischer theorem.

• Legendre polynomials.

A.4 Problems

Problem A.1. Prove that the subspace consisting of sequences (zk)k∈K such that zk = 0
except perhaps for finitely many k is a dense suspace of `2(K).

Problem A.2. If V is any nonempty subset of E, prove that V ⊥ is closed (even if V is not)
and that V ⊥⊥ is the closure of V (see the remarks following Proposition A.5).



Appendix B

Matlab Programs

B.1 Hard Margin (SVMh2)

The following Matlab programs implement the method described in Section 16.7.

The first program is the heart of the method; it implements ADMM for quadratic pro-
gramming.

function [x,u,nr,ns,k] = qsolve1(P, q, A, b, rho, tolr, tols, iternum)

% Solve a quadratic programming problem

% min (1/2) x^T P x + x^T q + r

% subject to Ax = b, x >= 0 using ADMM

% P n x n, q, r, in R^n, A m x n, b in R^m

% A of rank m

m = size(A,1); fprintf(’m = %d ’,m)

n = size(P,1); fprintf(’ n = %d \n’,n)

u = ones(n,1); u(1,1) = 0; % to initialize u

z = ones(n,1); % to initialize z

% iternum = maximum number of iterations;

% iternum = 80000 works well

k = 0; nr= 1; ns = 1;

% typically tolr = 10^(-10); tols = 10^(-10);

% Convergence is controlled by the norm nr of the primal residual r

% and the norm ns of the dual residual s

while (k <= iternum) && (ns > tols || nr > tolr)

z0 = z;

k = k+1;

% Makes KKT matrix

KK = [P + rho* eye(n) A’; A zeros(m,m)];

793
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% Makes right hand side of KKT equation

bb = [-q + rho*(z - u); b];

% Solves KKT equation

xx = KK\bb;

% update x, z, u (ADMM update steps)

x = xx(1:n);

z = poslin(x + u);

u = u + x - z;

% to test stopping criterion

r = x - z; % primal residual

nr = sqrt(r’*r); % norm of primal residual

s = rho*(z - z0); % dual residual

ns = sqrt(s’*s); % norm of dual residual

end

end

The second program SBVMhard2 implements hard margin SVM (version 2).

function [lamb,mu,w] = SVMhard2(rho,u,v)

%

% Runs hard margin SVM version 2

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

%

p = size(u,2); q = size(v,2); n = size(u,1);

[A,c,X,Pa,qa] = buildhardSVM2(u,v);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[lam,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols, iternum);

fprintf(’nr = %d ’,nr)

fprintf(’ ns = %d \n’,ns)

fprintf(’kk = %d \n’,kk)

if kk > iternum

fprintf(’** qsolve did not converge. Problem not solvable ** \n’)

end

w = -X*lam;

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %.15f \n’,nw)
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delta = 1/nw;

fprintf(’delta = %.15f \n’,delta)

if delta < 10^(-9)

fprintf(’** Warning, delta too small, program does not converge ** \n’)

end

%

lamb = lam(1:p,1);

mu = lam(p+1:p+q,1);

b = 0;

tols = 10^(-10);

% tols < lambda_i; finds the nonzero lambda_i

[lambnz,numsvl1] = countmlu2(lamb,tols);

% tols < mu_i; finds the nonzero mu_j

[munz,numsvm1] = countmlv2(mu,tols);

fprintf(’numsvl1 = %d ’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

if numsvl1 > 0 && numsvm1 > 0

sx1 = zeros(n,1); num1 = 0;

sx2 = zeros(n,1); num2 = 0;

for i = 1:p

if lambnz(i) > 0

sx1 = sx1 + u(:,i);

num1 = num1 + 1;

end

end

for j = 1:q

if munz(j) > 0

sx2 = sx2 + v(:,j);

num2 = num2 + 1;

end

end

b = (w’*(sx1/num1 + sx2/num2))/2;

fprintf(’b = %.15f \n’,b)

else

fprintf(’** Not enough support vectors ** \n’)

end

if n == 2

[ll,mm] = showdata(u,v);

if numsvl1 > 0 && numsvm1 > 0

showSVMs2(w,b,1,ll,mm,nw)
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end

end

end

The function buildhardSVM2 builds the constraint matrix and the matrices defining the
quadratic functional.

function [A,c,X,Xa,q] = buildhardSVM2(u,v)

% builds the matrix of constraints A for

% hard SVM h2, and the right hand side c

% Aso builds X and Xa = X’*X, and the vector q = -1_{p+q}

% for the linear part of the quadratic function

% The right-hand side is c = 0 (Ax = 0).

p = size(u,2); q = size(v,2);

A = [ones(1,p) -ones(1,q)];

c = 0;

X = [-u v];

Xa = X’*X;

q = -ones(p+q,1);

end

The function countmlu2 returns a vector consisting of those λi such that λi > 0, and the
number of such λi.

function [lambnz, mlu] = countmlu2(lambda,tols)

% Counts the number of points u_i (in u)

% such that lambda_i > 0 and returns a vector

% of these lambda_i

% tols = 10^(-11);

p = size(lambda,1); lambnz = zeros(p,1);

mlu = 0;

for i = 1:p

if lambda(i) > tols

mlu = mlu + 1;

lambnz(i) = lambda(i);

end

end

end

The function countmlv2 returns a vector consisting of those µj such that µj > 0, and
the number of such µj. It is similar to countmlu2. Here a judicious choice of tols is crucial
and one has to experiment with various values.
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The function showdata displays the data points (the ui and the vj) and the function
showSVMs2 displays the separating line and the two margin lines.

function showSVMs2(w,b,eta,ll,mm,nw)

%

% Function to display the result of running SVM

% on p blue points u_1, ..., u_p in u

% and q red points v_1, ..., v_q in v

l = makeline(w,b,ll,mm,nw); % makes separating line

lm1 = makeline(w,b+eta,ll,mm,nw); % makes blue margin line

lm2 = makeline(w,b-eta,ll,mm,nw); % makes red margin line

plot(l(1,:),l(2,:),’-m’,’LineWidth’,1.2) % plots separating line

plot(lm1(1,:),lm1(2,:),’-b’,’LineWidth’,1.2) % plots blue margin line

plot(lm2(1,:),lm2(2,:),’-r’,’LineWidth’,1.2) % plots red margin line

hold off

end

Actually, implementing the above function is not entirely trivial. It is necessary to write a
function makeline to plot the line segment which is part of the line of equation w1x+w2y = b
inside a box containing the data points. We leave the details an exercises.

B.2 Soft Margin SVM (SVMs2′)

The following Matlab programs implement the method described in Section 18.8.

The function doSVMs2pbv3 calls the function solve1 given in Section 16.7.

function [lamb,mu,alpha,beta,lambnz,munz,numsvl1,numsvm1,badnu,w,nw,b,eta]

= doSVMs2pbv3(nu,rho,u,v,K)

%

% Best version

% Uses the duality gap to compute eta

% In principle, needs a single support vector of type 1

%

% Soft margin nu-SVM version s2’

% with the constraint

% \sum_{i = 1}^p + \sum_{j = 1}^q mu_j = K_m

% (without the variable gamma)

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v
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%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[A,c,X,Pa,qa] = buildSVMs2pb(nu,u,v,K);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[x,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols, iternum);

fprintf(’nr = %d ’,nr)

fprintf(’ ns = %d \n’,ns)

fprintf(’kk = %d \n’,kk)

noconv = 0;

if kk > iternum

noconv = 1;

fprintf(’** qsolve did not converge. Problem not solvable ** \n’)

end

lam = x(1:(p+q),1);

alpha = x((p+q+1):2*p+q,1);

beta = x(2*p+q+1:2*(p+q),1);

w = -X*lam;

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %d \n’,nw)

%

lamb = x(1:p,1);

mu = x(p+1:p+q,1);

tols = 10^(-10); tolh = 10^(-9);

% tols < lambda_i < K - tolh

[lambnz,numsvl1] = findpsv2(lamb,K,tols,tolh);

% tols < mu_i < K - tolh

[munz,numsvm1] = findpsv2(mu,K,tols,tolh);

fprintf(’numsvl1 = %d ’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

% lambda_i >= K - tolh

[lamK,pf] = countumf2(lamb,K,tolh); % number of blue margin failures

% mu_j >= K - tolh

[muK,qf] = countvmf2(mu,K,tolh); % number of red margin failures

fprintf(’pf = %d ’,pf)

fprintf(’ qf = %d \n’,qf)

[~,pm] = countmlu2(lamb,tols); % number of points such that lambda_i > tols
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[~,qm] = countmlv2(mu,tols); % number of points such that mu_i > 0

fprintf(’pm = %d ’,pm)

fprintf(’ qm = %d \n’,qm)

fprintf(’p - pm = %d ’,p - pm)

fprintf(’ q - qm = %d \n’,q - qm)

lnu = max(2*pf/(p+q),2*qf/(p+q)); unu = min(2*pm/(p+q),2*qm/(p+q));

fprintf(’lnu = %d ’,lnu)

fprintf(’ unu = %d \n’,unu)

if nu < lnu

fprintf(’** Warning; nu is too small ** \n’)

else

if nu > unu

fprintf(’** Warning; nu is too big ** \n’)

end

end

sx1 = zeros(n,1); num1 = 0;

sKu = zeros(n,1); Knum1 = 0;

for i = 1:p

if lambnz(i) > 0

sx1 = sx1 + u(:,i);

num1 = num1 + 1;

end

if lamK(i) > 0

sKu = sKu + u(:,i);

Knum1 = Knum1 + 1;

end

end

% Knum1

sx2 = zeros(n,1); num2 = 0;

sKv = zeros(n,1); Knum2 = 0;

for j = 1:q

if munz(j) > 0

sx2 = sx2 + v(:,j);

num2 = num2 + 1;

end

if muK(j) > 0

sKv = sKv + v(:,j);

Knum2 = Knum2 + 1;

end

end

% Knum2
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b = 0; eta = 0;

epsilon = 0; xi = 0;

P2 = X’*X;

badnu = 0;

if numsvl1 > 0

if numsvm1 > 0

b = (w’*(sx1/num1 + sx2/num2))/2;

fprintf(’b = %.15f \n’,b)

eta = (w’*(sx1/num1 - sx2/num2))/2;

fprintf(’eta = %.15f \n’,eta)

else

errterm = w’*(sKv - sKu) + (pf - qf)*w’*(sx1/num1);

Pterm = (1/K)*(lam’*P2*lam);

denomqf = (p+q)*nu -2*qf;

fprintf(’denomqf = %.15f \n’,denomqf)

if denomqf > 0

eta = (errterm + Pterm)/denomqf;

fprintf(’eta = %.15f \n’,eta)

b = -eta + w’*sx1/num1;

else

badnu = 1;

fprintf(’** Warning: numsvl1 > 0, numsvm1 = 0 and nu = 2*qf/(p+q) ** \n’)

end

end

else

if numsvm1 > 0

errterm = w’*(sKv - sKu) + (pf - qf)*w’*(sx2/num2);

Pterm = (1/K)*(lam’*P2*lam);

denompf = (p+q)*nu -2*pf;

fprintf(’denompf = %.15f \n’,denompf)

if denompf > 0

eta = (errterm + Pterm)/denompf;

fprintf(’eta = %.15f \n’,eta)

b = eta + w’*sx2/num2;

else

badnu = 1;

fprintf(’** Warning: numsvm1 > 0, numsvl1 = 0 and nu = 2*pf/(p+q) ** \n’)

end

else

fprintf(’** Not enough support vectors ** \n’)

end
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end

Km = (p+q)*nu*K;

fprintf(’K = %.15f ’,K)

fprintf(’ (p+q)*nu*Ks/2 = %.15f \n’,Km/2)

fprintf(’sum(lambda) = %.15f ’,sum(lamb))

fprintf(’ sum(mu) = %.15f \n’,sum(mu))

if (numsvl1 > 0 || numsvm1 > 0) && badnu == 0

if eta < 10^(-9)

fprintf(’** Warning, eta too small or negative ** \n’)

eta = 0;

end

delta = eta/nw;

fprintf(’delta = %.15f \n’,delta)

tolxi = 10^(-10);

% tols < lambda_i < K - tolh or K - tolh <= lambda_i and epsilon_i < tolxi

[lamsv,psf,epsilon] = findsvl2(lamb,w,b,u,eta,K,tols,tolh,tolxi);

% tols < mu_i < K - tolh or K - tolh <= mu_i and xi_i < tolxi

[musv,qsf,xi] = findsvm2(mu,w,b,v,eta,K,tols,tolh,tolxi);

fprintf(’psf = %d ’,psf)

fprintf(’ qsf = %d \n’,qsf)

fprintf(’pf - psf = %d ’,pf - psf)

fprintf(’ qf - qsf = %d \n’,qf - qsf)

% computes eta from the duality gap

errterm = w’*(sKv - sKu) + (pf - qf)*b;

Pterm = (1/K)*(lam’*P2*lam);

denom = (p+q)*nu - pf -qf;

fprintf(’denom = %.15f \n’,denom)

if denom > 0

eta1 = (errterm + Pterm)/denom;

fprintf(’eta1 = %.15f \n’,eta1)

end

end

end

The constraint matrix and the matrices defining the quadratic program are constructed
by the function buildSVMs2pb.

function [A,c,X,Pa,q] = buildSVMs2pb(nu,u,v,K)

% builds the matrix of constraints A for

% soft margin nu-SVM s2’
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% with the constraint

% \sum_{i = 1}^p + \sum_{j = 1}^q mu_j = K_m

% (without the variable gamma) and the right-hand side c

% u: vector of p blue points (each an n-dim vector)

% v: vector of q red points (each an n-dim vector)

% builds the matrix X = [-u_1 ... -u_p v1 .... v_q]

% and the matrix Pa as 2(p+q) matrix obtained

% by augmenting X’*X with zeros

% K is a scale factor (K = Ks)

p = size(u,2); q = size(v,2);

% Ks = 1/(p+q);

Ks = K; Km = (p+q)*K*nu;

A = [ones(1,p) -ones(1,q) zeros(1,p+q);

ones(1,p) ones(1,q) zeros(1,p+q) ;

eye(p) zeros(p,q) eye(p) zeros(p,q);

zeros(q,p) eye(q) zeros(q,p) eye(q) ];

c = [0; Km; Ks*ones(p+q,1)];

X = [-u v];

XX = X’*X;

Pa = [XX zeros(p+q,p+q); zeros(p+q, 2*(p+q))];

q = zeros(2*(p+q),1);

end

The function findpsv2 makes a vector of λi (and µj) corresponding to support vectors
of type 1.

function [lampsv,num] = findpsv2(lambda,K,tols,tolh)

%

% This function find the vector of

% lambda_i’s such that 0 < lambda_i < K

% and the number of such lambda_i.

%

% tols = 10^(-11); % the smaller this is, the larger the number of

% points on the margin

% tolh = 10^(-9); %

m = size(lambda,1); lampsv = zeros(m,1);

num = 0;

for i = 1:m

if lambda(i) > tols && lambda(i) < K - tolh

lampsv(i) = lambda(i);

num = num + 1;

end
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end

end

The function countumf2 finds those λi such that λi = K.

function [lamK,mf] = countumf2(lambda,K,tolh)

% Counts the number of margin failures, that is,

% points u_i (in u) such that lambda_i = K

p = size(lambda,1);

mf = 0; lamK = zeros(p,1);

for i = 1:p

if lambda(i) >= K - tolh

mf = mf + 1;

lamK(i) = lambda(i);

end

end

end

Similarly, the function countvmf2 finds those µj such that µj = K.

The function countmlu2 finds those λi such that λi > 0.

function [lambnz, mlu] = countmlu2(lambda,tols)

% Counts the number of points u_i (in u)

% such that lambda_i > 0 and returns a vector

% of these lambda_i

% tols = 10^(-11);

p = size(lambda,1); lambnz = zeros(p,1);

mlu = 0;

for i = 1:p

if lambda(i) > tols

mlu = mlu + 1;

lambnz(i) = lambda(i);

end

end

end

Similarly, the function countmlv2 finds those µj such that µj > 0. The function findsvl2

finds the λi corresponding to blue support vectors of type 1 and 2 and the error vector ε.
The number of blue errors is psf (the ui for which εi > 0). Similarly the function findsvm2

finds the µj corresponding to red support vectors of type 1 and 2 and the error vector ξ.
The number of red errors is qsf (the vj for which ξj > 0).
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The main function runSVMs2pbv3 calls doSVMs2pbv3 and displays the separating line (or
plane) and the two margin lines (or planes).

function [lamb,mu,alpha,beta,lambnz,munz,w] = runSVMs2pbv3(nu,rho,u,v,K)

%

% Best version

% Uses the duality gap to compute eta

% In principle, needs a single support vector of type 1

%

% Runs soft margin nu-SVM version s2’

% with the constraint

% \sum_{i = 1}^p + \sum_{j = 1}^q mu_j = K_m

% (without the variable gamma)

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[lamb,mu,alpha,beta,lambnz,munz,numsvl1,numsvm1,badnu,w,nw,b,eta]

= doSVMs2pbv3(nu,rho,u,v,K);

if n == 2

[ll,mm] = showdata(u,v);

if (numsvl1 > 0 || numsvm1 > 0) && badnu == 0

showSVMs2(w,b,eta,ll,mm,nw)

end

else

if n == 3

showpointsSVM(u,v)

if (numsvl1 > 0 || numsvm1 > 0) && badnu == 0

offset = 10;

C1 = [1 0 1]; % magenta

plotplaneSVM(u,v,w,b,offset,C1)

C2 = [0 0 1]; % blue

plotplaneSVM(u,v,w,b+eta,offset,C2)

C3 = [1,0,0]; % red

plotplaneSVM(u,v,w,b-eta,offset,C3)

end

axis equal
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view([-1 -1 1]);

xlabel(’X’,’fontsize’,14);ylabel(’Y’,’fontsize’,14);

zlabel(’Z’,’fontsize’,14);

hold off

end

end

end

B.3 Soft Margin SVM (SVMs3)

The following Matlab programs implement the method described in Section 18.12. The main
function doSVMs3b is given below.

function [lamb,mu,alpha,beta,lambnz,munz,lamK,muK,w,b,eta,nw,fail]

= doSVMs3b (nu,rho,u,v,K)

%

% Soft margin nu-SVM version s3

%

% Computes eta using the duality gap

% Needs a single support vector of type 1

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[A,c,X,P2,Pa,qa] = buildSVMs3b (nu,u,v,K);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[x,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols, iternum);

fprintf(’nr = %d ’,nr)

fprintf(’ ns = %d ’,ns)

fprintf(’ kk = %d \n’,kk)

noconv = 0;

if kk > iternum

noconv = 1;

fprintf(’** qsolve did not converge. Problem not solvable ** \n’)

end
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lam = x(1:(p+q),1);

alpha = x((p+q+1):2*p+q,1);

beta = x(2*p+q+1:2*(p+q),1);

w = -X*lam;

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %d \n’,nw)

lamb = x(1:p,1);

mu = x(p+1:p+q,1);

b = -(sum(lamb) - sum(mu));

fprintf(’b = %.15f \n’,b)

%

tols = 10^(-10); tolh = 10^(-9);

% tols < lambda_i < K - tolh

[lambnz,numsvl1] = findpsv2(lamb,K,tols,tolh);

% tols < mu_i < K - tolh

[munz,numsvm1] = findpsv2(mu,K,tols,tolh);

fprintf(’numsvl1 = %d ’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

% lambda_i >= K - tolh

[lamK,pf] = countumf2(lamb,K,tolh); % number of blue margin failures

% mu_j >= K - tolh

[muK,qf] = countvmf2(mu,K,tolh); % number of red margin failures

fprintf(’pf = %d ’,pf)

fprintf(’ qf = %d \n’,qf)

[~,pm] = countmlu2(lamb,tols); % number of points such that lambda_i > tols

[~,qm] = countmlv2(mu,tols); % number of points such that mu_i > 0

fprintf(’pm = %d ’,pm)

fprintf(’ qm = %d \n’,qm)

fprintf(’p - pm = %d ’,p - pm)

fprintf(’ q - qm = %d \n’,q - qm)

lnu = (pf + qf)/(p+q); unu = (pm + qm)/(p+q);

fprintf(’lnu = %d ’,lnu)

fprintf(’ unu = %d \n’,unu)

if nu < lnu

fprintf(’** Warning; nu is too small ** \n’)

else

if nu > unu

fprintf(’** Warning; nu is too big ** \n’)

end

end
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sx1 = zeros(n,1); num1 = 0;

sKu = zeros(n,1); Knum1 = 0;

for i = 1:p

if lambnz(i) > 0

sx1 = sx1 + u(:,i);

num1 = num1 + 1;

end

if lamK(i) > 0

sKu = sKu + u(:,i);

Knum1 = Knum1 + 1;

end

end

% Knum1

sx2 = zeros(n,1); num2 = 0;

sKv = zeros(n,1); Knum2 = 0;

for j = 1:q

if munz(j) > 0

sx2 = sx2 + v(:,j);

num2 = num2 + 1;

end

if muK(j) > 0

sKv = sKv + v(:,j);

Knum2 = Knum2 + 1;

end

end

% Knum2

% computes eta from the duality gap

errterm = w’*(sKv - sKu) + (pf - qf)*b;

Pterm = (1/K)*(lam’*P2*lam);

denom = (p+q)*nu - pf -qf;

fprintf(’denom = %.15f \n’,denom)

epsilon = 0; xi = 0;

if denom > 0

eta = (errterm + Pterm)/denom;

fprintf(’eta = %.15f \n’,eta)

if eta < 10^(-10)

fprintf(’** Warning; eta is too small or negative ** \n’)

end

tolxi = 10^(-10);

% tols < lambda_i < K - tolh or K - tolh <= lambda_i and epsilon_i < tolxi

[lamsv,psf,epsilon] = findsvl2(lamb,w,b,u,eta,K,tols,tolh,tolxi);
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% tols < mu_i < K - tolh or K - tolh <= mu_i and xi_i < tolxi

[musv,qsf,xi] = findsvm2(mu,w,b,v,eta,K,tols,tolh,tolxi);

fprintf(’psf = %d ’,psf)

fprintf(’ qsf = %d \n’,qsf)

fprintf(’pf - psf = %d ’,pf - psf)

fprintf(’ qf - qsf = %d \n’,qf - qsf)

else

eta = 0;

denom = 0;

fprintf(’** Warning, nu = (pf + qf)/(p+q) ** \n’)

end

Km = (p+q)*nu*K;

fprintf(’K = %.15f ’,K)

fprintf(’ (p+q)*nu*Ks = %.15f \n’,Km)

fprintf(’sum(lambda) + sum(mu)= %.15f \n’,sum(lamb) + sum(mu))

eta1 = 0;

if numsvl1 > 0 || numsvm1 > 0

if numsvl1 > numsvm1

eta1 = w’*sx1/num1 - b;

else

eta1 = b - w’*sx2/num2;

end

fprintf(’eta1 = %.15f \n’,eta1)

else

fprintf(’** Warning: not enough support vectors ** \n’)

end

if denom == 0

if numsvl1 > 0 || numsvm1 > 0

eta = eta1;

fail = 0;

else

fail = 1;

fprintf(’** Warning, denom = 0 and not enough support vectors ** \n’)

end

else

fail = 0;

end

end

The main function doSVMs3b is executed by the following function:
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function [lamb,mu,alpha,beta,lambnz,munz,w] = runSVMs3b(nu,rho,u,v,K)

%

% Runs soft margin nu-SVM version s3

%

% Computes eta using the duality gap

% Needs a single support vector of type 1

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[lamb,mu,alpha,beta,lambnz,munz,lamK,muK,w,b,eta,nw,fail]

= doSVMs3b(nu,rho,u,v,K);

if n == 2

[ll,mm] = showdata(u,v);

if fail == 0

showSVMs2(w,b,eta,ll,mm,nw)

end

else

if n == 3

showpointsSVM(u,v)

if fail == 0

offset = 10;

C1 = [1 0 1]; % magenta

plotplaneSVM(u,v,w,b,offset,C1)

C2 = [0 0 1]; % blue

plotplaneSVM(u,v,w,b+eta,offset,C2)

C3 = [1,0,0]; % red

plotplaneSVM(u,v,w,b-eta,offset,C3)

end

axis equal

% axis([ll(1) mm(1) ll(2) mm(2)]);

view([-1 -1 1]);

xlabel(’X’,’fontsize’,14);ylabel(’Y’,’fontsize’,14);zlabel(’Z’,

’fontsize’,14);

hold off

end
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end

end

The function buildSVMs3b builds the constraint matrix and the matrices defining the
quadratic program.

function [A,c,X,P2,Pa,q] = buildSVMs3b(nu,u,v,K)

% builds the matrix of constraints A for

% soft margin nu-SVM s3 and the right-hand side c

% u: vector of p blue points (each an n-dim vector)

% v: vector of q red points (each an n-dim vector)

% builds the matrix X = [-u_1 ... -u_p v1 .... v_q]

% and the matrix Xa as 2(p+q) matrix obtained

% by augmenting X’*X with zeros

% K is a scale factor (K = Ks)

p = size(u,2); q = size(v,2);

% Ks = 1/(p+q);

Ks = K; Km = (p+q)*K*nu;

A = [ones(1,p) ones(1,q) zeros(1,p+q) ;

eye(p) zeros(p,q) eye(p) zeros(p,q);

zeros(q,p) eye(q) zeros(q,p) eye(q) ];

c = [Km; Ks*ones(p+q,1)];

X = [-u v];

XX1 = X’*X;

XX2 = [ones(p,1)*ones(p,1)’ -ones(p,1)*ones(q,1)’;

-ones(q,1)*ones(p,1)’ ones(q,1)*ones(q,1)’];

P2 = XX1 + XX2;

Pa = [P2 zeros(p+q,p+q); zeros(p+q, 2*(p+q))];

q = zeros(2*(p+q),1);

end

B.4 ν-SV Regression

g The main function donuregb is given below.

function

[lamb,mu,alpha,beta,lambnz,munz,lamK,muK,numsvl1,numsvm1,w,epsilon,b]

= donuregb (rho,nu,X,y,C)

%

% Soft margin nu-regression

% with the constraint

% \sum_{i = 1}^m + \sum_{j = 1}^m mu_j = C nu
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% (Without the variable gamma)

%

% Input: an m x n matrix of data points represented as

% as the rows of X, and y a vector in R^n

%

% First builds the matrices for the dual program

% C is a scale factor

%

m = size(X,1); n = size(X,2);

[A,c,P,Pa,qa] = buildnuregb(nu,X,y,C);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[x,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols, iternum);

% fprintf(’nr = %d ’,nr)

% fprintf(’ ns = %d \n’,ns)

fprintf(’nr = %d’,nr)

fprintf(’ ns = %d’,ns)

fprintf(’ kk = %d \n’,kk)

noconv = 0;

if kk > iternum

noconv = 1;

fprintf(’** qsolve did not converge. Problem not solvable ** \n’)

end

lamb = x(1:m,1);

mu = x(m+1:2*m,1);

alpha = x((2*m+1):3*m,1);

beta = x(3*m+1:4*m,1);

w = X’*(mu - lamb);

%

b = 0; epsilon = 0;

tols = 10^(-10); tolh = 10^(-9);

% tols < lambda_i < C/m - tolh

[lambnz,numsvl1] = findpsv2(lamb,C/m,tols,tolh);

% tols < mu_i < C/m - tolh

[munz,numsvm1] = findpsv2(mu,C/m,tols,tolh);

fprintf(’numsvl1 = %d’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

% lambda_i >= C/m - tolh

[lamK,pf] = countumf2(lamb,C/m,tolh); % number of blue margin failures

% mu_j >= C/m - tolh
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[muK,qf] = countvmf2(mu,C/m,tolh); % number of red margin failures

fprintf(’pf = %d’,pf)

fprintf(’ qf = %d \n’,qf)

[~,pm] = countmlu2(lamb,tols); % number of points such that lambda_i > tols

[~,qm] = countmlv2(mu,tols); % number of points such that mu_i > 0

fprintf(’pm = %d’,pm)

fprintf(’ qm = %d \n’,qm)

% lambda_i <= tols

[lmz,nz] = countLzero(lamb,mu,tols);

pm2 = numsvl1 + pf; qm2 = numsvm1 + qf;

fprintf(’pm2 = %d’,pm2)

fprintf(’ qm2 = %d \n’,qm2)

lnu = max(2*pf/m,2*qf/m); unu = min(2*pm/m,2*qm/m);

fprintf(’lnu = %d’,lnu)

fprintf(’ unu = %d \n’,unu)

fprintf(’nz = %d \n’,nz)

if nu < lnu

fprintf(’** Warning; nu is too small ** \n’)

else

if nu > unu

fprintf(’** Warning; nu is too big ** \n’)

end

end

fprintf(’C/m = %.15f ’,C/m)

fprintf(’ (C nu)/2 = %.15f \n’,(C*nu)/2)

fprintf(’sum(lambda) = %.15f ’,sum(lamb))

fprintf(’ sum(mu) = %.15f \n’,sum(mu))

lamsv = 0; musv = 0; xi = 0; xip = 0;

if numsvl1 > 0 && numsvm1 > 0

sx1 = zeros(n,1); sy1 = 0; num1 = 0;

sx2 = zeros(n,1); sy2 = 0; num2 = 0;

for i = 1:m

if lambnz(i) > 0

sx1 = sx1 + X(i,:)’; sy1 = sy1 + y(i);

num1 = num1 + 1;

end

if munz(i) > 0

sx2 = sx2 + X(i,:)’; sy2 = sy2 + y(i);

num2 = num2 + 1;

end

end
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% num1

% num2

b = (sy1/num1 + sy2/num2 - w’*(sx1/num1 + sx2/num2))/2;

fprintf(’b = %.15f \n’,b)

epsilon = (w’*(sx1/num1 - sx2/num2) + sy2/num2 - sy1/num1)/2;

fprintf(’epsilon = %.15f \n’,epsilon)

if epsilon < 10^(-10)

fprintf(’** Warning; epsilon is too small or negative ** \n’)

end

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %.15f \n’,nw)

%

tolxi = 10^(-10);

% tols < lambda_i < C/m - tolh or C/m - tolh <= lambda_i and xi_i < tolxi

[lamsv,psf,xi] = findnuregsvl2(lamb,w,b,X,y,epsilon,C/m,tols,tolh,tolxi);

% tols < mu_i < C/m - tolh or C/m - tolh <= mu_i and xi_i’ < tolxi

[musv,qsf,xip] = findnuregsvm2(mu,w,b,X,y,epsilon,C/m,tols,tolh,tolxi);

fprintf(’psf = %d ’,psf)

fprintf(’ qsf = %d \n’,qsf)

else

fprintf(’** Not enough support vectors ** \n’)

end

end

To run donuregb use the function runuregb listed below.

function [lamb,mu,alpha,beta,lambnz,munz,lamK,muK,w] = runuregb (rho,nu,X,y,C)

%

% Runs soft margin nu-regression

% with the constraint

% \sum_{i = 1}^m + \sum_{j = 1}^m mu_j = C nu

% (Without the variable gamma)

%

% Input: an m x n matrix of data points represented as

% as the rows of X, and y a vector in R^n

%

% First builds the matrices for the dual program

% C is a scale factor

%

m = size(X,1); n = size(X,2);

[lamb,mu,alpha,beta,lambnz,munz,lamK,muK,numsvl1,numsvm1,w,epsilon,b]

= donuregb(rho,nu,X,y,C);
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if n == 1

[ll,mm] = showgraph(X,y);

ww = [w;-1]; n1 = sqrt(ww’*ww);

if numsvl1 > 0 && numsvm1 > 0

showSVMs2(ww,-b,epsilon,ll,mm,n1)

end

else

if n == 2

offset = 10;

[ll,mm] = showpoints(X,y,offset);

if numsvl1 > 0 && numsvm1 > 0

showplanes(w,b,ll,mm,epsilon)

end

axis equal

axis([ll(1) mm(1) ll(2) mm(2)]);

view([-1 -1 1]);

xlabel(’X’,’fontsize’,14);ylabel(’Y’,’fontsize’,14);

zlabel(’Z’,’fontsize’,14);

end

end

end

The function buildnuregb creates the constraint matrix and the matrices defining the
quadratic functional.

function [A,c,P,Pa,qa] = buildnuregb (nu,X,y,C)

% builds the matrix of constraints A for

% soft margin nu-regression

% with the constraint

% \sum_{i = 1}^m + \sum_{j = 1}^m mu_j = C nu

% (without the variable gamma)

% and the right-hand side c.

% Input: an m x n matrix X of data points represented as

% as the rows of X, and y a vector in R^n.

% builds the m x m matrix X*X^T, the 2m x 2m matrix

% P = [X*X^T -X*X^T; -X*X^T X*X^T],

% and the matrix Pa as the 4m x 4m matrix obtained

% by augmenting with zeros.

% Also builds the vector q_a (q augmented with zeros).

% C is a scale factor.

m = size(X,1); n = size(X,2);
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% Ks = 1/(p+q);

Ks = C; Km = C*nu;

A = [ones(1,m) -ones(1,m) zeros(1,2*m);

ones(1,m) ones(1,m) zeros(1,2*m) ;

eye(m) zeros(m,m) eye(m) zeros(m,m);

zeros(m,m) eye(m) zeros(m,m) eye(m)];

c = [0; Km; (Ks/m)*ones(2*m,1)];

XX1 = X*X’;

P = [XX1 -XX1; -XX1 XX1];

Pa = [P zeros(2*m,2*m); zeros(2*m, 4*m )];

qa = [y; -y; zeros(2*m,1)];

end
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A-conjugate, see conjugate vectors, see con-
jugate vectors

C0-function, 92
C1-function, 92
C∞-function, 105
Cm-diffeomorphism, 105
Cm-function, 105
T2-separation axiom, see Hausdorff
arg maxv∈U J(v), see maximizer
arg minv∈U J(v), see minimizer
`1-regularized regression, see lasso
ε-SV regression

dual program, 761
ε-SV regression, 760
ε-insensitive SV regression, 760
ε-subdifferential, 511
ε-subgradient, 511
ReLU, 505
aff(S), see affine hull
conv(S), see convex hull
span(S), see linear span
ν-SV regression

dual program, 737
kernel version

dual program, 760
ν-SV regression version 2

dual program, 763
ν-SV regression, 732, 733

ε-slab, 732
best fit hyperplane, 731
blue margin, 731
error, 731
errors, 732
exceptional support vector, 739
fail the margin, 740

kernel version, 759
margin at most ε, 740
outliers, 740
point classification, 738
red margin, 731
regression estimate, 751
standard margin hypothesis, 751
support vectors of type 1, 739
numsvl1, 739
numsvm1, 739

support vectors of type 2, 739
training data, 731
variant, 761

ν-SV regression version
standard margin hypothesis, 765

ν-SV regression version 2, 762
ν-SVC, see SVM s2′619
ν-SVM, see SVM s2′619
ν-support vector regression, see ν-SV regres-

sion
ν-support vector machine, 630
H-cones, 395
H-polyhedron, 203

k-dimensional face, 219
edge, 219
facet, 220
vertex, 219

H-polytope, 203
V-cone, 395
V-polyhedron, 204
k-dimensional face, 219
m-multilinear map

symmetric, 104
mth-order vector derivative, 105
(real) positive definite kernel, 577
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‘Faà di Bruno’s formula, 111
“Little Riesz Theorem”, see Riesz represen-

tation theorem

absolute value, 26
adjoint map, 319, 320
ADMM, see alternating direction method of

multipliers
affine combination, 199
affine constraints C>x = t, 179, 183
affine extended real-valued function, 482
affine form, 201, 491

affine hyperplane, 201
affine hull, 199
affine hyperplane, 201, 491

half spaces, 201, 491
affine map, 79

associated linear map, 79
affine subspace, 132, 200

dimension, 200
direction, 200

agreement kernel, 575
alternating direction method of multipliers,

538
convergence, 543
dual residual, 551
primal residual, 551
proximity operator, 552
residual, 541

alternating method of multipliers
scaled form, 541

analytic centering problem, 476
augmented Lagrangian, 533

penalty parameter, 533

Banach fixed point theorem, 67, 337
Banach space, 56
basis

topology, 39
basis pursuit, 561

ADMM form, 561
Bessel inequality, 777
bilinear map

continuous, 54
symmetric, 101

Boolean linear program, 477
bounded linear functional, 316
bounded linear operator, 316
Boyd and Vandenberghe, 167, 187, 189

Cauchy sequence, 56, 66, 304
chain rule, 81
characteristic function, 480
closed ball

metric space, 26
closed half–space, 132
closure of a set, 306
coercive, 329

bilinear form, 337
complementary slackness conditions, 403, 499
complete metric space, 56
computer graphics, 175
computer vision, 175
concave

extended real-valued function, 482
concave function, 132

strictly concave, 132
cone, 202, see cone with apex 0

polyhedral cone, 203, 321
primitive cone, 205
ray, 203

cone of feasible directions, 388
cone with apex 0, 387
cone with apex u, 387
conjugate function, 455, 529

convex quadratic, 456
exponential, 456
Fenchel’s inequality, 455
log-determinant, 456
log-sum-exp function, 458
negative entropy, 456
negative logarithm, 455
norm function, 457
norm squared, 457
Young’s inequality, 455
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conjugate gradient method, 363
error, 372
Fletcher–Reeves, 375
Polak–Ribière, 375
residual, 372

conjugate vectors, 364, 367
constrained local extremum

real-valued function, 120
constrained minimization problems, 169
constrained quadratic optimization

general case, 178
on the sphere, 182

constraint, 169
active, 393
inactive, 393
qualified, 395

convex function, 405
constraints, 210
continuous bilinear map, 54, 80
continuous function, 41

continuous at a, 41
metric space version, 42
normed vector space version, 42

continuous linear map, 50, 75
continuous on a subset, 41
continuous on the left, 49
continuous on the right, 48
contraction map, 66

Lipschitz constant, 66
contraction mapping, 66, 337
contraction mapping theorem, 66
converges weakly, 329
convex

extended real-valued function, 482
convex combination, 200
convex function, 131

strictly convex, 132
convex hull, 201

definition, 201
convex set, 131, 200

dimension, 200
extremal point, 201

normal cone, 494
normal vector, 494
support function, 504
supporting hyperplane, 493

critical point
nondegenerate, 130, 131
real-valued function, 117

dense set, 306
derivative

real-valued function, 72
derivative of linear map, 76, 79

derivative of inversion, 83
derivative on left

real-valued function, 72
derivative on right

real-valued function, 72
descent direction, 343
diffeomorphism

global, 96
local, 95

differentiable
at point, 75
real-valued function, 72

differential, see derivative of linear map
Dirac notation, 318
directional derivative, 73
disconnected, 32
distance, see metric

point and set, 264
dual ascent method, 530

method of multipliers, 533
parallel version, 532

dual feasibility equations, 412
dual norm, 357, 457
dual problem, 173, 429
dual space

Hilbert space, 316
duality gap, 438, 439

edge, 219
effective domain

extended real-valued function, 482
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elastic net regression, 722
dual program, 726

elliptic, 340
energy function, 165
entropy minimization, 460
epigraph, 132

extended real-valued function, 481
equilibrium equations, 169, 171
equilibrium theorem, see linear programming,

see linear programming
equivalent metrics, 39
equivalent norm, 39
Euclidean metric, 26
Euclidean norm, 28
extended real-valued function, 327, 481

ε-subdifferential, 511
ε-subgradient, 511
inf f , 513
affine, 482
closed, 486
closure, 486
concave, 482
convex, 482

differentiable, 507
proper, 484

effective domain, 482
epigraph, 481
finite, 481
improper, 484
lower semi-continuous, 486
lower semi-continuous hull, 486
minimum set, 514
one-sided directional derivative, 503
polyhedral, 519
positively homogeneous, 504
proper, 484

continuous, 488
subdifferential, 495
subgradient, 495
sublevel sets, 486

facet, 220
Farkas lemma, 263, 400

Farkas–Minkowski, 262
Farkas–Minkowski lemma, 262, 321, 401
feasible start Newton method, 415

equality constraints, 416
feature embedding, see feature map
feature map, 569
feature space, 569, 709
Fenchel conjugate, see conjugate function
Fourier coefficient, 773
Fourier coefficients, 306
Fourier series, 306, 774

Bessel inequality, 777
partial sum, 774

Fréchet derivative, see total derivative, deriva-
tive of linear map

Frobenius norm, 78
frontier, see boundary

Gâteaux derivative, see directional derivative
Gauss–Seidel method, 346
general `1-regularized loss minimization, 562

ADMM form, 562
generalized Lagrange multipliers, 403, 434
generalized Lasso regularization, 563

ADMM form, 563
generalized mean value theorem, 107
generalized Newton method, 148
Golub, 182
gradient, 88, 110
gradient ∇fu, 330
gradient descent method, 346

backtracking lines search, 347
conjugate gradient method, 363
extrapolation, 357
fixed stepsize parameter, 347
momentum term, 358
Nesterov acceleration, 359
Newton descent, 359

feasible start, 415
infeasible start, 415
Newton decrement, 359
Newton step, 359

Newton’s method, 360
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damped Newton phase, 361
pure Newton phase, 361
quadratically convergent phase, 361

normed steepest descent, 357
`1-norm, 358
`2-norm, 358
Newton descent, 359
symmetric positive definite matrix, 358

optimal stepsize parameter, 347
scaling, 357
variable stepsize parameter, 347

greatest lower bound, 326
group lasso, 563

Hadamard product, 579
Hamel bases, 773
Hard Margin Support Vector Machine, 417

(SVMh1), 419
solution, 419

(SVMh1), 462
(SVMh2), 421, 450

slab, 427
margin, 418

Hausdorff separation axiom, 32
Hausdorff space, 32
Hessian, 102, 110
Hessian ∇2fu, 330
higher-order derivative, 103
Hilbert bases

separable, 789
Hilbert basis, 306, 773
Hilbert space, 304

`2, 304
`2(K), 782
L2(T ), 790
L2([−1, 1]), 791
L2([a, b]), 304
adjoint map, 319, 320
dual space, 316
Hilbert basis, 306
orthogonal family, 773
orthonormal family, 773

Fourier coefficient, 773, 774
parallelogram law, 306
Projection lemma, 307
projection lemma, 264
projection map pX : E → X, 311
projection vector pX(u), 311
real, 304
Riesz representation theorem, 317
separable, 789
total orthogonal family, 773

properties, 786
homeomorphism, 44

global, 95
local, 95

Horn and Johnson, 189

immersion, 97
implicit function theorem, 93
indicator function, 480

subdifferential, 497
infeasible start Newton method, 415
intersection kernel, 575
inverse function theorem, 96
isolated point, 43
isometry, 59
isomorphism

linear map, 148

Jacobian, 86
Jacobian matrix, 86

Karush–Kuhn–Tucker conditions, 402
kernel function, 569, 711

polynomial kernel, 573
kernel matrix, 586, 709
KKT conditions, see Karush–Kuhn–Tucker

conditions
KKT-matrix, 412
Krein and Milman’s theorem, 201
Kronecker product, 157
Krylov subspace, 372

Lagrange dual function, 436
Lagrange dual problem, 436
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Lagrange multipliers, 120, 165
definition, 170

Lagrangian, 120, 170, 407, 430, 433
dual function, 172

Lagrangian dual, 430
lasso regression, 712

lasso1, 712
lasso2, 713
lasso3, 716
lasso4, 719
dual Dlasso2, 714
dual Dlasso3, 717

lasso regularization, 562
ADMM form, 562

Lax–Milgram’s theorem, 339
learning problem, 695, 696

elastic net, 696
estimator, 696
labels, 696
lasso regression, 695
linear regression, 695
predictors, 695
responses, 696
ridge regression, 695
training data, 695
weight vector, 695, 696

least absolute deviation, 561
ADMM form, 561

least squares problem, 314
normal equations, 316

least upper bound, 326
Lebesgue square-integrable periodic functions,

see L2(T )
Legendre polynomial, 791
Legendre transform, see conjugate function
lemniscate of Bernoulli, 45
limit for function

metric space, 47
normed vector space, 48

limit for functions, 47
line minimization, see line search
line search, 343

backtracking, 344
exact, 343
stepsize parameter, 343

linear combination, 199
linear constraints C>x = 0, 178, 182
linear form, 199
linear hyperplane, 201
linear map

continuous, 50
linear program

restricted primal, 286
linear programming, 198, 408

basic column, 216
basic feasible solution, 216
basic index, 216
basic variables, 216
basis, 216, 228
complementary slackness conditions, 276
cost function, 198
degenerate solution, 228
dual problem, 268

bounded below, 269
dual variables, 268
maximization form, 269

dual program
standard form, 277

dual simplex algorithm, 279
feasible solutions, 198, 212
full tableaux, 282
interior point method, 410
linear program, 209, 210

standard form, 214
unbounded, 212

objective function, 210
optimal solution, 198, 213, 238
primal problem, 268

primal variables, 268
primal-dual algorithm, 288
primal-dual method, 276
standard form, 408
strong duality, 270

equilibrium theorem, 275, 279
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unbounded above, 238
weak duality, 269

linear regression, 695
linear separable, 416
linear span, 199
linear subspace, 199
Lions–Stampacchia, 337
Lipschitz condition, 489
Lipschitz constant, 66, 337
Lipschitzian, see Lipschitz condition
little o notation, 77
local extremum

real-valued function, 116
local extremum with respect to U

real-valued function, 119
local homeomorphism, 95
local maximum

real-valued function, 116
local maximum with respect to U

real-valued function, 119
local minimum

real-valued function, 116
local minimum with respect to U

real-valued function, 118
log-determinant function, 133
lower bounds, 326

unbounded below, 326
lower semi-continuous, 486
lower semi-continuous hull, 486

matrix
positive definite, 130

matrix inversion lemma, 189
max function, 133
maximization problem, 429
maximizer, 327
maximum

real-valued function, 138
mean value theorem, 91

vector-valued function, 91
measurable space, 574
method of kernels, 593

feature map, 593
feature space, 593
kernel function, 593

method of multipliers, 533
method of relaxation, 345
metric, 25

discrete, 26
equivalent, 39
Euclidean, 26
subspace, 36

metric space, 25
bounded subset, 26
Cauchy sequence, 56, 304
closed ball, 26
closed set, 28, 306
complete, 56, 304
completion, 60
diameter of a set, 307
distance from a set, 307
isometry, 59
metric, 25
open ball, 26
open set, 28
sphere, 26
triangle inequality, 25

minimization of a quadratic function, 165
minimization problem, 429

dual problem, 429, 436, 448
dual feasible, 436
duality gap, 438
strong duality, 439
weak duality, 438

primal problem, 429, 436
minimizer, 327
minimum

real-valued function, 138
minimum set

extended real-valued function, 514

neighborhood, 41
Newton’s method, 145
Newton–Kantorovich theorem, 150, 153
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nondegenerate, 131
norm, 27

`p-norm, 28
bilinear map, 55
equivalent, 39
Euclidean, 28
linear map, 52
one-norm, 28
sup-norm, 28

normal cone, 494
normed vector space, 27

absolutely summable, 783
Cauchy family, 774
completion, 65
summable family, 774

one-sided directional derivative, 503
connection to subgradient, 506

open ball
metric space, 26

optimization
constraints, 328
functional, 328
linear, see linear programming
nonlinear, 328

optimization problem
equality constraints, 119
feasible solution, 118
inequality constraints, 119

ordinary convex program, 519
dual function, 522
feasible solutions, 519
qualified constraint, 521
zero duality gap, 523

ordinary convex programs, 519

parametric curve, 86
parametric surface, 87
Parseval identity, 785
partial derivative, see directional derivative

jth argument, 83
partial ordered set

maximal element, 788

partially ordered set
bounded, 788
chain, 788

penalized objective function, 378
penalty function, 378
polyhedral cone, 203, 321
polyhedral function, 519
polyhedron, see H-polyhedron
positive definite

symmetric matrix, 165, 166, 190
positive definite kernel, 576

Cauchy–Schwarz inequality, 578
Gaussian kernel, 582
Gram matrix, 576
pointwise product, 578

positive kernel, see positive definite kernel
positive semidefinite

locally compact group, 585
symmetric matrix, 166, 192

positive semidefinite cone ordering, 167
potential energy, 174
preconditioning, 374
primal feasibility equations, 412
primal problem, 173, 429
principal component analysis

kernel version, 585, 587
kth kernel, 588
dual variable, 588

product rule, 83
product space

projection function, 43
product topology, 38
projected-gradient method with variable step-

size parameter, 376
Projection lemma, 307
projection lemma

Hilbert space, 264
proper

extended real-valued function, 484
proximal minimization, 552
proximity operator, 552
pseudo-inverse, 176
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quadratic constrained minimization problem,
169

quadratic functional, 334
quadratic optimization

on the ellipsoid, 180
on the unit sphere, 180
the general case, 175
the positive definite case, 165

quadratic programming, see quadratic opti-
mization

ADMM form, 554, 555

ramp function, see ReLU
real-valued function

constrained local extremum, 120
critical point, 117
local extremum, 116
local extremum with respect to U , 119
local maximum, 116
local maximum with respect to U , 119
local minimum, 116
local minimum with respect to U , 118
maximum in u, 138
maximum respect to U , 138
minimum in u, 138
minimum respect to U , 138
strict local maximum, 116
strict local minimum, 116
strict maximum in u, 138
strict maximum respect to U , 138
strict minimum in u, 138
strict minimum respect to U , 138

regular value, 125
relative boundary, 487
relative extremum, see local maximum
relative interior, 487
relative maximum, see local maximum
relative minimum, see local minimum
reproducing kernel Hilbert space, 582

reproducing property, 583
ridge regression

RR1, 697
RR3, 699

RR3b, 707
RR4, 702
RR5, 702
RR6, 702
RR6′, 703
dual of RR3, 700
kernel, 709
kernel KRR6′, 711

Riesz–Fischer theorem, 789
rigde regression

bias, 702
RKHS, see reproducing kernel Hilbert space
Rolle’s theorem, 91

saddle point, 174, 431
Schauder bases, see total orthogonal family
Schur, 187

complement, 187, 188
Schur product, 579
Schur’s trick, 190
Schwarz’s lemma, 101

generalization, 104
second-order derivative, 99
self-concordant

(partial) convex function, 362
self-concordant function

on R, 362
sequence, 45

convergence in metric space, 46
convergence normed vector space, 46
convergent, 45
limit, 45

sesquilinear map
continuous, 318

shrinkage operator, 560
simplex algorithm, 227, 236

computational efficiency, 256
Hirsch conjecture, 257

cycling, 227, 241
eta factorization, 247
eta matrix, 246
full tableaux, 247
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pivot element, 248
iteration step, 244
Phase I, 243
Phase II, 243
pivot rules, 240

Bland’s rule, 241
lexicographic rule, 241
random edge, 242
steepest edge, 242

pivot step, 239
pivoting step, 230, 236
reduced cost, 247
strong duality, 272

skew-Hermitian
matrix, 181

skew-symmetric matrix, 182
slack variables, 214
Slater’s conditions, 405
smooth function, see C∞-function
smooth submanifold, 125

tangent space, 125
soft margin support vector machine, see Soft

Margin SVM
Soft Margin SVM, 591

SVMs1

kernel dual, 608
SVMs2′

dual program, 623
kernel dual, 628

SVMs2

dual program, 613
kernel dual, 617

SVMs3

dual program, 649
kernel dual, 653

SVMs4

dual program, 662
kernel dual, 668

SVMs5, 671, 688
dual, 673
kernel dual, 675

SVMs1

dual, 601
kernel, 608
Standard Margin Hypothesis, 606

SVMs2′ , 619
box constraints, 622
exceptional support vectors, 624
fail the margin, 624
kernel, 627
margin at most δ, 625
point classification, 623
Standard Margin Hypothesis, 620
strictly fail the margin, 625
support vectors, 624
support vectors type 1, 624
support vectors type 2, 624

SVMs2l, 616
SVMs2, 610

box constraints, 613
exceptional support vectors, 614
fail the margin, 614
kernel, 616
Standard Margin Hypothesis, 615
support vectors, 614

SVMs3, 647
box constraints, 648
kernel, 652
standard margin hypothesis, 652

SVMs4, 660
kernel, 668

SVMs5

kernel, 674
(binary) classification function, 593
fail the margin, 604, 679
margin at most δ, 679
misclassified point, 592
point classification, 601
Standard Margin Hypothesis, 597
support vectors, 604, 678

type 1, 604, 678
type 2, 604

SVC algorithm, 592
Soft margin SVM
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SVMs1

box constraints, 599
soft thresholding operator, 560
sphere

metric space, 26
steepest descent direction

normalized, 357
unnormalize, 357

steepest descent method, 347
stiffness matrix, 171
strict local maximum

real-valued function, 116
strict local minimum

real-valued function, 116
strict maximum

real-valued function, 138
strict minimum

real-valued function, 138
strictly separating hyperplane, 261
subbasis, 39
subdifferential, 495
subgradient, 495

connection to one-sided directional deriva-
tive, 506

subgradient inequality, 495
submersion, 97
subspace topology, 36
support function, 504
Support Vector Machine, 416, 591

class labels, 416
classification(separation) problem, 416
linear separable, 416
margin, 418
maximal margin hyperplane, 417
support vectors, 426
training data, 417

support vectors, 604, 624, 678
supporting hyperplane, 493
SVD, 176
SVM, see Support Vector Machine
Sylvester equation, 158
symmetric bilinear map, 101

Taylor’s formula
integral remainder, 108
Lagrange remainder, 107

Taylor–Maclaurin formula, 107
Taylor–Young formula, 106
tensor product, see Kronecker product
topological space, 31

isolated point, 43
topology

basis, 39
boundary of a set, 33
closed set, 31
closure of a set, 33
definition, 31
discrete, 32
interior of a set, 33
open sets, 31
product, 38
subbasis, 39
subspace, 36

total derivative, see derivative of linear map
total differential, see total derivative, deriva-

tive of linear map
triangle inequality, 25, 27
trust region, 384

unbounded below, see lower bounds
uniformly continuous, 50

extension, 57
union complement kernel, 575
unique global minimum, 166
unitary representation, 585
upper bounds, 326
Uzawa’s method, 469

variational inequalities, 337, 339
variational problem, 168
vector

sparsity, 712
vector derivative, 86
vector space

closed segment, 91
open segment, 91
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velocity vector, 86
vertex, 219

weak duality, 269, 438
weakly compact, see converges weakly

Zorn’s lemma, 788


