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Preface

In recent years, computer vision, robotics, machine learning, and data science have been
some of the key areas that have contributed to major advances in technology. Anyone who
looks at papers or books in the above areas will be baffled by a strange jargon involving exotic
terms such as kernel PCA, ridge regression, lasso regression, support vector machines (SVM),
Lagrange multipliers, KKT conditions, etc. Do support vector machines chase cattle to catch
them with some kind of super lasso? No! But one will quickly discover that behind the jargon
which always comes with a new field (perhaps to keep the outsiders out of the club), lies a
lot of “classical” linear algebra and techniques from optimization theory. And there comes
the main challenge: in order to understand and use tools from machine learning, computer
vision, and so on, one needs to have a firm background in linear algebra and optimization
theory. To be honest, some probablity theory and statistics should also be included, but we
already have enough to contend with.

Many books on machine learning struggle with the above problem. How can one under-
stand what are the dual variables of a ridge regression problem if one doesn’t know about the
Lagrangian duality framework? Similarly, how is it possible to discuss the dual formulation
of SVM without a firm understanding of the Lagrangian framework?

The easy way out is to sweep these difficulties under the rug. If one is just a consumer
of the techniques we mentioned above, the cookbook recipe approach is probably adequate.
But this approach doesn’t work for someone who really wants to do serious research and
make significant contributions. To do so, we believe that one must have a solid background
in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and energy studying
these fields, but we believe that perseverance will be amply rewarded.

Our main goal is to present fundamentals of linear algebra and optimization theory,
keeping in mind applications to machine learning, robotics, and computer vision. This work
consists of two volumes, the first one being linear algebra, the second one optimization theory
and applications, especially to machine learning.

This first volume covers “classical” linear algebra, up to and including the primary de-
composition and the Jordan form. Besides covering the standard topics, we discuss a few
topics that are important for applications. These include:

1. Haar bases and the corresponding Haar wavelets.

2. Hadamard matrices.
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3. Affine maps (see Section 5.5).

4. Norms and matrix norms (Chapter 8).

5. Convergence of sequences and series in a normed vector space. The matrix exponential
eA and its basic properties (see Section 8.8).

6. The group of unit quaternions, SU(2), and the representation of rotations in SO(3)
by unit quaternions (Chapter 15).

7. An introduction to algebraic and spectral graph theory.

8. Applications of SVD and pseudo-inverses, in particular, principal component analysis,
for short PCA (Chapter 21).

9. Methods for computing eigenvalues and eigenvectors, with a main focus on the QR
algorithm (Chapter 17).

Four topics are covered in more detail than usual. These are

1. Duality (Chapter 10).

2. Dual norms (Section 13.7).

3. The geometry of the orthogonal groups O(n) and SO(n), and of the unitary groups
U(n) and SU(n).

4. The spectral theorems (Chapter 16).

Except for a few exceptions we provide complete proofs. We did so to make this book
self-contained, but also because we believe that no deep knowledge of this material can be
acquired without working out some proofs. However, our advice is to skip some of the proofs
upon first reading, especially if they are long and intricate.

The chapters or sections marked with the symbol ~ contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.

Acknowledgement : We would like to thank Christine Allen-Blanchette, Kostas Daniilidis,
Carlos Esteves, Spyridon Leonardos, Stephen Phillips, João Sedoc, Stephen Shatz, Jianbo
Shi, Marcelo Siqueira, and C.J. Taylor for reporting typos and for helpful comments. Mary
Pugh and William Yu (at the University of Toronto) taught a course using our book and
reported a number of typos and errors. We warmly thank them as well as their students,
not only for finding errors, but also for very hepful comments and suggestions for simplifying
some proofs. Special thanks to Gilbert Strang. We learned much from his books which have
been a major source of inspiration. Thanks to Steven Boyd and James Demmel whose books
have been an invaluable source of information. The first author also wishes to express his
deepest gratitute to Philippe G. Ciarlet who was his teacher and mentor in 1970-1972 while
he was a student at ENPC in Paris. Professor Ciarlet was by far his best teacher. He also
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knew how to instill in his students the importance of intellectual rigor, honesty, and modesty.
He still has his typewritten notes on measure theory and integration, and on numerical linear
algebra. The latter became his wonderful book Ciarlet [14], from which we have borrowed
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Chapter 1

Introduction

As we explained in the preface, this first volume covers “classical” linear algebra, up to and
including the primary decomposition and the Jordan form. Besides covering the standard
topics, we discuss a few topics that are important for applications. These include:

1. Haar bases and the corresponding Haar wavelets, a fundamental tool in signal process-
ing and computer graphics.

2. Hadamard matrices which have applications in error correcting codes, signal processing,
and low rank approximation.

3. Affine maps (see Section 5.5). These are usually ignored or treated in a somewhat
obscure fashion. Yet they play an important role in computer vision and robotics.
There is a clean and elegant way to define affine maps. One simply has to define affine
combinations . Linear maps preserve linear combinations, and similarly affine maps
preserve affine combinations.

4. Norms and matrix norms (Chapter 8). These are used extensively in optimization
theory.

5. Convergence of sequences and series in a normed vector space. Banach spaces (see
Section 8.7). The matrix exponential eA and its basic properties (see Section 8.8).
In particular, we prove the Rodrigues formula for rotations in SO(3) and discuss the
surjectivity of the exponential map exp: so(3)→ SO(3), where so(3) is the real vector
space of 3×3 skew symmetric matrices (see Section 11.7). We also show that det(eA) =
etr(A) (see Section 14.5).

6. The group of unit quaternions, SU(2), and the representation of rotations in SO(3)
by unit quaternions (Chapter 15). We define a homomorphism r : SU(2) → SO(3)
and prove that it is surjective and that its kernel is {−I, I}. We compute the rota-
tion matrix Rq associated with a unit quaternion q, and give an algorithm to con-
struct a quaternion from a rotation matrix. We also show that the exponential map

13
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exp: su(2) → SU(2) is surjective, where su(2) is the real vector space of skew-
Hermitian 2 × 2 matrices with zero trace. We discuss quaternion interpolation and
prove the famous slerp interpolation formula due to Ken Shoemake.

7. An introduction to algebraic and spectral graph theory. We define the graph Laplacian
and prove some of its basic properties (see Chapter 18). In Chapter 19, we explain
how the eigenvectors of the graph Laplacian can be used for graph drawing.

8. Applications of SVD and pseudo-inverses, in particular, principal component analysis,
for short PCA (Chapter 21).

9. Methods for computing eigenvalues and eigenvectors are discussed in Chapter 17. We
first focus on the QR algorithm due to Rutishauser, Francis, and Kublanovskaya. See
Sections 17.1 and 17.3. We then discuss how to use an Arnoldi iteration, in combination
with the QR algorithm, to approximate eigenvalues for a matrix A of large dimension.
See Section 17.4. The special case where A is a symmetric (or Hermitian) tridiagonal
matrix, involves a Lanczos iteration, and is discussed in Section 17.6. In Section 17.7,
we present power iterations and inverse (power) iterations.

Five topics are covered in more detail than usual. These are

1. Matrix factorizations such as LU , PA = LU , Cholesky, and reduced row echelon form
(rref). Deciding the solvablity of a linear system Ax = b, and describing the space of
solutions when a solution exists. See Chapter 7.

2. Duality (Chapter 10).

3. Dual norms (Section 13.7).

4. The geometry of the orthogonal groups O(n) and SO(n), and of the unitary groups
U(n) and SU(n).

5. The spectral theorems (Chapter 16).

Most texts omit the proof that the PA = LU factorization can be obtained by a simple
modification of Gaussian elimination. We give a complete proof of Theorem 7.5 in Section
7.6. We also prove the uniqueness of the rref of a matrix; see Proposition 7.19.

At the most basic level, duality corresponds to transposition. But duality is really the
bijection between subspaces of a vector space E (say finite-dimensional) and subspaces of
linear forms (subspaces of the dual space E∗) established by two maps: the first map assigns
to a subspace V of E the subspace V 0 of linear forms that vanish on V ; the second map assigns
to a subspace U of linear forms the subspace U0 consisting of the vectors in E on which all
linear forms in U vanish. The above maps define a bijection such that dim(V ) + dim(V 0) =
dim(E), dim(U) + dim(U0) = dim(E), V 00 = V , and U00 = U .
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Another important fact is that if E is a finite-dimensional space with an inner product
u, v 7→ 〈u, v〉 (or a Hermitian inner product if E is a complex vector space), then there is a
canonical isomorphism between E and its dual E∗. This means that every linear form f ∈ E∗
is uniquely represented by some vector u ∈ E, in the sense that f(v) = 〈v, u〉 for all v ∈ E.
As a consequence, every linear map f has an adjoint f ∗ such that 〈f(u), v〉 = 〈u, f ∗(v)〉 for
all u, v ∈ E.

Dual norms show up in convex optimization; see Boyd and Vandenberghe [11].

Because of their importance in robotics and computer vision, we discuss in some detail
the groups of isometries O(E) and SO(E) of a vector space with an inner product. The
isometries in O(E) are the linear maps such that f ◦ f ∗ = f ∗ ◦ f = id, and the direct
isometries in SO(E), also called rotations, are the isometries in O(E) whose determinant is
equal to +1. We also discuss the hermitian counterparts U(E) and SU(E).

We prove the spectral theorems not only for real symmetric matrices, but also for real
and complex normal matrices.

We stress the importance of linear maps. Matrices are of course invaluable for computing
and one needs to develop skills for manipulating them. But matrices are used to represent
a linear map over a basis (or two bases), and the same linear map has different matrix
representations. In fact, we can view the various normal forms of a matrix (Schur, SVD,
Jordan) as a suitably convenient choice of bases.

We have listed most of the Matlab functions relevant to numerical linear algebra and
have included Matlab programs implementing most of the algorithms discussed in this book.
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Chapter 2

Vector Spaces, Bases, Linear Maps

2.1 Motivations: Linear Combinations, Linear Inde-

pendence and Rank

In linear optimization problems, we often encounter systems of linear equations. For example,
consider the problem of solving the following system of three linear equations in the three
variables x1, x2, x3 ∈ R:

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3.

One way to approach this problem is introduce the “vectors” u, v, w, and b, given by

u =

1
2
1

 v =

 2
1
−2

 w =

−1
1
−2

 b =

1
2
3


and to write our linear system as

x1u+ x2v + x3w = b.

In the above equation, we used implicitly the fact that a vector z can be multiplied by a
scalar λ ∈ R, where

λz = λ

z1

z2

z3

 =

λz1

λz2

λz3

 ,

and two vectors y and and z can be added, where

y + z =

y1

y2

y3

+

z1

z2

z3

 =

y1 + z1

y2 + z2

y3 + z3

 .

17



18 CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

Also, given a vector

x =

x1

x2

x3

 ,

we define the additive inverse −x of x (pronounced minus x) as

−x =

−x1

−x2

−x3

 .

Observe that −x = (−1)x, the scalar multiplication of x by −1.

The set of all vectors with three components is denoted by R3×1. The reason for using
the notation R3×1 rather than the more conventional notation R3 is that the elements of
R3×1 are column vectors ; they consist of three rows and a single column, which explains the
superscript 3 × 1. On the other hand, R3 = R × R × R consists of all triples of the form
(x1, x2, x3), with x1, x2, x3 ∈ R, and these are row vectors . However, there is an obvious
bijection between R3×1 and R3 and they are usually identified. For the sake of clarity, in
this introduction, we will denote the set of column vectors with n components by Rn×1.

An expression such as
x1u+ x2v + x3w

where u, v, w are vectors and the xis are scalars (in R) is called a linear combination. Using
this notion, the problem of solving our linear system

x1u+ x2v + x3w = b.

is equivalent to determining whether b can be expressed as a linear combination of u, v, w.

Now if the vectors u, v, w are linearly independent , which means that there is no triple
(x1, x2, x3) 6= (0, 0, 0) such that

x1u+ x2v + x3w = 03,

it can be shown that every vector in R3×1 can be written as a linear combination of u, v, w.
Here, 03 is the zero vector

03 =

0
0
0

 .

It is customary to abuse notation and to write 0 instead of 03. This rarely causes a problem
because in most cases, whether 0 denotes the scalar zero or the zero vector can be inferred
from the context.

In fact, every vector z ∈ R3×1 can be written in a unique way as a linear combination

z = x1u+ x2v + x3w.
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This is because if
z = x1u+ x2v + x3w = y1u+ y2v + y3w,

then by using our (linear!) operations on vectors, we get

(y1 − x1)u+ (y2 − x2)v + (y3 − x3)w = 0,

which implies that
y1 − x1 = y2 − x2 = y3 − x3 = 0,

by linear independence. Thus,

y1 = x1, y2 = x2, y3 = x3,

which shows that z has a unique expression as a linear combination, as claimed. Then our
equation

x1u+ x2v + x3w = b

has a unique solution, and indeed, we can check that

x1 = 1.4

x2 = −0.4

x3 = −0.4

is the solution.

But then, how do we determine that some vectors are linearly independent?

One answer is to compute a numerical quantity det(u, v, w), called the determinant of
(u, v, w), and to check that it is nonzero. In our case, it turns out that

det(u, v, w) =

∣∣∣∣∣∣
1 2 −1
2 1 1
1 −2 −2

∣∣∣∣∣∣ = 15,

which confirms that u, v, w are linearly independent.

Other methods, which are much better for systems with a large number of variables,
consist of computing an LU-decomposition or a QR-decomposition, or an SVD of the matrix
consisting of the three columns u, v, w,

A =
(
u v w

)
=

1 2 −1
2 1 1
1 −2 −2

 .

If we form the vector of unknowns

x =

x1

x2

x3

 ,
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then our linear combination x1u+ x2v + x3w can be written in matrix form as

x1u+ x2v + x3w =

1 2 −1
2 1 1
1 −2 −2

x1

x2

x3

 ,

so our linear system is expressed by1 2 −1
2 1 1
1 −2 −2

x1

x2

x3

 =

1
2
3

 ,

or more concisely as
Ax = b.

Now what if the vectors u, v, w are linearly dependent? For example, if we consider the
vectors

u =

1
2
1

 v =

 2
1
−1

 w =

−1
1
2

 ,

we see that
u− v = w,

a nontrivial linear dependence. It can be verified that u and v are still linearly independent.
Now for our problem

x1u+ x2v + x3w = b

it must be the case that b can be expressed as linear combination of u and v. However,
it turns out that u, v, b are linearly independent (one way to see this is to compute the
determinant det(u, v, b) = −6), so b cannot be expressed as a linear combination of u and v
and thus, our system has no solution.

If we change the vector b to

b =

3
3
0

 ,

then
b = u+ v,

and so the system
x1u+ x2v + x3w = b

has the solution
x1 = 1, x2 = 1, x3 = 0.



2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK21

Actually, since w = u− v, the above system is equivalent to

(x1 + x3)u+ (x2 − x3)v = b,

and because u and v are linearly independent, the unique solution in x1 + x3 and x2 − x3 is

x1 + x3 = 1

x2 − x3 = 1,

which yields an infinite number of solutions parameterized by x3, namely

x1 = 1− x3

x2 = 1 + x3.

In summary, a 3× 3 linear system may have a unique solution, no solution, or an infinite
number of solutions, depending on the linear independence (and dependence) or the vectors
u, v, w, b. This situation can be generalized to any n × n system, and even to any n × m
system (n equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as Ax = b stresses
the fact that the map x 7→ Ax is a linear transformation. This means that

A(λx) = λ(Ax)

for all x ∈ R3×1 and all λ ∈ R and that

A(u+ v) = Au+ Av,

for all u, v ∈ R3×1. We can view the matrix A as a way of expressing a linear map from R3×1

to R3×1 and solving the system Ax = b amounts to determining whether b belongs to the
image of this linear map.

Given a 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

whose columns are three vectors denoted A1, A2, A3, and given any vector x = (x1, x2, x3),
we defined the product Ax as the linear combination

Ax = x1A
1 + x2A

2 + x3A
3 =

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

 .

The common pattern is that the ith coordinate of Ax is given by a certain kind of product
called an inner product , of a row vector , the ith row of A, times the column vector x:

(
ai1 ai2 ai3

)
·

x1

x2

x3

 = ai1x1 + ai2x2 + ai3x3.
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More generally, given any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn, their
inner product denoted x · y, or 〈x, y〉, is the number

x · y =
(
x1 x2 · · · xn

)
·


y1

y2
...
yn

 =
n∑
i=1

xiyi.

Inner products play a very important role. First, the quantity

‖x‖2 =
√
x · x = (x2

1 + · · ·+ x2
n)1/2

is a generalization of the length of a vector, called the Euclidean norm, or `2-norm. Second,
it can be shown that we have the inequality

|x · y| ≤ ‖x‖ ‖y‖ ,

so if x, y 6= 0, the ratio (x · y)/(‖x‖ ‖y‖) can be viewed as the cosine of an angle, the angle
between x and y. In particular, if x · y = 0 then the vectors x and y make the angle π/2,
that is, they are orthogonal . The (square) matrices Q that preserve the inner product, in
the sense that 〈Qx,Qy〉 = 〈x, y〉 for all x, y ∈ Rn, also play a very important role. They can
be thought of as generalized rotations.

Returning to matrices, if A is an m × n matrix consisting of n columns A1, . . . , An (in
Rm), and B is a n× p matrix consisting of p columns B1, . . . , Bp (in Rn) we can form the p
vectors (in Rm)

AB1, . . . , ABp.

These p vectors constitute the m × p matrix denoted AB, whose jth column is ABj. But
we know that the ith coordinate of ABj is the inner product of the ith row of A by the jth
column of B,

(
ai1 ai2 · · · ain

)
·


b1j

b2j
...
bnj

 =
n∑
k=1

aikbkj.

Thus we have defined a multiplication operation on matrices, namely if A = (aik) is a m×n
matrix and if B = (bjk) if n× p matrix, then their product AB is the m× n matrix whose
entry on the ith row and the jth column is given by the inner product of the ith row of A
by the jth column of B,

(AB)ij =
n∑
k=1

aikbkj.

Beware that unlike the multiplication of real (or complex) numbers, if A and B are two n×n
matrices, in general, AB 6= BA.
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Suppose that A is an n× n matrix and that we are trying to solve the linear system

Ax = b,

with b ∈ Rn. Suppose we can find an n× n matrix B such that

BAi = ei, i = 1, . . . , n,

with ei = (0, . . . , 0, 1, 0 . . . , 0), where the only nonzero entry is 1 in the ith slot. If we form
the n× n matrix

In =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


,

called the identity matrix , whose ith column is ei, then the above is equivalent to

BA = In.

If Ax = b, then multiplying both sides on the left by B, we get

B(Ax) = Bb.

But is is easy to see that B(Ax) = (BA)x = Inx = x, so we must have

x = Bb.

We can verify that x = Bb is indeed a solution, because it can be shown that

A(Bb) = (AB)b = Inb = b.

What is not obvious is that BA = In implies AB = In, but this is indeed provable. The
matrix B is usually denoted A−1 and called the inverse of A. It can be shown that it is the
unique matrix such that

AA−1 = A−1A = In.

If a square matrix A has an inverse, then we say that it is invertible or nonsingular , otherwise
we say that it is singular . We will show later that a square matrix is invertible iff its columns
are linearly independent iff its determinant is nonzero.

In summary, if A is a square invertible matrix, then the linear system Ax = b has the
unique solution x = A−1b. In practice, this is not a good way to solve a linear system because
computing A−1 is too expensive. A practical method for solving a linear system is Gaussian
elimination, discussed in Chapter 7. Other practical methods for solving a linear system
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Ax = b make use of a factorization of A (QR decomposition, SVD decomposition), using
orthogonal matrices defined next.

Given an m × n matrix A = (akl), the n × m matrix A> = (a>ij) whose ith row is the
ith column of A, which means that a>ij = aji for i = 1, . . . , n and j = 1, . . . ,m, is called the
transpose of A. An n× n matrix Q such that

QQ> = Q>Q = In

is called an orthogonal matrix . Equivalently, the inverse Q−1 of an orthogonal matrix Q is
equal to its transpose Q>. Orthogonal matrices play an important role. Geometrically, they
correspond to linear transformation that preserve length. A major result of linear algebra
states that every m× n matrix A can be written as

A = V ΣU>,

where V is an m×m orthogonal matrix, U is an n×n orthogonal matrix, and Σ is an m×n
matrix whose only nonzero entries are nonnegative diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σp,
where p = min(m,n), called the singular values of A. The factorization A = V ΣU> is called
a singular decomposition of A, or SVD .

The SVD can be used to “solve” a linear system Ax = b where A is an m × n matrix,
even when this system has no solution. This may happen when there are more equations
than variables (m > n) , in which case the system is overdetermined.

Of course, there is no miracle, an unsolvable system has no solution. But we can look
for a good approximate solution, namely a vector x that minimizes some measure of the
error Ax − b. Legendre and Gauss used ‖Ax− b‖2

2, which is the squared Euclidean norm
of the error. This quantity is differentiable, and it turns out that there is a unique vector
x+ of minimum Euclidean norm that minimizes ‖Ax− b‖2

2. Furthermore, x+ is given by the
expression x+ = A+b, where A+ is the pseudo-inverse of A, and A+ can be computed from
an SVD A = V ΣU> of A. Indeed, A+ = UΣ+V >, where Σ+ is the matrix obtained from Σ
by replacing every positive singular value σi by its inverse σ−1

i , leaving all zero entries intact,
and transposing.

Instead of searching for the vector of least Euclidean norm minimizing ‖Ax− b‖2
2, we

can add the penalty term K ‖x‖2
2 (for some positive K > 0) to ‖Ax− b‖2

2 and minimize the
quantity ‖Ax− b‖2

2 + K ‖x‖2
2. This approach is called ridge regression. It turns out that

there is a unique minimizer x+ given by x+ = (A>A + KIn)−1A>b, as shown in the second
volume.

Another approach is to replace the penalty term K ‖x‖2
2 by K ‖x‖1, where ‖x‖1 = |x1|+

· · · + |xn| (the `1-norm of x). The remarkable fact is that the minimizers x of ‖Ax− b‖2
2 +

K ‖x‖1 tend to be sparse, which means that many components of x are equal to zero. This
approach known as lasso is popular in machine learning and will be discussed in the second
volume.
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Another important application of the SVD is principal component analysis (or PCA), an
important tool in data analysis.

Yet another fruitful way of interpreting the resolution of the system Ax = b is to view
this problem as an intersection problem. Indeed, each of the equations

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3

defines a subset of R3 which is actually a plane. The first equation

x1 + 2x2 − x3 = 1

defines the plane H1 passing through the three points (1, 0, 0), (0, 1/2, 0), (0, 0,−1), on the
coordinate axes, the second equation

2x1 + x2 + x3 = 2

defines the plane H2 passing through the three points (1, 0, 0), (0, 2, 0), (0, 0, 2), on the coor-
dinate axes, and the third equation

x1 − 2x2 − 2x3 = 3

defines the plane H3 passing through the three points (3, 0, 0), (0,−3/2, 0), (0, 0,−3/2), on
the coordinate axes. See Figure 2.1.

2x + 2x - x = 11 2 3

2x + x + x = 21 2 3

x -2x -2x = 31 2 3

Figure 2.1: The planes defined by the preceding linear equations.
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x -2x -2x = 31 2 3

2x + x + x = 21 2 3

2x + 2x - x = 11 2 3

(1.4, -0.4, -0.4)

Figure 2.2: The solution of the system is the point in common with each of the three planes.

The intersection Hi∩Hj of any two distinct planes Hi and Hj is a line, and the intersection
H1 ∩H2 ∩H3 of the three planes consists of the single point (1.4,−0.4,−0.4), as illustrated
in Figure 2.2.

The planes corresponding to the system

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − x2 + 2x3 = 3,

are illustrated in Figure 2.3.

2x + 2x - x = 11 2 3

2x + x + x = 21 2 3

1 2 3

x - x +2x = 31 2 3

Figure 2.3: The planes defined by the equations x1 + 2x2 − x3 = 1, 2x1 + x2 + x3 = 2, and
x1 − x2 + 2x3 = 3.
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This system has no solution since there is no point simultaneously contained in all three
planes; see Figure 2.4.

2x + 2x - x = 11 2 3

x - x +2x = 31 2 3

2x + x + x = 21 2 32x + x + x = 21 2 3

Figure 2.4: The linear system x1 + 2x2 − x3 = 1, 2x1 + x2 + x3 = 2, x1 − x2 + 2x3 = 3 has
no solution.

Finally, the planes corresponding to the system

x1 + 2x2 − x3 = 3

2x1 + x2 + x3 = 3

x1 − x2 + 2x3 = 0,

are illustrated in Figure 2.5.

2x + 2x -  x = 3
1

1

1

2

2 3

3

2x + x + x = 32 3

x - x + 2x = 01 2 3

1

Figure 2.5: The planes defined by the equations x1 + 2x2 − x3 = 3, 2x1 + x2 + x3 = 3, and
x1 − x2 + 2x3 = 0.
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This system has infinitely many solutions, given parametrically by (1 − x3, 1 + x3, x3).
Geometrically, this is a line common to all three planes; see Figure 2.6.

2x + 2x -  x = 3
1 2 3

x - x + 2x = 01 2 3

12x + x + x = 32 3

Figure 2.6: The linear system x1 + 2x2 − x3 = 3, 2x1 + x2 + x3 = 3, x1 − x2 + 2x3 = 0 has
the red line common to all three planes.

Under the above interpretation, observe that we are focusing on the rows of the matrix
A, rather than on its columns , as in the previous interpretations.

Another great example of a real-world problem where linear algebra proves to be very
effective is the problem of data compression, that is, of representing a very large data set
using a much smaller amount of storage.

Typically the data set is represented as an m× n matrix A where each row corresponds
to an n-dimensional data point and typically, m ≥ n. In most applications, the data are not
independent so the rank of A is a lot smaller than min{m,n}, and the the goal of low-rank
decomposition is to factor A as the product of two matrices B and C, where B is a m × k
matrix and C is a k×n matrix, with k � min{m,n} (here,� means “much smaller than”):

A
m× n


=


B

m× k


 C

k × n



Now it is generally too costly to find an exact factorization as above, so we look for a
low-rank matrix A′ which is a “good” approximation of A. In order to make this statement
precise, we need to define a mechanism to determine how close two matrices are. This can
be done using matrix norms , a notion discussed in Chapter 8. The norm of a matrix A is a
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nonnegative real number ‖A‖ which behaves a lot like the absolute value |x| of a real number
x. Then our goal is to find some low-rank matrix A′ that minimizes the norm

‖A− A′‖2
,

over all matrices A′ of rank at most k, for some given k � min{m,n}.
Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely, k(m + n) instead of mn. Thus
less storage and fewer operations are needed to reconstruct A.

2. Often, the process for obtaining the decomposition exposes the underlying structure of
the data. Thus, it may turn out that “most” of the significant data are concentrated
along some directions called principal directions .

Low-rank decompositions of a set of data have a multitude of applications in engineering,
including computer science (especially computer vision), statistics, and machine learning.
As we will see later in Chapter 21, the singular value decomposition (SVD) provides a very
satisfactory solution to the low-rank approximation problem. Still, in many cases, the data
sets are so large that another ingredient is needed: randomization. However, as a first step,
linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed on vectors. In
the early 1900, the notion of a vector space emerged as a convenient and unifying framework
for working with “linear” objects and we will discuss this notion in the next few sections.

2.2 Vector Spaces

A (real) vector space is a set E together with two operations, +: E×E → E and · : R×E →
E, called addition and scalar multiplication, that satisfy some simple properties. First of all,
E under addition has to be a commutative (or abelian) group, a notion that we review next.

However, keep in mind that vector spaces are not just algebraic
objects; they are also geometric objects.

Definition 2.1. A group is a set G equipped with a binary operation · : G × G → G that
associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the following
properties: · is associative, has an identity element e ∈ G, and every element in G is invertible
(w.r.t. ·). More explicitly, this means that the following equations hold for all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse).
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A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

A set M together with an operation · : M ×M → M and an element e satisfying only
Conditions (G1) and (G2) is called a monoid .

For example, the set N = {0, 1, . . . , n, . . .} of natural numbers is a (commutative) monoid
under addition with identity element 0. However, it is not a group.

Some examples of groups are given below.

Example 2.1.

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . .} of integers is an abelian group under
addition, with identity element 0. However, Z∗ = Z − {0} is not a group under
multiplication; it is a commutative monoid with identity element 1.

2. The set Q of rational numbers (fractions p/q with p, q ∈ Z and q 6= 0) is an abelian
group under addition, with identity element 0. The set Q∗ = Q−{0} is also an abelian
group under multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of complex numbers are abelian groups
under addition (with identity element 0), and R∗ = R − {0} and C∗ = C − {0} are
abelian groups under multiplication (with identity element 1).

4. The sets Rn and Cn of n-tuples of real or complex numbers are abelian groups under
componentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

with identity element (0, . . . , 0).

5. Given any nonempty set S, the set of bijections f : S → S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g ◦ f), with identity element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n×n matrices with real (or complex) coefficients is an abelian group under
addition of matrices, with identity element the null matrix. It is denoted by Mn(R)
(or Mn(C)).

7. The set R[X] of all polynomials in one variable X with real coefficients,

P (X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0,

(with ai ∈ R), is an abelian group under addition of polynomials. The identity element
is the zero polynomial.
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8. The set of n×n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix In. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
In. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).

10. The set of n× n invertible matrices with real coefficients such that RR> = R>R = In
and of determinant +1 is a group (under matrix multiplication) called the special
orthogonal group and is usually denoted by SO(n) (where R> is the transpose of the
matrix R, i.e., the rows of R> are the columns of R). It corresponds to the rotations
in Rn.

11. Given an open interval (a, b), the set C(a, b) of continuous functions f : (a, b) → R is
an abelian group under the operation f + g defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈ (a, b).

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a−1 of an element a ∈ G is denoted by −a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Proposition 2.1. For any binary operation · : M ×M →M , if e′ ∈M is a left identity and
if e′′ ∈M is a right identity, which means that

e′ · a = a for all a ∈M (G2l)

and
a · e′′ = a for all a ∈M, (G2r)

then e′ = e′′.

Proof. If we let a = e′′ in equation (G2l), we get

e′ · e′′ = e′′,

and if we let a = e′ in equation (G2r), we get

e′ · e′′ = e′,

and thus
e′ = e′ · e′′ = e′′,

as claimed.
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Proposition 2.1 implies that the identity element of a monoid is unique, and since every
group is a monoid, the identity element of a group is unique. Furthermore, every element in
a group has a unique inverse. This is a consequence of a slightly more general fact:

Proposition 2.2. In a monoid M with identity element e, if some element a ∈M has some
left inverse a′ ∈M and some right inverse a′′ ∈M , which means that

a′ · a = e (G3l)

and
a · a′′ = e, (G3r)

then a′ = a′′.

Proof. Using (G3l) and the fact that e is an identity element, we have

(a′ · a) · a′′ = e · a′′ = a′′.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a′ · (a · a′′) = a′ · e = a′.

However, since M is monoid, the operation · is associative, so

a′ = a′ · (a · a′′) = (a′ · a) · a′′ = a′′,

as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Another important property about inverse elements in monoids is stated below.

Proposition 2.3. In a monoid M with identity element e, if a and b are invertible elements
of M , where a−1 is the inverse of a and b−1 is the inverse of b, then ab is invertible and its
inverse is given by (ab)−1 = b−1a−1.

Proof. Using associativity and the fact that e is the identity element we have

(ab)(b−1a−1) = a(b(b−1a−1)) associativity

= a((bb−1)a−1) associativity

= a(ea−1) b−1 is the inverse of b

= aa−1 e is the identity element

= e. a−1 is the inverse of a.
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We also have

(b−1a−1)(ab) = b−1(a−1(ab)) associativity

= b−1((a−1a)b) associativity

= b−1(eb) a−1 is the inverse of a

= b−1b e is the identity element

= e. b−1 is the inverse of b.

Therefore b−1a−1 is the inverse of ab.

Observe that the inverse of ba is a−1b−1. Proposition 2.3 implies that the set of invertible
elements of a monoid M is a group, also with identity element e.

A vector space is an abelian group E with an additional operation · : K ×E → E called
scalar multiplication that allows rescaling a vector in E by an element in K. The set K
itself is an algebraic structure called a field . A field is a special kind of stucture called a
ring . These notions are defined below. We begin with rings.

Definition 2.2. A ring is a set A equipped with two operations +: A × A → A (called
addition) and ∗ : A× A→ A (called multiplication) having the following properties:

(R1) A is an abelian group w.r.t. +;

(R2) ∗ is associative and has an identity element 1 ∈ A;

(R3) ∗ is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse of a ∈ A is
denoted by −a. More explicitly, the axioms of a ring are the following equations which hold
for all a, b, c ∈ A:

a+ (b+ c) = (a+ b) + c (associativity of +) (2.1)

a+ b = b+ a (commutativity of +) (2.2)

a+ 0 = 0 + a = a (zero) (2.3)

a+ (−a) = (−a) + a = 0 (additive inverse) (2.4)

a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity of ∗) (2.5)

a ∗ 1 = 1 ∗ a = a (identity for ∗) (2.6)

(a+ b) ∗ c = (a ∗ c) + (b ∗ c) (distributivity) (2.7)

a ∗ (b+ c) = (a ∗ b) + (a ∗ c) (distributivity) (2.8)

The ring A is commutative if

a ∗ b = b ∗ a for all a, b ∈ A.
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From (2.7) and (2.8), we easily obtain

a ∗ 0 = 0 ∗ a = 0 (2.9)

a ∗ (−b) = (−a) ∗ b = −(a ∗ b). (2.10)

Note that (2.9) implies that if 1 = 0, then a = 0 for all a ∈ A, and thus, A = {0}. The
ring A = {0} is called the trivial ring . A ring for which 1 6= 0 is called nontrivial . The
multiplication a ∗ b of two elements a, b ∈ A is often denoted by ab.

The abelian group Z is a commutative ring (with unit 1), and for any commutative ring
K, the abelian group K[X] of polynomials is also a commutative ring (also with unit 1).
The set Z/mZ of residues modulo m where m is a positive integer is a commutative ring.

A field is a commutative ring K for which K − {0} is a group under multiplication.

Definition 2.3. A set K is a field if it is a ring and the following properties hold:

(F1) 0 6= 1;

(F2) For every a ∈ K, if a 6= 0, then a has an inverse w.r.t. ∗;

(F3) ∗ is commutative.

Let K∗ = K − {0}. Observe that (F1) and (F2) are equivalent to the fact that K∗ is a
group w.r.t. ∗ with identity element 1. If ∗ is not commutative but (F1) and (F2) hold, we
say that we have a skew field (or noncommutative field).

Note that we are assuming that the operation ∗ of a field is commutative. This convention
is not universally adopted, but since ∗ will be commutative for most fields we will encounter,
we may as well include this condition in the definition.

Example 2.2.

1. The rings Q, R, and C are fields.

2. The set Z/pZ of residues modulo p where p is a prime number is field.

3. The set of (formal) fractions f(X)/g(X) of polynomials f(X), g(X) ∈ R[X], where
g(X) is not the zero polynomial, is a field.

Vector spaces are defined below. Such an axiomatic definition was first given by Peano
in 1888 and was anticipated by Grassmann.

Definition 2.4. A real vector space is a set E (of vectors) together with two operations
+: E × E → E (called vector addition)1 and · : R × E → E (called scalar multiplication)
satisfying the following conditions for all α, β ∈ R and all u, v ∈ E;

1The symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.
It is usually clear from the context which + is intended.
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(V0) E is an abelian group w.r.t. +, with identity element 0;2

(V1) α · (u+ v) = (α · u) + (α · v);

(V2) (α + β) · u = (α · u) + (β · u);

(V3) (α ∗ β) · u = α · (β · u);

(V4) 1 · u = u.

In (V3), ∗ denotes multiplication in R.

Given α ∈ R and v ∈ E, the element α · v is also denoted by αv. The field R is often
called the field of scalars.

In Definition 2.4, the field R may be replaced by the field of complex numbers C, in which
case we have a complex vector space. It is even possible to replace R by the field of rational
numbers Q or by any arbitrary field K (for example Z/pZ, where p is a prime number), in
which case we have a K-vector space (in (V3), ∗ denotes multiplication in the field K). In
most cases, the field K will be the field R of reals, but all results in this chapter hold for
vector spaces over an arbitrary field .

From (V0), a vector space always contains the null vector 0, and thus is nonempty.
From (V1), we get α · 0 = 0, and α · (−v) = −(α · v). From (V2), we get 0 · v = 0, and
(−α) · v = −(α · v).

Another important consequence of the axioms is the following fact:

Proposition 2.4. For any u ∈ E and any λ ∈ R, if λ 6= 0 and λ · u = 0, then u = 0.

Proof. Indeed, since λ 6= 0, it has a multiplicative inverse λ−1, so from λ · u = 0, we get

λ−1 · (λ · u) = λ−1 · 0.

However, we just observed that λ−1 · 0 = 0, and from (V3) and (V4), we have

λ−1 · (λ · u) = (λ−1λ) · u = 1 · u = u,

and we deduce that u = 0.

Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from
the other axioms? The answer is no. For example, one can take E = Rn and define
· : R× Rn → Rn by

λ · (x1, . . . , xn) = (0, . . . , 0)

2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and the identity element
of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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for all (x1, . . . , xn) ∈ Rn and all λ ∈ R. Axioms (V0)–(V3) are all satisfied, but (V4) fails.
Less trivial examples can be given using the notion of a basis, which has not been defined
yet.

The field R itself can be viewed as a vector space over itself, addition of vectors being
addition in the field, and multiplication by a scalar being multiplication in the field.

Example 2.3.

1. The fields R and C are vector spaces over R.

2. The groups Rn and Cn are vector spaces over R, with scalar multiplication given by

λ(x1, . . . , xn) = (λx1, . . . , λxn),

for any λ ∈ R and with (x1, . . . , xn) ∈ Rn or (x1, . . . , xn) ∈ Cn, and Cn is a vector
space over C with scalar multiplication as above, but with λ ∈ C.

3. The ring R[X]n of polynomials of degree at most n with real coefficients is a vector
space over R, and the ring C[X]n of polynomials of degree at most n with complex
coefficients is a vector space over C, with scalar multiplication λ ·P (X) of a polynomial

P (X) = amX
m + am−1X

m−1 + · · ·+ a1X + a0

(with ai ∈ R or ai ∈ C) by the scalar λ (in R or C), with m ≤ n, given by

λ · P (X) = λamX
m + λam−1X

m−1 + · · ·+ λa1X + λa0.

4. The ring R[X] of all polynomials with real coefficients is a vector space over R, and the
ring C[X] of all polynomials with complex coefficients is a vector space over C, with
the same scalar multiplication as above.

5. The ring of n× n matrices Mn(R) is a vector space over R.

6. The ring of m× n matrices Mm,n(R) is a vector space over R.

7. The ring C(a, b) of continuous functions f : (a, b) → R is a vector space over R, with
the scalar multiplication λf of a function f : (a, b)→ R by a scalar λ ∈ R given by

(λf)(x) = λf(x), for all x ∈ (a, b).

8. A very important example of vector space is the set of linear maps between two vector
spaces to be defined in Section 2.7. Here is an example that will prepare us for the
vector space of linear maps. Let X be any nonempty set and let E be a vector space.
The set of all functions f : X → E can be made into a vector space as follows: Given
any two functions f : X → E and g : X → E, let (f + g) : X → E be defined such that

(f + g)(x) = f(x) + g(x)
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for all x ∈ X, and for every λ ∈ R, let λf : X → E be defined such that

(λf)(x) = λf(x)

for all x ∈ X. The axioms of a vector space are easily verified.

Let E be a vector space. We would like to define the important notions of linear combi-
nation and linear independence.

Before defining these notions, we need to discuss a strategic choice which, depending
how it is settled, may reduce or increase headaches in dealing with notions such as linear
combinations and linear dependence (or independence). The issue has to do with using sets
of vectors versus sequences of vectors.

2.3 Indexed Families; the Sum Notation
∑

i∈I ai

Our experience tells us that it is preferable to use sequences of vectors ; even better, indexed
families of vectors. (We are not alone in having opted for sequences over sets, and we are in
good company; for example, Artin [3], Axler [4], and Lang [41] use sequences. Nevertheless,
some prominent authors such as Lax [44] use sets. We leave it to the reader to conduct a
survey on this issue.)

Given a set A, recall that a sequence is an ordered n-tuple (a1, . . . , an) ∈ An of elements
from A, for some natural number n. The elements of a sequence need not be distinct and
the order is important. For example, (a1, a2, a1) and (a2, a1, a1) are two distinct sequences
in A3. Their underlying set is {a1, a2}.

What we just defined are finite sequences, which can also be viewed as functions from
{1, 2, . . . , n} to the set A; the ith element of the sequence (a1, . . . , an) is the image of i under
the function. This viewpoint is fruitful, because it allows us to define (countably) infinite
sequences as functions s : N → A. But then, why limit ourselves to ordered sets such as
{1, . . . , n} or N as index sets?

The main role of the index set is to tag each element uniquely, and the order of the tags
is not crucial, although convenient. Thus, it is natural to define the notion of indexed family.

Definition 2.5. Given a set A, an I-indexed family of elements of A, for short a family ,
is a function a : I → A where I is any set viewed as an index set. Since the function a is
determined by its graph

{(i, a(i)) | i ∈ I},

the family a can be viewed as the set of pairs a = {(i, a(i)) | i ∈ I}. For notational simplicity,
we write ai instead of a(i), and denote the family a = {(i, a(i)) | i ∈ I} by (ai)i∈I .
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For example, if I = {r, g, b, y} and A = N, the set of pairs

a = {(r, 2), (g, 3), (b, 2), (y, 11)}

is an indexed family. The element 2 appears twice in the family with the two distinct tags
r and b.

When the indexed set I is totally ordered, a family (ai)i∈I is often called an I-sequence.
Interestingly, sets can be viewed as special cases of families. Indeed, a set A can be viewed
as the A-indexed family {(a, a) | a ∈ I} corresponding to the identity function.

Remark: An indexed family should not be confused with a multiset. Given any set A, a
multiset is a similar to a set, except that elements of A may occur more than once. For
example, if A = {a, b, c, d}, then {a, a, a, b, c, c, d, d} is a multiset. Each element appears
with a certain multiplicity, but the order of the elements does not matter. For example, a
has multiplicity 3. Formally, a multiset is a function s : A→ N, or equivalently a set of pairs
{(a, i) | a ∈ A}. Thus, a multiset is an A-indexed family of elements from N, but not a
N-indexed family, since distinct elements may have the same multiplicity (such as c an d in
the example above). An indexed family is a generalization of a sequence, but a multiset is a
generalization of a set.

We also need to take care of an annoying technicality, which is to define sums of the
form

∑
i∈I ai, where I is any finite index set and (ai)i∈I is a family of elements in some set

A equiped with a binary operation +: A × A → A which is associative (Axiom (G1)) and
commutative. This will come up when we define linear combinations.

The issue is that the binary operation + only tells us how to compute a1 + a2 for two
elements of A, but it does not tell us what is the sum of three of more elements. For example,
how should a1 + a2 + a3 be defined?

What we have to do is to define a1+a2+a3 by using a sequence of steps each involving two
elements, and there are two possible ways to do this: a1 + (a2 +a3) and (a1 +a2) +a3. If our
operation + is not associative, these are different values. If it associative, then a1+(a2+a3) =
(a1 + a2) + a3, but then there are still six possible permutations of the indices 1, 2, 3, and if
+ is not commutative, these values are generally different. If our operation is commutative,
then all six permutations have the same value. Thus, if + is associative and commutative,
it seems intuitively clear that a sum of the form

∑
i∈I ai does not depend on the order of the

operations used to compute it.

This is indeed the case, but a rigorous proof requires induction, and such a proof is
surprisingly involved. Readers may accept without proof the fact that sums of the form∑

i∈I ai are indeed well defined, and jump directly to Definition 2.6. For those who want to
see the gory details, here we go.

First, we define sums
∑

i∈I ai, where I is a finite sequence of distinct natural numbers,
say I = (i1, . . . , im). If I = (i1, . . . , im) with m ≥ 2, we denote the sequence (i2, . . . , im) by



2.3. INDEXED FAMILIES; THE SUM NOTATION
∑

i∈I ai 39

I − {i1}. We proceed by induction on the size m of I. Let∑
i∈I

ai = ai1 , if m = 1,

∑
i∈I

ai = ai1 +

( ∑
i∈I−{i1}

ai

)
, if m > 1.

For example, if I = (1, 2, 3, 4), we have∑
i∈I

ai = a1 + (a2 + (a3 + a4)).

If the operation + is not associative, the grouping of the terms matters. For instance, in
general

a1 + (a2 + (a3 + a4)) 6= (a1 + a2) + (a3 + a4).

However, if the operation + is associative, the sum
∑

i∈I ai should not depend on the grouping
of the elements in I, as long as their order is preserved. For example, if I = (1, 2, 3, 4, 5),
J1 = (1, 2), and J2 = (3, 4, 5), we expect that∑

i∈I
ai =

(∑
j∈J1

aj

)
+

(∑
j∈J2

aj

)
.

This indeed the case, as we have the following proposition.

Proposition 2.5. Given any nonempty set A equipped with an associative binary operation
+: A × A → A, for any nonempty finite sequence I of distinct natural numbers and for
any partition of I into p nonempty sequences Ik1 , . . . , Ikp, for some nonempty sequence K =
(k1, . . . , kp) of distinct natural numbers such that ki < kj implies that α < β for all α ∈ Iki
and all β ∈ Ikj , for every sequence (ai)i∈I of elements in A, we have∑

α∈I
aα =

∑
k∈K

(∑
α∈Ik

aα

)
.

Proof. We proceed by induction on the size n of I.

If n = 1, then we must have p = 1 and Ik1 = I, so the proposition holds trivially.

Next, assume n > 1. If p = 1, then Ik1 = I and the formula is trivial, so assume that
p ≥ 2 and write J = (k2, . . . , kp). There are two cases.

Case 1. The sequence Ik1 has a single element, say β, which is the first element of I.
In this case, write C for the sequence obtained from I by deleting its first element β. By
definition, ∑

α∈I
aα = aβ +

(∑
α∈C

aα

)
,
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and ∑
k∈K

(∑
α∈Ik

aα

)
= aβ +

(∑
j∈J

(∑
α∈Ij

aα

))
.

Since |C| = n− 1, by the induction hypothesis, we have(∑
α∈C

aα

)
=
∑
j∈J

(∑
α∈Ij

aα

)
,

which yields our identity.

Case 2. The sequence Ik1 has at least two elements. In this case, let β be the first element
of I (and thus of Ik1), let I ′ be the sequence obtained from I by deleting its first element β,
let I ′k1 be the sequence obtained from Ik1 by deleting its first element β, and let I ′ki = Iki for
i = 2, . . . , p. Recall that J = (k2, . . . , kp) and K = (k1, . . . , kp). The sequence I ′ has n − 1
elements, so by the induction hypothesis applied to I ′ and the I ′ki , we get

∑
α∈I′

aα =
∑
k∈K

(∑
α∈I′k

aα

)
=

(∑
α∈I′k1

aα

)
+

(∑
j∈J

(∑
α∈Ij

aα

))
.

If we add the lefthand side to aβ, by definition we get∑
α∈I

aα.

If we add the righthand side to aβ, using associativity and the definition of an indexed sum,
we get

aβ +

((∑
α∈I′k1

aα

)
+

(∑
j∈J

(∑
α∈Ij

aα

)))
=

(
aβ +

(∑
α∈I′k1

aα

))
+

(∑
j∈J

(∑
α∈Ij

aα

))

=

(∑
α∈Ik1

aα

)
+

(∑
j∈J

(∑
α∈Ij

aα

))

=
∑
k∈K

(∑
α∈Ik

aα

)
,

as claimed.

If I = (1, . . . , n), we also write
∑n

i=1 ai instead of
∑

i∈I ai. Since + is associative, Propo-
sition 2.5 shows that the sum

∑n
i=1 ai is independent of the grouping of its elements, which

justifies the use the notation a1 + · · ·+ an (without any parentheses).

If we also assume that our associative binary operation on A is commutative, then we
can show that the sum

∑
i∈I ai does not depend on the ordering of the index set I.
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Proposition 2.6. Given any nonempty set A equipped with an associative and commutative
binary operation +: A× A→ A, for any two nonempty finite sequences I and J of distinct
natural numbers such that J is a permutation of I (in other words, the underlying sets of I
and J are identical), for every sequence (ai)i∈I of elements in A, we have∑

α∈I
aα =

∑
α∈J

aα.

Proof. We proceed by induction on the number p of elements in I. If p = 1, we have I = J
and the proposition holds trivially.

If p > 1, to simplify notation, assume that I = (1, . . . , p) and that J is a permutation
(i1, . . . , ip) of I. First, assume that 2 ≤ i1 ≤ p−1, let J ′ be the sequence obtained from J by
deleting i1, I ′ be the sequence obtained from I by deleting i1, and let P = (1, 2, . . . , i1−1) and
Q = (i1 + 1, . . . , p−1, p). Observe that the sequence I ′ is the concatenation of the sequences
P and Q. By the induction hypothesis applied to J ′ and I ′, and then by Proposition 2.5
applied to I ′ and its partition (P,Q), we have∑

α∈J ′
aα =

∑
α∈I′

aα =

(i1−1∑
i=1

ai

)
+

( p∑
i=i1+1

ai

)
.

If we add the lefthand side to ai1 , by definition we get∑
α∈J

aα.

If we add the righthand side to ai1 , we get

ai1 +

((i1−1∑
i=1

ai

)
+

( p∑
i=i1+1

ai

))
.

Using associativity, we get

ai1 +

((i1−1∑
i=1

ai

)
+

( p∑
i=i1+1

ai

))
=

(
ai1 +

(i1−1∑
i=1

ai

))
+

( p∑
i=i1+1

ai

)
,

then using associativity and commutativity several times (more rigorously, using induction
on i1 − 1), we get(

ai1 +

(i1−1∑
i=1

ai

))
+

( p∑
i=i1+1

ai

)
=

(i1−1∑
i=1

ai

)
+ ai1 +

( p∑
i=i1+1

ai

)

=

p∑
i=1

ai,

as claimed.

The cases where i1 = 1 or i1 = p are treated similarly, but in a simpler manner since
either P = () or Q = () (where () denotes the empty sequence).
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Having done all this, we can now make sense of sums of the form
∑

i∈I ai, for any finite
indexed set I and any family a = (ai)i∈I of elements in A, where A is a set equipped with a
binary operation + which is associative and commutative.

Indeed, since I is finite, it is in bijection with the set {1, . . . , n} for some n ∈ N, and any
total ordering � on I corresponds to a permutation I� of {1, . . . , n} (where we identify a
permutation with its image). For any total ordering � on I, we define

∑
i∈I,� ai as∑

i∈I,�
ai =

∑
j∈I�

aj.

Then for any other total ordering �′ on I, we have∑
i∈I,�′

ai =
∑
j∈I�′

aj,

and since I� and I�′ are different permutations of {1, . . . , n}, by Proposition 2.6, we have∑
j∈I�

aj =
∑
j∈I�′

aj.

Therefore, the sum
∑

i∈I,� ai does not depend on the total ordering on I. We define the sum∑
i∈I ai as the common value

∑
i∈I,� ai for all total orderings � of I.

Here are some examples with A = R:

1. If I = {1, 2, 3}, a = {(1, 2), (2,−3), (3,
√

2)}, then
∑

i∈I ai = 2− 3 +
√

2 = −1 +
√

2.

2. If I = {2, 5, 7}, a = {(2, 2), (5,−3), (7,
√

2)}, then
∑

i∈I ai = 2− 3 +
√

2 = −1 +
√

2.

3. If I = {r, g, b}, a = {(r, 2), (g,−3), (b, 1)}, then
∑

i∈I ai = 2− 3 + 1 = 0.

2.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that they possess bases. What this
means is that in every vector space E, there is some set of vectors, {e1, . . . , en}, such that
every vector v ∈ E can be written as a linear combination,

v = λ1e1 + · · ·+ λnen,

of the ei, for some scalars, λ1, . . . , λn ∈ R. Furthermore, the n-tuple, (λ1, . . . , λn), as above
is unique.

This description is fine when E has a finite basis, {e1, . . . , en}, but this is not always the
case! For example, the vector space of real polynomials, R[X], does not have a finite basis
but instead it has an infinite basis, namely

1, X, X2, . . . , Xn, . . .
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Given a set A, recall that an I-indexed family (ai)i∈I of elements of A (for short, a family)
is a function a : I → A, or equivalently a set of pairs {(i, ai) | i ∈ I}. We agree that when
I = ∅, (ai)i∈I = ∅. A family (ai)i∈I is finite if I is finite.

Remark: When considering a family (ai)i∈I , there is no reason to assume that I is ordered.
The crucial point is that every element of the family is uniquely indexed by an element of
I. Thus, unless specified otherwise, we do not assume that the elements of an index set are
ordered.

Given two disjoint sets I and J , the union of two families (ui)i∈I and (vj)j∈J , denoted as
(ui)i∈I ∪ (vj)j∈J , is the family (wk)k∈(I∪J) defined such that wk = uk if k ∈ I, and wk = vk
if k ∈ J . Given a family (ui)i∈I and any element v, we denote by (ui)i∈I ∪k (v) the family
(wi)i∈I∪{k} defined such that, wi = ui if i ∈ I, and wk = v, where k is any index such that
k /∈ I. Given a family (ui)i∈I , a subfamily of (ui)i∈I is a family (uj)j∈J where J is any subset
of I.

In this chapter, unless specified otherwise, it is assumed that all families of scalars are
finite (i.e., their index set is finite).

Definition 2.6. Let E be a vector space. A vector v ∈ E is a linear combination of a family
(ui)i∈I of elements of E iff there is a family (λi)i∈I of scalars in R such that

v =
∑
i∈I

λiui.

When I = ∅, we stipulate that v = 0. (By Proposition 2.6, sums of the form
∑

i∈I λiui are
well defined.) We say that a family (ui)i∈I is linearly independent iff for every family (λi)i∈I
of scalars in R, ∑

i∈I
λiui = 0 implies that λi = 0 for all i ∈ I.

Equivalently, a family (ui)i∈I is linearly dependent iff there is some family (λi)i∈I of scalars
in R such that ∑

i∈I
λiui = 0 and λj 6= 0 for some j ∈ I.

We agree that when I = ∅, the family ∅ is linearly independent.

Observe that defining linear combinations for families of vectors rather than for sets of
vectors has the advantage that the vectors being combined need not be distinct. For example,
for I = {1, 2, 3} and the families (u, v, u) and (λ1, λ2, λ1), the linear combination∑

i∈I
λiui = λ1u+ λ2v + λ1u

makes sense. Using sets of vectors in the definition of a linear combination does not allow
such linear combinations; this is too restrictive.
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Unravelling Definition 2.6, a family (ui)i∈I is linearly dependent iff either I consists of a
single element, say i, and ui = 0, or |I| ≥ 2 and some uj in the family can be expressed as
a linear combination of the other vectors in the family. Indeed, in the second case, there is
some family (λi)i∈I of scalars in R such that∑

i∈I
λiui = 0 and λj 6= 0 for some j ∈ I,

and since |I| ≥ 2, the set I − {j} is nonempty and we get

uj =
∑

i∈(I−{j})
−λ−1

j λiui.

Observe that one of the reasons for defining linear dependence for families of vectors
rather than for sets of vectors is that our definition allows multiple occurrences of a vector.
This is important because a matrix may contain identical columns, and we would like to say
that these columns are linearly dependent. The definition of linear dependence for sets does
not allow us to do that.

The above also shows that a family (ui)i∈I is linearly independent iff either I = ∅, or I
consists of a single element i and ui 6= 0, or |I| ≥ 2 and no vector uj in the family can be
expressed as a linear combination of the other vectors in the family.

When I is nonempty, if the family (ui)i∈I is linearly independent, note that ui 6= 0 for
all i ∈ I. Otherwise, if ui = 0 for some i ∈ I, then we get a nontrivial linear dependence∑

i∈I λiui = 0 by picking any nonzero λi and letting λk = 0 for all k ∈ I with k 6= i, since
λi0 = 0. If |I| ≥ 2, we must also have ui 6= uj for all i, j ∈ I with i 6= j, since otherwise we
get a nontrivial linear dependence by picking λi = λ and λj = −λ for any nonzero λ, and
letting λk = 0 for all k ∈ I with k 6= i, j.

Thus, the definition of linear independence implies that a nontrivial linearly independent
family is actually a set. This explains why certain authors choose to define linear indepen-
dence for sets of vectors. The problem with this approach is that linear dependence, which
is the logical negation of linear independence, is then only defined for sets of vectors. How-
ever, as we pointed out earlier, it is really desirable to define linear dependence for families
allowing multiple occurrences of the same vector.

In the special case where the vectors that we are considering are the columns A1, . . . , An

of an n × n matrix A (with coefficients in K = R or K = C), linear independence has a
simple characterization in terms of the solutions of the linear system Ax = 0.

Recall that A1, . . . , An are linearly independent iff for any scalars x1, . . . , xn ∈ K,

if x1A
1 + · · ·+ xnA

n = 0, then x1 = · · · = xn = 0. (∗1)

If we form the column vector x whose coordinates are x1, . . . , xn ∈ K, then by definition of
Ax,

x1A
1 + · · ·+ xnA

n = Ax,
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so (∗1) is equivalent to
if Ax = 0, then x = 0. (∗2)

In other words, the columns A1, . . . , An of the matrix A are linearly independent iff the linear
system Ax = 0 has the unique solution x = 0 (the trivial solution).

The above can typically be demonstrated by solving the system Ax = 0 by variable
elimination, and verifying that the only solution obtained is x = 0.

Another way to prove that the linear system Ax = 0 only has the trivial solution x = 0 is
to show that A is invertible by by finding explicity the inverse A−1 of A. Indeed, if A has an
inverse A−1, we have A−1A = AA−1 = I, so multiplying both sides of the equation Ax = 0
on the left by A−1, we obtain

A−1Ax = A−10 = 0,

and since A−1Ax = Ix = x, we get x = 0.

The first method can be applied to show linear independence in (2) and (3) of the following
example.

Example 2.4.

1. Any two distinct scalars λ, µ 6= 0 in R are linearly dependent.

2. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent. See Figure
2.7.

Figure 2.7: A visual (arrow) depiction of the red vector (1, 0, 0), the green vector (0, 1, 0),
and the blue vector (0, 0, 1) in R3.

3. In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), and (0, 0, 0, 1) are linearly indepen-
dent.

4. In R2, the vectors u = (1, 1), v = (0, 1) and w = (2, 3) are linearly dependent, since

w = 2u+ v.

See Figure 2.8.



46 CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

(2,3)

2u

v

w

Figure 2.8: A visual (arrow) depiction of the pink vector u = (1, 1), the dark purple vector
v = (0, 1), and the vector sum w = 2u+ v.

When I is finite, we often assume that it is the set I = {1, 2, . . . , n}. In this case, we
denote the family (ui)i∈I as (u1, . . . , un).

The notion of a subspace of a vector space is defined as follows.

Definition 2.7. Given a vector space E, a subset F of E is a linear subspace (or subspace)
of E iff F is nonempty and λu+ µv ∈ F for all u, v ∈ F , and all λ, µ ∈ R.

It is easy to see that a subspace F of E is indeed a vector space, since the restriction
of +: E × E → E to F × F is indeed a function +: F × F → F , and the restriction of
· : R× E → E to R× F is indeed a function · : R× F → F .

Since a subspace F is nonempty, if we pick any vector u ∈ F and if we let λ = µ = 0,
then λu+ µu = 0u+ 0u = 0, so every subspace contains the vector 0.

The following facts also hold. The proof is left as an exercise.

Proposition 2.7.

(1) The intersection of any family (even infinite) of subspaces of a vector space E is a
subspace.

(2) Let F be any subspace of a vector space E. For any nonempty finite index set I,
if (ui)i∈I is any family of vectors ui ∈ F and (λi)i∈I is any family of scalars, then∑

i∈I λiui ∈ F .

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse of notation).



2.4. LINEAR INDEPENDENCE, SUBSPACES 47

Example 2.5.

1. In R2, the set of vectors u = (x, y) such that

x+ y = 0

is the subspace illustrated by Figure 2.9.

Figure 2.9: The subspace x+ y = 0 is the line through the origin with slope −1. It consists
of all vectors of the form λ(−1, 1).

2. In R3, the set of vectors u = (x, y, z) such that

x+ y + z = 0

is the subspace illustrated by Figure 2.10.

3. For any n ≥ 0, the set of polynomials f(X) ∈ R[X] of degree at most n is a subspace
of R[X].

4. The set of upper triangular n×n matrices is a subspace of the space of n×n matrices.

Proposition 2.8. Given any vector space E, if S is any nonempty subset of E, then the
smallest subspace 〈S〉 (or Span(S)) of E containing S is the set of all (finite) linear combi-
nations of elements from S.

Proof. We prove that the set Span(S) of all linear combinations of elements of S is a subspace
of E, leaving as an exercise the verification that every subspace containing S also contains
Span(S).
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Figure 2.10: The subspace x+y+z = 0 is the plane through the origin with normal (1, 1, 1).

First, Span(S) is nonempty since it contains S (which is nonempty). If u =
∑

i∈I λiui
and v =

∑
j∈J µjvj are any two linear combinations in Span(S), for any two scalars λ, µ ∈ R,

λu+ µv = λ
∑
i∈I

λiui + µ
∑
j∈J

µjvj

=
∑
i∈I

λλiui +
∑
j∈J

µµjvj

=
∑
i∈I−J

λλiui +
∑
i∈I∩J

(λλiui + µµivi) +
∑
j∈J−I

µµjvj,

which is a linear combination with index set I ∪ J , and thus λu + µv ∈ Span(S), which
proves that Span(S) is a subspace.

One might wonder what happens if we add extra conditions to the coefficients involved
in forming linear combinations. Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are finite):

(1) Consider combinations
∑

i∈I λiui for which∑
i∈I

λi = 1.

These are called affine combinations . One should realize that every linear combination∑
i∈I λiui can be viewed as an affine combination. For example, if k is an index not

in I, if we let J = I ∪ {k}, uk = 0, and λk = 1−∑i∈I λi, then
∑

j∈J λjuj is an affine
combination and ∑

i∈I
λiui =

∑
j∈J

λjuj.
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However, we get new spaces. For example, in R3, the set of all affine combinations of
the three vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the plane passing
through these three points. Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.

(2) Consider combinations
∑

i∈I λiui for which

λi ≥ 0, for all i ∈ I.

These are called positive (or conic) combinations . It turns out that positive combina-
tions of families of vectors are cones . They show up naturally in convex optimization.

(3) Consider combinations
∑

i∈I λiui for which we require (1) and (2), that is∑
i∈I

λi = 1, and λi ≥ 0 for all i ∈ I.

These are called convex combinations . Given any finite family of vectors, the set of all
convex combinations of these vectors is a convex polyhedron. Convex polyhedra play a
very important role in convex optimization.

Remark: The notion of linear combination can also be defined for infinite index sets I.
To ensure that a sum

∑
i∈I λiui makes sense, we restrict our attention to families of finite

support.

Definition 2.8. Given any field K, a family of scalars (λi)i∈I has finite support if λi = 0
for all i ∈ I − J , for some finite subset J of I.

If (λi)i∈I is a family of scalars of finite support, for any vector space E over K, for any
(possibly infinite) family (ui)i∈I of vectors ui ∈ E, we define the linear combination

∑
i∈I λiui

as the finite linear combination
∑

j∈J λjuj, where J is any finite subset of I such that λi = 0
for all i ∈ I − J . In general, results stated for finite families also hold for families of finite
support.

2.5 Bases of a Vector Space

Given a vector space E, given a family (vi)i∈I , the subset V of E consisting of the null vector
0 and of all linear combinations of (vi)i∈I is easily seen to be a subspace of E. The family
(vi)i∈I is an economical way of representing the entire subspace V , but such a family would
be even nicer if it was not redundant. Subspaces having such an “efficient” generating family
(called a basis) play an important role and motivate the following definition.



50 CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

Definition 2.9. Given a vector space E and a subspace V of E, a family (vi)i∈I of vectors
vi ∈ V spans V or generates V iff for every v ∈ V , there is some family (λi)i∈I of scalars in
R such that

v =
∑
i∈I

λivi.

We also say that the elements of (vi)i∈I are generators of V and that V is spanned by (vi)i∈I ,
or generated by (vi)i∈I . If a subspace V of E is generated by a finite family (vi)i∈I , we say
that V is finitely generated . A family (ui)i∈I that spans V and is linearly independent is
called a basis of V .

Example 2.6.

1. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), illustrated in Figure 2.9, form a basis.

2. The vectors (1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 0, 0), (0, 0, 1,−1) form a basis of R4 known
as the Haar basis . This basis and its generalization to dimension 2n are crucial in
wavelet theory.

3. In the subspace of polynomials in R[X] of degree at most n, the polynomials 1, X,X2,
. . . , Xn form a basis.

4. The Bernstein polynomials

(
n
k

)
(1 − X)n−kXk for k = 0, . . . , n, also form a basis of

that space. These polynomials play a major role in the theory of spline curves .

The first key result of linear algebra is that every vector space E has a basis. We begin
with a crucial lemma which formalizes the mechanism for building a basis incrementally.

Lemma 2.9. Given a linearly independent family (ui)i∈I of elements of a vector space E, if
v ∈ E is not a linear combination of (ui)i∈I , then the family (ui)i∈I ∪k (v) obtained by adding
v to the family (ui)i∈I is linearly independent (where k /∈ I).

Proof. Assume that µv+
∑

i∈I λiui = 0, for any family (λi)i∈I of scalars in R. If µ 6= 0, then
µ has an inverse (because R is a field), and thus we have v = −∑i∈I(µ

−1λi)ui, showing that
v is a linear combination of (ui)i∈I and contradicting the hypothesis. Thus, µ = 0. But then,
we have

∑
i∈I λiui = 0, and since the family (ui)i∈I is linearly independent, we have λi = 0

for all i ∈ I.

The next theorem holds in general, but the proof is more sophisticated for vector spaces
that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem
for finitely generated vector spaces.

Theorem 2.10. Given any finite family S = (ui)i∈I generating a vector space E and any
linearly independent subfamily L = (uj)j∈J of S (where J ⊆ I), there is a basis B of E such
that L ⊆ B ⊆ S.
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Proof. Consider the set of linearly independent families B such that L ⊆ B ⊆ S. Since this
set is nonempty and finite, it has some maximal element (that is, a subfamily B = (uh)h∈H
of S with H ⊆ I of maximum cardinality), say B = (uh)h∈H . We claim that B generates
E. Indeed, if B does not generate E, then there is some up ∈ S that is not a linear
combination of vectors in B (since S generates E), with p /∈ H. Then by Lemma 2.9, the
family B′ = (uh)h∈H∪{p} is linearly independent, and since L ⊆ B ⊂ B′ ⊆ S, this contradicts
the maximality of B. Thus, B is a basis of E such that L ⊆ B ⊆ S.

Remark: Theorem 2.10 also holds for vector spaces that are not finitely generated. In this
case, the problem is to guarantee the existence of a maximal linearly independent family B
such that L ⊆ B ⊆ S. The existence of such a maximal family can be shown using Zorn’s
lemma; see Lang [41] (Theorem 5.1).

A situation where the full generality of Theorem 2.10 is needed is the case of the vector
space R over the field of coefficients Q. The numbers 1 and

√
2 are linearly independent

over Q, so according to Theorem 2.10, the linearly independent family L = (1,
√

2) can be
extended to a basis B of R. Since R is uncountable and Q is countable, such a basis must
be uncountable!

The notion of a basis can also be defined in terms of the notion of maximal linearly
independent family and minimal generating family.

Definition 2.10. Let (vi)i∈I be a family of vectors in a vector space E. We say that (vi)i∈I
a maximal linearly independent family of E if it is linearly independent, and if for any vector
w ∈ E, the family (vi)i∈I ∪k {w} obtained by adding w to the family (vi)i∈I is linearly
dependent. We say that (vi)i∈I a minimal generating family of E if it spans E, and if for
any index p ∈ I, the family (vi)i∈I−{p} obtained by removing vp from the family (vi)i∈I does
not span E.

The following proposition giving useful properties characterizing a basis is an immediate
consequence of Lemma 2.9.

Proposition 2.11. Given a vector space E, for any family B = (vi)i∈I of vectors of E, the
following properties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

Proof. We will first prove the equivalence of (1) and (2). Assume (1). Since B is a basis, it is
a linearly independent family. We claim that B is a maximal linearly independent family. If
B is not a maximal linearly independent family, then there is some vector w ∈ E such that
the family B′ obtained by adding w to B is linearly independent. However, since B is a basis
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of E, the vector w can be expressed as a linear combination of vectors in B, contradicting
the fact that B′ is linearly independent.

Conversely, assume (2). We claim that B spans E. If B does not span E, then there is
some vector w ∈ E which is not a linear combination of vectors in B. By Lemma 2.9, the
family B′ obtained by adding w to B is linearly independent. Since B is a proper subfamily
of B′, this contradicts the assumption that B is a maximal linearly independent family.
Therefore, B must span E, and since B is also linearly independent, it is a basis of E.

Now we will prove the equivalence of (1) and (3). Again, assume (1). Since B is a basis,
it is a generating family of E. We claim that B is a minimal generating family. If B is not
a minimal generating family, then there is a proper subfamily B′ of B that spans E. Then,
every w ∈ B−B′ can be expressed as a linear combination of vectors from B′, contradicting
the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B is not linearly
independent, then some vector w ∈ B can be expressed as a linear combination of vectors
in B′ = B − {w}. Since B generates E, the family B′ also generates E, but B′ is a
proper subfamily of B, contradicting the minimality of B. Since B spans E and is linearly
independent, it is a basis of E.

The second key result of linear algebra is that for any two bases (ui)i∈I and (vj)j∈J of a
vector space E, the index sets I and J have the same cardinality. In particular, if E has a
finite basis of n elements, every basis of E has n elements, and the integer n is called the
dimension of the vector space E.

To prove the second key result, we can use the following replacement lemma due to
Steinitz. This result shows the relationship between finite linearly independent families and
finite families of generators of a vector space. We begin with a version of the lemma which is
a bit informal, but easier to understand than the precise and more formal formulation given
in Proposition 2.13. The technical difficulty has to do with the fact that some of the indices
need to be renamed.

Proposition 2.12. (Replacement lemma, version 1) Given a vector space E, let (u1, . . . , um)
be any finite linearly independent family in E, and let (v1, . . . , vn) be any finite family such
that every ui is a linear combination of (v1, . . . , vn). Then we must have m ≤ n, and there
is a replacement of m of the vectors vj by (u1, . . . , um), such that after renaming some of the
indices of the vjs, the families (u1, . . . , um, vm+1, . . . , vn) and (v1, . . . , vn) generate the same
subspace of E.

Proof. We proceed by induction on m. When m = 0, the family (u1, . . . , um) is empty, and
the proposition holds trivially. For the induction step, we have a linearly independent family
(u1, . . . , um, um+1). Consider the linearly independent family (u1, . . . , um). By the induction
hypothesis, m ≤ n, and there is a replacement of m of the vectors vj by (u1, . . . , um), such
that after renaming some of the indices of the vs, the families (u1, . . . , um, vm+1, . . . , vn) and
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(v1, . . . , vn) generate the same subspace of E. The vector um+1 can also be expressed as a lin-
ear combination of (v1, . . . , vn), and since (u1, . . . , um, vm+1, . . . , vn) and (v1, . . . , vn) generate
the same subspace, um+1 can be expressed as a linear combination of (u1, . . . , um, vm+1, . . .,
vn), say

um+1 =
m∑
i=1

λiui +
n∑

j=m+1

λjvj.

We claim that λj 6= 0 for some j with m+ 1 ≤ j ≤ n, which implies that m+ 1 ≤ n.

Otherwise, we would have

um+1 =
m∑
i=1

λiui,

a nontrivial linear dependence of the ui, which is impossible since (u1, . . . , um+1) are linearly
independent.

Therefore, m + 1 ≤ n, and after renaming indices if necessary, we may assume that
λm+1 6= 0, so we get

vm+1 = −
m∑
i=1

(λ−1
m+1λi)ui − λ−1

m+1um+1 −
n∑

j=m+2

(λ−1
m+1λj)vj.

Observe that the families (u1, . . . , um, vm+1, . . . , vn) and (u1, . . . , um+1, vm+2, . . . , vn) generate
the same subspace, since um+1 is a linear combination of (u1, . . . , um, vm+1, . . . , vn) and vm+1

is a linear combination of (u1, . . . , um+1, vm+2, . . . , vn). Since (u1, . . . , um, vm+1, . . . , vn) and
(v1, . . . , vn) generate the same subspace, we conclude that (u1, . . . , um+1, vm+2, . . . , vn) and
and (v1, . . . , vn) generate the same subspace, which concludes the induction hypothesis.

Here is an example illustrating the replacement lemma. Consider sequences (u1, u2, u3)
and (v1, v2, v3, v4, v5), where (u1, u2, u3) is a linearly independent family and with the uis
expressed in terms of the vjs as follows:

u1 = v4 + v5

u2 = v3 + v4 − v5

u3 = v1 + v2 + v3.

From the first equation we get
v4 = u1 − v5,

and by substituting in the second equation we have

u2 = v3 + v4 − v5 = v3 + u1 − v5 − v5 = u1 + v3 − 2v5.

From the above equation we get

v3 = −u1 + u2 + 2v5,
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and so

u3 = v1 + v2 + v3 = v1 + v2 − u1 + u2 + 2v5.

Finally, we get

v1 = u1 − u2 + u3 − v2 − 2v5

Therefore we have

v1 = u1 − u2 + u3 − v2 − 2v5

v3 = −u1 + u2 + 2v5

v4 = u1 − v5,

which shows that (u1, u2, u3, v2, v5) spans the same subspace as (v1, v2, v3, v4, v5). The vectors
(v1, v3, v4) have been replaced by (u1, u2, u3), and the vectors left over are (v2, v5). We can
rename them (v4, v5).

For the sake of completeness, here is a more formal statement of the replacement lemma
(and its proof).

Proposition 2.13. (Replacement lemma, version 2) Given a vector space E, let (ui)i∈I be
any finite linearly independent family in E, where |I| = m, and let (vj)j∈J be any finite family
such that every ui is a linear combination of (vj)j∈J , where |J | = n. Then there exists a set
L and an injection ρ : L→ J (a relabeling function) such that L ∩ I = ∅, |L| = n−m, and
the families (ui)i∈I ∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace of E. In particular,
m ≤ n.

Proof. We proceed by induction on |I| = m. When m = 0, the family (ui)i∈I is empty, and
the proposition holds trivially with L = J (ρ is the identity). Assume |I| = m+ 1. Consider
the linearly independent family (ui)i∈(I−{p}), where p is any member of I. By the induction
hypothesis, there exists a set L and an injection ρ : L → J such that L ∩ (I − {p}) = ∅,
|L| = n−m, and the families (ui)i∈(I−{p})∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace
of E. If p ∈ L, we can replace L by (L− {p}) ∪ {p′} where p′ does not belong to I ∪ L, and
replace ρ by the injection ρ′ which agrees with ρ on L − {p} and such that ρ′(p′) = ρ(p).
Thus, we can always assume that L ∩ I = ∅. Since up is a linear combination of (vj)j∈J
and the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace of E, up is
a linear combination of (ui)i∈(I−{p}) ∪ (vρ(l))l∈L. Let

up =
∑

i∈(I−{p})
λiui +

∑
l∈L

λlvρ(l). (1)

If λl = 0 for all l ∈ L, we have ∑
i∈(I−{p})

λiui − up = 0,
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contradicting the fact that (ui)i∈I is linearly independent. Thus, λl 6= 0 for some l ∈ L, say
l = q. Since λq 6= 0, we have

vρ(q) =
∑

i∈(I−{p})
(−λ−1

q λi)ui + λ−1
q up +

∑
l∈(L−{q})

(−λ−1
q λl)vρ(l). (2)

We claim that the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (ui)i∈I ∪ (vρ(l))l∈(L−{q}) generate the
same subset of E. Indeed, the second family is obtained from the first by replacing vρ(q) by up,
and vice-versa, and up is a linear combination of (ui)i∈(I−{p})∪ (vρ(l))l∈L, by (1), and vρ(q) is a
linear combination of (ui)i∈I∪(vρ(l))l∈(L−{q}), by (2). Thus, the families (ui)i∈I∪(vρ(l))l∈(L−{q})
and (vj)j∈J generate the same subspace of E, and the proposition holds for L−{q} and the
restriction of the injection ρ : L→ J to L−{q}, since L∩ I = ∅ and |L| = n−m imply that
(L− {q}) ∩ I = ∅ and |L− {q}| = n− (m+ 1).

The idea is that m of the vectors vj can be replaced by the linearly independent uis in
such a way that the same subspace is still generated. The purpose of the function ρ : L→ J
is to pick n −m elements j1, . . . , jn−m of J and to relabel them l1, . . . , ln−m in such a way
that these new indices do not clash with the indices in I; this way, the vectors vj1 , . . . , vjn−m
who “survive” (i.e. are not replaced) are relabeled vl1 , . . . , vln−m , and the other m vectors vj
with j ∈ J −{j1, . . . , jn−m} are replaced by the ui. The index set of this new family is I ∪L.

Actually, one can prove that Proposition 2.13 implies Theorem 2.10 when the vector
space is finitely generated. Putting Theorem 2.10 and Proposition 2.13 together, we obtain
the following fundamental theorem.

Theorem 2.14. Let E be a finitely generated vector space. Any family (ui)i∈I generating E
contains a subfamily (uj)j∈J which is a basis of E. Any linearly independent family (ui)i∈I
can be extended to a family (uj)j∈J which is a basis of E (with I ⊆ J). Furthermore, for
every two bases (ui)i∈I and (vj)j∈J of E, we have |I| = |J | = n for some fixed integer n ≥ 0.

Proof. The first part follows immediately by applying Theorem 2.10 with L = ∅ and S =
(ui)i∈I . For the second part, consider the family S ′ = (ui)i∈I ∪ (vh)h∈H , where (vh)h∈H is any
finitely generated family generating E, and with I ∩ H = ∅. Then apply Theorem 2.10 to
L = (ui)i∈I and to S ′. For the last statement, assume that (ui)i∈I and (vj)j∈J are bases of
E. Since (ui)i∈I is linearly independent and (vj)j∈J spans E, Proposition 2.13 implies that
|I| ≤ |J |. A symmetric argument yields |J | ≤ |I|.

Remark: Theorem 2.14 also holds for vector spaces that are not finitely generated.

Definition 2.11. When a vector space E is not finitely generated, we say that E is of infinite
dimension. The dimension of a finitely generated vector space E is the common dimension
n of all of its bases and is denoted by dim(E).

Clearly, if the field R itself is viewed as a vector space, then every family (a) where a ∈ R
and a 6= 0 is a basis. Thus dim(R) = 1. Note that dim({0}) = 0.
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Definition 2.12. If E is a vector space of dimension n ≥ 1, for any subspace U of E, if
dim(U) = 1, then U is called a line; if dim(U) = 2, then U is called a plane; if dim(U) = n−1,
then U is called a hyperplane. If dim(U) = k, then U is sometimes called a k-plane.

Let (ui)i∈I be a basis of a vector space E. For any vector v ∈ E, since the family (ui)i∈I
generates E, there is a family (λi)i∈I of scalars in R, such that

v =
∑
i∈I

λiui.

A very important fact is that the family (λi)i∈I is unique.

Proposition 2.15. Given a vector space E, let (ui)i∈I be a family of vectors in E. Let v ∈ E,
and assume that v =

∑
i∈I λiui. Then the family (λi)i∈I of scalars such that v =

∑
i∈I λiui

is unique iff (ui)i∈I is linearly independent.

Proof. First, assume that (ui)i∈I is linearly independent. If (µi)i∈I is another family of scalars
in R such that v =

∑
i∈I µiui, then we have∑

i∈I
(λi − µi)ui = 0,

and since (ui)i∈I is linearly independent, we must have λi−µi = 0 for all i ∈ I, that is, λi = µi
for all i ∈ I. The converse is shown by contradiction. If (ui)i∈I was linearly dependent, there
would be a family (µi)i∈I of scalars not all null such that∑

i∈I
µiui = 0

and µj 6= 0 for some j ∈ I. But then,

v =
∑
i∈I

λiui + 0 =
∑
i∈I

λiui +
∑
i∈I

µiui =
∑
i∈I

(λi + µi)ui,

with λj 6= λj+µj since µj 6= 0, contradicting the assumption that (λi)i∈I is the unique family
such that v =

∑
i∈I λiui.

Definition 2.13. If (ui)i∈I is a basis of a vector space E, for any vector v ∈ E, if (xi)i∈I is
the unique family of scalars in R such that

v =
∑
i∈I

xiui,

each xi is called the component (or coordinate) of index i of v with respect to the basis (ui)i∈I .
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2.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this section we define
matrices precisely, and also introduce some operations on matrices. It turns out that matri-
ces form a vector space equipped with a multiplication operation which is associative, but
noncommutative. We will explain in Section 3.1 how matrices can be used to represent linear
maps, defined in the next section.

Definition 2.14. If K = R or K = C, an m×n-matrix over K is a family (ai j)1≤i≤m, 1≤j≤n
of scalars in K, represented by an array

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn

 .

In the special case where m = 1, we have a row vector , represented by

(a1 1 · · · a1n)

and in the special case where n = 1, we have a column vector , represented bya1 1
...

am 1

 .

In these last two cases, we usually omit the constant index 1 (first index in case of a row,
second index in case of a column). The set of all m × n-matrices is denoted by Mm,n(K)
or Mm,n. An n × n-matrix is called a square matrix of dimension n. The set of all square
matrices of dimension n is denoted by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1≤i≤m, 1≤j≤n is a family , that is, a function from
{1, 2, . . . ,m} × {1, 2, . . . , n} to K. As such, there is no reason to assume an ordering on
the indices. Thus, the matrix A can be represented in many different ways as an array, by
adopting different orders for the rows or the columns. However, it is customary (and usually
convenient) to assume the natural ordering on the sets {1, 2, . . . ,m} and {1, 2, . . . , n}, and
to represent A as an array according to this ordering of the rows and columns.

We define some operations on matrices as follows.
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Definition 2.15. Given two m × n matrices A = (ai j) and B = (bi j), we define their sum
A+B as the matrix C = (ci j) such that ci j = ai j + bi j; that is,

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn

+


b1 1 b1 2 . . . b1n

b2 1 b2 2 . . . b2n
...

...
. . .

...
bm 1 bm 2 . . . bmn



=


a1 1 + b1 1 a1 2 + b1 2 . . . a1n + b1n

a2 1 + b2 1 a2 2 + b2 2 . . . a2n + b2n
...

...
. . .

...
am 1 + bm 1 am 2 + bm 2 . . . amn + bmn

 .

For any matrix A = (ai j), we let −A be the matrix (−ai j). Given a scalar λ ∈ K, we define
the matrix λA as the matrix C = (ci j) such that ci j = λai j; that is

λ


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn

 =


λa1 1 λa1 2 . . . λa1n

λa2 1 λa2 2 . . . λa2n
...

...
. . .

...
λam 1 λam 2 . . . λamn

 .

Given an m×n matrices A = (ai k) and an n× p matrices B = (bk j), we define their product
AB as the m× p matrix C = (ci j) such that

ci j =
n∑
k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p. In the product AB = C shown below
a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn



b1 1 b1 2 . . . b1 p

b2 1 b2 2 . . . b2 p
...

...
. . .

...
bn 1 bn 2 . . . bn p

 =


c1 1 c1 2 . . . c1 p

c2 1 c2 2 . . . c2 p
...

...
. . .

...
cm 1 cm 2 . . . cmp

 ,

note that the entry of index i and j of the matrix AB obtained by multiplying the matrices
A and B can be identified with the product of the row matrix corresponding to the i-th row
of A with the column matrix corresponding to the j-column of B:

(ai 1 · · · ai n)

b1 j
...
bn j

 =
n∑
k=1

ai kbk j.
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Definition 2.16. The square matrix In of dimension n containing 1 on the diagonal and 0
everywhere else is called the identity matrix . It is denoted by

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Definition 2.17. Given an m × n matrix A = (ai j), its transpose A> = (a>j i), is the
n×m-matrix such that a>j i = ai j, for all i, 1 ≤ i ≤ m, and all j, 1 ≤ j ≤ n.

The transpose of a matrix A is sometimes denoted by At, or even by tA. Note that the
transpose A> of a matrix A has the property that the j-th row of A> is the j-th column of
A. In other words, transposition exchanges the rows and the columns of a matrix. Here is
an example. If A is the 5× 6 matrix

A =


1 2 3 4 5 6
7 1 2 3 4 5
8 7 1 2 3 4
9 8 7 1 2 3
10 9 8 7 1 2

 ,

then A> is the 6× 5 matrix

A> =


1 7 8 9 10
2 1 7 8 9
3 2 1 7 8
4 3 2 1 7
5 4 3 2 1
6 5 4 3 2

 .

The following observation will be useful later on when we discuss the SVD. Given any
m× n matrix A and any n× p matrix B, if we denote the columns of A by A1, . . . , An and
the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · ·+ AnBn.

For every square matrix A of dimension n, it is immediately verified that AIn = InA = A.

Definition 2.18. For any square matrix A of dimension n, if a matrix B such that AB =
BA = In exists, then it is unique, and it is called the inverse of A. The matrix B is also
denoted by A−1. An invertible matrix is also called a nonsingular matrix, and a matrix that
is not invertible is called a singular matrix.

The following result is a matrix analog of Proposition 2.23.



60 CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

Proposition 2.16. If a square matrix A ∈ Mn(K) has a left inverse, that is a matrix B
such that BA = In, or a right inverse, that is a matrix C such that AC = In, then A is
actually invertible. Furthermore, B = A−1 and C = A−1.

Proof. Proposition 2.16 follows from Proposition 2.23 and the fact that matrices represent
linear maps. We can also give a direct proof as follows. Suppose that there is a matrix B
such that BA = In. This implies that the columns A1, . . . , An of A are linearly independent,
because if

Aλ = λ1A
1 + · · ·+ λnA

n = 0,

where λ ∈ Kn is the column vector

λ =

λ1
...
λn

 ,

for some λ1, . . . , λn ∈ K, by multiplying both sides of the equation Aλ = 0 by B we get

BAλ = Inλ = λ = B0 = 0,

so λ = 0. Then since (A1, . . . , An) are n linearly independent vectors in Kn, they form
a basis of Kn. Consequently, for every vector b ∈ Kn, there is a unique column vector
(x1, . . . , xn) ∈ Kn such that

Ax = x1A
1 + · · ·+ xnA

n = b,

where x is the column vector

x =

x1
...
xn

 .

Thus we can solve the n equations

Axj = ej, 1 ≤ j ≤ n,

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth canonical basis vector in Kn. These equations
yield the matrix equation

AX = In,

where X = (x1 · · · xn) is the n × n matrix whose jth column is xj. Consequently, X is a
right inverse of A. Now A has a left inverse B and a right inverse X, so by Proposition 2.2,
we have X = B, so A is invertible and its inverse is equal to B.

Let us now assume that there is a matrix C such that AC = In. We can repeat the
previous proof with C playing the role of A and A playing the role of B to conclude that
C is invertible and that C−1 = A. But then C−1 is invertible with inverse C, and since
C = (C−1)−1 = A−1, we conclude that A is invertible and that its inverse is equal to C.
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Using Proposition 2.3 (or mimicking the computations in its proof), we note that if A
and B are two n× n invertible matrices, then AB is also invertible and (AB)−1 = B−1A−1.

An important criterion for a square matrix to be invertible is stated next. Another proof
is provided in Proposition 3.4 .

Proposition 2.17. A square matrix A ∈ Mn(K) is invertible iff its columns (A1, . . . , An)
are linearly independent.

Proof. If A is invertible, then in particular it has a left inverse A−1, so the first part of
the proof of Proposition 2.16 with B = A−1 proves that the columns (A1, . . . , An) of A
are linearly independent. This fact is also proven as part of the proof of Proposition 3.4.
Conversely, assume that the columns (A1, . . . , An) of A are linearly independent. The second
part of the proof of Proposition 2.16 shows that A is invertible.

Another useful criterion for a square matrix to be invertible is stated next.

Proposition 2.18. A square matrix A ∈ Mn(K) is invertible iff for any x ∈ Kn, the
equation Ax = 0 implies that x = 0.

Proof. If A is invertible and if Ax = 0, then by multiplying both sides of the equation x = 0
by A−1, we get

A−1Ax = Inx = x = A−10 = 0.

Conversely, for any x = (x1, . . . , xn) ∈ Kn, since

Ax = x1A
1 + · · ·+ xnA

n,

the condition Ax = 0 implies x = 0 is equivalent to the linear independence of the columns
(A1, . . . , An) of A. By Proposition 2.17, the matrix A is invertible.

It is immediately verified that the set Mm,n(K) of m×n matrices is a vector space under
addition of matrices and multiplication of a matrix by a scalar.

Definition 2.19. The m × n-matrices Eij = (eh k), are defined such that ei j = 1, and
eh k = 0, if h 6= i or k 6= j; in other words, the (i, j)-entry is equal to 1 and all other entries
are 0.

Here are the Eij matrices for m = 2 and n = 3:

E11 =

(
1 0 0
0 0 0

)
, E12 =

(
0 1 0
0 0 0

)
, E13 =

(
0 0 1
0 0 0

)
E21 =

(
0 0 0
1 0 0

)
, E22 =

(
0 0 0
0 1 0

)
, E23 =

(
0 0 0
0 0 1

)
.
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It is clear that every matrix A = (ai j) ∈ Mm,n(K) can be written in a unique way as

A =
m∑
i=1

n∑
j=1

ai jEij.

Thus, the family (Eij)1≤i≤m,1≤j≤n is a basis of the vector space Mm,n(K), which has dimension
mn.

Remark: Definition 2.14 and Definition 2.15 also make perfect sense when K is a (com-
mutative) ring rather than a field. In this more general setting, the framework of vector
spaces is too narrow, but we can consider structures over a commutative ring A satisfying
all the axioms of Definition 2.4. Such structures are called modules . The theory of modules
is (much) more complicated than that of vector spaces. For example, modules do not always
have a basis, and other properties holding for vector spaces usually fail for modules. When
a module has a basis, it is called a free module. For example, when A is a commutative
ring, the structure An is a module such that the vectors ei, with (ei)i = 1 and (ei)j = 0 for
j 6= i, form a basis of An. Many properties of vector spaces still hold for An. Thus, An is a
free module. As another example, when A is a commutative ring, Mm,n(A) is a free module
with basis (Ei,j)1≤i≤m,1≤j≤n. Polynomials over a commutative ring also form a free module
of infinite dimension.

The properties listed in Proposition 2.19 are easily verified, although some of the com-
putations are a bit tedious. A more conceptual proof is given in Proposition 3.1.

Proposition 2.19. (1) Given any matrices A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K),
we have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A,B ∈ Mm,n(K), and C,D ∈ Mn,p(K), for all λ ∈ K, we have

(A+B)C = AC +BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

so that matrix multiplication · : Mm,n(K)×Mn,p(K)→ Mm,p(K) is bilinear.

The properties of Proposition 2.19 together with the fact that AIn = InA = A for all
square n×n matrices show that Mn(K) is a ring with unit In (in fact, an associative algebra).
This is a noncommutative ring with zero divisors, as shown by the following example.
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Example 2.7. For example, letting A,B be the 2× 2-matrices

A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
,

then

AB =

(
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
,

and

BA =

(
0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
.

Thus AB 6= BA, and AB = 0, even though both A,B 6= 0.

2.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would like to be able
to transform one vector space E into another vector space F . A function between two vector
spaces that preserves the vector space structure is called a homomorphism of vector spaces,
or linear map. Linear maps formalize the concept of linearity of a function.

Keep in mind that linear maps, which are transformations of
space, are usually far more important than the spaces

themselves.

In the rest of this section, we assume that all vector spaces are real vector spaces, but all
results hold for vector spaces over an arbitrary field.

Definition 2.20. Given two vector spaces E and F , a linear map (or linear transformation)
between E and F is a function f : E → F satisfying the following two conditions:

f(x+ y) = f(x) + f(y) for all x, y ∈ E;

f(λx) = λf(x) for all λ ∈ R, x ∈ E.

Setting x = y = 0 in the first identity, we get f(0) = 0. The basic property of linear maps
is that they transform linear combinations into linear combinations. Given any finite family
(ui)i∈I of vectors in E, given any family (λi)i∈I of scalars in R, we have

f(
∑
i∈I

λiui) =
∑
i∈I

λif(ui).

The above identity is shown by induction on |I| using the properties of Definition 2.20.

Example 2.8.
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1. The map f : R2 → R2 defined such that

x′ = x− y
y′ = x+ y

is a linear map. The reader should check that it is the composition of a rotation by
π/4 with a magnification of ratio

√
2.

2. For any vector space E, the identity map id : E → E given by

id(u) = u for all u ∈ E

is a linear map. When we want to be more precise, we write idE instead of id.

3. The map D : R[X]→ R[X] defined such that

D(f(X)) = f ′(X),

where f ′(X) is the derivative of the polynomial f(X), is a linear map.

4. The map Φ: C([a, b])→ R given by

Φ(f) =

∫ b

a

f(t)dt,

where C([a, b]) is the set of continuous functions defined on the interval [a, b], is a linear
map.

5. The function 〈−,−〉 : C([a, b])× C([a, b])→ R given by

〈f, g〉 =

∫ b

a

f(t)g(t)dt,

is linear in each of the variable f , g. It also satisfies the properties 〈f, g〉 = 〈g, f〉 and
〈f, f〉 = 0 iff f = 0. It is an example of an inner product .

Definition 2.21. Given a linear map f : E → F , we define its image (or range) Im f = f(E),
as the set

Im f = {y ∈ F | (∃x ∈ E)(y = f(x))},

and its Kernel (or nullspace) Ker f = f−1(0), as the set

Ker f = {x ∈ E | f(x) = 0}.
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The derivative map D : R[X] → R[X] from Example 2.8(3) has kernel the constant
polynomials, so KerD = R. If we consider the second derivative D ◦D : R[X]→ R[X], then
the kernel of D ◦D consists of all polynomials of degree ≤ 1. The image of D : R[X]→ R[X]
is actually R[X] itself, because every polynomial P (X) = a0X

n + · · ·+ an−1X + an of degree
n is the derivative of the polynomial Q(X) of degree n+ 1 given by

Q(X) = a0
Xn+1

n+ 1
+ · · ·+ an−1

X2

2
+ anX.

On the other hand, if we consider the restriction of D to the vector space R[X]n of polyno-
mials of degree ≤ n, then the kernel of D is still R, but the image of D is the R[X]n−1, the
vector space of polynomials of degree ≤ n− 1.

Proposition 2.20. Given a linear map f : E → F , the set Im f is a subspace of F and the
set Ker f is a subspace of E. The linear map f : E → F is injective iff Ker f = (0) (where
(0) is the trivial subspace {0}).

Proof. Given any x, y ∈ Im f , there are some u, v ∈ E such that x = f(u) and y = f(v),
and for all λ, µ ∈ R, we have

f(λu+ µv) = λf(u) + µf(v) = λx+ µy,

and thus, λx+ µy ∈ Im f , showing that Im f is a subspace of F .

Given any x, y ∈ Ker f , we have f(x) = 0 and f(y) = 0, and thus,

f(λx+ µy) = λf(x) + µf(y) = 0,

that is, λx+ µy ∈ Ker f , showing that Ker f is a subspace of E.

First, assume that Ker f = (0). We need to prove that f(x) = f(y) implies that x = y.
However, if f(x) = f(y), then f(x) − f(y) = 0, and by linearity of f we get f(x − y) = 0.
Because Ker f = (0), we must have x − y = 0, that is x = y, so f is injective. Conversely,
assume that f is injective. If x ∈ Ker f , that is f(x) = 0, since f(0) = 0 we have f(x) = f(0),
and by injectivity, x = 0, which proves that Ker f = (0). Therefore, f is injective iff
Ker f = (0).

Since by Proposition 2.20, the image Im f of a linear map f is a subspace of F , we can
define the rank rk(f) of f as the dimension of Im f .

Definition 2.22. Given a linear map f : E → F , the rank rk(f) of f is the dimension of
the image Im f of f .

A fundamental property of bases in a vector space is that they allow the definition of
linear maps as unique homomorphic extensions, as shown in the following proposition.
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Proposition 2.21. Given any two vector spaces E and F , given any basis (ui)i∈I of E,
given any other family of vectors (vi)i∈I in F , there is a unique linear map f : E → F such
that f(ui) = vi for all i ∈ I. Furthermore, f is injective iff (vi)i∈I is linearly independent,
and f is surjective iff (vi)i∈I generates F .

Proof. If such a linear map f : E → F exists, since (ui)i∈I is a basis of E, every vector x ∈ E
can written uniquely as a linear combination

x =
∑
i∈I

xiui,

and by linearity, we must have

f(x) =
∑
i∈I

xif(ui) =
∑
i∈I

xivi.

Define the function f : E → F , by letting

f(x) =
∑
i∈I

xivi

for every x =
∑

i∈I xiui. It is easy to verify that f is indeed linear, it is unique by the
previous reasoning, and obviously, f(ui) = vi.

Now assume that f is injective. Let (λi)i∈I be any family of scalars, and assume that∑
i∈I

λivi = 0.

Since vi = f(ui) for every i ∈ I, we have

f(
∑
i∈I

λiui) =
∑
i∈I

λif(ui) =
∑
i∈I

λivi = 0.

Since f is injective iff Ker f = (0), we have∑
i∈I

λiui = 0,

and since (ui)i∈I is a basis, we have λi = 0 for all i ∈ I, which shows that (vi)i∈I is linearly
independent. Conversely, assume that (vi)i∈I is linearly independent. Since (ui)i∈I is a basis
of E, every vector x ∈ E is a linear combination x =

∑
i∈I λiui of (ui)i∈I . If

f(x) = f(
∑
i∈I

λiui) = 0,

then ∑
i∈I

λivi =
∑
i∈I

λif(ui) = f(
∑
i∈I

λiui) = 0,

and λi = 0 for all i ∈ I because (vi)i∈I is linearly independent, which means that x = 0.
Therefore, Ker f = (0), which implies that f is injective. The part where f is surjective is
left as a simple exercise.
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In the special case where E = Kn and F = Km, there is another proof of Proposition
2.21 in terms of matrices using Proposition 2.17. In this case, the vectors u1, . . . , un in Kn

define an n × n matrix U = (u1 · · · un) whose j-th column is uj and the vectors v1, . . . , vn
in Km define an m× n matrix V = (v1 · · · vn) whose j-th column is vj. If A is the matrix
of the linear map f : Kn → Km (with respect to the canonical bases of Kn and Km) which
must satisfy the conditions f(uj) = vj for j = 1, . . . , n, then we must have

Auj = vj, 1 ≤ j ≤ n,

which is equivalent to
AU = V,

and since (u1, . . . , un) are linearly independent, they form a basis of Kn, so by Proposition
2.17 the matrix U is invertible and we deduce that A is determined by the equation

A = V U−1.

Figure 2.11 provides an illustration of Proposition 2.21 when E = R3 and V = R2

u  = (1,0,0)1

u = (0,1,0)
2

u = (0,0,1)
3 v = (1,1)1v = (-1,1)

2

v = (1,0)
3

f(u )1
f(u )

2
-

2f(u  )3

E = 

f

F =
R

R
2

3

f is not injective

defining f

Figure 2.11: Given u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) and v1 = (1, 1), v2 = (−1, 1),
v3 = (1, 0), define the unique linear map f : R3 → R2 by f(u1) = v1, f(u2) = v2, and
f(u3) = v3. This map is surjective but not injective since f(u1 − u2) = f(u1) − f(u2) =
(1, 1)− (−1, 1) = (2, 0) = 2f(u3) = f(2u3).

By the second part of Proposition 2.21, an injective linear map f : E → F sends a basis
(ui)i∈I to a linearly independent family (f(ui))i∈I of F , which is also a basis when f is
bijective. Also, when E and F have the same finite dimension n, (ui)i∈I is a basis of E, and
f : E → F is injective, then (f(ui))i∈I is a basis of F (by Proposition 2.11).

The following simple proposition is also useful.
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Proposition 2.22. Given any two vector spaces E and F , with F nontrivial, given any
family (ui)i∈I of vectors in E, the following properties hold:

(1) The family (ui)i∈I generates E iff for every family of vectors (vi)i∈I in F , there is at
most one linear map f : E → F such that f(ui) = vi for all i ∈ I.

(2) The family (ui)i∈I is linearly independent iff for every family of vectors (vi)i∈I in F ,
there is some linear map f : E → F such that f(ui) = vi for all i ∈ I.

Proof. (1) If there is any linear map f : E → F such that f(ui) = vi for all i ∈ I, since
(ui)i∈I generates E, every vector x ∈ E can be written as some linear combination

x =
∑
i∈I

xiui,

and by linearity, we must have

f(x) =
∑
i∈I

xif(ui) =
∑
i∈I

xivi.

This shows that f is unique if it exists. Conversely, assume that (ui)i∈I does not generate E.
Since F is nontrivial, there is some some vector y ∈ F such that y 6= 0. Since (ui)i∈I does
not generate E, there is some vector w ∈ E that is not in the subspace generated by (ui)i∈I .
By Theorem 2.14, there is a linearly independent subfamily (ui)i∈I0 of (ui)i∈I generating the
same subspace. Since by hypothesis, w ∈ E is not in the subspace generated by (ui)i∈I0 , by
Lemma 2.9 and by Theorem 2.14 again, there is a basis (ej)j∈I0∪J of E, such that ei = ui
for all i ∈ I0, and w = ej0 for some j0 ∈ J . Letting (vi)i∈I be the family in F such that
vi = 0 for all i ∈ I, defining f : E → F to be the constant linear map with value 0, we have
a linear map such that f(ui) = 0 for all i ∈ I. By Proposition 2.21, there is a unique linear
map g : E → F such that g(w) = y, and g(ej) = 0 for all j ∈ (I0 ∪ J)− {j0}. By definition
of the basis (ej)j∈I0∪J of E, we have g(ui) = 0 for all i ∈ I, and since f 6= g, this contradicts
the fact that there is at most one such map. See Figure 2.12.

(2) If the family (ui)i∈I is linearly independent, then by Theorem 2.14, (ui)i∈I can be
extended to a basis of E, and the conclusion follows by Proposition 2.21. Conversely, assume
that (ui)i∈I is linearly dependent. Then there is some family (λi)i∈I of scalars (not all zero)
such that ∑

i∈I
λiui = 0.

By the assumption, for any nonzero vector y ∈ F , for every i ∈ I, there is some linear map
fi : E → F , such that fi(ui) = y, and fi(uj) = 0, for j ∈ I − {i}. Then we would get

0 = fi(
∑
i∈I

λiui) =
∑
i∈I

λifi(ui) = λiy,

and since y 6= 0, this implies λi = 0 for every i ∈ I. Thus, (ui)i∈I is linearly independent.
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f

u  = (1,0,0)1

u = (0,1,0)
2

E = F =
R

R
2

3

u  = (1,0,0)1

u = (0,1,0)
2

E = F =
R

R
2

3

w = (0,0,1)

w = (0,0,1)

defining f as the zero

defining g
y = (1,0)

g(w) = y

Figure 2.12: Let E = R3 and F = R2. The vectors u1 = (1, 0, 0), u2 = (0, 1, 0) do not
generate R3 since both the zero map and the map g, with g(u1) = g(u2) = (0, 0) and
g(0, 0, 1) = (1, 0), send the peach xy-plane to the origin.

Given vector spaces E, F , and G, and linear maps f : E → F and g : F → G, it is easily
verified that the composition g ◦ f : E → G of f and g is a linear map.

Definition 2.23. A linear map f : E → F is an isomorphism iff there is a linear map
g : F → E, such that

g ◦ f = idE and f ◦ g = idF . (∗)
The map g in Definition 2.23 is unique. This is because if g and h both satisfy g◦f = idE,

f ◦ g = idF , h ◦ f = idE, and f ◦ h = idF , then

g = g ◦ idF = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idE ◦ h = h.

The map g satisfying (∗) above is called the inverse of f and it is also denoted by f−1.

Observe that Proposition 2.21 shows that if F = Rn, then we get an isomorphism between
any vector space E of dimension |J | = n and Rn. Proposition 2.21 also implies that if E
and F are two vector spaces, (ui)i∈I is a basis of E, and f : E → F is a linear map which is
an isomorphism, then the family (f(ui))i∈I is a basis of F .

One can verify that if f : E → F is a bijective linear map, then its inverse f−1 : F → E,
as a function, is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 2.21 is this:
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Proposition 2.23. Let E be a vector space of finite dimension n ≥ 1 and let f : E → E be
any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that g ◦ f = id, then f is an
isomorphism and f−1 = g.

(2) If f has a right inverse h, that is, if h is a linear map such that f ◦ h = id, then f is
an isomorphism and f−1 = h.

Proof. (1) The equation g ◦ f = id implies that f is injective; this is a standard result
about functions (if f(x) = f(y), then g(f(x)) = g(f(y)), which implies that x = y since
g ◦ f = id). Let (u1, . . . , un) be any basis of E. By Proposition 2.21, since f is injective,
(f(u1), . . . , f(un)) is linearly independent, and since E has dimension n, it is a basis of
E (if (f(u1), . . . , f(un)) doesn’t span E, then it can be extended to a basis of dimension
strictly greater than n, contradicting Theorem 2.14). Then f is bijective, and by a previous
observation its inverse is a linear map. We also have

g = g ◦ id = g ◦ (f ◦ f−1) = (g ◦ f) ◦ f−1 = id ◦ f−1 = f−1.

(2) The equation f ◦ h = id implies that f is surjective; this is a standard result about
functions (for any y ∈ E, we have f(h(y)) = y). Let (u1, . . . , un) be any basis of E. By
Proposition 2.21, since f is surjective, (f(u1), . . . , f(un)) spans E, and since E has dimension
n, it is a basis of E (if (f(u1), . . . , f(un)) is not linearly independent, then because it spans
E, it contains a basis of dimension strictly smaller than n, contradicting Theorem 2.14).
Then f is bijective, and by a previous observation its inverse is a linear map. We also have

h = id ◦ h = (f−1 ◦ f) ◦ h = f−1 ◦ (f ◦ h) = f−1 ◦ id = f−1.

This completes the proof.

Definition 2.24. The set of all linear maps between two vector spaces E and F is denoted by
Hom(E,F ) or by L(E;F ) (the notation L(E;F ) is usually reserved to the set of continuous
linear maps, where E and F are normed vector spaces). When we wish to be more precise and
specify the field K over which the vector spaces E and F are defined we write HomK(E,F ).

The set Hom(E,F ) is a vector space under the operations defined in Example 2.3, namely

(f + g)(x) = f(x) + g(x)

for all x ∈ E, and
(λf)(x) = λf(x)

for all x ∈ E. The point worth checking carefully is that λf is indeed a linear map, which
uses the commutativity of ∗ in the field K (typically, K = R or K = C). Indeed, we have

(λf)(µx) = λf(µx) = λµf(x) = µλf(x) = µ(λf)(x).

When E and F have finite dimensions, the vector space Hom(E,F ) also has finite di-
mension, as we shall see shortly.
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Definition 2.25. When E = F , a linear map f : E → E is also called an endomorphism.
The space Hom(E,E) is also denoted by End(E).

It is also important to note that composition confers to Hom(E,E) a ring structure.
Indeed, composition is an operation ◦ : Hom(E,E) × Hom(E,E) → Hom(E,E), which is
associative and has an identity idE, and the distributivity properties hold:

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f ;

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2.

The ring Hom(E,E) is an example of a noncommutative ring.

Using Proposition 2.3 it is easily seen that the set of bijective linear maps f : E → E is
a group under composition.

Definition 2.26. Bijective linear maps f : E → E are also called automorphisms . The
group of automorphisms of E is called the general linear group (of E), and it is denoted by
GL(E), or by Aut(E), or when E = Rn, by GL(n,R), or even by GL(n).

2.8 Linear Forms and the Dual Space

We already observed that the field K itself (K = R or K = C) is a vector space (over itself).
The vector space Hom(E,K) of linear maps from E to the field K, the linear forms, plays
a particular role. In this section, we only define linear forms and show that every finite-
dimensional vector space has a dual basis. A more advanced presentation of dual spaces and
duality is given in Chapter 10.

Definition 2.27. Given a vector space E, the vector space Hom(E,K) of linear maps from
E to the field K is called the dual space (or dual) of E. The space Hom(E,K) is also denoted
by E∗, and the linear maps in E∗ are called the linear forms , or covectors . The dual space
E∗∗ of the space E∗ is called the bidual of E.

As a matter of notation, linear forms f : E → K will also be denoted by starred symbol,
such as u∗, x∗, etc.

If E is a vector space of finite dimension n and (u1, . . . , un) is a basis of E, for any linear
form f ∗ ∈ E∗, for every x = x1u1 + · · ·+ xnun ∈ E, by linearity we have

f ∗(x) = f ∗(u1)x1 + · · ·+ f ∗(un)xn

= λ1x1 + · · ·+ λnxn,

with λi = f ∗(ui) ∈ K for every i, 1 ≤ i ≤ n. Thus, with respect to the basis (u1, . . . , un),
the linear form f ∗ is represented by the row vector

(λ1 · · · λn),
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we have

f ∗(x) =
(
λ1 · · · λn

)x1
...
xn

 ,

a linear combination of the coordinates of x, and we can view the linear form f ∗ as a linear
equation. If we decide to use a column vector of coefficients

c =

c1
...
cn


instead of a row vector, then the linear form f ∗ is defined by

f ∗(x) = c>x.

Observe that c = λ>. The above notation is often used in machine learning.

Example 2.9. Given any differentiable function f : Rn → R, by definition, for any x ∈ Rn,
the total derivative dfx of f at x is the linear form dfx : Rn → R defined so that for all
u = (u1, . . . , un) ∈ Rn,

dfx(u) =

(
∂f

∂x1

(x) · · · ∂f

∂xn
(x)

)u1
...
un

 =
n∑
i=1

∂f

∂xi
(x)ui.

Example 2.10. Let C([0, 1]) be the vector space of continuous functions f : [0, 1]→ R. The
map I : C([0, 1])→ R given by

I(f) =

∫ 1

0

f(x)dx for any f ∈ C([0, 1])

is a linear form (integration).

Example 2.11. Consider the vector space Mn(R) of real n×n matrices. Let tr : Mn(R)→ R
be the function given by

tr(A) = a11 + a22 + · · ·+ ann,

called the trace of A. It is a linear form. Let s : Mn(R)→ R be the function given by

s(A) =
n∑

i,j=1

aij,

where A = (aij). It is immediately verified that s is a linear form.
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Given a vector space E and any basis (ui)i∈I for E, we can associate to each ui a linear
form u∗i ∈ E∗, and the u∗i have some remarkable properties.

Definition 2.28. Given a vector space E and any basis (ui)i∈I for E, by Proposition 2.21,
for every i ∈ I, there is a unique linear form u∗i such that

u∗i (uj) =

{
1 if i = j
0 if i 6= j,

for every j ∈ I. The linear form u∗i is called the coordinate form of index i w.r.t. the basis
(ui)i∈I .

Remark: Given an index set I, authors often define the so called “Kronecker symbol” δi j
such that

δi j =

{
1 if i = j
0 if i 6= j,

for all i, j ∈ I. Then, u∗i (uj) = δi j.

The reason for the terminology coordinate form is as follows: If E has finite dimension
and if (u1, . . . , un) is a basis of E, for any vector

v = λ1u1 + · · ·+ λnun,

we have

u∗i (v) = u∗i (λ1u1 + · · ·+ λnun)

= λ1u
∗
i (u1) + · · ·+ λiu

∗
i (ui) + · · ·+ λnu

∗
i (un)

= λi,

since u∗i (uj) = δi j. Therefore, u∗i is the linear function that returns the ith coordinate of a
vector expressed over the basis (u1, . . . , un).

The following theorem shows that in finite-dimension, every basis (u1, . . . , un) of a vector
space E yields a basis (u∗1, . . . , u

∗
n) of the dual space E∗, called a dual basis .

Theorem 2.24. (Existence of dual bases) Let E be a vector space of dimension n. The
following property holds: For every basis (u1, . . . , un) of E, the family of coordinate forms
(u∗1, . . . , u

∗
n) is a basis of E∗ (called the dual basis of (u1, . . . , un)).

Proof. If v∗ ∈ E∗ is any linear form, consider the linear form

f ∗ = v∗(u1)u∗1 + · · ·+ v∗(un)u∗n.

Observe that because u∗i (uj) = δi j,

f ∗(ui) = (v∗(u1)u∗1 + · · ·+ v∗(un)u∗n)(ui)

= v∗(u1)u∗1(ui) + · · ·+ v∗(ui)u
∗
i (ui) + · · ·+ v∗(un)u∗n(ui)

= v∗(ui),
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and so f ∗ and v∗ agree on the basis (u1, . . . , un), which implies that

v∗ = f ∗ = v∗(u1)u∗1 + · · ·+ v∗(un)u∗n.

Therefore, (u∗1, . . . , u
∗
n) spans E∗. We claim that the covectors u∗1, . . . , u

∗
n are linearly inde-

pendent. If not, we have a nontrivial linear dependence

λ1u
∗
1 + · · ·+ λnu

∗
n = 0,

and if we apply the above linear form to each ui, using a familar computation, we get

0 = λiu
∗
i (ui) = λi,

proving that u∗1, . . . , u
∗
n are indeed linearly independent. Therefore, (u∗1, . . . , u

∗
n) is a basis of

E∗.

In particular, Theorem 2.24 shows a finite-dimensional vector space and its dual E∗ have
the same dimension.

We explained just after Definition 2.27 that if the space E is finite-dimensional and has
a finite basis (u1, . . . , un), then a linear form f ∗ : E → K is represented by the row vector of
coefficients (

f ∗(u1) · · · f ∗(un)
)
. (1)

The proof of Theorem 2.24 shows that over the dual basis (u∗1, . . . , u
∗
n) of E∗, the linear form

f ∗ is represented by the same coefficients, but as the column vectorf
∗(u1)

...
f ∗(un)

 , (2)

which is the transpose of the row vector in (1).

2.9 Summary

The main concepts and results of this chapter are listed below:

• The notion of a vector space.

• Families of vectors.

• Linear combinations of vectors; linear dependence and linear independence of a family
of vectors.

• Linear subspaces .
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• Spanning (or generating) family; generators , finitely generated subspace; basis of a
subspace.

• Every linearly independent family can be extended to a basis (Theorem 2.10).

• A family B of vectors is a basis iff it is a maximal linearly independent family iff it is
a minimal generating family (Proposition 2.11).

• The replacement lemma (Proposition 2.13).

• Any two bases in a finitely generated vector space E have the same number of elements ;
this is the dimension of E (Theorem 2.14).

• Hyperplanes .

• Every vector has a unique representation over a basis (in terms of its coordinates).

• Matrices

• Column vectors , row vectors .

• Matrix operations : addition, scalar multiplication, multiplication.

• The vector space Mm,n(K) of m × n matrices over the field K; The ring Mn(K) of
n× n matrices over the field K.

• The notion of a linear map.

• The image Im f (or range) of a linear map f .

• The kernel Ker f (or nullspace) of a linear map f .

• The rank rk(f) of a linear map f .

• The image and the kernel of a linear map are subspaces. A linear map is injective iff
its kernel is the trivial space (0) (Proposition 2.20).

• The unique homomorphic extension property of linear maps with respect to bases
(Proposition 2.21 ).

• The vector space of linear maps HomK(E,F ).

• Linear forms (covectors) and the dual space E∗.

• Coordinate forms.

• The existence of dual bases (in finite dimension).
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2.10 Problems

Problem 2.1. Let H be the set of 3× 3 upper triangular matrices given by

H =


1 a b

0 1 c
0 0 1

 | a, b, c ∈ R

 .

(1) Prove that H with the binary operation of matrix multiplication is a group; find
explicitly the inverse of every matrix in H. Is H abelian (commutative)?

(2) Given two groups G1 and G2, recall that a homomorphism if a function ϕ : G1 → G2

such that
ϕ(ab) = ϕ(a)ϕ(b), a, b ∈ G1.

Prove that ϕ(e1) = e2 (where ei is the identity element of Gi) and that

ϕ(a−1) = (ϕ(a))−1, a ∈ G1.

(3) Let S1 be the unit circle, that is

S1 = {eiθ = cos θ + i sin θ | 0 ≤ θ < 2π},
and let ϕ be the function given by

ϕ

1 a b
0 1 c
0 0 1

 = (a, c, eib).

Prove that ϕ is a surjective function onto G = R × R × S1, and that if we define
multiplication on this set by

(x1, y1, u1) · (x2, y2, u2) = (x1 + x2, y1 + y2, e
ix1y2u1u2),

then G is a group and ϕ is a group homomorphism from H onto G.

(4) The kernel of a homomorphism ϕ : G1 → G2 is defined as

Ker (ϕ) = {a ∈ G1 | ϕ(a) = e2}.
Find explicitly the kernel of ϕ and show that it is a subgroup of H.

Problem 2.2. For any m ∈ Z with m > 0, the subset mZ = {mk | k ∈ Z} is an abelian
subgroup of Z. Check this.

(1) Give a group isomorphism (an invertible homomorphism) from mZ to Z.

(2) Check that the inclusion map i : mZ→ Z given by i(mk) = mk is a group homomor-
phism. Prove that if m ≥ 2 then there is no group homomorphism p : Z → mZ such that
p ◦ i = id.

Remark: The above shows that abelian groups fail to have some of the properties of vector
spaces. We will show later that a linear map satisfying the condition p◦ i = id always exists.
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Problem 2.3. Let E = R× R, and define the addition operation

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), x1, x2, y1, y2 ∈ R,

and the multiplication operation · : R× E → E by

λ · (x, y) = (λx, y), λ, x, y ∈ R.

Show that E with the above operations + and · is not a vector space. Which of the
axioms is violated?

Problem 2.4. (1) Prove that the axioms of vector spaces imply that

α · 0 = 0

0 · v = 0

α · (−v) = −(α · v)

(−α) · v = −(α · v),

for all v ∈ E and all α ∈ K, where E is a vector space over K.

(2) For every λ ∈ R and every x = (x1, . . . , xn) ∈ Rn, define λx by

λx = λ(x1, . . . , xn) = (λx1, . . . , λxn).

Recall that every vector x = (x1, . . . , xn) ∈ Rn can be written uniquely as

x = x1e1 + · · ·+ xnen,

where ei = (0, . . . , 0, 1, 0, . . . , 0), with a single 1 in position i. For any operation · : R×Rn →
Rn, if · satisfies the Axiom (V1) of a vector space, then prove that for any α ∈ R, we have

α · x = α · (x1e1 + · · ·+ xnen) = α · (x1e1) + · · ·+ α · (xnen).

Conclude that · is completely determined by its action on the one-dimensional subspaces of
Rn spanned by e1, . . . , en.

(3) Use (2) to define operations · : R × Rn → Rn that satisfy the Axioms (V1–V3), but
for which Axiom V4 fails.

(4) For any operation · : R×Rn → Rn, prove that if · satisfies the Axioms (V2–V3), then
for every rational number r ∈ Q and every vector x ∈ Rn, we have

r · x = r(1 · x).

In the above equation, 1 · x is some vector (y1, . . . , yn) ∈ Rn not necessarily equal to x =
(x1, . . . , xn), and

r(1 · x) = (ry1, . . . , ryn),

as in Part (2).

Use (4) to conclude that any operation · : Q×Rn → Rn that satisfies the Axioms (V1–V3)
is completely determined by the action of 1 on the one-dimensional subspaces of Rn spanned
by e1, . . . , en.
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Problem 2.5. Let A1 be the following matrix:

A1 =

 2 3 1
1 2 −1
−3 −5 1

 .

Prove that the columns of A1 are linearly independent. Find the coordinates of the vector
x = (6, 2,−7) over the basis consisting of the column vectors of A1.

Problem 2.6. Let A2 be the following matrix:

A2 =


1 2 1 1
2 3 2 3
−1 0 1 −1
−2 −1 3 0

 .

Express the fourth column of A2 as a linear combination of the first three columns of A2. Is
the vector x = (7, 14,−1, 2) a linear combination of the columns of A2?

Problem 2.7. Let A3 be the following matrix:

A3 =

1 1 1
1 1 2
1 2 3

 .

Prove that the columns of A1 are linearly independent. Find the coordinates of the vector
x = (6, 9, 14) over the basis consisting of the column vectors of A3.

Problem 2.8. Let A4 be the following matrix:

A4 =


1 2 1 1
2 3 2 3
−1 0 1 −1
−2 −1 4 0

 .

Prove that the columns of A4 are linearly independent. Find the coordinates of the vector
x = (7, 14,−1, 2) over the basis consisting of the column vectors of A4.

Problem 2.9. Consider the following Haar matrix

H =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 .

Prove that the columns of H are linearly independent.

Hint . Compute the product H>H.
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Problem 2.10. Consider the following Hadamard matrix

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Prove that the columns of H4 are linearly independent.

Hint . Compute the product H>4 H4.

Problem 2.11. In solving this problem, do not use determinants.

(1) Let (u1, . . . , um) and (v1, . . . , vm) be two families of vectors in some vector space E.
Assume that each vi is a linear combination of the ujs, so that

vi = ai 1u1 + · · ·+ aimum, 1 ≤ i ≤ m,

and that the matrix A = (ai j) is an upper-triangular matrix, which means that if 1 ≤ j <
i ≤ m, then ai j = 0. Prove that if (u1, . . . , um) are linearly independent and if all the
diagonal entries of A are nonzero, then (v1, . . . , vm) are also linearly independent.

Hint . Use induction on m.

(2) Let A = (ai j) be an upper-triangular matrix. Prove that if all the diagonal entries of
A are nonzero, then A is invertible and the inverse A−1 of A is also upper-triangular.

Hint . Use induction on m.

Prove that if A is invertible, then all the diagonal entries of A are nonzero.

(3) Prove that if the families (u1, . . . , um) and (v1, . . . , vm) are related as in (1), then
(u1, . . . , um) are linearly independent iff (v1, . . . , vm) are linearly independent.

Problem 2.12. In solving this problem, do not use determinants. Consider the n × n
matrix

A =



1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1


.

(1) Find the solution x = (x1, . . . , xn) of the linear system

Ax = b,
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for

b =


b1

b2
...
bn

 .

(2) Prove that the matrix A is invertible and find its inverse A−1. Given that the number
of atoms in the universe is estimated to be ≤ 1082, compare the size of the coefficients the
inverse of A to 1082, if n ≥ 300.

(3) Assume b is perturbed by a small amount δb (note that δb is a vector). Find the new
solution of the system

A(x+ δx) = b+ δb,

where δx is also a vector. In the case where b = (0, . . . , 0, 1), and δb = (0, . . . , 0, ε), show
that

|(δx)1| = 2n−1|ε|.

(where (δx)1 is the first component of δx).

(4) Prove that (A− I)n = 0.

Problem 2.13. An n × n matrix N is nilpotent if there is some integer r ≥ 1 such that
N r = 0.

(1) Prove that if N is a nilpotent matrix, then the matrix I −N is invertible and

(I −N)−1 = I +N +N2 + · · ·+N r−1.

(2) Compute the inverse of the following matrix A using (1):

A =


1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 2
0 0 0 0 1

 .

Problem 2.14. (1) Let A be an n×n matrix. If A is invertible, prove that for any x ∈ Rn,
if Ax = 0, then x = 0.

(2) Let A be an m × n matrix and let B be an n ×m matrix. Prove that Im − AB is
invertible iff In −BA is invertible.

Hint . If for all x ∈ Rn, Mx = 0 implies that x = 0, then M is invertible.
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Problem 2.15. Consider the following n× n matrix, for n ≥ 3:

B =



1 −1 −1 −1 · · · −1 −1
1 −1 1 1 · · · 1 1
1 1 −1 1 · · · 1 1
1 1 1 −1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · −1 1
1 1 1 1 · · · 1 −1


(1) If we denote the columns of B by b1, . . . , bn, prove that

(n− 3)b1 − (b2 + · · ·+ bn) = 2(n− 2)e1

b1 − b2 = 2(e1 + e2)

b1 − b3 = 2(e1 + e3)

...
...

b1 − bn = 2(e1 + en),

where e1, . . . , en are the canonical basis vectors of Rn.

(2) Prove that B is invertible and that its inverse A = (aij) is given by

a11 =
(n− 3)

2(n− 2)
, ai1 = − 1

2(n− 2)
2 ≤ i ≤ n

and

aii = − (n− 3)

2(n− 2)
, 2 ≤ i ≤ n

aji =
1

2(n− 2)
, 2 ≤ i ≤ n, j 6= i.

(3) Show that the n diagonal n× n matrices Di defined such that the diagonal entries of
Di are equal the entries (from top down) of the ith column of B form a basis of the space of
n × n diagonal matrices (matrices with zeros everywhere except possibly on the diagonal).
For example, when n = 4, we have

D1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 D2 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

D3 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , D4 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
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Problem 2.16. Given any m×n matrix A and any n×p matrix B, if we denote the columns
of A by A1, . . . , An and the rows of B by B1, . . . , Bn, prove that

AB = A1B1 + · · ·+ AnBn.

Problem 2.17. Let f : E → F be a linear map which is also a bijection (it is injective and
surjective). Prove that the inverse function f−1 : F → E is linear.

Problem 2.18. Given two vectors spaces E and F , let (ui)i∈I be any basis of E and let
(vi)i∈I be any family of vectors in F . Prove that the unique linear map f : E → F such that
f(ui) = vi for all i ∈ I is surjective iff (vi)i∈I spans F .

Problem 2.19. Let f : E → F be a linear map with dim(E) = n and dim(F ) = m. Prove
that f has rank 1 iff f is represented by an m× n matrix of the form

A = uv>

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension
n.

Problem 2.20. Find a nontrivial linear dependence among the linear forms

ϕ1(x, y, z) = 2x− y + 3z, ϕ2(x, y, z) = 3x− 5y + z, ϕ3(x, y, z) = 4x− 7y + z.

Problem 2.21. Prove that the linear forms

ϕ1(x, y, z) = x+ 2y + z, ϕ2(x, y, z) = 2x+ 3y + 3z, ϕ3(x, y, z) = 3x+ 7y + z

are linearly independent. Express the linear form ϕ(x, y, z) = x+y+z as a linear combination
of ϕ1, ϕ2, ϕ3.



Chapter 3

Matrices and Linear Maps

In this chapter, all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

3.1 Representation of Linear Maps by Matrices

Proposition 2.21 shows that given two vector spaces E and F and a basis (uj)j∈J of E, every
linear map f : E → F is uniquely determined by the family (f(uj))j∈J of the images under
f of the vectors in the basis (uj)j∈J .

If we also have a basis (vi)i∈I of F , then every vector f(uj) can be written in a unique
way as

f(uj) =
∑
i∈I

ai jvi,

where j ∈ J , for a family of scalars (ai j)i∈I . Thus, with respect to the two bases (uj)j∈J
of E and (vi)i∈I of F , the linear map f is completely determined by a “I × J-matrix”
M(f) = (ai j)(i,j)∈I×J .

Remark: Note that we intentionally assigned the index set J to the basis (uj)j∈J of E, and
the index set I to the basis (vi)i∈I of F , so that the rows of the matrix M(f) associated
with f : E → F are indexed by I, and the columns of the matrix M(f) are indexed by J .
Obviously, this causes a mildly unpleasant reversal. If we had considered the bases (ui)i∈I of
E and (vj)j∈J of F , we would obtain a J × I-matrix M(f) = (aj i)(j,i)∈J×I . No matter what
we do, there will be a reversal! We decided to stick to the bases (uj)j∈J of E and (vi)i∈I of
F , so that we get an I × J-matrix M(f), knowing that we may occasionally suffer from this
decision!

When I and J are finite, and say, when |I| = m and |J | = n, the linear map f is
determined by the matrix M(f) whose entries in the j-th column are the components of the

83
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vector f(uj) over the basis (v1, . . . , vm), that is, the matrix

M(f) =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


whose entry on Row i and Column j is ai j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

We will now show that when E and F have finite dimension, linear maps can be very
conveniently represented by matrices, and that composition of linear maps corresponds to
matrix multiplication. We will follow rather closely an elegant presentation method due to
Emil Artin.

Let E and F be two vector spaces, and assume that E has a finite basis (u1, . . . , un) and
that F has a finite basis (v1, . . . , vm). Recall that we have shown that every vector x ∈ E
can be written in a unique way as

x = x1u1 + · · ·+ xnun,

and similarly every vector y ∈ F can be written in a unique way as

y = y1v1 + · · ·+ ymvm.

Let f : E → F be a linear map between E and F . Then for every x = x1u1 + · · ·+ xnun in
E, by linearity, we have

f(x) = x1f(u1) + · · ·+ xnf(un).

Let
f(uj) = a1 jv1 + · · ·+ amjvm,

or more concisely,

f(uj) =
m∑
i=1

ai jvi,

for every j, 1 ≤ j ≤ n. This can be expressed by writing the coefficients a1j, a2j, . . . , amj of
f(uj) over the basis (v1, . . . , vm), as the jth column of a matrix, as shown below:

f(u1) f(u2) . . . f(un)

v1

v2
...
vm


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

Then substituting the right-hand side of each f(uj) into the expression for f(x), we get

f(x) = x1(
m∑
i=1

ai 1vi) + · · ·+ xn(
m∑
i=1

ai nvi),
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which, by regrouping terms to obtain a linear combination of the vi, yields

f(x) = (
n∑
j=1

a1 jxj)v1 + · · ·+ (
n∑
j=1

amjxj)vm.

Thus, letting f(x) = y = y1v1 + · · ·+ ymvm, we have

yi =
n∑
j=1

ai jxj (1)

for all i, 1 ≤ i ≤ m.

To make things more concrete, let us treat the case where n = 3 and m = 2. In this case,

f(u1) = a11v1 + a21v2

f(u2) = a12v1 + a22v2

f(u3) = a13v1 + a23v2,

which in matrix form is expressed by

f(u1) f(u2) f(u3)

v1

v2

(
a11 a12 a13

a21 a22 a23

)
,

and for any x = x1u1 + x2u2 + x3u3, we have

f(x) = f(x1u1 + x2u2 + x3u3)

= x1f(u1) + x2f(u2) + x3f(u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2) + x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1 + (a21x1 + a22x2 + a23x3)v2.

Consequently, since
y = y1v1 + y2v2,

we have

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3.

This agrees with the matrix equation(
y1

y2

)
=

(
a11 a12 a13

a21 a22 a23

)x1

x2

x3

 .

We now formalize the representation of linear maps by matrices.
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Definition 3.1. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for E,
and (v1, . . . , vm) be a basis for F . Each vector x ∈ E expressed in the basis (u1, . . . , un) as
x = x1u1 + · · ·+ xnun is represented by the column matrix

M(x) =

x1
...
xn


and similarly for each vector y ∈ F expressed in the basis (v1, . . . , vm).

Every linear map f : E → F is represented by the matrix M(f) = (ai j), where ai j is the
i-th component of the vector f(uj) over the basis (v1, . . . , vm), i.e., where

f(uj) =
m∑
i=1

ai jvi, for every j, 1 ≤ j ≤ n.

The coefficients a1j, a2j, . . . , amj of f(uj) over the basis (v1, . . . , vm) form the jth column of
the matrix M(f) shown below:

f(u1) f(u2) . . . f(un)

v1

v2
...
vm


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

The matrix M(f) associated with the linear map f : E → F is called the matrix of f with
respect to the bases (u1, . . . , un) and (v1, . . . , vm). When E = F and the basis (v1, . . . , vm)
is identical to the basis (u1, . . . , un) of E, the matrix M(f) associated with f : E → E (as
above) is called the matrix of f with respect to the basis (u1, . . . , un).

Remark: As in the remark after Definition 2.14, there is no reason to assume that the
vectors in the bases (u1, . . . , un) and (v1, . . . , vm) are ordered in any particular way. However,
it is often convenient to assume the natural ordering. When this is so, authors sometimes
refer to the matrix M(f) as the matrix of f with respect to the ordered bases (u1, . . . , un)
and (v1, . . . , vm).

Let us illustrate the representation of a linear map by a matrix in a concrete situation.
Let E be the vector space R[X]4 of polynomials of degree at most 4, let F be the vector
space R[X]3 of polynomials of degree at most 3, and let the linear map be the derivative
map d: that is,

d(P +Q) = dP + dQ

d(λP ) = λdP,
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with λ ∈ R. We choose (1, x, x2, x3, x4) as a basis of E and (1, x, x2, x3) as a basis of F .
Then the 4 × 5 matrix D associated with d is obtained by expressing the derivative dxi of
each basis vector xi for i = 0, 1, 2, 3, 4 over the basis (1, x, x2, x3). We find

D =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 .

If P denotes the polynomial

P = 3x4 − 5x3 + x2 − 7x+ 5,

we have
dP = 12x3 − 15x2 + 2x− 7.

The polynomial P is represented by the vector (5,−7, 1,−5, 3), the polynomial dP is repre-
sented by the vector (−7, 2,−15, 12), and we have

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4




5
−7
1
−5
3

 =


−7
2
−15
12

 ,

as expected! The kernel (nullspace) of d consists of the polynomials of degree 0, that is, the
constant polynomials. Therefore dim(Ker d) = 1, and from

dim(E) = dim(Ker d) + dim(Im d)

(see Theorem 5.11), we get dim(Im d) = 4 (since dim(E) = 5).

For fun, let us figure out the linear map from the vector space R[X]3 to the vector space
R[X]4 given by integration (finding the primitive, or anti-derivative) of xi, for i = 0, 1, 2, 3).
The 5× 4 matrix S representing

∫
with respect to the same bases as before is

S =


0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

 .

We verify that DS = I4,
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4




0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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This is to be expected by the fundamental theorem of calculus since the derivative of an
integral returns the function. As we will shortly see, the above matrix product corresponds
to this functional composition. The equation DS = I4 shows that S is injective and has D
as a left inverse. However, SD 6= I5, and instead

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

because constant polynomials (polynomials of degree 0) belong to the kernel of D.

3.2 Composition of Linear Maps and Matrix

Multiplication

Let us now consider how the composition of linear maps is expressed in terms of bases.

Let E, F , and G, be three vectors spaces with respective bases (u1, . . . , up) for E,
(v1, . . . , vn) for F , and (w1, . . . , wm) for G. Let g : E → F and f : F → G be linear maps.
As explained earlier, g : E → F is determined by the images of the basis vectors uj, and
f : F → G is determined by the images of the basis vectors vk. We would like to understand
how f ◦ g : E → G is determined by the images of the basis vectors uj.

Remark: Note that we are considering linear maps g : E → F and f : F → G, instead
of f : E → F and g : F → G, which yields the composition f ◦ g : E → G instead of
g ◦ f : E → G. Our perhaps unusual choice is motivated by the fact that if f is represented
by a matrix M(f) = (ai k) and g is represented by a matrix M(g) = (bk j), then f ◦g : E → G
is represented by the product AB of the matrices A and B. If we had adopted the other
choice where f : E → F and g : F → G, then g ◦ f : E → G would be represented by the
product BA. Personally, we find it easier to remember the formula for the entry in Row i and
Column j of the product of two matrices when this product is written by AB, rather than
BA. Obviously, this is a matter of taste! We will have to live with our perhaps unorthodox
choice.

Thus, let

f(vk) =
m∑
i=1

ai kwi,

for every k, 1 ≤ k ≤ n, and let

g(uj) =
n∑
k=1

bk jvk,
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for every j, 1 ≤ j ≤ p; in matrix form, we have

f(v1) f(v2) . . . f(vn)

w1

w2
...
wm


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


and

g(u1) g(u2) . . . g(up)

v1

v2
...
vn


b11 b12 . . . b1p

b21 b22 . . . b2p
...

...
. . .

...
bn1 bn2 . . . bnp

 .

By previous considerations, for every

x = x1u1 + · · ·+ xpup,

letting g(x) = y = y1v1 + · · ·+ ynvn, we have

yk =

p∑
j=1

bk jxj (2)

for all k, 1 ≤ k ≤ n, and for every

y = y1v1 + · · ·+ ynvn,

letting f(y) = z = z1w1 + · · ·+ zmwm, we have

zi =
n∑
k=1

ai kyk (3)

for all i, 1 ≤ i ≤ m. Then if y = g(x) and z = f(y), we have z = f(g(x)), and in view of (2)
and (3), we have

zi =
n∑
k=1

ai k(

p∑
j=1

bk jxj)

=
n∑
k=1

p∑
j=1

ai kbk jxj

=

p∑
j=1

n∑
k=1

ai kbk jxj

=

p∑
j=1

(
n∑
k=1

ai kbk j)xj.
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Thus, defining ci j such that

ci j =
n∑
k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p, we have

zi =

p∑
j=1

ci jxj (4)

Identity (4) shows that the composition of linear maps corresponds to the product of
matrices.

Then given a linear map f : E → F represented by the matrix M(f) = (ai j) w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm), by Equation (1), namely

yi =
n∑
j=1

ai jxj 1 ≤ i ≤ m,

and the definition of matrix multiplication, the equation y = f(x) corresponds to the matrix
equation M(y) = M(f)M(x), that is,y1

...
ym

 =

a1 1 . . . a1n
...

. . .
...

am 1 . . . amn


x1

...
xn

 .

Recall that
a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn



x1

x2
...
xn

 = x1


a1 1

a2 1
...

am 1

+ x2


a1 2

a2 2
...

am 2

+ · · ·+ xn


a1n

a2n
...

amn

 .

Sometimes, it is necessary to incorporate the bases (u1, . . . , un) and (v1, . . . , vm) in the
notation for the matrix M(f) expressing f with respect to these bases. This turns out to be
a messy enterprise!

We propose the following course of action:

Definition 3.2. Write U = (u1, . . . , un) and V = (v1, . . . , vm) for the bases of E and F , and
denote by MU ,V(f) the matrix of f with respect to the bases U and V . Furthermore, write
xU for the coordinates M(x) = (x1, . . . , xn) of x ∈ E w.r.t. the basis U and write yV for the
coordinates M(y) = (y1, . . . , ym) of y ∈ F w.r.t. the basis V . Then

y = f(x)
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is expressed in matrix form by
yV = MU ,V(f)xU .

When U = V , we abbreviate MU ,V(f) as MU(f).

The above notation seems reasonable, but it has the slight disadvantage that in the
expression MU ,V(f)xU , the input argument xU which is fed to the matrix MU ,V(f) does not
appear next to the subscript U in MU ,V(f). We could have used the notation MV,U(f), and
some people do that. But then, we find a bit confusing that V comes before U when f maps
from the space E with the basis U to the space F with the basis V . So, we prefer to use the
notation MU ,V(f).

Be aware that other authors such as Meyer [48] use the notation [f ]U ,V , and others such
as Dummit and Foote [19] use the notation MV

U (f), instead of MU ,V(f). This gets worse!
You may find the notation MU

V (f) (as in Lang [41]), or U [f ]V , or other strange notations.

Definition 3.2 shows that the function which associates to a linear map f : E → F the
matrix M(f) w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm) has the property that matrix mul-
tiplication corresponds to composition of linear maps. This allows us to transfer properties
of linear maps to matrices. Here is an illustration of this technique:

Proposition 3.1. (1) Given any matrices A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K),
we have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A,B ∈ Mm,n(K), and C,D ∈ Mn,p(K), for all λ ∈ K, we have

(A+B)C = AC +BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

so that matrix multiplication · : Mm,n(K)×Mn,p(K)→ Mm,p(K) is bilinear.

Proof. (1) Every m× n matrix A = (ai j) defines the function fA : Kn → Km given by

fA(x) = Ax,

for all x ∈ Kn. It is immediately verified that fA is linear and that the matrix M(fA)
representing fA over the canonical bases in Kn and Km is equal to A. Then Formula (4)
proves that

M(fA ◦ fB) = M(fA)M(fB) = AB,

so we get
M((fA ◦ fB) ◦ fC) = M(fA ◦ fB)M(fC) = (AB)C
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and

M(fA ◦ (fB ◦ fC)) = M(fA)M(fB ◦ fC) = A(BC),

and since composition of functions is associative, we have (fA ◦ fB) ◦ fC = fA ◦ (fB ◦ fC),
which implies that

(AB)C = A(BC).

(2) It is immediately verified that if f1, f2 ∈ HomK(E,F ), A,B ∈ Mm,n(K), (u1, . . . , un) is
any basis of E, and (v1, . . . , vm) is any basis of F , then

M(f1 + f2) = M(f1) +M(f2)

fA+B = fA + fB.

Then we have

(A+B)C = M(fA+B)M(fC)

= M(fA+B ◦ fC)

= M((fA + fB) ◦ fC))

= M((fA ◦ fC) + (fB ◦ fC))

= M(fA ◦ fC) +M(fB ◦ fC)

= M(fA)M(fC) +M(fB)M(fC)

= AC +BC.

The equation A(C + D) = AC + AD is proven in a similar fashion, and the last two
equations are easily verified. We could also have verified all the identities by making matrix
computations.

Note that Proposition 3.1 implies that the vector space Mn(K) of square matrices is a
(noncommutative) ring with unit In. (It even shows that Mn(K) is an associative algebra.)

The following proposition states the main properties of the mapping f 7→M(f) between
Hom(E,F ) and Mm,n. In short, it is an isomorphism of vector spaces.

Proposition 3.2. Given three vector spaces E, F , G, with respective bases (u1, . . . , up),
(v1, . . . , vn), and (w1, . . . , wm), the mapping M : Hom(E,F )→ Mn,p that associates the ma-
trix M(g) to a linear map g : E → F satisfies the following properties for all x ∈ E, all
g, h : E → F , and all f : F → G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) +M(h)

M(λg) = λM(g)

M(f ◦ g) = M(f)M(g),
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where M(x) is the column vector associated with the vector x and M(g(x)) is the column
vector associated with g(x), as explained in Definition 3.1.

Thus, M : Hom(E,F ) → Mn,p is an isomorphism of vector spaces, and when p = n
and the basis (v1, . . . , vn) is identical to the basis (u1, . . . , up), M : Hom(E,E) → Mn is an
isomorphism of rings.

Proof. That M(g(x)) = M(g)M(x) was shown by Definition 3.2 or equivalently by Formula
(1). The identities M(g+ h) = M(g) +M(h) and M(λg) = λM(g) are straightforward, and
M(f ◦ g) = M(f)M(g) follows from Identity (4) and the definition of matrix multiplication.
The mapping M : Hom(E,F ) → Mn,p is clearly injective, and since every matrix defines a
linear map (see Proposition 3.1), it is also surjective, and thus bijective. In view of the above
identities, it is an isomorphism (and similarly for M : Hom(E,E)→ Mn, where Proposition
3.1 is used to show that Mn is a ring).

In view of Proposition 3.2, it seems preferable to represent vectors from a vector space
of finite dimension as column vectors rather than row vectors. Thus, from now on, we will
denote vectors of Rn (or more generally, of Kn) as column vectors.

We explained in Section 2.8 that if the space E is finite-dimensional and has a finite basis
(u1, . . . , un), then a linear form f ∗ : E → K is represented by the row vector of coefficients(

f ∗(u1) · · · f ∗(un)
)
, (1)

over the bases (u1, . . . , un) and 1 (in K), and that over the dual basis (u∗1, . . . , u
∗
n) of E∗, the

linear form f ∗ is represented by the same coefficients, but as the column vectorf
∗(u1)

...
f ∗(un)

 , (2)

which is the transpose of the row vector in (1).

This is a special case of a more general phenomenon. A linear map f : E → F induces a
map f> : F ∗ → E∗ called the transpose of f (note that f> maps F ∗ to E∗, not E∗ to F ∗),
and if (u1 . . . , un) is a basis of E, (v1 . . . , vm) is a basis of F , and if f is represented by the
m×n matrix A over these bases, then over the dual bases (v∗1, . . . , v

∗
m) and (u∗1, . . . , u

∗
n), the

linear map f> is represented by A>, the transpose of the matrix A.

This is because over the basis (v1, . . . , vm), a linear form ϕ ∈ F ∗ is represented by the
row vector

λ =
(
ϕ(v1) · · · ϕ(vm)

)
,

and we define f>(ϕ) as the linear form represented by the row vector

λA
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over the basis (u1, . . . , un). Since ϕ is represented by the column vector λ> over the dual
basis (v∗1, . . . , v

∗
m), we see that f>(ϕ) is represented by the column vector

(λA)> = A>λ>

over the dual basis (u∗1, . . . , u
∗
n). The matrix defining f> over the dual bases (v∗1, . . . , v

∗
m) and

(u∗1, . . . , u
∗
n) is indeed A>.

Conceptually, we will show later (see Section 10.6) that the linear map f> : F ∗ → E∗ is
defined by

f>(ϕ) = ϕ ◦ f,
for all ϕ ∈ F ∗ (remember that ϕ : F → K, so composing f : E → F and ϕ : F → K yields a
linear form ϕ ◦ f : E → K).

3.3 Change of Basis Matrix

It is important to observe that the isomorphism M : Hom(E,F )→ Mn,p given by Proposition
3.2 depends on the choice of the bases (u1, . . . , up) and (v1, . . . , vn), and similarly for the
isomorphism M : Hom(E,E) → Mn, which depends on the choice of the basis (u1, . . . , un).
Thus, it would be useful to know how a change of basis affects the representation of a linear
map f : E → F as a matrix. The following simple proposition is needed.

Proposition 3.3. Let E be a vector space, and let (u1, . . . , un) be a basis of E. For every
family (v1, . . . , vn), let P = (ai j) be the matrix defined such that vj =

∑n
i=1 ai jui. The matrix

P is invertible iff (v1, . . . , vn) is a basis of E.

Proof. Note that we have P = M(f), the matrix (with respect to the basis (u1, . . . , un))
associated with the unique linear map f : E → E such that f(ui) = vi. By Proposition 2.21,
f is bijective iff (v1, . . . , vn) is a basis of E. Furthermore, it is obvious that the identity
matrix In is the matrix associated with the identity id : E → E w.r.t. any basis. If f is an
isomorphism, then f ◦ f−1 = f−1 ◦ f = id, and by Proposition 3.2, we get M(f)M(f−1) =
M(f−1)M(f) = In, showing that P is invertible and that M(f−1) = P−1.

An important corollary of Proposition 3.3 yields the following criterion for a square matrix
to be invertible. This criterion was already proven in Proposition 2.17 but Proposition 3.3
yields a shorter proof.

Proposition 3.4. A square matrix A ∈ Mn(K) is invertible iff its columns (A1, . . . , An) are
linearly independent.

Proof. First assume that A is invertible. If λ1A
1 + · · ·+ λnA

n = 0 for some λ1, . . . , λn ∈ K,
then

Aλ = λ1A
1 + · · ·+ λnA

n = 0,
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where λ is the column vector λ = (λ1, . . . , λn). Since A has an inverse A−1, by multiplying
both sides of the equation Aλ = 0 by A−1 we obtain

A−1Aλ = Inλ = λ = A−10 = 0,

which shows that the columns (A1, . . . , An) are linearly independent.

Conversely, assume that the columns (A1, . . . , An) are linearly independent. Since the
vector space E = Kn has dimension n, the vectors (v1, . . . , vn) = (A1, . . . , An) form a basis
of Kn. By definition, the matrix A is defined by expressing each vector vj = Aj as the
linear combination Aj =

∑n
i=1 aijei, where (e1, . . . , en) is the canonical basis of Kn, and

since (v1, . . . , vn) is a basis, by Proposition 3.3, the matrix A is invertible.

Proposition 3.3 suggests the following definition.

Definition 3.3. Given a vector space E of dimension n, for any two bases (u1, . . . , un) and
(v1, . . . , vn) of E, let P = (ai j) be the invertible matrix defined such that

vj =
n∑
i=1

ai jui,

which is also the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and
(u1, . . . , un), in that order . Indeed, we express each id(vj) = vj over the basis (u1, . . . , un).
The coefficients a1j, a2j, . . . , anj of vj over the basis (u1, . . . , un) form the jth column of the
matrix P shown below:

v1 v2 . . . vn

u1

u2
...
un


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

The matrix P is called the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn).

Clearly, the change of basis matrix from (v1, . . . , vn) to (u1, . . . , un) is P−1. Since P =
(ai j) is the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and
(u1, . . . , un), given any vector x ∈ E, if x = x1u1 + · · ·+xnun over the basis (u1, . . . , un) and
x = x′1v1 + · · ·+ x′nvn over the basis (v1, . . . , vn), from Proposition 3.2, we havex1

...
xn

 =

a1 1 . . . a1n
...

. . .
...

an 1 . . . ann


x

′
1
...
x′n

 ,
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showing that the old coordinates (xi) of x (over (u1, . . . , un)) are expressed in terms of the
new coordinates (x′i) of x (over (v1, . . . , vn)). This fact may seem wrong but it is correct as
we can reassure ourselves by doing the following computation. Suppose that n = 2, so that

v1 = a11u1 + a21u2

v2 = a12u1 + a22u2,

and our matrix is

A =

(
a11 a12

a21 a22

)
.

The same vector x is written as

x = x1u1 + x2u2 = x′1v1 + x′2v2,

so by substituting the expressions for v1 and v2 as linear combinations of u1 and u2, we
obtain

x1u1 + x2u2 = x′1v1 + x′2v2

= x′1(a11u1 + a21u2) + x′2(a12u1 + a22u2)

= (a11x
′
1 + a12x

′
2)u1 + (a21x

′
1 + a22x

′
2)u2,

and since u1 and u2 are linearly independent, we must have

x1 = a11x
′
1 + a12x

′
2

x2 = a21x
′
1 + a22x

′
2,

namely (
x1

x2

)
=

(
a11 a12

a21 a22

)(
x′1
x′2

)
,

as claimed.

If the vectors u1, . . . , un and the vectors v1, . . . , vn are vectors in Kn, then we can form
the n × n matrix U = (u1 · · · un) whose columns are u1, . . . , un and the n × n matrix
V = (v1 · · · vn) whose columns are v1, . . . , vn. Then we can express the change of basis P
from (u1, . . . , un) to (v1, . . . , vn) in terms of U and V . Indeeed, the equation

vj =
n∑
i=1

aijui

can be expressed in matrix form as

vj = UAj,
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where

Aj =


a1j
...
aij
...
an1


is the jth column of P , so we get

V = UP,

which yields
P = U−1V.

Now we face the painful task of assigning a “good” notation incorporating the bases
U = (u1, . . . , un) and V = (v1, . . . , vn) into the notation for the change of basis matrix from
U to V . Because the change of basis matrix from U to V is the matrix of the identity map
idE with respect to the bases V and U in that order , we could denote it by MV,U(id) (Meyer
[48] uses the notation [I]V,U). We prefer to use an abbreviation for MV,U(id).

Definition 3.4. The change of basis matrix from U to V is denoted

PV,U .

Note that
PU ,V = P−1

V,U .

Then, if we write xU = (x1, . . . , xn) for the old coordinates of x with respect to the basis U
and xV = (x′1, . . . , x

′
n) for the new coordinates of x with respect to the basis V , we have

xU = PV,U xV , xV = P−1
V,U xU .

The above may look backward, but remember that the matrix MU ,V(f) takes input
expressed over the basis U to output expressed over the basis V . Consequently, PV,U takes
input expressed over the basis V to output expressed over the basis U , and xU = PV,U xV
matches this point of view!

� Beware that some authors (such as Artin [3]) define the change of basis matrix from U
to V as PU ,V = P−1

V,U . Under this point of view, the old basis U is expressed in terms of
the new basis V . We find this a bit unnatural. Also, in practice, it seems that the new basis
is often expressed in terms of the old basis, rather than the other way around.

Since the matrix P = PV,U expresses the new basis (v1, . . . , vn) in terms of the old basis
(u1, . . ., un), we observe that the coordinates (xi) of a vector x vary in the opposite direction
of the change of basis. For this reason, vectors are sometimes said to be contravariant .
However, this expression does not make sense! Indeed, a vector in an intrinsic quantity that
does not depend on a specific basis. What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.
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Example 3.1. Let E = F = R2, with u1 = (1, 0), u2 = (0, 1), v1 = (1, 1) and v2 = (−1, 1).
The change of basis matrix P from the basis U = (u1, u2) to the basis V = (v1, v2) is

P =

(
1 −1
1 1

)
and its inverse is

P−1 =

(
1/2 1/2
−1/2 1/2

)
.

The old coordinates (x1, x2) with respect to (u1, u2) are expressed in terms of the new
coordinates (x′1, x

′
2) with respect to (v1, v2) by(

x1

x2

)
=

(
1 −1
1 1

)(
x′1
x′2

)
,

and the new coordinates (x′1, x
′
2) with respect to (v1, v2) are expressed in terms of the old

coordinates (x1, x2) with respect to (u1, u2) by(
x′1
x′2

)
=

(
1/2 1/2
−1/2 1/2

)(
x1

x2

)
.

Example 3.2. Let E = F = R[X]3 be the set of polynomials of degree at most 3,
and consider the bases U = (1, x, x2, x3) and V = (B3

0(x), B3
1(x), B3

2(x), B3
3(x)), where

B3
0(x), B3

1(x), B3
2(x), B3

3(x) are the Bernstein polynomials of degree 3, given by

B3
0(x) = (1− x)3 B3

1(x) = 3(1− x)2x B3
2(x) = 3(1− x)x2 B3

3(x) = x3.

By expanding the Bernstein polynomials, we find that the change of basis matrix PV,U is
given by

PV,U =


1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

 .

We also find that the inverse of PV,U is

P−1
V,U =


1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

 .

Therefore, the coordinates of the polynomial 2x3 − x+ 1 over the basis V are
1

2/3
1/3
2

 =


1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1




1
−1
0
2

 ,

and so

2x3 − x+ 1 = B3
0(x) +

2

3
B3

1(x) +
1

3
B3

2(x) + 2B3
3(x).
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3.4 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the
following proposition.

Proposition 3.5. Let E and F be vector spaces, let U = (u1, . . . , un) and U ′ = (u′1, . . . , u
′
n)

be two bases of E, and let V = (v1, . . . , vm) and V ′ = (v′1, . . . , v
′
m) be two bases of F . Let

P = PU ′,U be the change of basis matrix from U to U ′, and let Q = PV ′,V be the change of
basis matrix from V to V ′. For any linear map f : E → F , let M(f) = MU ,V(f) be the matrix
associated to f w.r.t. the bases U and V, and let M ′(f) = MU ′,V ′(f) be the matrix associated
to f w.r.t. the bases U ′ and V ′. We have

M ′(f) = Q−1M(f)P,

or more explicitly

MU ′,V ′(f) = P−1
V ′,VMU ,V(f)PU ′,U = PV,V ′MU ,V(f)PU ′,U .

Proof. Since f : E → F can be written as f = idF ◦ f ◦ idE, since P = PU ′,U is the matrix of
idE w.r.t. the bases (u′1, . . . , u

′
n) and (u1, . . . , un), and Q−1 = P−1

V ′,V = PV,V ′ is the matrix of
idF w.r.t. the bases (v1, . . . , vm) and (v′1, . . . , v

′
m) as illustrated by the following diagram

U , E f

MU,V (f)
// V , F

idFP−1
V′,V

��
U ′, E

idEPU′,U

OO

f

MU′,V′ (f)
// V ′, F,

by Proposition 3.2, we have M ′(f) = Q−1M(f)P .

As a corollary, we get the following result.

Corollary 3.6. Let E be a vector space, and let U = (u1, . . . , un) and U ′ = (u′1, . . . , u
′
n) be

two bases of E. Let P = PU ′,U be the change of basis matrix from U to U ′. For any linear
map f : E → E, let M(f) = MU(f) be the matrix associated to f w.r.t. the basis U , and let
M ′(f) = MU ′(f) be the matrix associated to f w.r.t. the basis U ′. We have

M ′(f) = P−1M(f)P,

or more explicitly,

MU ′(f) = P−1
U ′,UMU(f)PU ′,U = PU ,U ′MU(f)PU ′,U ,
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as illustrated by the following diagram

U , E f

MU,(f)
// U , E

idEP−1
U′,U

��
U ′, E

idEPU′,U

OO

f

MU′ (f) // U ′, E.

Example 3.3. Let E = R2, U = (e1, e2) where e1 = (1, 0) and e2 = (0, 1) are the canonical
basis vectors, let V = (v1, v2) = (e1, e1 − e2), and let

A =

(
2 1
0 1

)
.

The change of basis matrix P = PV,U from U to V is

P =

(
1 1
0 −1

)
,

and we check that
P−1 = P.

Therefore, in the basis V , the matrix representing the linear map f defined by A is

A′ = P−1AP = PAP =

(
1 1
0 −1

)(
2 1
0 1

)(
1 1
0 −1

)
=

(
2 0
0 1

)
= D,

a diagonal matrix. In the basis V , it is clear what the action of f is: it is a stretch by a
factor of 2 in the v1 direction and it is the identity in the v2 direction. Observe that v1 and
v2 are not orthogonal.

What happened is that we diagonalized the matrix A. The diagonal entries 2 and 1 are
the eigenvalues of A (and f), and v1 and v2 are corresponding eigenvectors . We will come
back to eigenvalues and eigenvectors later on.

The above example showed that the same linear map can be represented by different
matrices. This suggests making the following definition:

Definition 3.5. Two n×n matrices A and B are said to be similar iff there is some invertible
matrix P such that

B = P−1AP.

It is easily checked that similarity is an equivalence relation. From our previous consid-
erations, two n × n matrices A and B are similar iff they represent the same linear map
with respect to two different bases. The following surprising fact can be shown: Every square
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matrix A is similar to its transpose A>. The proof requires advanced concepts (the Jordan
form or similarity invariants).

If U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases of E, the change of basis matrix

P = PV,U =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


from (u1, . . . , un) to (v1, . . . , vn) is the matrix whose jth column consists of the coordinates
of vj over the basis (u1, . . . , un), which means that

vj =
n∑
i=1

aijui.

It is natural to extend the matrix notation and to express the vector

v1
...
vn

 in En as the

product of a matrix times the vector

u1
...
un

 in En, namely as


v1

v2
...
vn

 =


a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann



u1

u2
...
un

 ,

but notice that the matrix involved is not P , but its transpose P>.

This observation has the following consequence: if U = (u1, . . . , un) and V = (v1, . . . , vn)
are two bases of E and if v1

...
vn

 = A

u1
...
un

 ,

that is,

vi =
n∑
j=1

aijuj,

for any vector w ∈ E, if

w =
n∑
i=1

xiui =
n∑
k=1

ykvk =
n∑
k=1

yk

( n∑
j=1

akjuj

)
=

n∑
j=1

( n∑
k=1

akjyk

)
uj,
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so

xi =
n∑
k=1

akjyk,

which means (note the inevitable transposition) thatx1
...
xn

 = A>

y1
...
yn

 ,

and so y1
...
yn

 = (A>)−1

x1
...
xn

 .

It is easy to see that (A>)−1 = (A−1)>. Also, if U = (u1, . . . , un), V = (v1, . . . , vn), and
W = (w1, . . . , wn) are three bases of E, and if the change of basis matrix from U to V is
P = PV,U and the change of basis matrix from V to W is Q = PW,V , thenv1

...
vn

 = P>

u1
...
un

 ,

w1
...
wn

 = Q>

v1
...
vn

 ,

so w1
...
wn

 = Q>P>

u1
...
un

 = (PQ)>

u1
...
un

 ,

which means that the change of basis matrix PW,U from U to W is PQ. This proves that

PW,U = PV,UPW,V .

Remark: In order to avoid the transposition involved in writingv1
...
vn

 = P>

u1
...
un

 ,

as a more convenient notation we may write(
v1 · · · vn

)
=
(
u1 · · · un

)
P.

Here we are defining the product

(
u1 · · · un

)p1j
...
pnj

 (∗)
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of a row of vectors
(
u1 · · · un

)
by the jth column of P as the linear combination

n∑
i=1

pijui.

Such a definition is needed since scalar multiplication of a vector by a scalar is only defined
if the scalar is on the left of the vector, but in the matrix expression (∗) above, the vectors
are on the left of the scalars!

Even though matrices are indispensable since they are the major tool in applications of
linear algebra, one should not lose track of the fact that

linear maps are more fundamental because they are intrinsic
objects that do not depend on the choice of bases.

Consequently, we advise the reader to try to think in terms of
linear maps rather than reduce everything to matrices.

In our experience, this is particularly effective when it comes to proving results about
linear maps and matrices, where proofs involving linear maps are often more “conceptual.”
These proofs are usually more general because they do not depend on the fact that the
dimension is finite. Also, instead of thinking of a matrix decomposition as a purely algebraic
operation, it is often illuminating to view it as a geometric decomposition. This is the case of
the SVD, which in geometric terms says that every linear map can be factored as a rotation,
followed by a rescaling along orthogonal axes and then another rotation.

After all,

a matrix is a representation of a linear map,

and most decompositions of a matrix reflect the fact that with a suitable choice of a basis
(or bases), the linear map is a represented by a matrix having a special shape. The problem
is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we confess that
it takes a certain amount of practice to reach the point where it becomes more natural to
deal with linear maps. We still recommend it! For example, try to translate a result stated
in terms of matrices into a result stated in terms of linear maps. Whenever we tried this
exercise, we learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on space.
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3.5 Summary

The main concepts and results of this chapter are listed below:

• The representation of linear maps by matrices .

• The matrix representation mapping M : Hom(E,F ) → Mn,p and the representation
isomorphism (Proposition 3.2).

• Change of basis matrix and Proposition 3.5.

3.6 Problems

Problem 3.1. Prove that the column vectors of the matrix A1 given by

A1 =

1 2 3
2 3 7
1 3 1


are linearly independent.

Prove that the coordinates of the column vectors of the matrix B1 over the basis consisting
of the column vectors of A1 given by

B1 =

3 5 1
1 2 1
4 3 −6


are the columns of the matrix P1 given by

P1 =

−27 −61 −41
9 18 9
4 10 8

 .

Give a nontrivial linear dependence of the columns of P1. Check that B1 = A1P1. Is the
matrix B1 invertible?

Problem 3.2. Prove that the column vectors of the matrix A2 given by

A2 =


1 1 1 1
1 2 1 3
1 1 2 2
1 1 1 3


are linearly independent.



3.6. PROBLEMS 105

Prove that the column vectors of the matrix B2 given by

B2 =


1 −2 2 −2
0 −3 2 −3
3 −5 5 −4
3 −4 4 −4


are linearly independent.

Prove that the coordinates of the column vectors of the matrix B2 over the basis consisting
of the column vectors of A2 are the columns of the matrix P2 given by

P2 =


2 0 1 −1
−3 1 −2 1
1 −2 2 −1
1 −1 1 −1

 .

Check that A2P2 = B2. Prove that

P−1
2 =


−1 −1 −1 1
2 1 1 −2
2 1 2 −3
−1 −1 0 −1

 .

What are the coordinates over the basis consisting of the column vectors of B2 of the vector
whose coordinates over the basis consisting of the column vectors of A2 are (2,−3, 0, 0)?

Problem 3.3. Consider the polynomials

B2
0(t) = (1− t)2 B2

1(t) = 2(1− t)t B2
2(t) = t2

B3
0(t) = (1− t)3 B3

1(t) = 3(1− t)2t B3
2(t) = 3(1− t)t2 B3

3(t) = t3,

known as the Bernstein polynomials of degree 2 and 3.

(1) Show that the Bernstein polynomials B2
0(t), B2

1(t), B2
2(t) are expressed as linear com-

binations of the basis (1, t, t2) of the vector space of polynomials of degree at most 2 as
follows: B2

0(t)
B2

1(t)
B2

2(t)

 =

1 −2 1
0 2 −2
0 0 1

1
t
t2

 .

Prove that
B2

0(t) +B2
1(t) +B2

2(t) = 1.

(2) Show that the Bernstein polynomials B3
0(t), B3

1(t), B3
2(t), B3

3(t) are expressed as linear
combinations of the basis (1, t, t2, t3) of the vector space of polynomials of degree at most 3
as follows: 

B3
0(t)

B3
1(t)

B3
2(t)

B3
3(t)

 =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1




1
t
t2

t3

 .
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Prove that
B3

0(t) +B3
1(t) +B3

2(t) +B3
3(t) = 1.

(3) Prove that the Bernstein polynomials of degree 2 are linearly independent, and that
the Bernstein polynomials of degree 3 are linearly independent.

Problem 3.4. Recall that the binomial coefficient
(
m
k

)
is given by(

m

k

)
=

m!

k!(m− k)!
,

with 0 ≤ k ≤ m.

For any m ≥ 1, we have the m+ 1 Bernstein polynomials of degree m given by

Bm
k (t) =

(
m

k

)
(1− t)m−ktk, 0 ≤ k ≤ m.

(1) Prove that

Bm
k (t) =

m∑
j=k

(−1)j−k
(
m

j

)(
j

k

)
tj. (∗)

Use the above to prove that Bm
0 (t), . . . , Bm

m(t) are linearly independent.

(2) Prove that
Bm

0 (t) + · · ·+Bm
m(t) = 1.

(3) What can you say about the symmetries of the (m+ 1)× (m+ 1) matrix expressing
Bm

0 , . . . , B
m
m in terms of the basis 1, t, . . . , tm?

Prove your claim (beware that in equation (∗) the coefficient of tj in Bm
k is the entry on

the (k+1)th row of the (j+1)th column, since 0 ≤ k, j ≤ m. Make appropriate modifications
to the indices).

What can you say about the sum of the entries on each row of the above matrix? What
about the sum of the entries on each column?

(4) The purpose of this question is to express the ti in terms of the Bernstein polynomials
Bm

0 (t), . . . , Bm
m(t), with 0 ≤ i ≤ m.

First, prove that

ti =
m−i∑
j=0

tiBm−i
j (t), 0 ≤ i ≤ m.

Then prove that (
m

i

)(
m− i
j

)
=

(
m

i+ j

)(
i+ j

i

)
.
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Use the above facts to prove that

ti =
m−i∑
j=0

(
i+j
i

)(
m
i

) Bm
i+j(t).

Conclude that the Bernstein polynomials Bm
0 (t), . . . , Bm

m(t) form a basis of the vector
space of polynomials of degree ≤ m.

Compute the matrix expressing 1, t, t2 in terms of B2
0(t), B2

1(t), B2
2(t), and the matrix

expressing 1, t, t2, t3 in terms of B3
0(t), B3

1(t), B3
2(t), B3

3(t).

You should find 1 1 1
0 1/2 1
0 0 1


and 

1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

 .

(5) A polynomial curve C(t) of degree m in the plane is the set of points

C(t) =

(
x(t)
y(t)

)
given by two polynomials of degree ≤ m,

x(t) = α0t
m1 + α1t

m1−1 + · · ·+ αm1

y(t) = β0t
m2 + β1t

m2−1 + · · ·+ βm2 ,

with 1 ≤ m1,m2 ≤ m and α0, β0 6= 0.

Prove that there exist m+ 1 points b0, . . . , bm ∈ R2 so that

C(t) =

(
x(t)
y(t)

)
= Bm

0 (t)b0 +Bm
1 (t)b1 + · · ·+Bm

m(t)bm

for all t ∈ R, with C(0) = b0 and C(1) = bm. Are the points b1, . . . , bm−1 generally on the
curve?

We say that the curve C is a Bézier curve and (b0, . . . , bm) is the list of control points of
the curve (control points need not be distinct).

Remark: Because Bm
0 (t) + · · · + Bm

m(t) = 1 and Bm
i (t) ≥ 0 when t ∈ [0, 1], the curve

segment C[0, 1] corresponding to t ∈ [0, 1] belongs to the convex hull of the control points.
This is an important property of Bézier curves which is used in geometric modeling to
find the intersection of curve segments. Bézier curves play an important role in computer
graphics and geometric modeling, but also in robotics because they can be used to model
the trajectories of moving objects.
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Problem 3.5. Consider the n× n matrix

A =



0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2
...

. . . . . . . . .
...

...

0 0 0
. . . 0 −a2

0 0 0 · · · 1 −a1


,

with an 6= 0.

(1) Find a matrix P such that
A> = P−1AP.

What happens when an = 0?

Hint . First, try n = 3, 4, 5. Such a matrix must have zeros above the “antidiagonal,” and
identical entries pij for all i, j ≥ 0 such that i+ j = n+ k, where k = 1, . . . , n.

(2) Prove that if an = 1 and if a1, . . . , an−1 are integers, then P can be chosen so that
the entries in P−1 are also integers.

Problem 3.6. For any matrix A ∈ Mn(C), let RA and LA be the maps from Mn(C) to itself
defined so that

LA(B) = AB, RA(B) = BA, for all B ∈ Mn(C).

(1) Check that LA and RA are linear, and that LA and RB commute for all A,B.

Let adA : Mn(C)→ Mn(C) be the linear map given by

adA(B) = LA(B)−RA(B) = AB −BA = [A,B], for all B ∈ Mn(C).

Note that [A,B] is the Lie bracket.

(2) Prove that if A is invertible, then LA and RA are invertible; in fact, (LA)−1 = LA−1

and (RA)−1 = RA−1 . Prove that if A = PBP−1 for some invertible matrix P , then

LA = LP ◦ LB ◦ L−1
P , RA = R−1

P ◦RB ◦RP .

(3) Recall that the n2 matrices Eij defined such that all entries in Eij are zero except
the (i, j)th entry, which is equal to 1, form a basis of the vector space Mn(C). Consider the
partial ordering of the Eij defined such that for i = 1, . . . , n, if n ≥ j > k ≥ 1, then then Eij
precedes Eik, and for j = 1, . . . , n, if 1 ≤ i < h ≤ n, then Eij precedes Ehj.

Draw the Hasse diagram of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would you find them
algorithmically? Check that the following is such a total order:

(1, 3), (1, 2), (1, 1), (2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 1).
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(4) Let the total order of the basis (Eij) extending the partial ordering defined in (2) be
given by

(i, j) < (h, k) iff

{
i = h and j > k
or i < h.

Let R be the n× n permutation matrix given by

R =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 .

Observe that R−1 = R. Prove that for any n ≥ 1, the matrix of LA is given by A⊗In, and the
matrix of RA is given by In⊗RA>R (over the basis (Eij) ordered as specified above), where
⊗ is the Kronecker product (also called tensor product) of matrices defined in Definition 4.4.

Hint . Figure out what are RB(Eij) = EijB and LB(Eij) = BEij.

(5) Prove that if A is upper triangular, then the matrices representing LA and RA are
also upper triangular.

Note that if instead of the ordering

E1n, E1n−1, . . . , E11, E2n, . . . , E21, . . . , Enn, . . . , En1,

that I proposed you use the standard lexicographic ordering

E11, E12, . . . , E1n, E21, . . . , E2n, . . . , En1, . . . , Enn,

then the matrix representing LA is still A⊗ In, but the matrix representing RA is In ⊗ A>.
In this case, if A is upper-triangular, then the matrix of RA is lower triangular . This is the
motivation for using the first basis (avoid upper becoming lower).
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Chapter 4

Haar Bases, Haar Wavelets,
Hadamard Matrices

In this chapter, we discuss two types of matrices that have applications in computer science
and engineering:

(1) Haar matrices and the corresponding Haar wavelets, a fundamental tool in signal pro-
cessing and computer graphics.

2) Hadamard matrices which have applications in error correcting codes, signal processing,
and low rank approximation.

4.1 Introduction to Signal Compression Using Haar

Wavelets

We begin by considering Haar wavelets in R4. Wavelets play an important role in audio
and video signal processing, especially for compressing long signals into much smaller ones
that still retain enough information so that when they are played, we can’t see or hear any
difference.

Consider the four vectors w1, w2, w3, w4 given by

w1 =


1
1
1
1

 w2 =


1
1
−1
−1

 w3 =


1
−1
0
0

 w4 =


0
0
1
−1

 .

Note that these vectors are pairwise orthogonal, which means that their inner product is 0
(see Section 11.1, Example 11.1, and Section 11.2, Definition 11.2), so they are indeed linearly
independent (see Proposition 11.4). Let W = {w1, w2, w3, w4} be the Haar basis , and let
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U = {e1, e2, e3, e4} be the canonical basis of R4. The change of basis matrix W = PW,U from
U to W is given by

W =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 ,

and we easily find that the inverse of W is given by

W−1 =


1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 .

Observe that the second matrix in the above product is W> and the first matrix in this
product is (W>W )−1. So the vector v = (6, 4, 5, 1) over the basis U becomes c = (c1, c2, c3, c4)
over the Haar basis W , with

c1

c2

c3

c4

 =


1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1




6
4
5
1

 =


4
1
1
2

 .

Given a signal v = (v1, v2, v3, v4), we first transform v into its coefficients c = (c1, c2, c3, c4)
over the Haar basis by computing c = W−1v. Observe that

c1 =
v1 + v2 + v3 + v4

4

is the overall average value of the signal v. The coefficient c1 corresponds to the background
of the image (or of the sound). Then, c2 gives the coarse details of v, whereas, c3 gives the
details in the first part of v, and c4 gives the details in the second half of v.

Reconstruction of the signal consists in computing v = Wc. The trick for good compres-
sion is to throw away some of the coefficients of c (set them to zero), obtaining a compressed
signal ĉ, and still retain enough crucial information so that the reconstructed signal v̂ = Wĉ
looks almost as good as the original signal v. Thus, the steps are:

input v −→ coefficients c = W−1v −→ compressed ĉ −→ compressed v̂ = Wĉ.

This kind of compression scheme makes modern video conferencing possible.

It turns out that there is a faster way to find c = W−1v, without actually using W−1.
This has to do with the multiscale nature of Haar wavelets.

Given the original signal v = (6, 4, 5, 1) shown in Figure 4.1, we compute averages and
half differences obtaining Figure 4.2. We get the coefficients c3 = 1 and c4 = 2. Then
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v = 61 v = 42
v = 53

v = 14

Figure 4.1: The original signal v.

v  +  v  1

5

2

5

2

3 3

v  +  v  

2
3 4

c  =  v  - v 
3 1 2

2

1 2
2

- v - v

1 =

2
- v - v3 4

2
v - v3 42 = c =

4

Figure 4.2: First averages and first half differences.

again we compute averages and half differences obtaining Figure 4.3. We get the coefficients
c1 = 4 and c2 = 1. Note that the original signal v can be reconstructed from the two signals
in Figure 4.2, and the signal on the left of Figure 4.2 can be reconstructed from the two
signals in Figure 4.3. In particular, the data from Figure 4.2 gives us

5 + 1 =
v1 + v2

2
+
v1 − v2

2
= v1

5− 1 =
v1 + v2

2
− v1 − v2

2
= v2

3 + 2 =
v3 + v4

2
+
v3 − v4

2
= v3

3− 2 =
v3 + v4

2
− v3 − v4

2
= v4.

4.2 Haar Bases and Haar Matrices, Scaling Properties

of Haar Wavelets

The method discussed in Section 4.1 can be generalized to signals of any length 2n. The
previous case corresponds to n = 2. Let us consider the case n = 3. The Haar basis
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4 4 4 4

1

1 2 3 4

4

v + v + v + v
c =

1

1 1

− 1 − 1

v + v - v - v1 2 3 4

4
c = 

2

Figure 4.3: Second averages and second half differences.

(w1, w2, w3, w4, w5, w6, w7, w8) is given by the matrix

W =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


.

The columns of this matrix are orthogonal, and it is easy to see that

W−1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is beginning to emerge. It looks like the second Haar basis vector w2 is the
“mother” of all the other basis vectors, except the first, whose purpose is to perform aver-
aging. Indeed, in general, given

w2 = (1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸
2n

,

the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting from
w2, the scaling process generates the vectors

w3, w5, w9, . . . , w2j+1, . . . , w2n−1+1,

such that w2j+1+1 is obtained from w2j+1 by forming two consecutive blocks of 1 and −1
of half the size of the blocks in w2j+1, and setting all other entries to zero. Observe that
w2j+1 has 2j blocks of 2n−j elements. The shifting process consists in shifting the blocks of
1 and −1 in w2j+1 to the right by inserting a block of (k − 1)2n−j zeros from the left, with
0 ≤ j ≤ n− 1 and 1 ≤ k ≤ 2j. Note that our convention is to use j as the scaling index and
k as the shifting index. Thus, we obtain the following formula for w2j+k:

w2j+k(i) =


0 1 ≤ i ≤ (k − 1)2n−j

1 (k − 1)2n−j + 1 ≤ i ≤ (k − 1)2n−j + 2n−j−1

−1 (k − 1)2n−j + 2n−j−1 + 1 ≤ i ≤ k2n−j

0 k2n−j + 1 ≤ i ≤ 2n,
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with 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ 2j. Of course

w1 = (1, . . . , 1)︸ ︷︷ ︸
2n

.

The above formulae look a little better if we change our indexing slightly by letting k vary
from 0 to 2j − 1, and using the index j instead of 2j.

Definition 4.1. The vectors of the Haar basis of dimension 2n are denoted by

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n−1
2n−1−1,

where

hjk(i) =


0 1 ≤ i ≤ k2n−j

1 k2n−j + 1 ≤ i ≤ k2n−j + 2n−j−1

−1 k2n−j + 2n−j−1 + 1 ≤ i ≤ (k + 1)2n−j

0 (k + 1)2n−j + 1 ≤ i ≤ 2n,

with 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ 2j − 1. The 2n × 2n matrix whose columns are the vectors

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n−1
2n−1−1,

(in that order), is called the Haar matrix of dimension 2n, and is denoted by Wn.

It turns out that there is a way to understand these formulae better if we interpret a
vector u = (u1, . . . , um) as a piecewise linear function over the interval [0, 1).

Definition 4.2. Given a vector u = (u1, . . . , um), the piecewise linear function1 plf(u) is
defined such that

plf(u)(x) = ui,
i− 1

m
≤ x <

i

m
, 1 ≤ i ≤ m.

In words, the function plf(u) has the value u1 on the interval [0, 1/m), the value u2 on
[1/m, 2/m), etc., and the value um on the interval [(m− 1)/m, 1).

For example, the piecewise linear function associated with the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,−1.1,−1.3)

is shown in Figure 4.4.
Then each basis vector hjk corresponds to the function

ψjk = plf(hjk).

1Piecewise constant function might be a more accurate name.
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Figure 4.4: The piecewise linear function plf(u).

In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸

2n

yield the same piecewise linear function ψ given by

ψ(x) =


1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1

0 otherwise,

whose graph is shown in Figure 4.5. It is easy to see that ψjk is given by the simple expression

1

1

−1

0

Figure 4.5: The Haar wavelet ψ.

ψjk(x) = ψ(2jx− k), 0 ≤ j ≤ n− 1, 0 ≤ k ≤ 2j − 1.

The above formula makes it clear that ψjk is obtained from ψ by scaling and shifting.

Definition 4.3. The function φ0
0 = plf(w1) is the piecewise linear function with the constant

value 1 on [0, 1), and the functions ψjk = plf(hjk) together with φ0
0 are known as the Haar

wavelets .
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Rather than using W−1 to convert a vector u to a vector c of coefficients over the Haar
basis, and the matrix W to reconstruct the vector u from its Haar coefficients c, we can use
faster algorithms that use averaging and differencing.

If c is a vector of Haar coefficients of dimension 2n, we compute the sequence of vectors
u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i− 1) = uj(i) + uj(2j + i)

uj+1(2i) = uj(i)− uj(2j + i),

for j = 0, . . . , n− 1 and i = 1, . . . , 2j. The reconstructed vector (signal) is u = un.

If u is a vector of dimension 2n, we compute the sequence of vectors cn, cn−1, . . . , c0 as
follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i− 1) + cj+1(2i))/2

cj(2j + i) = (cj+1(2i− 1)− cj+1(2i))/2,

for j = n− 1, . . . , 0 and i = 1, . . . , 2j. The vector over the Haar basis is c = c0.

We leave it as an exercise to implement the above programs in Matlab using two variables
u and c, and by building iteratively 2j. Here is an example of the conversion of a vector to
its Haar coefficients for n = 3.

Given the sequence u = (31, 29, 23, 17,−6,−8,−2,−4), we get the sequence

c3 = (31, 29, 23, 17,−6,−8,−2,−4)

c2 =

(
31 + 29

2
,
23 + 17

2
,
−6− 8

2
,
−2− 4

2
,
31− 29

2
,
23− 17

2
,
−6− (−8)

2
,
−2− (−4)

2

)
= (30, 20,−7,−3, 1, 3, 1, 1)

c1 =

(
30 + 20

2
,
−7− 3

2
,
30− 20

2
,
−7− (−3)

2
, 1, 3, 1, 1

)
= (25,−5, 5,−2, 1, 3, 1, 1)

c0 =

(
25− 5

2
,
25− (−5)

2
, 5,−2, 1, 3, 1, 1

)
= (10, 15, 5,−2, 1, 3, 1, 1)

so c = (10, 15, 5,−2, 1, 3, 1, 1). Conversely, given c = (10, 15, 5,−2, 1, 3, 1, 1), we get the
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sequence

u0 = (10, 15, 5,−2, 1, 3, 1, 1)

u1 = (10 + 15, 10− 15, 5,−2, 1, 3, 1, 1) = (25,−5, 5,−2, 1, 3, 1, 1)

u2 = (25 + 5, 25− 5,−5 + (−2),−5− (−2), 1, 3, 1, 1) = (30, 20,−7,−3, 1, 3, 1, 1)

u3 = (30 + 1, 30− 1, 20 + 3, 20− 3,−7 + 1,−7− 1,−3 + 1,−3− 1)

= (31, 29, 23, 17,−6,−8,−2,−4),

which gives back u = (31, 29, 23, 17,−6,−8,−2,−4).

4.3 Kronecker Product Construction of Haar Matrices

There is another recursive method for constructing the Haar matrix Wn of dimension 2n

that makes it clearer why the columns of Wn are pairwise orthogonal, and why the above
algorithms are indeed correct (which nobody seems to prove!). If we split Wn into two
2n × 2n−1 matrices, then the second matrix containing the last 2n−1 columns of Wn has a
very simple structure: it consists of the vector

(1,−1, 0, . . . , 0)︸ ︷︷ ︸
2n

and 2n−1 − 1 shifted copies of it, as illustrated below for n = 3:

1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1


.

Observe that this matrix can be obtained from the identity matrix I2n−1 , in our example

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

by forming the 2n × 2n−1 matrix obtained by replacing each 1 by the column vector(
1
−1

)
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and each zero by the column vector (
0
0

)
.

Now the first half of Wn, that is the matrix consisting of the first 2n−1 columns of Wn, can
be obtained from Wn−1 by forming the 2n× 2n−1 matrix obtained by replacing each 1 by the
column vector (

1
1

)
,

each −1 by the column vector (
−1
−1

)
,

and each zero by the column vector (
0
0

)
.

For n = 3, the first half of W3 is the matrix

1 1 1 0
1 1 1 0
1 1 −1 0
1 1 −1 0
1 −1 0 1
1 −1 0 1
1 −1 0 −1
1 −1 0 −1


which is indeed obtained from

W2 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


using the process that we just described.

These matrix manipulations can be described conveniently using a product operation on
matrices known as the Kronecker product.

Definition 4.4. Given a m×n matrix A = (aij) and a p×q matrix B = (bij), the Kronecker
product (or tensor product) A⊗B of A and B is the mp× nq matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
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It can be shown that ⊗ is associative and that

(A⊗B)(C ⊗D) = AC ⊗BD
(A⊗B)> = A> ⊗B>,

whenever AC and BD are well defined. Then it is immediately verified that Wn is given by
the following neat recursive equations:

Wn =

(
Wn−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))
,

with W0 = (1). If we let

B1 = 2

(
1 0
0 1

)
=

(
2 0
0 2

)
and for n ≥ 1,

Bn+1 = 2

(
Bn 0
0 I2n

)
,

then it is not hard to use the Kronecker product formulation of Wn to obtain a rigorous
proof of the equation

W>
n Wn = Bn, for all n ≥ 1.

The above equation offers a clean justification of the fact that the columns of Wn are pairwise
orthogonal.

Observe that the right block (of size 2n × 2n−1) shows clearly how the detail coefficients
in the second half of the vector c are added and subtracted to the entries in the first half of
the partially reconstructed vector after n− 1 steps.

4.4 Multiresolution Signal Analysis with Haar Bases

An important and attractive feature of the Haar basis is that it provides a multiresolution
analysis of a signal. Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector of its Haar coef-
ficients, the coefficients with low index give coarse information about u, and the coefficients
with high index represent fine information. For example, if u is an audio signal corresponding
to a Mozart concerto played by an orchestra, c1 corresponds to the “background noise,” c2

to the bass, c3 to the first cello, c4 to the second cello, c5, c6, c7, c7 to the violas, then the
violins, etc. This multiresolution feature of wavelets can be exploited to compress a signal,
that is, to use fewer coefficients to represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,−1.1,−1.3),

whose Haar transform is
c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).
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The piecewise-linear curves corresponding to u and c are shown in Figure 4.6. Since some of
the coefficients in c are small (smaller than or equal to 0.2) we can compress c by replacing
them by 0. We get

c2 = (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3,−1,−1).

The piecewise-linear curves corresponding to u2 and c2 are shown in Figure 4.7.
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Figure 4.6: A signal and its Haar transform.
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Figure 4.7: A compressed signal and its compressed Haar transform.

An interesting (and amusing) application of the Haar wavelets is to the compression of
audio signals. It turns out that if your type load handel in Matlab an audio file will be
loaded in a vector denoted by y, and if you type sound(y), the computer will play this piece
of music. You can convert y to its vector of Haar coefficients c. The length of y is 73113,
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Figure 4.8: The signal “handel” and its Haar transform.

so first tuncate the tail of y to get a vector of length 65536 = 216. A plot of the signals
corresponding to y and c is shown in Figure 4.8. Then run a program that sets all coefficients
of c whose absolute value is less that 0.05 to zero. This sets 37272 coefficients to 0. The
resulting vector c2 is converted to a signal y2. A plot of the signals corresponding to y2 and
c2 is shown in Figure 4.9. When you type sound(y2), you find that the music doesn’t differ
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Figure 4.9: The compressed signal “handel” and its Haar transform.

much from the original, although it sounds less crisp. You should play with other numbers
greater than or less than 0.05. You should hear what happens when you type sound(c). It
plays the music corresponding to the Haar transform c of y, and it is quite funny.
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4.5 Haar Transform for Digital Images

Another neat property of the Haar transform is that it can be instantly generalized to
matrices (even rectangular) without any extra effort! This allows for the compression of
digital images. But first we address the issue of normalization of the Haar coefficients. As
we observed earlier, the 2n × 2n matrix Wn of Haar basis vectors has orthogonal columns,
but its columns do not have unit length. As a consequence, W>

n is not the inverse of Wn,
but rather the matrix

W−1
n = DnW

>
n

with Dn = diag
(

2−n, 2−n︸︷︷︸
20

, 2−(n−1), 2−(n−1)︸ ︷︷ ︸
21

, 2−(n−2), . . . , 2−(n−2)︸ ︷︷ ︸
22

, . . . , 2−1, . . . , 2−1︸ ︷︷ ︸
2n−1

)
.

Definition 4.5. The orthogonal matrix

Hn = WnD
1
2
n

whose columns are the normalized Haar basis vectors, with

D
1
2
n = diag

(
2−

n
2 , 2−

n
2︸︷︷︸

20

, 2−
n−1
2 , 2−

n−1
2︸ ︷︷ ︸

21

, 2−
n−2
2 , . . . , 2−

n−2
2︸ ︷︷ ︸

22

, . . . , 2−
1
2 , . . . , 2−

1
2︸ ︷︷ ︸

2n−1

)
is called the normalized Haar transform matrix. Given a vector (signal) u, we call c = H>n u
the normalized Haar coefficients of u.

Because Hn is orthogonal, H−1
n = H>n .

Then a moment of reflection shows that we have to slightly modify the algorithms to
compute H>n u and Hnc as follows: When computing the sequence of ujs, use

uj+1(2i− 1) = (uj(i) + uj(2j + i))/
√

2

uj+1(2i) = (uj(i)− uj(2j + i))/
√

2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i− 1) + cj+1(2i))/
√

2

cj(2j + i) = (cj+1(2i− 1)− cj+1(2i))/
√

2.

Note that things are now more symmetric, at the expense of a division by
√

2. However, for
long vectors, it turns out that these algorithms are numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [62]) rescale c by 1/
√

2n

and u by
√

2n. This is because the norm of the basis functions ψjk is not equal to 1 (under
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the inner product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt). The normalized basis functions are the functions√

2jψjk.

Let us now explain the 2D version of the Haar transform. We describe the version using
the matrix Wn, the method using Hn being identical (except that H−1

n = H>n , but this does
not hold for W−1

n ). Given a 2m × 2n matrix A, we can first convert the rows of A to their
Haar coefficients using the Haar transform W−1

n , obtaining a matrix B, and then convert the
columns of B to their Haar coefficients, using the matrix W−1

m . Because columns and rows
are exchanged in the first step,

B = A(W−1
n )>,

and in the second step C = W−1
m B, thus, we have

C = W−1
m A(W−1

n )> = DmW
>
mAWnDn.

In the other direction, given a 2m × 2n matrix C of Haar coefficients, we reconstruct the
matrix A (the image) by first applying Wm to the columns of C, obtaining B, and then W>

n

to the rows of B. Therefore

A = WmCW
>
n .

Of course, we don’t actually have to invert Wm and Wn and perform matrix multiplications.
We just have to use our algorithms using averaging and differencing. Here is an example.

If the data matrix (the image) is the 8× 8 matrix

A =



64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1


,

then applying our algorithms, we find that

C =



32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 −4 4 −4
0 0 0 0 4 −4 4 −4
0 0 0.5 0.5 27 −25 23 −21
0 0 −0.5 −0.5 −11 9 −7 5
0 0 0.5 0.5 −5 7 −9 11
0 0 −0.5 −0.5 21 −23 25 −27


.
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As we can see, C has more zero entries than A; it is a compressed version of A. We can
further compress C by setting to 0 all entries of absolute value at most 0.5. Then we get

C2 =



32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 −4 4 −4
0 0 0 0 4 −4 4 −4
0 0 0 0 27 −25 23 −21
0 0 0 0 −11 9 −7 5
0 0 0 0 −5 7 −9 11
0 0 0 0 21 −23 25 −27


.

We find that the reconstructed image is

A2 =



63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5


,

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command, image(X) (also imagesc(X), which
often does a better job), which displays the matrix X has an image in which each entry
is shown as a little square whose gray level is proportional to the numerical value of that
entry (lighter if the value is higher, darker if the value is closer to zero; negative values are
treated as zero). The images corresponding to A and C are shown in Figure 4.10. The
compressed images corresponding to A2 and C2 are shown in Figure 4.11. The compressed
versions appear to be indistinguishable from the originals!

If we use the normalized matrices Hm and Hn, then the equations relating the image
matrix A and its normalized Haar transform C are

C = H>mAHn

A = HmCH
>
n .

The Haar transform can also be used to send large images progressively over the internet.
Indeed, we can start sending the Haar coefficients of the matrix C starting from the coarsest
coefficients (the first column from top down, then the second column, etc.), and at the
receiving end we can start reconstructing the image as soon as we have received enough
data.
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Figure 4.10: An image and its Haar transform.

Figure 4.11: Compressed image and its Haar transform.

Observe that instead of performing all rounds of averaging and differencing on each row
and each column, we can perform partial encoding (and decoding). For example, we can
perform a single round of averaging and differencing for each row and each column. The
result is an image consisting of four subimages, where the top left quarter is a coarser version
of the original, and the rest (consisting of three pieces) contain the finest detail coefficients.
We can also perform two rounds of averaging and differencing, or three rounds, etc. The
second round of averaging and differencing is applied to the top left quarter of the image.
Generally, the kth round is applied to the 2m+1−k × 2n+1−k submatrix consisting of the first
2m+1−k rows and the first 2n+1−k columns (1 ≤ k ≤ n) of the matrix obtained at the end of
the previous round. This process is illustrated on the image shown in Figure 4.12. The result
of performing one round, two rounds, three rounds, and nine rounds of averaging is shown in
Figure 4.13. Since our images have size 512× 512, nine rounds of averaging yields the Haar
transform, displayed as the image on the bottom right. The original image has completely
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Figure 4.12: Original drawing by Durer.

disappeared! We leave it as a fun exercise to modify the algorithms involving averaging and
differencing to perform k rounds of averaging/differencing. The reconstruction algorithm is
a little tricky.

A nice and easily accessible account of wavelets and their uses in image processing and
computer graphics can be found in Stollnitz, Derose and Salesin [62]. A very detailed account
is given in Strang and and Nguyen [66], but this book assumes a fair amount of background
in signal processing.

We can find easily a basis of 2n × 2n = 22n vectors wij (2n × 2n matrices) for the linear
map that reconstructs an image from its Haar coefficients, in the sense that for any 2n × 2n

matrix C of Haar coefficients, the image matrix A is given by

A =
2n∑
i=1

2n∑
j=1

cijwij.

Indeed, the matrix wij is given by the so-called outer product

wij = wi(wj)
>.
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Figure 4.13: Haar tranforms after one, two, three, and nine rounds of averaging.
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Similarly, there is a basis of 2n × 2n = 22n vectors hij (2n × 2n matrices) for the 2D Haar
transform, in the sense that for any 2n × 2n matrix A, its matrix C of Haar coefficients is
given by

C =
2n∑
i=1

2n∑
j=1

aijhij.

If the columns of W−1 are w′1, . . . , w
′
2n , then

hij = w′i(w
′
j)
>.

We leave it as exercise to compute the bases (wij) and (hij) for n = 2, and to display the
corresponding images using the command imagesc.

4.6 Hadamard Matrices

There is another famous family of matrices somewhat similar to Haar matrices, but these
matrices have entries +1 and −1 (no zero entries).

Definition 4.6. A real n × n matrix H is a Hadamard matrix if hij = ±1 for all i, j such
that 1 ≤ i, j ≤ n and if

H>H = nIn.

Thus the columns of a Hadamard matrix are pairwise orthogonal. Because H is a square
matrix, the equation H>H = nIn shows that H is invertible, so we also have HH> = nIn.
The following matrices are example of Hadamard matrices:

H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

and

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

A natural question is to determine the positive integers n for which a Hadamard matrix
of dimension n exists, but surprisingly this is an open problem. The Hadamard conjecture is
that for every positive integer of the form n = 4k, there is a Hadamard matrix of dimension
n.

What is known is a necessary condition and various sufficient conditions.
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Theorem 4.1. If H is an n×n Hadamard matrix, then either n = 1, 2, or n = 4k for some
positive integer k.

Sylvester introduced a family of Hadamard matrices and proved that there are Hadamard
matrices of dimension n = 2m for all m ≥ 1 using the following construction.

Proposition 4.2. (Sylvester, 1867) If H is a Hadamard matrix of dimension n, then the
block matrix of dimension 2n, (

H H
H −H

)
,

is a Hadamard matrix.

If we start with

H2 =

(
1 1
1 −1

)
,

we obtain an infinite family of symmetric Hadamard matrices usually called Sylvester–
Hadamard matrices and denoted by H2m . The Sylvester–Hadamard matrices H2, H4 and
H8 are shown on the previous page.

In 1893, Hadamard gave examples of Hadamard matrices for n = 12 and n = 20. At the
present, Hadamard matrices are known for all n = 4k ≤ 1000, except for n = 668, 716, and
892.

Hadamard matrices have various applications to error correcting codes, signal processing,
and numerical linear algebra; see Seberry, Wysocki and Wysocki [56] and Tropp [69]. For
example, there is a code based on H32 that can correct 7 errors in any 32-bit encoded block,
and can detect an eighth. This code was used on a Mariner spacecraft in 1969 to transmit
pictures back to the earth.

For every m ≥ 0, the piecewise affine functions plf((H2m)i) associated with the 2m rows
of the Sylvester–Hadamard matrix H2m are functions on [0, 1] known as the Walsh functions .
It is customary to index these 2m functions by the integers 0, 1, . . . , 2m−1 in such a way that
the Walsh function Wal(k, t) is equal to the function plf((H2m)i) associated with the Row i
of H2m that contains k changes of signs between consecutive groups of +1 and consecutive
groups of −1. For example, the fifth row of H8, namely(

1 −1 −1 1 1 −1 −1 1
)
,

has five consecutive blocks of +1s and −1s, four sign changes between these blocks, and thus
is associated with Wal(4, t). In particular, Walsh functions corresponding to the rows of H8

(from top down) are:

Wal(0, t), Wal(7, t), Wal(3, t), Wal(4, t), Wal(1, t), Wal(6, t), Wal(2, t), Wal(5, t).

Because of the connection between Sylvester–Hadamard matrices and Walsh functions,
Sylvester–Hadamard matrices are called Walsh–Hadamard matrices by some authors. For
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every m, the 2m Walsh functions are pairwise orthogonal. The countable set of Walsh
functions Wal(k, t) for all m ≥ 0 and all k such that 0 ≤ k ≤ 2m − 1 can be ordered in
such a way that it is an orthogonal Hilbert basis of the Hilbert space L2([0, 1)]; see Seberry,
Wysocki and Wysocki [56].

The Sylvester–Hadamard matrix H2m plays a role in various algorithms for dimension
reduction and low-rank matrix approximation. There is a type of structured dimension-
reduction map known as the subsampled randomized Hadamard transform, for short SRHT;
see Tropp [69] and Halko, Martinsson and Tropp [32]. For `� n = 2m, an SRHT matrix is
an `× n matrix of the form

Φ =

√
n

`
RHD,

where

1. D is a random n× n diagonal matrix whose entries are independent random signs.

2. H = n−1/2Hn, a normalized Sylvester–Hadamard matrix of dimension n.

3. R is a random ` × n matrix that restricts an n-dimensional vector to ` coordinates,
chosen uniformly at random.

It is explained in Tropp [69] that for any input x such that ‖x‖2 = 1, the probability that

|(HDx)i| ≥
√
n−1 log(n) for any i is quite small. Thus HD has the effect of “flattening”

the input x. The main result about the SRHT is that it preserves the geometry of an entire
subspace of vectors; see Tropp [69] (Theorem 1.3).

4.7 Summary

The main concepts and results of this chapter are listed below:

• Haar basis vectors and a glimpse at Haar wavelets .

• Kronecker product (or tensor product) of matrices.

• Hadamard and Sylvester–Hadamard matrices.

• Walsh functions.
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4.8 Problems

Problem 4.1. (Haar extravaganza) Consider the matrix

W3,3 =



1 0 0 0 1 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 −1


.

(1) Show that given any vector c = (c1, c2, c3, c4, c5, c6, c7, c8), the result W3,3c of applying
W3,3 to c is

W3,3c = (c1 + c5, c1 − c5, c2 + c6, c2 − c6, c3 + c7, c3 − c7, c4 + c8, c4 − c8),

the last step in reconstructing a vector from its Haar coefficients.

(2) Prove that the inverse of W3,3 is (1/2)W>
3,3. Prove that the columns and the rows of

W3,3 are orthogonal.

(3) Let W3,2 and W3,1 be the following matrices:

W3,2 =



1 0 1 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, W3,1 =



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Show that given any vector c = (c1, c2, c3, c4, c5, c6, c7, c8), the result W3,2c of applying W3,2

to c is
W3,2c = (c1 + c3, c1 − c3, c2 + c4, c2 − c4, c5, c6, c7, c8),

the second step in reconstructing a vector from its Haar coefficients, and the result W3,1c of
applying W3,1 to c is

W3,1c = (c1 + c2, c1 − c2, c3, c4, c5, c6, c7, c8),

the first step in reconstructing a vector from its Haar coefficients.

Conclude that
W3,3W3,2W3,1 = W3,
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the Haar matrix

W3 =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


.

Hint . First check that

W3,2W3,1 =

(
W2 04,4

04,4 I4

)
,

where

W2 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 .

(4) Prove that the columns and the rows of W3,2 and W3,1 are orthogonal. Deduce from
this that the columns of W3 are orthogonal, and the rows of W−1

3 are orthogonal. Are the
rows of W3 orthogonal? Are the columns of W−1

3 orthogonal? Find the inverse of W3,2 and
the inverse of W3,1.

Problem 4.2. This is a continuation of Problem 4.1.

(1) For any n ≥ 2, the 2n × 2n matrix Wn,n is obtained form the two rows

1, 0, . . . , 0︸ ︷︷ ︸
2n−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2n−1

1, 0, . . . , 0︸ ︷︷ ︸
2n−1

,−1, 0, . . . , 0︸ ︷︷ ︸
2n−1

by shifting them 2n−1 − 1 times over to the right by inserting a zero on the left each time.

Given any vector c = (c1, c2, . . . , c2n), show that Wn,nc is the result of the last step in the
process of reconstructing a vector from its Haar coefficients c. Prove that W−1

n,n = (1/2)W>
n,n,

and that the columns and the rows of Wn,n are orthogonal.

(2) Given a m× n matrix A = (aij) and a p× q matrix B = (bij), the Kronecker product
(or tensor product) A⊗B of A and B is the mp× nq matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
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It can be shown (and you may use these facts without proof) that ⊗ is associative and that

(A⊗B)(C ⊗D) = AC ⊗BD
(A⊗B)> = A> ⊗B>,

whenever AC and BD are well defined.

Check that

Wn,n =

(
I2n−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))
,

and that

Wn =

(
Wn−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))
.

Use the above to reprove that

Wn,nW
>
n,n = 2I2n .

Let

B1 = 2

(
1 0
0 1

)
=

(
2 0
0 2

)
and for n ≥ 1,

Bn+1 = 2

(
Bn 0
0 I2n

)
.

Prove that
W>
n Wn = Bn, for all n ≥ 1.

(3) The matrix Wn,i is obtained from the matrix Wi,i (1 ≤ i ≤ n− 1) as follows:

Wn,i =

(
Wi,i 02i,2n−2i

02n−2i,2i I2n−2i

)
.

It consists of four blocks, where 02i,2n−2i and 02n−2i,2i are matrices of zeros and I2n−2i is the
identity matrix of dimension 2n − 2i.

Explain what Wn,i does to c and prove that

Wn,nWn,n−1 · · ·Wn,1 = Wn,

where Wn is the Haar matrix of dimension 2n.

Hint . Use induction on k, with the induction hypothesis

Wn,kWn,k−1 · · ·Wn,1 =

(
Wk 02k,2n−2k

02n−2k,2k I2n−2k

)
.
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Prove that the columns and rows of Wn,k are orthogonal, and use this to prove that the
columns of Wn and the rows of W−1

n are orthogonal. Are the rows of Wn orthogonal? Are
the columns of W−1

n orthogonal? Prove that

W−1
n,k =

(
1
2
W>
k,k 02k,2n−2k

02n−2k,2k I2n−2k

)
.

Problem 4.3. Prove that if H is a Hadamard matrix of dimension n, then the block matrix
of dimension 2n, (

H H
H −H

)
,

is a Hadamard matrix.

Problem 4.4. Plot the graphs of the eight Walsh functions Wal(k, t) for k = 0, 1, . . . , 7.

Problem 4.5. Describe a recursive algorithm to compute the productH2m x of the Sylvester–
Hadamard matrix H2m by a vector x ∈ R2m that uses m recursive calls.
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Chapter 5

Direct Sums, Rank-Nullity Theorem,
Affine Maps

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

5.1 Direct Products

There are some useful ways of forming new vector spaces from older ones.

Definition 5.1. Given p ≥ 2 vector spaces E1, . . . , Ep, the product F = E1 × · · · × Ep can
be made into a vector space by defining addition and scalar multiplication as follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

λ(u1, . . . , up) = (λu1, . . . , λup),

for all ui, vi ∈ Ei and all λ ∈ R. The zero vector of E1 × · · · × Ep is the p-tuple

( 0, . . . , 0︸ ︷︷ ︸
p

),

where the ith zero is the zero vector of Ei.

With the above addition and multiplication, the vector space F = E1× · · ·×Ep is called
the direct product of the vector spaces E1, . . . , Ep.

As a special case, when E1 = · · · = Ep = R, we find again the vector space F = Rp. The
projection maps pri : E1 × · · · × Ep → Ei given by

pri(u1, . . . , up) = ui

are clearly linear. Similarly, the maps ini : Ei → E1 × · · · × Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

137
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are injective and linear. If dim(Ei) = ni and if (ei1, . . . , e
i
ni

) is a basis of Ei for i = 1, . . . , p,
then it is easy to see that the n1 + · · ·+ np vectors

(e1
1, 0, . . . , 0), . . . , (e1

n1
, 0, . . . , 0),

...
...

...
(0, . . . , 0, ei1, 0, . . . , 0), . . . , (0, . . . , 0, eini , 0, . . . , 0),

...
...

...
(0, . . . , 0, ep1), . . . , (0, . . . , 0, epnp)

form a basis of E1 × · · · × Ep, and so

dim(E1 × · · · × Ep) = dim(E1) + · · ·+ dim(Ep).

5.2 Sums and Direct Sums

Let us now consider a vector space E and p subspaces U1, . . . , Up of E. We have a map

a : U1 × · · · × Up → E

given by

a(u1, . . . , up) = u1 + · · ·+ up,

with ui ∈ Ui for i = 1, . . . , p. It is clear that this map is linear, and so its image is a subspace
of E denoted by

U1 + · · ·+ Up

and called the sum of the subspaces U1, . . . , Up. By definition,

U1 + · · ·+ Up = {u1 + · · ·+ up | ui ∈ Ui, 1 ≤ i ≤ p},

and it is immediately verified that U1 + · · · + Up is the smallest subspace of E containing
U1, . . . , Up. This also implies that U1 + · · ·+ Up does not depend on the order of the factors
Ui; in particular,

U1 + U2 = U2 + U1.

Definition 5.2. For any vector space E and any p ≥ 2 subspaces U1, . . . , Up of E, if the
map a : U1 × · · · × Up → E defined above is injective, then the sum U1 + · · ·+ Up is called a
direct sum and it is denoted by

U1 ⊕ · · · ⊕ Up.
The space E is the direct sum of the subspaces Ui if

E = U1 ⊕ · · · ⊕ Up.
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If the map a is injective, then by Proposition 2.20 we have Ker a = {( 0, . . . , 0︸ ︷︷ ︸
p

)} where

each 0 is the zero vector of E, which means that if ui ∈ Ui for i = 1, . . . , p and if

u1 + · · ·+ up = 0,

then (u1, . . . , up) = (0, . . . , 0), that is, u1 = 0, . . . , up = 0.

Proposition 5.1. If the map a : U1×· · ·×Up → E is injective, then every u ∈ U1 + · · ·+Up
has a unique expression as a sum

u = u1 + · · ·+ up,

with ui ∈ Ui, for i = 1, . . . , p.

Proof. If
u = v1 + · · ·+ vp = w1 + · · ·+ wp,

with vi, wi ∈ Ui, for i = 1, . . . , p, then we have

w1 − v1 + · · ·+ wp − vp = 0,

and since vi, wi ∈ Ui and each Ui is a subspace, wi−vi ∈ Ui. The injectivity of a implies that
wi−vi = 0, that is, wi = vi for i = 1, . . . , p, which shows the uniqueness of the decomposition
of u.

Proposition 5.2. If the map a : U1 × · · · ×Up → E is injective, then any p nonzero vectors
u1, . . . , up with ui ∈ Ui are linearly independent.

Proof. To see this, assume that

λ1u1 + · · ·+ λpup = 0

for some λi ∈ R. Since ui ∈ Ui and Ui is a subspace, λiui ∈ Ui, and the injectivity of a
implies that λiui = 0, for i = 1, . . . , p. Since ui 6= 0, we must have λi = 0 for i = 1, . . . , p;
that is, u1, . . . , up with ui ∈ Ui and ui 6= 0 are linearly independent.

Observe that if a is injective, then we must have Ui ∩Uj = (0) whenever i 6= j. However,
this condition is generally not sufficient if p ≥ 3. For example, if E = R2 and U1 the line
spanned by e1 = (1, 0), U2 is the line spanned by d = (1, 1), and U3 is the line spanned by
e2 = (0, 1), then U1∩U2 = U1∩U3 = U2∩U3 = {(0, 0)}, but U1+U2 = U1+U3 = U2+U3 = R2,
so U1 + U2 + U3 is not a direct sum. For example, d is expressed in two different ways as

d = (1, 1) = (1, 0) + (0, 1) = e1 + e2.

See Figure 5.1.
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e1
U1

e

U3

2 (1,1)

U2

Figure 5.1: The linear subspaces U1, U2, and U3 illustrated as lines in R2.

As in the case of a sum, U1 ⊕ U2 = U2 ⊕ U1. Observe that when the map a is injective,
then it is a linear isomorphism between U1 × · · · × Up and U1 ⊕ · · · ⊕ Up. The difference is
that U1 × · · · × Up is defined even if the spaces Ui are not assumed to be subspaces of some
common space.

If E is a direct sum E = U1⊕· · ·⊕Up, since any p nonzero vectors u1, . . . , up with ui ∈ Ui
are linearly independent, if we pick a basis (uk)k∈Ij in Uj for j = 1, . . . , p, then (ui)i∈I with
I = I1 ∪ · · · ∪ Ip is a basis of E. Intuitively, E is split into p independent subspaces.

Conversely, given a basis (ui)i∈I of E, if we partition the index set I as I = I1 ∪ · · · ∪ Ip,
then each subfamily (uk)k∈Ij spans some subspace Uj of E, and it is immediately verified
that we have a direct sum

E = U1 ⊕ · · · ⊕ Up.

Definition 5.3. Let f : E → E be a linear map. For any subspace U of E, if f(U) ⊆ U we
say that U is invariant under f .

Assume that E is finite-dimensional, a direct sum E = U1 ⊕ · · · ⊕ Up, and that each Uj
is invariant under f . If we pick a basis (ui)i∈I as above with I = I1 ∪ · · · ∪ Ip and with
each (uk)k∈Ij a basis of Uj, since each Uj is invariant under f , the image f(uk) of every basis
vector uk with k ∈ Ij belongs to Uj, so the matrix A representing f over the basis (ui)i∈I is
a block diagonal matrix of the form

A =


A1

A2

. . .

Ap

 ,
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with each block Aj a dj × dj-matrix with dj = dim(Uj) and all other entries equal to 0. If
dj = 1 for j = 1, . . . , p, the matrix A is a diagonal matrix.

There are natural injections from each Ui to E denoted by ini : Ui → E.

Now, if p = 2, it is easy to determine the kernel of the map a : U1 × U2 → E. We have

a(u1, u2) = u1 + u2 = 0 iff u1 = −u2, u1 ∈ U1, u2 ∈ U2,

which implies that

Ker a = {(u,−u) | u ∈ U1 ∩ U2}.
Now, U1 ∩ U2 is a subspace of E and the linear map u 7→ (u,−u) is clearly an isomorphism
between U1 ∩U2 and Ker a, so Ker a is isomorphic to U1 ∩U2. As a consequence, we get the
following result:

Proposition 5.3. Given any vector space E and any two subspaces U1 and U2, the sum
U1 + U2 is a direct sum iff U1 ∩ U2 = (0).

An interesting illustration of the notion of direct sum is the decomposition of a square
matrix into its symmetric part and its skew-symmetric part. Recall that an n × n matrix
A ∈ Mn is symmetric if A> = A, skew -symmetric if A> = −A. It is clear that

S(n) = {A ∈ Mn | A> = A} and Skew(n) = {A ∈ Mn | A> = −A}

are subspaces of Mn, and that S(n)∩Skew(n) = (0). Observe that for any matrix A ∈ Mn,
the matrix H(A) = (A + A>)/2 is symmetric and the matrix S(A) = (A − A>)/2 is skew-
symmetric. Since

A = H(A) + S(A) =
A+ A>

2
+
A− A>

2
,

we see that Mn = S(n) + Skew(n), and since S(n)∩Skew(n) = (0), we have the direct sum

Mn = S(n)⊕ Skew(n).

Remark: The vector space Skew(n) of skew-symmetric matrices is also denoted by so(n).
It is the Lie algebra of the group SO(n).

Proposition 5.3 can be generalized to any p ≥ 2 subspaces at the expense of notation.
The proof of the following proposition is left as an exercise.

Proposition 5.4. Given any vector space E and any p ≥ 2 subspaces U1, . . . , Up, the fol-
lowing properties are equivalent:

(1) The sum U1 + · · ·+ Up is a direct sum.
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(2) We have

Ui ∩
( p∑
j=1,j 6=i

Uj

)
= (0), i = 1, . . . , p.

(3) We have

Ui ∩
( i−1∑

j=1

Uj

)
= (0), i = 2, . . . , p.

Because of the isomorphism

U1 × · · · × Up ≈ U1 ⊕ · · · ⊕ Up,

we have

Proposition 5.5. If E is any vector space, for any (finite-dimensional) subspaces U1, . . .,
Up of E, we have

dim(U1 ⊕ · · · ⊕ Up) = dim(U1) + · · ·+ dim(Up).

If E is a direct sum
E = U1 ⊕ · · · ⊕ Up,

since every u ∈ E can be written in a unique way as

u = u1 + · · ·+ up

with ui ∈ Ui for i = 1 . . . , p, we can define the maps πi : E → Ui, called projections , by

πi(u) = πi(u1 + · · ·+ up) = ui.

It is easy to check that these maps are linear and satisfy the following properties:

πj ◦ πi =

{
πi if i = j

0 if i 6= j,

π1 + · · ·+ πp = idE.

For example, in the case of the direct sum

Mn = S(n)⊕ Skew(n),

the projection onto S(n) is given by

π1(A) = H(A) =
A+ A>

2
,
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and the projection onto Skew(n) is given by

π2(A) = S(A) =
A− A>

2
.

Clearly, H(A)+S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and H(S(A)) = S(H(A)) =
0.

A function f such that f ◦ f = f is said to be idempotent . Thus, the projections πi are
idempotent. Conversely, the following proposition can be shown:

Proposition 5.6. Let E be a vector space. For any p ≥ 2 linear maps fi : E → E, if

fj ◦ fi =

{
fi if i = j

0 if i 6= j,

f1 + · · ·+ fp = idE,

then if we let Ui = fi(E), we have a direct sum

E = U1 ⊕ · · · ⊕ Up.

We also have the following proposition characterizing idempotent linear maps whose proof
is also left as an exercise.

Proposition 5.7. For every vector space E, if f : E → E is an idempotent linear map, i.e.,
f ◦ f = f , then we have a direct sum

E = Ker f ⊕ Im f,

so that f is the projection onto its image Im f .

5.3 Matrices of Linear Maps and Multiplication by

Blocks

Direct sums yield a fairly easy justification of matrix block multiplication. The key idea
is that the representation of a linear map f : E → F over a basis (u1, . . . , un) of E and
a basis (v1, . . . , vm) of F by a matrix A = (aij) of scalars (in K) can be generalized to
the representation of f over a direct sum decomposition E = E1 ⊕ · · · ⊕ En of E and a
direct sum decomposition F = F1 ⊕ · · · ⊕ Fm of F in terms of a matrix (fij) of linear maps
fij : Ej → Fi. Futhermore, matrix multiplication of scalar matrices extends naturally to
matrix multiplication of matrices of linear maps. We simply have to replace multiplication
of scalars in K by the composition of linear maps.

Let E and F be two vector spaces and assume that they are expressed as direct sums

E =
n⊕
j=1

Ej, F =
m⊕
i=1

Fi.
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Definition 5.4. Given any linear map f : E → F , we define the linear maps fij : Ej → Fi
as follows. Let prFi : F → Fi be the projection of F = F1 ⊕ · · · ⊕ Fm onto Fi. If fj : Ej → F
is the restriction of f to Ej, which means that for every vector xj ∈ Ej,

fj(xj) = f(xj),

then we define the map fij : Ej → Fi by

fij = prFi ◦ fj,

so that if xj ∈ Ej, then

f(xj) = fj(xj) =
m∑
i=1

fij(xj), with fij(xj) ∈ Fi. (†1)

Observe that we are summing over the index i, which eventually corresponds to summing
the entries in the jth column of the matrix representing f ; see Definition 5.5.

We see that for every vector x = x1 + · · ·+ xn ∈ E, with xj ∈ Ej, we have

f(x) =
n∑
j=1

fj(xj) =
n∑
j=1

m∑
i=1

fij(xj) =
m∑
i=1

n∑
j=1

fij(xj).

Observe that conversely, given a family (fij)1≤i≤m,1≤j≤n of linear maps fij : Ej → Fi, we
obtain the linear map f : E → F defined such that for every x = x1 + · · · + xn ∈ E, with
xj ∈ Ej, we have

f(x) =
m∑
i=1

n∑
j=1

fij(xj).

As a consequence, it is easy to check that there is an isomorphism between the vector
spaces

Hom(E,F ) and
∏

1≤i≤m
1≤j≤n

Hom(Ej, Fi).

Example 5.1. Suppose that E = E1⊕E2 and F = F1⊕F2⊕F3, and that we have six maps
fij : Ej → Fi for i = 1, 2, 3 and j = 1, 2. For any x = x1 + x2, with x1 ∈ E1 and x2 ∈ E2, we
have

y1 = f11(x1) + f12(x2) ∈ F1

y2 = f21(x1) + f22(x2) ∈ F2

y3 = f31(x1) + f32(x2) ∈ F3,

f1(x1) = f11(x1) + f21(x1) + f31(x1)

f2(x2) = f12(x2) + f22(x2) + f32(x2),
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and

f(x) = f1(x1) + f2(x2) = y1 + y2 + y3

= f11(x1) + f12(x2) + f21(x1) + f22(x2) + f31(x1) + f32(x2).

These equations suggest the matrix notationy1

y2

y3

 =

f11 f12

f21 f22

f31 f32

(x1

x2

)
.

In general we proceed as follows. For any x = x1 + · · · + xn with xj ∈ Ej, if y = f(x),
since F = F1 ⊕ · · · ⊕ Fm, the vector y ∈ F has a unique decomposition y = y1 + · · · + ym
with yi ∈ Fi, and since fij : Ej → Fi, we have

∑n
j=1 fij(xj) ∈ Fi, so

∑n
j=1 fij(xj) ∈ Fi is the

ith component of f(x) over the direct sum F = F1 ⊕ · · · ⊕ Fm; equivalently

prFi (f(x)) =
n∑
j=1

fij(xj), 1 ≤ i ≤ m.

Consequently, we have

yi =
n∑
j=1

fij(xj), 1 ≤ i ≤ m. (†2)

This time we are summing over the index j, which eventually corresponds to multiplying the
ith row of the matrix representing f by the n-tuple (x1, . . . , xn); see Definition 5.5.

All this suggests a generalization of the matrix notation Ax, where A is a matrix of
scalars and x is a column vector of scalars, namely to writey1

...
ym

 =

f1 1 . . . f1n
...

. . .
...

fm 1 . . . fmn


x1

...
xn

 , (†3)

which is an abbreviation for the m equations

yi =
n∑
j=1

fij(xj), i = 1, . . . ,m.

The interpretation of the multiplication of an m× n matrix of linear maps fij by a column
vector of n vectors xj ∈ Ej is to apply each fij to xj to obtain fij(xj) and to sum over the
index j to obtain the ith output vector. This is the generalization of multiplying the scalar
aij by the scalar xj. Also note that the jth column of the matrix (fij) consists of the maps
(f1j, . . . , fmj) such that (f1j(xj), . . . , fmj(xj)) are the components of f(xj) = fj(xj) over the
direct sum F = F1 ⊕ · · · ⊕ Fm.
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In the special case in which each Ej and each Fi is one-dimensional, this is equivalent
to choosing a basis (u1, . . . , un) in E so that Ej is the one-dimensional subspace Ej = Kuj,
and a basis (v1, . . . , vm) in Fj so that Fi is the one-dimensional subspace Fi = Kvi. In this
case every vector x ∈ E is expressed as x = x1u1 + · · ·+ xnun, where the xi ∈ K are scalars
and similarly every vector y ∈ F is expressed as y = y1v1 + · · · + ymvm, where the yi ∈ K
are scalars. Each linear map fij : Ej → Fi is a map between the one-dimensional spaces Kuj
and Kvi, so it is of the form fij(xjuj) = aijxjvi, with xj ∈ K, and so the matrix (fij) of
linear maps fij is in one-to-one correspondence with the matrix (aij) of scalars in K, and
Equation (†3) where the xj and yi are vectors is equivalent to the same familar equation
where the xj and yi are the scalar coordinates of x and y over the respective bases.

Definition 5.5. Let E and F be two vector spaces and assume that they are expressed as
direct sums

E =
n⊕
j=1

Ej, F =
m⊕
i=1

Fi.

Given any linear map f : E → F , if (fij)1≤i≤m,1≤j≤n is the familiy of linear maps fij : Ej → Fi
defined in Definition 5.4, the m× n matrix of linear maps

M(f) =

f1 1 . . . f1n
...

. . .
...

fm 1 . . . fmn


is called the matrix of f with respect to the decompositions

⊕n
j=1 Ej, and

⊕m
i=1 Fi of E and

F as direct sums.

For any x = x1 + · · ·+ xn ∈ E with xj ∈ Ej and any y = y1 + · · ·+ ym ∈ F with yi ∈ Fi,
we have y = f(x) iff y1

...
ym

 =

f1 1 . . . f1n
...

. . .
...

fm 1 . . . fmn


x1

...
xn

 ,

where the matrix equation above means that the system of m equations

yi =
n∑
j=1

fij(xj), i = 1 . . . ,m, (†)

holds.

But now we can also promote matrix multiplication. Suppose we have a third space G
written as a direct sum. It is more convenient to write

E =

p⊕
k=1

Ek, F =
n⊕
j=1

Fj, G =
m⊕
i=1

Gi.
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Assume we also have two linear maps f : E → F and g : F → G. Now we have the n × p
matrix of linear maps B = (fjk) and the m× n matrix of linear maps A = (gij). We would
like to find the m× p matrix associated with g ◦ f .

By definition of fk : Ek → F and fjk : Ek → Fj, if xk ∈ Ek, then

fk(xk) = f(xk) =
n∑
j=1

fjk(xk), with fjk(xk) ∈ Fj, (∗1)

and similarly, by definition of gj : Fj → G and gij : Fj → Gi, if yj ∈ Fj, then

gj(yj) = g(yj) =
m∑
i=1

gij(yj), with gij(yj) ∈ Gi. (∗2)

If we write h = g ◦ f , we need to find the maps hk : Ek → G, with

hk(xk) = h(xk) = (g ◦ f)(xk),

and hik : Ek → Gi given by
hik = prGi ◦ hk.

We have

hk(xk) = (g ◦ f)(xk) = g(f(xk)) = g(fk(xk))

= g

( n∑
j=1

fjk(xk)

)
by (∗1)

=
n∑
j=1

g(fjk(xk)) =
n∑
j=1

gj(fjk(xk)) since g is linear

=
n∑
j=1

m∑
i=1

gij(fjk(xk)) =
m∑
i=1

n∑
j=1

gij(fjk(xk)), by (∗2)

and since
∑n

j=1 gij(fjk(xk)) ∈ Gi, we conclude that

hik(xk) =
n∑
j=1

gij(fjk(xk)) =
n∑
j=1

(gij ◦ fjk)(xk), (∗3)

which can also be expressed as

hik =
n∑
j=1

gij ◦ fjk. (∗4)

Equation (∗4) is exactly the analog of the formula for the multiplication of matrices of
scalars! We just have to replace multiplication by composition. The m× p matrix of linear
maps (hik) is the “product” AB of the matrices of linear maps A = (gij) and B = (fjk),
except that multiplication is replaced by composition.

In summary we just proved the following result.
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Proposition 5.8. Let E,F,G be three vector spaces expressed as direct sums

E =

p⊕
k=1

Ek, F =
n⊕
j=1

Fj, G =
m⊕
i=1

Gi.

For any two linear maps f : E → F and g : F → G, let B = (fjk) be the n × p matrix of
linear maps associated with f (with respect to the decomposition of E and F as direct sums)
and let A = (gij) be the m × n matrix of linear maps associated with g (with respect to the
decomposition of F and G as direct sums). Then the m× p matrix C = (hik) of linear maps
associated with h = g ◦ f (with respect to the decomposition of E and G as direct sums) is
given by

C = AB,

with

hik =
n∑
j=1

gij ◦ fjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p.

We will use Proposition 5.8 to justify the rule for the block multiplication of matrices.
The difficulty is mostly notational. Again suppose that E and F are expressed as direct
sums

E =
n⊕
j=1

Ej, F =
m⊕
i=1

Fi,

and let f : E → F be a linear map. Furthermore, suppose that E has a finite basis (ut)t∈T ,
where T is the disjoint union T = T1 ∪ · · · ∪ Tn of nonempty subsets Tj so that (ut)t∈Tj
is a basis of Ej, and similarly F has a finite basis (vs)s∈S, where S is the disjoint union
S = S1 ∪ · · · ∪ Sm of nonempty subsets Si so that (vs)s∈Si is a basis of Fi. Let M = |S|,
N = |T |, si = |Si|, and let tj = |Tj|. Since si is the number of elements in the basis (vs)s∈Si
of Fi and F = F1 ⊕ · · · ⊕ Fm, we have M = dim(F ) = s1 + · · · + sm. Similarly, since
tj is the number of elements in the basis (ut)t∈Tj of Ej and E = E1 ⊕ · · · ⊕ En, we have
N = dim(E) = t1 + · · ·+ tn.

Let A = (ast)(s,t)∈S×T be the (ordinary) M × N matrix of scalars (in K) representing f
with respect to the basis (ut)t∈T of E and the basis (vs)s∈S of F with M = r1 + · · · + rm
and N = s1 + · · ·+ sn, which means that for any t ∈ T , the tth column of A consists of the
components ast of f(ut) over the basis (vs)s∈S, as in the beginning of Section 3.1.

For any i and any j such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can form the si × tj matrix
ASi,Tj obtained by deleting all rows in A of index s /∈ Si and all columns in A of index
t /∈ Tj. The matrix ASi,Tj is the indexed family (ast)(s,t)∈Si×Tj , as explained at the beginning
of Section 3.1.

Observe that the matrixASi,Tj is actually the matrix representing the linear map fij : Ej →
Fi of Definition 5.5 with respect to the basis (ut)t∈Tj of Ej and the basis (vs)s∈Si of Fi, in the
sense that for any t ∈ Tj, the tth column of ASi,Tj consists of the components ast of fij(ut)
over the basis (vs)s∈Si .
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Definition 5.6. Given an M × N matrix A (with entries in K), we define the m × n
matrix (Aij)1≤i≤m,1≤j≤n whose entry Aij is the matrix Aij = ASi,Tj , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
and we call it the block matrix of A associated with the partitions S = S1 ∪ · · · ∪ Sm and
T = T1∪ · · ·∪Tn. The matrix ASi,Tj is an si× tj matrix called the (i, j)th block of this block
matrix.

Here we run into a notational dilemma which does not seem to be addressed in the
literature. Horn and Johnson [36] (Section 0.7) define partitioned matrices as we do, but
they do not propose a notation for block matrices.

The problem is that the block matrix (Aij)1≤i≤m,1≤j≤n is not equal to the original matrix
A. First of all, the block matrix is m × n and its entries are matrices, but the matrix A is
M × N and its entries are scalars. But even if we think of the block matrix as an M × N
matrix of scalars, some rows and some columns of the original matrix A may have been
permuted due to the choice of the partitions S = S1 ∪ · · · ∪ Sm and T = T1 ∪ · · · ∪ Tn; see
Example 5.3.

We propose to denote the block matrix (Aij)1≤i≤m,1≤j≤n by [A]. This is not entirely
satisfactory since all information about the partitions of S and T are lost, but at least this
allows us to distinguish between A and a block matrix arising from A.

To be completely rigorous we may proceed as follows. Let [m] = {1, . . . ,m} and [n] =
{1, . . . , n}.

Definition 5.7. For any two finite sets of indices S and T , an S × T matrix A is an
S × T -indexed family with values in K, that is, a function

A : S × T → K.

Denote the space of S × T matrices with entries in K by MS,T (K).

An S×T matrix A is an S×T -indexed family (ast)(s,t)∈S×T , but the standard representa-
tion of a matrix by a rectangular array of scalars is not quite correct because it assumes that
the rows are indexed by indices in the “canonical index set” [m] and that the columns are
indexed by indices in the “canonical index set” [n]. Also the index sets need not be ordered,
but in practice they are, so if S = {s1, . . . , sm} and T = {t1, . . . , tn}, we denote an S × T
matrix A by the rectangular array

A =

as1t1 · · · as1tn
...

. . .
...

asmt1 · · · asmtn

 .

Even if the index sets are not ordered, the product of an R×S matrix A and of an S×T
matrix B is well defined and C = AB is an R × T matrix (where R, S, T are finite index
sets); see Proposition 5.9.
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Then an m × n block matrix X induced by two partitions S = S1 ∪ · · · ∪ Sm and
T = T1 ∪ · · · ∪ Tn is an [m]× [n]-indexed family

X : [m]× [n]→
∏

(i,j)∈[m]×[n]

MSi,Tj(K),

such that X(i, j) ∈ MSi,Tj(K), which means that X(i, j) is an Si× Tj matrix with entries in
K. The map X also defines the M ×N matrix A = (ast)s∈S,t∈T , with

ast = X(i, j)st,

for any s ∈ Si and any j ∈ Tj, so in fact X = [A] and X(i, j) = ASi,Tj . But remember that
we abbreviate X(i, j) as Xij, so the (i, j)th entry in the block matrix [A] of A associated
with the partitions S = S1 ∪ · · · ∪ Sm and T = T1 ∪ · · · ∪ Tn should be denoted by [A]ij.
To minimize notation we will use the simpler notation Aij. Schematically we represent the
block matrix [A] as

[A] =

AS1,T1 · · · AS1,Tn
...

. . .
...

ASm,T1 · · · ASm,Tn

 or simply as [A] =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn

 .

In the simplified notation we lose the information about the index sets of the blocks.

Remark: It is easy to check that the set of m×n block matrices induced by two partitions
S = S1 ∪ · · · ∪ Sm and T = T1 ∪ · · · ∪ Tn is a vector space. In fact, it is isomorphic to the
direct sum ⊕

(i,j)∈[m]×[n]

MSi,Tj(K).

Addition and rescaling are performed blockwise.

Example 5.2. Let S = {1, 2, 3, 4, 5, 6}, with S1 = {1, 2}, S2 = {3}, S3 = {4, 5, 6}, and
T = {1, 2, 3, 4, 5}, with T1 = {1, 2}, T2 = {3, 4}, T3 = {5}, and Then s1 = 2, s2 = 1, s3 = 3
and t1 = 2, t2 = 2, t3 = 1. The original matrix is a 6× 5 matrix A = (aij). Schematically we
obtain a 3 × 3 matrix of nine blocks. where A11, A12, A13 are respectively 2 × 2, 2 × 2 and
2× 1, A21, A22, A23 are respectively 1× 2, 1× 2 and 1× 1, and A31, A32, A33 are respectively
3× 2, 3× 2 and 3× 1, as illustrated below.

[A] =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =



[
a11 a12

a21 a22

] [
a13 a14

a23 a24

] [
a15

a25

]
[
a31 a32

] [
a33 a34

] [
a35

]a41 a42

a51 a52

a61 a62

 a43 a44

a53 a54

a63 a64

 a45

a55

a65




.
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Technically, the blocks are obtained from A in terms of the subsets Si, Tj. For example,

A12 = A{1,2},{3,4} =

[
a13 a14

a23 a24

]
.

Example 5.3. Let S = {1, 2, 3}, with S1 = {1, 3}, S2 = {2}, and T = {1, 2, 3}, with
T1 = {1, 3}, T2 = {2}. Then s1 = 2, s2 = 1, and t1 = 2, t2 = 1. The block 2× 2 matrix [A]
associated with above partitions is

[A] =

(
A{1,3},{1,3} A{1,3},{2}
A{2},{1,3} A{2},{2}

)
=


[
a11 a13

a31 a33

] [
a12

a32

]
[
a21 a23

] [
a22

]
 .

Observe that [A] viewed as a 3× 3 scalar matrix is definitely different from

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

In practice, S = {1, . . . ,M} and T = {1, . . . , N}, so there are bijections αi : {1, . . . , si} →
Si and βj : {1, . . . , tj} → Tj, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Each si × tj matrix ASi,Tj is considered
as a submatrix of A, this is why the rows are indexed by Si and the columns are indexed by
Tj, but this matrix can also be viewed as an si× tj matrix A′ij =

(
(a′ij)st

)
by itself, with the

rows indexed by {1, . . . , si} and the columns indexed by {1, . . . , tj}, with

(a′ij)st = aα(s)β(t), 1 ≤ s ≤ si, 1 ≤ t ≤ tj.

Symbolic systems like Matlab have commands to construct such matrices. But be careful
that to put a matrix such as A′ij back into A at the correct row and column locations requires
viewing this matrix as ASi,Tj . Symbolic systems like Matlab also have commands to assign
row vectors and column vectors to specific rows or columns of a matrix. Technically, to be
completely rigorous, the matrices ASi,Tj and A′ij are different, even though they contain the
same entries. The reason they are different is that in ASi,Tj the entries are indexed by the
index sets Si and Tj, but in A′ij they are indexed by the index sets {1, . . . , si} and {1, . . . , tj}.
This depends whether we view ASi,Tj as a submatrix of A or as a matrix on its own.

In most cases, the partitions S = S1 ∪ · · · ∪ Sm and T = T1 ∪ · · · ∪ Tn are chosen so that

Si = {s | s1 + · · ·+ si−1 + 1 ≤ s ≤ s1 + · · ·+ si}
Tj = {t | t1 + · · ·+ ti−1 + 1 ≤ t ≤ t1 + · · ·+ tj},

with si = |Si| ≥ 1, tj = |Tj| ≥ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n. For i = 1, we have S1 = {1, . . . , s1}
and T1 = {1, . . . , t1}. This means that we partition into consecutive subsets of consecutive
integers and we preserve the order of the bases . In this case, [A] can be viewed as A. But
the results about block multiplication hold in the general case.
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Finally we tackle block multiplication. But first we observe that the computation made
in Section 3.2 can be immediately adapted to matrices indexed by arbitrary finite index sets
I, J,K, not necessary of the form {1, . . . , p}, {1, . . . , n}, {1, . . . ,m}. We need this to deal
with products of matrices occurring as blocks in other matrices, since such matrices are of
the form ASi,Tj , etc.

We can prove immediately the following result generalizing Equation (4) proven in Section
3.2 (also see the fourth equation of Proposition 3.2).

Proposition 5.9. Let I, J,K be any nonempty finite index sets. If the I × J matrix A =
(aij)(i,j)∈I×J represents the linear map g : F → G with respect to the basis (vj)j∈J of F and
the basis (wi)i∈I of G and if the J ×K matrix B = (bjk)(j,k)∈J×K represents the linear map
f : E → F with respect to the basis (uk)k∈K of E and the basis (vj)j∈J of F , then the I ×K
matrix C = (cik)(i,k)∈I×K representing the linear map g ◦ f : E → G with respect to the basis
(uk)k∈K of E and the basis (wi)i∈I of G is given by

C = AB,

where for all i ∈ I and all k ∈ K,

cik =
∑
j∈J

aijbjk.

Let E,F,G be three vector spaces expressed as direct sums

E =

p⊕
k=1

Ek, F =
n⊕
j=1

Fj, G =
m⊕
i=1

Gi,

and let f : E → F and g : F → G be two linear maps. Furthermore, assume that E has
a finite basis (ut)t∈T , where T is the disjoint union T = T1 ∪ · · · ∪ Tp of nonempty subsets
Tk so that (ut)t∈Tk is a basis of Ek, F has a finite basis (vs)s∈S, where S is the disjoint
union S = S1 ∪ · · · ∪ Sn of nonempty subsets Sj so that (vs)s∈Sj is a basis of Fj, and G
has a finite basis (wr)r∈R, where R is the disjoint union R = R1 ∪ · · · ∪ Rm of nonempty
subsets Ri so that (wr)r∈Ri is a basis of Gi. Also let M = |R|, N = |S|, P = |T |, ri = |Ri|,
sj = |Sj|, tk = |Tk|, so that M = dim(G) = r1 + · · ·+ rm, N = dim(F ) = s1 + · · ·+ sn, and
P = dim(E) = t1 + · · ·+ tp.

Let B be the N ×P matrix representing f with respect to the basis (ut)t∈T of E and the
basis (vs)s∈S of F , let A be the M×N matrix representing g with respect to the basis (vs)s∈S
of F and the basis (wr)r∈R of G, and let C be the M ×P matrix representing h = g ◦ f with
respect to the basis basis (ut)t∈T of E and the basis (wr)r∈R of G.

The matrix [A] is an m× n block matrix of ri × sj matrices Aij (1 ≤ i ≤ m, 1 ≤ j ≤ n),
the matrix [B] is an n× p block matrix of sj × tk matrices Bjk (1 ≤ j ≤ n, 1 ≤ k ≤ p), and
the matrix [C] is an m × p block matrix of ri × tk matrices Cik (1 ≤ i ≤ m, 1 ≤ k ≤ p).
Furthermore, to be precise, Aij = ARi,Sj , Bjk = BSj ,Tk , and Cik = CRi,Tk .
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Now recall that the matrix ARi,Sj represents the linear map gij : Fj → Gi with respect to
the basis (vs)s∈Sj of Fj and the basis (wr)r∈Ri of Gi, the matrix BSj ,Tk represents the linear
map fjk : Ek → Fj with respect to the basis (ut)t∈Tk of Ek and the basis (vs)s∈Sj of Fj, and
the matrix CRi,Tk represents the linear map hik : Ek → Gi with respect to the basis (ut)t∈Tk
of Ek and the basis (wr)r∈Ri of Gi.

By Proposition 5.8, hik is given by the formula

hik =
n∑
j=1

gij ◦ fjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p, (∗5)

and since the matrix ARi,Sj represents gij : Fj → Gi, the matrix BSj ,Tk represents fjk : Ek →
Fj, and the matrix CRi,Tk represents hik : Ek → Gi, so (∗5) implies the matrix equation

Cik =
n∑
j=1

AijBjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p, (∗6)

establishing (when combined with Proposition 5.9) the fact that [C] = [A][B], namely the
product C = AB of the matrices A and B can be performed by blocks, using the same
product formula on matrices that is used on scalars.

We record the above fact in the following proposition.

Proposition 5.10. Let M,N,P be any positive integers, and let {1, . . . ,M} = R1∪· · ·∪Rm,
{1, . . . , N} = S1 ∪ · · · ∪ Sn, and {1, . . . , P} = T1 ∪ · · · ∪ Tp be any partitions into nonempty
subsets Ri, Sj, Tk, and write ri = |Ri|, sj = |Sj| and tk = |Tk| (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤
k ≤ p). Let A be an M × N matrix, let [A] be the corresponding m × n block matrix of
ri × sj matrices Aij (1 ≤ i ≤ m, 1 ≤ j ≤ n), and let B be an N × P matrix and [B] be the
corresponding n × p block matrix of sj × tk matrices Bjk (1 ≤ j ≤ n, 1 ≤ k ≤ p). Then the
M × P matrix C = AB corresponds to an m × p block matrix [C] of ri × tk matrices Cik
(1 ≤ i ≤ m, 1 ≤ k ≤ p), and we have

[C] = [A][B],

which means that

Cik =
n∑
j=1

AijBjk, 1 ≤ i ≤ m, 1 ≤ k ≤ p.

Remark: The product AijBjk of the blocks Aij and Bjk, which are really the matrices ARi,Sj
and BSj ,Tk , can be computed using the matrices A′ij and B′jk (discussed after Example 5.3)
that are indexed by the “canonical” index sets {1, . . . , ri}, {1, . . . , sj} and {1, . . . , tk}. But
after computing A′ijB

′
jk, we have to remember to insert it as a block in [C] using the correct

index sets Ri and Tk. This is easily achieved in Matlab.
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Example 5.4. Consider the partition of the index set R = {1, 2, 3, 4, 5, 6} given by R1 =
{1, 2}, R2 = {3}, R3 = {4, 5, 6}; of the index set S = {1, 2, 3} given by S1 = {1, 2}, S2 = {3};
and of the index set T = {1, 2, 3, 4, 5, 6} given by T1 = {1}, T2 = {2, 3}, T3 = {4, 5, 6}. Let
[A] be the 3× 2 block matrix

[A] =

A11 A12

A21 A22

A31 A32

 =



[ ] [ ]
[ ] [ ]   


where A11, A12 are 2× 2, 2× 1; A21, A22 are 1× 2, 1× 1; and A31, A32 are 3× 2, 3× 1, and
[B] be the 2× 3 block matrix

[B] =

(
B11 B12 B13

B21 B22 B23

)
=


[ ] [ ] [ ]
[ ] [ ] [ ]

 ,

where B11, B12, B13 are 2 × 1, 2 × 2, 2 × 3; and B21, B22, B23 are 1 × 1, 1 × 2, 1 × 3. Then
[C] = [A][B] is the 3× 3 block matrix

[C] =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 =



[ ] [ ] [ ]
[ ] [ ] [ ]     


,

where C11, C12, C13 are 2×1, 2×2, 2×3; C21, C22, C23 are 1×1, 1×2, 1×3; and C31, C32, C33

are 3× 1, 3× 2, 3× 3. For example,

C32 = A31B12 + A32B22.

Example 5.5. This example illustrates some of the subtleties having to do with the parti-
tioning of the index sets. Consider the 1× 3 matrix

A =
(
a11 a12 a13

)
and the 3× 2 matrix

B =

b11 b12

b21 b22

b31 b32

 .
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Consider the partition of the index set R = {1} given by R1 = {1}; of the index set
S = {1, 2, 3} given by S1 = {1, 3}, S2 = {2}; and of the index set T = {1, 2} given by
T1 = {2}, T2 = {1}. The corresponding block matrices are the 1× 2 block matrix

[A] =
(
A{1},{1,3} A{1},{2}

)
=
([
a11 a13

] [
a12

])
,

and the 2× 2 block matrix

[B] =

(
B{1,3},{2} B{1,3},{1}
B{2},{2} B{2},{1}

)
=


[
b12

b32

] [
b11

b31

]
[
b22

] [
b21

]
 .

The product of the 1× 2 block matrix [A] and the 2× 2 block matrix [B] is the 1× 2 block
matrix [C] given by

[C] = [A][B] =
([
a11 a13

] [
a12

])
[
b12

b32

] [
b11

b31

]
[
b22

] [
b21

]


=

([
a11 a13

] [b12

b32

]
+
[
a12

] [
b22

] [
a11 a13

] [b11

b31

]
+
[
a12

] [
b21

])
=
([
a11b12 + a13b32 + a12b22

] [
a11b11 + a13b31 + a12b21

])
=
([
a11b12 + a12b22 + a13b32

] [
a11b11 + a12b21 + a13b31

])
.

The block matrix [C] is obtained from the 1 × 2 matrix C = AB using the partitions of
R = {1} given by R1 = {1} and of T = {1, 2} given by T1 = {2}, T2 = {1}, so

[C] =
(
C{1},{2} C{1},{1}

)
,

which means that [C] is obtained from C by permuting its two columns. Since

C = AB =
(
a11 a12 a13

)b11 b12

b21 b22

b31 b32


=
(
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

)
,

we have confirmed that [C] is correct.

Example 5.6. Matrix block multiplication is a very effective method to prove that if an
upper-triangular matrix A is invertible, then its inverse is also upper-triangular. We proceed
by induction on the dimensiopn n of A. If n = 1, then A = (a), where a is a scalar, so A is
invertible iff a 6= 0, and A−1 = (a−1), which is trivially upper-triangular. For the induction
step we can write an (n+ 1)× (n+ 1) upper triangular matrix A in block form as

A =

(
T U

01,n α

)
,
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where T is an n× n upper triangular matrix, U is an n× 1 matrix and α ∈ R. Assume that
A is invertible and let B be its inverse, written in block form as

B =

(
C V
W β

)
,

where C is an n × n matrix, V is an n × 1 matrix, W is a 1 × n matrix, and β ∈ R. Since
B is the inverse of A, we have AB = In+1, which yields(

T U
01,n−1 α

)(
C V
W β

)
=

(
In 0n,1

01,n 1

)
.

By block multiplication we get

TC + UW = In

TV + βU = 0n,1

αW = 01,n

αβ = 1.

From the above equations we deduce that α, β 6= 0 and β = α−1. Since α 6= 0, the equation
αW = 01,n yields W = 01,n, and so

TC = In, TV + βU = 0n,1.

It follows that T is invertible and C is its inverse, and since T is upper triangular, by the
induction hypothesis, C is also upper triangular.

The above argument can be easily modified to prove that if A is invertible, then its
diagonal entries are nonzero.

We are now ready to prove a very crucial result relating the rank and the dimension of
the kernel of a linear map.

5.4 The Rank-Nullity Theorem; Grassmann’s Relation

We begin with the following theorem which shows that given a linear map f : E → F , its
domain E is the direct sum of its kernel Ker f with some isomorphic copy of its image Im f .

Theorem 5.11. (Rank-nullity theorem) Let f : E → F be a linear map with finite image.
For any choice of a basis (f1, . . . , fr) of Im f , let (u1, . . . , ur) be any vectors in E such that
fi = f(ui), for i = 1, . . . , r. If s : Im f → E is the unique linear map defined by s(fi) = ui,
for i = 1, . . . , r, then f ◦ s = id, s is injective, and we have a direct sum

E = Ker f ⊕ Im s
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as illustrated by the following diagram:

Ker f // E = Ker f ⊕ Im s
f //

Im f ⊆ F.
s

oo

See Figure 5.2. As a consequence, if E is finite-dimensional, then

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f).

u = (0,1,1)

2

u = (1,0,1)
1

Ker f

f  = f(u  ) = (1,0)11

f  =  f(u  ) = (0, 1)2 2 f(u) = (1,1)

f(x,y,z) = (x,y)

s(x,y) = (x,y,x+y)

u = (1,1,1)

s (f(u)) = (1,1,2)

h = (0,0,-1)

Figure 5.2: Let f : E → F be the linear map from R3 to R2 given by f(x, y, z) = (x, y).
Then s : R2 → R3 is given by s(x, y) = (x, y, x + y) and maps the pink R2 isomorphically
onto the slanted pink plane of R3 whose equation is −x − y + z = 0. Theorem 5.11 shows
that R3 is the direct sum of the plane −x− y + z = 0 and the kernel of f which the orange
z-axis.

Proof. The vectors u1, . . . , ur must be linearly independent since otherwise we would have a
nontrivial linear dependence

λ1u1 + · · ·+ λrur = 0,

and by applying f , we would get the nontrivial linear dependence

0 = λ1f(u1) + · · ·+ λrf(ur) = λ1f1 + · · ·+ λrfr,

contradicting the fact that (f1, . . . , fr) is a basis. Therefore, by Proposition 2.21, the unique
linear map s given by s(fi) = ui, for i = 1, . . . , r, is a linear isomorphism between Im f
and its image, the subspace spanned by (u1, . . . , ur). It is also clear by definition (since
f(ui) = fi) that f ◦ s = id.

Observe that by Proposition 2.21, since (f1, . . . , fr) is a basis of Im f , there is a unique
linear map s given by s(fi) = ui, for i = 1, . . . , r, and by construction, we have f ◦ s = id.



158 CHAPTER 5. DIRECT SUMS, RANK-NULLITY THEOREM, AFFINE MAPS

This implies that s is injective, and so s is an isomorphism between Im f and its image Im s.
Again, by Proposition 2.21, the vectors u1, . . . , ur are linearly independent. Thus we have
an alternate proof of the linear independence of u1, . . . , ur.

For any u ∈ E, let
h = u− (s ◦ f)(u).

Since f ◦ s = id, we have

f(h) = f(u− (s ◦ f)(u)) = f(u)− (f ◦ s ◦ f)(u) = f(u)− (id ◦ f)(u) = f(u)− f(u) = 0,

which shows that h ∈ Ker f . Since h = u− (s ◦ f)(u), it follows that

u = h+ s(f(u)),

with h ∈ Ker f and s(f(u)) ∈ Im s, which proves that

E = Ker f + Im s.

Now if u ∈ Ker f ∩ Im s, then u = s(v) for some v ∈ F and f(u) = 0 since u ∈ Ker f . Since
u = s(v) and f ◦ s = id, we get

0 = f(u) = f(s(v)) = v,

and so u = s(v) = s(0) = 0. Thus, Ker f ∩ Im s = (0), which proves that we have a direct
sum

E = Ker f ⊕ Im s.

The equation

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

is an immediate consequence of the fact that the dimension is an additive property for
direct sums, that by definition the rank of f is the dimension of the image of f , and that
dim(Im s) = dim(Im f), because s is an isomorphism between Im f and Im s.

Remark: The statement E = Ker f ⊕ Im s holds if E has infinite dimension. It still holds
if Im (f) also has infinite dimension.

Definition 5.8. The dimension dim(Ker f) of the kernel of a linear map f is called the
nullity of f .

We now derive some important results using Theorem 5.11.

Proposition 5.12. Given a vector space E, if U and V are any two finite-dimensional
subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ),

an equation known as Grassmann’s relation.
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Proof. Recall that U + V is the image of the linear map

a : U × V → E

given by
a(u, v) = u+ v,

and that we proved earlier that the kernel Ker a of a is isomorphic to U ∩ V . By Theorem
5.11,

dim(U × V ) = dim(Ker a) + dim(Im a),

but dim(U × V ) = dim(U) + dim(V ), dim(Ker a) = dim(U ∩ V ), and Im a = U + V , so the
Grassmann relation holds.

The Grassmann relation can be very useful to figure out whether two subspace have a
nontrivial intersection in spaces of dimension > 3. For example, it is easy to see that in R5,
there are subspaces U and V with dim(U) = 3 and dim(V ) = 2 such that U ∩ V = (0); for
example, let U be generated by the vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), and V be
generated by the vectors (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). However, we claim that if dim(U) = 3
and dim(V ) = 3, then dim(U ∩ V ) ≥ 1. Indeed, by the Grassmann relation, we have

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ),

namely
3 + 3 = 6 = dim(U + V ) + dim(U ∩ V ),

and since U + V is a subspace of R5, dim(U + V ) ≤ 5, which implies

6 ≤ 5 + dim(U ∩ V ),

that is 1 ≤ dim(U ∩ V ).

As another consequence of Proposition 5.12, if U and V are two hyperplanes in a vector
space of dimension n, so that dim(U) = n− 1 and dim(V ) = n− 1, the reader should show
that

dim(U ∩ V ) ≥ n− 2,

and so, if U 6= V , then
dim(U ∩ V ) = n− 2.

Here is a characterization of direct sums that follows directly from Theorem 5.11.

Proposition 5.13. If U1, . . . , Up are any subspaces of a finite dimensional vector space E,
then

dim(U1 + · · ·+ Up) ≤ dim(U1) + · · ·+ dim(Up),

and
dim(U1 + · · ·+ Up) = dim(U1) + · · ·+ dim(Up)

iff the Uis form a direct sum U1 ⊕ · · · ⊕ Up.
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Proof. If we apply Theorem 5.11 to the linear map

a : U1 × · · · × Up → U1 + · · ·+ Up

given by a(u1, . . . , up) = u1 + · · ·+ up, we get

dim(U1 + · · ·+ Up) = dim(U1 × · · · × Up)− dim(Ker a)

= dim(U1) + · · ·+ dim(Up)− dim(Ker a),

so the inequality follows. Since a is injective iff Ker a = (0), the Uis form a direct sum iff
the second equation holds.

Theorem 5.11 also yields a characterization of hyperplanes in terms of linear forms. Recall
that given a vector space E, a hyperplane H in E is subspace of codimension 1, which means
that there is a one-dimensional subspace L such that

E = H ⊕ L.

Proposition 5.14. Given a nontrivial vector space E over a field K, a subspace H of E is
a hyperplane iff there is a nonzero linear form ϕ : E → K such that

H = Kerϕ.

Proof. First assume that ϕ : E → K is a nonzero linear form and that H = Kerϕ. Then
there is a nonzero vector u0 ∈ E such that ϕ(u0) = λ0 6= 0 for some λ0 ∈ K, and so for every
λ ∈ K, we have

ϕ(λλ−1
0 u0) = λλ−1

0 ϕ(u0) = λλ−1
0 λ0 = λ,

which means that ϕ is surjective onto K. It follows that in Theorem 5.11 the subspace
L = Im s is a one-dimensional space and we have

E = Kerϕ⊕ L = H ⊕ L,

so H is a hyperplane.

Conversely assume that H is a hyperplane, so that E = H ⊕ L where L is a subspace of
dimension 1. If we pick a nonzero vector u0 ∈ L, since L has dimension 1 and E = H ⊕ L,
every u ∈ E can be written uniquely as u = h+ λu0 for some h ∈ H and some λ ∈ K. If we
define the map ϕ : E → K by

ϕ(u+ λu0) = λ,

we check immediately that ϕ is linear and that its kernel is H.

We will prove later that if ϕ1 and ϕ2 are any two linear forms defining the same hyperplane
H, in the sense that H = Kerϕ1 = Kerϕ2, then there is some nonzero α ∈ K such that
ϕ2 = αϕ1; see Proposition 10.7.

Another important corollary of Theorem 5.11 is the following result:
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Proposition 5.15. Let E and F be two vector spaces with the same finite dimension
dim(E) = dim(F ) = n. For every linear map f : E → F , the following properties are
equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = (0).

Proof. Obviously, (a) implies (b).

If f is surjective, then Im f = F , and so dim(Im f) = n. By Theorem 5.11,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(E) = n and dim(Im f) = n, we get dim(Ker f) = 0, which means that
Ker f = (0), and so f is injective (see Proposition 2.20). This proves that (b) implies (c).

If f is injective, then by Proposition 2.20, Ker f = (0), so (c) implies (d).

Finally, assume that Ker f = (0), so that dim(Ker f) = 0 and f is injective (by Proposi-
tion 2.20). By Theorem 5.11,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(Ker f) = 0, we get

dim(Im f) = dim(E) = dim(F ),

which proves that f is also surjective, and thus bijective. This proves that (d) implies (a)
and concludes the proof.

One should be warned that Proposition 5.15 fails in infinite dimension. A linear map
may be injective without being surjective and vice versa.

Here are a few applications of Proposition 5.15. Let A be an n × n matrix and assume
that A some right inverse B, which means that B is an n× n matrix such that

AB = I.

The linear map associated with A is surjective, since for every u ∈ Rn, we have A(Bu) = u.
By Proposition 5.15, this map is bijective so B is actually the inverse of A; in particular
BA = I.

Similarly, assume that A has a left inverse B, so that

BA = I.
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This time the linear map associated with A is injective, because if Au = 0, then BAu =
B0 = 0, and since BA = I we get u = 0. Again, by Proposition 5.15, this map is bijective
so B is actually the inverse of A; in particular AB = I.

Now assume that the linear system Ax = b has some solution for every b. Then the linear
map associated with A is surjective and by Proposition 5.15, A is invertible.

Finally assume that the linear system Ax = b has at most one solution for every b. Then
the linear map associated with A is injective and by Proposition 5.15, A is invertible.

We also have the following basic proposition about injective or surjective linear maps.

Proposition 5.16. Let E and F be vector spaces, and let f : E → F be a linear map. If
f : E → F is injective, then there is a surjective linear map r : F → E called a retraction,
such that r ◦ f = idE. See Figure 5.3. If f : E → F is surjective, then there is an injective
linear map s : F → E called a section, such that f ◦ s = idF . See Figure 5.2.

u = (1,0)
1

u = (1,1)
2

f(x,y) = (x,y,0)

v = f(u ) = (1,0,0)1 1 v  = f(u ) = (1,1,0)2 2

v = (0,0,1)
3

r(x,y,z) = (x,y)
E = R

2

F = R3

Figure 5.3: Let f : E → F be the injective linear map from R2 to R3 given by f(x, y) =
(x, y, 0). Then a surjective retraction is given by r : R3 → R2 is given by r(x, y, z) = (x, y).
Observe that r(v1) = u1, r(v2) = u2, and r(v3) = 0 .

Proof. Let (ui)i∈I be a basis of E. Since f : E → F is an injective linear map, by Proposition
2.21, (f(ui))i∈I is linearly independent in F . By Theorem 2.10, there is a basis (vj)j∈J of
F , where I ⊆ J , and where vi = f(ui), for all i ∈ I. By Proposition 2.21, a linear map
r : F → E can be defined such that r(vi) = ui, for all i ∈ I, and r(vj) = w for all j ∈ (J−I),
where w is any given vector in E, say w = 0. Since r(f(ui)) = ui for all i ∈ I, by Proposition
2.21, we have r ◦ f = idE.

Now assume that f : E → F is surjective. Let (vj)j∈J be a basis of F . Since f : E → F
is surjective, for every vj ∈ F , there is some uj ∈ E such that f(uj) = vj. Since (vj)j∈J is a
basis of F , by Proposition 2.21, there is a unique linear map s : F → E such that s(vj) = uj.
Also since f(s(vj)) = vj, by Proposition 2.21 (again), we must have f ◦ s = idF .
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Remark: Proposition 5.16 also holds if E or F has infinite dimension.

The converse of Proposition 5.16 is obvious.

The notion of rank of a linear map or of a matrix important, both theoretically and
practically, since it is the key to the solvability of linear equations. We have the following
simple proposition.

Proposition 5.17. Given a linear map f : E → F , the following properties hold:

(i) rk(f) + dim(Ker f) = dim(E).

(ii) rk(f) ≤ min(dim(E), dim(F )).

Proof. Property (i) follows from Proposition 5.11. As for (ii), since Im f is a subspace of
F , we have rk(f) ≤ dim(F ), and since rk(f) + dim(Ker f) = dim(E), we have rk(f) ≤
dim(E).

The rank of a matrix is defined as follows.

Definition 5.9. Given a m × n-matrix A = (ai j), the rank rk(A) of the matrix A is the
maximum number of linearly independent columns of A (viewed as vectors in Rm).

In view of Proposition 2.11, the rank of a matrix A is the dimension of the subspace of
Rm generated by the columns of A. Let E and F be two vector spaces, and let (u1, . . . , un)
be a basis of E, and (v1, . . . , vm) a basis of F . Let f : E → F be a linear map, and let M(f)
be its matrix w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm). Since the rank rk(f) of f is the
dimension of Im f , which is generated by (f(u1), . . . , f(un)), the rank of f is the maximum
number of linearly independent vectors in (f(u1), . . . , f(un)), which is equal to the number
of linearly independent columns of M(f), since F and Rm are isomorphic. Thus, we have
rk(f) = rk(M(f)), for every matrix representing f .

We will see later, using duality, that the rank of a matrix A is also equal to the maximal
number of linearly independent rows of A.

5.5 Affine Maps

We showed in Section 2.7 that every linear map f must send the zero vector to the zero
vector; that is,

f(0) = 0.

Yet for any fixed nonzero vector u ∈ E (where E is any vector space), the function tu given
by

tu(x) = x+ u, for all x ∈ E
shows up in practice (for example, in robotics). Functions of this type are called translations .
They are not linear for u 6= 0, since tu(0) = 0 + u = u.
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More generally, functions combining linear maps and translations occur naturally in many
applications (robotics, computer vision, etc.), so it is necessary to understand some basic
properties of these functions. For this, the notion of affine combination turns out to play a
key role.

Recall from Section 2.7 that for any vector space E, given any family (ui)i∈I of vectors
ui ∈ E, an affine combination of the family (ui)i∈I is an expression of the form∑

i∈I
λiui with

∑
i∈I

λi = 1,

where (λi)i∈I is a family of scalars.

A linear combination places no restriction on the scalars involved, but an affine com-
bination is a linear combination with the restriction that the scalars λi must add up to 1.
Nevertheless, a linear combination can always be viewed as an affine combination using the
following trick involving 0. For any family (ui)i∈I of vectors in E and for any family of
scalars (λi)i∈I , we can write the linear combination

∑
i∈I λiui as an affine combination as

follows: ∑
i∈I

λiui =
∑
i∈I

λiui +

(
1−

∑
i∈I

λi

)
0.

Affine combinations are also called barycentric combinations .

Although this is not obvious at first glance, the condition that the scalars λi add up to
1 ensures that affine combinations are preserved under translations. To make this precise,
consider functions f : E → F , where E and F are two vector spaces, such that there is some
linear map h : E → F and some fixed vector b ∈ F (a translation vector), such that

f(x) = h(x) + b, for all x ∈ E.
The map f given by (

x1

x2

)
7→
(

8/5 −6/5
3/10 2/5

)(
x1

x2

)
+

(
1
1

)
is an example of the composition of a linear map with a translation.

We claim that functions of this type preserve affine combinations.

Proposition 5.18. For any two vector spaces E and F , given any function f : E → F
defined such that

f(x) = h(x) + b, for all x ∈ E,
where h : E → F is a linear map and b is some fixed vector in F , for every affine combination∑

i∈I λiui (with
∑

i∈I λi = 1), we have

f

(∑
i∈I

λiui

)
=
∑
i∈I

λif(ui).

In other words, f preserves affine combinations.
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Proof. By definition of f , using the fact that h is linear and the fact that
∑

i∈I λi = 1, we
have

f

(∑
i∈
λiui

)
= h

(∑
i∈I

λiui

)
+ b

=
∑
i∈I

λih(ui) + 1b

=
∑
i∈I

λih(ui) +

(∑
i∈I

λi

)
b

=
∑
i∈I

λi(h(ui) + b)

=
∑
i∈I

λif(ui),

as claimed.

Observe how the fact that
∑

i∈I λi = 1 was used in a crucial way in Line 3. Surprisingly,
the converse of Proposition 5.18 also holds.

Proposition 5.19. For any two vector spaces E and F , let f : E → F be any function that
preserves affine combinations, i.e., for every affine combination

∑
i∈I λiui (with

∑
i∈I λi =

1), we have

f

(∑
i∈I

λiui

)
=
∑
i∈I

λif(ui).

Then for any a ∈ E, the function h : E → F given by

h(x) = f(a+ x)− f(a)

is a linear map independent of a, and

f(a+ x) = h(x) + f(a), for all x ∈ E.
In particular, for a = 0, if we let c = f(0), then

f(x) = h(x) + c, for all x ∈ E.
Proof. First, let us check that h is linear. Since f preserves affine combinations and since
a+ u+ v = (a+ u) + (a+ v)− a is an affine combination (1 + 1− 1 = 1), we have

h(u+ v) = f(a+ u+ v)− f(a)

= f((a+ u) + (a+ v)− a)− f(a)

= f(a+ u) + f(a+ v)− f(a)− f(a)

= f(a+ u)− f(a) + f(a+ v)− f(a)

= h(u) + h(v).
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This proves that
h(u+ v) = h(u) + h(v), u, v ∈ E.

Observe that a+ λu = λ(a+ u) + (1− λ)a is also an affine combination (λ+ 1− λ = 1), so
we have

h(λu) = f(a+ λu)− f(a)

= f(λ(a+ u) + (1− λ)a)− f(a)

= λf(a+ u) + (1− λ)f(a)− f(a)

= λ(f(a+ u)− f(a))

= λh(u).

This proves that
h(λu) = λh(u), u ∈ E, λ ∈ R.

Therefore, h is indeed linear.

For any b ∈ E, since b+ u = (a+ u)− a+ b is an affine combination (1− 1 + 1 = 1), we
have

f(b+ u)− f(b) = f((a+ u)− a+ b)− f(b)

= f(a+ u)− f(a) + f(b)− f(b)

= f(a+ u)− f(a),

which proves that for all a, b ∈ E,

f(b+ u)− f(b) = f(a+ u)− f(a), u ∈ E.

Therefore h(x) = f(a + u)− f(a) does not depend on a, and it is obvious by the definition
of h that

f(a+ x) = h(x) + f(a), for all x ∈ E.
For a = 0, we obtain the last part of our proposition.

We should think of a as a chosen origin in E. The function f maps the origin a in E to
the origin f(a) in F . Proposition 5.19 shows that the definition of h does not depend on the
origin chosen in E. Also, since

f(x) = h(x) + c, for all x ∈ E

for some fixed vector c ∈ F , we see that f is the composition of the linear map h with the
translation tc (in F ).

The unique linear map h as above is called the linear map associated with f , and it is

sometimes denoted by
−→
f .

In view of Propositions 5.18 and 5.19, it is natural to make the following definition.
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Definition 5.10. For any two vector spaces E and F , a function f : E → F is an affine
map if f preserves affine combinations, i.e., for every affine combination

∑
i∈I λiui (with∑

i∈I λi = 1), we have

f

(∑
i∈I

λiui

)
=
∑
i∈I

λif(ui).

Equivalently, a function f : E → F is an affine map if there is some linear map h : E → F

(also denoted by
−→
f ) and some fixed vector c ∈ F such that

f(x) = h(x) + c, for all x ∈ E.

Note that a linear map always maps the standard origin 0 in E to the standard origin
0 in F . However an affine map usually maps 0 to a nonzero vector c = f(0). This is the
“translation component” of the affine map.

When we deal with affine maps, it is often fruitful to think of the elements of E and F
not only as vectors but also as points . In this point of view, points can only be combined
using affine combinations , but vectors can be combined in an unrestricted fashion using
linear combinations. We can also think of u + v as the result of translating the point u by
the translation tv. These ideas lead to the definition of affine spaces .

The idea is that instead of a single space E, an affine space consists of two sets E and
−→
E , where E is just an unstructured set of points, and

−→
E is a vector space. Furthermore, the

vector space
−→
E acts on E. We can think of

−→
E as a set of translations specified by vectors,

and given any point a ∈ E and any vector (translation) u ∈ −→E , the result of translating a
by u is the point (not vector) a+u. Formally, we have the following definition.

Definition 5.11. An affine space is either the degenerate space reduced to the empty set,

or a triple
〈
E,
−→
E ,+

〉
consisting of a nonempty set E (of points), a vector space

−→
E (of trans-

lations , or free vectors), and an action +: E ×−→E → E, satisfying the following conditions.

(A1) a+ 0 = a, for every a ∈ E.

(A2) (a+u) + v = a+ (u+ v), for every a ∈ E, and every u, v ∈ −→E .

(A3) For any two points a, b ∈ E, there is a unique u ∈ −→E such that a+u = b.

The unique vector u ∈ −→E such that a+u = b is denoted by
−→
ab, or sometimes by ab, or

even by b− a. Thus, we also write

b = a+
−→
ab

(or b = a+ ab, or even b = a+ (b− a)).
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It is important to note that adding or rescaling points does not make sense! However,

using the fact that
−→
E acts on E is a special way (this action is transitive and faithful), it is

possible to define rigorously the notion of affine combinations of points and to define affine
spaces, affine maps, etc. However, this would lead us too far afield, and for our purposes it
is enough to stick to vector spaces and we will not distinguish between vector addition +
and translation of a point by a vector +. Still, one should be aware that affine combinations
really apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces with dim(E) = n and dim(F ) = m,
then it is useful to represent an affine map with respect to bases in E in F . However, the
translation part c of the affine map must be somehow incorporated. There is a standard
trick to do this which amounts to viewing an affine map as a linear map between spaces of
dimension n+ 1 and m+ 1. We also have the extra flexibility of choosing origins a ∈ E and
b ∈ F .

Let (u1, . . . , un) be a basis of E, (v1, . . . , vm) be a basis of F , and let a ∈ E and b ∈ F be
any two fixed vectors viewed as origins . Our affine map f has the property that if v = f(u),
then

v − b = f(a+ u− a)− b = f(a)− b+ h(u− a),

where the last equality made use of the fact that h(x) = f(a+x)− f(a). If we let y = v− b,
x = u− a, and d = f(a)− b, then

y = h(x) + d, x ∈ E.

Over the basis U = (u1, . . . , un), we write

x = x1u1 + · · ·+ xnun,

and over the basis V = (v1, . . . , vm), we write

y = y1v1 + · · ·+ ymvm,

d = d1v1 + · · ·+ dmvm.

Then since
y = h(x) + d,

if we let A be the m× n matrix representing the linear map h, that is, the jth column of A
consists of the coordinates of h(uj) over the basis (v1, . . . , vm), then we can write

yV = AxU + dV .

where xU = (x1, . . . , xn)>, yV = (y1, . . . , ym)>, and dV = (d1, . . . , dm)>. The above is the ma-
trix representation of our affine map f with respect to (a, (u1, . . . , un)) and (b, (v1, . . . , vm)).

The reason for using the origins a and b is that it gives us more flexibility. In particular,
we can choose b = f(a), and then f behaves like a linear map with respect to the origins a
and b = f(a).
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When E = F , if there is some a ∈ E such that f(a) = a (a is a fixed point of f), then
we can pick b = a. Then because f(a) = a, we get

v = f(u) = f(a+ u− a) = f(a) + h(u− a) = a+ h(u− a),

that is

v − a = h(u− a).

With respect to the new origin a, if we define x and y by

x = u− a
y = v − a,

then we get

y = h(x).

Therefore, f really behaves like a linear map, but with respect to the new origin a (not the
standard origin 0). This is the case of a rotation around an axis that does not pass through
the origin.

Remark: A pair (a, (u1, . . . , un)) where (u1, . . . , un) is a basis of E and a is an origin chosen
in E is called an affine frame.

We now describe the trick which allows us to incorporate the translation part d into the
matrix A. We define the (m + 1) × (n + 1) matrix A′ obtained by first adding d as the
(n+ 1)th column and then (0, . . . , 0︸ ︷︷ ︸

n

, 1) as the (m+ 1)th row:

A′ =

(
A d
0n 1

)
.

It is clear that (
y
1

)
=

(
A d
0n 1

)(
x
1

)
iff

y = Ax+ d.

This amounts to considering a point x ∈ Rn as a point (x, 1) in the (affine) hyperplane Hn+1

in Rn+1 of equation xn+1 = 1. Then an affine map is the restriction to the hyperplane Hn+1

of the linear map f̂ from Rn+1 to Rm+1 corresponding to the matrix A′ which maps Hn+1

into Hm+1 (f̂(Hn+1) ⊆ Hm+1). Figure 5.4 illustrates this process for n = 2.

For example, the map (
x1

x2

)
7→
(

1 1
1 3

)(
x1

x2

)
+

(
3
0

)
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x1

x2

x

(x1, x 2, 1)

H 3 : x3 = 1

x = ( x1, x 2)

3

Figure 5.4: Viewing Rn as a hyperplane in Rn+1 (n = 2)

defines an affine map f which is represented in R3 byx1

x2

1

 7→
1 1 3

1 3 0
0 0 1

x1

x2

1

 .

It is easy to check that the point a = (6,−3) is fixed by f , which means that f(a) = a, so by
translating the coordinate frame to the origin a, the affine map behaves like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can be used to define projective
maps .

5.6 Summary

The main concepts and results of this chapter are listed below:

• Direct products, sums, direct sums .

• Projections .

• The fundamental equation

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

(The rank-nullity theorem; Theorem 5.11).

• Grassmann’s relation

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ).
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• Characterizations of a bijective linear map f : E → F .

• Rank of a matrix.

• Affine Maps.

5.7 Problems

Problem 5.1. Let V and W be two subspaces of a vector space E. Prove that if V ∪W is
a subspace of E, then either V ⊆ W or W ⊆ V .

Problem 5.2. Prove that for every vector space E, if f : E → E is an idempotent linear
map, i.e., f ◦ f = f , then we have a direct sum

E = Ker f ⊕ Im f,

so that f is the projection onto its image Im f .

Problem 5.3. Let U1, . . . , Up be any p ≥ 2 subspaces of some vector space E and recall
that the linear map

a : U1 × · · · × Up → E

is given by
a(u1, . . . , up) = u1 + · · ·+ up,

with ui ∈ Ui for i = 1, . . . , p.

(1) If we let Zi ⊆ U1 × · · · × Up be given by

Zi =

{(
u1, . . . , ui−1,−

p∑
j=1,j 6=i

uj, ui+1, . . . , up

) ∣∣∣∣∣
p∑

j=1,j 6=i
uj ∈ Ui ∩

( p∑
j=1,j 6=i

Uj

)}
,

for i = 1, . . . , p, then prove that

Ker a = Z1 = · · · = Zp.

In general, for any given i, the condition Ui ∩
(∑p

j=1,j 6=i Uj

)
= (0) does not necessarily

imply that Zi = (0). Thus, let

Z =

{(
u1, . . . , ui−1, ui, ui+1, . . . , up

) ∣∣∣∣ ui = −
p∑

j=1,j 6=i
uj, ui ∈ Ui ∩

( p∑
j=1,j 6=i

Uj

)
, 1 ≤ i ≤ p

}
.

Since Ker a = Z1 = · · · = Zp, we have Z = Ker a. Prove that if

Ui ∩
( p∑
j=1,j 6=i

Uj

)
= (0) 1 ≤ i ≤ p,
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then Z = Ker a = (0).

(2) Prove that U1 + · · ·+ Up is a direct sum iff

Ui ∩
( p∑
j=1,j 6=i

Uj

)
= (0) 1 ≤ i ≤ p.

Problem 5.4. Assume that E is finite-dimensional, and let fi : E → E be any p ≥ 2 linear
maps such that

f1 + · · ·+ fp = idE.

Prove that the following properties are equivalent:

(1) f 2
i = fi, 1 ≤ i ≤ p.

(2) fj ◦ fi = 0, for all i 6= j, 1 ≤ i, j ≤ p.

Hint . Use Problem 5.2.

Let U1, . . . , Up be any p ≥ 2 subspaces of some vector space E. Prove that U1 + · · ·+ Up
is a direct sum iff

Ui ∩
( i−1∑

j=1

Uj

)
= (0), i = 2, . . . , p.

Problem 5.5. Given any vector space E, a linear map f : E → E is an involution if
f ◦ f = id.

(1) Prove that an involution f is invertible. What is its inverse?

(2) Let E1 and E−1 be the subspaces of E defined as follows:

E1 = {u ∈ E | f(u) = u}
E−1 = {u ∈ E | f(u) = −u}.

Prove that we have a direct sum
E = E1 ⊕ E−1.

Hint . For every u ∈ E, write

u =
u+ f(u)

2
+
u− f(u)

2
.

(3) If E is finite-dimensional and f is an involution, prove that there is some basis of E
with respect to which the matrix of f is of the form

Ik,n−k =

(
Ik 0
0 −In−k

)
,

where Ik is the k × k identity matrix (similarly for In−k) and k = dim(E1). Can you give a
geometric interpretation of the action of f (especially when k = n− 1)?
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Problem 5.6. An n × n matrix H is upper Hessenberg if hjk = 0 for all (j, k) such that
j − k ≥ 0. An upper Hessenberg matrix is unreduced if hi+1i 6= 0 for i = 1, . . . , n− 1.

Prove that if H is a singular unreduced upper Hessenberg matrix, then dim(Ker (H)) = 1.

Problem 5.7. Let A be any n× k matrix.

(1) Prove that the k × k matrix A>A and the matrix A have the same nullspace. Use
this to prove that rank(A>A) = rank(A). Similarly, prove that the n × n matrix AA> and
the matrix A> have the same nullspace, and conclude that rank(AA>) = rank(A>).

We will prove later that rank(A>) = rank(A).

(2) Let a1, . . . , ak be k linearly independent vectors in Rn (1 ≤ k ≤ n), and let A be the
n× k matrix whose ith column is ai. Prove that A>A has rank k, and that it is invertible.
Let P = A(A>A)−1A> (an n× n matrix). Prove that

P 2 = P

P> = P.

What is the matrix P when k = 1?

(3) Prove that the image of P is the subspace V spanned by a1, . . . , ak, or equivalently
the set of all vectors in Rn of the form Ax, with x ∈ Rk. Prove that the nullspace U of P is
the set of vectors u ∈ Rn such that A>u = 0. Can you give a geometric interpretation of U?

Conclude that P is a projection of Rn onto the subspace V spanned by a1, . . . , ak, and
that

Rn = U ⊕ V.

Problem 5.8. A rotation Rθ in the plane R2 is given by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(1) Use Matlab to show the action of a rotation Rθ on a simple figure such as a triangle
or a rectangle, for various values of θ, including θ = π/6, π/4, π/3, π/2.

(2) Prove that Rθ is invertible and that its inverse is R−θ.

(3) For any two rotations Rα and Rβ, prove that

Rβ ◦Rα = Rα ◦Rβ = Rα+β.

Use (2)-(3) to prove that the rotations in the plane form a commutative group denoted
SO(2).
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Problem 5.9. Consider the affine map Rθ,(a1,a2) in R2 given by(
y1

y2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
+

(
a1

a2

)
.

(1) Prove that if θ 6= k2π, with k ∈ Z, then Rθ,(a1,a2) has a unique fixed point (c1, c2),
that is, there is a unique point (c1, c2) such that(

c1

c2

)
= Rθ,(a1,a2)

(
c1

c2

)
,

and this fixed point is given by(
c1

c2

)
=

1

2 sin(θ/2)

(
cos(π/2− θ/2) − sin(π/2− θ/2)
sin(π/2− θ/2) cos(π/2− θ/2)

)(
a1

a2

)
.

(2) In this question we still assume that θ 6= k2π, with k ∈ Z. By translating the
coordinate system with origin (0, 0) to the new coordinate system with origin (c1, c2), which
means that if (x1, x2) are the coordinates with respect to the standard origin (0, 0) and if
(x′1, x

′
2) are the coordinates with respect to the new origin (c1, c2), we have

x1 = x′1 + c1

x2 = x′2 + c2

and similarly for (y1, y2) and (y′1, y
′
2), then show that(
y1

y2

)
= Rθ,(a1,a2)

(
x1

x2

)
becomes (

y′1
y′2

)
= Rθ

(
x′1
x′2

)
.

Conclude that with respect to the new origin (c1, c2), the affine map Rθ,(a1,a2) becomes
the rotation Rθ. We say that Rθ,(a1,a2) is a rotation of center (c1, c2).

(3) Use Matlab to show the action of the affine map Rθ,(a1,a2) on a simple figure such as a
triangle or a rectangle, for θ = π/3 and various values of (a1, a2). Display the center (c1, c2)
of the rotation.

What kind of transformations correspond to θ = k2π, with k ∈ Z?

(4) Prove that the inverse of Rθ,(a1,a2) is of the form R−θ,(b1,b2), and find (b1, b2) in terms
of θ and (a1, a2).

(5) Given two affine maps Rα,(a1,a2) and Rβ,(b1,b2), prove that

Rβ,(b1,b2) ◦Rα,(a1,a2) = Rα+β,(t1,t2)
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for some (t1, t2), and find (t1, t2) in terms of β, (a1, a2) and (b1, b2).

Even in the case where (a1, a2) = (0, 0), prove that in general

Rβ,(b1,b2) ◦Rα 6= Rα ◦Rβ,(b1,b2).

Use (4)-(5) to show that the affine maps of the plane defined in this problem form a
nonabelian group denoted SE(2).

Prove that Rβ,(b1,b2) ◦Rα,(a1,a2) is not a translation (possibly the identity) iff α+β 6= k2π,
for all k ∈ Z. Find its center of rotation when (a1, a2) = (0, 0).

If α+β = k2π, then Rβ,(b1,b2) ◦Rα,(a1,a2) is a pure translation. Find the translation vector
of Rβ,(b1,b2) ◦Rα,(a1,a2).

Problem 5.10. (Affine subspaces) A subset A of Rn is called an affine subspace if either
A = ∅, or there is some vector a ∈ Rn and some subspace U of Rn such that

A = a+ U = {a+ u | u ∈ U}.
We define the dimension dim(A) of A as the dimension dim(U) of U .

(1) If A = a+ U , why is a ∈ A?

What are affine subspaces of dimension 0? What are affine subspaces of dimension 1
(begin with R2)? What are affine subspaces of dimension 2 (begin with R3)?

Prove that any nonempty affine subspace is closed under affine combinations.

(2) Prove that if A = a + U is any nonempty affine subspace, then A = b + U for any
b ∈ A.

(3) Let A be any nonempty subset of Rn closed under affine combinations. For any
a ∈ A, prove that

Ua = {x− a ∈ Rn | x ∈ A}
is a (linear) subspace of Rn such that

A = a+ Ua.

Prove that Ua does not depend on the choice of a ∈ A; that is, Ua = Ub for all a, b ∈ A. In
fact, prove that

Ua = U = {y − x ∈ Rn | x, y ∈ A}, for all a ∈ A,
and so

A = a+ U, for any a ∈ A.

Remark: The subspace U is called the direction of A.

(4) Two nonempty affine subspaces A and B are said to be parallel iff they have the same
direction. Prove that that if A 6= B and A and B are parallel, then A ∩ B = ∅.

Remark: The above shows that affine subspaces behave quite differently from linear sub-
spaces.
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Problem 5.11. (Affine frames and affine maps) For any vector v = (v1, . . . , vn) ∈ Rn, let
v̂ ∈ Rn+1 be the vector v̂ = (v1, . . . , vn, 1). Equivalently, v̂ = (v̂1, . . . , v̂n+1) ∈ Rn+1 is the
vector defined by

v̂i =

{
vi if 1 ≤ i ≤ n,

1 if i = n+ 1.

(1) For any m+ 1 vectors (u0, u1, . . . , um) with ui ∈ Rn and m ≤ n, prove that if the m
vectors (u1 − u0, . . . , um − u0) are linearly independent, then the m+ 1 vectors (û0, . . . , ûm)
are linearly independent.

(2) Prove that if the m + 1 vectors (û0, . . . , ûm) are linearly independent, then for any
choice of i, with 0 ≤ i ≤ m, the m vectors uj − ui for j ∈ {0, . . . ,m} with j − i 6= 0 are
linearly independent.

Any m+ 1 vectors (u0, u1, . . . , um) such that the m+ 1 vectors (û0, . . . , ûm) are linearly
independent are said to be affinely independent .

From (1) and (2), the vector (u0, u1, . . . , um) are affinely independent iff for any any choice
of i, with 0 ≤ i ≤ m, the m vectors uj − ui for j ∈ {0, . . . ,m} with j − i 6= 0 are linearly
independent. If m = n, we say that n+ 1 affinely independent vectors (u0, u1, . . . , un) form
an affine frame of Rn.

(3) if (u0, u1, . . . , un) is an affine frame of Rn, then prove that for every vector v ∈ Rn,
there is a unique (n+ 1)-tuple (λ0, λ1, . . . , λn) ∈ Rn+1, with λ0 +λ1 + · · ·+λn = 1, such that

v = λ0u0 + λ1u1 + · · ·+ λnun.

The scalars (λ0, λ1, . . . , λn) are called the barycentric (or affine) coordinates of v w.r.t. the
affine frame (u0, u1, . . . , un).

If we write ei = ui − u0, for i = 1, . . . , n, then prove that we have

v = u0 + λ1e1 + · · ·+ λnen,

and since (e1, . . . , en) is a basis of Rn (by (1) & (2)), the n-tuple (λ1, . . . , λn) consists of the
standard coordinates of v − u0 over the basis (e1, . . . , en).

Conversely, for any vector u0 ∈ Rn and for any basis (e1, . . . , en) of Rn, let ui = u0 + ei
for i = 1, . . . , n. Prove that (u0, u1, . . . , un) is an affine frame of Rn, and for any v ∈ Rn, if

v = u0 + x1e1 + · · ·+ xnen,

with (x1, . . . , xn) ∈ Rn (unique), then

v = (1− (x1 + · · ·+ xx))u0 + x1u1 + · · ·+ xnun,

so that (1− (x1 + · · ·+xx)), x1, · · · , xn), are the barycentric coordinates of v w.r.t. the affine
frame (u0, u1, . . . , un).
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The above shows that there is a one-to-one correspondence between affine frames (u0, . . .,
un) and pairs (u0, (e1, . . . , en)), with (e1, . . . , en) a basis. Given an affine frame (u0, . . . , un),
we obtain the basis (e1, . . . , en) with ei = ui−u0, for i = 1, . . . , n; given the pair (u0, (e1, . . .,
en)) where (e1, . . . , en) is a basis, we obtain the affine frame (u0, . . . , un), with ui = u0 + ei,
for i = 1, . . . , n. There is also a one-to-one correspondence between barycentric coordinates
w.r.t. the affine frame (u0, . . . , un) and standard coordinates w.r.t. the basis (e1, . . . , en).
The barycentric cordinates (λ0, λ1, . . . , λn) of v (with λ0 + λ1 + · · · + λn = 1) yield the
standard coordinates (λ1, . . . , λn) of v − u0; the standard coordinates (x1, . . . , xn) of v − u0

yield the barycentric coordinates (1− (x1 + · · ·+ xn), x1, . . . , xn) of v.

(4) Let (u0, . . . , un) be any affine frame in Rn and let (v0, . . . , vn) be any vectors in Rm.
Prove that there is a unique affine map f : Rn → Rm such that

f(ui) = vi, i = 0, . . . , n.

(5) Let (a0, . . . , an) be any affine frame in Rn and let (b0, . . . , bn) be any n+ 1 points in
Rn. Prove that there is a unique (n+ 1)× (n+ 1) matrix

A =

(
B w
0 1

)
corresponding to the unique affine map f such that

f(ai) = bi, i = 0, . . . , n,

in the sense that
Aâi = b̂i, i = 0, . . . , n,

and that A is given by

A =
(
b̂0 b̂1 · · · b̂n

) (
â0 â1 · · · ân

)−1
.

Make sure to prove that the bottom row of A is (0, . . . , 0, 1).

In the special case where (a0, . . . , an) is the canonical affine frame with ai = ei+1 for
i = 0, . . . , n− 1 and an = (0, . . . , 0) (where ei is the ith canonical basis vector), show that

(
â0 â1 · · · ân

)
=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
1 1 · · · 1 1


and

(
â0 â1 · · · ân

)−1
=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
−1 −1 · · · −1 1

 .
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For example, when n = 2, if we write bi = (xi, yi), then we have

A =

x1 x2 x3

y1 y2 y3

1 1 1

 1 0 0
0 1 0
−1 −1 1

 =

x1 − x3 x2 − x3 x3

y1 − y3 y2 − y3 y3

0 0 1

 .

(6) Recall that a nonempty affine subspace A of Rn is any nonempty subset of Rn closed
under affine combinations. For any affine map f : Rn → Rm, for any affine subspace A of
Rn, and any affine subspace B of Rm, prove that f(A) is an affine subspace of Rm, and that
f−1(B) is an affine subspace of Rn.



Chapter 6

Determinants

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

6.1 Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear algebra. We begin
with permutations and the signature of a permutation. Next we define multilinear maps
and alternating multilinear maps. Determinants are introduced as alternating multilinear
maps taking the value 1 on the unit matrix (following Emil Artin). It is then shown how
to compute a determinant using the Laplace expansion formula, and the connection with
the usual definition is made. It is shown how determinants can be used to invert matrices
and to solve (at least in theory!) systems of linear equations (the Cramer formulae). The
determinant of a linear map is defined. We conclude by defining the characteristic polynomial
of a matrix (and of a linear map) and by proving the celebrated Cayley–Hamilton theorem
which states that every matrix is a “zero” of its characteristic polynomial (we give two proofs;
one computational, the other one more conceptual).

Determinants can be defined in several ways. For example, determinants can be defined
in a fancy way in terms of the exterior algebra (or alternating algebra) of a vector space. We
will follow a more algorithmic approach due to Emil Artin. No matter which approach is
followed, we need a few preliminaries about permutations on a finite set. We need to show
that every permutation on n elements is a product of transpositions and that the parity of the
number of transpositions involved is an invariant of the permutation. Let [n] = {1, 2 . . . , n},
where n ∈ N, and n > 0.

Definition 6.1. A permutation on n elements is a bijection π : [n]→ [n]. When n = 1, the
only function from [1] to [1] is the constant map: 1 7→ 1. Thus, we will assume that n ≥ 2.
A transposition is a permutation τ : [n]→ [n] such that, for some i < j (with 1 ≤ i < j ≤ n),
τ(i) = j, τ(j) = i, and τ(k) = k, for all k ∈ [n] − {i, j}. In other words, a transposition
exchanges two distinct elements i, j ∈ [n].

179
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If τ is a transposition, clearly, τ ◦ τ = id. We will also use the terminology product of
permutations (or transpositions) as a synonym for composition of permutations.

A permutation σ on n elements, say σ(i) = ki for i = 1, . . . , n, can be represented in
functional notation by the 2× n array(

1 · · · i · · · n
k1 · · · ki · · · kn

)
known as Cauchy two-line notation. For example, we have the permutation σ denoted by(

1 2 3 4 5 6
2 4 3 6 5 1

)
.

A more concise notation often used in computer science and in combinatorics is to rep-
resent a permutation by its image, namely by the sequence

σ(1) σ(2) · · · σ(n)

written as a row vector without commas separating the entries. The above is known as
the one-line notation. For example, in the one-line notation, our previous permutation σ is
represented by

2 4 3 6 5 1.

The reason for not enclosing the above sequence within parentheses is avoid confusion with
the notation for cycles, for which is it customary to include parentheses.

Clearly, the composition of two permutations is a permutation and every permutation
has an inverse which is also a permutation. Therefore, the set of permutations on [n] is a
group often denoted Sn and called the symmetric group on n elements.

It is easy to show by induction that the group Sn has n! elements. The following propo-
sition shows the importance of transpositions.

Proposition 6.1. For every n ≥ 2, every permutation π : [n] → [n] can be written as a
nonempty composition of transpositions.

Proof. We proceed by induction on n. If n = 2, there are exactly two permutations on [2],
the transposition τ exchanging 1 and 2, and the identity. However, id2 = τ 2. Now let n ≥ 3.
If π(n) = n, by the induction hypothesis, the restriction of π to [n− 1] can be written as a
product of transpositions τm◦· · ·◦τ1, where τj is a transposition of [n−1]. Each transposition
τj of [n− 1] can be extended to a transposition of [n] by setting τj(n) = n, so π itself can be
written as the product of transpositions π = τm ◦ · · · ◦ τ1, with each τj a transposition of [n]
(leaving n fixed).

If π(n) = k 6= n, letting τ be the transposition such that τ(n) = k and τ(k) = n, it is
clear that τ ◦π leaves n invariant, and by the induction hypothesis, we have τ ◦π = τm◦. . .◦τ1

for some transpositions, and thus

π = τ ◦ τm ◦ . . . ◦ τ1,

a product of transpositions (since τ ◦ τ = idn).
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Remark: When π = idn is the identity permutation, we can agree that the composition of
0 transpositions is the identity. Proposition 6.1 shows that the transpositions generate the
group of permutations Sn.

A transposition τ that exchanges two consecutive elements k and k + 1 of [n] (1 ≤ k ≤
n−1) may be called a basic transposition. We leave it as a simple exercise to prove that every
transposition can be written as a product of basic transpositions. In fact, the transposition
that exchanges k and k+p (1 ≤ p ≤ n−k) can be realized using 2p−1 basic transpositions.
Therefore, the group of permutations Sn is also generated by the basic transpositions.

Given a permutation written as a product of transpositions, we now show that the parity
of the number of transpositions is an invariant. For this, we introduce the following function.

Definition 6.2. For every n ≥ 2, let ∆: Zn → Z be the function given by

∆(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj).

More generally, for any permutation σ ∈ Sn, define ∆(xσ(1), . . . , xσ(n)) by

∆(xσ(1), . . . , xσ(n)) =
∏

1≤i<j≤n
(xσ(i) − xσ(j)).

The expression ∆(x1, . . . , xn) is often called the discriminant of (x1, . . . , xn).

It is clear that if the xi are pairwise distinct, then ∆(x1, . . . , xn) 6= 0. The discriminant

consists of
(
n
2

)
factors. When n = 3,

∆(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).

If σ is the permutation (
1 2 3
2 3 1

)
,

then ∆(xσ(1), xσ(2), xσ(3)) = ∆(x2, x3, x1) and

∆(xσ(1), xσ(2), xσ(3)) = (xσ(1)−xσ(2))(xσ(1)−xσ(3))(xσ(2)−xσ(3)) = (x2−x3)(x2−x1)(x3−x1).

Observe that

∆(xσ(1), xσ(2), xσ(3)) = ∆(x2, x3, x1) = (−1)2∆(x1, x2, x3) = ∆(x1, x2, x3),

since two transpositions applied to the identity permutation 123 (written in one-line notation)
give rise to 2 3 1. This result regarding the parity of ∆(xσ(1), . . . , xσ(n)) is generalized by the
following proposition.
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Proposition 6.2. For every basic transposition τ of [n] (n ≥ 2), we have

∆(xτ(1), . . . , xτ(n)) = −∆(x1, . . . , xn).

The above also holds for every transposition, and more generally, for every composition of
transpositions σ = τp ◦ · · · ◦ τ1, we have

∆(xσ(1), . . . , xσ(n)) = (−1)p∆(x1, . . . , xn).

Consequently, for every permutation σ of [n], the parity of the number p of transpositions
involved in any decomposition of σ as σ = τp ◦ · · · ◦ τ1 is an invariant (only depends on σ).

Proof. Suppose τ exchanges xk and xk+1. The terms xi− xj that are affected correspond to
i = k, or i = k + 1, or j = k, or j = k + 1. The contribution of these terms in ∆(x1, . . . , xn)
is

(xk − xk+1)[(xk − xk+2) · · · (xk − xn)][(xk+1 − xk+2) · · · (xk+1 − xn)]

[(x1 − xk) · · · (xk−1 − xk)][(x1 − xk+1) · · · (xk−1 − xk+1)].

When we exchange xk and xk+1, the first factor is multiplied by −1, the second and the
third factor are exchanged, and the fourth and the fifth factor are exchanged, so the whole
product ∆(x1, . . . , xn) is is indeed multiplied by −1, that is,

∆(xτ(1), . . . , xτ(n)) = −∆(x1, . . . , xn).

For the second statement, first we observe that since every transposition τ can be written
as the composition of an odd number of basic transpositions (see the the remark following
Proposition 6.1), we also have

∆(xτ(1), . . . , xτ(n)) = −∆(x1, . . . , xn).

Next we proceed by induction on the number p of transpositions involved in the decompo-
sition of a permutation σ.

The base case p = 1 has just been proven. If p ≥ 2, if we write ω = τp−1 ◦ · · · ◦ τ1, then
σ = τp ◦ ω and

∆(xσ(1), . . . , xσ(n)) = ∆(xτp(ω(1)), . . . , xτp(ω(n)))

= −∆(xω(1), . . . , xω(n))

= −(−1)p−1∆(x1, . . . , xn)

= (−1)p∆(x1, . . . , xn),

where we used the induction hypothesis from the second to the third line, establishing the
induction hypothesis. Since ∆(xσ(1), . . . , xσ(n)) only depends on σ, the equation

∆(xσ(1), . . . , xσ(n)) = (−1)p∆(x1, . . . , xn).

shows that the parity (−1)p of the number of transpositions in any decomposition of σ is an
invariant.
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In view of Proposition 6.2, the following definition makes sense:

Definition 6.3. For every permutation σ of [n], the parity ε(σ) (or sgn(σ)) of the number
of transpositions involved in any decomposition of σ is called the signature (or sign) of σ.

Obviously ε(τ) = −1 for every transposition τ (since (−1)1 = −1).

A simple way to compute the signature of a permutation is to count its number of
inversions.

Definition 6.4. Given any permutation σ on n elements, we say that a pair (i, j) of indices
i, j ∈ {1, . . . , n} such that i < j and σ(i) > σ(j) is an inversion of the permutation σ.

For example, the permutation σ given by(
1 2 3 4 5 6
2 4 3 6 5 1

)
has seven inversions

(1, 6), (2, 3), (2, 6), (3, 6), (4, 5), (4, 6), (5, 6).

Proposition 6.3. The signature ε(σ) of any permutation σ is equal to the parity (−1)I(σ)

of the number I(σ) of inversions in σ.

Proof. In the product

∆(xσ(1), . . . , xσ(n)) =
∏

1≤i<j≤n
(xσ(i) − xσ(j)),

the terms xσ(i) − xσ(j) for which σ(i) < σ(j) occur in ∆(x1, . . . , xn), whereas the terms
xσ(i) − xσ(j) for which σ(i) > σ(j) occur in ∆(x1, . . . , xn) with a minus sign. Therefore, the
number ν of terms in ∆(xσ(1), . . . , xσ(n)) whose sign is the opposite of a term in ∆(x1, . . . , xn),
is equal to the number I(σ) of inversions in σ, which implies that

∆(xσ(1), . . . , xσ(n)) = (−1)I(σ)∆(x1, . . . , xn).

By Proposition 6.2, the sign of (−1)I(σ) is equal to the signature of σ.

For example, the permutation (
1 2 3 4 5 6
2 4 3 6 5 1

)
has odd signature since it has seven inversions and (−1)7 = −1.

Remark: When π = idn is the identity permutation, since we agreed that the composition of
0 transpositions is the identity, it it still correct that (−1)0 = ε(id) = +1. From Proposition
6.2, it is immediate that ε(π′ ◦ π) = ε(π′)ε(π). In particular, since π−1 ◦ π = idn, we get
ε(π−1) = ε(π).

We can now proceed with the definition of determinants.
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6.2 Alternating Multilinear Maps

First we define multilinear maps, symmetric multilinear maps, and alternating multilinear
maps.

Remark: Most of the definitions and results presented in this section also hold when K is
a commutative ring and when we consider modules over K (free modules, when bases are
needed).

Let E1, . . . , En, and F , be vector spaces over a field K, where n ≥ 1.

Definition 6.5. A function f : E1 × . . . × En → F is a multilinear map (or an n-linear
map) if it is linear in each argument, holding the others fixed. More explicitly, for every i,
1 ≤ i ≤ n, for all x1 ∈ E1, . . ., xi−1 ∈ Ei−1, xi+1 ∈ Ei+1, . . ., xn ∈ En, for all x, y ∈ Ei, for all
λ ∈ K,

f(x1, . . . , xi−1, x+ y, xi+1, . . . , xn) = f(x1, . . . , xi−1, x, xi+1, . . . , xn)

+ f(x1, . . . , xi−1, y, xi+1, . . . , xn),

f(x1, . . . , xi−1, λx, xi+1, . . . , xn) = λf(x1, . . . , xi−1, x, xi+1, . . . , xn).

When F = K, we call f an n-linear form (or multilinear form). If n ≥ 2 and E1 =
E2 = . . . = En, an n-linear map f : E × . . .×E → F is called symmetric, if f(x1, . . . , xn) =
f(xπ(1), . . . , xπ(n)) for every permutation π on {1, . . . , n}. An n-linear map f : E×. . .×E → F
is called alternating , if f(x1, . . . , xn) = 0 whenever xi = xi+1 for some i, 1 ≤ i ≤ n − 1 (in
other words, when two adjacent arguments are equal). It does no harm to agree that when
n = 1, a linear map is considered to be both symmetric and alternating, and we will do so.

When n = 2, a 2-linear map f : E1 × E2 → F is called a bilinear map. We have already
seen several examples of bilinear maps. Multiplication · : K × K → K is a bilinear map,
treating K as a vector space over itself.

The operation 〈−,−〉 : E∗×E → K applying a linear form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role in geometry
(inner products, quadratic forms) and in differential calculus (partial derivatives).

A bilinear map is symmetric if f(u, v) = f(v, u), for all u, v ∈ E.

Alternating multilinear maps satisfy the following simple but crucial properties.

Proposition 6.4. Let f : E× . . .×E → F be an n-linear alternating map, with n ≥ 2. The
following properties hold:

(1)

f(. . . , xi, xi+1, . . .) = −f(. . . , xi+1, xi, . . .)
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(2)
f(. . . , xi, . . . , xj, . . .) = 0,

where xi = xj, and 1 ≤ i < j ≤ n.

(3)
f(. . . , xi, . . . , xj, . . .) = −f(. . . , xj, . . . , xi, . . .),

where 1 ≤ i < j ≤ n.

(4)
f(. . . , xi, . . .) = f(. . . , xi + λxj, . . .),

for any λ ∈ K, and where i 6= j.

Proof. (1) By multilinearity applied twice, we have

f(. . . , xi + xi+1, xi + xi+1, . . .) = f(. . . , xi, xi, . . .) + f(. . . , xi, xi+1, . . .)

+ f(. . . , xi+1, xi, . . .) + f(. . . , xi+1, xi+1, . . .),

and since f is alternating, this yields

0 = f(. . . , xi, xi+1, . . .) + f(. . . , xi+1, xi, . . .),

that is, f(. . . , xi, xi+1, . . .) = −f(. . . , xi+1, xi, . . .).

(2) If xi = xj and i and j are not adjacent, we can interchange xi and xi+1, and then xi
and xi+2, etc, until xi and xj become adjacent. By (1),

f(. . . , xi, . . . , xj, . . .) = εf(. . . , xi, xj, . . .),

where ε = +1 or −1, but f(. . . , xi, xj, . . .) = 0, since xi = xj, and (2) holds.

(3) follows from (2) as in (1). (4) is an immediate consequence of (2).

Proposition 6.4 will now be used to show a fundamental property of alternating multilin-
ear maps. First we need to extend the matrix notation a little bit. Let E be a vector space
over K. Given an n× n matrix A = (ai j) over K, we can define a map L(A) : En → En as
follows:

L(A)1(u) = a1 1u1 + · · ·+ a1nun,

. . .

L(A)n(u) = an 1u1 + · · ·+ annun,

for all u1, . . . , un ∈ E and with u = (u1, . . . , un). It is immediately verified that L(A) is
linear. Then given two n×n matrices A = (ai j) and B = (bi j), by repeating the calculations
establishing the product of matrices (just before Definition 2.14), we can show that

L(AB) = L(A) ◦ L(B).
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It is then convenient to use the matrix notation to describe the effect of the linear map L(A),
as 

L(A)1(u)
L(A)2(u)

...
L(A)n(u)

 =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann



u1

u2
...
un

 .

Lemma 6.5. Let f : E × . . .×E → F be an n-linear alternating map. Let (u1, . . . , un) and
(v1, . . . , vn) be two families of n vectors, such that,

v1 = a1 1u1 + · · ·+ an 1un,

. . .

vn = a1nu1 + · · ·+ annun.

Equivalently, letting

A =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann

 ,

assume that we have 
v1

v2
...
vn

 = A>


u1

u2
...
un

 .

Then,

f(v1, . . . , vn) =
(∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n

)
f(u1, . . . , un),

where the sum ranges over all permutations π on {1, . . . , n}.

Proof. Expanding f(v1, . . . , vn) by multilinearity, we get a sum of terms of the form

aπ(1) 1 · · · aπ(n)nf(uπ(1), . . . , uπ(n)),

for all possible functions π : {1, . . . , n} → {1, . . . , n}. However, because f is alternating, only
the terms for which π is a permutation are nonzero. By Proposition 6.1, every permutation
π is a product of transpositions, and by Proposition 6.2, the parity ε(π) of the number of
transpositions only depends on π. Then applying Proposition 6.4 (3) to each transposition
in π, we get

aπ(1) 1 · · · aπ(n)nf(uπ(1), . . . , uπ(n)) = ε(π)aπ(1) 1 · · · aπ(n)nf(u1, . . . , un).

Thus, we get the expression of the lemma.
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For the case of n = 2, the proof details of Lemma 6.5 become

f(v1, v2) = f(a11u1 + a21u2, a12u1 + a22u2)

= f(a11u1 + a21u2, a12u1) + f(a11u1 + a21u2, a22u2)

= f(a11u1, a12u1) + f(a21u2, a12u1) + f(a11ua, a22u2) + f(a21u2, a22u2)

= a11a12f(u1, u1) + a21a12f(u2, u1) + a11a22f(u1, u2) + a21a22f(u2, u2)

= a21a12f(u2, u1) + a11a22f(u1, u2)

= (a11a22 − a12a21) f(u1, u2).

Hopefully the reader will recognize the quantity a11a22− a12a21. It is the determinant of the
2× 2 matrix

A =

(
a11 a12

a21 a22

)
.

This is no accident. The quantity

det(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n

is in fact the value of the determinant of A (which, as we shall see shortly, is also equal to the
determinant of A>). However, working directly with the above definition is quite awkward,
and we will proceed via a slightly indirect route

Remark: The reader might have been puzzled by the fact that it is the transpose matrix
A> rather than A itself that appears in Lemma 6.5. The reason is that if we want the generic
term in the determinant to be

ε(π)aπ(1) 1 · · · aπ(n)n,

where the permutation applies to the first index, then we have to express the vjs in terms
of the uis in terms of A> as we did. Furthermore, since

vj = a1 ju1 + · · ·+ ai jui + · · ·+ an jun,

we see that vj corresponds to the jth column of the matrix A, and so the determinant is
viewed as a function of the columns of A.

The literature is split on this point. Some authors prefer to define a determinant as we
did. Others use A itself, which amounts to viewing det as a function of the rows, in which
case we get the expression ∑

σ∈Sn
ε(σ)a1σ(1) · · · anσ(n).

Corollary 6.8 show that these two expressions are equal, so it doesn’t matter which is chosen.
This is a matter of taste.
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6.3 Definition of a Determinant

Recall that the set of all square n × n-matrices with coefficients in a field K is denoted by
Mn(K). The definition below is due to Kronecker and Weierstrass, 1903.

Definition 6.6. A determinant is defined as any map

D : Mn(K)→ K,

which, when viewed as a map on (Kn)n, i.e., a map of the n columns of a matrix, is n-linear
alternating and such that D(In) = 1 for the identity matrix In. Equivalently, we can consider
a vector space E of dimension n, some fixed basis (e1, . . . , en), and define

D : En → K

as an n-linear alternating map such that D(e1, . . . , en) = 1.

First we will show that such maps D exist, using an inductive definition that also gives
a recursive method for computing determinants. Actually, we will define a family (Dn)n≥1

of (finite) sets of maps D : Mn(K)→ K. Second we will show that determinants are in fact
uniquely defined, that is, we will show that each Dn consists of a single map. This will show
the equivalence of the direct definition det(A) of Lemma 6.5 with the inductive definition
D(A). Finally, we will prove some basic properties of determinants, using the uniqueness
theorem.

Given a matrix A ∈ Mn(K), we denote its n columns by A1, . . . , An. In order to describe
the recursive process to define a determinant we need the notion of a minor.

Definition 6.7. Given any n×n matrix with n ≥ 2, for any two indices i, j with 1 ≤ i, j ≤ n,
let Aij be the (n − 1) × (n − 1) matrix obtained by deleting Row i and Column j from A
and called a minor :

Aij =



×
×

× × × × × × ×
×
×
×
×


.

For example, if

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2
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then

A2 3 =


2 −1 0 0
0 −1 −1 0
0 0 2 −1
0 0 −1 2

 .

Definition 6.8. For every n ≥ 1, we define a finite set Dn of maps D : Mn(K) → K
inductively as follows:

When n = 1, D1 consists of the single map D such that, D(A) = a, where A = (a), with
a ∈ K.

Assume that Dn−1 has been defined, where n ≥ 2. Then Dn consists of all the maps D
such that, for some i, 1 ≤ i ≤ n,

D(A) = (−1)i+1ai 1D(Ai 1) + · · ·+ (−1)i+nai nD(Ai n),

where for every j, 1 ≤ j ≤ n, D(Ai j) is the result of applying any D in Dn−1 to the minor
Ai j.

� We confess that the use of the same letter D for the member of Dn being defined, and
for members of Dn−1, may be slightly confusing. We considered using subscripts to

distinguish, but this seems to complicate things unnecessarily. One should not worry too
much anyway, since it will turn out that each Dn contains just one map.

Each (−1)i+jD(Ai j) is called the cofactor of ai j, and the inductive expression for D(A)
is called a Laplace expansion of D according to the i-th Row . Given a matrix A ∈ Mn(K),
each D(A) is called a determinant of A.

We can think of each member of Dn as an algorithm to evaluate “the” determinant of A.
The main point is that these algorithms, which recursively evaluate a determinant using all
possible Laplace row expansions, all yield the same result, det(A).

We will prove shortly that D(A) is uniquely defined (at the moment, it is not clear that
Dn consists of a single map). Assuming this fact, given a n× n-matrix A = (ai j),

A =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann

 ,

its determinant is denoted by D(A) or det(A), or more explicitly by

det(A) =

∣∣∣∣∣∣∣∣∣
a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann

∣∣∣∣∣∣∣∣∣ .
Let us first consider some examples.
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Example 6.1.

1. When n = 2, if

A =

(
a b
c d

)
,

then by expanding according to any row, we have

D(A) = ad− bc.

2. When n = 3, if

A =

a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

 ,

then by expanding according to the first row, we have

D(A) = a1 1

∣∣∣∣a2 2 a2 3

a3 2 a3 3

∣∣∣∣− a1 2

∣∣∣∣a2 1 a2 3

a3 1 a3 3

∣∣∣∣+ a1 3

∣∣∣∣a2 1 a2 2

a3 1 a3 2

∣∣∣∣ ,
that is,

D(A) = a1 1(a2 2a3 3 − a3 2a2 3)− a1 2(a2 1a3 3 − a3 1a2 3) + a1 3(a2 1a3 2 − a3 1a2 2),

which gives the explicit formula

D(A) = a1 1a2 2a3 3 + a2 1a3 2a1 3 + a3 1a1 2a2 3 − a1 1a3 2a2 3 − a2 1a1 2a3 3 − a3 1a2 2a1 3.

We now show that each D ∈ Dn is a determinant (map).

Lemma 6.6. For every n ≥ 1, for every D ∈ Dn as defined in Definition 6.8, D is an
alternating multilinear map such that D(In) = 1.

Proof. By induction on n, it is obvious that D(In) = 1. Let us now prove that D is
multilinear. Let us show that D is linear in each column. Consider any Column k. Since

D(A) = (−1)i+1ai 1D(Ai 1) + · · ·+ (−1)i+jai jD(Ai j) + · · ·+ (−1)i+nai nD(Ai n),

if j 6= k, then by induction, D(Ai j) is linear in Column k, and ai j does not belong to Column
k, so (−1)i+jai jD(Ai j) is linear in Column k. If j = k, then D(Ai j) does not depend on
Column k = j, since Ai j is obtained from A by deleting Row i and Column j = k, and ai j
belongs to Column j = k. Thus, (−1)i+jai jD(Ai j) is linear in Column k. Consequently, in
all cases, (−1)i+jai jD(Ai j) is linear in Column k, and thus, D(A) is linear in Column k.

Let us now prove that D is alternating. Assume that two adjacent columns of A are
equal, say Ak = Ak+1. Assume that j 6= k and j 6= k + 1. Then the matrix Ai j has two
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identical adjacent columns, and by the induction hypothesis, D(Ai j) = 0. The remaining
terms of D(A) are

(−1)i+kai kD(Ai k) + (−1)i+k+1ai k+1D(Ai k+1).

However, the two matrices Ai k and Ai k+1 are equal, since we are assuming that Columns k
and k + 1 of A are identical and Ai k is obtained from A by deleting Row i and Column k
while Ai k+1 is obtained from A by deleting Row i and Column k+ 1. Similarly, ai k = ai k+1,
since Columns k and k + 1 of A are equal. But then,

(−1)i+kai kD(Ai k) + (−1)i+k+1ai k+1D(Ai k+1) = (−1)i+kai kD(Ai k)− (−1)i+kai kD(Ai k) = 0.

This shows that D is alternating and completes the proof.

Lemma 6.6 shows the existence of determinants. We now prove their uniqueness.

Theorem 6.7. For every n ≥ 1, for every D ∈ Dn, for every matrix A ∈ Mn(K), we have

D(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n,

where the sum ranges over all permutations π on {1, . . . , n}. As a consequence, Dn consists
of a single map for every n ≥ 1, and this map is given by the above explicit formula.

Proof. Consider the standard basis (e1, . . . , en) of Kn, where (ei)i = 1 and (ei)j = 0, for
j 6= i. Then each column Aj of A corresponds to a vector vj whose coordinates over the
basis (e1, . . . , en) are the components of Aj, that is, we can write

v1 = a1 1e1 + · · ·+ an 1en,

. . .

vn = a1ne1 + · · ·+ annen.

Since by Lemma 6.6, each D is a multilinear alternating map, by applying Lemma 6.5, we
get

D(A) = D(v1, . . . , vn) =
(∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n

)
D(e1, . . . , en),

where the sum ranges over all permutations π on {1, . . . , n}. But D(e1, . . . , en) = D(In),
and by Lemma 6.6, we have D(In) = 1. Thus,

D(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n,

where the sum ranges over all permutations π on {1, . . . , n}.
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From now on we will favor the notation det(A) over D(A) for the determinant of a square
matrix.

Remark: There is a geometric interpretation of determinants which we find quite illumi-
nating. Given n linearly independent vectors (u1, . . . , un) in Rn, the set

Pn = {λ1u1 + · · ·+ λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}

is called a parallelotope. If n = 2, then P2 is a parallelogram and if n = 3, then P3 is a
parallelepiped , a skew box having u1, u2, u3 as three of its corner sides. See Figures 6.1 and
6.2.

u = (1,0)1

u = (1,1)
2

Figure 6.1: The parallelogram in Rw spanned by the vectors u1 = (1, 0) and u2 = (1, 1).

Then it turns out that det(u1, . . . , un) is the signed volume of the parallelotope Pn (where
volume means n-dimensional volume). The sign of this volume accounts for the orientation
of Pn in Rn.

We can now prove some properties of determinants.

Corollary 6.8. For every matrix A ∈ Mn(K), we have det(A) = det(A>).

Proof. By Theorem 6.7, we have

det(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n,

where the sum ranges over all permutations π on {1, . . . , n}. Since a permutation is invertible,
every product

aπ(1) 1 · · · aπ(n)n
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u = (1,1,0)
1

u = (0,1,0)
2

u = (1,1,1)
3

Figure 6.2: The parallelepiped in R3 spanned by the vectors u1 = (1, 1, 0), u2 = (0, 1, 0), and
u3 = (0, 0, 1).

can be rewritten as

a1π−1(1) · · · anπ−1(n),

and since ε(π−1) = ε(π) and the sum is taken over all permutations on {1, . . . , n}, we have∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n =
∑
σ∈Sn

ε(σ)a1σ(1) · · · anσ(n),

where π and σ range over all permutations. But it is immediately verified that

det(A>) =
∑
σ∈Sn

ε(σ)a1σ(1) · · · anσ(n).

A useful consequence of Corollary 6.8 is that the determinant of a matrix is also a multi-
linear alternating map of its rows. This fact, combined with the fact that the determinant of
a matrix is a multilinear alternating map of its columns, is often useful for finding short-cuts
in computing determinants. We illustrate this point on the following example which shows
up in polynomial interpolation.
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Example 6.2. Consider the so-called Vandermonde determinant

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...
xn−1

1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
.

We claim that
V (x1, . . . , xn) =

∏
1≤i<j≤n

(xj − xi),

with V (x1, . . . , xn) = 1, when n = 1. We prove it by induction on n ≥ 1. The case n = 1 is
obvious. Assume n ≥ 2. We proceed as follows: multiply Row n − 1 by x1 and subtract it
from Row n (the last row), then multiply Row n− 2 by x1 and subtract it from Row n− 1,
etc, multiply Row i− 1 by x1 and subtract it from row i, until we reach Row 1. We obtain
the following determinant:

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
0 x2 − x1 . . . xn − x1

0 x2(x2 − x1) . . . xn(xn − x1)
...

...
. . .

...
0 xn−2

2 (x2 − x1) . . . xn−2
n (xn − x1)

∣∣∣∣∣∣∣∣∣∣∣
.

Now expanding this determinant according to the first column and using multilinearity,
we can factor (xi − x1) from the column of index i − 1 of the matrix obtained by deleting
the first row and the first column, and thus

V (x1, . . . , xn) = (x2 − x1)(x3 − x1) · · · (xn − x1)V (x2, . . . , xn),

which establishes the induction step.

Remark: Observe that

∆(x1, . . . , xn) = V (xn, . . . , x1) = (−1)(
n
2)V (x1, . . . xn),

where ∆(x1, . . . , xn) is the discriminant of (x1, . . . , xn) introduced in Definition 6.2.

Example 6.3. The determinant of upper triangular matrices and more generally of block
matrices that are block upper triangular has a remarkable form. Recall that an n×n matrix
A = (aij) is upper-triangular if it is of the form

A =


a11 × × · · · ×
0 a22 × · · · ×
0 0

. . . · · · ...
...

...
. . . . . .

...
0 0 0 0 ann

 ,
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that is, aij = 0 for all i > j, 1 ≤ i, j ≤ n. Using n− 1 times Laplace expansion with respect
to the first column we obain

det(A) = a11a22 · · · ann.
Similarly, if A is an n× n block matrix which is block upper triangular ,

A =


A11 × × · · · ×
0 A22 × · · · ×
0 0

. . . . . .
...

...
...

. . . . . .
...

0 0 0 0 App

 ,

where each Aii is an ni×ni matrix, with n1 + · · ·+np = n, each block × above the diagonal
in position (i, j) for i < j is an ni × nj matrix, and each block in position (i, j) for i > j is
the ni × nj zero matrix, then it can be shown by induction on p ≥ 1 that

det(A) = det(A11) det(A22) · · · det(App).

Lemma 6.5 can be reformulated nicely as follows.

Proposition 6.9. Let f : E × . . .×E → F be an n-linear alternating map. Let (u1, . . . , un)
and (v1, . . . , vn) be two families of n vectors, such that

v1 = a1 1u1 + · · ·+ a1nun,

. . .

vn = an 1u1 + · · ·+ annun.

Equivalently, letting

A =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann

 ,

assume that we have 
v1

v2
...
vn

 = A


u1

u2
...
un

 .

Then,
f(v1, . . . , vn) = det(A)f(u1, . . . , un).

Proof. The only difference with Lemma 6.5 is that here we are using A> instead of A. Thus,
by Lemma 6.5 and Corollary 6.8, we get the desired result.
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As a consequence, we get the very useful property that the determinant of a product of
matrices is the product of the determinants of these matrices.

Proposition 6.10. For any two n×n-matrices A and B, we have det(AB) = det(A) det(B).

Proof. We use Proposition 6.9 as follows: let (e1, . . . , en) be the standard basis of Kn, and
let 

w1

w2
...
wn

 = AB


e1

e2
...
en

 .

Then we get

det(w1, . . . , wn) = det(AB) det(e1, . . . , en) = det(AB),

since det(e1, . . . , en) = 1. Now letting
v1

v2
...
vn

 = B


e1

e2
...
en

 ,

we get

det(v1, . . . , vn) = det(B),

and since 
w1

w2
...
wn

 = A


v1

v2
...
vn

 ,

we get

det(w1, . . . , wn) = det(A) det(v1, . . . , vn) = det(A) det(B).

It should be noted that all the results of this section, up to now, also hold when K is a
commutative ring and not necessarily a field. We can now characterize when an n×n-matrix
A is invertible in terms of its determinant det(A).

6.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed a field.
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Definition 6.9. Let K be a commutative ring. Given a matrix A ∈ Mn(K), let Ã = (bi j)
be the matrix defined such that

bi j = (−1)i+j det(Aj i),

the cofactor of aj i. The matrix Ã is called the adjugate of A, and each matrix Aj i is called
a minor of the matrix A.

For example, if

A =

1 1 1
2 −2 −2
3 3 −3

 ,

we have

b11 = det(A11) =

∣∣∣∣ −2 −2
3 −3

∣∣∣∣ = 12 b12 = − det(A21) = −
∣∣∣∣ 1 1

3 −3

∣∣∣∣ = 6

b13 = det(A31) =

∣∣∣∣ 1 1
−2 −2

∣∣∣∣ = 0 b21 = − det(A12) = −
∣∣∣∣ 2 −2

3 −3

∣∣∣∣ = 0

b22 = det(A22) =

∣∣∣∣ 1 1
3 −3

∣∣∣∣ = −6 b23 = − det(A32) = −
∣∣∣∣ 1 1

2 −2

∣∣∣∣ = 4

b31 = det(A13) =

∣∣∣∣ 2 −2
3 3

∣∣∣∣ = 12 b32 = − det(A23) = −
∣∣∣∣ 1 1

3 3

∣∣∣∣ = 0

b33 = det(A33) =

∣∣∣∣ 1 1
2 −2

∣∣∣∣ = −4,

we find that

Ã =

12 6 0
0 −6 4
12 0 −4

 .

� Note the reversal of the indices in

bi j = (−1)i+j det(Aj i).

Thus, Ã is the transpose of the matrix of cofactors of elements of A.

We have the following proposition.

Proposition 6.11. Let K be a commutative ring. For every matrix A ∈ Mn(K), we have

AÃ = ÃA = det(A)In.

As a consequence, A is invertible iff det(A) is invertible, and if so, A−1 = (det(A))−1Ã.
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Proof. If Ã = (bi j) and AÃ = (ci j), we know that the entry ci j in row i and column j of AÃ
is

ci j = ai 1b1 j + · · ·+ ai kbk j + · · ·+ ai nbn j,

which is equal to

ai 1(−1)j+1 det(Aj 1) + · · ·+ ai n(−1)j+n det(Aj n).

If j = i, then we recognize the expression of the expansion of det(A) according to the i-th
row:

ci i = det(A) = ai 1(−1)i+1 det(Ai 1) + · · ·+ ai n(−1)i+n det(Ai n).

If j 6= i, we can form the matrix A′ by replacing the j-th row of A by the i-th row of A.
Now the matrix Aj k obtained by deleting row j and column k from A is equal to the matrix
A′j k obtained by deleting row j and column k from A′, since A and A′ only differ by the j-th
row. Thus,

det(Aj k) = det(A′j k),

and we have

ci j = ai 1(−1)j+1 det(A′j 1) + · · ·+ ai n(−1)j+n det(A′j n).

However, this is the expansion of det(A′) according to the j-th row, since the j-th row of A′

is equal to the i-th row of A. Furthermore, since A′ has two identical rows i and j, because
det is an alternating map of the rows (see an earlier remark), we have det(A′) = 0. Thus,
we have shown that ci i = det(A), and ci j = 0, when j 6= i, and so

AÃ = det(A)In.

It is also obvious from the definition of Ã, that

Ã> = Ã>.

Then applying the first part of the argument to A>, we have

A>Ã> = det(A>)In,

and since det(A>) = det(A), Ã> = Ã>, and (ÃA)> = A>Ã>, we get

det(A)In = A>Ã> = A>Ã> = (ÃA)>,

that is,

(ÃA)> = det(A)In,

which yields

ÃA = det(A)In,
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since I>n = In. This proves that

AÃ = ÃA = det(A)In.

As a consequence, if det(A) is invertible, we have A−1 = (det(A))−1Ã. Conversely, if A is
invertible, from AA−1 = In, by Proposition 6.10, we have det(A) det(A−1) = 1, and det(A)
is invertible.

For example, we saw earlier that

A =

1 1 1
2 −2 −2
3 3 −3

 and Ã =

12 6 0
0 −6 4
12 0 −4

 ,

and we have 1 1 1
2 −2 −2
3 3 −3

12 6 0
0 −6 4
12 0 −4

 = 24

1 0 0
0 1 0
0 0 1


with det(A) = 24.

When K is a field, an element a ∈ K is invertible iff a 6= 0. In this case, the second part
of the proposition can be stated as A is invertible iff det(A) 6= 0. Note in passing that this
method of computing the inverse of a matrix is usually not practical.

6.5 Systems of Linear Equations and Determinants

We now consider some applications of determinants to linear independence and to solving
systems of linear equations. Although these results hold for matrices over certain rings, their
proofs require more sophisticated methods. Therefore, we assume again that K is a field
(usually, K = R or K = C).

Let A be an n×n-matrix, x a column vectors of variables, and b another column vector,
and let A1, . . . , An denote the columns of A. Observe that the system of equations Ax = b,

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann



x1

x2
...
xn

 =


b1

b2
...
bn


is equivalent to

x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n = b,

since the equation corresponding to the i-th row is in both cases

ai 1x1 + · · ·+ ai jxj + · · ·+ ai nxn = bi.

First we characterize linear independence of the column vectors of a matrix A in terms
of its determinant.
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Proposition 6.12. Given an n × n-matrix A over a field K, the columns A1, . . . , An of
A are linearly dependent iff det(A) = det(A1, . . . , An) = 0. Equivalently, A has rank n iff
det(A) 6= 0.

Proof. First assume that the columns A1, . . . , An of A are linearly dependent. Then there
are x1, . . . , xn ∈ K, such that

x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n = 0,

where xj 6= 0 for some j. If we compute

det(A1, . . . , x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n, . . . , An) = det(A1, . . . , 0, . . . , An) = 0,

where 0 occurs in the j-th position. By multilinearity, all terms containing two identical
columns Ak for k 6= j vanish, and we get

det(A1, . . . , x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n, . . . , An) = xj det(A1, . . . , An) = 0.

Since xj 6= 0 and K is a field, we must have det(A1, . . . , An) = 0.

Conversely, we show that if the columns A1, . . . , An of A are linearly independent, then
det(A1, . . . , An) 6= 0. If the columns A1, . . . , An of A are linearly independent, then they
form a basis of Kn, and we can express the standard basis (e1, . . . , en) of Kn in terms of
A1, . . . , An. Thus, we have

e1

e2
...
en

 =


b1 1 b1 2 . . . b1n

b2 1 b2 2 . . . b2n
...

...
. . .

...
bn 1 bn 2 . . . bnn



A1

A2

...
An

 ,

for some matrix B = (bi j), and by Proposition 6.9, we get

det(e1, . . . , en) = det(B) det(A1, . . . , An),

and since det(e1, . . . , en) = 1, this implies that det(A1, . . . , An) 6= 0 (and det(B) 6= 0). For
the second assertion, recall that the rank of a matrix is equal to the maximum number of
linearly independent columns, and the conclusion is clear.

We now characterize when a system of linear equations of the form Ax = b has a unique
solution.

Proposition 6.13. Given an n× n-matrix A over a field K, the following properties hold:

(1) For every column vector b, there is a unique column vector x such that Ax = b iff the
only solution to Ax = 0 is the trivial vector x = 0, iff det(A) 6= 0.
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(2) If det(A) 6= 0, the unique solution of Ax = b is given by the expressions

xj =
det(A1, . . . , Aj−1, b, Aj+1, . . . , An)

det(A1, . . . , Aj−1, Aj, Aj+1, . . . , An)
,

known as Cramer’s rules.

(3) The system of linear equations Ax = 0 has a nonzero solution iff det(A) = 0.

Proof. (1) Assume that Ax = b has a single solution x0, and assume that Ay = 0 with y 6= 0.
Then,

A(x0 + y) = Ax0 + Ay = Ax0 + 0 = b,

and x0 + y 6= x0 is another solution of Ax = b, contradicting the hypothesis that Ax = b has
a single solution x0. Thus, Ax = 0 only has the trivial solution. Now assume that Ax = 0
only has the trivial solution. This means that the columns A1, . . . , An of A are linearly
independent, and by Proposition 6.12, we have det(A) 6= 0. Finally, if det(A) 6= 0, by
Proposition 6.11, this means that A is invertible, and then for every b, Ax = b is equivalent
to x = A−1b, which shows that Ax = b has a single solution.

(2) Assume that Ax = b. If we compute

det(A1, . . . , x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n, . . . , An) = det(A1, . . . , b, . . . , An),

where b occurs in the j-th position, by multilinearity, all terms containing two identical
columns Ak for k 6= j vanish, and we get

xj det(A1, . . . , An) = det(A1, . . . , Aj−1, b, Aj+1, . . . , An),

for every j, 1 ≤ j ≤ n. Since we assumed that det(A) = det(A1, . . . , An) 6= 0, we get the
desired expression.

(3) Note that Ax = 0 has a nonzero solution iff A1, . . . , An are linearly dependent (as
observed in the proof of Proposition 6.12), which, by Proposition 6.12, is equivalent to
det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impractical to solve systems of linear
equations using the above expressions. However, these formula imply an interesting fact,
which is that the solution of the system Ax = b are continuous in A and b. If we assume that
the entries in A are continuous functions aij(t) and the entries in b are are also continuous
functions bj(t) of a real parameter t, since determinants are polynomial functions of their
entries, the expressions

xj(t) =
det(A1, . . . , Aj−1, b, Aj+1, . . . , An)

det(A1, . . . , Aj−1, Aj, Aj+1, . . . , An)

are ratios of polynomials, and thus are also continuous as long as det(A(t)) is nonzero.
Similarly, if the functions aij(t) and bj(t) are differentiable, so are the xj(t).
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6.6 Determinant of a Linear Map

Given a vector space E of finite dimension n, given a basis (u1, . . . , un) of E, for every linear
map f : E → E, if M(f) is the matrix of f w.r.t. the basis (u1, . . . , un), we can define
det(f) = det(M(f)). If (v1, . . . , vn) is any other basis of E, and if P is the change of basis
matrix, by Corollary 3.6, the matrix of f with respect to the basis (v1, . . . , vn) is P−1M(f)P .
By Proposition 6.10, we have

det(P−1M(f)P ) = det(P−1) det(M(f)) det(P ) = det(P−1) det(P ) det(M(f)) = det(M(f)).

Thus, det(f) is indeed independent of the basis of E.

Definition 6.10. Given a vector space E of finite dimension, for any linear map f : E → E,
we define the determinant det(f) of f as the determinant det(M(f)) of the matrix of f in
any basis (since, from the discussion just before this definition, this determinant does not
depend on the basis).

Then we have the following proposition.

Proposition 6.14. Given any vector space E of finite dimension n, a linear map f : E → E
is invertible iff det(f) 6= 0.

Proof. The linear map f : E → E is invertible iff its matrix M(f) in any basis is invertible
(by Proposition 3.2), iff det(M(f)) 6= 0, by Proposition 6.11.

Given a vector space of finite dimension n, it is easily seen that the set of bijective linear
maps f : E → E such that det(f) = 1 is a group under composition. This group is a
subgroup of the general linear group GL(E). It is called the special linear group (of E), and
it is denoted by SL(E), or when E = Kn, by SL(n,K), or even by SL(n).

6.7 The Cayley–Hamilton Theorem

We next discuss an interesting and important application of Proposition 6.11, the Cayley–
Hamilton theorem. The results of this section apply to matrices over any commutative ring
K. First we need the concept of the characteristic polynomial of a matrix.

Definition 6.11. If K is any commutative ring, for every n × n matrix A ∈ Mn(K), the
characteristic polynomial PA(X) of A is the determinant

PA(X) = det(XI − A).
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The characteristic polynomial PA(X) is a polynomial in K[X], the ring of polynomials
in the indeterminate X with coefficients in the ring K. For example, when n = 2, if

A =

(
a b
c d

)
,

then

PA(X) =

∣∣∣∣X − a −b
−c X − d

∣∣∣∣ = X2 − (a+ d)X + ad− bc.

We can substitute the matrix A for the variable X in the polynomial PA(X), obtaining a
matrix PA. If we write

PA(X) = Xn + c1X
n−1 + · · ·+ cn,

then
PA = An + c1A

n−1 + · · ·+ cnI.

We have the following remarkable theorem.

Theorem 6.15. (Cayley–Hamilton) If K is any commutative ring, for every n× n matrix
A ∈ Mn(K), if we let

PA(X) = Xn + c1X
n−1 + · · ·+ cn

be the characteristic polynomial of A, then

PA = An + c1A
n−1 + · · ·+ cnI = 0.

Proof. We can view the matrix B = XI −A as a matrix with coefficients in the polynomial
ring K[X], and then we can form the matrix B̃ which is the transpose of the matrix of

cofactors of elements of B. Each entry in B̃ is an (n− 1)× (n− 1) determinant, and thus a

polynomial of degree a most n− 1, so we can write B̃ as

B̃ = Xn−1B0 +Xn−2B1 + · · ·+Bn−1,

for some n× n matrices B0, . . . , Bn−1 with coefficients in K. For example, when n = 2, we
have

B =

(
X − a −b
−c X − d

)
, B̃ =

(
X − d b
c X − a

)
= X

(
1 0
0 1

)
+

(
−d b
c −a

)
.

By Proposition 6.11, we have

BB̃ = det(B)I = PA(X)I.

On the other hand, we have

BB̃ = (XI − A)(Xn−1B0 +Xn−2B1 + · · ·+Xn−j−1Bj + · · ·+Bn−1),
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and by multiplying out the right-hand side, we get

BB̃ = XnD0 +Xn−1D1 + · · ·+Xn−jDj + · · ·+Dn,

with

D0 = B0

D1 = B1 − AB0

...

Dj = Bj − ABj−1

...

Dn−1 = Bn−1 − ABn−2

Dn = −ABn−1.

Since
PA(X)I = (Xn + c1X

n−1 + · · ·+ cn)I,

the equality
XnD0 +Xn−1D1 + · · ·+Dn = (Xn + c1X

n−1 + · · ·+ cn)I

is an equality between two matrices, so it requires that all corresponding entries are equal,
and since these are polynomials, the coefficients of these polynomials must be identical,
which is equivalent to the set of equations

I = B0

c1I = B1 − AB0

...

cjI = Bj − ABj−1

...

cn−1I = Bn−1 − ABn−2

cnI = −ABn−1,

for all j, with 1 ≤ j ≤ n− 1. If, as in the table below,

An = AnB0

c1A
n−1 = An−1(B1 − AB0)

...

cjA
n−j = An−j(Bj − ABj−1)

...

cn−1A = A(Bn−1 − ABn−2)

cnI = −ABn−1,
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we multiply the first equation by An, the last by I, and generally the (j + 1)th by An−j,
when we add up all these new equations, we see that the right-hand side adds up to 0, and
we get our desired equation

An + c1A
n−1 + · · ·+ cnI = 0,

as claimed.

As a concrete example, when n = 2, the matrix

A =

(
a b
c d

)
satisfies the equation

A2 − (a+ d)A+ (ad− bc)I = 0.

Most readers will probably find the proof of Theorem 6.15 rather clever but very myste-
rious and unmotivated. The conceptual difficulty is that we really need to understand how
polynomials in one variable “act” on vectors in terms of the matrix A. This can be done and
yields a more “natural” proof. Actually, the reasoning is simpler and more general if we free
ourselves from matrices and instead consider a finite-dimensional vector space E and some
given linear map f : E → E. Given any polynomial p(X) = a0X

n + a1X
n−1 + · · ·+ an with

coefficients in the field K, we define the linear map p(f) : E → E by

p(f) = a0f
n + a1f

n−1 + · · ·+ anid,

where fk = f ◦ · · · ◦ f , the k-fold composition of f with itself. Note that

p(f)(u) = a0f
n(u) + a1f

n−1(u) + · · ·+ anu,

for every vector u ∈ E. Then we define a new kind of scalar multiplication · : K[X]×E → E
by polynomials as follows: for every polynomial p(X) ∈ K[X], for every u ∈ E,

p(X) · u = p(f)(u).

It is easy to verify that this is a “good action,” which means that

p · (u+ v) = p · u+ p · v
(p+ q) · u = p · u+ q · u

(pq) · u = p · (q · u)

1 · u = u,

for all p, q ∈ K[X] and all u, v ∈ E. With this new scalar multiplication, E is a K[X]-module.

If p = λ is just a scalar in K (a polynomial of degree 0), then

λ · u = (λid)(u) = λu,
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which means that K acts on E by scalar multiplication as before. If p(X) = X (the monomial
X), then

X · u = f(u).

Now if we pick a basis (e1, . . . , en) of E, if a polynomial p(X) ∈ K[X] has the property
that

p(X) · ei = 0, i = 1, . . . , n,

then this means that p(f)(ei) = 0 for i = 1, . . . , n, which means that the linear map p(f)
vanishes on E. We can also check, as we did in Section 6.2, that if A and B are two n× n
matrices and if (u1, . . . , un) are any n vectors, then

A ·

B ·
u1

...
un


 = (AB) ·

u1
...
un

 .

This suggests the plan of attack for our second proof of the Cayley–Hamilton theorem.
For simplicity, we prove the theorem for vector spaces over a field. The proof goes through
for a free module over a commutative ring.

Theorem 6.16. (Cayley–Hamilton) For every finite-dimensional vector space over a field
K, for every linear map f : E → E, for every basis (e1, . . . , en), if A is the matrix over f
over the basis (e1, . . . , en) and if

PA(X) = Xn + c1X
n−1 + · · ·+ cn

is the characteristic polynomial of A, then

PA(f) = fn + c1f
n−1 + · · ·+ cnid = 0.

Proof. Since the columns of A consist of the vector f(ej) expressed over the basis (e1, . . . , en),
we have

f(ej) =
n∑
i=1

ai jei, 1 ≤ j ≤ n.

Using our action of K[X] on E, the above equations can be expressed as

X · ej =
n∑
i=1

ai j · ei, 1 ≤ j ≤ n,

which yields

j−1∑
i=1

−ai j · ei + (X − aj j) · ej +
n∑

i=j+1

−ai j · ei = 0, 1 ≤ j ≤ n.
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Observe that the transpose of the characteristic polynomial shows up, so the above system
can be written as

X − a1 1 −a2 1 · · · −an 1

−a1 2 X − a2 2 · · · −an 2
...

...
...

...
−a1n −a2n · · · X − ann

 ·

e1

e2
...
en

 =


0
0
...
0

 .

If we let B = XI −A>, then as in the previous proof, if B̃ is the transpose of the matrix of
cofactors of B, we have

B̃B = det(B)I = det(XI − A>)I = det(XI − A)I = PAI.

But since

B ·


e1

e2
...
en

 =


0
0
...
0

 ,

and since B̃ is matrix whose entries are polynomials in K[X], it makes sense to multiply on

the left by B̃ and we get

B̃ ·B ·


e1

e2
...
en

 = (B̃B) ·


e1

e2
...
en

 = PAI ·


e1

e2
...
en

 = B̃ ·


0
0
...
0

 =


0
0
...
0

 ;

that is,
PA · ej = 0, j = 1, . . . , n,

which proves that PA(f) = 0, as claimed.

IfK is a field, then the characteristic polynomial of a linear map f : E → E is independent
of the basis (e1, . . . , en) chosen in E. To prove this, observe that the matrix of f over another
basis will be of the form P−1AP , for some inverible matrix P , and then

det(XI − P−1AP ) = det(XP−1IP − P−1AP )

= det(P−1(XI − A)P )

= det(P−1) det(XI − A) det(P )

= det(XI − A).

Therefore, the characteristic polynomial of a linear map is intrinsic to f , and it is denoted
by Pf .

The zeros (roots) of the characteristic polynomial of a linear map f are called the eigen-
values of f . They play an important role in theory and applications. We will come back to
this topic later on.
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6.8 Permanents

Recall that the explicit formula for the determinant of an n× n matrix is

det(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n.

If we drop the sign ε(π) of every permutation from the above formula, we obtain a quantity
known as the permanent :

per(A) =
∑
π∈Sn

aπ(1) 1 · · · aπ(n)n.

Permanents and determinants were investigated as early as 1812 by Cauchy. It is clear from
the above definition that the permanent is a multilinear symmetric form. We also have

per(A) = per(A>),

and the following unsigned version of the Laplace expansion formula:

per(A) = ai 1per(Ai 1) + · · ·+ ai jper(Ai j) + · · ·+ ai nper(Ai n),

for i = 1, . . . , n. However, unlike determinants which have a clear geometric interpretation as
signed volumes, permanents do not have any natural geometric interpretation. Furthermore,
determinants can be evaluated efficiently, for example using the conversion to row reduced
echelon form, but computing the permanent is hard.

Permanents turn out to have various combinatorial interpretations. One of these is in
terms of perfect matchings of bipartite graphs which we now discuss.

See Definition 18.5 for the definition of an undirected graph. A bipartite (undirected)
graph G = (V,E) is a graph whose set of nodes V can be partitioned into two nonempty
disjoint subsets V1 and V2, such that every edge e ∈ E has one endpoint in V1 and one
endpoint in V2.

An example of a bipartite graph with 14 nodes is shown in Figure 6.3; its nodes are
partitioned into the two sets {x1, x2, x3, x4, x5, x6, x7} and {y1, y2, y3, y4, y5, y6, y7}.

A matching in a graph G = (V,E) (bipartite or not) is a set M of pairwise non-adjacent
edges, which means that no two edges in M share a common vertex. A perfect matching is
a matching such that every node in V is incident to some edge in the matching M (every
node in V is an endpoint of some edge in M). Figure 6.4 shows a perfect matching (in red)
in the bipartite graph G.

Obviously, a perfect matching in a bipartite graph can exist only if its set of nodes has
a partition in two blocks of equal size, say {x1, . . . , xm} and {y1, . . . , ym}. Then there is
a bijection between perfect matchings and bijections π : {x1, . . . , xm} → {y1, . . . , ym} such
that π(xi) = yj iff there is an edge between xi and yj.

Now every bipartite graph G with a partition of its nodes into two sets of equal size as
above is represented by an m × m matrix A = (aij) such that aij = 1 iff there is an edge
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x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 6.3: A bipartite graph G.

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 6.4: A perfect matching in the bipartite graph G.
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between xi and yj, and aij = 0 otherwise. Using the interpretation of perfect matchings as
bijections π : {x1, . . . , xm} → {y1, . . . , ym}, we see that the permanent per(A) of the (0, 1)-
matrix A representing the bipartite graph G counts the number of perfect matchings in G.

In a famous paper published in 1979, Leslie Valiant proves that computing the permanent
is a #P-complete problem. Such problems are suspected to be intractable. It is known that
if a polynomial-time algorithm existed to solve a #P-complete problem, then we would have
P = NP , which is believed to be very unlikely.

Another combinatorial interpretation of the permanent can be given in terms of systems
of distinct representatives. Given a finite set S, let (A1, . . . , An) be any sequence of nonempty
subsets of S (not necessarily distinct). A system of distinct representatives (for short SDR)
of the sets A1, . . . , An is a sequence of n distinct elements (a1, . . . , an), with ai ∈ Ai for i =
1, . . . , n. The number of SDR’s of a sequence of sets plays an important role in combinatorics.
Now, if S = {1, 2, . . . , n} and if we associate to any sequence (A1, . . . , An) of nonempty
subsets of S the matrix A = (aij) defined such that aij = 1 if j ∈ Ai and aij = 0 otherwise,
then the permanent per(A) counts the number of SDR’s of the sets A1, . . . , An.

This interpretation of permanents in terms of SDR’s can be used to prove bounds for the
permanents of various classes of matrices. Interested readers are referred to van Lint and
Wilson [71] (Chapters 11 and 12). In particular, a proof of a theorem known as Van der
Waerden conjecture is given in Chapter 12. This theorem states that for any n × n matrix
A with nonnegative entries in which all row-sums and column-sums are 1 (doubly stochastic
matrices), we have

per(A) ≥ n!

nn
,

with equality for the matrix in which all entries are equal to 1/n.

6.9 Summary

The main concepts and results of this chapter are listed below:

• Permutations , transpositions , basics transpositions .

• Every permutation can be written as a composition of permutations.

• The parity of the number of transpositions involved in any decomposition of a permu-
tation σ is an invariant; it is the signature ε(σ) of the permutation σ.

• Multilinear maps (also called n-linear maps); bilinear maps .

• Symmetric and alternating multilinear maps.

• A basic property of alternating multilinear maps (Lemma 6.5) and the introduction of
the formula expressing a determinant.



6.10. FURTHER READINGS 211

• Definition of a determinant as a multlinear alternating map D : Mn(K)→ K such that
D(I) = 1.

• We define the set of algorithms Dn, to compute the determinant of an n× n matrix.

• Laplace expansion according to the ith row ; cofactors .

• We prove that the algorithms in Dn compute determinants (Lemma 6.6).

• We prove that all algorithms in Dn compute the same determinant (Theorem 6.7).

• We give an interpretation of determinants as signed volumes .

• We prove that det(A) = det(A>).

• We prove that det(AB) = det(A) det(B).

• The adjugate Ã of a matrix A.

• Formula for the inverse in terms of the adjugate.

• A matrix A is invertible iff det(A) 6= 0.

• Solving linear equations using Cramer’s rules .

• Determinant of a linear map.

• The characteristic polynomial of a matrix.

• The Cayley–Hamilton theorem.

• The action of the polynomial ring induced by a linear map on a vector space.

• Permanents .

• Permanents count the number of perfect matchings in bipartite graphs.

• Computing the permanent is a #P-perfect problem (L. Valiant).

• Permanents count the number of SDRs of sequences of subsets of a given set.

6.10 Further Readings

Thorough expositions of the material covered in Chapter 2–5 and 6 can be found in Strang
[64, 63], Lax [44], Lang [41], Artin [3], Mac Lane and Birkhoff [46], Hoffman and Kunze
[35], Dummit and Foote [19], Bourbaki [8, 9], Van Der Waerden [70], Serre [57], Horn and
Johnson [36], and Bertin [7]. These notions of linear algebra are nicely put to use in classical
geometry, see Berger [5, 6], Tisseron [67] and Dieudonné [17].
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6.11 Problems

Problem 6.1. Prove that every transposition can be written as a product of basic transpo-
sitions.

Problem 6.2. (1) Given two vectors in R2 of coordinates (c1−a1, c2−a2) and (b1−a1, b2−a2),
prove that they are linearly dependent iff∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

1 1 1

∣∣∣∣∣∣ = 0.

(2) Given three vectors in R3 of coordinates (d1−a1, d2−a2, d3−a3), (c1−a1, c2−a2, c3−a3),
and (b1 − a1, b2 − a2, b3 − a3), prove that they are linearly dependent iff∣∣∣∣∣∣∣∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

1 1 1 1

∣∣∣∣∣∣∣∣ = 0.

Problem 6.3. Let A be the (m+ n)× (m+ n) block matrix (over any field K) given by

A =

(
A1 A2

0 A4

)
,

where A1 is an m×m matrix, A2 is an m×n matrix, and A4 is an n×n matrix. Prove that
det(A) = det(A1) det(A4).

Use the above result to prove that if A is an upper triangular n×n matrix, then det(A) =
a11a22 · · · ann.

Problem 6.4. Prove that if n ≥ 3, then

det


1 + x1y1 1 + x1y2 · · · 1 + x1yn
1 + x2y1 1 + x2y2 · · · 1 + x2yn

...
...

...
...

1 + xny1 1 + xny2 · · · 1 + xnyn

 = 0.

Problem 6.5. Prove that ∣∣∣∣∣∣∣∣
1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

∣∣∣∣∣∣∣∣ = 0.
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Problem 6.6. Consider the n× n symmetric matrix

A =



1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5


.

(1) Find an upper-triangular matrix R such that A = R>R.

(2) Prove that det(A) = 1.

(3) Consider the sequence

p0(λ) = 1

p1(λ) = 1− λ
pk(λ) = (5− λ)pk−1(λ)− 4pk−2(λ) 2 ≤ k ≤ n.

Prove that
det(A− λI) = pn(λ).

Remark: It can be shown that pn(λ) has n distinct (real) roots and that the roots of pk(λ)
separate the roots of pk+1(λ).

Problem 6.7. Let B be the n× n matrix (n ≥ 3) given by

B =



1 −1 −1 −1 · · · −1 −1
1 −1 1 1 · · · 1 1
1 1 −1 1 · · · 1 1
1 1 1 −1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · −1 1
1 1 1 1 · · · 1 −1


.

Prove that
det(B) = (−1)n(n− 2)2n−1.

Problem 6.8. Given a field K (say K = R or K = C), given any two polynomials
p(X), q(X) ∈ K[X], we says that q(X) divides p(X) (and that p(X) is a multiple of q(X))
iff there is some polynomial s(X) ∈ K[X] such that

p(X) = q(X)s(X).
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In this case we say that q(X) is a factor of p(X), and if q(X) has degree at least one, we
say that q(X) is a nontrivial factor of p(X).

Let f(X) and g(X) be two polynomials in K[X] with

f(X) = a0X
m + a1X

m−1 + · · ·+ am

of degree m ≥ 1 and

g(X) = b0X
n + b1X

n−1 + · · ·+ bn

of degree n ≥ 1 (with a0, b0 6= 0).

You will need the following result which you need not prove:

Two polynomials f(X) and g(X) with deg(f) = m ≥ 1 and deg(g) = n ≥ 1 have some
common nontrivial factor iff there exist two nonzero polynomials p(X) and q(X) such that

fp = gq,

with deg(p) ≤ n− 1 and deg(q) ≤ m− 1.

(1) Let Pm denote the vector space of all polynomials in K[X] of degree at most m− 1,
and let T : Pn × Pm → Pm+n be the map given by

T (p, q) = fp+ gq, p ∈ Pn, q ∈ Pm,

where f and g are some fixed polynomials of degree m ≥ 1 and n ≥ 1.

Prove that the map T is linear.

(2) Prove that T is not injective iff f and g have a common nontrivial factor.

(3) Prove that f and g have a nontrivial common factor iff R(f, g) = 0, where R(f, g) is
the determinant given by

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · · · · am 0 · · · · · · · · · · · · 0
0 a0 a1 · · · · · · am 0 · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 a0 a1 · · · · · · am
b0 b1 · · · · · · · · · · · · · · · bn 0 · · · 0
0 b0 b1 · · · · · · · · · · · · · · · bn 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 b0 b1 · · · · · · · · · · · · · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The above determinant is called the resultant of f and g.
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Note that the matrix of the resultant is an (n+m)× (n+m) matrix, with the first row
(involving the ais) occurring n times, each time shifted over to the right by one column, and
the (n + 1)th row (involving the bjs) occurring m times, each time shifted over to the right
by one column.

Hint . Express the matrix of T over some suitable basis.

(4) Compute the resultant in the following three cases:

(a) m = n = 1, and write f(X) = aX + b and g(X) = cX + d.

(b) m = 1 and n ≥ 2 arbitrary.

(c) f(X) = aX2 + bX + c and g(X) = 2aX + b.

(5) Compute the resultant of f(X) = X3 + pX + q and g(X) = 3X2 + p, and

f(X) = a0X
2 + a1X + a2

g(X) = b0X
2 + b1X + b2.

In the second case, you should get

4R(f, g) = (2a0b2 − a1b1 + 2a2b0)2 − (4a0a2 − a2
1)(4b0b2 − b2

1).

Problem 6.9. Let A,B,C,D be n× n real or complex matrices.

(1) Prove that if A is invertible and if AC = CA, then

det

(
A B
C D

)
= det(AD − CB).

(2) Prove that if H is an n× n Hadamard matrix (n ≥ 2), then | det(H)| = nn/2.

(3) Prove that if H is an n× n Hadamard matrix (n ≥ 2), then

det

(
H H
H −H

)
= (2n)n.

Problem 6.10. Compute the product of the following determinants∣∣∣∣∣∣∣∣
a −b −c −d
b a −d c
c d a −b
d −c b a

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
x −y −z −t
y x −t z
z t x −y
t −z y x

∣∣∣∣∣∣∣∣
to prove the following identity (due to Euler):

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + t2) = (ax+ by + cz + dt)2 + (ay − bx+ ct− dz)2

+ (az − bt− cx+ dy)2 + (at+ bz − cy − dx)2.
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Problem 6.11. Let A be an n × n matrix with integer entries. Prove that A−1 exists and
has integer entries if and only if det(A) = ±1.

Problem 6.12. Let A be an n× n real or complex matrix.

(1) Prove that if A> = −A (A is skew-symmetric) and if n is odd, then det(A) = 0.

(2) Prove that ∣∣∣∣∣∣∣∣
0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

∣∣∣∣∣∣∣∣ = (af − be+ dc)2.

Problem 6.13. A Cauchy matrix is a matrix of the form

1

λ1 − σ1

1

λ1 − σ2

· · · 1

λ1 − σn
1

λ2 − σ1

1

λ2 − σ2

· · · 1

λ2 − σn
...

...
...

...
1

λn − σ1

1

λn − σ2

· · · 1

λn − σn


where λi 6= σj, for all i, j, with 1 ≤ i, j ≤ n. Prove that the determinant Cn of a Cauchy
matrix as above is given by

Cn =

∏n
i=2

∏i−1
j=1(λi − λj)(σj − σi)∏n
i=1

∏n
j=1(λi − σj)

.

Problem 6.14. Let (α1, . . . , αm+1) be a sequence of pairwise distinct scalars in R and let
(β1, . . . , βm+1) be any sequence of scalars in R, not necessarily distinct.

(1) Prove that there is a unique polynomial P of degree at most m such that

P (αi) = βi, 1 ≤ i ≤ m+ 1.

Hint . Remember Vandermonde!

(2) Let Li(X) be the polynomial of degree m given by

Li(X) =
(X − α1) · · · (X − αi−1)(X − αi+1) · · · (X − αm+1)

(αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αm+1)
, 1 ≤ i ≤ m+ 1.

The polynomials Li(X) are known as Lagrange polynomial interpolants . Prove that

Li(αj) = δi j 1 ≤ i, j ≤ m+ 1.
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Prove that
P (X) = β1L1(X) + · · ·+ βm+1Lm+1(X)

is the unique polynomial of degree at most m such that

P (αi) = βi, 1 ≤ i ≤ m+ 1.

(3) Prove that L1(X), . . . , Lm+1(X) are linearly independent, and that they form a basis
of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis (L1(X), . . . , Lm+1(X))?

Give the expression of every polynomial P (X) of degree at most m over the basis
(L1(X), . . . , Lm+1(X)).

(4) Prove that the dual basis (L∗1, . . . , L
∗
m+1) of the basis (L1(X), . . . , Lm+1(X)) consists

of the linear forms L∗i given by
L∗i (P ) = P (αi),

for every polynomial P of degree at most m; this is simply evaluation at αi.
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Chapter 7

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

In this chapter we assume that all vector spaces are over the field R. All results that do not
rely on the ordering on R or on taking square roots hold for arbitrary fields.

7.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics
(path planning). There are many ways of tackling this problem and in this section we will
describe a solution using cubic splines . Such splines consist of cubic Bézier curves. They
are often used because they are cheap to implement and give more flexibility than quadratic
Bézier curves.

A cubic Bézier curve C(t) (in R2 or R3) is specified by a list of four control points
(b0, b1, b2, b3) and is given parametrically by the equation

C(t) = (1− t)3 b0 + 3(1− t)2t b1 + 3(1− t)t2 b2 + t3 b3.

Clearly, C(0) = b0, C(1) = b3, and for t ∈ [0, 1], the point C(t) belongs to the convex hull of
the control points b0, b1, b2, b3. The polynomials

(1− t)3, 3(1− t)2t, 3(1− t)t2, t3

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment corresponding to the values of t in
the interval [0, 1]. Still, the placement of the control points drastically affects the shape of the
curve segment, which can even have a self-intersection; See Figures 7.1, 7.2, 7.3 illustrating
various configurations.

219
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b0

b1

b2

b3

Figure 7.1: A “standard” Bézier curve.

b0

b1

b2

b3

Figure 7.2: A Bézier curve with an inflection point.
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b0

b1b2

b3

Figure 7.3: A self-intersecting Bézier curve.

Interpolation problems require finding curves passing through some given data points and
possibly satisfying some extra constraints.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier
curves, say C1, . . . , Cm (m ≥ 2). We will assume that F defined on [0,m], so that for
i = 1, . . . ,m,

F (t) = Ci(t− i+ 1), i− 1 ≤ t ≤ i.

Typically, some smoothness is required between any two junction points, that is, between
any two points Ci(1) and Ci+1(0), for i = 1, . . . ,m − 1. We require that Ci(1) = Ci+1(0)
(C0-continuity), and typically that the derivatives of Ci at 1 and of Ci+1 at 0 agree up to
second order derivatives. This is called C2-continuity , and it ensures that the tangents agree
as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common
problems which can be stated as follows:

Problem: Given N + 1 data points x0, . . . , xN , find a C2 cubic spline curve F such that
F (i) = xi for all i, 0 ≤ i ≤ N (N ≥ 2).

A way to solve this problem is to find N + 3 auxiliary points d−1, . . . , dN+1, called de
Boor control points , from which N Bézier curves can be found. Actually,

d−1 = x0 and dN+1 = xN
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so we only need to find N + 1 points d0, . . . , dN .

It turns out that the C2-continuity constraints on the N Bézier curves yield only N − 1
equations, so d0 and dN can be chosen arbitrarily. In practice, d0 and dN are chosen according
to various end conditions, such as prescribed velocities at x0 and xN . For the time being, we
will assume that d0 and dN are given.

Figure 7.4 illustrates an interpolation problem involving N + 1 = 7 + 1 = 8 data points.
The control points d0 and d7 were chosen arbitrarily.

x0 = d−1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

Figure 7.4: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7.

It can be shown that d1, . . . , dN−1 are given by the linear system
7
2

1
1 4 1 0

. . . . . . . . .

0 1 4 1
1 7

2




d1

d2
...

dN−2

dN−1

 =


6x1 − 3

2
d0

6x2
...

6xN−2

6xN−1 − 3
2
dN

 .

We will show later that the above matrix is invertible because it is strictly diagonally
dominant.
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Once the above system is solved, the Bézier cubics C1, . . ., CN are determined as follows
(we assume N ≥ 2): For 2 ≤ i ≤ N − 1, the control points (bi0, b

i
1, b

i
2, b

i
3) of Ci are given by

bi0 = xi−1

bi1 =
2

3
di−1 +

1

3
di

bi2 =
1

3
di−1 +

2

3
di

bi3 = xi.

The control points (b1
0, b

1
1, b

1
2, b

1
3) of C1 are given by

b1
0 = x0

b1
1 = d0

b1
2 =

1

2
d0 +

1

2
d1

b1
3 = x1,

and the control points (bN0 , b
N
1 , b

N
2 , b

N
3 ) of CN are given by

bN0 = xN−1

bN1 =
1

2
dN−1 +

1

2
dN

bN2 = dN

bN3 = xN .

Figure 7.5 illustrates this process spline interpolation for N = 7.

We will now describe various methods for solving linear systems. Since the matrix of the
above system is tridiagonal, there are specialized methods which are more efficient than the
general methods. We will discuss a few of these methods.

7.2 Gaussian Elimination

Let A be an n × n matrix, let b ∈ Rn be an n-dimensional vector and assume that A is
invertible. Our goal is to solve the system Ax = b. Since A is assumed to be invertible,
we know that this system has a unique solution x = A−1b. Experience shows that two
counter-intuitive facts are revealed:

(1) One should avoid computing the inverse A−1 of A explicitly. This is inefficient since
it would amount to solving the n linear systems Au(j) = ej for j = 1, . . . , n, where
ej = (0, . . . , 1, . . . , 0) is the jth canonical basis vector of Rn (with a 1 is the jth slot).
By doing so, we would replace the resolution of a single system by the resolution of n
systems, and we would still have to multiply A−1 by b.
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x0 = d1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

1
1b =

1
2b

b
2
1

b
2
2

b

b1
3

b2
3

b1
4

b2
4

b1
5

b2
5

b1
6

b2
6

1
7

b
7
2=

Figure 7.5: A C2 cubic interpolation of x0, x1, x2, x3, x4, x5, x6, x7 with associated color
coded Bézier cubics.

(2) One does not solve (large) linear systems by computing determinants (using Cramer’s
formulae) since this method requires a number of additions (resp. multiplications)
proportional to (n+ 1)! (resp. (n+ 2)!).

The key idea on which most direct methods (as opposed to iterative methods, that look
for an approximation of the solution) are based is that if A is an upper-triangular matrix,
which means that aij = 0 for 1 ≤ j < i ≤ n (resp. lower-triangular, which means that
aij = 0 for 1 ≤ i < j ≤ n), then computing the solution x is trivial. Indeed, say A is an
upper-triangular matrix

A =



a1 1 a1 2 · · · a1n−2 a1n−1 a1n

0 a2 2 · · · a2n−2 a2n−1 a2n

0 0
. . .

...
...

...
. . .

...
...

0 0 · · · 0 an−1n−1 an−1n

0 0 · · · 0 0 ann


.

Then det(A) = a1 1a2 2 · · · ann 6= 0, which implies that ai i 6= 0 for i = 1, . . . , n, and we can
solve the system Ax = b from bottom-up by back-substitution. That is, first we compute
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xn from the last equation, next plug this value of xn into the next to the last equation and
compute xn−1 from it, etc. This yields

xn = a−1
nnbn

xn−1 = a−1
n−1n−1(bn−1 − an−1nxn)

...

x1 = a−1
1 1 (b1 − a1 2x2 − · · · − a1nxn).

Note that the use of determinants can be avoided to prove that if A is invertible then
ai i 6= 0 for i = 1, . . . , n. Indeed, it can be shown directly (by induction) that an upper (or
lower) triangular matrix is invertible iff all its diagonal entries are nonzero.

If A is lower-triangular, we solve the system from top-down by forward-substitution.

Thus, what we need is a method for transforming a matrix to an equivalent one in upper-
triangular form. This can be done by elimination. Let us illustrate this method on the
following example:

2x + y + z = 5
4x − 6y = −2
−2x + 7y + 2z = 9.

We can eliminate the variable x from the second and the third equation as follows: Subtract
twice the first equation from the second and add the first equation to the third. We get the
new system

2x + y + z = 5
− 8y − 2z = −12

8y + 3z = 14.

This time we can eliminate the variable y from the third equation by adding the second
equation to the third:

2x + y + z = 5
− 8y − 2z = −12

z = 2.

This last system is upper-triangular. Using back-substitution, we find the solution: z = 2,
y = 1, x = 1.

Observe that we have performed only row operations. The general method is to iteratively
eliminate variables using simple row operations (namely, adding or subtracting a multiple of
a row to another row of the matrix) while simultaneously applying these operations to the
vector b, to obtain a system, MAx = Mb, where MA is upper-triangular. Such a method is
called Gaussian elimination. However, one extra twist is needed for the method to work in
all cases: It may be necessary to permute rows, as illustrated by the following example:

x + y + z = 1
x + y + 3z = 1
2x + 5y + 8z = 1.
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In order to eliminate x from the second and third row, we subtract the first row from the
second and we subtract twice the first row from the third:

x + y + z = 1
2z = 0

3y + 6z = −1.

Now the trouble is that y does not occur in the second row; so, we can’t eliminate y from
the third row by adding or subtracting a multiple of the second row to it. The remedy is
simple: Permute the second and the third row! We get the system:

x + y + z = 1
3y + 6z = −1

2z = 0,

which is already in triangular form. Another example where some permutations are needed
is:

z = 1
−2x + 7y + 2z = 1
4x − 6y = −1.

First we permute the first and the second row, obtaining

−2x + 7y + 2z = 1
z = 1

4x − 6y = −1,

and then we add twice the first row to the third, obtaining:

−2x + 7y + 2z = 1
z = 1

8y + 4z = 1.

Again we permute the second and the third row, getting

−2x + 7y + 2z = 1
8y + 4z = 1

z = 1,

an upper-triangular system. Of course, in this example, z is already solved and we could
have eliminated it first, but for the general method, we need to proceed in a systematic
fashion.

We now describe the method of Gaussian elimination applied to a linear system Ax = b,
where A is assumed to be invertible. We use the variable k to keep track of the stages of
elimination. Initially, k = 1.
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(1) The first step is to pick some nonzero entry ai 1 in the first column of A. Such an
entry must exist, since A is invertible (otherwise, the first column of A would be the
zero vector, and the columns of A would not be linearly independent. Equivalently, we
would have det(A) = 0). The actual choice of such an element has some impact on the
numerical stability of the method, but this will be examined later. For the time being,
we assume that some arbitrary choice is made. This chosen element is called the pivot
of the elimination step and is denoted π1 (so, in this first step, π1 = ai 1).

(2) Next we permute the row (i) corresponding to the pivot with the first row. Such a
step is called pivoting . So after this permutation, the first element of the first row is
nonzero.

(3) We now eliminate the variable x1 from all rows except the first by adding suitable
multiples of the first row to these rows. More precisely we add −ai 1/π1 times the first
row to the ith row for i = 2, . . . , n. At the end of this step, all entries in the first
column are zero except the first.

(4) Increment k by 1. If k = n, stop. Otherwise, k < n, and then iteratively repeat Steps
(1), (2), (3) on the (n− k + 1)× (n− k + 1) subsystem obtained by deleting the first
k − 1 rows and k − 1 columns from the current system.

If we let A1 = A and Ak = (a
(k)
i j ) be the matrix obtained after k − 1 elimination steps

(2 ≤ k ≤ n), then the kth elimination step is applied to the matrix Ak of the form

Ak =



a
(k)
1 1 a

(k)
1 2 · · · · · · · · · a

(k)
1n

0 a
(k)
2 2 · · · · · · · · · a

(k)
2n

...
. . . . . .

...
...

0 0 0 a
(k)
k k · · · a

(k)
k n

...
...

...
...

...

0 0 0 a
(k)
nk · · · a

(k)
nn


.

Actually, note that
a

(k)
i j = a

(i)
i j

for all i, j with 1 ≤ i ≤ k − 2 and i ≤ j ≤ n, since the first k − 1 rows remain unchanged
after the (k − 1)th step.

We will prove later that det(Ak) = ± det(A). Consequently, Ak is invertible. The fact
that Ak is invertible iff A is invertible can also be shown without determinants from the fact
that there is some invertible matrix Mk such that Ak = MkA, as we will see shortly.

Since Ak is invertible, some entry a
(k)
i k with k ≤ i ≤ n is nonzero. Otherwise, the last

n − k + 1 entries in the first k columns of Ak would be zero, and the first k columns of
Ak would yield k vectors in Rk−1. But then the first k columns of Ak would be linearly
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dependent and Ak would not be invertible, a contradiction. This situation is illustrated by
the following matrix for n = 5 and k = 3:

a
(3)
1 1 a

(3)
1 2 a

(3)
1 3 a

(3)
1 3 a

(3)
1 5

0 a
(3)
2 2 a

(3)
2 3 a

(3)
2 4 a

(3)
2 5

0 0 0 a
(3)
3 4 a

(3)
3 5

0 0 0 a
(3)
4 4 a

(3)
4n

0 0 0 a
(3)
5 4 a

(3)
5 5

 .

The first three columns of the above matrix are linearly dependent.

So one of the entries a
(k)
i k with k ≤ i ≤ n can be chosen as pivot, and we permute the kth

row with the ith row, obtaining the matrix α(k) = (α
(k)
j l ). The new pivot is πk = α

(k)
k k , and

we zero the entries i = k + 1, . . . , n in column k by adding −α(k)
i k /πk times row k to row i.

At the end of this step, we have Ak+1. Observe that the first k − 1 rows of Ak are identical
to the first k − 1 rows of Ak+1.

The process of Gaussian elimination is illustrated in schematic form below:
× × × ×
× × × ×
× × × ×
× × × ×

 =⇒


× × × ×
0 × × ×
0 × × ×
0 × × ×

 =⇒


× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 =⇒


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 .

7.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row operations used
during Gaussian elimination. The key point is that if A = PB, where A,B are m × n
matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and
B by A1, . . . , Am and B1, . . . , Bm, then the formula

aij =
m∑
k=1

pikbkj

giving the (i, j)th entry in A shows that the ith row of A is a linear combination of the rows
of B:

Ai = pi1B1 + · · ·+ pimBm.

Therefore, multiplication of a matrix on the left by a square matrix performs row opera-
tions . Similarly, multiplication of a matrix on the right by a square matrix performs column
operations

The permutation of the kth row with the ith row is achieved by multiplying A on the left
by the transposition matrix P (i, k), which is the matrix obtained from the identity matrix
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by permuting rows i and k, i.e.,

P (i, k) =



1
1

0 1
1

. . .

1
1 0

1
1


.

For example, if m = 3,

P (1, 3) =

0 0 1
0 1 0
1 0 0

 ,

then

P (1, 3)B =

0 0 1
0 1 0
1 0 0

b11 b12 · · · · · · · · · b1n

b21 b22 · · · · · · · · · b2n

b31 b32 · · · · · · · · · b3n

 =

b31 b32 · · · · · · · · · b3n

b21 b22 · · · · · · · · · b2n

b11 b12 · · · · · · · · · b1n

 .

Observe that det(P (i, k)) = −1. Furthermore, P (i, k) is symmetric (P (i, k)> = P (i, k)), and

P (i, k)−1 = P (i, k).

During the permutation Step (2), if row k and row i need to be permuted, the matrix A
is multiplied on the left by the matrix Pk such that Pk = P (i, k), else we set Pk = I.

Adding β times row j to row i (with i 6= j) is achieved by multiplying A on the left by
the elementary matrix ,

Ei,j;β = I + βei j,

where

(ei j)k l =

{
1 if k = i and l = j
0 if k 6= i or l 6= j,

i.e.,

Ei,j;β =



1
1

1
1

. . .

1
β 1

1
1


or Ei,j;β =



1
1

1 β
1

. . .

1
1

1
1


,
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on the left, i > j, and on the right, i < j. The index i is the index of the row that is changed
by the multiplication. For example, if m = 3 and we want to add twice row 1 to row 3, since
β = 2, j = 1 and i = 3, we form

E3,1;2 = I + 2e31 =

1 0 0
0 1 0
0 0 1

+

0 0 0
0 0 0
2 0 0

 =

1 0 0
0 1 0
2 0 1

 ,

and calculate

E3,1;2B =

1 0 0
0 1 0
2 0 1

b11 b12 · · · · · · · · · b1n

b21 b22 · · · · · · · · · b2n

b31 b32 · · · · · · · · · b3n


=

 b11 b12 · · · · · · · · · b1n

b21 b22 · · · · · · · · · b2n

2b11 + b31 2b12 + b32 · · · · · · · · · 2b1n + b3n

 .

Observe that the inverse of Ei,j;β = I + βei j is Ei,j;−β = I − βei j and that det(Ei,j;β) = 1.
Therefore, during Step 3 (the elimination step), the matrix A is multiplied on the left by a
product Ek of matrices of the form Ei,k;βi,k , with i > k.

Consequently, we see that
Ak+1 = EkPkAk,

and then
Ak = Ek−1Pk−1 · · ·E1P1A.

This justifies the claim made earlier that Ak = MkA for some invertible matrix Mk; we can
pick

Mk = Ek−1Pk−1 · · ·E1P1,

a product of invertible matrices.

The fact that det(P (i, k)) = −1 and that det(Ei,j;β) = 1 implies immediately the fact
claimed above: We always have

det(Ak) = ± det(A).

Furthermore, since
Ak = Ek−1Pk−1 · · ·E1P1A

and since Gaussian elimination stops for k = n, the matrix

An = En−1Pn−1 · · ·E2P2E1P1A

is upper-triangular. Also note that if we letM = En−1Pn−1 · · ·E2P2E1P1, then det(M) = ±1,
and

det(A) = ± det(An).

The matrices P (i, k) and Ei,j;β are called elementary matrices . We can summarize the
above discussion in the following theorem:
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Theorem 7.1. (Gaussian elimination) Let A be an n× n matrix (invertible or not). Then
there is some invertible matrix M so that U = MA is upper-triangular. The pivots are all
nonzero iff A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the last assertion.
Now A is singular iff some pivot is zero, say at Stage k of the elimination. If so, we must
have a

(k)
i k = 0 for i = k, . . . , n; but in this case, Ak+1 = Ak and we may pick Pk = Ek = I.

Remark: Obviously, the matrix M can be computed as

M = En−1Pn−1 · · ·E2P2E1P1,

but this expression is of no use. Indeed, what we need is M−1; when no permutations are
needed, it turns out that M−1 can be obtained immediately from the matrices Ek’s, in fact,
from their inverses, and no multiplications are necessary.

Remark: Instead of looking for an invertible matrix M so that MA is upper-triangular, we
can look for an invertible matrix M so that MA is a diagonal matrix. Only a simple change
to Gaussian elimination is needed. At every Stage k, after the pivot has been found and
pivoting been performed, if necessary, in addition to adding suitable multiples of the kth
row to the rows below row k in order to zero the entries in column k for i = k + 1, . . . , n,
also add suitable multiples of the kth row to the rows above row k in order to zero the
entries in column k for i = 1, . . . , k − 1. Such steps are also achieved by multiplying on
the left by elementary matrices Ei,k;βi,k , except that i < k, so that these matrices are not
lower-triangular matrices. Nevertheless, at the end of the process, we find that An = MA,
is a diagonal matrix.

This method is called the Gauss-Jordan factorization. Because it is more expensive than
Gaussian elimination, this method is not used much in practice. However, Gauss-Jordan
factorization can be used to compute the inverse of a matrix A. Indeed, we find the jth
column of A−1 by solving the system Ax(j) = ej (where ej is the jth canonical basis vector
of Rn). By applying Gauss-Jordan, we are led to a system of the form Djx

(j) = Mjej, where
Dj is a diagonal matrix, and we can immediately compute x(j).

It remains to discuss the choice of the pivot, and also conditions that guarantee that no
permutations are needed during the Gaussian elimination process. We begin by stating a
necessary and sufficient condition for an invertible matrix to have an LU -factorization (i.e.,
Gaussian elimination does not require pivoting).

7.4 LU-Factorization

Definition 7.1. We say that an invertible matrix A has an LU-factorization if it can be
written as A = LU , where U is upper-triangular invertible and L is lower-triangular, with
Li i = 1 for i = 1, . . . , n.
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A lower-triangular matrix with diagonal entries equal to 1 is called a unit lower-triangular
matrix. Given an n×n matrix A = (ai j), for any k with 1 ≤ k ≤ n, let A(1 : k, 1 : k) denote
the submatrix of A whose entries are ai j, where 1 ≤ i, j ≤ k.1 For example, if A is the 5× 5
matrix

A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 ,

then

A(1 : 3, 1 : 3) =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Proposition 7.2. Let A be an invertible n × n-matrix. Then A has an LU-factorization
A = LU iff every matrix A(1 : k, 1 : k) is invertible for k = 1, . . . , n. Furthermore, when A
has an LU-factorization, we have

det(A(1 : k, 1 : k)) = π1π2 · · · πk, k = 1, . . . , n,

where πk is the pivot obtained after k− 1 elimination steps. Therefore, the kth pivot is given
by

πk =

a11 = det(A(1 : 1, 1 : 1)) if k = 1
det(A(1 : k, 1 : k))

det(A(1 : k − 1, 1 : k − 1))
if k = 2, . . . , n.

Proof. First assume that A = LU is an LU -factorization of A. We can write

A =

(
A(1 : k, 1 : k) A2

A3 A4

)
=

(
L1 0
L3 L4

)(
U1 U2

0 U4

)
=

(
L1U1 L1U2

L3U1 L3U2 + L4U4

)
,

where L1, L4 are unit lower-triangular and U1, U4 are upper-triangular. (Note, A(1 : k, 1 : k),
L1, and U1 are k×k matrices; A2 and U2 are k× (n−k) matrices; A3 and L3 are (n−k)×k
matrices; A4, L4, and U4 are (n− k)× (n− k) matrices.) Thus,

A(1 : k, 1 : k) = L1U1,

and since U is invertible, U1 is also invertible (the determinant of U is the product of the
diagonal entries in U , which is the product of the diagonal entries in U1 and U4). As L1 is
invertible (since its diagonal entries are equal to 1), we see that A(1 : k, 1 : k) is invertible
for k = 1, . . . , n.

Conversely, assume that A(1 : k, 1 : k) is invertible for k = 1, . . . , n. We just need to
show that Gaussian elimination does not need pivoting. We prove by induction on k that
the kth step does not need pivoting.

1We are using Matlab’s notation.
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This holds for k = 1, since A(1 : 1, 1 : 1) = (a1 1), so a1 1 6= 0. Assume that no pivoting
was necessary for the first k − 1 steps (2 ≤ k ≤ n− 1). In this case, we have

Ek−1 · · ·E2E1A = Ak,

where L = Ek−1 · · ·E2E1 is a unit lower-triangular matrix and Ak(1 : k, 1 : k) is upper-
triangular, so that LA = Ak can be written as(

L1 0
L3 L4

)(
A(1 : k, 1 : k) A2

A3 A4

)
=

(
U1 B2

0 B4

)
,

where L1 is unit lower-triangular and U1 is upper-triangular. (Once again A(1 : k, 1 : k), L1,
and U1 are k × k matrices; A2 and B2 are k × (n− k) matrices; A3 and L3 are (n− k)× k
matrices; A4, L4, and B4 are (n− k)× (n− k) matrices.) But then,

L1A(1 : k, 1 : k)) = U1,

where L1 is invertible (in fact, det(L1) = 1), and since by hypothesis A(1 : k, 1 : k) is
invertible, U1 is also invertible, which implies that (U1)kk 6= 0, since U1 is upper-triangular.
Therefore, no pivoting is needed in Step k, establishing the induction step. Since det(L1) = 1,
we also have

det(U1) = det(L1A(1 : k, 1 : k)) = det(L1) det(A(1 : k, 1 : k)) = det(A(1 : k, 1 : k)),

and since U1 is upper-triangular and has the pivots π1, . . . , πk on its diagonal, we get

det(A(1 : k, 1 : k)) = π1π2 · · · πk, k = 1, . . . , n,

as claimed.

Remark: The use of determinants in the first part of the proof of Proposition 7.2 can be
avoided if we use the fact that a triangular matrix is invertible iff all its diagonal entries are
nonzero.

Corollary 7.3. (LU-Factorization) Let A be an invertible n × n-matrix. If every matrix
A(1 : k, 1 : k) is invertible for k = 1, . . . , n, then Gaussian elimination requires no pivoting
and yields an LU-factorization A = LU .

Proof. We proved in Proposition 7.2 that in this case Gaussian elimination requires no
pivoting. Then since every elementary matrix Ei,k;β is lower-triangular (since we always
arrange that the pivot πk occurs above the rows that it operates on), since E−1

i,k;β = Ei,k;−β
and the Eks are products of Ei,k;βi,ks, from

En−1 · · ·E2E1A = U,

where U is an upper-triangular matrix, we get

A = LU,

where L = E−1
1 E−1

2 · · ·E−1
n−1 is a lower-triangular matrix. Furthermore, as the diagonal

entries of each Ei,k;β are 1, the diagonal entries of each Ek are also 1.
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Example 7.1. The reader should verify that
2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1




2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2


is an LU -factorization.

One of the main reasons why the existence of an LU -factorization for a matrix A is
interesting is that if we need to solve several linear systems Ax = b corresponding to the
same matrix A, we can do this cheaply by solving the two triangular systems

Lw = b, and Ux = w.

There is a certain asymmetry in the LU -decomposition A = LU of an invertible matrix A.
Indeed, the diagonal entries of L are all 1, but this is generally false for U . This asymmetry
can be eliminated as follows: if

D = diag(u11, u22, . . . , unn)

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then if we let
U ′ = D−1U , we can write

A = LDU ′,

where L is lower- triangular, U ′ is upper-triangular, all diagonal entries of both L and U ′

are 1, and D is a diagonal matrix of pivots. Such a decomposition leads to the following
definition.

Definition 7.2. We say that an invertible n×n matrix A has an LDU -factorization if it can
be written as A = LDU ′, where L is lower- triangular, U ′ is upper-triangular, all diagonal
entries of both L and U ′ are 1, and D is a diagonal matrix.

We will see shortly than if A is real symmetric, then U ′ = L>.

As we will see a bit later, real symmetric positive definite matrices satisfy the condition of
Proposition 7.2. Therefore, linear systems involving real symmetric positive definite matrices
can be solved by Gaussian elimination without pivoting. Actually, it is possible to do better:
this is the Cholesky factorization.

If a square invertible matrix A has an LU -factorization, then it is possible to find L and U
while performing Gaussian elimination. Recall that at Step k, we pick a pivot πk = a

(k)
ik 6= 0

in the portion consisting of the entries of index j ≥ k of the k-th column of the matrix Ak
obtained so far, we swap rows i and k if necessary (the pivoting step), and then we zero the
entries of index j = k + 1, . . . , n in column k. Schematically, we have the following steps:

× × × × ×
0 × × × ×
0 × × × ×
0 a

(k)
ik × × ×

0 × × × ×

 pivot
=⇒


× × × × ×
0 a

(k)
ik × × ×

0 × × × ×
0 × × × ×
0 × × × ×

 elim
=⇒


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×

 .
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More precisely, after permuting row k and row i (the pivoting step), if the entries in column
k below row k are αk+1k, . . . , αnk, then we add −αjk/πk times row k to row j; this process
is illustrated below: 

a
(k)
kk

a
(k)
k+1k
...

a
(k)
ik
...

a
(k)
nk


pivot
=⇒



a
(k)
ik

a
(k)
k+1k
...

a
(k)
kk
...

a
(k)
nk


=



πk
αk+1k

...
αik
...
αnk


elim
=⇒



πk
0
...
0
...
0


.

Then if we write `jk = αjk/πk for j = k + 1, . . . , n, the kth column of L is

0
...
0
1

`k+1k
...
`nk


.

Observe that the signs of the multipliers −αjk/πk have been flipped. Thus, we obtain the
unit lower triangular matrix

L =


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1

 .

It is easy to see (and this is proven in Theorem 7.5) that if the result of Gaussian elimination
(without pivoting) is U = En−1 · · ·E1A, so that L = E−1

1 E−1
2 · · ·E−1

n−1, then

Ek =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · −`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · −`nk 0 · · · 1


and E−1

k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1


,

so the kth column of E−1
k is the kth column of L.
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Unfortunately, even though L−1 = En−1 · · ·E2E1, the matrices Ek occur in the wrong
order and the kth column of L−1 is not the kth column of Ek.

Here is an example illustrating the method.

Example 7.2. Given

A = A1 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 ,

we have the following sequence of steps: The first pivot is π1 = 1 in row 1, and we subtract
row 1 from rows 2, 3, and 4. We get

A2 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 −2 −1 −1

 L1 =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 .

The next pivot is π2 = −2 in row 2, and we subtract row 2 from row 4 (and add 0 times row
2 to row 3). We get

A3 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 L2 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 .

The next pivot is π3 = −2 in row 3, and since the fourth entry in column 3 is already a zero,
we add 0 times row 3 to row 4. We get

A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 L3 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 .

The procedure is finished, and we have

L = L3 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 U = A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 .

It is easy to check that indeed

LU =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1




1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 = A.

We now show how to extend the above method to deal with pivoting efficiently. This is
the PA = LU factorization.



7.5. PA = LU FACTORIZATION 237

7.5 PA = LU Factorization

The following easy proposition shows that, in principle, A can be premultiplied by some
permutation matrix P , so that PA can be converted to upper-triangular form without using
any pivoting. Permutations are discussed in some detail in Section 6.1, but for now we
just need this definition. For the precise connection between the notion of permutation (as
discussed in Section 6.1) and permutation matrices, see Problem 7.16.

Definition 7.3. A permutation matrix is a square matrix that has a single 1 in every row
and every column and zeros everywhere else.

It is shown in Section 6.1 that every permutation matrix is a product of transposition
matrices (the P (i, k)s), and that P is invertible with inverse P>.

Proposition 7.4. Let A be an invertible n × n-matrix. There is some permutation matrix
P so that (PA)(1 : k, 1 : k) is invertible for k = 1, . . . , n.

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap the rows if necessary). If
n ≥ 3, we proceed by induction. Since A is invertible, its columns are linearly independent;
in particular, its first n− 1 columns are also linearly independent. Delete the last column of
A. Since the remaining n− 1 columns are linearly independent, there are also n− 1 linearly
independent rows in the corresponding n × (n − 1) matrix. Thus, there is a permutation
of these n rows so that the (n − 1) × (n − 1) matrix consisting of the first n − 1 rows is
invertible. But then there is a corresponding permutation matrix P1, so that the first n− 1
rows and columns of P1A form an invertible matrix A′. Applying the induction hypothesis
to the (n− 1)× (n− 1) matrix A′, we see that there some permutation matrix P2 (leaving
the nth row fixed), so that (P2P1A)(1 : k, 1 : k) is invertible, for k = 1, . . . , n − 1. Since A
is invertible in the first place and P1 and P2 are invertible, P1P2A is also invertible, and we
are done.

Remark: One can also prove Proposition 7.4 using a clever reordering of the Gaussian
elimination steps suggested by Trefethen and Bau [68] (Lecture 21). Indeed, we know that if
A is invertible, then there are permutation matrices Pi and products of elementary matrices
Ei, so that

An = En−1Pn−1 · · ·E2P2E1P1A,

where U = An is upper-triangular. For example, when n = 4, we have E3P3E2P2E1P1A = U .
We can define new matrices E ′1, E

′
2, E

′
3 which are still products of elementary matrices so

that we have
E ′3E

′
2E
′
1P3P2P1A = U.

Indeed, if we let E ′3 = E3, E ′2 = P3E2P
−1
3 , and E ′1 = P3P2E1P

−1
2 P−1

3 , we easily verify that
each E ′k is a product of elementary matrices and that

E ′3E
′
2E
′
1P3P2P1 = E3(P3E2P

−1
3 )(P3P2E1P

−1
2 P−1

3 )P3P2P1 = E3P3E2P2E1P1.
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It can also be proven that E ′1, E
′
2, E

′
3 are lower triangular (see Theorem 7.5).

In general, we let
E ′k = Pn−1 · · ·Pk+1EkP

−1
k+1 · · ·P−1

n−1,

and we have
E ′n−1 · · ·E ′1Pn−1 · · ·P1A = U,

where each E ′j is a lower triangular matrix (see Theorem 7.5).

It is remarkable that if pivoting steps are necessary during Gaussian elimination, a very
simple modification of the algorithm for finding an LU -factorization yields the matrices L,U ,
and P , such that PA = LU . To describe this new method, since the diagonal entries of L
are 1s, it is convenient to write

L = I + Λ.

Then in assembling the matrix Λ while performing Gaussian elimination with pivoting, we
make the same transposition on the rows of Λ (really Λk−1) that we make on the rows of A
(really Ak) during a pivoting step involving row k and row i. We also assemble P by starting
with the identity matrix and applying to P the same row transpositions that we apply to A
and Λ. Here is an example illustrating this method.

Example 7.3. Given

A = A1 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 ,

we have the following sequence of steps: We initialize Λ0 = 0 and P0 = I4. The first pivot is
π1 = 1 in row 1, and we subtract row 1 from rows 2, 3, and 4. We get

A2 =


1 1 1 0
0 0 −2 0
0 −2 −1 1
0 −2 −1 −1

 Λ1 =


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 P1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The next pivot is π2 = −2 in row 3, so we permute row 2 and 3; we also apply this permutation
to Λ and P :

A′3 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 −2 −1 −1

 Λ′2 =


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 P2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Next we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We get

A3 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 Λ2 =


0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

 P2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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The next pivot is π3 = −2 in row 3, and since the fourth entry in column 3 is already a zero,
we add 0 times row 3 to row 4. We get

A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 Λ3 =


0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

 P3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The procedure is finished, and we have

L = Λ3 + I =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 U = A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 P = P3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

It is easy to check that indeed

LU =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1




1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1


and

PA =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 .

Using the idea in the remark before the above example, we can prove the theorem below
which shows the correctness of the algorithm for computing P,L and U using a simple
adaptation of Gaussian elimination.

We are not aware of a detailed proof of Theorem 7.5 in the standard texts. Although
Golub and Van Loan [29] state a version of this theorem as their Theorem 3.1.4, they say
that “The proof is a messy subscripting argument.” Meyer [48] also provides a sketch of
proof (see the end of Section 3.10). In view of this situation, we offer a complete proof.
It does involve a lot of subscripts and superscripts, but in our opinion, it contains some
techniques that go far beyond symbol manipulation.

Theorem 7.5. For every invertible n× n-matrix A, the following hold:

(1) There is some permutation matrix P , some upper-triangular matrix U , and some unit
lower-triangular matrix L, so that PA = LU (recall, Li i = 1 for i = 1, . . . , n). Fur-
thermore, if P = I, then L and U are unique and they are produced as a result of
Gaussian elimination without pivoting.



240 CHAPTER 7. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

(2) If En−1 . . . E1A = U is the result of Gaussian elimination without pivoting, write as

usual Ak = Ek−1 . . . E1A (with Ak = (a
(k)
ij )), and let `ik = a

(k)
ik /a

(k)
kk , with 1 ≤ k ≤ n− 1

and k + 1 ≤ i ≤ n. Then

L =


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1

 ,

where the kth column of L is the kth column of E−1
k , for k = 1, . . . , n− 1.

(3) If En−1Pn−1 · · ·E1P1A = U is the result of Gaussian elimination with some pivoting,
write Ak = Ek−1Pk−1 · · ·E1P1A, and define Ek

j , with 1 ≤ j ≤ n− 1 and j ≤ k ≤ n− 1,
such that, for j = 1, . . . , n− 2,

Ej
j = Ej

Ek
j = PkE

k−1
j Pk, for k = j + 1, . . . , n− 1,

and
En−1
n−1 = En−1.

Then,

Ek
j = PkPk−1 · · ·Pj+1EjPj+1 · · ·Pk−1Pk

U = En−1
n−1 · · ·En−1

1 Pn−1 · · ·P1A,

and if we set

P = Pn−1 · · ·P1

L = (En−1
1 )−1 · · · (En−1

n−1)−1,

then
PA = LU. (†1)

Furthermore,
(Ek

j )−1 = I + Ekj , 1 ≤ j ≤ n− 1, j ≤ k ≤ n− 1,

where Ekj is a lower triangular matrix of the form

Ekj =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0


,
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we have

Ek
j = I − Ekj ,

and

Ekj = PkEk−1
j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

where Pk = I or else Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n; if Pk 6= I, this
means that (Ek

j )−1 is obtained from (Ek−1
j )−1 by permuting the entries on rows i and

k in column j. Because the matrices (Ek
j )−1 are all lower triangular, the matrix L is

also lower triangular.

In order to find L, define lower triangular n× n matrices Λk of the form

Λk =



0 0 0 0 0 · · · · · · 0

λ
(k)
21 0 0 0 0

...
... 0

λ
(k)
31 λ

(k)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

λ
(k)
k+11 λ

(k)
k+12 · · · λ

(k)
k+1k 0 · · · · · · 0

λ
(k)
k+21 λ

(k)
k+22 · · · λ

(k)
k+2k 0

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

λ
(k)
n1 λ

(k)
n2 · · · λ

(k)
nk 0 · · · · · · 0


to assemble the columns of L iteratively as follows: let

(−`(k)
k+1k, . . . ,−`

(k)
nk )

be the last n−k elements of the kth column of Ek, and define Λk inductively by setting

Λ1 =


0 0 · · · 0

`
(1)
21 0 · · · 0
...

...
. . .

...

`
(1)
n1 0 · · · 0

 ,

then for k = 2, . . . , n− 1, define

Λ′k = PkΛk−1, (†2)
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and

Λk = (I + Λ′k)E
−1
k − I =



0 0 0 0 0 · · · · · · 0

λ
′(k−1)
21 0 0 0 0

...
... 0

λ
′(k−1)
31 λ

′(k−1)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

λ
′(k−1)
k1 λ

′(k−1)
k2 · · · λ

′(k−1)
k (k−1) 0 · · · · · · 0

λ
′(k−1)
k+11 λ

′(k−1)
k+12 · · · λ

′(k−1)
k+1 (k−1) `

(k)
k+1k

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

λ
′(k−1)
n1 λ

′(k−1)
n2 · · · λ

′(k−1)
nk−1 `

(k)
nk · · · · · · 0


,

with Pk = I or Pk = P (k, i) for some i > k. This means that in assembling L, row k
and row i of Λk−1 need to be permuted when a pivoting step permuting row k and row
i of Ak is required. Then

I + Λk = (Ek
1 )−1 · · · (Ek

k )−1

Λk = Ek1 + · · ·+ Ekk ,
for k = 1, . . . , n− 1, and therefore

L = I + Λn−1.

The proof of Theorem 7.5, which is very technical, is given in Section 7.6.

We emphasize again that Part (3) of Theorem 7.5 shows the remarkable fact that in
assembling the matrix L while performing Gaussian elimination with pivoting, the only
change to the algorithm is to make the same transposition on the rows of Λk−1 that we
make on the rows of A (really Ak) during a pivoting step involving row k and row i. We
can also assemble P by starting with the identity matrix and applying to P the same row
transpositions that we apply to A and Λ. Here is an example illustrating this method.

Example 7.4. Consider the matrix

A =


1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

 .

We set P0 = I4, and we can also set Λ0 = 0. The first step is to permute row 1 and row 2,
using the pivot 4. We also apply this permutation to P0:

A′1 =


4 8 12 −8
1 2 −3 4
2 3 2 1
−3 −1 1 −4

 P1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .
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Next we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3, and add 3/4
times row 1 to row 4, and start assembling Λ:

A2 =


4 8 12 −8
0 0 −6 6
0 −1 −4 5
0 5 10 −10

 Λ1 =


0 0 0 0

1/4 0 0 0
1/2 0 0 0
−3/4 0 0 0

 P1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

Next we permute row 2 and row 4, using the pivot 5. We also apply this permutation to Λ
and P :

A′3 =


4 8 12 −8
0 5 10 −10
0 −1 −4 5
0 0 −6 6

 Λ′2 =


0 0 0 0
−3/4 0 0 0
1/2 0 0 0
1/4 0 0 0

 P2 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

Next we add 1/5 times row 2 to row 3, and update Λ′2:

A3 =


4 8 12 −8
0 5 10 −10
0 0 −2 3
0 0 −6 6

 Λ2 =


0 0 0 0
−3/4 0 0 0
1/2 −1/5 0 0
1/4 0 0 0

 P2 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

Next we permute row 3 and row 4, using the pivot −6. We also apply this permutation to
Λ and P :

A′4 =


4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 −2 3

 Λ′3 =


0 0 0 0
−3/4 0 0 0
1/4 0 0 0
1/2 −1/5 0 0

 P3 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

Finally we subtract 1/3 times row 3 from row 4, and update Λ′3:

A4 =


4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

 Λ3 =


0 0 0 0
−3/4 0 0 0
1/4 0 0 0
1/2 −1/5 1/3 0

 P3 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

Consequently, adding the identity to Λ3, we obtain

L =


1 0 0 0
−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1

 , U =


4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

 , P =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .
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We check that

PA =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0




1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

 =


4 8 12 −8
−3 −1 1 −4
1 2 −3 4
2 3 2 1

 ,

and that

LU =


1 0 0 0
−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1




4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

 =


4 8 12 −8
−3 −1 1 −4
1 2 −3 4
2 3 2 1

 = PA.

Note that if one willing to overwrite the lower triangular part of the evolving matrix A,
one can store the evolving Λ there, since these entries will eventually be zero anyway! There
is also no need to save explicitly the permutation matrix P . One could instead record the
permutation steps in an extra column (record the vector (π(1), . . . , π(n)) corresponding to
the permutation π applied to the rows). We let the reader write such a bold and space-
efficient version of LU -decomposition!

Remark: In Matlab the function lu returns the matrices P,L, U involved in the PA = LU
factorization using the call [L,U, P ] = lu(A).

As a corollary of Theorem 7.5(1), we can show the following result.

Proposition 7.6. If an invertible real symmetric matrix A has an LU-decomposition, then
A has a factorization of the form

A = LDL>,

where L is a lower-triangular matrix whose diagonal entries are equal to 1, and where D
consists of the pivots. Furthermore, such a decomposition is unique.

Proof. If A has an LU -factorization, then it has an LDU factorization

A = LDU,

where L is lower-triangular, U is upper-triangular, and the diagonal entries of both L and
U are equal to 1. Since A is symmetric, we have

LDU = A = A> = U>DL>,

with U> lower-triangular and DL> upper-triangular. By the uniqueness of LU -factorization
(Part (1) of Theorem 7.5), we must have L = U> (and DU = DL>), thus U = L>, as
claimed.

Remark: It can be shown that Gaussian elimination plus back-substitution requires n3/3+
O(n2) additions, n3/3 +O(n2) multiplications and n2/2 +O(n) divisions.
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7.6 Proof of Theorem 7.5 ~

Proof. (1) The only part that has not been proven is the uniqueness part (when P = I).
Assume that A is invertible and that A = L1U1 = L2U2, with L1, L2 unit lower-triangular
and U1, U2 upper-triangular. Then we have

L−1
2 L1 = U2U

−1
1 .

However, it is obvious that L−1
2 is lower-triangular and that U−1

1 is upper-triangular, and so
L−1

2 L1 is lower-triangular and U2U
−1
1 is upper-triangular. Since the diagonal entries of L1

and L2 are 1, the above equality is only possible if U2U
−1
1 = I, that is, U1 = U2, and so

L1 = L2.

(2) When P = I, we have L = E−1
1 E−1

2 · · ·E−1
n−1, where Ek is the product of n − k

elementary matrices of the form Ei,k;−`i , where Ei,k;−`i subtracts `i times row k from row i,

with `ik = a
(k)
ik /a

(k)
kk , 1 ≤ k ≤ n− 1, and k + 1 ≤ i ≤ n. Then it is immediately verified that

Ek =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · −`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · −`nk 0 · · · 1


,

and that

E−1
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1


.

If we define Lk by

Lk =



1 0 0 0 0
... 0

`21 1 0 0 0
... 0

`31 `32
. . . 0 0

... 0
...

...
. . . 1 0

... 0
`k+11 `k+12 · · · `k+1k 1 · · · 0

...
...

. . .
... 0

... 0
`n1 `n2 · · · `nk 0 · · · 1


for k = 1, . . . , n− 1, we easily check that L1 = E−1

1 , and that

Lk = Lk−1E
−1
k , 2 ≤ k ≤ n− 1,
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because multiplication on the right by E−1
k adds `i times column i to column k (of the matrix

Lk−1) with i > k, and column i of Lk−1 has only the nonzero entry 1 as its ith element.
Since

Lk = E−1
1 · · ·E−1

k , 1 ≤ k ≤ n− 1,

we conclude that L = Ln−1, proving our claim about the shape of L.

(3)

Step 1. Prove (†1).

First we prove by induction on k that

Ak+1 = Ek
k · · ·Ek

1Pk · · ·P1A, k = 1, . . . , n− 2.

For k = 1, we have A2 = E1P1A = E1
1P1A, since E1

1 = E1, so our assertion holds trivially.

Now if k ≥ 2,
Ak+1 = EkPkAk,

and by the induction hypothesis,

Ak = Ek−1
k−1 · · ·Ek−1

2 Ek−1
1 Pk−1 · · ·P1A.

Because Pk is either the identity or a transposition, P 2
k = I, so by inserting occurrences of

PkPk as indicated below we can write

Ak+1 = EkPkAk

= EkPkE
k−1
k−1 · · ·Ek−1

2 Ek−1
1 Pk−1 · · ·P1A

= EkPkE
k−1
k−1(PkPk) · · · (PkPk)Ek−1

2 (PkPk)E
k−1
1 (PkPk)Pk−1 · · ·P1A

= Ek(PkE
k−1
k−1Pk) · · · (PkEk−1

2 Pk)(PkE
k−1
1 Pk)PkPk−1 · · ·P1A.

Observe that Pk has been “moved” to the right of the elimination steps. However, by
definition,

Ek
j = PkE

k−1
j Pk, j = 1, . . . , k − 1

Ek
k = Ek,

so we get
Ak+1 = Ek

kE
k
k−1 · · ·Ek

2E
k
1Pk · · ·P1A,

establishing the induction hypothesis. For k = n− 2, we get

U = An−1 = En−1
n−1 · · ·En−1

1 Pn−1 · · ·P1A,

as claimed, and the factorization PA = LU with

P = Pn−1 · · ·P1

L = (En−1
1 )−1 · · · (En−1

n−1)−1
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is clear.

Step 2. Prove that the matrices (Ek
j )−1 are lower-triangular. To achieve this, we prove

that the matrices Ekj are strictly lower triangular matrices of a very special form.

Since for j = 1, . . . , n− 2, we have Ej
j = Ej,

Ek
j = PkE

k−1
j Pk, k = j + 1, . . . , n− 1,

since En−1
n−1 = En−1 and P−1

k = Pk, we get (Ej
j )
−1 = E−1

j for j = 1, . . . , n − 1, and for
j = 1, . . . , n− 2, we have

(Ek
j )−1 = Pk(E

k−1
j )−1Pk, k = j + 1, . . . , n− 1.

Since

(Ek−1
j )−1 = I + Ek−1

j

and Pk = P (k, i) is a transposition or Pk = I, so P 2
k = I, and we get

(Ek
j )−1 = Pk(E

k−1
j )−1Pk = Pk(I + Ek−1

j )Pk = P 2
k + Pk Ek−1

j Pk = I + Pk Ek−1
j Pk.

Therefore, we have

(Ek
j )−1 = I + Pk Ek−1

j Pk, 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1.

We prove for j = 1, . . . , n− 1, that for k = j, . . . , n− 1, each Ekj is a lower triangular matrix
of the form

Ekj =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0


,

and that

Ekj = Pk Ek−1
j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

with Pk = I or Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n.

For each j (1 ≤ j ≤ n− 1) we proceed by induction on k = j, . . . , n− 1. Since (Ej
j )
−1 =

E−1
j and since E−1

j is of the above form, the base case holds.

For the induction step, we only need to consider the case where Pk = P (k, i) is a trans-
position, since the case where Pk = I is trivial. We have to figure out what Pk Ek−1

j Pk =
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P (k, i) Ek−1
j P (k, i) is. However, since

Ek−1
j =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k−1)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k−1)
nj 0 · · · 0


,

and because k + 1 ≤ i ≤ n and j ≤ k − 1, multiplying Ek−1
j on the right by P (k, i) will

permute columns i and k, which are columns of zeros, so

P (k, i) Ek−1
j P (k, i) = P (k, i) Ek−1

j ,

and thus,

(Ek
j )−1 = I + P (k, i) Ek−1

j .

But since

(Ek
j )−1 = I + Ekj ,

we deduce that

Ekj = P (k, i) Ek−1
j .

We also know that multiplying Ek−1
j on the left by P (k, i) will permute rows i and k, which

shows that Ekj has the desired form, as claimed. Since all Ekj are strictly lower triangular, all
(Ek

j )−1 = I + Ekj are lower triangular, so the product

L = (En−1
1 )−1 · · · (En−1

n−1)−1

is also lower triangular.

Step 3. Express L as L = I + Λn−1, with Λn−1 = E1
1 + · · ·+ En−1

n−1 .

From Step 1 of Part (3), we know that

L = (En−1
1 )−1 · · · (En−1

n−1)−1.

We prove by induction on k that

I + Λk = (Ek
1 )−1 · · · (Ek

k )−1

Λk = Ek1 + · · ·+ Ekk ,

for k = 1, . . . , n− 1.
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If k = 1, we have E1
1 = E1 and

E1 =


1 0 · · · 0

−`(1)
21 1 · · · 0
...

...
. . .

...

−`(1)
n1 0 · · · 1

 .

We also get

(E−1
1 )−1 =


1 0 · · · 0

`
(1)
21 1 · · · 0
...

...
. . .

...

`
(1)
n1 0 · · · 1

 = I + Λ1.

Since (E−1
1 )−1 = I + E1

1 , we find that we get Λ1 = E1
1 , and the base step holds.

Since (Ek
j )−1 = I + Ekj with

Ekj =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0


and Eki Ekj = 0 if i < j, as in part (2) for the computation involving the products of Lk’s, we
get

(Ek−1
1 )−1 · · · (Ek−1

k−1)−1 = I + Ek−1
1 + · · ·+ Ek−1

k−1 , 2 ≤ k ≤ n. (∗)
Similarly, from the fact that Ek−1

j P (k, i) = Ek−1
j if i ≥ k + 1 and j ≤ k − 1 and since

(Ek
j )−1 = I + PkEk−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

we get
(Ek

1 )−1 · · · (Ek
k−1)−1 = I + Pk(Ek−1

1 + · · ·+ Ek−1
k−1 ), 2 ≤ k ≤ n− 1. (∗∗)

By the induction hypothesis,

I + Λk−1 = (Ek−1
1 )−1 · · · (Ek−1

k−1)−1,

and from (∗), we get
Λk−1 = Ek−1

1 + · · ·+ Ek−1
k−1 .

Using (∗∗), we deduce that

(Ek
1 )−1 · · · (Ek

k−1)−1 = I + PkΛk−1.
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Since Ek
k = Ek, we obtain

(Ek
1 )−1 · · · (Ek

k−1)−1(Ek
k )−1 = (I + PkΛk−1)E−1

k .

However, by definition
I + Λk = (I + PkΛk−1)E−1

k ,

which proves that
I + Λk = (Ek

1 )−1 · · · (Ek
k−1)−1(Ek

k )−1, (†)
and finishes the induction step for the proof of this formula.

If we apply Equation (∗) again with k + 1 in place of k, we have

(Ek
1 )−1 · · · (Ek

k )−1 = I + Ek1 + · · ·+ Ekk ,

and together with (†), we obtain,

Λk = Ek1 + · · ·+ Ekk ,

also finishing the induction step for the proof of this formula. For k = n−1 in (†), we obtain
the desired equation: L = I + Λn−1.

7.7 Dealing with Roundoff Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot. Although theoretically, any pivot can
be chosen, the possibility of roundoff errors implies that it is not a good idea to pick very
small pivots. The following example illustrates this point. Consider the linear system

10−4x + y = 1
x + y = 2.

Since 10−4 is nonzero, it can be taken as pivot, and we get

10−4x + y = 1
(1− 104)y = 2− 104.

Thus, the exact solution is

x =
104

104 − 1
, y =

104 − 2

104 − 1
.

However, if roundoff takes place on the fourth digit, then 104− 1 = 9999 and 104− 2 = 9998
will be rounded off both to 9990, and then the solution is x = 0 and y = 1, very far from the
exact solution where x ≈ 1 and y ≈ 1. The problem is that we picked a very small pivot. If
instead we permute the equations, the pivot is 1, and after elimination we get the system

x + y = 2
(1− 10−4)y = 1− 2× 10−4.
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This time, 1 − 10−4 = 0.9999 and 1 − 2 × 10−4 = 0.9998 are rounded off to 0.999 and the
solution is x = 1, y = 1, much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting . This consists of
choosing during Step k (1 ≤ k ≤ n− 1) one of the entries a

(k)
i k such that

|a(k)
i k | = max

k≤p≤n
|a(k)
p k |.

By maximizing the value of the pivot, we avoid dividing by undesirably small pivots.

Remark: A matrix, A, is called strictly column diagonally dominant iff

|aj j| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n

(resp. strictly row diagonally dominant iff

|ai i| >
n∑

j=1, j 6=i
|ai j|, for i = 1, . . . , n.)

For example, the matrix 
7
2

1
1 4 1 0

. . . . . . . . .

0 1 4 1
1 7

2


of the curve interpolation problem discussed in Section 7.1 is strictly column (and row)
diagonally dominant.

It has been known for a long time (before 1900, say by Hadamard) that if a matrix
A is strictly column diagonally dominant (resp. strictly row diagonally dominant), then it
is invertible. It can also be shown that if A is strictly column diagonally dominant, then
Gaussian elimination with partial pivoting does not actually require pivoting (see Problem
7.12).

Another strategy, called complete pivoting , consists in choosing some entry a
(k)
i j , where

k ≤ i, j ≤ n, such that
|a(k)
i j | = max

k≤p,q≤n
|a(k)
p q |.

However, in this method, if the chosen pivot is not in column k, it is also necessary to
permute columns. This is achieved by multiplying on the right by a permutation matrix.
However, complete pivoting tends to be too expensive in practice, and partial pivoting is the
method of choice.

A special case where the LU -factorization is particularly efficient is the case of tridiagonal
matrices, which we now consider.
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7.8 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

A =



b1 c1

a2 b2 c2

a3 b3 c3

. . . . . . . . .

an−2 bn−2 cn−2

an−1 bn−1 cn−1

an bn


.

Define the sequence

δ0 = 1, δ1 = b1, δk = bkδk−1 − akck−1δk−2, 2 ≤ k ≤ n.

Proposition 7.7. If A is the tridiagonal matrix above, then δk = det(A(1 : k, 1 : k)) for
k = 1, . . . , n.

Proof. By expanding det(A(1 : k, 1 : k)) with respect to its last row, the proposition follows
by induction on k.

Theorem 7.8. If A is the tridiagonal matrix above and δk 6= 0 for k = 1, . . . , n, then A has
the following LU-factorization:

A =



1

a2
δ0

δ1

1

a3
δ1

δ2

1

. . . . . .

an−1
δn−3

δn−2

1

an
δn−2

δn−1

1





δ1

δ0

c1

δ2

δ1

c2

δ3

δ2

c3

. . . . . .
δn−1

δn−2

cn−1

δn
δn−1


.

Proof. Since δk = det(A(1 : k, 1 : k)) 6= 0 for k = 1, . . . , n, by Theorem 7.5 (and Proposition
7.2), we know that A has a unique LU -factorization. Therefore, it suffices to check that the
proposed factorization works. We easily check that

(LU)k k+1 = ck, 1 ≤ k ≤ n− 1

(LU)k k−1 = ak, 2 ≤ k ≤ n

(LU)k l = 0, |k − l| ≥ 2

(LU)1 1 =
δ1

δ0

= b1

(LU)k k =
akck−1δk−2 + δk

δk−1

= bk, 2 ≤ k ≤ n,



7.8. GAUSSIAN ELIMINATION OF TRIDIAGONAL MATRICES 253

since δk = bkδk−1 − akck−1δk−2.

It follows that there is a simple method to solve a linear system Ax = d where A is
tridiagonal (and δk 6= 0 for k = 1, . . . , n). For this, it is convenient to “squeeze” the diagonal
matrix ∆ defined such that ∆k k = δk/δk−1 into the factorization so that A = (L∆)(∆−1U),
and if we let

z1 =
c1

b1

, zk = ck
δk−1

δk
, 2 ≤ k ≤ n− 1, zn =

δn
δn−1

= bn − anzn−1,

A = (L∆)(∆−1U) is written as

A =



c1

z1

a2
c2

z2

a3
c3

z3
. . . . . .

an−1
cn−1

zn−1

an zn





1 z1

1 z2

1 z3

. . . . . .

1 zn−2

1 zn−1

1



.

As a consequence, the system Ax = d can be solved by constructing three sequences: First,
the sequence

z1 =
c1

b1

, zk =
ck

bk − akzk−1

, k = 2, . . . , n− 1, zn = bn − anzn−1,

corresponding to the recurrence δk = bkδk−1 − akck−1δk−2 and obtained by dividing both
sides of this equation by δk−1, next

w1 =
d1

b1

, wk =
dk − akwk−1

bk − akzk−1

, k = 2, . . . , n,

corresponding to solving the system L∆w = d, and finally

xn = wn, xk = wk − zkxk+1, k = n− 1, n− 2, . . . , 1,

corresponding to solving the system ∆−1Ux = w.

Remark: It can be verified that this requires 3(n − 1) additions, 3(n − 1) multiplications,
and 2n divisions, a total of 8n−6 operations, which is much less that the O(2n3/3) required
by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices (SPD matrices).
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7.9 SPD Matrices and the Cholesky Decomposition

Definition 7.4. A real n × n matrix A is symmetric positive definite, for short SPD , iff it
is symmetric and if

x>Ax > 0 for all x ∈ Rn with x 6= 0.

The following facts about a symmetric positive definite matrix A are easily established
(some left as an exercise):

(1) The matrix A is invertible. (Indeed, if Ax = 0, then x>Ax = 0, which implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that for x = ei, the ith canonical basis
vector of Rn, we have e>i Aei = ai i > 0.)

(3) For every n× n real invertible matrix Z, the matrix Z>AZ is real symmetric positive
definite iff A is real symmetric positive definite.

(4) The set of n× n real symmetric positive definite matrices is convex. This means that
if A and B are two n×n symmetric positive definite matrices, then for any λ ∈ R such
that 0 ≤ λ ≤ 1, the matrix (1− λ)A+ λB is also symmetric positive definite. Clearly
since A and B are symmetric, (1 − λ)A + λB is also symmetric. For any nonzero
x ∈ Rn, we have x>Ax > 0 and x>Bx > 0, so

x>((1− λ)A+ λB)x = (1− λ)x>Ax+ λx>Bx > 0,

because 0 ≤ λ ≤ 1, so 1−λ ≥ 0 and λ ≥ 0, and 1−λ and λ can’t be zero simultaneously.

(5) The set of n×n real symmetric positive definite matrices is a cone. This means that if
A is symmetric positive definite and if λ > 0 is any real, then λA is symmetric positive
definite. Clearly λA is symmetric, and for nonzero x ∈ Rn, we have x>Ax > 0, and
since λ > 0, we have x>λAx = λx>Ax > 0.

Remark: Given a complex m × n matrix A, we define the matrix A as the m × n matrix
A = (aij). Then we define A∗ as the n×m matrix A∗ = (A)> = (A>). The n× n complex
matrix A is Hermitian if A∗ = A. This is the complex analog of the notion of a real symmetric
matrix.

Definition 7.5. A complex n × n matrix A is Hermitian positive definite, for short HPD ,
if it is Hermitian and if

z∗Az > 0 for all z ∈ Cn with z 6= 0.

It is easily verified that Properties (1)-(5) hold for Hermitian positive definite matrices;
replace > by ∗.
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It is instructive to characterize when a 2×2 real matrix A is symmetric positive definite.
Write

A =

(
a c
c b

)
.

Then we have (
x y

)(a c
c b

)(
x
y

)
= ax2 + 2cxy + by2.

If the above expression is strictly positive for all nonzero vectors
(
x
y

)
, then for x = 1, y = 0

we get a > 0 and for x = 0, y = 1 we get b > 0. Then we can write

ax2 + 2cxy + by2 =

(√
ax+

c√
a
y

)2

+ by2 − c2

a
y2

=

(√
ax+

c√
a
y

)2

+
1

a

(
ab− c2

)
y2. (†)

Since a > 0, if ab− c2 ≤ 0, then we can choose y > 0 so that the second term is negative or
zero, and we can set x = −(c/a)y to make the first term zero, in which case ax2+2cxy+by2 ≤
0, so we must have ab− c2 > 0.

Conversely, if a > 0, b > 0 and ab > c2, then for any (x, y) 6= (0, 0), if y = 0, then x 6= 0
and the first term of (†) is positive, and if y 6= 0, then the second term of (†) is positive.
Therefore, the matrix A is symmetric positive definite iff

a > 0, b > 0, ab > c2. (∗)

Note that ab− c2 = det(A), so the third condition says that det(A) > 0.

Observe that the condition b > 0 is redundant, since if a > 0 and ab > c2, then we must
have b > 0 (and similarly b > 0 and ab > c2 implies that a > 0).

We can try to visualize the space of 2 × 2 real symmetric positive definite matrices in
R3, by viewing (a, b, c) as the coordinates along the x, y, z axes. Then the locus determined
by the strict inequalities in (∗) corresponds to the region on the side of the cone of equation
xy = z2 that does not contain the origin and for which x > 0 and y > 0. For z = δ fixed,
the equation xy = δ2 define a hyperbola in the plane z = δ. The cone of equation xy = z2

consists of the lines through the origin that touch the hyperbola xy = 1 in the plane z = 1.
We only consider the branch of this hyperbola for which x > 0 and y > 0. See Figure 7.6.

It is not hard to show that the inverse of a real symmetric positive definite matrix is
also real symmetric positive definite, but the product of two real symmetric positive definite
matrices may not be symmetric positive definite, as the following example shows:(

1 1
1 2

)(
1/
√

2 −1
√

2

−1/
√

2 3/
√

2

)
=

(
0 2/

√
2

−1/
√

2 5/
√

2

)
.
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xy = 1

Figure 7.6: Two views of the surface xy = z2 in R3. The intersection of the surface with
a constant z plane results in a hyperbola. The region associated with the 2 × 2 symmetric
positive definite matrices lies in ”front” of the green side.

According to the above criterion, the two matrices on the left-hand side are real symmetric
positive definite, but the matrix on the right-hand side is not even symmetric, and

(
−6 1

)( 0 2/
√

2

−1/
√

2 5/
√

2

)(
−6
1

)
=
(
−6 1

)( 2/
√

2

11/
√

2

)
= −1/

√
2,

even though its eigenvalues are both real and positive.

Next we show that a real symmetric positive definite matrix has a special LU -factorization
of the form A = BB>, where B is a lower-triangular matrix whose diagonal elements are
strictly positive. This is the Cholesky factorization.

First we note that a symmetric positive definite matrix satisfies the condition of Propo-
sition 7.2.

Proposition 7.9. If A is a real symmetric positive definite matrix, then A(1 : k, 1 : k) is
symmetric positive definite and thus invertible for k = 1, . . . , n.
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Proof. Since A is symmetric, each A(1 : k, 1 : k) is also symmetric. If w ∈ Rk, with
1 ≤ k ≤ n, we let x ∈ Rn be the vector with xi = wi for i = 1, . . . , k and xi = 0 for
i = k + 1, . . . , n. Now since A is symmetric positive definite, we have x>Ax > 0 for all
x ∈ Rn with x 6= 0. This holds in particular for all vectors x obtained from nonzero vectors
w ∈ Rk as defined earlier, and clearly

x>Ax = w>A(1 : k, 1 : k)w,

which implies that A(1 : k, 1 : k) is symmetric positive definite. Thus, by Fact 1 above,
A(1 : k, 1 : k) is also invertible.

Proposition 7.9 also holds for a complex Hermitian positive definite matrix. Proposition
7.9 can be strengthened as follows: A real (resp. complex) matrix A is symmetric (resp.
Hermitian) positive definite iff det(A(1 : k, 1 : k)) > 0 for k = 1, . . . , n.

The above fact is known as Sylvester’s criterion. We will prove it after establishing the
Cholesky factorization.

Let A be an n× n real symmetric positive definite matrix and write

A =

(
a1 1 W>

W C

)
,

where C is an (n− 1)× (n− 1) symmetric matrix and W is an (n− 1)× 1 matrix. Since A
is symmetric positive definite, a1 1 > 0, and we can compute α =

√
a1 1. The trick is that we

can factor A uniquely as

A =

(
a1 1 W>

W C

)
=

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
,

i.e., as A = B1A1B
>
1 , where B1 is lower-triangular with positive diagonal entries. Thus, B1

is invertible, and by Fact (3) above, A1 is also symmetric positive definite.

Remark: The matrix C−WW>/a1 1 is known as the Schur complement of the 1×1 matrix
(a11) in A.

Theorem 7.10. (Cholesky factorization) Let A be a real symmetric positive definite matrix.
Then there is some real lower-triangular matrix B so that A = BB>. Furthermore, B can
be chosen so that its diagonal elements are strictly positive, in which case B is unique.

Proof. We proceed by induction on the dimension n of A. For n = 1, we must have a1 1 > 0,
and if we let α =

√
a1 1 and B = (α), the theorem holds trivially. If n ≥ 2, as we explained

above, again we must have a1 1 > 0, and we can write

A =

(
a1 1 W>

W C

)
=

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
= B1A1B

>
1 ,
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where α =
√
a1 1, the matrix B1 is invertible and

A1 =

(
1 0
0 C −WW>/a1 1

)
is symmetric positive definite. However, this implies that C −WW>/a1 1 is also symmetric
positive definite (consider x>A1x for every x ∈ Rn with x 6= 0 and x1 = 0). Thus, we can
apply the induction hypothesis to C −WW>/a1 1 (which is an (n − 1) × (n − 1) matrix),
and we find a unique lower-triangular matrix L with positive diagonal entries so that

C −WW>/a1 1 = LL>.

But then we get

A =

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
=

(
α 0

W/α I

)(
1 0
0 LL>

)(
α W>/α
0 I

)
=

(
α 0

W/α I

)(
1 0
0 L

)(
1 0
0 L>

)(
α W>/α
0 I

)
=

(
α 0

W/α L

)(
α W>/α
0 L>

)
.

Therefore, if we let

B =

(
α 0

W/α L

)
,

we have a unique lower-triangular matrix with positive diagonal entries and A = BB>.

Remark: The uniqueness of the Cholesky decomposition can also be established using the
uniqueness of an LU -decomposition. Indeed, if A = B1B

>
1 = B2B

>
2 where B1 and B2 are

lower triangular with positive diagonal entries, if we let ∆1 (resp. ∆2) be the diagonal matrix
consisting of the diagonal entries of B1 (resp. B2) so that (∆k)ii = (Bk)ii for k = 1, 2, then
we have two LU -decompositions

A = (B1∆−1
1 )(∆1B

>
1 ) = (B2∆−1

2 )(∆2B
>
2 )

with B1∆−1
1 , B2∆−1

2 unit lower triangular, and ∆1B
>
1 ,∆2B

>
2 upper triangular. By uniquenes

of LU -factorization (Theorem 7.5(1)), we have

B1∆−1
1 = B2∆−1

2 , ∆1B
>
1 = ∆2B

>
2 ,

and the second equation yields
B1∆1 = B2∆2. (∗)
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The diagonal entries of B1∆1 are (B1)2
ii and similarly the diagonal entries of B2∆2 are (B2)2

ii,
so the above equation implies that

(B1)2
ii = (B2)2

ii, i = 1, . . . , n.

Since the diagonal entries of both B1 and B2 are assumed to be positive, we must have

(B1)ii = (B2)ii, i = 1, . . . , n;

that is, ∆1 = ∆2, and since both are invertible, we conclude from (∗) that B1 = B2.

Theorem 7.10 also holds for complex Hermitian positive definite matrices. In this case,
we have A = BB∗ for some unique lower triangular matrix B with positive diagonal entries.

The proof of Theorem 7.10 immediately yields an algorithm to compute B from A by
solving for a lower triangular matrix B such that A = BB> (where both A and B are real
matrices). For j = 1, . . . , n,

bj j =

(
aj j −

j−1∑
k=1

b2
j k

)1/2

,

and for i = j + 1, . . . , n (and j = 1, . . . , n− 1)

bi j =

(
ai j −

j−1∑
k=1

bi kbj k

)
/bj j.

The above formulae are used to compute the jth column of B from top-down, using the first
j− 1 columns of B previously computed, and the matrix A. In the case of n = 3, A = BB>

yields a11 a12 a31

a21 a22 a32

a31 a32 a33

 =

b11 0 0
b21 b22 0
b31 b32 b33

b11 b21 b31

0 b22 b32

0 0 b33


=

 b2
11 b11b21 b11b31

b11b21 b2
21 + b2

22 b21b31 + b22b32

b11b31 b21b31 + b22b32 b2
31 + b2

32 + b2
33

 .

We work down the first column of A, compare entries, and discover that

a11 = b2
11 b11 =

√
a11

a21 = b11b21 b21 =
a21

b11

a31 = b11b31 b31 =
a31

b11

.



260 CHAPTER 7. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

Next we work down the second column of A using previously calculated expressions for
b21 and b31 to find that

a22 = b2
21 + b2

22 b22 =
(
a22 − b2

21

) 1
2

a32 = b21b31 + b22b32 b32 =
a32 − b21b31

b22

.

Finally, we use the third column of A and the previously calculated expressions for b31

and b32 to determine b33 as

a33 = b2
31 + b2

32 + b2
33 b33 =

(
a33 − b2

31 − b2
32

) 1
2 .

For another example, if

A =


1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

 ,

we find that

B =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

 .

We leave it as an exercise to find similar formulae (involving conjugation) to factor a
complex Hermitian positive definite matrix A as A = BB∗. The following Matlab program
implements the Cholesky factorization.

function B = Cholesky(A)

n = size(A,1);

B = zeros(n,n);

for j = 1:n-1;

if j == 1

B(1,1) = sqrt(A(1,1));

for i = 2:n

B(i,1) = A(i,1)/B(1,1);

end

else

B(j,j) = sqrt(A(j,j) - B(j,1:j-1)*B(j,1:j-1)’);

for i = j+1:n
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B(i,j) = (A(i,j) - B(i,1:j-1)*B(j,1:j-1)’)/B(j,j);

end

end

end

B(n,n) = sqrt(A(n,n) - B(n,1:n-1)*B(n,1:n-1)’);

end

If we run the above algorithm on the following matrix

A =


4 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

 ,

we obtain

B =


2.0000 0 0 0 0
0.5000 1.9365 0 0 0

0 0.5164 1.9322 0 0
0 0 0.5175 1.9319 0
0 0 0 0.5176 1.9319

 .

The Cholesky factorization can be used to solve linear systems Ax = b where A is
symmetric positive definite: Solve the two systems Bw = b and B>x = w.

Remark: It can be shown that this method requires n3/6 +O(n2) additions, n3/6 +O(n2)
multiplications, n2/2+O(n) divisions, and O(n) square root extractions. Thus, the Cholesky
method requires half of the number of operations required by Gaussian elimination (since
Gaussian elimination requires n3/3 + O(n2) additions, n3/3 + O(n2) multiplications, and
n2/2 + O(n) divisions). It also requires half of the space (only B is needed, as opposed
to both L and U). Furthermore, it can be shown that Cholesky’s method is numerically
stable (see Trefethen and Bau [68], Lecture 23). In Matlab the function chol returns the
lower-triangular matrix B such that A = BB> using the call B = chol(A, ‘lower’).

Remark: If A = BB>, where B is any invertible matrix, then A is symmetric positive
definite.

Proof. Obviously, BB> is symmetric, and since B is invertible, B> is invertible, and from

x>Ax = x>BB>x = (B>x)>B>x,

it is clear that x>Ax > 0 if x 6= 0.

We now give three more criteria for a symmetric matrix to be positive definite.
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Proposition 7.11. Let A be any n×n real symmetric matrix. The following conditions are
equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is: det(A(1 : k, 1 : k)) > 0 for k = 1, . . . , n
(Sylvester’s criterion).

(c) A has an LU-factorization and all pivots are positive.

(d) A has an LDL>-factorization and all pivots in D are positive.

Proof. By Proposition 7.9, if A is symmetric positive definite, then each matrix A(1 : k, 1 : k)
is symmetric positive definite for k = 1, . . . , n. By the Cholesky decomposition, A(1 : k, 1 :
k) = Q>Q for some invertible matrix Q, so det(A(1 : k, 1 : k)) = det(Q)2 > 0. This shows
that (a) implies (b).

If det(A(1 : k, 1 : k)) > 0 for k = 1, . . . , n, then each A(1 : k, 1 : k) is invertible. By
Proposition 7.2, the matrix A has an LU -factorization, and since the pivots πk are given by

πk =

a11 = det(A(1 : 1, 1 : 1)) if k = 1
det(A(1 : k, 1 : k))

det(A(1 : k − 1, 1 : k − 1))
if k = 2, . . . , n,

we see that πk > 0 for k = 1, . . . , n. Thus (b) implies (c).

Assume A has an LU -factorization and that the pivots are all positive. Since A is
symmetric, this implies that A has a factorization of the form

A = LDL>,

with L lower-triangular with 1s on its diagonal, and where D is a diagonal matrix with
positive entries on the diagonal (the pivots). This shows that (c) implies (d).

Given a factorization A = LDL> with all pivots in D positive, if we form the diagonal
matrix √

D = diag(
√
π1, . . . ,

√
πn)

and if we let B = L
√
D, then we have

A = BB>,

with B lower-triangular and invertible. By the remark before Proposition 7.11, A is positive
definite. Hence, (d) implies (a).

Criterion (c) yields a simple computational test to check whether a symmetric matrix is
positive definite. There is one more criterion for a symmetric matrix to be positive definite:
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its eigenvalues must be positive. We will have to learn about the spectral theorem for
symmetric matrices to establish this criterion (see Proposition 20.3).

Proposition 7.11 also holds for complex Hermitian positive definite matrices, where in
(d), the factorization LDL> is replaced by LDL∗.

For more on the stability analysis and efficient implementation methods of Gaussian
elimination, LU -factoring and Cholesky factoring, see Demmel [16], Trefethen and Bau [68],
Ciarlet [14], Golub and Van Loan [29], Meyer [48], Strang [63, 64], and Kincaid and Cheney
[39].

7.10 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 7.2 can also be applied to rectangular matrices.
This yields a method for determining whether a system Ax = b is solvable and a description
of all the solutions when the system is solvable, for any rectangular m× n matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be 1, and for this we
need a third kind of elementary matrix. For any λ 6= 0, let Ei,λ be the n×n diagonal matrix

Ei,λ =



1
. . .

1
λ

1
. . .

1


,

with (Ei,λ)ii = λ (1 ≤ i ≤ n). Note that Ei,λ is also given by

Ei,λ = I + (λ− 1)ei i,

and that Ei,λ is invertible with
E−1
i,λ = Ei,λ−1 .

Now after k − 1 elimination steps, if the bottom portion

(a
(k)
kk , a

(k)
k+1k, . . . , a

(k)
mk)

of the kth column of the current matrix Ak is nonzero so that a pivot πk can be chosen,
after a permutation of rows if necessary, we also divide row k by πk to obtain the pivot 1,
and not only do we zero all the entries i = k + 1, . . . ,m in column k, but also all the entries
i = 1, . . . , k − 1, so that the only nonzero entry in column k is a 1 in row k. These row
operations are achieved by multiplication on the left by elementary matrices.

If a
(k)
kk = a

(k)
k+1k = · · · = a

(k)
mk = 0, we move on to column k + 1.
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When the kth column contains a pivot, the kth stage of the procedure for converting a
matrix to rref consists of the following three steps illustrated below:



1 × 0 × × × ×
0 0 1 × × × ×
0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 a

(k)
ik × × ×

0 0 0 × × × ×


pivot
=⇒



1 × 0 × × × ×
0 0 1 × × × ×
0 0 0 a

(k)
ik × × ×

0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 × × × ×


rescale

=⇒


1 × 0 × × × ×
0 0 1 × × × ×
0 0 0 1 × × ×
0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 × × × ×


elim
=⇒


1 × 0 0 × × ×
0 0 1 0 × × ×
0 0 0 1 × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×

 .

If the kth column does not contain a pivot, we simply move on to the next column.

The result is that after performing such elimination steps, we obtain a matrix that has a
special shape known as a reduced row echelon matrix , for short rref.

Here is an example illustrating this process: Starting from the matrix

A1 =

1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

 ,

we perform the following steps

A1 −→ A2 =

1 0 2 1 5
0 1 3 1 2
0 2 6 3 7

 ,

by subtracting row 1 from row 2 and row 3;

A2 −→

1 0 2 1 5
0 2 6 3 7
0 1 3 1 2

 −→
1 0 2 1 5

0 1 3 3/2 7/2
0 1 3 1 2

 −→ A3 =

1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 −1/2 −3/2

 ,

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and sub-
tracting row 2 from row 3;

A3 −→

1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 1 3

 −→ A4 =

1 0 2 0 2
0 1 3 0 −1
0 0 0 1 3

 ,
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after dividing row 3 by −1/2, subtracting row 3 from row 1, and subtracting (3/2)× row 3
from row 2.

It is clear that columns 1, 2 and 4 are linearly independent, that column 3 is a linear
combination of columns 1 and 2, and that column 5 is a linear combination of columns
1, 2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is not unique. For
example, we could have chosen 1 instead of 2 as the second pivot in matrix A2. Nevertheless,
the reduced row echelon matrix obtained from any given matrix is unique; that is, it does not
depend on the the sequence of steps that are followed during the reduction process. This
fact is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form Ax = b, we apply elementary
row operations to both the matrix A and the right-hand side b. To do this conveniently, we
form the augmented matrix (A, b), which is the m× (n+ 1) matrix obtained by adding b as
an extra column to the matrix A. For example if

A =

1 0 2 1
1 1 5 2
1 2 8 4

 and b =

 5
7
12

 ,

then the augmented matrix is

(A, b) =

1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

 .

Now for any matrix M , since
M(A, b) = (MA,Mb),

performing elementary row operations on (A, b) is equivalent to simultaneously performing
operations on both A and b. For example, consider the system

x1 + 2x3 + x4 = 5
x1 + x2 + 5x3 + 2x4 = 7
x1 + 2x2 + 8x3 + 4x4 = 12.

Its augmented matrix is the matrix

(A, b) =

1 0 2 1 5
1 1 5 2 7
1 2 8 4 12


considered above, so the reduction steps applied to this matrix yield the system

x1 + 2x3 = 2
x2 + 3x3 = −1

x4 = 3.
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This reduced system has the same set of solutions as the original, and obviously x3 can be
chosen arbitrarily. Therefore, our system has infinitely many solutions given by

x1 = 2− 2x3, x2 = −1− 3x3, x4 = 3,

where x3 is arbitrary.

The following proposition shows that the set of solutions of a system Ax = b is preserved
by any sequence of row operations.

Proposition 7.12. Given any m × n matrix A and any vector b ∈ Rm, for any sequence
of elementary row operations E1, . . . , Ek, if P = Ek · · ·E1 and (A′, b′) = P (A, b), then the
solutions of Ax = b are the same as the solutions of A′x = b′.

Proof. Since each elementary row operation Ei is invertible, so is P , and since (A′, b′) =
P (A, b), then A′ = PA and b′ = Pb. If x is a solution of the original system Ax = b, then
multiplying both sides by P we get PAx = Pb; that is, A′x = b′, so x is a solution of the
new system. Conversely, assume that x is a solution of the new system, that is A′x = b′.
Then because A′ = PA, b′ = Pb, and P is invertible, we get

Ax = P−1A′x = P−1b′ = b,

so x is a solution of the original system Ax = b.

Another important fact is this:

Proposition 7.13. Given an m×n matrix A, for any sequence of row operations E1, . . . , Ek,
if P = Ek · · ·E1 and B = PA, then the subspaces spanned by the rows of A and the rows of
B are identical. Therefore, A and B have the same row rank. Furthermore, the matrices A
and B also have the same (column) rank.

Proof. Since B = PA, from a previous observation, the rows of B are linear combinations
of the rows of A, so the span of the rows of B is a subspace of the span of the rows of A.
Since P is invertible, A = P−1B, so by the same reasoning the span of the rows of A is a
subspace of the span of the rows of B. Therefore, the subspaces spanned by the rows of A
and the rows of B are identical, which implies that A and B have the same row rank.

Proposition 7.12 implies that the systems Ax = 0 and Bx = 0 have the same solutions.
Since Ax is a linear combinations of the columns of A and Bx is a linear combinations of
the columns of B, the maximum number of linearly independent columns in A is equal to
the maximum number of linearly independent columns in B; that is, A and B have the same
rank.

Remark: The subspaces spanned by the columns of A and B can be different! However,
their dimension must be the same.

We will show in Section 7.14 that the row rank is equal to the column rank. This will also
be proven in Proposition 10.13 Let us now define precisely what is a reduced row echelon
matrix.
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Definition 7.6. An m × n matrix A is a reduced row echelon matrix iff the following con-
ditions hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot .

(b) The first nonzero entry of row i+ 1 is to the right of the first nonzero entry of row i.

(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced row echelon form,
for short rref .

Note that Condition (b) implies that the entries below a pivot are also zero. For example,
the matrix

A =

1 6 0 1
0 0 1 2
0 0 0 0


is a reduced row echelon matrix. In general, a matrix in rref has the following shape:

1 0 0 × × 0 0 ×
0 1 0 × × 0 0 ×
0 0 1 × × 0 0 ×
0 0 0 0 0 1 0 ×
0 0 0 0 0 0 1 ×
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


if the last row consists of zeros, or

1 0 0 × × 0 0 × 0 ×
0 1 0 × × 0 0 × 0 ×
0 0 1 × × 0 0 × 0 ×
0 0 0 0 0 1 0 × 0 ×
0 0 0 0 0 0 1 × × 0
0 0 0 0 0 0 0 0 1 ×


if the last row contains a pivot.

The following proposition shows that every matrix can be converted to a reduced row
echelon form using row operations.

Proposition 7.14. Given any m × n matrix A, there is a sequence of row operations
E1, . . . , Ek such that if P = Ek · · ·E1, then U = PA is a reduced row echelon matrix.
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Proof. We proceed by induction on m. If m = 1, then either all entries on this row are zero,
so A = 0, or if aj is the first nonzero entry in A, let P = (a−1

j ) (a 1× 1 matrix); clearly, PA
is a reduced row echelon matrix.

Let us now assume that m ≥ 2. If A = 0, we are done, so let us assume that A 6= 0.
Since A 6= 0, there is a leftmost column j which is nonzero, so pick any pivot π = aij in the
jth column, permute row i and row 1 if necessary, multiply the new first row by π−1, and
clear out the other entries in column j by subtracting suitable multiples of row 1. At the
end of this process, we have a matrix A1 that has the following shape:

A1 =


0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗

 ,

where ∗ stands for an arbitrary scalar, or more concisely

A1 =

(
0 1 B
0 0 D

)
,

where D is a (m− 1)× (n− j) matrix (and B is a 1× n− j matrix). If j = n, we are done.
Otherwise, by the induction hypothesis applied to D, there is a sequence of row operations
that converts D to a reduced row echelon matrix R′, and these row operations do not affect
the first row of A1, which means that A1 is reduced to a matrix of the form

R =

(
0 1 B
0 0 R′

)
.

Because R′ is a reduced row echelon matrix, the matrix R satisfies Conditions (a) and (b) of
the reduced row echelon form. Finally, the entries above all pivots in R′ can be cleared out
by subtracting suitable multiples of the rows of R′ containing a pivot. The resulting matrix
also satisfies Condition (c), and the induction step is complete.

Remark: There is a Matlab function named rref that converts any matrix to its reduced
row echelon form.

If A is any matrix and if R is a reduced row echelon form of A, the second part of
Proposition 7.13 can be sharpened a little, since the structure of a reduced row echelon
matrix makes it clear that its rank is equal to the number of pivots.

Proposition 7.15. The rank of a matrix A is equal to the number of pivots in its rref R.
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7.11 RREF, Free Variables, and Homogenous Linear

Systems

Given a system of the form Ax = b, we can apply the reduction procedure to the augmented
matrix (A, b) to obtain a reduced row echelon matrix (A′, b′) such that the system A′x = b′

has the same solutions as the original system Ax = b. The advantage of the reduced system
A′x = b′ is that there is a simple test to check whether this system is solvable, and to find
its solutions if it is solvable.

Indeed, if any row of the matrix A′ is zero and if the corresponding entry in b′ is nonzero,
then it is a pivot and we have the “equation”

0 = 1,

which means that the system A′x = b′ has no solution. On the other hand, if there is no
pivot in b′, then for every row i in which b′i 6= 0, there is some column j in A′ where the
entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable
xk if column k does not contain a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

(A′, b′) =

1 6 0 1 0
0 0 1 2 0
0 0 0 0 1

 ,

there is no solution to A′x = b′ because the third equation is 0 = 1. On the other hand, the
reduced system

(A′, b′) =

1 6 0 1 1
0 0 1 2 3
0 0 0 0 0


has solutions. We can pick the variables x2, x4 corresponding to nonpivot columns arbitrarily,
and then solve for x3 (using the second equation) and x1 (using the first equation).

The above reasoning proves the following theorem:

Theorem 7.16. Given any system Ax = b where A is a m × n matrix, if the augmented
matrix (A, b) is a reduced row echelon matrix, then the system Ax = b has a solution iff there
is no pivot in b. In that case, an arbitrary value can be assigned to the variable xj if column
j does not contain a pivot.

Definition 7.7. Nonpivot variables are often called free variables .

Putting Proposition 7.14 and Theorem 7.16 together we obtain a criterion to decide
whether a system Ax = b has a solution: Convert the augmented system (A, b) to a row
reduced echelon matrix (A′, b′) and check whether b′ has no pivot.
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Remark: When writing a program implementing row reduction, we may stop when the last
column of the matrix A is reached. In this case, the test whether the system Ax = b is
solvable is that the row-reduced matrix A′ has no zero row of index i > r such that b′i 6= 0
(where r is the number of pivots, and b′ is the row-reduced right-hand side).

If we have a homogeneous system Ax = 0, which means that b = 0, of course x = 0 is
always a solution, but Theorem 7.16 implies that if the system Ax = 0 has more variables
than equations, then it has some nonzero solution (we call it a nontrivial solution).

Proposition 7.17. Given any homogeneous system Ax = 0 of m equations in n variables,
if m < n, then there is a nonzero vector x ∈ Rn such that Ax = 0.

Proof. Convert the matrix A to a reduced row echelon matrix A′. We know that Ax = 0 iff
A′x = 0. If r is the number of pivots of A′, we must have r ≤ m, so by Theorem 7.16 we may
assign arbitrary values to n− r > 0 nonpivot variables and we get nontrivial solutions.

Theorem 7.16 can also be used to characterize when a square matrix is invertible. First,
note the following simple but important fact:

If a square n× n matrix A is a row reduced echelon matrix, then either A is the identity
or the bottom row of A is zero.

Proposition 7.18. Let A be a square matrix of dimension n. The following conditions are
equivalent:

(a) The matrix A can be reduced to the identity by a sequence of elementary row operations.

(b) The matrix A is a product of elementary matrices.

(c) The matrix A is invertible.

(d) The system of homogeneous equations Ax = 0 has only the trivial solution x = 0.

Proof. First we prove that (a) implies (b). If (a) can be reduced to the identity by a sequence
of row operations E1, . . . , Ep, this means that Ep · · ·E1A = I. Since each Ei is invertible,
we get

A = E−1
1 · · ·E−1

p ,

where each E−1
i is also an elementary row operation, so (b) holds. Now if (b) holds, since

elementary row operations are invertible, A is invertible and (c) holds. If A is invertible, we
already observed that the homogeneous system Ax = 0 has only the trivial solution x = 0,
because from Ax = 0, we get A−1Ax = A−10; that is, x = 0. It remains to prove that (d)
implies (a) and for this we prove the contrapositive: if (a) does not hold, then (d) does not
hold.

Using our basic observation about reducing square matrices, if A does not reduce to the
identity, then A reduces to a row echelon matrix A′ whose bottom row is zero. Say A′ = PA,
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where P is a product of elementary row operations. Because the bottom row of A′ is zero,
the system A′x = 0 has at most n − 1 nontrivial equations, and by Proposition 7.17, this
system has a nontrivial solution x. But then, Ax = P−1A′x = 0 with x 6= 0, contradicting
the fact that the system Ax = 0 is assumed to have only the trivial solution. Therefore, (d)
implies (a) and the proof is complete.

Proposition 7.18 yields a method for computing the inverse of an invertible matrix A:
reduce A to the identity using elementary row operations, obtaining

Ep · · ·E1A = I.

Multiplying both sides by A−1 we get

A−1 = Ep · · ·E1.

From a practical point of view, we can build up the product Ep · · ·E1 by reducing to row
echelon form the augmented n× 2n matrix (A, In) obtained by adding the n columns of the
identity matrix to A. This is just another way of performing the Gauss–Jordan procedure.

Here is an example: let us find the inverse of the matrix

A =

(
5 4
6 5

)
.

We form the 2× 4 block matrix

(A, I) =

(
5 4 1 0
6 5 0 1

)
and apply elementary row operations to reduce A to the identity. For example:

(A, I) =

(
5 4 1 0
6 5 0 1

)
−→

(
5 4 1 0
1 1 −1 1

)
by subtracting row 1 from row 2,(

5 4 1 0
1 1 −1 1

)
−→

(
1 0 5 −4
1 1 −1 1

)
by subtracting 4× row 2 from row 1,(

1 0 5 −4
1 1 −1 1

)
−→

(
1 0 5 −4
0 1 −6 5

)
= (I, A−1),

by subtracting row 1 from row 2. Thus

A−1 =

(
5 −4
−6 5

)
.

Proposition 7.18 can also be used to give an elementary proof of the fact that if a square
matrix A has a left inverse B (resp. a right inverse B), so that BA = I (resp. AB = I),
then A is invertible and A−1 = B. This is an interesting exercise, try it!
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7.12 Uniqueness of RREF Form

For the sake of completeness, we prove that the reduced row echelon form of a matrix is
unique. The neat proof given below is borrowed and adapted from W. Kahan.

Proposition 7.19. Let A be any m × n matrix. If U and V are two reduced row echelon
matrices obtained from A by applying two sequences of elementary row operations E1, . . . , Ep
and F1, . . . , Fq, so that

U = Ep · · ·E1A and V = Fq · · ·F1A,

then U = V . In other words, the reduced row echelon form of any matrix is unique.

Proof. Let
C = Ep · · ·E1F

−1
1 · · ·F−1

q

so that
U = CV and V = C−1U.

Recall from Proposition 7.13 that U and V have the same row rank r, and since U and V
are in rref, this is the number of nonzero rows in both U and V . We prove by induction on
n that U = V (and that the first r columns of C are the first r columns in Im). If r = 0
then A = U = V = 0 and the result is trivial. We now assume that r ≥ 1.

Let `nj denote the jth column of the identity matrix In, and let uj = U`nj , vj = V `nj ,
cj = C`mj , and aj = A`nj , be the jth column of U , V , C, and A respectively.

First I claim that uj = 0 iff vj = 0 iff aj = 0.

Indeed, if vj = 0, then (because U = CV ) uj = Cvj = 0, and if uj = 0, then vj =
C−1uj = 0. Since U = Ep · · ·E1A, we also get aj = 0 iff uj = 0.

Therefore, we may simplify our task by striking out columns of zeros from U, V , and A,
since they will have corresponding indices. We still use n to denote the number of columns of
A. Observe that because U and V are reduced row echelon matrices with no zero columns,
we must have u1 = v1 = `m1 .

Claim. If U and V are reduced row echelon matrices without zero columns such that
U = CV , for all k ≥ 1, if k ≤ m, then `mk occurs in U iff `mk occurs in V , and if `mk does
occur in U , then

1. `mk occurs for the same column index jk in both U and V ;

2. the first jk columns of U and V match;

3. the subsequent columns in U and V (of column index > jk) whose coordinates of index
k + 1 through m are all equal to 0 also match. Let nk be the rightmost index of such
a column, with nk = jk if there is none.
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4. the first k columns of C match the first k columns of Im.

We prove this claim by induction on k.

For the base case k = 1, we already know that u1 = v1 = `m1 . We also have

c1 = C`m1 = Cv1 = u1 = `m1 .

If vj = λ`m1 for some λ ∈ R, then

uj = U`nj = CV `nj = Cvj = λC`m1 = λc1 = λ`m1 = vj.

A similar argument using C−1 shows that if uj = λ`m1 , then vj = uj. Therefore, all the
columns of U and V proportional to `m1 match, which establishes the base case. Observe
that if `m2 appears in U , then it must appear in both U and V for the same index, and if not
then n1 = n and U = V .

Next us now prove the induction step. If nk = n, then U = V and we are done. If k = r,
then C is a block matrix of the form

C =

(
Ir B

0m−r,r C

)
and since the last m− r rows of both U and V are zero rows, C acts as the identity on the
first r rows, and so U = V . Otherwise k < r, nk < n, and `mk+1 appears in both U and V , in
which case, by (2) and (3) of the induction hypothesis, it appears in both U and V for the
same index, say jk+1. Thus, ujk+1

= vjk+1
= `mk+1. It follows that

ck+1 = C`mk+1 = Cvjk+1
= ujk+1

= `mk+1,

so the first k + 1 columns of C match the first k + 1 columns of Im.

Consider any subsequent column vj (with j > jk+1) whose elements beyond the (k+ 1)th
all vanish. Then vj is a linear combination of columns of V to the left of vj, so

uj = Cvj = vj.

because the first k + 1 columns of C match the first k + 1 column of Im. Similarly, any
subsequent column uj (with j > jk+1) whose elements beyond the (k+1)th all vanish is equal
to vj. Therefore, all the subsequent columns in U and V (of index > jk+1) whose elements
beyond the (k + 1)th all vanish also match, which completes the induction hypothesis.

Remark: Observe that C = Ep · · ·E1F
−1
1 · · ·F−1

q is not necessarily the identity matrix Im.
However, C = Im if r = m (A has row rank m).

The reduction to row echelon form also provides a method to describe the set of solutions
of a linear system of the form Ax = b.
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7.13 Solving Linear Systems Using RREF

First we have the following simple result.

Proposition 7.20. Let A be any m× n matrix and let b ∈ Rm be any vector. If the system
Ax = b has a solution, then the set Z of all solutions of this system is the set

Z = x0 + Ker (A) = {x0 + x | Ax = 0},

where x0 ∈ Rn is any solution of the system Ax = b, which means that Ax0 = b (x0 is called
a special solution or a particular solution), and where Ker (A) = {x ∈ Rn | Ax = 0}, the set
of solutions of the homogeneous system associated with Ax = b.

Proof. Assume that the system Ax = b is solvable and let x0 and x1 be any two solutions so
that Ax0 = b and Ax1 = b. Subtracting the first equation from the second, we get

A(x1 − x0) = 0,

which means that x1 − x0 ∈ Ker (A). Therefore, Z ⊆ x0 + Ker (A), where x0 is a special
solution of Ax = b. Conversely, if Ax0 = b, then for any z ∈ Ker (A), we have Az = 0, and
so

A(x0 + z) = Ax0 + Az = b+ 0 = b,

which shows that x0 + Ker (A) ⊆ Z. Therefore, Z = x0 + Ker (A).

Given a linear system Ax = b, reduce the augmented matrix (A, b) to its row echelon
form (A′, b′). As we showed before, the system Ax = b has a solution iff b′ contains no pivot.
Assume that this is the case. Then, if (A′, b′) has r pivots, which means that A′ has r pivots
since b′ has no pivot, we know that the first r columns of Im appear in A′.

We can permute the columns of A′ and renumber the variables in x correspondingly so
that the first r columns of Im match the first r columns of A′, and then our reduced echelon
matrix is of the form (R, b′) with

R =

(
Ir F

0m−r,r 0m−r,n−r

)
and

b′ =

(
d

0m−r

)
,

where F is a r × (n− r) matrix and d ∈ Rr. Note that R has m− r zero rows.

Then because (
Ir F

0m−r,r 0m−r,n−r

)(
d

0n−r

)
=

(
d

0m−r

)
= b′,
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we see that

x0 =

(
d

0n−r

)
is a special solution of Rx = b′, and thus to Ax = b. In other words, we get a special solution
by assigning the first r components of b′ to the pivot variables and setting the nonpivot
variables (the free variables) to zero.

Here is an example of the preceding construction taken from Kumpel and Thorpe [40].
The linear system

x1 − x2 + x3 + x4 − 2x5 = −1

−2x1 + 2x2 − x3 + x5 = 2

x1 − x2 + 2x3 + 3x4 − 5x5 = −1,

is represented by the augmented matrix

(A, b) =

 1 −1 1 1 −2 −1
−2 2 −1 0 1 2
1 −1 2 3 −5 −1

 ,

where A is a 3× 5 matrix. The reader should find that the row echelon form of this system
is

(A′, b′) =

1 −1 0 −1 1 −1
0 0 1 2 −3 0
0 0 0 0 0 0

 .

The 3 × 5 matrix A′ has rank 2. We permute the second and third columns (which is
equivalent to interchanging variables x2 and x3) to form

R =

(
I2 F

01,2 01,3

)
, F =

(
−1 −1 1
0 2 −3

)
.

Then a special solution to this linear system is given by

x0 =

(
d
03

)
=

−1
0
03

 .

We can also find a basis of the kernel (nullspace) of A using F . If x = (u, v) is in the
kernel of A, with u ∈ Rr and v ∈ Rn−r, then x is also in the kernel of R, which means that
Rx = 0; that is, (

Ir F
0m−r,r 0m−r,n−r

)(
u
v

)
=

(
u+ Fv
0m−r

)
=

(
0r

0m−r

)
.

Therefore, u = −Fv, and Ker (A) consists of all vectors of the form(
−Fv
v

)
=

(
−F
In−r

)
v,
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for any arbitrary v ∈ Rn−r. It follows that the n− r columns of the matrix

N =

(
−F
In−r

)
form a basis of the kernel of A. This is because N contains the identity matrix In−r as a
submatrix, so the columns of N are linearly independent. In summary, if N1, . . . , Nn−r are
the columns of N , then the general solution of the equation Ax = b is given by

x =

(
d

0n−r

)
+ xr+1N

1 + · · ·+ xnN
n−r,

where xr+1, . . . , xn are the free variables; that is, the nonpivot variables.

Going back to our example from Kumpel and Thorpe [40], we see that

N =

(
−F
I3

)
=


1 1 −1
0 −2 3
1 0 0
0 1 0
0 0 1

 .

Since earlier we permuted the second and the third column, row 2 and row 3 need to be
swapped so the general solution in terms of the original variables is given by

x =


−1
0
0
0
0

+ x3


1
1
0
0
0

+ x4


1
0
−2
1
0

+ x5


−1
0
3
0
1

 .

In the general case where the columns corresponding to pivots are mixed with the columns
corresponding to free variables, we find the special solution as follows. Let i1 < · · · < ir
be the indices of the columns corresponding to pivots. Assign b′k to the pivot variable
xik for k = 1, . . . , r, and set all other variables to 0. To find a basis of the kernel, we
form the n − r vectors Nk obtained as follows. Let j1 < · · · < jn−r be the indices of the
columns corresponding to free variables. For every column jk corresponding to a free variable
(1 ≤ k ≤ n− r), form the vector Nk defined so that the entries Nk

i1
, . . . , Nk

ir are equal to the
negatives of the first r entries in column jk (flip the sign of these entries); let Nk

jk
= 1, and

set all other entries to zero. Schematically, if the column of index jk (corresponding to the
free variable xjk) is 

α1
...
αr
0
...
0


,
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then the vector Nk is given by

1
...

i1 − 1
i1

i1 + 1
...

ir − 1
ir

ir + 1
...

jk − 1
jk

jk + 1
...
n



0
...
0
−α1

0
...
0
−αr

0
...
0
1
0
...
0



.

The presence of the 1 in position jk guarantees that N1, . . . , Nn−r are linearly indepen-
dent.

As an illustration of the above method, consider the problem of finding a basis of the
subspace V of n× n matrices A ∈ Mn(R) satisfying the following properties:

1. The sum of the entries in every row has the same value (say c1);

2. The sum of the entries in every column has the same value (say c2).

It turns out that c1 = c2 and that the 2n−2 equations corresponding to the above conditions
are linearly independent. We leave the proof of these facts as an interesting exercise. It can
be shown using the duality theorem (Theorem 10.4) that the dimension of the space V of
matrices satisying the above equations is n2 − (2n − 2). Let us consider the case n = 4.
There are 6 equations, and the space V has dimension 10. The equations are

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0,
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and the corresponding matrix is

A =


1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0
0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0
0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1

 .

The result of performing the reduction to row echelon form yields the following matrix
in rref:

U =


1 0 0 0 0 −1 −1 −1 0 −1 −1 −1 2 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 −1 0 −1 −1
0 0 1 0 0 0 1 0 0 0 1 0 −1 −1 0 −1
0 0 0 1 0 0 0 1 0 0 0 1 −1 −1 −1 0
0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1


The list pivlist of indices of the pivot variables and the list freelist of indices of the free

variables is given by

pivlist = (1, 2, 3, 4, 5, 9),

freelist = (6,7,8,10,11,12,13,14,15,16).

After applying the algorithm to find a basis of the kernel of U , we find the following 16× 10
matrix

BK =



1 1 1 1 1 1 −2 −1 −1 −1
−1 0 0 −1 0 0 1 0 1 1
0 −1 0 0 −1 0 1 1 0 1
0 0 −1 0 0 −1 1 1 1 0
−1 −1 −1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 1 1 1 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



.

The reader should check that that in each column j of BK, the lowest bold 1 belongs
to the row whose index is the jth element in freelist , and that in each column j of BK, the
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signs of the entries whose indices belong to pivlist are the flipped signs of the 6 entries in
the column U corresponding to the jth index in freelist . We can now read off from BK the
4× 4 matrices that form a basis of V : every column of BK corresponds to a matrix whose
rows have been concatenated. We get the following 10 matrices:

M1 =


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 , M2 =


1 0 −1 0
−1 0 1 0
0 0 0 0
0 0 0 0

 , M3 =


1 0 0 −1
−1 0 0 1
0 0 0 0
0 0 0 0

 ,

M4 =


1 −1 0 0
0 0 0 0
−1 1 0 0
0 0 0 0

 , M5 =


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 , M6 =


1 0 0 −1
0 0 0 0
−1 0 0 1
0 0 0 0

 ,

M7 =


−2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 , M8 =


−1 0 1 1
1 0 0 0
1 0 0 0
0 1 0 0

 , M9 =


−1 1 0 1
1 0 0 0
1 0 0 0
0 0 1 0

 ,

M10 =


−1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 1

 .

Recall that a magic square is a square matrix that satisfies the two conditions about
the sum of the entries in each row and in each column to be the same number, and also
the additional two constraints that the main descending and the main ascending diagonals
add up to this common number. Furthermore, the entries are also required to be positive
integers. For n = 4, the additional two equations are

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0,

and the 8 equations stating that a matrix is a magic square are linearly independent. Again,
by running row elimination, we get a basis of the “generalized magic squares” whose entries
are not restricted to be positive integers. We find a basis of 8 matrices. For n = 3, we find
a basis of 3 matrices.

A magic square is said to be normal if its entries are precisely the integers 1, 2 . . . , n2.
Then since the sum of these entries is

1 + 2 + 3 + · · ·+ n2 =
n2(n2 + 1)

2
,
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and since each row (and column) sums to the same number, this common value (the magic
sum) is

n(n2 + 1)

2
.

It is easy to see that there are no normal magic squares for n = 2. For n = 3, the magic sum
is 15, for n = 4, it is 34, and for n = 5, it is 65.

In the case n = 3, we have the additional condition that the rows and columns add up
to 15, so we end up with a solution parametrized by two numbers x1, x2; namely, x1 + x2 − 5 10− x2 10− x1

20− 2x1 − x2 5 2x1 + x2 − 10
x1 x2 15− x1 − x2

 .

Thus, in order to find a normal magic square, we have the additional inequality constraints

x1 + x2 > 5

x1 < 10

x2 < 10

2x1 + x2 < 20

2x1 + x2 > 10

x1 > 0

x2 > 0

x1 + x2 < 15,

and all 9 entries in the matrix must be distinct. After a tedious case analysis, we discover the
remarkable fact that there is a unique normal magic square (up to rotations and reflections):2 7 6

9 5 1
4 3 8

 .

It turns out that there are 880 different normal magic squares for n = 4, and 275, 305, 224
normal magic squares for n = 5 (up to rotations and reflections). Even for n = 4, it takes a
fair amount of work to enumerate them all! Finding the number of magic squares for n > 5
is an open problem!

7.14 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a matrix A, we can perform elementary
columns operations, which means that we multiply A by elementary matrices on the right.
As elementary row and column operations, P (i, k), Ei,j;β, Ei,λ perform the following actions:
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1. As a row operation, P (i, k) permutes row i and row k.

2. As a column operation, P (i, k) permutes column i and column k.

3. The inverse of P (i, k) is P (i, k) itself.

4. As a row operation, Ei,j;β adds β times row j to row i.

5. As a column operation, Ei,j;β adds β times column i to column j (note the switch in
the indices).

6. The inverse of Ei,j;β is Ei,j;−β.

7. As a row operation, Ei,λ multiplies row i by λ.

8. As a column operation, Ei,λ multiplies column i by λ.

9. The inverse of Ei,λ is Ei,λ−1 .

We can define the notion of a reduced column echelon matrix and show that every matrix
can be reduced to a unique reduced column echelon form. Now given any m× n matrix A,
if we first convert A to its reduced row echelon form R, it is easy to see that we can apply
elementary column operations that will reduce R to a matrix of the form(

Ir 0r,n−r
0m−r,r 0m−r,n−r

)
,

where r is the number of pivots (obtained during the row reduction). Therefore, for every
m×n matrix A, there exist two sequences of elementary matrices E1, . . . , Ep and F1, . . . , Fq,
such that

Ep · · ·E1AF1 · · ·Fq =

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
.

The matrix on the right-hand side is called the rank normal form of A. Clearly, r is the rank
of A. As a corollary we obtain the following important result whose proof is immediate.

Proposition 7.21. A matrix A and its transpose A> have the same rank.

7.15 Transvections and Dilatations ~

In this section we characterize the linear isomorphisms of a vector space E that leave every
vector in some hyperplane fixed. These maps turn out to be the linear maps that are
represented in some suitable basis by elementary matrices of the form Ei,j;β (transvections)
or Ei,λ (dilatations). Furthermore, the transvections generate the group SL(E), and the
dilatations generate the group GL(E).
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Let H be any hyperplane in E, and pick some (nonzero) vector v ∈ E such that v /∈ H,
so that

E = H ⊕Kv.
Assume that f : E → E is a linear isomorphism such that f(u) = u for all u ∈ H, and that
f is not the identity. We have

f(v) = h+ αv, for some h ∈ H and some α ∈ K,

with α 6= 0, because otherwise we would have f(v) = h = f(h) since h ∈ H, contradicting
the injectivity of f (v 6= h since v /∈ H). For any x ∈ E, if we write

x = y + tv, for some y ∈ H and some t ∈ K,

then
f(x) = f(y) + f(tv) = y + tf(v) = y + th+ tαv,

and since αx = αy + tαv, we get

f(x)− αx = (1− α)y + th

f(x)− x = t(h+ (α− 1)v).

Observe that if E is finite-dimensional, by picking a basis of E consisting of v and basis
vectors of H, then the matrix of f is a lower triangular matrix whose diagonal entries are
all 1 except the first entry which is equal to α. Therefore, det(f) = α.

Case 1 . α 6= 1.

We have f(x) = αx iff (1− α)y + th = 0 iff

y =
t

α− 1
h.

Then if we let w = h+ (α− 1)v, for y = (t/(α− 1))h, we have

x = y + tv =
t

α− 1
h+ tv =

t

α− 1
(h+ (α− 1)v) =

t

α− 1
w,

which shows that f(x) = αx iff x ∈ Kw. Note that w /∈ H, since α 6= 1 and v /∈ H.
Therefore,

E = H ⊕Kw,
and f is the identity on H and a magnification by α on the line D = Kw.

Definition 7.8. Given a vector space E, for any hyperplane H in E, any nonzero vector
u ∈ E such that u 6∈ H, and any scalar α 6= 0, 1, a linear map f such that f(x) = x for
all x ∈ H and f(x) = αx for every x ∈ D = Ku is called a dilatation of hyperplane H,
direction D, and scale factor α.
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If πH and πD are the projections of E onto H and D, then we have

f(x) = πH(x) + απD(x).

The inverse of f is given by

f−1(x) = πH(x) + α−1πD(x).

When α = −1, we have f 2 = id, and f is a symmetry about the hyperplane H in the
direction D. This situation includes orthogonal reflections about H.

Case 2 . α = 1.

In this case,
f(x)− x = th,

that is, f(x)− x ∈ Kh for all x ∈ E. Assume that the hyperplane H is given as the kernel
of some linear form ϕ, and let a = ϕ(v). We have a 6= 0, since v /∈ H. For any x ∈ E, we
have

ϕ(x− a−1ϕ(x)v) = ϕ(x)− a−1ϕ(x)ϕ(v) = ϕ(x)− ϕ(x) = 0,

which shows that x− a−1ϕ(x)v ∈ H for all x ∈ E. Since every vector in H is fixed by f , we
get

x− a−1ϕ(x)v = f(x− a−1ϕ(x)v)

= f(x)− a−1ϕ(x)f(v),

so
f(x) = x+ ϕ(x)(f(a−1v)− a−1v).

Since f(z) − z ∈ Kh for all z ∈ E, we conclude that u = f(a−1v) − a−1v = βh for some
β ∈ K, so ϕ(u) = 0, and we have

f(x) = x+ ϕ(x)u, ϕ(u) = 0. (∗)
A linear map defined as above is denoted by τϕ,u.

Conversely for any linear map f = τϕ,u given by Equation (∗), where ϕ is a nonzero linear
form and u is some vector u ∈ E such that ϕ(u) = 0, if u = 0 , then f is the identity, so
assume that u 6= 0. If so, we have f(x) = x iff ϕ(x) = 0, that is, iff x ∈ H. We also claim
that the inverse of f is obtained by changing u to −u. Actually, we check the slightly more
general fact that

τϕ,u ◦ τϕ,w = τϕ,u+w.

Indeed, using the fact that ϕ(w) = 0, we have

τϕ,u(τϕ,w(x)) = τϕ,w(x) + ϕ(τϕ,w(x))u

= τϕ,w(x) + (ϕ(x) + ϕ(x)ϕ(w))u

= τϕ,w(x) + ϕ(x)u

= x+ ϕ(x)w + ϕ(x)u

= x+ ϕ(x)(u+ w).
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For v = −u, we have τϕ,u+v = ϕϕ,0 = id, so τ−1
ϕ,u = τϕ,−u, as claimed.

Therefore, we proved that every linear isomorphism of E that leaves every vector in some
hyperplane H fixed and has the property that f(x)− x ∈ H for all x ∈ E is given by a map
τϕ,u as defined by Equation (∗), where ϕ is some nonzero linear form defining H and u is
some vector in H. We have τϕ,u = id iff u = 0.

Definition 7.9. Given any hyperplane H in E, for any nonzero nonlinear form ϕ ∈ E∗

defining H (which means that H = Ker (ϕ)) and any nonzero vector u ∈ H, the linear map
f = τϕ,u given by

τϕ,u(x) = x+ ϕ(x)u, ϕ(u) = 0,

for all x ∈ E is called a transvection of hyperplane H and direction u. The map f = τϕ,u
leaves every vector in H fixed, and f(x)− x ∈ Ku for all x ∈ E.

The above arguments show the following result.

Proposition 7.22. Let f : E → E be a bijective linear map and assume that f 6= id and
that f(x) = x for all x ∈ H, where H is some hyperplane in E. If there is some nonzero
vector u ∈ E such that u /∈ H and f(u)− u ∈ H, then f is a transvection of hyperplane H;
otherwise, f is a dilatation of hyperplane H.

Proof. Using the notation as above, for some v /∈ H, we have f(v) = h + αv with α 6= 0,
and write u = y + tv with y ∈ H and t 6= 0 since u /∈ H. If f(u)− u ∈ H, from

f(u)− u = t(h+ (α− 1)v),

we get (α − 1)v ∈ H, and since v /∈ H, we must have α = 1, and we proved that f is a
transvection. Otherwise, α 6= 0, 1, and we proved that f is a dilatation.

If E is finite-dimensional, then α = det(f), so we also have the following result.

Proposition 7.23. Let f : E → E be a bijective linear map of a finite-dimensional vector
space E and assume that f 6= id and that f(x) = x for all x ∈ H, where H is some hyperplane
in E. If det(f) = 1, then f is a transvection of hyperplane H; otherwise, f is a dilatation
of hyperplane H.

Suppose that f is a dilatation of hyperplane H and direction u, and say det(f) = α 6= 0, 1.
Pick a basis (u, e2, . . . , en) of E where (e2, . . . , en) is a basis of H. Then the matrix of f is
of the form 

α 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

 ,
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which is an elementary matrix of the form E1,α. Conversely, it is clear that every elementary
matrix of the form Ei,α with α 6= 0, 1 is a dilatation.

Now, assume that f is a transvection of hyperplane H and direction u ∈ H. Pick some
v /∈ H, and pick some basis (u, e3, . . . , en) of H, so that (v, u, e3, . . . , en) is a basis of E. Since
f(v)− v ∈ Ku, the matrix of f is of the form

1 0 · · · 0
α 1 0
...

. . .
...

0 0 · · · 1

 ,

which is an elementary matrix of the form E2,1;α. Conversely, it is clear that every elementary
matrix of the form Ei,j;α (α 6= 0) is a transvection.

The following proposition is an interesting exercise that requires good mastery of the
elementary row operations Ei,j;β; see Problems 7.10 and 7.11.

Proposition 7.24. Given any invertible n× n matrix A, there is a matrix S such that

SA =

(
In−1 0

0 α

)
= En,α,

with α = det(A), and where S is a product of elementary matrices of the form Ei,j;β; that
is, S is a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 7.25. If the field K is not of characteristic 2, then every transvection f of
hyperplane H can be written as f = d2 ◦ d1, where d1, d2 are dilatations of hyperplane H,
where the direction of d1 can be chosen arbitrarily.

Proof. Pick some dilatation d1 of hyperplane H and scale factor α 6= 0, 1. Then, d2 = f ◦d−1
1

leaves every vector in H fixed, and det(d2) = α−1 6= 1. By Proposition 7.23, the linear map
d2 is a dilatation of hyperplane H, and we have f = d2 ◦ d1, as claimed.

Observe that in Proposition 7.25, we can pick α = −1; that is, every transvection of
hyperplane H is the compositions of two symmetries about the hyperplane H, one of which
can be picked arbitrarily.

Remark: Proposition 7.25 holds as long as K 6= {0, 1}.
The following important result is now obtained.

Theorem 7.26. Let E be any finite-dimensional vector space over a field K of characteristic
not equal to 2. Then the group SL(E) is generated by the transvections, and the group GL(E)
is generated by the dilatations.
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Proof. Consider any f ∈ SL(E), and let A be its matrix in any basis. By Proposition 7.24,
there is a matrix S such that

SA =

(
In−1 0

0 α

)
= En,α,

with α = det(A), and where S is a product of elementary matrices of the form Ei,j;β. Since
det(A) = 1, we have α = 1, and the result is proven. Otherwise, if f is invertible but
f /∈ SL(E), the above equation shows En,α is a dilatation, S is a product of transvections,
and by Proposition 7.25, every transvection is the composition of two dilatations. Thus, the
second result is also proven.

We conclude this section by proving that any two transvections are conjugate in GL(E).
Let τϕ,u (u 6= 0) be a transvection and let g ∈ GL(E) be any invertible linear map. We have

(g ◦ τϕ,u ◦ g−1)(x) = g(g−1(x) + ϕ(g−1(x))u)

= x+ ϕ(g−1(x))g(u).

Let us find the hyperplane determined by the linear form x 7→ ϕ(g−1(x)). This is the set of
vectors x ∈ E such that ϕ(g−1(x)) = 0, which holds iff g−1(x) ∈ H iff x ∈ g(H). Therefore,
Ker (ϕ◦g−1) = g(H) = H ′, and we have g(u) ∈ g(H) = H ′, so g◦τϕ,u◦g−1 is the transvection
of hyperplane H ′ = g(H) and direction u′ = g(u) (with u′ ∈ H ′).

Conversely, let τψ,u′ be some transvection (u′ 6= 0). Pick some vectors v, v′ such that
ϕ(v) = ψ(v′) = 1, so that

E = H ⊕Kv = H ′ ⊕Kv′.
There is a linear map g ∈ GL(E) such that g(u) = u′, g(v) = v′, and g(H) = H ′. To
define g, pick a basis (v, u, e2, . . . , en−1) where (u, e2, . . . , en−1) is a basis of H and pick a
basis (v′, u′, e′2, . . . , e

′
n−1) where (u′, e′2, . . . , e

′
n−1) is a basis of H ′; then g is defined so that

g(v) = v′, g(u) = u′, and g(ei) = g(e′i), for i = 2, . . . , n − 1. If n = 2, then ei and e′i are
missing. Then, we have

(g ◦ τϕ,u ◦ g−1)(x) = x+ ϕ(g−1(x))u′.

Now ϕ ◦ g−1 also determines the hyperplane H ′ = g(H), so we have ϕ ◦ g−1 = λψ for some
nonzero λ in K. Since v′ = g(v), we get

ϕ(v) = ϕ ◦ g−1(v′) = λψ(v′),

and since ϕ(v) = ψ(v′) = 1, we must have λ = 1. It follows that

(g ◦ τϕ,u ◦ g−1)(x) = x+ ψ(x)u′ = τψ,u′(x).

In summary, we proved almost all parts the following result.
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Proposition 7.27. Let E be any finite-dimensional vector space. For every transvection
τϕ,u (u 6= 0) and every linear map g ∈ GL(E), the map g ◦ τϕ,u ◦ g−1 is the transvection
of hyperplane g(H) and direction g(u) (that is, g ◦ τϕ,u ◦ g−1 = τϕ◦g−1,g(u)). For every other
transvection τψ,u′ (u′ 6= 0), there is some g ∈ GL(E) such τψ,u′ = g ◦ τϕ,u ◦ g−1; in other
words any two transvections (6= id) are conjugate in GL(E). Moreover, if n ≥ 3, then the
linear isomorphism g as above can be chosen so that g ∈ SL(E).

Proof. We just need to prove that if n ≥ 3, then for any two transvections τϕ,u and τψ,u′
(u, u′ 6= 0), there is some g ∈ SL(E) such that τψ,u′ = g◦τϕ,u◦g−1. As before, we pick a basis
(v, u, e2, . . . , en−1) where (u, e2, . . . , en−1) is a basis of H, we pick a basis (v′, u′, e′2, . . . , e

′
n−1)

where (u′, e′2, . . . , e
′
n−1) is a basis of H ′, and we define g as the unique linear map such that

g(v) = v′, g(u) = u′, and g(ei) = e′i, for i = 1, . . . , n − 1. But in this case, both H and
H ′ = g(H) have dimension at least 2, so in any basis of H ′ including u′, there is some basis
vector e′2 independent of u′, and we can rescale e′2 in such a way that the matrix of g over
the two bases has determinant +1.

7.16 Summary

The main concepts and results of this chapter are listed below:

• One does not solve (large) linear systems by computing determinants.

• Upper-triangular (lower-triangular) matrices.

• Solving by back-substitution (forward-substitution).

• Gaussian elimination.

• Permuting rows.

• The pivot of an elimination step; pivoting .

• Transposition matrix ; elementary matrix .

• The Gaussian elimination theorem (Theorem 7.1).

• Gauss-Jordan factorization.

• LU-factorization; Necessary and sufficient condition for the existence of an
LU -factorization (Proposition 7.2).

• LDU-factorization.

• “PA = LU theorem” (Theorem 7.5).

• LDL>-factorization of a symmetric matrix.
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• Avoiding small pivots: partial pivoting ; complete pivoting .

• Gaussian elimination of tridiagonal matrices.

• LU -factorization of tridiagonal matrices.

• Symmetric positive definite matrices (SPD matrices).

• Cholesky factorization (Theorem 7.10).

• Criteria for a symmetric matrix to be positive definite; Sylvester’s criterion.

• Reduced row echelon form.

• Reduction of a rectangular matrix to its row echelon form.

• Using the reduction to row echelon form to decide whether a system Ax = b is solvable,
and to find its solutions, using a special solution and a basis of the homogeneous system
Ax = 0.

• Magic squares .

• Transvections and dilatations.

7.17 Problems

Problem 7.1. Solve the following linear systems by Gaussian elimination: 2 3 1
1 2 −1
−3 −5 1

xy
z

 =

 6
2
−7

 ,

1 1 1
1 1 2
1 2 3

xy
z

 =

 6
9
14

 .

Problem 7.2. Solve the following linear system by Gaussian elimination:
1 2 1 1
2 3 2 3
−1 0 1 −1
−2 −1 4 0



x1

x2

x3

x4

 =


7
14
−1
2

 .

Problem 7.3. Consider the matrix

A =

1 c 0
2 4 1
3 5 1

 .

When applying Gaussian elimination, which value of c yields zero in the second pivot posi-
tion? Which value of c yields zero in the third pivot position? In this case, what can you
say about the matrix A?
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Problem 7.4. Solve the system
2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8



x1

x2

x3

x4

 =


1
−1
−1
1


using the LU -factorization of Example 7.1.

Problem 7.5. Apply rref to the matrix

A2 =


1 2 1 1
2 3 2 3
−1 0 1 −1
−2 −1 3 0

 .

Problem 7.6. Apply rref to the matrix
1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

 .

Problem 7.7. (1) Prove that the dimension of the subspace of 2× 2 matrices A, such that
the sum of the entries of every row is the same (say c1) and the sum of entries of every
column is the same (say c2) is 2.

(2) Prove that the dimension of the subspace of 2× 2 matrices A, such that the sum of
the entries of every row is the same (say c1), the sum of entries of every column is the same
(say c2), and c1 = c2 is also 2. Prove that every such matrix is of the form(

a b
b a

)
,

and give a basis for this subspace.

(3) Prove that the dimension of the subspace of 3× 3 matrices A, such that the sum of
the entries of every row is the same (say c1), the sum of entries of every column is the same
(say c2), and c1 = c2 is 5. Begin by showing that the above constraints are given by the set
of equations


1 1 1 −1 −1 −1 0 0 0
0 0 0 1 1 1 −1 −1 −1
1 −1 0 1 −1 0 1 −1 0
0 1 −1 0 1 −1 0 1 −1
0 1 1 −1 0 0 −1 0 0





a11

a12

a13

a21

a22

a23

a31

a32

a33


=


0
0
0
0
0

 .



290 CHAPTER 7. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

Prove that every matrix satisfying the above constraints is of the form a+ b− c −a+ c+ e −b+ c+ d
−a− b+ c+ d+ e a b

c d e

 ,

with a, b, c, d, e ∈ R. Find a basis for this subspace. (Use the method to find a basis for the
kernel of a matrix).

Problem 7.8. If A is an n× n matrix and B is any n× n invertible matrix, prove that A
is symmetric positive definite iff B>AB is symmetric positive definite.

Problem 7.9. (1) Consider the matrix

A4 =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 .

Find three matrices of the form E2,1;β1 , E3,2;β2 , E4,3;β3 , such that

E4,3;β3E3,2;β2E2,1;β1A4 = U4

where U4 is an upper triangular matrix. Compute

M = E4,3;β3E3,2;β2E2,1;β1

and check that

MA4 = U4 =


2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 0 5/4

 .

(2) Now consider the matrix

A5 =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 .

Find four matrices of the form E2,1;β1 , E3,2;β2 , E4,3;β3 , E5,4;β4 , such that

E5,4;β4E4,3;β3E3,2;β2E2,1;β1A5 = U5

where U5 is an upper triangular matrix. Compute

M = E5,4;β4E4,3;β3E3,2;β2E2,1;β1
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and check that

MA5 = U5 =


2 −1 0 0 0
0 3/2 −1 0 0
0 0 4/3 −1 0
0 0 0 5/4 −1
0 0 0 0 6/5

 .

(3) Write a Matlab program defining the function Ematrix(n, i, j, b) which is the n × n
matrix that adds b times row j to row i. Also write some Matlab code that produces an
n× n matrix An generalizing the matrices A4 and A5.

Use your program to figure out which five matrices Ei,j;β reduce A6 to the upper triangular
matrix

U6 =


2 −1 0 0 0 0
0 3/2 −1 0 0 0
0 0 4/3 −1 0 0
0 0 0 5/4 −1 0
0 0 0 0 6/5 −1
0 0 0 0 0 7/6

 .

Also use your program to figure out which six matrices Ei,j;β reduce A7 to the upper trian-
gular matrix

U7 =



2 −1 0 0 0 0 0
0 3/2 −1 0 0 0 0
0 0 4/3 −1 0 0 0
0 0 0 5/4 −1 0 0
0 0 0 0 6/5 −1 0
0 0 0 0 0 7/6 −1
0 0 0 0 0 0 8/7


.

(4) Find the lower triangular matrices L6 and L7 such that

L6U6 = A6

and
L7U7 = A7.

(5) It is natural to conjecture that there are n− 1 matrices of the form Ei,j;β that reduce
An to the upper triangular matrix

Un =



2 −1 0 0 0 0 0
0 3/2 −1 0 0 0 0
0 0 4/3 −1 0 0 0
0 0 0 5/4 −1 0 0

0 0 0 0 6/5
. . .

...
...

...
...

...
. . . . . . −1

0 0 0 0 · · · 0 (n+ 1)/n


,
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namely,
E2,1;1/2, E3,2;2/3, E4,3;3/4, · · · , En,n−1;(n−1)/n.

It is also natural to conjecture that the lower triangular matrix Ln such that

LnUn = An

is given by
Ln = E2,1;−1/2E3,2;−2/3E4,3;−3/4 · · ·En,n−1;−(n−1)/n,

that is,

Ln =



1 0 0 0 0 0 0
−1/2 1 0 0 0 0 0

0 −2/3 1 0 0 0 0
0 0 −3/4 1 0 0 0

0 0 0 −4/5 1
. . .

...
...

...
...

...
. . . . . . 0

0 0 0 0 · · · −(n− 1)/n 1


.

Prove the above conjectures.

(6) Prove that the last column of A−1
n is

1/(n+ 1)
2/(n+ 1)

...
n/(n+ 1)

 .

Problem 7.10. (1) Let A be any invertible 2× 2 matrix

A =

(
a b
c d

)
.

Prove that there is an invertible matrix S such that

SA =

(
1 0
0 ad− bc

)
,

where S is the product of at most four elementary matrices of the form Ei,j;β.

Conclude that every matrix A in SL(2) (the group of invertible 2 × 2 matrices A with
det(A) = +1) is the product of at most four elementary matrices of the form Ei,j;β.

For any a 6= 0, 1, give an explicit factorization as above for

A =

(
a 0
0 a−1

)
.
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What is this decomposition for a = −1?

(2) Recall that a rotation matrix R (a member of the group SO(2)) is a matrix of the
form

R =

(
cos θ − sin θ
sin θ cos θ

)
.

Prove that if θ 6= kπ (with k ∈ Z), any rotation matrix can be written as a product

R = ULU,

where U is upper triangular and L is lower triangular of the form

U =

(
1 u
0 1

)
, L =

(
1 0
v 1

)
.

Therefore, every plane rotation (except a flip about the origin when θ = π) can be written
as the composition of three shear transformations!

Problem 7.11. (1) Recall that Ei,d is the diagonal matrix

Ei,d = diag(1, . . . , 1, d, 1, . . . , 1),

whose diagonal entries are all +1, except the (i, i)th entry which is equal to d.

Given any n× n matrix A, for any pair (i, j) of distinct row indices (1 ≤ i, j ≤ n), prove
that there exist two elementary matrices E1(i, j) and E2(i, j) of the form Ek,`;β, such that

Ej,−1E1(i, j)E2(i, j)E1(i, j)A = P (i, j)A,

the matrix obtained from the matrix A by permuting row i and row j. Equivalently, we have

E1(i, j)E2(i, j)E1(i, j)A = Ej,−1P (i, j)A,

the matrix obtained from A by permuting row i and row j and multiplying row j by −1.

Prove that for every i = 2, . . . , n, there exist four elementary matrices E3(i, d), E4(i, d),
E5(i, d), E6(i, d) of the form Ek,`;β, such that

E6(i, d)E5(i, d)E4(i, d)E3(i, d)En,d = Ei,d.

What happens when d = −1, that is, what kind of simplifications occur?

Prove that all permutation matrices can be written as products of elementary operations
of the form Ek,`;β and the operation En,−1.

(2) Prove that for every invertible n× n matrix A, there is a matrix S such that

SA =

(
In−1 0

0 d

)
= En,d,
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with d = det(A), and where S is a product of elementary matrices of the form Ek,`;β.

In particular, every matrix in SL(n) (the group of invertible n × n matrices A with
det(A) = +1) can be written as a product of elementary matrices of the form Ek,`;β. Prove
that at most n(n+ 1)− 2 such transformations are needed.

(3) Prove that every matrix in SL(n) can be written as a product of at most (n −
1)(max{n, 3}+ 1) elementary matrices of the form Ek,`;β.

Problem 7.12. A matrix A is called strictly column diagonally dominant iff

|aj j| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n.

Prove that if A is strictly column diagonally dominant, then Gaussian elimination with
partial pivoting does not require pivoting, and A is invertible.

Problem 7.13. (1) Find a lower triangular matrix E such that

E


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 =


1 0 0 0
0 1 0 0
0 1 1 0
0 1 2 1

 .

(2) What is the effect of the product (on the left) with

E4,3;−1E3,2;−1E4,3;−1E2,1;−1E3,2;−1E4,3;−1

on the matrix

Pa3 =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 .

(3) Find the inverse of the matrix Pa3.

(4) Consider the (n + 1) × (n + 1) Pascal matrix Pan whose ith row is given by the
binomial coefficients (

i− 1

j − 1

)
,

with 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1, and with the usual convention that(
0

0

)
= 1,

(
i

j

)
= 0 if j > i.
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The matrix Pa3 is shown in Part (3) and Pa4 is shown below:

Pa4 =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 .

Find n elementary matrices Eik,jk;βk such that

Ein,jn;βn · · ·Ei1,j1;β1Pan =

(
1 0
0 Pan−1

)
.

Use the above to prove that the inverse of Pan is the lower triangular matrix whose ith
row is given by the signed binomial coefficients

(−1)i+j−2

(
i− 1

j − 1

)
= (−1)i+j

(
i− 1

j − 1

)
,

with 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1. For example,

Pa−1
4 =


1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

 .

Hint . Given any n×n matrix A, multiplying A by the elementary matrix Ei,j;β on the right
yields the matrix AEi,j;β in which β times the ith column is added to the jth column.

Problem 7.14. (1) Implement the method for converting a rectangular matrix to reduced
row echelon form in Matlab.

(2) Use the above method to find the inverse of an invertible n×n matrix A by applying
it to the the n× 2n matrix [AI] obtained by adding the n columns of the identity matrix to
A.

(3) Consider the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

...
. . .

...
n n+ 1 n+ 2 n+ 3 · · · 2n− 1

 .

Using your program, find the row reduced echelon form of A for n = 4, . . . , 20.
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Also run the Matlab rref function and compare results.

Your program probably disagrees with rref even for small values of n. The problem is
that some pivots are very small and the normalization step (to make the pivot 1) causes
roundoff errors. Use a tolerance parameter to fix this problem.

What can you conjecture about the rank of A?

(4) Prove that the matrix A has the following row reduced form:

R =


1 0 −1 −2 · · · −(n− 2)
0 1 2 3 · · · n− 1
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

 .

Deduce from the above that A has rank 2.

Hint . Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than or equal to
(2/25)n2 to every diagonal entry of A you get an invertible matrix! In fact, running the
Matlab function chol should tell you that these matrices are SPD (symmetric, positive
definite).

Problem 7.15. Let A be an n× n complex Hermitian positive definite matrix. Prove that
the lower-triangular matrix B with positive diagonal entries such that A = BB∗ is given by
the following formulae: For j = 1, . . . , n,

bj j =

(
aj j −

j−1∑
k=1

|bj k|2
)1/2

,

and for i = j + 1, . . . , n (and j = 1, . . . , n− 1)

bi j =

(
ai j −

j−1∑
k=1

bi kbj k

)
/bj j.

Problem 7.16. (Permutations and permutation matrices) A permutation can be viewed as
an operation permuting the rows of a matrix. For example, the permutation(

1 2 3 4
3 4 2 1

)
corresponds to the matrix

Pπ =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 .
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Observe that the matrix Pπ has a single 1 on every row and every column, all other
entries being zero, and that if we multiply any 4 × 4 matrix A by Pπ on the left, then the
rows of A are permuted according to the permutation π; that is, the π(i)th row of PπA is
the ith row of A. For example,

PπA =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


a41 a42 a43 a44

a31 a32 a33 a34

a11 a12 a13 a14

a21 a22 a23 a24

 .

Equivalently, the ith row of PπA is the π−1(i)th row of A. In order for the matrix Pπ to
move the ith row of A to the π(i)th row, the π(i)th row of Pπ must have a 1 in column i and
zeros everywhere else; this means that the ith column of Pπ contains the basis vector eπ(i),
the vector that has a 1 in position π(i) and zeros everywhere else.

This is the general situation and it leads to the following definition.

Definition 7.10. Given any permutation π : [n] → [n], the permutation matrix Pπ = (pij)
representing π is the matrix given by

pij =

{
1 if i = π(j)

0 if i 6= π(j);

equivalently, the jth column of Pπ is the basis vector eπ(j). A permutation matrix P is any
matrix of the form Pπ (where P is an n × n matrix, and π : [n] → [n] is a permutation, for
some n ≥ 1).

Remark: There is a confusing point about the notation for permutation matrices. A per-
mutation matrix P acts on a matrix A by multiplication on the left by permuting the rows
of A. As we said before, this means that the π(i)th row of PπA is the ith row of A, or
equivalently that the ith row of PπA is the π−1(i)th row of A. But then observe that the row
index of the entries of the ith row of PA is π−1(i), and not π(i)! See the following example:

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


a41 a42 a43 a44

a31 a32 a33 a34

a11 a12 a13 a14

a21 a22 a23 a24

 ,

where

π−1(1) = 4

π−1(2) = 3

π−1(3) = 1

π−1(4) = 2.

Prove the following results
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(1) Given any two permutations π1, π2 : [n] → [n], the permutation matrix Pπ2◦π1 repre-
senting the composition of π1 and π2 is equal to the product Pπ2Pπ1 of the permutation
matrices Pπ1 and Pπ2 representing π1 and π2; that is,

Pπ2◦π1 = Pπ2Pπ1 .

(2) The matrix Pπ−1
1

representing the inverse of the permutation π1 is the inverse P−1
π1

of
the matrix Pπ1 representing the permutation π1; that is,

Pπ−1
1

= P−1
π1
.

Furthermore,
P−1
π1

= (Pπ1)
>.

(3) Prove that if P is the matrix associated with a transposition, then det(P ) = −1.

(4) Prove that if P is a permutation matrix, then det(P ) = ±1.

(5) Use permutation matrices to give another proof of the fact that the parity of the
number of transpositions used to express a permutation π depends only on π.



Chapter 8

Vector Norms and Matrix Norms

8.1 Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order to define the
convergence of sequences of vectors or matrices, we can use the notion of a norm. Recall
that R+ = {x ∈ R | x ≥ 0}. Also recall that if z = a + ib ∈ C is a complex number, with
a, b ∈ R, then z = a− ib and |z| =

√
zz =

√
a2 + b2 (|z| is the modulus of z).

Definition 8.1. Let E be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function ‖ ‖ : E → R+, assigning
a nonnegative real number ‖u‖ to any vector u ∈ E, and satisfying the following conditions
for all x, y ∈ E and λ ∈ K:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (homogeneity (or scaling))

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector space.

By (N2), setting λ = −1, we obtain

‖−x‖ = ‖(−1)x‖ = | − 1| ‖x‖ = ‖x‖ ;

that is, ‖−x‖ = ‖x‖. From (N3), we have

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖ ,

which implies that
‖x‖ − ‖y‖ ≤ ‖x− y‖ .

By exchanging x and y and using the fact that by (N2),

‖y − x‖ = ‖−(x− y)‖ = ‖x− y‖ ,

299
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we also have
‖y‖ − ‖x‖ ≤ ‖x− y‖ .

Therefore,
|‖x‖ − ‖y‖| ≤ ‖x− y‖, for all x, y ∈ E. (∗)

Observe that setting λ = 0 in (N2), we deduce that ‖0‖ = 0 without assuming (N1).
Then by setting y = 0 in (∗), we obtain

|‖x‖| ≤ ‖x‖ , for all x ∈ E.

Therefore, the condition ‖x‖ ≥ 0 in (N1) follows from (N2) and (N3), and (N1) can be
replaced by the weaker condition

(N1’) For all x ∈ E, if ‖x‖ = 0, then x = 0,

A function ‖ ‖ : E → R satisfying Axioms (N2) and (N3) is called a seminorm. From the
above discussion, a seminorm also has the properties

‖x‖ ≥ 0 for all x ∈ E, and ‖0‖ = 0.

However, there may be nonzero vectors x ∈ E such that ‖x‖ = 0.

Let us give some examples of normed vector spaces.

Example 8.1.

1. Let E = R, and ‖x‖ = |x|, the absolute value of x.

2. Let E = C, and ‖z‖ = |z|, the modulus of z.

3. Let E = Rn (or E = Cn). There are three standard norms. For every (x1, . . . , xn) ∈ E,
we have the norm ‖x‖1, defined such that,

‖x‖1 = |x1|+ · · ·+ |xn|,

we have the Euclidean norm ‖x‖2, defined such that,

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

) 1
2 ,

and the sup-norm ‖x‖∞, defined such that,

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.

More generally, we define the `p-norm (for p ≥ 1) by

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p.

See Figures 8.1 through 8.4.
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Figure 8.1: The top figure is {x ∈ R2 | ‖x‖1 ≤ 1}, while the bottom figure is {x ∈ R3 |
‖x‖1 ≤ 1}.

There are other norms besides the `p-norms. Here are some examples.

1. For E = R2,
‖(u1, u2)‖ = |u1|+ 2|u2|.

See Figure 8.5.

2. For E = R2,

‖(u1, u2)‖ =
(
(u1 + u2)2 + u2

1

)1/2
.

See Figure 8.6.

3. For E = C2,
‖(u1, u2)‖ = |u1 + iu2|+ |u1 − iu2|.

The reader should check that they satisfy all the axioms of a norm.

Some work is required to show the triangle inequality for the `p-norm.
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Figure 8.2: The top figure is {x ∈ R2 | ‖x‖2 ≤ 1}, while the bottom figure is {x ∈ R3 |
‖x‖2 ≤ 1}.

Proposition 8.1. If E = Cn or E = Rn, for every real number p ≥ 1, the `p-norm is indeed
a norm.

Proof. The cases p = 1 and p = ∞ are easy and left to the reader. If p > 1, then let q > 1
such that

1

p
+

1

q
= 1.

We will make use of the following fact: for all α, β ∈ R, if α, β ≥ 0, then

αβ ≤ αp

p
+
βq

q
. (∗)

To prove the above inequality, we use the fact that the exponential function t 7→ et satisfies
the following convexity inequality:

eθx+(1−θ)y ≤ θex + (1− θ)ey,
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Figure 8.3: The top figure is {x ∈ R2 | ‖x‖∞ ≤ 1}, while the bottom figure is {x ∈ R3 |
‖x‖∞ ≤ 1}.

for all x, y ∈ R and all θ with 0 ≤ θ ≤ 1.

Since the case αβ = 0 is trivial, let us assume that α > 0 and β > 0. If we replace θ by
1/p, x by p logα and y by q log β, then we get

e
1
p
p logα+ 1

q
q log β ≤ 1

p
ep logα +

1

q
eq log β,

which simplifies to

αβ ≤ αp

p
+
βq

q
,

as claimed.

We will now prove that for any two vectors u, v ∈ E, (where E is of dimension n), we
have

n∑
i=1

|uivi| ≤ ‖u‖p ‖v‖q . (∗∗)
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Figure 8.4: The relationships between the closed unit balls from the `1-norm, the Euclidean
norm, and the sup-norm.

Since the above is trivial if u = 0 or v = 0, let us assume that u 6= 0 and v 6= 0. Then
Inequality (∗) with α = |ui|/ ‖u‖p and β = |vi|/ ‖v‖q yields

|uivi|
‖u‖p ‖v‖q

≤ |ui|p
p ‖u‖pp

+
|vi|q
q ‖v‖qq

,

for i = 1, . . . , n, and by summing up these inequalities, we get

n∑
i=1

|uivi| ≤ ‖u‖p ‖v‖q ,

as claimed. To finish the proof, we simply have to prove that property (N3) holds, since
(N1) and (N2) are clear. For i = 1, . . . , n, we can write

(|ui|+ |vi|)p = |ui|(|ui|+ |vi|)p−1 + |vi|(|ui|+ |vi|)p−1,
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Figure 8.5: The unit closed unit ball {(u1, u2) ∈ R2 | ‖(u1, u2)‖ ≤ 1}, where ‖(u1, u2)‖ =
|u1|+ 2|u2|.

so that by summing up these equations we get

n∑
i=1

(|ui|+ |vi|)p =
n∑
i=1

|ui|(|ui|+ |vi|)p−1 +
n∑
i=1

|vi|(|ui|+ |vi|)p−1,

and using Inequality (∗∗), with V ∈ E where Vi = (|ui|+ |vi|)p−1, we get

n∑
i=1

(|ui|+ |vi|)p ≤ ‖u‖p ‖V ‖q + ‖v‖p ‖V ‖q = (‖u‖p + ‖v‖p)
( n∑

i=1

(|ui|+ |vi|)(p−1)q

)1/q

.

However, 1/p+ 1/q = 1 implies pq = p+ q, that is, (p− 1)q = p, so we have

n∑
i=1

(|ui|+ |vi|)p ≤ (‖u‖p + ‖v‖p)
( n∑

i=1

(|ui|+ |vi|)p
)1/q

,

which yields ( n∑
i=1

(|ui|+ |vi|)p
)1−1/q

=

( n∑
i=1

(|ui|+ |vi|)p
)1/p

≤ ‖u‖p + ‖v‖p .

Since |ui + vi| ≤ |ui|+ |vi|, the above implies the triangle inequality ‖u+ v‖p ≤ ‖u‖p + ‖v‖p,
as claimed.

For p > 1 and 1/p+ 1/q = 1, the inequality

n∑
i=1

|uivi| ≤
( n∑

i=1

|ui|p
)1/p( n∑

i=1

|vi|q
)1/q
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Figure 8.6: The unit closed unit ball {(u1, u2) ∈ R2 | ‖(u1, u2)‖ ≤ 1}, where ‖(u1, u2)‖ =(
(u1 + u2)2 + u2

1

)1/2
.

is known as Hölder’s inequality . For p = 2, it is the Cauchy–Schwarz inequality .

Actually, if we define the Hermitian inner product 〈−,−〉 on Cn by

〈u, v〉 =
n∑
i=1

uivi,

where u = (u1, . . . , un) and v = (v1, . . . , vn), then

|〈u, v〉| ≤
n∑
i=1

|uivi| =
n∑
i=1

|uivi|,

so Hölder’s inequality implies the following inequalities.

Corollary 8.2. (Hölder’s inequalities) For any real numbers p, q, such that p, q ≥ 1 and

1

p
+

1

q
= 1,

(with q = +∞ if p = 1 and p = +∞ if q = 1), we have the inequalities

n∑
i=1

|uivi| ≤
( n∑

i=1

|ui|p
)1/p( n∑

i=1

|vi|q
)1/q

and

|〈u, v〉| ≤ ‖u‖p ‖v‖q , u, v ∈ Cn.
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For p = 2, this is the standard Cauchy–Schwarz inequality. The triangle inequality for
the `p-norm, ( n∑

i=1

(|ui + vi|)p
)1/p

≤
( n∑

i=1

|ui|p
)1/p

+

( n∑
i=1

|vi|p
)1/p

,

is known as Minkowski’s inequality .

When we restrict the Hermitian inner product to real vectors, u, v ∈ Rn, we get the
Euclidean inner product

〈u, v〉 =
n∑
i=1

uivi.

It is very useful to observe that if we represent (as usual) u = (u1, . . . , un) and v = (v1, . . . , vn)
(in Rn) by column vectors, then their Euclidean inner product is given by

〈u, v〉 = u>v = v>u,

and when u, v ∈ Cn, their Hermitian inner product is given by

〈u, v〉 = v∗u = u∗v.

In particular, when u = v, in the complex case we get

‖u‖2
2 = u∗u,

and in the real case this becomes
‖u‖2

2 = u>u.

As convenient as these notations are, we still recommend that you do not abuse them; the
notation 〈u, v〉 is more intrinsic and still “works” when our vector space is infinite dimen-
sional.

Remark: If 0 < p < 1, then x 7→ ‖x‖p is not a norm because the triangle inequality
fails. For example, consider x = (2, 0) and y = (0, 2). Then x + y = (2, 2), and we have
‖x‖p = (2p + 0p)1/p = 2, ‖y‖p = (0p + 2p)1/p = 2, and ‖x+ y‖p = (2p + 2p)1/p = 2(p+1)/p.
Thus

‖x+ y‖p = 2(p+1)/p, ‖x‖p + ‖y‖p = 4 = 22.

Since 0 < p < 1, we have 2p < p + 1, that is, (p + 1)/p > 2, so 2(p+1)/p > 22 = 4, and the
triangle inequality ‖x+ y‖p ≤ ‖x‖p + ‖y‖p fails.

Observe that

‖(1/2)x‖p = (1/2) ‖x‖p = ‖(1/2)y‖p = (1/2) ‖y‖p = 1, ‖(1/2)(x+ y)‖p = 21/p,

and since p < 1, we have 21/p > 2, so

‖(1/2)(x+ y)‖p = 21/p > 2 = (1/2) ‖x‖p + (1/2) ‖y‖p ,
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and the map x 7→ ‖x‖p is not convex.

For p = 0, for any x ∈ Rn, we have

‖x‖0 = |{i ∈ {1, . . . , n} | xi 6= 0}|,

the number of nonzero components of x. The map x 7→ ‖x‖0 is not a norm this time because
Axiom (N2) fails. For example,

‖(1, 0)‖0 = ‖(10, 0)‖0 = 1 6= 10 = 10 ‖(1, 0)‖0 .

The map x 7→ ‖x‖0 is also not convex. For example,

‖(1/2)(2, 2)‖0 = ‖(1, 1)‖0 = 2,

and
‖(2, 0)‖0 = ‖(0, 2)‖0 = 1,

but
‖(1/2)(2, 2)‖0 = 2 > 1 = (1/2) ‖(2, 0)‖0 + (1/2) ‖(0, 2)‖0 .

Nevertheless, the “zero-norm” x 7→ ‖x‖0 is used in machine learning as a regularizing
term which encourages sparsity, namely increases the number of zero components of the
vector x.

The following proposition is easy to show.

Proposition 8.3. The following inequalities hold for all x ∈ Rn (or x ∈ Cn):

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞,
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞,

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

Proposition 8.3 is actually a special case of a very important result: in a finite-dimensional
vector space, any two norms are equivalent.

Definition 8.2. Given any (real or complex) vector space E, two norms ‖ ‖a and ‖ ‖b are
equivalent iff there exists some positive reals C1, C2 > 0, such that

‖u‖a ≤ C1 ‖u‖b and ‖u‖b ≤ C2 ‖u‖a , for all u ∈ E.

There is an illuminating interpretation of Definition 8.2 in terms of open balls. For any
radius ρ > 0 and any x ∈ E, consider the open a-ball of center x and radius ρ (with respect
the norm ‖ ‖a),

Ba(x, ρ) = {z ∈ E | ‖z − x‖a < ρ}.
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We claim that there is some open b-ball Bb(x, r) of radius r > 0 and center x,

Bb(x, r) = {z ∈ E | ‖z − x‖n < r},

such that

Bb(x, r) ⊆ Ba(x, ρ).

Indeed, if we pick r = ρ/C1, for any z ∈ E, if ‖z − x‖b < ρ/C1, then

‖z − x‖a ≤ C1 ‖z − x‖b < C1(ρ/C1) = ρ,

which means that

Bb(x, ρ/C1) ⊆ Ba(x, ρ).

Similarly, for any radius ρ > 0 and any x ∈ E, we have

Ba(x, ρ/C2) ⊆ Bb(x, ρ).

Now given a normed vector space (E, ‖ ‖), a subset U of E is said to be open (with
respect to the norm ‖ ‖) if either U = ∅ or if for every x ∈ U , there is some open ball B(x, ρ)
(for some ρ > 0) such that B(x, ρ) ⊆ U .

The collection U of open sets defined by the norm ‖ ‖ is called the topology on E induced
by the norm ‖ ‖. What we showed above regarding the containments of open a-balls and
open b-balls immediately implies that two equivalent norms induce the same topology on E.
This is the reason why the notion of equivalent norms is important.

Given any norm ‖ ‖ on a vector space of dimension n, for any basis (e1, . . . , en) of E,
observe that for any vector x = x1e1 + · · ·+ xnen, we have

‖x‖ = ‖x1e1 + · · ·+ xnen‖ ≤ |x1| ‖e1‖+ · · ·+ |xn| ‖en‖ ≤ C(|x1|+ · · ·+ |xn|) = C ‖x‖1 ,

with C = max1≤i≤n ‖ei‖ and with the norm ‖x‖1 defined as

‖x‖1 = ‖x1e1 + · · ·+ xnen‖ = |x1|+ · · ·+ |xn|.

The above implies that

| ‖u‖ − ‖v‖ | ≤ ‖u− v‖ ≤ C ‖u− v‖1 ,

and this implies the following corollary.

Corollary 8.4. For any norm u 7→ ‖u‖ on a finite-dimensional (complex or real) vector
space E, the map u 7→ ‖u‖ is continuous with respect to the norm ‖ ‖1.
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Let Sn−1
1 be the unit sphere with respect to the norm ‖ ‖1, namely

Sn−1
1 = {x ∈ E | ‖x‖1 = 1}.

Now Sn−1
1 is a closed and bounded subset of a finite-dimensional vector space, so by Heine–

Borel (or equivalently, by Bolzano–Weiertrass), Sn−1
1 is compact. On the other hand, it

is a well known result of analysis that any continuous real-valued function on a nonempty
compact set has a minimum and a maximum, and that they are achieved. Using these facts,
we can prove the following important theorem:

Theorem 8.5. If E is any real or complex vector space of finite dimension, then any two
norms on E are equivalent.

Proof. It is enough to prove that any norm ‖ ‖ is equivalent to the 1-norm. We already proved
that the function x 7→ ‖x‖ is continuous with respect to the norm ‖ ‖1, and we observed that
the unit sphere Sn−1

1 is compact. Now we just recalled that because the function f : x 7→ ‖x‖
is continuous and because Sn−1

1 is compact, the function f has a minimum m and a maximum
M , and because ‖x‖ is never zero on Sn−1

1 , we must have m > 0. Consequently, we just
proved that if ‖x‖1 = 1, then

0 < m ≤ ‖x‖ ≤M,

so for any x ∈ E with x 6= 0, we get

m ≤ ‖x/ ‖x‖1‖ ≤M,

which implies

m ‖x‖1 ≤ ‖x‖ ≤M ‖x‖1 .

Since the above inequality holds trivially if x = 0, we just proved that ‖ ‖ and ‖ ‖1 are
equivalent, as claimed.

Remark: Let P be a n × n symmetric positive definite matrix. It is immediately verified
that the map x 7→ ‖x‖P given by

‖x‖P = (x>Px)1/2

is a norm on Rn called a quadratic norm. Using some convex analysis (the Löwner–John
ellipsoid), it can be shown that any norm ‖ ‖ on Rn can be approximated by a quadratic
norm in the sense that there is a quadratic norm ‖ ‖P such that

‖x‖P ≤ ‖x‖ ≤
√
n ‖x‖P for all x ∈ Rn;

see Boyd and Vandenberghe [11], Section 8.4.1.

Next we will consider norms on matrices.
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8.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces Mn(R) and Mn(C) of square
n × n matrices. Most results also hold for the spaces Mm,n(R) and Mm,n(C) of rectangular
m × n matrices. Since n × n matrices can be multiplied, the idea behind matrix norms is
that they should behave “well” with respect to matrix multiplication.

Definition 8.3. A matrix norm ‖ ‖ on the space of square n× n matrices in Mn(K), with
K = R or K = C, is a norm on the vector space Mn(K), with the additional property called
submultiplicativity that

‖AB‖ ≤ ‖A‖ ‖B‖ ,
for all A,B ∈ Mn(K). A norm on matrices satisfying the above property is often called a
submultiplicative matrix norm.

Since I2 = I, from ‖I‖ = ‖I2‖ ≤ ‖I‖2, we get ‖I‖ ≥ 1, for every matrix norm.

Before giving examples of matrix norms, we need to review some basic definitions about
matrices. Given any matrix A = (aij) ∈ Mm,n(C), the conjugate A of A is the matrix such
that

Aij = aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The transpose of A is the n×m matrix A> such that

A>ij = aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The adjoint of A is the n×m matrix A∗ such that

A∗ = (A>) = (A)>.

When A is a real matrix, A∗ = A>. A matrix A ∈ Mn(C) is Hermitian if

A∗ = A.

If A is a real matrix (A ∈ Mn(R)), we say that A is symmetric if

A> = A.

A matrix A ∈ Mn(C) is normal if
AA∗ = A∗A,

and if A is a real matrix, it is normal if

AA> = A>A.

A matrix U ∈ Mn(C) is unitary if

UU∗ = U∗U = I.
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A real matrix Q ∈ Mn(R) is orthogonal if

QQ> = Q>Q = I.

Given any matrix A = (aij) ∈ Mn(C), the trace tr(A) of A is the sum of its diagonal
elements

tr(A) = a11 + · · ·+ ann.

It is easy to show that the trace is a linear map, so that

tr(λA) = λtr(A)

and
tr(A+B) = tr(A) + tr(B).

Moreover, if A is an m× n matrix and B is an n×m matrix, it is not hard to show that

tr(AB) = tr(BA).

We also review eigenvalues and eigenvectors. We content ourselves with definition in-
volving matrices. A more general treatment will be given later on (see Chapter 14).

Definition 8.4. Given any square matrix A ∈ Mn(C), a complex number λ ∈ C is an
eigenvalue of A if there is some nonzero vector u ∈ Cn, such that

Au = λu.

If λ is an eigenvalue of A, then the nonzero vectors u ∈ Cn such that Au = λu are called
eigenvectors of A associated with λ; together with the zero vector, these eigenvectors form a
subspace of Cn denoted by Eλ(A), and called the eigenspace associated with λ.

Remark: Note that Definition 8.4 requires an eigenvector to be nonzero. A somewhat
unfortunate consequence of this requirement is that the set of eigenvectors is not a subspace,
since the zero vector is missing! On the positive side, whenever eigenvectors are involved,
there is no need to say that they are nonzero. In contrast, even if we allow 0 to be an
eigenvector, in order for a scalar λ to be an eigenvalue, there must be a nonzero vector u
such that Au = λu. Without this restriction, since A0 = λ0 = 0 for all λ, every scalar would
be an eigenvector, which would make the definition of an eigenvalue trivial and useless. The
fact that eigenvectors are nonzero is implicitly used in all the arguments involving them,
so it seems preferable (but perhaps not as elegant) to stipulate that eigenvectors should be
nonzero.

If A is a square real matrix A ∈ Mn(R), then we restrict Definition 8.4 to real eigenvalues
λ ∈ R and real eigenvectors. However, it should be noted that although every complex
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matrix always has at least some complex eigenvalue, a real matrix may not have any real
eigenvalues. For example, the matrix

A =

(
0 −1
1 0

)
has the complex eigenvalues i and −i, but no real eigenvalues. Thus, typically even for real
matrices, we consider complex eigenvalues.

Observe that λ ∈ C is an eigenvalue of A

• iff Au = λu for some nonzero vector u ∈ Cn

• iff (λI − A)u = 0

• iff the matrix λI − A defines a linear map which has a nonzero kernel, that is,

• iff λI − A not invertible.

However, from Proposition 6.11, λI − A is not invertible iff

det(λI − A) = 0.

Now det(λI − A) is a polynomial of degree n in the indeterminate λ, in fact, of the form

λn − tr(A)λn−1 + · · ·+ (−1)n det(A).

Thus we see that the eigenvalues of A are the zeros (also called roots) of the above polyno-
mial. Since every complex polynomial of degree n has exactly n roots, counted with their
multiplicity, we have the following definition:

Definition 8.5. Given any square n× n matrix A ∈ Mn(C), the polynomial

det(λI − A) = λn − tr(A)λn−1 + · · ·+ (−1)n det(A)

is called the characteristic polynomial of A. The n (not necessarily distinct) roots λ1, . . . , λn
of the characteristic polynomial are all the eigenvalues of A and constitute the spectrum of
A. We let

ρ(A) = max
1≤i≤n

|λi|

be the largest modulus of the eigenvalues of A, called the spectral radius of A.

Since the eigenvalues λ1, . . . , λn of A are the zeros of the polynomial

det(λI − A) = λn − tr(A)λn−1 + · · ·+ (−1)n det(A),

we deduce (see Section 14.1 for details) that

tr(A) = λ1 + · · ·+ λn

det(A) = λ1 · · ·λn.
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Proposition 8.6. For any matrix norm ‖ ‖ on Mn(C) and for any square n × n matrix
A ∈ Mn(C), we have

ρ(A) ≤ ‖A‖ .
Proof. Let λ be some eigenvalue of A for which |λ| is maximum, that is, such that |λ| = ρ(A).
If u ( 6= 0) is any eigenvector associated with λ and if U is the n× n matrix whose columns
are all u, then Au = λu implies

AU = λU,

and since
|λ| ‖U‖ = ‖λU‖ = ‖AU‖ ≤ ‖A‖ ‖U‖

and U 6= 0, we have ‖U‖ 6= 0, and get

ρ(A) = |λ| ≤ ‖A‖ ,

as claimed.

Proposition 8.6 also holds for any real matrix norm ‖ ‖ on Mn(R) but the proof is more
subtle and requires the notion of induced norm. We prove it after giving Definition 8.7.

It turns out that if A is a real n× n symmetric matrix, then the eigenvalues of A are all
real and there is some orthogonal matrix Q such that

A = Qdiag(λ1, . . . , λn)Q>,

where diag(λ1, . . . , λn) denotes the matrix whose only nonzero entries (if any) are its diagonal
entries, which are the (real) eigenvalues of A. Similarly, if A is a complex n × n Hermitian
matrix, then the eigenvalues of A are all real and there is some unitary matrix U such that

A = Udiag(λ1, . . . , λn)U∗,

where diag(λ1, . . . , λn) denotes the matrix whose only nonzero entries (if any) are its diagonal
entries, which are the (real) eigenvalues of A. See Chapter 16 for the proof of these results.

We now return to matrix norms. We begin with the so-called Frobenius norm, which is
just the norm ‖ ‖2 on Cn2

, where the n × n matrix A is viewed as the vector obtained by
concatenating together the rows (or the columns) of A. The reader should check that for
any n× n complex matrix A = (aij),( n∑

i,j=1

|aij|2
)1/2

=
√

tr(A∗A) =
√

tr(AA∗).

Definition 8.6. The Frobenius norm ‖ ‖F is defined so that for every square n× n matrix
A ∈ Mn(C),

‖A‖F =

( n∑
i,j=1

|aij|2
)1/2

=
√

tr(AA∗) =
√

tr(A∗A).
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The following proposition show that the Frobenius norm is a matrix norm satisfying other
nice properties.

Proposition 8.7. The Frobenius norm ‖ ‖F on Mn(C) satisfies the following properties:

(1) It is a matrix norm; that is, ‖AB‖F ≤ ‖A‖F ‖B‖F , for all A,B ∈ Mn(C).

(2) It is unitarily invariant, which means that for all unitary matrices U, V , we have

‖A‖F = ‖UA‖F = ‖AV ‖F = ‖UAV ‖F .

(3)
√
ρ(A∗A) ≤ ‖A‖F ≤

√
n
√
ρ(A∗A), for all A ∈ Mn(C).

Proof. (1) The only property that requires a proof is the fact ‖AB‖F ≤ ‖A‖F ‖B‖F . This
follows from the Cauchy–Schwarz inequality:

‖AB‖2
F =

n∑
i,j=1

∣∣∣∣ n∑
k=1

aikbkj

∣∣∣∣2
≤

n∑
i,j=1

( n∑
h=1

|aih|2
)( n∑

k=1

|bkj|2
)

=

( n∑
i,h=1

|aih|2
)( n∑

k,j=1

|bkj|2
)

= ‖A‖2
F ‖B‖

2
F .

(2) We have

‖A‖2
F = tr(AA∗) = tr(AV V ∗A∗) = tr(AV (AV )∗) = ‖AV ‖2

F ,

and
‖A‖2

F = tr(A∗A) = tr(A∗U∗UA) = ‖UA‖2
F .

The identity
‖A‖F = ‖UAV ‖F

follows from the previous two.

(3) It is shown in Section 14.1 that the trace of a matrix is equal to the sum of its
eigenvalues. Furthermore, A∗A is symmetric positive semidefinite (which means that its
eigenvalues are nonnegative), so ρ(A∗A) is the largest eigenvalue of A∗A and

ρ(A∗A) ≤ tr(A∗A) ≤ nρ(A∗A),

which yields (3) by taking square roots.

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm or the Schur
norm. So many famous names associated with such a simple thing!
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8.3 Subordinate Norms

We now give another method for obtaining matrix norms using subordinate norms. First we
need a proposition that shows that in a finite-dimensional space, the linear map induced by
a matrix is bounded, and thus continuous.

Proposition 8.8. For every norm ‖ ‖ on Cn (or Rn), for every matrix A ∈ Mn(C) (or
A ∈ Mn(R)), there is a real constant CA ≥ 0, such that

‖Au‖ ≤ CA ‖u‖ ,

for every vector u ∈ Cn (or u ∈ Rn if A is real).

Proof. For every basis (e1, . . . , en) of Cn (or Rn), for every vector u = u1e1 + · · ·+ unen, we
have

‖Au‖ = ‖u1A(e1) + · · ·+ unA(en)‖
≤ |u1| ‖A(e1)‖+ · · ·+ |un| ‖A(en)‖
≤ C1(|u1|+ · · ·+ |un|) = C1 ‖u‖1 ,

where C1 = max1≤i≤n ‖A(ei)‖. By Theorem 8.5, the norms ‖ ‖ and ‖ ‖1 are equivalent, so
there is some constant C2 > 0 so that ‖u‖1 ≤ C2 ‖u‖ for all u, which implies that

‖Au‖ ≤ CA ‖u‖ ,

where CA = C1C2.

Proposition 8.8 says that every linear map on a finite-dimensional space is bounded . This
implies that every linear map on a finite-dimensional space is continuous. Actually, it is not
hard to show that a linear map on a normed vector space E is bounded iff it is continuous,
regardless of the dimension of E.

Proposition 8.8 implies that for every matrix A ∈ Mn(C) (or A ∈ Mn(R)),

sup
x∈Cn
x 6=0

‖Ax‖
‖x‖ ≤ CA.

Since ‖λu‖ = |λ| ‖u‖, for every nonzero vector x, we have

‖Ax‖
‖x‖ =

‖x‖ ‖A(x/ ‖x‖)‖
‖x‖ = ‖A(x/ ‖x‖)‖ ,

which implies that

sup
x∈Cn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Cn
‖x‖=1

‖Ax‖ .
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Similarly

sup
x∈Rn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Rn
‖x‖=1

‖Ax‖ .

The above considerations justify the following definition.

Definition 8.7. If ‖ ‖ is any norm on Cn, we define the function ‖ ‖op on Mn(C) by

‖A‖op = sup
x∈Cn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Cn
‖x‖=1

‖Ax‖ .

The function A 7→ ‖A‖op is called the subordinate matrix norm or operator norm induced
by the norm ‖ ‖.

Another notation for the operator norm of a matrix A (in particular, used by Horn and
Johnson [36]), is |||A|||.

It is easy to check that the function A 7→ ‖A‖op is indeed a norm, and by definition, it
satisfies the property

‖Ax‖ ≤ ‖A‖op ‖x‖ , for all x ∈ Cn.

A norm ‖ ‖op on Mn(C) satisfying the above property is said to be subordinate to the vector
norm ‖ ‖ on Cn. As a consequence of the above inequality, we have

‖ABx‖ ≤ ‖A‖op ‖Bx‖ ≤ ‖A‖op ‖B‖op ‖x‖ ,

for all x ∈ Cn, which implies that

‖AB‖op ≤ ‖A‖op ‖B‖op for all A,B ∈ Mn(C),

showing that A 7→ ‖A‖op is a matrix norm (it is submultiplicative).

Observe that the operator norm is also defined by

‖A‖op = inf{λ ∈ R | ‖Ax‖ ≤ λ ‖x‖ , for all x ∈ Cn}.

Since the function x 7→ ‖Ax‖ is continuous (because | ‖Ay‖ − ‖Ax‖ | ≤ ‖Ay − Ax‖ ≤
CA ‖x− y‖) and the unit sphere Sn−1 = {x ∈ Cn | ‖x‖ = 1} is compact, there is some
x ∈ Cn such that ‖x‖ = 1 and

‖Ax‖ = ‖A‖op .

Equivalently, there is some x ∈ Cn such that x 6= 0 and

‖Ax‖ = ‖A‖op ‖x‖ .

Consequently we can replace sup by max in the definition of ‖A‖op (and inf by min), namely

‖A‖op = max
x∈Cn
‖x‖=1

‖Ax‖ .
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The definition of an operator norm also implies that

‖I‖op = 1.

The above shows that the Frobenius norm is not a subordinate matrix norm for n ≥ 2
(why?).

If ‖ ‖ is a vector norm on Cn, the operator norm ‖ ‖op that it induces applies to matrices
in Mn(C). If we are careful to denote vectors and matrices so that no confusion arises, for
example, by using lower case letters for vectors and upper case letters for matrices, it should
be clear that ‖A‖op is the operator norm of the matrix A and that ‖x‖ is the vector norm of
x. Consequently, following common practice to alleviate notation, we will drop the subscript
“op” and simply write ‖A‖ instead of ‖A‖op.

The notion of subordinate norm can be slightly generalized.

Definition 8.8. If K = R or K = C, for any norm ‖ ‖ on Mm,n(K), and for any two norms
‖ ‖a on Kn and ‖ ‖b on Km, we say that the norm ‖ ‖ is subordinate to the norms ‖ ‖a and
‖ ‖b if

‖Ax‖b ≤ ‖A‖ ‖x‖a for all A ∈ Mm,n(K) and all x ∈ Kn.

Remark: For any norm ‖ ‖ on Cn, we can define the function ‖ ‖R on Mn(R) by

‖A‖R = sup
x∈Rn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Rn
‖x‖=1

‖Ax‖ .

The function A 7→ ‖A‖R is a matrix norm on Mn(R), and

‖A‖R ≤ ‖A‖ ,

for all real matrices A ∈ Mn(R). However, it is possible to construct vector norms ‖ ‖ on Cn

and real matrices A such that
‖A‖R < ‖A‖ .

In order to avoid this kind of difficulties, we define subordinate matrix norms over Mn(C).
Luckily, it turns out that ‖A‖R = ‖A‖ for the vector norms, ‖ ‖1 , ‖ ‖2, and ‖ ‖∞.

We now prove Proposition 8.6 for real matrix norms.

Proposition 8.9. For any matrix norm ‖ ‖ on Mn(R) and for any square n × n matrix
A ∈ Mn(R), we have

ρ(A) ≤ ‖A‖ .
Proof. We follow the proof in Denis Serre’s book [57]. If A is a real matrix, the problem is
that the eigenvectors associated with the eigenvalue of maximum modulus may be complex.
We use a trick based on the fact that for every matrix A (real or complex),

ρ(Ak) = (ρ(A))k,
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which is left as an exercise (use Proposition 14.7 which shows that if (λ1, . . . , λn) are the
(not necessarily distinct) eigenvalues of A, then (λk1, . . . , λ

k
n) are the eigenvalues of Ak, for

k ≥ 1).

Pick any complex matrix norm ‖ ‖c on Cn (for example, the Frobenius norm, or any
subordinate matrix norm induced by a norm on Cn). The restriction of ‖ ‖c to real matrices
is a real norm that we also denote by ‖ ‖c. Now by Theorem 8.5, since Mn(R) has finite
dimension n2, there is some constant C > 0 so that

‖B‖c ≤ C ‖B‖ , for all B ∈ Mn(R).

Furthermore, for every k ≥ 1 and for every real n×n matrix A, by Proposition 8.6, ρ(Ak) ≤∥∥Ak∥∥
c
, and because ‖ ‖ is a matrix norm,

∥∥Ak∥∥ ≤ ‖A‖k, so we have

(ρ(A))k = ρ(Ak) ≤
∥∥Ak∥∥

c
≤ C

∥∥Ak∥∥ ≤ C ‖A‖k ,

for all k ≥ 1. It follows that

ρ(A) ≤ C1/k ‖A‖ , for all k ≥ 1.

However because C > 0, we have limk 7→∞C1/k = 1 (we have limk 7→∞
1
k

log(C) = 0). There-
fore, we conclude that

ρ(A) ≤ ‖A‖ ,
as desired.

We now determine explicitly what are the subordinate matrix norms associated with the
vector norms ‖ ‖1 , ‖ ‖2, and ‖ ‖∞.

Proposition 8.10. For every square matrix A = (aij) ∈ Mn(C), we have

‖A‖1 = sup
x∈Cn
‖x‖1=1

‖Ax‖1 = max
j

n∑
i=1

|aij|

‖A‖∞ = sup
x∈Cn
‖x‖∞=1

‖Ax‖∞ = max
i

n∑
j=1

|aij|

‖A‖2 = sup
x∈Cn
‖x‖2=1

‖Ax‖2 =
√
ρ(A∗A) =

√
ρ(AA∗).

Note that ‖A‖1 is the maximum of the `1-norms of the columns of A and ‖A‖∞ is the
maximum of the `1-norms of the rows of A. Furthermore, ‖A∗‖2 = ‖A‖2, the norm ‖ ‖2 is
unitarily invariant, which means that

‖A‖2 = ‖UAV ‖2

for all unitary matrices U, V , and if A is a normal matrix, then ‖A‖2 = ρ(A).
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Proof. For every vector u, we have

‖Au‖1 =
∑
i

∣∣∣∣∑
j

aijuj

∣∣∣∣ ≤∑
j

|uj|
∑
i

|aij| ≤
(

max
j

∑
i

|aij|
)
‖u‖1 ,

which implies that

‖A‖1 ≤ max
j

n∑
i=1

|aij|.

It remains to show that equality can be achieved. For this let j0 be some index such that

max
j

∑
i

|aij| =
∑
i

|aij0 |,

and let ui = 0 for all i 6= j0 and uj0 = 1.

In a similar way, we have

‖Au‖∞ = max
i

∣∣∣∣∑
j

aijuj

∣∣∣∣ ≤ (max
i

∑
j

|aij|
)
‖u‖∞ ,

which implies that

‖A‖∞ ≤ max
i

n∑
j=1

|aij|.

To achieve equality, let i0 be some index such that

max
i

∑
j

|aij| =
∑
j

|ai0j|.

The reader should check that the vector given by

uj =

{
ai0j
|ai0j |

if ai0j 6= 0

1 if ai0j = 0

works.

We have
‖A‖2

2 = sup
x∈Cn
x∗x=1

‖Ax‖2
2 = sup

x∈Cn
x∗x=1

x∗A∗Ax.

Since the matrix A∗A is symmetric, it has real eigenvalues and it can be diagonalized with
respect to a unitary matrix. These facts can be used to prove that the function x 7→ x∗A∗Ax
has a maximum on the sphere x∗x = 1 equal to the largest eigenvalue of A∗A, namely,
ρ(A∗A). We postpone the proof until we discuss optimizing quadratic functions. Therefore,

‖A‖2 =
√
ρ(A∗A).
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Let use now prove that ρ(A∗A) = ρ(AA∗). First assume that ρ(A∗A) > 0. In this case, there
is some eigenvector u (6= 0) such that

A∗Au = ρ(A∗A)u,

and since ρ(A∗A) > 0, we must have Au 6= 0. Since Au 6= 0,

AA∗(Au) = A(A∗Au) = ρ(A∗A)Au

which means that ρ(A∗A) is an eigenvalue of AA∗, and thus

ρ(A∗A) ≤ ρ(AA∗).

Because (A∗)∗ = A, by replacing A by A∗, we get

ρ(AA∗) ≤ ρ(A∗A),

and so ρ(A∗A) = ρ(AA∗).

If ρ(A∗A) = 0, then we must have ρ(AA∗) = 0, since otherwise by the previous reasoning
we would have ρ(A∗A) = ρ(AA∗) > 0. Hence, in all case

‖A‖2
2 = ρ(A∗A) = ρ(AA∗) = ‖A∗‖2

2 .

For any unitary matrices U and V , it is an easy exercise to prove that V ∗A∗AV and A∗A
have the same eigenvalues, so

‖A‖2
2 = ρ(A∗A) = ρ(V ∗A∗AV ) = ‖AV ‖2

2 ,

and also
‖A‖2

2 = ρ(A∗A) = ρ(A∗U∗UA) = ‖UA‖2
2 .

Finally, if A is a normal matrix (AA∗ = A∗A), it can be shown that there is some unitary
matrix U so that

A = UDU∗,

where D = diag(λ1, . . . , λn) is a diagonal matrix consisting of the eigenvalues of A, and thus

A∗A = (UDU∗)∗UDU∗ = UD∗U∗UDU∗ = UD∗DU∗.

However, D∗D = diag(|λ1|2, . . . , |λn|2), which proves that

ρ(A∗A) = ρ(D∗D) = max
i
|λi|2 = (ρ(A))2,

so that ‖A‖2 = ρ(A).

Definition 8.9. For A = (aij) ∈ Mn(C), the norm ‖A‖2 is often called the spectral norm.
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Observe that Property (3) of Proposition 8.7 says that

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 ,

which shows that the Frobenius norm is an upper bound on the spectral norm. The Frobenius
norm is much easier to compute than the spectral norm.

The reader will check that the above proof still holds if the matrix A is real (change
unitary to orthogonal), confirming the fact that ‖A‖R = ‖A‖ for the vector norms ‖ ‖1 , ‖ ‖2,
and ‖ ‖∞. It is also easy to verify that the proof goes through for rectangular m×n matrices,
with the same formulae. Similarly, the Frobenius norm given by

‖A‖F =

( m∑
i=1

n∑
j=1

|aij|2
)1/2

=
√

tr(A∗A) =
√

tr(AA∗)

is also a norm on rectangular matrices. For these norms, whenever AB makes sense, we have

‖AB‖ ≤ ‖A‖ ‖B‖ .

Remark: It can be shown that for any two real numbers p, q ≥ 1 such that
1

p
+

1

q
= 1, we

have

‖A∗‖q = ‖A‖p = sup{<(y∗Ax) | ‖x‖p = 1, ‖y‖q = 1} = sup{|〈Ax, y〉| | ‖x‖p = 1, ‖y‖q = 1},

where ‖A∗‖q and ‖A‖p are the operator norms.

Remark: Let (E, ‖ ‖) and (F, ‖ ‖) be two normed vector spaces (for simplicity of notation,
we use the same symbol ‖ ‖ for the norms on E and F ; this should not cause any confusion).
Recall that a function f : E → F is continuous if for every a ∈ E, for every ε > 0, there is
some η > 0 such that for all x ∈ E,

if ‖x− a‖ ≤ η then ‖f(x)− f(a)‖ ≤ ε.

It is not hard to show that a linear map f : E → F is continuous iff there is some constant
C ≥ 0 such that

‖f(x)‖ ≤ C ‖x‖ for all x ∈ E.
If so, we say that f is bounded (or a linear bounded operator). We let L(E;F ) denote the
set of all continuous (equivalently, bounded) linear maps from E to F . Then we can define
the operator norm (or subordinate norm) ‖ ‖ on L(E;F ) as follows: for every f ∈ L(E;F ),

‖f‖ = sup
x∈E
x 6=0

‖f(x)‖
‖x‖ = sup

x∈E
‖x‖=1

‖f(x)‖ ,
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or equivalently by

‖f‖ = inf{λ ∈ R | ‖f(x)‖ ≤ λ ‖x‖ , for all x ∈ E}.

Here because E may be infinite-dimensional, sup can’t be replaced by max and inf can’t
be replaced by min. It is not hard to show that the map f 7→ ‖f‖ is a norm on L(E;F )
satisfying the property

‖f(x)‖ ≤ ‖f‖ ‖x‖
for all x ∈ E, and that if f ∈ L(E;F ) and g ∈ L(F ;G), then

‖g ◦ f‖ ≤ ‖g‖ ‖f‖ .

Operator norms play an important role in functional analysis, especially when the spaces E
and F are complete.

8.4 Inequalities Involving Subordinate Norms

In this section we discuss two technical inequalities which will be needed for certain proofs
in the last three sections of this chapter. First we prove a proposition which will be needed
when we deal with the condition number of a matrix.

Proposition 8.11. Let ‖ ‖ be any matrix norm, and let B ∈ Mn(C) such that ‖B‖ < 1.

(1) If ‖ ‖ is a subordinate matrix norm, then the matrix I +B is invertible and∥∥(I +B)−1
∥∥ ≤ 1

1− ‖B‖ .

(2) If a matrix of the form I + B is singular, then ‖B‖ ≥ 1 for every matrix norm (not
necessarily subordinate).

Proof. (1) Observe that (I +B)u = 0 implies Bu = −u, so

‖u‖ = ‖Bu‖ .

Recall that
‖Bu‖ ≤ ‖B‖ ‖u‖

for every subordinate norm. Since ‖B‖ < 1, if u 6= 0, then

‖Bu‖ < ‖u‖ ,

which contradicts ‖u‖ = ‖Bu‖. Therefore, we must have u = 0, which proves that I + B is
injective, and thus bijective, i.e., invertible. Then we have

(I +B)−1 +B(I +B)−1 = (I +B)(I +B)−1 = I,
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so we get
(I +B)−1 = I −B(I +B)−1,

which yields ∥∥(I +B)−1
∥∥ ≤ 1 + ‖B‖

∥∥(I +B)−1
∥∥ ,

and finally, ∥∥(I +B)−1
∥∥ ≤ 1

1− ‖B‖ .

(2) If I + B is singular, then −1 is an eigenvalue of B, and by Proposition 8.6, we get
ρ(B) ≤ ‖B‖, which implies 1 ≤ ρ(B) ≤ ‖B‖.

The second inequality is a result is that is needed to deal with the convergence of se-
quences of powers of matrices.

Proposition 8.12. For every matrix A ∈ Mn(C) and for every ε > 0, there is some subor-
dinate matrix norm ‖ ‖ such that

‖A‖ ≤ ρ(A) + ε.

Proof. By Theorem 14.5, there exists some invertible matrix U and some upper triangular
matrix T such that

A = UTU−1,

and say that

T =


λ1 t12 t13 · · · t1n
0 λ2 t23 · · · t2n
...

...
. . .

...
...

0 0 · · · λn−1 tn−1n

0 0 · · · 0 λn

 ,

where λ1, . . . , λn are the eigenvalues of A. For every δ 6= 0, define the diagonal matrix

Dδ = diag(1, δ, δ2, . . . , δn−1),

and consider the matrix

(UDδ)
−1A(UDδ) = D−1

δ TDδ =


λ1 δt12 δ2t13 · · · δn−1t1n
0 λ2 δt23 · · · δn−2t2n
...

...
. . .

...
...

0 0 · · · λn−1 δtn−1n

0 0 · · · 0 λn

 .

Now define the function ‖ ‖ : Mn(C)→ R by

‖B‖ =
∥∥(UDδ)

−1B(UDδ)
∥∥
∞ ,
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for every B ∈ Mn(C). Then it is easy to verify that the above function is the matrix norm
subordinate to the vector norm

v 7→
∥∥(UDδ)

−1v
∥∥
∞ .

Furthermore, for every ε > 0, we can pick δ so that

n∑
j=i+1

|δj−itij| ≤ ε, 1 ≤ i ≤ n− 1,

and by definition of the norm ‖ ‖∞, we get

‖A‖ ≤ ρ(A) + ε,

which shows that the norm that we have constructed satisfies the required properties.

Note that equality is generally not possible; consider the matrix

A =

(
0 1
0 0

)
,

for which ρ(A) = 0 < ‖A‖, since A 6= 0.

8.5 Condition Numbers of Matrices

Unfortunately, there exist linear systems Ax = b whose solutions are not stable under small
perturbations of either b or A. For example, consider the system

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1

x2

x3

x4

 =


32
23
33
31

 .

The reader should check that it has the solution x = (1, 1, 1, 1). If we perturb slightly the
right-hand side as b+ ∆b, where

∆b =


0.1
−0.1
0.1
−0.1

 ,

we obtain the new system
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1 + ∆x1

x2 + ∆x2

x3 + ∆x3

x4 + ∆x4

 =


32.1
22.9
33.1
30.9

 .
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The new solution turns out to be x+ ∆x = (9.2,−12.6, 4.5,−1.1), where

∆x = (9.2,−12.6, 4.5,−1.1)− (1, 1, 1, 1) = (8.2,−13.6, 3.5,−2.1).

Then a relative error of the data in terms of the one-norm,

‖∆b‖1

‖b‖1

=
0.4

119
=

4

1190
≈ 1

300
,

produces a relative error in the input

‖∆x‖1

‖x‖1

=
27.4

4
≈ 7.

So a relative error of the order 1/300 in the data produces a relative error of the order 7/1
in the solution, which represents an amplification of the relative error of the order 2100.

Now let us perturb the matrix slightly, obtaining the new system
10 7 8.1 7.2

7.08 5.04 6 5
8 5.98 9.98 9

6.99 4.99 9 9.98



x1 + ∆x1

x2 + ∆x2

x3 + ∆x3

x4 + ∆x4

 =


32
23
33
31

 .

This time the solution is x + ∆x = (−81, 137,−34, 22). Again a small change in the data
alters the result rather drastically. Yet the original system is symmetric, has determinant 1,
and has integer entries. The problem is that the matrix of the system is badly conditioned,
a concept that we will now explain.

Given an invertible matrix A, first assume that we perturb b to b+∆b, and let us analyze
the change between the two exact solutions x and x+ ∆x of the two systems

Ax = b

A(x+ ∆x) = b+ ∆b.

We also assume that we have some norm ‖ ‖ and we use the subordinate matrix norm on
matrices. From

Ax = b

Ax+ A∆x = b+ ∆b,

we get
∆x = A−1∆b,

and we conclude that

‖∆x‖ ≤
∥∥A−1

∥∥ ‖∆b‖
‖b‖ ≤ ‖A‖ ‖x‖ .
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Consequently, the relative error in the result ‖∆x‖ / ‖x‖ is bounded in terms of the relative
error ‖∆b‖ / ‖b‖ in the data as follows:

‖∆x‖
‖x‖ ≤

(
‖A‖

∥∥A−1
∥∥ )‖∆b‖
‖b‖ .

Now let us assume that A is perturbed to A+∆A, and let us analyze the change between
the exact solutions of the two systems

Ax = b

(A+ ∆A)(x+ ∆x) = b.

The second equation yields Ax + A∆x + ∆A(x + ∆x) = b, and by subtracting the first
equation we get

∆x = −A−1∆A(x+ ∆x).

It follows that
‖∆x‖ ≤

∥∥A−1
∥∥ ‖∆A‖ ‖x+ ∆x‖ ,

which can be rewritten as

‖∆x‖
‖x+ ∆x‖ ≤

(
‖A‖

∥∥A−1
∥∥ )‖∆A‖
‖A‖ .

Observe that the above reasoning is valid even if the matrix A+ ∆A is singular, as long
as x + ∆x is a solution of the second system. Furthermore, if ‖∆A‖ is small enough, it is
not unreasonable to expect that the ratio ‖∆x‖ / ‖x+ ∆x‖ is close to ‖∆x‖ / ‖x‖. This will
be made more precise later.

In summary, for each of the two perturbations, we see that the relative error in the result
is bounded by the relative error in the data, multiplied the number ‖A‖ ‖A−1‖. In fact, this
factor turns out to be optimal and this suggests the following definition:

Definition 8.10. For any subordinate matrix norm ‖ ‖, for any invertible matrix A, the
number

cond(A) = ‖A‖
∥∥A−1

∥∥
is called the condition number of A relative to ‖ ‖.

The condition number cond(A) measures the sensitivity of the linear system Ax = b to
variations in the data b and A; a feature referred to as the condition of the system. Thus,
when we says that a linear system is ill-conditioned , we mean that the condition number of
its matrix is large. We can sharpen the preceding analysis as follows:

Proposition 8.13. Let A be an invertible matrix and let x and x + ∆x be the solutions of
the linear systems

Ax = b

A(x+ ∆x) = b+ ∆b.
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If b 6= 0, then the inequality
‖∆x‖
‖x‖ ≤ cond(A)

‖∆b‖
‖b‖

holds and is the best possible. This means that for a given matrix A, there exist some vectors
b 6= 0 and ∆b 6= 0 for which equality holds.

Proof. We already proved the inequality. Now, because ‖ ‖ is a subordinate matrix norm,
there exist some vectors x 6= 0 and ∆b 6= 0 for which∥∥A−1∆b

∥∥ =
∥∥A−1

∥∥ ‖∆b‖ and ‖Ax‖ = ‖A‖ ‖x‖ .

Proposition 8.14. Let A be an invertible matrix and let x and x + ∆x be the solutions of
the two systems

Ax = b

(A+ ∆A)(x+ ∆x) = b.

If b 6= 0, then the inequality

‖∆x‖
‖x+ ∆x‖ ≤ cond(A)

‖∆A‖
‖A‖

holds and is the best possible. This means that given a matrix A, there exist a vector b 6= 0
and a matrix ∆A 6= 0 for which equality holds. Furthermore, if ‖∆A‖ is small enough (for
instance, if ‖∆A‖ < 1/ ‖A−1‖), we have

‖∆x‖
‖x‖ ≤ cond(A)

‖∆A‖
‖A‖ (1 +O(‖∆A‖));

in fact, we have
‖∆x‖
‖x‖ ≤ cond(A)

‖∆A‖
‖A‖

(
1

1− ‖A−1‖ ‖∆A‖

)
.

Proof. The first inequality has already been proven. To show that equality can be achieved,
let w be any vector such that w 6= 0 and∥∥A−1w

∥∥ =
∥∥A−1

∥∥ ‖w‖ ,
and let β 6= 0 be any real number. Now the vectors

∆x = −βA−1w

x+ ∆x = w

b = (A+ βI)w
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and the matrix
∆A = βI

sastisfy the equations

Ax = b

(A+ ∆A)(x+ ∆x) = b

‖∆x‖ = |β|
∥∥A−1w

∥∥ = ‖∆A‖
∥∥A−1

∥∥ ‖x+ ∆x‖ .

Finally we can pick β so that −β is not equal to any of the eigenvalues of A, so that
A+ ∆A = A+ βI is invertible and b is is nonzero.

If ‖∆A‖ < 1/ ‖A−1‖, then ∥∥A−1∆A
∥∥ ≤ ∥∥A−1

∥∥ ‖∆A‖ < 1,

so by Proposition 8.11, the matrix I + A−1∆A is invertible and∥∥(I + A−1∆A)−1
∥∥ ≤ 1

1− ‖A−1∆A‖ ≤
1

1− ‖A−1‖ ‖∆A‖ .

Recall that we proved earlier that

∆x = −A−1∆A(x+ ∆x),

and by adding x to both sides and moving the right-hand side to the left-hand side yields

(I + A−1∆A)(x+ ∆x) = x,

and thus
x+ ∆x = (I + A−1∆A)−1x,

which yields

∆x = ((I + A−1∆A)−1 − I)x = (I + A−1∆A)−1(I − (I + A−1∆A))x

= −(I + A−1∆A)−1A−1(∆A)x.

From this and ∥∥(I + A−1∆A)−1
∥∥ ≤ 1

1− ‖A−1‖ ‖∆A‖ ,

we get

‖∆x‖ ≤ ‖A−1‖ ‖∆A‖
1− ‖A−1‖ ‖∆A‖ ‖x‖ ,

which can be written as

‖∆x‖
‖x‖ ≤ cond(A)

‖∆A‖
‖A‖

(
1

1− ‖A−1‖ ‖∆A‖

)
,

which is the kind of inequality that we were seeking.
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Remark: If A and b are perturbed simultaneously, so that we get the “perturbed” system

(A+ ∆A)(x+ ∆x) = b+ ∆b,

it can be shown that if ‖∆A‖ < 1/ ‖A−1‖ (and b 6= 0), then

‖∆x‖
‖x‖ ≤

cond(A)

1− ‖A−1‖ ‖∆A‖

(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)
;

see Demmel [16], Section 2.2 and Horn and Johnson [36], Section 5.8.

We now list some properties of condition numbers and figure out what cond(A) is in the
case of the spectral norm (the matrix norm induced by ‖ ‖2). First, we need to introduce a
very important factorization of matrices, the singular value decomposition, for short, SVD .

It can be shown (see Section 20.2) that given any n × n matrix A ∈ Mn(C), there
exist two unitary matrices U and V , and a real diagonal matrix Σ = diag(σ1, . . . , σn), with
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, such that

A = V ΣU∗.

Definition 8.11. Given a complex n× n matrix A, a triple (U, V,Σ) such that A = V ΣU∗,
where U and V are n× n unitary matrices and Σ = diag(σ1, . . . , σn) is a diagonal matrix of
real numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, is called a singular decomposition (for short SVD) of
A. If A is a real matrix, then U and V are orthogonal matrices The nonnegative numbers
σ1, . . . , σn are called the singular values of A.

The factorization A = V ΣU∗ implies that

A∗A = UΣ2U∗ and AA∗ = V Σ2V ∗,

which shows that σ2
1, . . . , σ

2
n are the eigenvalues of both A∗A and AA∗, that the columns

of U are corresponding eigenvectors for A∗A, and that the columns of V are corresponding
eigenvectors for AA∗.

Since σ2
1 is the largest eigenvalue of A∗A (and AA∗), note that

√
ρ(A∗A) =

√
ρ(AA∗) =

σ1.

Corollary 8.15. The spectral norm ‖A‖2 of a matrix A is equal to the largest singular value
of A. Equivalently, the spectral norm ‖A‖2 of a matrix A is equal to the `∞-norm of its
vector of singular values,

‖A‖2 = max
1≤i≤n

σi = ‖(σ1, . . . , σn)‖∞ .

Since the Frobenius norm of a matrix A is defined by ‖A‖F =
√

tr(A∗A) and since

tr(A∗A) = σ2
1 + · · ·+ σ2

n

where σ2
1, . . . , σ

2
n are the eigenvalues of A∗A, we see that

‖A‖F = (σ2
1 + · · ·+ σ2

n)1/2 = ‖(σ1, . . . , σn)‖2 .
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Corollary 8.16. The Frobenius norm of a matrix is given by the `2-norm of its vector of
singular values; ‖A‖F = ‖(σ1, . . . , σn)‖2.

In the case of a normal matrix if λ1, . . . , λn are the (complex) eigenvalues of A, then

σi = |λi|, 1 ≤ i ≤ n.

Proposition 8.17. For every invertible matrix A ∈ Mn(C), the following properties hold:

(1)

cond(A) ≥ 1,

cond(A) = cond(A−1)

cond(αA) = cond(A) for all α ∈ C− {0}.

(2) If cond2(A) denotes the condition number of A with respect to the spectral norm, then

cond2(A) =
σ1

σn
,

where σ1 ≥ · · · ≥ σn are the singular values of A.

(3) If the matrix A is normal, then

cond2(A) =
|λ1|
|λn|

,

where λ1, . . . , λn are the eigenvalues of A sorted so that |λ1| ≥ · · · ≥ |λn|.

(4) If A is a unitary or an orthogonal matrix, then

cond2(A) = 1.

(5) The condition number cond2(A) is invariant under unitary transformations, which
means that

cond2(A) = cond2(UA) = cond2(AV ),

for all unitary matrices U and V .

Proof. The properties in (1) are immediate consequences of the properties of subordinate
matrix norms. In particular, AA−1 = I implies

1 = ‖I‖ ≤ ‖A‖
∥∥A−1

∥∥ = cond(A).

(2) We showed earlier that ‖A‖2
2 = ρ(A∗A), which is the square of the modulus of the largest

eigenvalue of A∗A. Since we just saw that the eigenvalues of A∗A are σ2
1 ≥ · · · ≥ σ2

n, where
σ1, . . . , σn are the singular values of A, we have

‖A‖2 = σ1.
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Now if A is invertible, then σ1 ≥ · · · ≥ σn > 0, and it is easy to show that the eigenvalues of
(A∗A)−1 are σ−2

n ≥ · · · ≥ σ−2
1 , which shows that∥∥A−1

∥∥
2

= σ−1
n ,

and thus
cond2(A) =

σ1

σn
.

(3) This follows from the fact that ‖A‖2 = ρ(A) for a normal matrix.

(4) If A is a unitary matrix, then A∗A = AA∗ = I, so ρ(A∗A) = 1, and ‖A‖2 =√
ρ(A∗A) = 1. We also have ‖A−1‖2 = ‖A∗‖2 =

√
ρ(AA∗) = 1, and thus cond(A) = 1.

(5) This follows immediately from the unitary invariance of the spectral norm.

Proposition 8.17 (4) shows that unitary and orthogonal transformations are very well-
conditioned, and Part (5) shows that unitary transformations preserve the condition number.

In order to compute cond2(A), we need to compute the top and bottom singular values
of A, which may be hard. The inequality

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 ,

may be useful in getting an approximation of cond2(A) = ‖A‖2 ‖A−1‖2, if A−1 can be
determined.

Remark: There is an interesting geometric characterization of cond2(A). If θ(A) denotes
the least angle between the vectors Au and Av as u and v range over all pairs of orthonormal
vectors, then it can be shown that

cond2(A) = cot(θ(A)/2)).

Thus if A is nearly singular, then there will be some orthonormal pair u, v such that Au and
Av are nearly parallel; the angle θ(A) will the be small and cot(θ(A)/2)) will be large. For
more details, see Horn and Johnson [36] (Section 5.8 and Section 7.4).

It should be noted that in general (if A is not a normal matrix) a matrix could have
a very large condition number even if all its eigenvalues are identical! For example, if we
consider the n× n matrix

A =



1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1


,
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it turns out that cond2(A) ≥ 2n−1.

A classical example of matrix with a very large condition number is the Hilbert matrix
H(n), the n× n matrix with

H
(n)
ij =

(
1

i+ j − 1

)
.

For example, when n = 5,

H(5) =



1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

 .

It can be shown that
cond2(H(5)) ≈ 4.77× 105.

Hilbert introduced these matrices in 1894 while studying a problem in approximation
theory. The Hilbert matrix H(n) is symmetric positive definite. A closed-form formula can
be given for its determinant (it is a special form of the so-called Cauchy determinant); see
Problem 8.15. The inverse of H(n) can also be computed explicitly; see Problem 8.15. It can
be shown that

cond2(H(n)) = O((1 +
√

2)4n/
√
n).

Going back to our matrix

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 ,

which is a symmetric positive definite matrix, it can be shown that its eigenvalues, which in
this case are also its singular values because A is SPD, are

λ1 ≈ 30.2887 > λ2 ≈ 3.858 > λ3 ≈ 0.8431 > λ4 ≈ 0.01015,

so that

cond2(A) =
λ1

λ4

≈ 2984.

The reader should check that for the perturbation of the right-hand side b used earlier, the
relative errors ‖∆x‖ /‖x‖ and ‖∆x‖ /‖x‖ satisfy the inequality

‖∆x‖
‖x‖ ≤ cond(A)

‖∆b‖
‖b‖

and comes close to equality.
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8.6 An Application of Norms: Solving Inconsistent

Linear Systems

The problem of solving an inconsistent linear system Ax = b often arises in practice. This
is a system where b does not belong to the column space of A, usually with more equations
than variables. Thus, such a system has no solution. Yet we would still like to “solve” such
a system, at least approximately.

Such systems often arise when trying to fit some data. For example, we may have a set
of 3D data points

{p1, . . . , pn},
and we have reason to believe that these points are nearly coplanar. We would like to find
a plane that best fits our data points. Recall that the equation of a plane is

αx+ βy + γz + δ = 0,

with (α, β, γ) 6= (0, 0, 0). Thus, every plane is either not parallel to the x-axis (α 6= 0) or not
parallel to the y-axis (β 6= 0) or not parallel to the z-axis (γ 6= 0).

Say we have reasons to believe that the plane we are looking for is not parallel to the
z-axis. If we are wrong, in the least squares solution, one of the coefficients, α, β, will be
very large. If γ 6= 0, then we may assume that our plane is given by an equation of the form

z = ax+ by + d,

and we would like this equation to be satisfied for all the pi’s, which leads to a system of n
equations in 3 unknowns a, b, d, with pi = (xi, yi, zi);

ax1 + by1 + d = z1

...
...

axn + byn + d = zn.

However, if n is larger than 3, such a system generally has no solution. Since the above
system can’t be solved exactly, we can try to find a solution (a, b, d) that minimizes the
least-squares error

n∑
i=1

(axi + byi + d− zi)2.

This is what Legendre and Gauss figured out in the early 1800’s!

In general, given a linear system
Ax = b,

we solve the least squares problem: minimize ‖Ax− b‖2
2.
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Fortunately, every n×m-matrix A can be written as

A = V DU>

where U and V are orthogonal and D is a rectangular diagonal matrix with non-negative
entries (singular value decomposition, or SVD); see Chapter 20.

The SVD can be used to solve an inconsistent system. It is shown in Chapter 21 that
there is a vector x of smallest norm minimizing ‖Ax− b‖2. It is given by the (Penrose)
pseudo-inverse of A (itself given by the SVD).

It has been observed that solving in the least-squares sense may give too much weight to
“outliers,” that is, points clearly outside the best-fit plane. In this case, it is preferable to
minimize (the `1-norm)

n∑
i=1

|axi + byi + d− zi|.

This does not appear to be a linear problem, but we can use a trick to convert this
minimization problem into a linear program (which means a problem involving linear con-
straints).

Note that |x| = max{x,−x}. So by introducing new variables e1, . . . , en, our minimiza-
tion problem is equivalent to the linear program (LP):

minimize e1 + · · ·+ en

subject to axi + byi + d− zi ≤ ei

−(axi + byi + d− zi) ≤ ei

1 ≤ i ≤ n.

Observe that the constraints are equivalent to

ei ≥ |axi + byi + d− zi|, 1 ≤ i ≤ n.

For an optimal solution, we must have equality, since otherwise we could decrease some ei
and get an even better solution. Of course, we are no longer dealing with “pure” linear
algebra, since our constraints are inequalities.

We prefer not getting into linear programming right now, but the above example provides
a good reason to learn more about linear programming!

8.7 Limits of Sequences and Series

If x ∈ R or x ∈ C and if |x| < 1, it is well known that the sums
∑n

k=0 x
k = 1+x+x2+· · ·+xn

converge to the limit 1/(1− x) when n goes to infinity, and we write

∞∑
k=0

xk =
1

1− x.
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For example,
∞∑
k=0

1

2k
= 2.

Similarly, the sums

Sn =
n∑
k=0

xk

k!

converge to ex when n goes to infinity, for every x (in R or C). What if we replace x by a
real or complex n× n matrix A?

The partial sums
∑n

k=0A
k and

∑n
k=0

Ak

k!
still make sense, but we have to define what is

the limit of a sequence of matrices. This can be done in any normed vector space.

Definition 8.12. Let (E, ‖‖) be a normed vector space. A sequence (un)n∈N in E is any
function u : N → E. For any v ∈ E, the sequence (un) converges to v (and v is the limit of
the sequence (un)) if for every ε > 0, there is some integer N > 0 such that

‖un − v‖ < ε for all n ≥ N.

Often we assume that a sequence is indexed by N−{0}, that is, its first term is u1 rather
than u0.

If the sequence (un) converges to v, then since by the triangle inequality

‖um − un‖ ≤ ‖um − v‖+ ‖v − un‖ ,

we see that for every ε > 0, we can find N > 0 such that ‖um − v‖ < ε/2 and ‖un − v‖ < ε/2
for all m,n ≥ N , and so

‖um − un‖ < ε for all m,n ≥ N.

The above property is necessary for a convergent sequence, but not necessarily sufficient.
For example, if E = Q, there are sequences of rationals satisfying the above condition, but
whose limit is not a rational number. For example, the sequence

∑n
k=1

1
k!

converges to e, and
the sequence

∑n
k=0(−1)k 1

2k+1
converges to π/4, but e and π/4 are not rational (in fact, they

are transcendental). However, R is constructed from Q to guarantee that sequences with the
above property converge, and so is C.

Definition 8.13. Given a normed vector space (E, ‖ ‖), a sequence (un) is a Cauchy sequence
if for every ε > 0, there is some N > 0 such that

‖um − un‖ < ε for all m,n ≥ N.

If every Cauchy sequence converges, then we say that E is complete. A complete normed
vector spaces is also called a Banach space.
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A fundamental property of R is that it is complete. It follows immediately that C is also
complete. If E is a finite-dimensional real or complex vector space, since any two norms are
equivalent, we can pick the `∞ norm, and then by picking a basis in E, a sequence (un) of
vectors in E converges iff the n sequences of coordinates (uin) (1 ≤ i ≤ n) converge, so any
finite-dimensional real or complex vector space is a Banach space.

Let us now consider the convergence of series.

Definition 8.14. Given a normed vector space (E, ‖ ‖), a series is an infinite sum
∑∞

k=0 uk
of elements uk ∈ E. We denote by Sn the partial sum of the first n+ 1 elements,

Sn =
n∑
k=0

uk.

Definition 8.15. We say that the series
∑∞

k=0 uk converges to the limit v ∈ E if the sequence
(Sn) converges to v, i.e., given any ε > 0, there exists a positive integer N such that for all
n ≥ N ,

‖Sn − v‖ < ε.

In this case, we say that the series is convergent . We say that the series
∑∞

k=0 uk converges
absolutely if the series of norms

∑∞
k=0 ‖uk‖ is convergent.

If the series
∑∞

k=0 uk converges to v, since for all m,n with m > n we have

m∑
k=0

uk − Sn =
m∑
k=0

uk −
n∑
k=0

uk =
m∑

k=n+1

uk,

if we let m go to infinity (with n fixed), we see that the series
∑∞

k=n+1 uk converges and that

v − Sn =
∞∑

k=n+1

uk.

There are series that are convergent but not absolutely convergent; for example, the series

∞∑
k=1

(−1)k−1

k

converges to ln 2, but
∑∞

k=1
1
k

does not converge (this sum is infinite).

If E is complete, the converse is an enormously useful result.

Proposition 8.18. Assume (E, ‖ ‖) is a complete normed vector space. If a series
∑∞

k=0 uk
is absolutely convergent, then it is convergent.
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Proof. If
∑∞

k=0 uk is absolutely convergent, then we prove that the sequence (Sm) is a Cauchy
sequence; that is, for every ε > 0, there is some p > 0 such that for all n ≥ m ≥ p,

‖Sn − Sm‖ ≤ ε.

Observe that

‖Sn − Sm‖ = ‖um+1 + · · ·+ un‖ ≤ ‖um+1‖+ · · ·+ ‖un‖ ,

and since the sequence
∑∞

k=0 ‖uk‖ converges, it satisfies Cauchy’s criterion. Thus, the se-
quence (Sm) also satisfies Cauchy’s criterion, and since E is a complete vector space, the
sequence (Sm) converges.

Remark: It can be shown that if (E, ‖ ‖) is a normed vector space such that every absolutely
convergent series is also convergent, then E must be complete (see Schwartz [54]).

An important corollary of absolute convergence is that if the terms in series
∑∞

k=0 uk
are rearranged, then the resulting series is still absolutely convergent and has the same
sum. More precisely, let σ be any permutation (bijection) of the natural numbers. The
series

∑∞
k=0 uσ(k) is called a rearrangement of the original series. The following result can be

shown (see Schwartz [54]).

Proposition 8.19. Assume (E, ‖ ‖) is a normed vector space. If a series
∑∞

k=0 uk is conver-
gent as well as absolutely convergent, then for every permutation σ of N, the series

∑∞
k=0 uσ(k)

is convergent and absolutely convergent, and its sum is equal to the sum of the original series:

∞∑
k=0

uσ(k) =
∞∑
k=0

uk.

In particular, if (E, ‖ ‖) is a complete normed vector space, then Proposition 8.19 holds.

We now apply Proposition 8.18 to the matrix exponential.

8.8 The Matrix Exponential

Proposition 8.20. For any n× n real or complex matrix A, the series

∞∑
k=0

Ak

k!

converges absolutely for any operator norm on Mn(C) (or Mn(R)).
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Proof. Pick any norm on Cn (or Rn) and let ‖‖ be the corresponding operator norm on
Mn(C). Since Mn(C) has dimension n2, it is complete. By Proposition 8.18, it suffices to

show that the series of nonnegative reals
∑n

k=0

∥∥∥Akk!

∥∥∥ converges. Since ‖ ‖ is an operator

norm, this a matrix norm, so we have

n∑
k=0

∥∥∥∥Akk!

∥∥∥∥ ≤ n∑
k=0

‖A‖k
k!
≤ e‖A‖.

Thus, the nondecreasing sequence of positive real numbers
∑n

k=0

∥∥∥Akk!

∥∥∥ is bounded by e‖A‖,

and by a fundamental property of R, it has a least upper bound which is its limit.

Definition 8.16. Let E be a finite-dimensional real or complex normed vector space. For
any n× n matrix A, the limit of the series

∞∑
k=0

Ak

k!

is the exponential of A and is denoted eA.

A basic property of the exponential x 7→ ex with x ∈ C is

ex+y = exey, for all x, y ∈ C.

As a consequence, ex is always invertible and (ex)−1 = e−x. For matrices, because matrix
multiplication is not commutative, in general,

eA+B = eAeB

fails! This result is salvaged as follows.

Proposition 8.21. For any two n × n complex matrices A and B, if A and B commute,
that is, AB = BA, then

eA+B = eAeB.

A proof of Proposition 8.21 can be found in Gallier [24].

Since A and −A commute, as a corollary of Proposition 8.21, we see that eA is always
invertible and that

(eA)−1 = e−A.

It is also easy to see that

(eA)> = eA
>
.
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In general, there is no closed-form formula for the exponential eA of a matrix A, but for
skew symmetric matrices of dimension 2 and 3, there are explicit formulae. Everyone should
enjoy computing the exponential eA where

A =

(
0 −θ
θ 0

)
.

If we write

J =

(
0 −1
1 0

)
,

then
A = θJ

The key property is that
J2 = −I.

Proposition 8.22. If A = θJ , then

eA = cos θI + sin θJ =

(
cos θ − sin θ
sin θ cos θ

)
.

Proof. We have

A4n = θ4nI2,

A4n+1 = θ4n+1J,

A4n+2 = −θ4n+2I2,

A4n+3 = −θ4n+3J,

and so

eA = I2 +
θ

1!
J − θ2

2!
I2 −

θ3

3!
J +

θ4

4!
I2 +

θ5

5!
J − θ6

6!
I2 −

θ7

7!
J + · · · .

Rearranging the order of the terms, we have

eA =

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
I2 +

(
θ

1!
− θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
J.

We recognize the power series for cos θ and sin θ, and thus

eA = cos θI2 + sin θJ,

that is

eA =

(
cos θ − sin θ
sin θ cos θ

)
,

as claimed.
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Thus, we see that the exponential of a 2× 2 skew-symmetric matrix is a rotation matrix.
This property generalizes to any dimension. An explicit formula when n = 3 (the Rodrigues’
formula) is given in Section 11.7.

Proposition 8.23. If B is an n× n (real) skew symmetric matrix, that is, B> = −B, then
Q = eB is an orthogonal matrix, that is

Q>Q = QQ> = I.

Proof. Since B> = −B, we have

Q> = (eB)> = eB
>

= e−B.

Since B and −B commute, we have

Q>Q = e−BeB = e−B+B = e0 = I.

Similarly,
QQ> = eBe−B = eB−B = e0 = I,

which concludes the proof.

It can also be shown that det(Q) = det(eB) = 1, but this requires a better understanding
of the eigenvalues of eB (see Section 14.5). Furthermore, for every n× n rotation matrix Q
(an orthogonal matrix Q such that det(Q) = 1), there is a skew symmetric matrix B such
that Q = eB. This is a fundamental property which has applications in robotics for n = 3.

All familiar series have matrix analogs. For example, if ‖A‖ < 1 (where ‖ ‖ is an operator
norm), then the series

∑∞
k=0A

k converges absolutely, and it can be shown that its limit is
(I − A)−1.

Another interesting series is the logarithm. For any n× n complex matrix A, if ‖A‖ < 1
(where ‖ ‖ is an operator norm), then the series

log(I + A) =
∞∑
k=1

(−1)k+1A
k

k

converges absolutely.

8.9 Summary

The main concepts and results of this chapter are listed below:

• Norms and normed vector spaces .

• The triangle inequality .
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• The Euclidean norm; the `p-norms .

• Hölder’s inequality ; the Cauchy–Schwarz inequality ; Minkowski’s inequality .

• Hermitian inner product and Euclidean inner product .

• Equivalent norms.

• All norms on a finite-dimensional vector space are equivalent (Theorem 8.5).

• Matrix norms .

• Hermitian, symmetric and normal matrices. Orthogonal and unitary matrices.

• The trace of a matrix.

• Eigenvalues and eigenvectors of a matrix.

• The characteristic polynomial of a matrix.

• The spectral radius ρ(A) of a matrix A.

• The Frobenius norm.

• The Frobenius norm is a unitarily invariant matrix norm.

• Bounded linear maps.

• Subordinate matrix norms .

• Characterization of the subordinate matrix norms for the vector norms ‖ ‖1 , ‖ ‖2, and
‖ ‖∞.

• The spectral norm.

• For every matrix A ∈ Mn(C) and for every ε > 0, there is some subordinate matrix
norm ‖ ‖ such that ‖A‖ ≤ ρ(A) + ε.

• Condition numbers of matrices.

• Perturbation analysis of linear systems.

• The singular value decomposition (SVD).

• Properties of conditions numbers. Characterization of cond2(A) in terms of the largest
and smallest singular values of A.

• The Hilbert matrix : a very badly conditioned matrix.

• Solving inconsistent linear systems by the method of least-squares ; linear programming .
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• Convergence of sequences of vectors in a normed vector space.

• Cauchy sequences, complex normed vector spaces, Banach spaces.

• Convergence of series. Absolute convergence.

• The matrix exponential.

• Skew symmetric matrices and orthogonal matrices.

8.10 Problems

Problem 8.1. Let A be the following matrix:

A =

(
1 1/

√
2

1/
√

2 3/2

)
.

Compute the operator 2-norm ‖A‖2 of A.

Problem 8.2. Prove Proposition 8.3, namely that the following inequalities hold for all
x ∈ Rn (or x ∈ Cn):

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞,
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞,

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

Problem 8.3. For any p ≥ 1, prove that for all x ∈ Rn,

lim
p 7→∞
‖x‖p = ‖x‖∞ .

Problem 8.4. Let A be an n× n matrix which is strictly row diagonally dominant, which
means that

|ai i| >
∑
j 6=i
|ai j|,

for i = 1, . . . , n, and let

δ = min
i

{
|ai i| −

∑
j 6=i
|ai j|

}
.

The fact that A is strictly row diagonally dominant is equivalent to the condition δ > 0.

(1) For any nonzero vector v, prove that

‖Av‖∞ ≥ ‖v‖∞ δ.

Use the above to prove that A is invertible.
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(2) Prove that ∥∥A−1
∥∥
∞ ≤ δ−1.

Hint . Prove that

sup
v 6=0

‖A−1v‖∞
‖v‖∞

= sup
w 6=0

‖w‖∞
‖Aw‖∞

.

Problem 8.5. Let A be any invertible complex n× n matrix.

(1) For any vector norm ‖ ‖ on Cn, prove that the function ‖ ‖A : Cn → R given by

‖x‖A = ‖Ax‖ for all x ∈ Cn,

is a vector norm.

(2) Prove that the operator norm induced by ‖ ‖A, also denoted by ‖ ‖A, is given by

‖B‖A =
∥∥ABA−1

∥∥ for every n× n matrix B,

where ‖ABA−1‖ uses the operator norm induced by ‖ ‖.
Problem 8.6. Give an example of a norm on Cn and of a real matrix A such that

‖A‖R < ‖A‖ ,

where ‖−‖R and ‖−‖ are the operator norms associated with the vector norm ‖−‖.
Hint . This can already be done for n = 2.

Problem 8.7. Let ‖ ‖ be any operator norm. Given an invertible n × n matrix A, if
c = 1/(2 ‖A−1‖), then for every n × n matrix H, if ‖H‖ ≤ c, then A + H is invertible.
Furthermore, show that if ‖H‖ ≤ c, then ‖(A+H)−1‖ ≤ 1/c.

Problem 8.8. Let A be any m×n matrix and let λ ∈ R be any positive real number λ > 0.

(1) Prove that A>A+ λIn and AA> + λIm are invertible.

(2) Prove that
A>(AA> + λIm)−1 = (A>A+ λIn)−1A>.

Remark: The expressions above correspond to the matrix for which the function

Φ(x) = (Ax− b)>(Ax− b) + λx>x

achieves a minimum. It shows up in machine learning (kernel methods).

Problem 8.9. Let Z be a q × p real matrix. Prove that if Ip − Z>Z is positive definite,
then the (p+ q)× (p+ q) matrix

S =

(
Ip Z>

Z Iq

)
is symmetric positive definite.
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Problem 8.10. Prove that for any real or complex square matrix A, we have

‖A‖2
2 ≤ ‖A‖1 ‖A‖∞ ,

where the above norms are operator norms.

Hint . Use Proposition 8.10 (among other things, it shows that ‖A‖1 =
∥∥A>∥∥∞).

Problem 8.11. Show that the map A 7→ ρ(A) (where ρ(A) is the spectral radius of A) is
neither a norm nor a matrix norm. In particular, find two 2× 2 matrices A and B such that

ρ(A+B) > ρ(A) + ρ(B) = 0 and ρ(AB) > ρ(A)ρ(B) = 0.

Problem 8.12. Define the map A 7→M(A) (defined on n×n real or complex n×n matrices)
by

M(A) = max{|aij| | 1 ≤ i, j ≤ n}.
(1) Prove that

M(AB) ≤ nM(A)M(B)

for all n× n matrices A and B.

(2) Give a counter-example of the inequality

M(AB) ≤M(A)M(B).

(3) Prove that the map A 7→ ‖A‖M given by

‖A‖M = nM(A) = nmax{|aij| | 1 ≤ i, j ≤ n}

is a matrix norm.

Problem 8.13. Let S be a real symmetric positive definite matrix.

(1) Use the Cholesky factorization to prove that there is some upper-triangular matrix
C, unique if its diagonal elements are strictly positive, such that S = C>C.

(2) For any x ∈ Rn, define
‖x‖S = (x>Sx)1/2.

Prove that
‖x‖S = ‖Cx‖2 ,

and that the map x 7→ ‖x‖S is a norm.

Problem 8.14. Let A be a real 2× 2 matrix

A =

(
a1 1 a1 2

a2 1 a2 2

)
.
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(1) Prove that the squares of the singular values σ1 ≥ σ2 of A are the roots of the
quadratic equation

X2 − tr(A>A)X + | det(A)|2 = 0.

(2) If we let

µ(A) =
a2

1 1 + a2
1 2 + a2

2 1 + a2
2 2

2|a1 1a2 2 − a1 2a2 1|
,

prove that

cond2(A) =
σ1

σ2

= µ(A) + (µ(A)2 − 1)1/2.

(3) Consider the subset S of 2× 2 invertible matrices whose entries ai j are integers such
that 0 ≤ aij ≤ 100.

Prove that the functions cond2(A) and µ(A) reach a maximum on the set S for the same
values of A.

Check that for the matrix

Am =

(
100 99
99 98

)
we have

µ(Am) = 19, 603 det(Am) = −1

and
cond2(Am) ≈ 39, 206.

(4) Prove that for all A ∈ S, if | det(A)| ≥ 2 then µ(A) ≤ 10, 000. Conclude that the
maximum of µ(A) on S is achieved for matrices such that det(A) = ±1. Prove that finding
matrices that maximize µ on S is equivalent to finding some integers n1, n2, n3, n4 such that

0 ≤ n4 ≤ n3 ≤ n2 ≤ n1 ≤ 100

n2
1 + n2

2 + n2
3 + n2

4 ≥ 1002 + 992 + 992 + 982 = 39, 206

|n1n4 − n2n3| = 1.

You may use without proof that the fact that the only solution to the above constraints
is the multiset

{100, 99, 99, 98}.

(5) Deduce from part (4) that the matrices in S for which µ has a maximum value are

Am =

(
100 99
99 98

) (
98 99
99 100

) (
99 100
98 99

) (
99 98
100 99

)
and check that µ has the same value for these matrices. Conclude that

max
A∈S

cond2(A) = cond2(Am).



8.10. PROBLEMS 347

(6) Solve the system (
100 99
99 98

)(
x1

x2

)
=

(
199
197

)
.

Perturb the right-hand side b by

∆b =

(
−0.0097
0.0106

)
and solve the new system

Amy = b+ ∆b

where y = (y1, y2). Check that

∆x = y − x =

(
2

−2.0203

)
.

Compute ‖x‖2, ‖∆x‖2, ‖b‖2, ‖∆b‖2, and estimate

c =
‖∆x‖2

‖x‖2

(‖∆b‖2

‖b‖2

)−1

.

Check that
c ≈ cond2(Am) ≈ 39, 206.

Problem 8.15. Consider a real 2× 2 matrix with zero trace of the form

A =

(
a b
c −a

)
.

(1) Prove that
A2 = (a2 + bc)I2 = − det(A)I2.

If a2 + bc = 0, prove that
eA = I2 + A.

(2) If a2 + bc < 0, let ω > 0 be such that ω2 = −(a2 + bc). Prove that

eA = cosω I2 +
sinω

ω
A.

(3) If a2 + bc > 0, let ω > 0 be such that ω2 = a2 + bc. Prove that

eA = coshω I2 +
sinhω

ω
A.

(3) Prove that in all cases

det
(
eA
)

= 1 and tr(A) ≥ −2.

(4) Prove that there exist some real 2 × 2 matrix B with det(B) = 1 such that there is
no real 2× 2 matrix A with zero trace such that eA = B.
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Problem 8.16. Recall that the Hilbert matrix is given by

H
(n)
ij =

(
1

i+ j − 1

)
.

(1) Prove that

det(H(n)) =
(1!2! · · · (n− 1)!)4

1!2! · · · (2n− 1)!
,

thus the reciprocal of an integer.

Hint . Use Problem 6.13.

(2) Amazingly, the entries of the inverse of H(n) are integers. Prove that (H(n))−1 = (αij),
with

αij = (−1)i+j(i+ j − 1)

(
n+ i− 1

n− j

)(
n+ j − 1

n− i

)(
i+ j − 2

i− 1

)2

.



Chapter 9

Iterative Methods for Solving Linear
Systems

9.1 Convergence of Sequences of Vectors and Matrices

In Chapter 7 we discussed some of the main methods for solving systems of linear equations.
These methods are direct methods , in the sense that they yield exact solutions (assuming
infinite precision!).

Another class of methods for solving linear systems consists in approximating solutions
using iterative methods . The basic idea is this: Given a linear system Ax = b (with A a
square invertible matrix in Mn(C)), find another matrix B ∈ Mn(C) and a vector c ∈ Cn,
such that

1. The matrix I −B is invertible

2. The unique solution x̃ of the system Ax = b is identical to the unique solution ũ of the
system

u = Bu+ c,

and then starting from any vector u0, compute the sequence (uk) given by

uk+1 = Buk + c, k ∈ N.

Under certain conditions (to be clarified soon), the sequence (uk) converges to a limit ũ
which is the unique solution of u = Bu+ c, and thus of Ax = b.

Consequently, it is important to find conditions that ensure the convergence of the above
sequences and to have tools to compare the “rate” of convergence of these sequences. Thus,
we begin with some general results about the convergence of sequences of vectors and ma-
trices.

349
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Let (E, ‖ ‖) be a normed vector space. Recall from Section 8.7 that a sequence (uk) of
vectors uk ∈ E converges to a limit u ∈ E, if for every ε > 0, there some natural number N
such that

‖uk − u‖ ≤ ε, for all k ≥ N.

We write
u = lim

k 7→∞
uk.

If E is a finite-dimensional vector space and dim(E) = n, we know from Theorem 8.5 that
any two norms are equivalent, and if we choose the norm ‖ ‖∞, we see that the convergence
of the sequence of vectors uk is equivalent to the convergence of the n sequences of scalars
formed by the components of these vectors (over any basis). The same property applies to
the finite-dimensional vector space Mm,n(K) of m × n matrices (with K = R or K = C),

which means that the convergence of a sequence of matrices Ak = (a
(k)
ij ) is equivalent to the

convergence of the m× n sequences of scalars (a
(k)
ij ), with i, j fixed (1 ≤ i ≤ m, 1 ≤ j ≤ n).

The first theorem below gives a necessary and sufficient condition for the sequence (Bk)
of powers of a matrix B to converge to the zero matrix. Recall that the spectral radius ρ(B)
of a matrix B is the maximum of the moduli |λi| of the eigenvalues of B.

Theorem 9.1. For any square matrix B, the following conditions are equivalent:

(1) limk 7→∞Bk = 0,

(2) limk 7→∞Bkv = 0, for all vectors v,

(3) ρ(B) < 1,

(4) ‖B‖ < 1, for some subordinate matrix norm ‖ ‖.
Proof. Assume (1) and let ‖ ‖ be a vector norm on E and ‖ ‖ be the corresponding matrix
norm. For every vector v ∈ E, because ‖ ‖ is a matrix norm, we have

‖Bkv‖ ≤ ‖Bk‖‖v‖,

and since limk 7→∞Bk = 0 means that limk 7→∞ ‖Bk‖ = 0, we conclude that limk 7→∞ ‖Bkv‖ = 0,
that is, limk 7→∞Bkv = 0. This proves that (1) implies (2).

Assume (2). If we had ρ(B) ≥ 1, then there would be some eigenvector u (6= 0) and some
eigenvalue λ such that

Bu = λu, |λ| = ρ(B) ≥ 1,

but then the sequence (Bku) would not converge to 0, because Bku = λku and |λk| = |λ|k ≥
1. It follows that (2) implies (3).

Assume that (3) holds, that is, ρ(B) < 1. By Proposition 8.12, we can find ε > 0 small
enough that ρ(B) + ε < 1, and a subordinate matrix norm ‖ ‖ such that

‖B‖ ≤ ρ(B) + ε,
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which is (4).

Finally, assume (4). Because ‖ ‖ is a matrix norm,

‖Bk‖ ≤ ‖B‖k,

and since ‖B‖ < 1, we deduce that (1) holds.

The following proposition is needed to study the rate of convergence of iterative methods.

Proposition 9.2. For every square matrix B ∈ Mn(C) and every matrix norm ‖ ‖, we have

lim
k 7→∞
‖Bk‖1/k = ρ(B).

Proof. We know from Proposition 8.6 that ρ(B) ≤ ‖B‖, and since ρ(B) = (ρ(Bk))1/k, we
deduce that

ρ(B) ≤ ‖Bk‖1/k for all k ≥ 1.

Now let us prove that for every ε > 0, there is some integer N(ε) such that

‖Bk‖1/k ≤ ρ(B) + ε for all k ≥ N(ε).

Together with the fact that

ρ(B) ≤ ‖Bk‖1/k for all k ≥ 1,

we deduce that limk 7→∞ ‖Bk‖1/k exists and that

lim
k 7→∞
‖Bk‖1/k = ρ(B).

For any given ε > 0, let Bε be the matrix

Bε =
B

ρ(B) + ε
.

Since ρ(Bε) < 1, Theorem 9.1 implies that limk 7→∞Bk
ε = 0. Consequently, there is some

integer N(ε) such that for all k ≥ N(ε), we have

‖Bk
ε ‖ =

‖Bk‖
(ρ(B) + ε)k

≤ 1,

which implies that
‖Bk‖1/k ≤ ρ(B) + ε,

as claimed.

We now apply the above results to the convergence of iterative methods.
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9.2 Convergence of Iterative Methods

Recall that iterative methods for solving a linear system Ax = b (with A ∈ Mn(C) invertible)
consists in finding some matrix B and some vector c, such that I − B is invertible, and the
unique solution x̃ of Ax = b is equal to the unique solution ũ of u = Bu+ c. Then starting
from any vector u0, compute the sequence (uk) given by

uk+1 = Buk + c, k ∈ N,

and say that the iterative method is convergent iff

lim
k 7→∞

uk = ũ,

for every initial vector u0.

Here is a fundamental criterion for the convergence of any iterative methods based on a
matrix B, called the matrix of the iterative method .

Theorem 9.3. Given a system u = Bu+ c as above, where I−B is invertible, the following
statements are equivalent:

(1) The iterative method is convergent.

(2) ρ(B) < 1.

(3) ‖B‖ < 1, for some subordinate matrix norm ‖ ‖.
Proof. Define the vector ek (error vector) by

ek = uk − ũ,
where ũ is the unique solution of the system u = Bu + c. Clearly, the iterative method is
convergent iff

lim
k 7→∞

ek = 0.

We claim that
ek = Bke0, k ≥ 0,

where e0 = u0 − ũ.

This is proven by induction on k. The base case k = 0 is trivial. By the induction
hypothesis, ek = Bke0, and since uk+1 = Buk + c, we get

uk+1 − ũ = Buk + c− ũ,
and because ũ = Bũ+ c and ek = Bke0 (by the induction hypothesis), we obtain

uk+1 − ũ = Buk −Bũ = B(uk − ũ) = Bek = BBke0 = Bk+1e0,

proving the induction step. Thus, the iterative method converges iff

lim
k 7→∞

Bke0 = 0.

Consequently, our theorem follows by Theorem 9.1.
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The next proposition is needed to compare the rate of convergence of iterative methods.
It shows that asymptotically, the error vector ek = Bke0 behaves at worst like (ρ(B))k.

Proposition 9.4. Let ‖ ‖ be any vector norm, let B ∈ Mn(C) be a matrix such that I − B
is invertible, and let ũ be the unique solution of u = Bu+ c.

(1) If (uk) is any sequence defined iteratively by

uk+1 = Buk + c, k ∈ N,

then

lim
k 7→∞

[
sup

‖u0−ũ‖=1

‖uk − ũ‖1/k

]
= ρ(B).

(2) Let B1 and B2 be two matrices such that I − B1 and I − B2 are invertible, assume
that both u = B1u+ c1 and u = B2u+ c2 have the same unique solution ũ, and consider any
two sequences (uk) and (vk) defined inductively by

uk+1 = B1uk + c1

vk+1 = B2vk + c2,

with u0 = v0. If ρ(B1) < ρ(B2), then for any ε > 0, there is some integer N(ε), such that
for all k ≥ N(ε), we have

sup
‖u0−ũ‖=1

[‖vk − ũ‖
‖uk − ũ‖

]1/k

≥ ρ(B2)

ρ(B1) + ε
.

Proof. Let ‖ ‖ be the subordinate matrix norm. Recall that

uk − ũ = Bke0,

with e0 = u0 − ũ. For every k ∈ N, we have

(ρ(B))k = ρ(Bk) ≤ ‖Bk‖ = sup
‖e0‖=1

‖Bke0‖,

which implies
ρ(B) = sup

‖e0‖=1

‖Bke0‖1/k = ‖Bk‖1/k,

and Statement (1) follows from Proposition 9.2.

Because u0 = v0, we have

uk − ũ = Bk
1e0

vk − ũ = Bk
2e0,
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with e0 = u0 − ũ = v0 − ũ. Again, by Proposition 9.2, for every ε > 0, there is some natural
number N(ε) such that if k ≥ N(ε), then

sup
‖e0‖=1

‖Bk
1e0‖1/k ≤ ρ(B1) + ε.

Furthermore, for all k ≥ N(ε), there exists a vector e0 = e0(k) (for some suitable choice of
u0) such that

‖e0‖ = 1 and ‖Bk
2e0‖1/k = ‖Bk

2‖1/k ≥ ρ(B2),

which implies Statement (2).

In light of the above, we see that when we investigate new iterative methods, we have to
deal with the following two problems:

1. Given an iterative method with matrix B, determine whether the method is conver-
gent. This involves determining whether ρ(B) < 1, or equivalently whether there is a
subordinate matrix norm such that ‖B‖ < 1. By Proposition 8.11, this implies that
I −B is invertible (since ‖ −B‖ = ‖B‖, Proposition 8.11 applies).

2. Given two convergent iterative methods, compare them. The iterative method which
is faster is that whose matrix has the smaller spectral radius.

We now discuss three iterative methods for solving linear systems:

1. Jacobi’s method

2. Gauss–Seidel’s method

3. The relaxation method.

9.3 Description of the Methods of Jacobi,

Gauss–Seidel, and Relaxation

The methods described in this section are instances of the following scheme: Given a linear
system Ax = b, with A invertible, suppose we can write A in the form

A = M −N,

with M invertible, and “easy to invert,” which means that M is close to being a diagonal or
a triangular matrix (perhaps by blocks). Then Au = b is equivalent to

Mu = Nu+ b,

that is,
u = M−1Nu+M−1b.
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Therefore, we are in the situation described in the previous sections with B = M−1N and
c = M−1b. In fact, since A = M −N , we have

B = M−1N = M−1(M − A) = I −M−1A, (∗)

which shows that I − B = M−1A is invertible. The iterative method associated with the
matrix B = M−1N is given by

uk+1 = M−1Nuk +M−1b, k ≥ 0, (†)

starting from any arbitrary vector u0. From a practical point of view, we do not invert M ,
and instead we solve iteratively the systems

Muk+1 = Nuk + b, k ≥ 0.

Various methods correspond to various ways of choosing M and N from A. The first two
methods choose M and N as disjoint submatrices of A, but the relaxation method allows
some overlapping of M and N .

To describe the various choices of M and N , it is convenient to write A in terms of three
submatrices D,E, F , as

A = D − E − F,
where the only nonzero entries in D are the diagonal entries in A, the only nonzero entries
in E are the negatives of nonzero entries in A below the the diagonal, and the only nonzero
entries in F are the negatives of nonzero entries in A above the diagonal. More explicitly, if

A =



a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

...
...

...
. . .

...
...

an−1 1 an−1 2 an−1 3 · · · an−1n−1 an−1n

an 1 an 2 an 3 · · · ann−1 ann


,

then

D =



a11 0 0 · · · 0 0

0 a22 0 · · · 0 0

0 0 a33 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1n−1 0

0 0 0 · · · 0 ann


,
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−E =



0 0 0 · · · 0 0

a21 0 0 · · · 0 0

a31 a32 0 · · · 0 0

...
...

. . . . . .
...

...

an−1 1 an−1 2 an−1 3
. . . 0 0

an 1 an 2 an 3 · · · ann−1 0


, −F =



0 a12 a13 · · · a1n−1 a1n

0 0 a23 · · · a2n−1 a2n

0 0 0
. . . a3n−1 a3n

...
...

...
. . . . . .

...

0 0 0 · · · 0 an−1n

0 0 0 · · · 0 0


.

In Jacobi’s method , we assume that all diagonal entries in A are nonzero, and we pick

M = D

N = E + F,

so that by (∗),
B = M−1N = D−1(E + F ) = I −D−1A.

As a matter of notation, we let

J = I −D−1A = D−1(E + F ),

which is called Jacobi’s matrix . The corresponding method, Jacobi’s iterative method , com-
putes the sequence (uk) using the recurrence

uk+1 = D−1(E + F )uk +D−1b, k ≥ 0.

In practice, we iteratively solve the systems

Duk+1 = (E + F )uk + b, k ≥ 0.

If we write uk = (uk1, . . . , u
k
n), we solve iteratively the following system:

a11u
k+1
1 = −a12u

k
2 −a13u

k
3 · · · −a1nu

k
n + b1

a22u
k+1
2 = −a21u

k
1 −a23u

k
3 · · · −a2nu

k
n + b2

...
...

...
an−1n−1u

k+1
n−1 = −an−1 1u

k
1 · · · −an−1n−2u

k
n−2 −an−1nu

k
n + bn−1

annu
k+1
n = −an 1u

k
1 −an 2u

k
2 · · · −ann−1u

k
n−1 + bn

.

In Matlab one step of Jacobi iteration is achieved by the following function:

function v = Jacobi2(A,b,u)

n = size(A,1);

v = zeros(n,1);

for i = 1:n

v(i,1) = u(i,1) + (-A(i,:)*u + b(i))/A(i,i);

end

end
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In order to run m iteration steps, run the following function:

function u = jacobi(A,b,u0,m)

u = u0;

for j = 1:m

u = Jacobi2(A,b,u);

end

end

Example 9.1. Consider the linear system
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



x1

x2

x3

x4

 =


25
−24
21
−15

 .

We check immediately that the solution is

x1 = 11, x2 = −3, x3 = 7, x4 = −4.

It is easy to see that the Jacobi matrix is

J =
1

2


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 .

After 10 Jacobi iterations, we find the approximate solution

x1 = 10.2588, x2 = −2.5244, x3 = 5.8008, x4 = −3.7061.

After 20 iterations, we find the approximate solution

x1 = 10.9110, x2 = −2.9429, x3 = 6.8560, x4 = −3.9647.

After 50 iterations, we find the approximate solution

x1 = 10.9998, x2 = −2.9999, x3 = 6.9998, x4 = −3.9999,

and After 60 iterations, we find the approximate solution

x1 = 11.0000, x2 = −3.0000, x3 = 7.0000, x4 = −4.0000,

correct up to at least four decimals.

It can be shown (see Problem 9.6) that the eigenvalues of J are

cos
(π

5

)
, cos

(
2π

5

)
, cos

(
3π

5

)
, cos

(
4π

5

)
,
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so the spectral radius of J = B is

ρ(J) = cos
(π

5

)
= 0.8090 < 1.

By Theorem 9.3, Jacobi’s method converges for the matrix of this example.

Observe that we can try to “speed up” the method by using the new value uk+1
1 instead

of uk1 in solving for uk+2
2 using the second equations, and more generally, use uk+1

1 , . . . , uk+1
i−1

instead of uk1, . . . , u
k
i−1 in solving for uk+1

i in the ith equation. This observation leads to the
system

a11u
k+1
1 = −a12u

k
2 −a13u

k
3 · · · −a1nu

k
n + b1

a22u
k+1
2 = −a21u

k+1
1 −a23u

k
3 · · · −a2nu

k
n + b2

...
...

...
an−1n−1u

k+1
n−1 = −an−1 1u

k+1
1 · · · −an−1n−2u

k+1
n−2 −an−1nu

k
n + bn−1

annu
k+1
n = −an 1u

k+1
1 −an 2u

k+1
2 · · · −ann−1u

k+1
n−1 + bn,

which, in matrix form, is written

Duk+1 = Euk+1 + Fuk + b.

Because D is invertible and E is lower triangular, the matrix D − E is invertible, so the
above equation is equivalent to

uk+1 = (D − E)−1Fuk + (D − E)−1b, k ≥ 0.

The above corresponds to choosing M and N to be

M = D − E
N = F,

and the matrix B is given by

B = M−1N = (D − E)−1F.

Since M = D − E is invertible, we know that I −B = M−1A is also invertible.

The method that we just described is the iterative method of Gauss–Seidel , and the
matrix B is called the matrix of Gauss–Seidel and denoted by L1, with

L1 = (D − E)−1F.

One of the advantages of the method of Gauss–Seidel is that is requires only half of the
memory used by Jacobi’s method, since we only need

uk+1
1 , . . . , uk+1

i−1 , u
k
i+1, . . . , u

k
n

to compute uk+1
i . We also show that in certain important cases (for example, if A is a

tridiagonal matrix), the method of Gauss–Seidel converges faster than Jacobi’s method (in
this case, they both converge or diverge simultaneously).

In Matlab one step of Gauss–Seidel iteration is achieved by the following function:
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function u = GaussSeidel3(A,b,u)

n = size(A,1);

for i = 1:n

u(i,1) = u(i,1) + (-A(i,:)*u + b(i))/A(i,i);

end

end

It is remarkable that the only difference with Jacobi2 is that the same variable u is used on
both sides of the assignment. In order to run m iteration steps, run the following function:

function u = GaussSeidel1(A,b,u0,m)

u = u0;

for j = 1:m

u = GaussSeidel3(A,b,u);

end

end

Example 9.2. Consider the same linear system
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



x1

x2

x3

x4

 =


25
−24
21
−15


as in Example 9.1, whose solution is

x1 = 11, x2 = −3, x3 = 7, x4 = −4.

After 10 Gauss–Seidel iterations, we find the approximate solution

x1 = 10.9966, x2 = −3.0044, x3 = 6.9964, x4 = −4.0018.

After 20 iterations, we find the approximate solution

x1 = 11.0000, x2 = −3.0001, x3 = 6.9999, x4 = −4.0000.

After 25 iterations, we find the approximate solution

x1 = 11.0000, x2 = −3.0000, x3 = 7.0000, x4 = −4.0000,

correct up to at least four decimals. We observe that for this example, Gauss–Seidel’s method
converges about twice as fast as Jacobi’s method. It will be shown in Proposition 9.8 that
for a tridiagonal matrix, the spectral radius of the Gauss–Seidel matrix L1 is given by

ρ(L1) = (ρ(J))2,

so our observation is consistent with the theory.



360 CHAPTER 9. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

The new ingredient in the relaxation method is to incorporate part of the matrix D into
N : we define M and N by

M =
D

ω
− E

N =
1− ω
ω

D + F,

where ω 6= 0 is a real parameter to be suitably chosen. Actually, we show in Section 9.4 that
for the relaxation method to converge, we must have ω ∈ (0, 2). Note that the case ω = 1
corresponds to the method of Gauss–Seidel.

If we assume that all diagonal entries of D are nonzero, the matrix M is invertible. The
matrix B is denoted by Lω and called the matrix of relaxation, with

Lω =

(
D

ω
− E

)−1(
1− ω
ω

D + F

)
= (D − ωE)−1((1− ω)D + ωF ).

The number ω is called the parameter of relaxation.
When ω > 1, the relaxation method is known as successive overrelaxation, abbreviated

as SOR.

At first glance the relaxation matrix Lω seems a lot more complicated than the Gauss–
Seidel matrix L1, but the iterative system associated with the relaxation method is very
similar to the method of Gauss–Seidel, and is quite simple. Indeed, the system associated
with the relaxation method is given by(

D

ω
− E

)
uk+1 =

(
1− ω
ω

D + F

)
uk + b,

which is equivalent to

(D − ωE)uk+1 = ((1− ω)D + ωF )uk + ωb,

and can be written

Duk+1 = Duk − ω(Duk − Euk+1 − Fuk − b).

Explicitly, this is the system

a11u
k+1
1 = a11u

k
1 − ω(a11u

k
1 + a12u

k
2 + a13u

k
3 + · · ·+ a1n−2u

k
n−2 + a1n−1u

k
n−1 + a1nu

k
n − b1)

a22u
k+1
2 = a22u

k
2 − ω(a21u

k+1
1 + a22u

k
2 + a23u

k
3 + · · ·+ a2n−2u

k
n−2 + a2n−1u

k
n−1 + a2nu

k
n − b2)

...

annu
k+1
n = annu

k
n − ω(an 1u

k+1
1 + an 2u

k+1
2 + · · ·+ ann−2u

k+1
n−2 + ann−1u

k+1
n−1 + annu

k
n − bn).

In Matlab one step of relaxation iteration is achieved by the following function:
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function u = relax3(A,b,u,omega)

n = size(A,1);

for i = 1:n

u(i,1) = u(i,1) + omega*(-A(i,:)*u + b(i))/A(i,i);

end

end

Observe that function relax3 is obtained from the function GaussSeidel3 by simply insert-
ing ω in front of the expression (−A(i, :)∗u+ b(i))/A(i, i). In order to run m iteration steps,
run the following function:

function u = relax(A,b,u0,omega,m)

u = u0;

for j = 1:m

u = relax3(A,b,u,omega);

end

end

Example 9.3. Consider the same linear system as in Examples 9.1 and 9.2, whose solution
is

x1 = 11, x2 = −3, x3 = 7, x4 = −4.

After 10 relaxation iterations with ω = 1.1, we find the approximate solution

x1 = 11.0026, x2 = −2.9968, x3 = 7.0024, x4 = −3.9989.

After 10 iterations with ω = 1.2, we find the approximate solution

x1 = 11.0014, x2 = −2.9985, x3 = 7.0010, x4 = −3.9996.

After 10 iterations with ω = 1.3, we find the approximate solution

x1 = 10.9996, x2 = −3.0001, x3 = 6.9999, x4 = −4.0000.

After 10 iterations with ω = 1.27, we find the approximate solution

x1 = 11.0000, x2 = −3.0000, x3 = 7.0000, x4 = −4.0000,

correct up to at least four decimals. We observe that for this example the method of relax-
ation with ω = 1.27 converges faster than the method of Gauss–Seidel. This observation will
be confirmed by Proposition 9.10.

What remains to be done is to find conditions that ensure the convergence of the relax-
ation method (and the Gauss–Seidel method), that is:

1. Find conditions on ω, namely some interval I ⊆ R so that ω ∈ I implies ρ(Lω) < 1;
we will prove that ω ∈ (0, 2) is a necessary condition.
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2. Find if there exist some optimal value ω0 of ω ∈ I, so that

ρ(Lω0) = inf
ω∈I

ρ(Lω).

We will give partial answers to the above questions in the next section.

It is also possible to extend the methods of this section by using block decompositions
of the form A = D − E − F , where D,E, and F consist of blocks, and D is an invertible
block-diagonal matrix. See Figure 9.1.

D

D

D

D

E

E

E

F

F

F
1

11

2

22

3

33

4

Figure 9.1: A schematic representation of a block decomposition A = D − E − F , where
D = ∪4

i=1Di, E = ∪3
i=1Ei, and F = ∪3

i=1Fi.

9.4 Convergence of the Methods of Gauss–Seidel and

Relaxation

We begin with a general criterion for the convergence of an iterative method associated with
a (complex) Hermitian positive definite matrix, A = M − N . Next we apply this result to
the relaxation method.

Proposition 9.5. Let A be any Hermitian positive definite matrix, written as

A = M −N,
with M invertible. Then M∗ +N is Hermitian, and if it is positive definite, then

ρ(M−1N) < 1,

so that the iterative method converges.
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Proof. Since M = A+N and A is Hermitian, A∗ = A, so we get

M∗ +N = A∗ +N∗ +N = A+N +N∗ = M +N∗ = (M∗ +N)∗,

which shows that M∗ +N is indeed Hermitian.

Because A is Hermitian positive definite, the function

v 7→ (v∗Av)1/2

from Cn to R is a vector norm ‖ ‖, and let ‖ ‖ also denote its subordinate matrix norm. We
prove that

‖M−1N‖ < 1,

which by Theorem 9.1 proves that ρ(M−1N) < 1. By definition

‖M−1N‖ = ‖I −M−1A‖ = sup
‖v‖=1

‖v −M−1Av‖,

which leads us to evaluate ‖v −M−1Av‖ when ‖v‖ = 1. If we write w = M−1Av, using the
facts that ‖v‖ = 1, v = A−1Mw, A∗ = A, and A = M −N , we have

‖v − w‖2 = (v − w)∗A(v − w)

= ‖v‖2 − v∗Aw − w∗Av + w∗Aw

= 1− w∗M∗w − w∗Mw + w∗Aw

= 1− w∗(M∗ +N)w.

Now since we assumed that M∗ + N is positive definite, if w 6= 0, then w∗(M∗ + N)w > 0,
and we conclude that

if ‖v‖ = 1, then ‖v −M−1Av‖ < 1.

Finally, the function
v 7→ ‖v −M−1Av‖

is continuous as a composition of continuous functions, therefore it achieves its maximum
on the compact subset {v ∈ Cn | ‖v‖ = 1}, which proves that

sup
‖v‖=1

‖v −M−1Av‖ < 1,

and completes the proof.

Now as in the previous sections, we assume that A is written as A = D − E − F ,
with D invertible, possibly in block form. The next theorem provides a sufficient condition
(which turns out to be also necessary) for the relaxation method to converge (and thus, for
the method of Gauss–Seidel to converge). This theorem is known as the Ostrowski-Reich
theorem.
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Theorem 9.6. If A = D−E −F is Hermitian positive definite, and if 0 < ω < 2, then the
relaxation method converges. This also holds for a block decomposition of A.

Proof. Recall that for the relaxation method, A = M −N with

M =
D

ω
− E

N =
1− ω
ω

D + F,

and because D∗ = D, E∗ = F (since A is Hermitian) and ω 6= 0 is real, we have

M∗ +N =
D∗

ω
− E∗ +

1− ω
ω

D + F =
2− ω
ω

D.

If D consists of the diagonal entries of A, then we know from Section 7.8 that these entries
are all positive, and since ω ∈ (0, 2), we see that the matrix ((2−ω)/ω)D is positive definite.
If D consists of diagonal blocks of A, because A is positive, definite, by choosing vectors z
obtained by picking a nonzero vector for each block of D and padding with zeros, we see
that each block of D is positive definite, and thus D itself is positive definite. Therefore, in
all cases, M∗ +N is positive definite, and we conclude by using Proposition 9.5.

Remark: What if we allow the parameter ω to be a nonzero complex number ω ∈ C? In
this case, we get

M∗ +N =
D∗

ω
− E∗ +

1− ω
ω

D + F =

(
1

ω
+

1

ω
− 1

)
D.

But,
1

ω
+

1

ω
− 1 =

ω + ω − ωω
ωω

=
1− (ω − 1)(ω − 1)

|ω|2 =
1− |ω − 1|2
|ω|2 ,

so the relaxation method also converges for ω ∈ C, provided that

|ω − 1| < 1.

This condition reduces to 0 < ω < 2 if ω is real.

Unfortunately, Theorem 9.6 does not apply to Jacobi’s method, but in special cases,
Proposition 9.5 can be used to prove its convergence. On the positive side, if a matrix
is strictly column (or row) diagonally dominant, then it can be shown that the method of
Jacobi and the method of Gauss–Seidel both converge. The relaxation method also converges
if ω ∈ (0, 1], but this is not a very useful result because the speed-up of convergence usually
occurs for ω > 1.

We now prove that, without any assumption on A = D − E − F , other than the fact
that A and D are invertible, in order for the relaxation method to converge, we must have
ω ∈ (0, 2).
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Proposition 9.7. Given any matrix A = D − E − F , with A and D invertible, for any
ω 6= 0, we have

ρ(Lω) ≥ |ω − 1|,

where Lω =

(
D
ω
−E

)−1(
1−ω
ω
D+F

)
. Therefore, the relaxation method (possibly by blocks)

does not converge unless ω ∈ (0, 2). If we allow ω to be complex, then we must have

|ω − 1| < 1

for the relaxation method to converge.

Proof. Observe that the product λ1 · · ·λn of the eigenvalues of Lω, which is equal to det(Lω),
is given by

λ1 · · ·λn = det(Lω) =

det

(
1− ω
ω

D + F

)
det

(
D

ω
− E

) = (1− ω)n.

It follows that

ρ(Lω) ≥ |λ1 · · ·λn|1/n = |ω − 1|.
The proof is the same if ω ∈ C.

9.5 Convergence of the Methods of Jacobi,

Gauss–Seidel, and Relaxation for

Tridiagonal Matrices

We now consider the case where A is a tridiagonal matrix , possibly by blocks. In this case,
we obtain precise results about the spectral radius of J and Lω, and as a consequence,
about the convergence of these methods. We also obtain some information about the rate of
convergence of these methods. We begin with the case ω = 1, which is technically easier to
deal with. The following proposition gives us the precise relationship between the spectral
radii ρ(J) and ρ(L1) of the Jacobi matrix and the Gauss–Seidel matrix.

Proposition 9.8. Let A be a tridiagonal matrix (possibly by blocks). If ρ(J) is the spectral
radius of the Jacobi matrix and ρ(L1) is the spectral radius of the Gauss–Seidel matrix, then
we have

ρ(L1) = (ρ(J))2.

Consequently, the method of Jacobi and the method of Gauss–Seidel both converge or both
diverge simultaneously (even when A is tridiagonal by blocks); when they converge, the method
of Gauss–Seidel converges faster than Jacobi’s method.
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Proof. We begin with a preliminary result. Let A(µ) be a tridiagonal matrix by block of the
form

A(µ) =



A1 µ−1C1 0 0 · · · 0
µB1 A2 µ−1C2 0 · · · 0

0
. . . . . . . . . · · · ...

... · · · . . . . . . . . . 0
0 · · · 0 µBp−2 Ap−1 µ−1Cp−1

0 · · · · · · 0 µBp−1 Ap


,

then
det(A(µ)) = det(A(1)), µ 6= 0.

To prove this fact, form the block diagonal matrix

P (µ) = diag(µI1, µ
2I2, . . . , µ

pIp),

where Ij is the identity matrix of the same dimension as the block Aj. Then it is easy to see
that

A(µ) = P (µ)A(1)P (µ)−1,

and thus,
det(A(µ)) = det(P (µ)A(1)P (µ)−1) = det(A(1)).

Since the Jacobi matrix is J = D−1(E + F ), the eigenvalues of J are the zeros of the
characteristic polynomial

pJ(λ) = det(λI −D−1(E + F )),

and thus, they are also the zeros of the polynomial

qJ(λ) = det(λD − E − F ) = det(D)pJ(λ).

Similarly, since the Gauss–Seidel matrix is L1 = (D−E)−1F , the zeros of the characteristic
polynomial

pL1(λ) = det(λI − (D − E)−1F )

are also the zeros of the polynomial

qL1(λ) = det(λD − λE − F ) = det(D − E)pL1(λ).

Since A = D − E − F is tridiagonal (or tridiagonal by blocks), λ2D − λ2E − F is also
tridiagonal (or tridiagonal by blocks), and by using our preliminary result with µ = λ 6= 0
starting with the matrix λ2D − λE − λF , we get

λnqJ(λ) = det(λ2D − λE − λF ) = det(λ2D − λ2E − F ) = qL1(λ
2).

By continuity, the above equation also holds for λ = 0. But then we deduce that:



9.5. CONVERGENCE METHODS FOR TRIDIAGONAL MATRICES 367

1. For any β 6= 0, if β is an eigenvalue of L1, then β1/2 and −β1/2 are both eigenvalues of
J , where β1/2 is one of the complex square roots of β.

2. For any α 6= 0, α is an eigenvalues of J iff −α is an eigenvalues of J , and if α is an
eigenvalues of J , then α2 is an eigenvalue of L1.

The above immediately implies that ρ(L1) = (ρ(J))2.

We now consider the more general situation where ω is any real in (0, 2).

Proposition 9.9. Let A be a tridiagonal matrix (possibly by blocks), and assume that the
eigenvalues of the Jacobi matrix are all real. If ω ∈ (0, 2), then the method of Jacobi and the
method of relaxation both converge or both diverge simultaneously (even when A is tridiagonal
by blocks). When they converge, the function ω 7→ ρ(Lω) (for ω ∈ (0, 2)) has a unique
minimum equal to ω0 − 1 for

ω0 =
2

1 +
√

1− (ρ(J))2
,

where 1 < ω0 < 2 if ρ(J) > 0.

Proof. The proof is very technical and can be found in Serre [57] and Ciarlet [14]. As in the
proof of the previous proposition, we begin by showing that the eigenvalues of the matrix
Lω are the zeros of the polynomial

qLω(λ) = det

(
λ+ ω − 1

ω
D − λE − F

)
= det

(
D

ω
− E

)
pLω(λ),

where pLω(λ) is the characteristic polynomial of Lω. Then using the preliminary fact from
Proposition 9.8, it is easy to show that

qLω(λ2) = λnqJ

(
λ2 + ω − 1

λω

)
,

for all λ ∈ C, with λ 6= 0. This time we cannot extend the above equation to λ = 0. This
leads us to consider the equation

λ2 + ω − 1

λω
= α,

which is equivalent to
λ2 − αωλ+ ω − 1 = 0,

for all λ 6= 0. Since λ 6= 0, the above equivalence does not hold for ω = 1, but this is not a
problem since the case ω = 1 has already been considered in the previous proposition. Then
we can show the following:

1. For any β 6= 0, if β is an eigenvalue of Lω, then

β + ω − 1

β1/2ω
, −β + ω − 1

β1/2ω

are eigenvalues of J .
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2. For every α 6= 0, if α and −α are eigenvalues of J , then µ+(α, ω) and µ−(α, ω) are
eigenvalues of Lω, where µ+(α, ω) and µ−(α, ω) are the squares of the roots of the
equation

λ2 − αωλ+ ω − 1 = 0.

It follows that
ρ(Lω) = max

α | pJ (α)=0
{max(|µ+(α, ω)|, |µ−(α, ω)|)},

and since we are assuming that J has real roots, we are led to study the function

M(α, ω) = max{|µ+(α, ω)|, |µ−(α, ω)|},

where α ∈ R and ω ∈ (0, 2). Actually, because M(−α, ω) = M(α, ω), it is only necessary to
consider the case where α ≥ 0.

Note that for α 6= 0, the roots of the equation

λ2 − αωλ+ ω − 1 = 0.

are
αω ±

√
α2ω2 − 4ω + 4

2
.

In turn, this leads to consider the roots of the equation

ω2α2 − 4ω + 4 = 0,

which are
2(1±

√
1− α2)

α2
,

for α 6= 0. Since we have

2(1 +
√

1− α2)

α2
=

2(1 +
√

1− α2)(1−
√

1− α2)

α2(1−
√

1− α2)
=

2

1−
√

1− α2

and
2(1−

√
1− α2)

α2
=

2(1 +
√

1− α2)(1−
√

1− α2)

α2(1 +
√

1− α2)
=

2

1 +
√

1− α2
,

these roots are

ω0(α) =
2

1 +
√

1− α2
, ω1(α) =

2

1−
√

1− α2
.

Observe that the expression for ω0(α) is exactly the expression in the statement of our
proposition! The rest of the proof consists in analyzing the variations of the function M(α, ω)
by considering various cases for α. In the end, we find that the minimum of ρ(Lω) is obtained
for ω0(ρ(J)). The details are tedious and we omit them. The reader will find complete proofs
in Serre [57] and Ciarlet [14].
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Combining the results of Theorem 9.6 and Proposition 9.9, we obtain the following result
which gives precise information about the spectral radii of the matrices J , L1, and Lω.

Proposition 9.10. Let A be a tridiagonal matrix (possibly by blocks) which is Hermitian
positive definite. Then the methods of Jacobi, Gauss–Seidel, and relaxation, all converge for
ω ∈ (0, 2). There is a unique optimal relaxation parameter

ω0 =
2

1 +
√

1− (ρ(J))2
,

such that
ρ(Lω0) = inf

0<ω<2
ρ(Lω) = ω0 − 1.

Furthermore, if ρ(J) > 0, then

ρ(Lω0) < ρ(L1) = (ρ(J))2 < ρ(J),

and if ρ(J) = 0, then ω0 = 1 and ρ(L1) = ρ(J) = 0.

Proof. In order to apply Proposition 9.9, we have to check that J = D−1(E + F ) has real
eigenvalues. However, if α is any eigenvalue of J and if u is any corresponding eigenvector,
then

D−1(E + F )u = αu

implies that
(E + F )u = αDu,

and since A = D − E − F , the above shows that (D − A)u = αDu, that is,

Au = (1− α)Du.

Consequently,
u∗Au = (1− α)u∗Du,

and since A and D are Hermitian positive definite, we have u∗Au > 0 and u∗Du > 0 since
u 6= 0, which proves that α ∈ R. The rest follows from Theorem 9.6 and Proposition 9.9.

Remark: It is preferable to overestimate rather than underestimate the relaxation param-
eter when the optimum relaxation parameter is not known exactly.

9.6 Summary

The main concepts and results of this chapter are listed below:

• Iterative methods. Splitting A as A = M −N .
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• Convergence of a sequence of vectors or matrices .

• A criterion for the convergence of the sequence (Bk) of powers of a matrix B to zero
in terms of the spectral radius ρ(B).

• A characterization of the spectral radius ρ(B) as the limit of the sequence (‖Bk‖1/k).

• A criterion of the convergence of iterative methods.

• Asymptotic behavior of iterative methods.

• Splitting A as A = D−E−F , and the methods of Jacobi , Gauss–Seidel , and relaxation
(and SOR).

• The Jacobi matrix, J = D−1(E + F ).

• The Gauss–Seidel matrix , L1 = (D − E)−1F .

• The matrix of relaxation, Lω = (D − ωE)−1((1− ω)D + ωF ).

• Convergence of iterative methods: a general result when A = M − N is Hermitian
positive definite.

• A sufficient condition for the convergence of the methods of Jacobi, Gauss–Seidel,
and relaxation. The Ostrowski-Reich theorem: A is Hermitian positive definite and
ω ∈ (0, 2).

• A necessary condition for the convergence of the methods of Jacobi , Gauss–Seidel,
and relaxation: ω ∈ (0, 2).

• The case of tridiagonal matrices (possibly by blocks). Simultaneous convergence or
divergence of Jacobi’s method and Gauss–Seidel’s method, and comparison of the
spectral radii of ρ(J) and ρ(L1): ρ(L1) = (ρ(J))2.

• The case of tridiagonal Hermitian positive definite matrices (possibly by blocks). The
methods of Jacobi, Gauss–Seidel, and relaxation, all converge.

• In the above case, there is a unique optimal relaxation parameter for which ρ(Lω0) <
ρ(L1) = (ρ(J))2 < ρ(J) (if ρ(J) 6= 0).

9.7 Problems

Problem 9.1. Consider the matrix

A =

1 2 −2
1 1 1
2 2 1

 .
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Prove that ρ(J) = 0 and ρ(L1) = 2, so

ρ(J) < 1 < ρ(L1),

where J is Jacobi’s matrix and L1 is the matrix of Gauss–Seidel.

Problem 9.2. Consider the matrix

A =

 2 −1 1
2 2 2
−1 −1 2

 .

Prove that ρ(J) =
√

5/2 and ρ(L1) = 1/2, so

ρ(L1) < ρ(J),

where where J is Jacobi’s matrix and L1 is the matrix of Gauss–Seidel.

Problem 9.3. Consider the following linear system:
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



x1

x2

x3

x4

 =


19
19
−3
−12

 .

(1) Solve the above system by Gaussian elimination.

(2) Compute the sequences of vectors uk = (uk1, u
k
2, u

k
3, u

k
4) for k = 1, . . . , 10, using

the methods of Jacobi, Gauss–Seidel, and relaxation for the following values of ω: ω =
1.1, 1.2, . . . , 1.9. In all cases, the initial vector is u0 = (0, 0, 0, 0).

Problem 9.4. Recall that a complex or real n × n matrix A is strictly row diagonally
dominant if |aii| >

∑n
j=1,j 6=i |aij| for i = 1, . . . , n.

(1) Prove that if A is strictly row diagonally dominant, then Jacobi’s method converges.

(2) Prove that if A is strictly row diagonally dominant, then Gauss–Seidel’s method
converges.

Problem 9.5. Prove that the converse of Proposition 9.5 holds. That is, if A is an invertible
Hermitian matrix with the splitting A = M − N where M is invertible, if the Hermitian
matrix M∗ +N is positive definite and if ρ(M−1N) < 1, then A is positive definite.

Problem 9.6. Consider the following tridiagonal n× n matrix:

A =
1

(n+ 1)2


2 −1 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 2

 .
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(1) Prove that the eigenvalues of the Jacobi matrix J are given by

λk = cos

(
kπ

n+ 1

)
, k = 1, . . . , n.

Hint . First show that the Jacobi matrix is

J =
1

2


0 1 0
1 0 1

. . . . . . . . .

1 0 1
0 1 0

 .

Then the eigenvalues and the eigenvectors of J are solutions of the system of equations

y0 = 0

yk+1 + yk−1 = 2λyk, k = 1, . . . , n

yn+1 = 0.

It is well known that the general solution to the above recurrence is given by

yk = αzk1 + βzk2 , k = 0, . . . , n+ 1,

(with α, β 6= 0) where z1 and z2 are the zeros of the equation

z2 − 2λz + 1 = 0.

It follows that z2 = z−1
1 and z1 + z2 = 2λ. The boundary condition y0 = 0 yields α+ β = 0,

so yk = α(zk1 − z−k1 ), and the boundary condition yn+1 = 0 yields

z
2(n+1)
1 = 1.

Deduce that we may assume that the n possible values (z1)k for z1 are given by

(z1)k = e
kπi
n+1 , k = 1, . . . , n,

and find
2λk = (z1)k + (z1)−1

k .

Show that an eigenvector (y
(k)
1 , . . . , y

(k)
n ) associated with the eigenvalue λk is given by

y
(k)
j = sin

(
kjπ

n+ 1

)
, j = 1, . . . , n.

(2) Find the spectral radius ρ(J), ρ(L1), and ρ(Lω0), as functions of h = 1/(n+ 1).



Chapter 10

The Dual Space and Duality

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R.

10.1 The Dual Space E∗ and Linear Forms

In Section 2.8 we defined linear forms, the dual space E∗ = Hom(E,K) of a vector space E,
and showed the existence of dual bases for vector spaces of finite dimension.

In this chapter we take a deeper look at the connection between a space E and its dual
space E∗. As we will see shortly, every linear map f : E → F gives rise to a linear map
f> : F ∗ → E∗, and it turns out that in a suitable basis, the matrix of f> is the transpose
of the matrix of f . Thus, the notion of dual space provides a conceptual explanation of the
phenomena associated with transposition.

But it does more, because it allows us to view a linear equation as an element of the
dual space E∗, and thus to view subspaces of E as solutions of sets of linear equations and
vice-versa. The relationship between subspaces and sets of linear forms is the essence of
duality , a term which is often used loosely, but can be made precise as a bijection between
the set of subspaces of a given vector space E and the set of subspaces of its dual E∗. In
this correspondence, a subspace V of E yields the subspace V 0 of E∗ consisting of all linear
forms that vanish on V (that is, have the value zero for all input in V ).

Consider the following set of two “linear equations” in R3,

x− y + z = 0

x− y − z = 0,

and let us find out what is their set V of common solutions (x, y, z) ∈ R3. By subtracting
the second equation from the first, we get 2z = 0, and by adding the two equations, we find

373
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that 2(x− y) = 0, so the set V of solutions is given by

y = x

z = 0.

This is a one dimensional subspace of R3. Geometrically, this is the line of equation y = x
in the plane z = 0 as illustrated by Figure 10.1.

Figure 10.1: The intersection of the magenta plane x − y + z = 0 with the blue-gray plane
x− y − z = 0 is the pink line y = x.

Now why did we say that the above equations are linear? Because as functions of (x, y, z),
both maps f1 : (x, y, z) 7→ x − y + z and f2 : (x, y, z) 7→ x − y − z are linear. The set of
all such linear functions from R3 to R is a vector space; we used this fact to form linear
combinations of the “equations” f1 and f2. Observe that the dimension of the subspace V
is 1. The ambient space has dimension n = 3 and there are two “independent” equations
f1, f2, so it appears that the dimension dim(V ) of the subspace V defined by m independent
equations is

dim(V ) = n−m,
which is indeed a general fact (proven in Theorem 10.4).

More generally, in Rn, a linear equation is determined by an n-tuple (a1, . . . , an) ∈ Rn,
and the solutions of this linear equation are given by the n-tuples (x1, . . . , xn) ∈ Rn such
that

a1x1 + · · ·+ anxn = 0;

these solutions constitute the kernel of the linear map (x1, . . . , xn) 7→ a1x1 + · · · + anxn.
The above considerations assume that we are working in the canonical basis (e1, . . . , en) of
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Rn, but we can define “linear equations” independently of bases and in any dimension, by
viewing them as elements of the vector space Hom(E,K) of linear maps from E to the field
K.

Definition 10.1. Given a vector space E, the vector space Hom(E,K) of linear maps from
E to the field K is called the dual space (or dual) of E. The space Hom(E,K) is also denoted
by E∗, and the linear maps in E∗ are called the linear forms , or covectors . The dual space
E∗∗ of the space E∗ is called the bidual of E.

As a matter of notation, linear forms f : E → K will also be denoted by starred symbol,
such as u∗, x∗, etc.

Given a vector space E and any basis (ui)i∈I for E, we can associate to each ui a linear
form u∗i ∈ E∗, and the u∗i have some remarkable properties.

Definition 10.2. Given a vector space E and any basis (ui)i∈I for E, by Proposition 2.21,
for every i ∈ I, there is a unique linear form u∗i such that

u∗i (uj) =

{
1 if i = j
0 if i 6= j,

for every j ∈ I. The linear form u∗i is called the coordinate form of index i w.r.t. the basis
(ui)i∈I .

The reason for the terminology coordinate form was explained in Section 2.8.

We proved in Theorem 2.24 that if (u1, . . . , un) is a basis of E, then (u∗1, . . . , u
∗
n) is a basis

of E∗ called the dual basis .

If (u1, . . . , un) is a basis of Rn (more generally Kn), it is possible to find explicitly the
dual basis (u∗1, . . . , u

∗
n), where each u∗i is represented by a row vector.

Example 10.1. For example, consider the columns of the Bézier matrix

B4 =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 .

In other words, we have the basis

u1 =


1
0
0
0

 u2 =


−3
3
0
0

 u3 =


3
−6
3
0

 u4 =


−1
3
−3
1

 .
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Since the form u∗1 is defined by the conditions u∗1(u1) = 1, u∗1(u2) = 0, u∗1(u3) = 0, u∗1(u4) = 0,
it is represented by a row vector (λ1 λ2 λ3 λ4) such that

(
λ1 λ2 λ3 λ4

)
1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 =
(
1 0 0 0

)
.

This implies that u∗1 is the first row of the inverse of B4. Since

B−1
4 =


1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

 ,

the linear forms (u∗1, u
∗
2, u
∗
3, u
∗
4) correspond to the rows of B−1

4 . In particular, u∗1 is represented
by (1 1 1 1).

The above method works for any n. Given any basis (u1, . . . , un) of Rn, if P is the n× n
matrix whose jth column is uj, then the dual form u∗i is given by the ith row of the matrix
P−1.

When E is of finite dimension n and (u1, . . . , un) is a basis of E, by Theorem 10.4 (1),
the family (u∗1, . . . , u

∗
n) is a basis of the dual space E∗. Let us see how the coordinates of a

linear form ϕ∗ ∈ E∗ over the dual basis (u∗1, . . . , u
∗
n) vary under a change of basis.

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and let P = (ai j) be the change of
basis matrix from (u1, . . . , un) to (v1, . . . , vn), so that

vj =
n∑
i=1

ai jui,

and let P−1 = (bi j) be the inverse of P , so that

ui =
n∑
j=1

bj ivj.

For fixed j, where 1 ≤ j ≤ n, we want to find scalars (ci)
n
i=1 such that

v∗j = c1u
∗
1 + c2u

∗
2 + · · ·+ cnu

∗
n.

To find each ci, we evaluate the above expression at ui. Since u∗i (uj) = δi j and v∗i (vj) = δi j,
we get

v∗j (ui) = (c1u
∗
1 + c2u

∗
2 + · · ·+ cnu

∗
n)(ui) = ci

v∗j (ui) = v∗j (
n∑
k=1

bk ivk) = bj i,
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and thus

v∗j =
n∑
i=1

bj iu
∗
i .

Similar calculations show that

u∗i =
n∑
j=1

ai jv
∗
j .

This means that the change of basis from the dual basis (u∗1, . . . , u
∗
n) to the dual basis

(v∗1, . . . , v
∗
n) is (P−1)>. Since

ϕ∗ =
n∑
i=1

ϕiu
∗
i =

n∑
i=1

ϕi

n∑
j=1

aijv
∗
j =

n∑
j=1

(
n∑
i=1

aijϕi

)
v∗j =

n∑
j=1

ϕ′jv
∗
j ,

we get

ϕ′j =
n∑
i=1

ai jϕi,

so the new coordinates ϕ′j are expressed in terms of the old coordinates ϕi using the matrix
P>. If we use the row vectors (ϕ1, . . . , ϕn) and (ϕ′1, . . . , ϕ

′
n), we have

(ϕ′1, . . . , ϕ
′
n) = (ϕ1, . . . , ϕn)P.

These facts are summarized in the following proposition.

Proposition 10.1. Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and let P = (ai j) be
the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn), so that

vj =
n∑
i=1

ai jui.

Then the change of basis from the dual basis (u∗1, . . . , u
∗
n) to the dual basis (v∗1, . . . , v

∗
n) is

(P−1)>, and for any linear form ϕ, the new coordinates ϕ′j of ϕ are expressed in terms of
the old coordinates ϕi of ϕ using the matrix P>; that is,

(ϕ′1, . . . , ϕ
′
n) = (ϕ1, . . . , ϕn)P.

To best understand the preceding paragraph, recall Example 3.1, in which E = R2,
u1 = (1, 0), u2 = (0, 1), and v1 = (1, 1), v2 = (−1, 1). Then P , the change of basis matrix
from (u1, u2) to (v1, v2), is given by

P =

(
1 −1
1 1

)
,

with (v1, v2) = (u1, u2)P , and (u1, u2) = (v1, v2)P−1, where

P−1 =

(
1/2 1/2
−1/2 1/2

)
.
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Let (u∗1, u
∗
2) be the dual basis for (u1, u2) and (v∗1, v

∗
2) be the dual basis for (v1, v2). We claim

that

(v∗1, v
∗
2) = (u∗1, u

∗
2)

(
1/2 −1/2
1/2 1/2

)
= (u∗1, u

∗
2)(P−1)>,

Indeed, since v∗1 = c1u
∗
1 + c2u

∗
2 and v∗2 = C1u

∗
1 + C2u

∗
2 we find that

c1 = v∗1(u1) = v∗1(1/2v1 − 1/2v2) = 1/2 c2 = v∗1(u2) = v∗1(1/2v1 + 1/2v2) = 1/2

C1 = v∗2(u1) = v∗2(1/2v1 − 1/2v2) = −1/2 C2 = v∗2(u2) = v∗1(1/2v1 + 1/2v2) = 1/2.

Furthermore, since (u∗1, u
∗
2) = (v∗1, v

∗
2)P> (since (v∗1, v

∗
2) = (u∗1, u

∗
2)(P>)−1), we find that

ϕ∗ = ϕ1u
∗
1 + ϕ2u

∗
2 = ϕ1(v∗1 − v∗2) + ϕ(v

∗
1 + v∗2) = (ϕ1 + ϕ2)v∗1 + (−ϕ1 + ϕ2)v∗2 = ϕ′1v

∗
1 + ϕ′2v

.
2

Hence (
1 1
−1 1

)(
ϕ1

ϕ2

)
=

(
ϕ′1
ϕ′2

)
,

where

P> =

(
1 1
−1 1

)
.

Comparing with the change of basis

vj =
n∑
i=1

ai jui,

we note that this time, the coordinates (ϕi) of the linear form ϕ∗ change in the same direction
as the change of basis. For this reason, we say that the coordinates of linear forms are
covariant . By abuse of language, it is often said that linear forms are covariant , which
explains why the term covector is also used for a linear form.

Observe that if (e1, . . . , en) is a basis of the vector space E, then, as a linear map from
E to K, every linear form f ∈ E∗ is represented by a 1× n matrix, that is, by a row vector

(λ1 · · · λn),

with respect to the basis (e1, . . . , en) of E, and 1 of K, where f(ei) = λi. A vector u =∑n
i=1 uiei ∈ E is represented by a n× 1 matrix, that is, by a column vectoru1

...
un

 ,

and the action of f on u, namely f(u), is represented by the matrix product

(
λ1 · · · λn

)u1
...
un

 = λ1u1 + · · ·+ λnun.
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On the other hand, with respect to the dual basis (e∗1, . . . , e
∗
n) of E∗, the linear form f is

represented by the column vector λ1
...
λn

 .

Remark: In many texts using tensors, vectors are often indexed with lower indices. If so, it
is more convenient to write the coordinates of a vector x over the basis (u1, . . . , un) as (xi),
using an upper index, so that

x =
n∑
i=1

xiui,

and in a change of basis, we have

vj =
n∑
i=1

aijui

and

xi =
n∑
j=1

aijx
′j.

Dually, linear forms are indexed with upper indices. Then it is more convenient to write the
coordinates of a covector ϕ∗ over the dual basis (u∗1, . . . , u∗n) as (ϕi), using a lower index,
so that

ϕ∗ =
n∑
i=1

ϕiu
∗i

and in a change of basis, we have

u∗i =
n∑
j=1

aijv
∗j

and

ϕ′j =
n∑
i=1

aijϕi.

With these conventions, the index of summation appears once in upper position and once in
lower position, and the summation sign can be safely omitted, a trick due to Einstein. For
example, we can write

ϕ′j = aijϕi

as an abbreviation for

ϕ′j =
n∑
i=1

aijϕi.
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For another example of the use of Einstein’s notation, if the vectors (v1, . . . , vn) are linear
combinations of the vectors (u1, . . . , un), with

vi =
n∑
j=1

aijuj, 1 ≤ i ≤ n,

then the above equations are written as

vi = ajiuj, 1 ≤ i ≤ n.

Thus, in Einstein’s notation, the n× n matrix (aij) is denoted by (aji ), a (1, 1)-tensor .

� Beware that some authors view a matrix as a mapping between coordinates , in which
case the matrix (aij) is denoted by (aij).

10.2 Pairing and Duality Between E and E∗

Given a linear form u∗ ∈ E∗ and a vector v ∈ E, the result u∗(v) of applying u∗ to v is
also denoted by 〈u∗, v〉. This defines a binary operation 〈−,−〉 : E∗ ×E → K satisfying the
following properties:

〈u∗1 + u∗2, v〉 = 〈u∗1, v〉+ 〈u∗2, v〉
〈u∗, v1 + v2〉 = 〈u∗, v1〉+ 〈u∗, v2〉
〈λu∗, v〉 = λ〈u∗, v〉
〈u∗, λv〉 = λ〈u∗, v〉.

The above identities mean that 〈−,−〉 is a bilinear map, since it is linear in each argument.
It is often called the canonical pairing between E∗ and E. In view of the above identities,
given any fixed vector v ∈ E, the map evalv : E∗ → K (evaluation at v) defined such that

evalv(u
∗) = 〈u∗, v〉 = u∗(v) for every u∗ ∈ E∗

is a linear map from E∗ to K, that is, evalv is a linear form in E∗∗. Again, from the above
identities, the map evalE : E → E∗∗, defined such that

evalE(v) = evalv for every v ∈ E,

is a linear map. Observe that

evalE(v)(u∗) = evalv(u
∗) = 〈u∗, v〉 = u∗(v), for all v ∈ E and all u∗ ∈ E∗.

We shall see that the map evalE is injective, and that it is an isomorphism when E has finite
dimension.
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We now formalize the notion of the set V 0 of linear equations vanishing on all vectors in
a given subspace V ⊆ E, and the notion of the set U0 of common solutions of a given set
U ⊆ E∗ of linear equations. The duality theorem (Theorem 10.4) shows that the dimensions
of V and V 0, and the dimensions of U and U0, are related in a crucial way. It also shows that,
in finite dimension, the maps V 7→ V 0 and U 7→ U0 are inverse bijections from subspaces of
E to subspaces of E∗.

Definition 10.3. Given a vector space E and its dual E∗, we say that a vector v ∈ E and a
linear form u∗ ∈ E∗ are orthogonal iff 〈u∗, v〉 = 0. Given a subspace V of E and a subspace
U of E∗, we say that V and U are orthogonal iff 〈u∗, v〉 = 0 for every u∗ ∈ U and every
v ∈ V . Given a subset V of E (resp. a subset U of E∗), the orthogonal V 0 of V is the
subspace V 0 of E∗ defined such that

V 0 = {u∗ ∈ E∗ | 〈u∗, v〉 = 0, for every v ∈ V }

(resp. the orthogonal U0 of U is the subspace U0 of E defined such that

U0 = {v ∈ E | 〈u∗, v〉 = 0, for every u∗ ∈ U}).

The subspace V 0 ⊆ E∗ is also called the annihilator of V . The subspace U0 ⊆ E
annihilated by U ⊆ E∗ does not have a special name. It seems reasonable to call it the
linear subspace (or linear variety) defined by U .

Informally, V 0 is the set of linear equations that vanish on V , and U0 is the set of common
zeros of all linear equations in U . We can also define V 0 by

V 0 = {u∗ ∈ E∗ | V ⊆ Keru∗}

and U0 by

U0 =
⋂
u∗∈U

Keru∗.

Observe that E0 = {0} = (0), and {0}0 = E∗.

Proposition 10.2. If V1 ⊆ V2 ⊆ E, then V 0
2 ⊆ V 0

1 ⊆ E∗, and if U1 ⊆ U2 ⊆ E∗, then
U0

2 ⊆ U0
1 ⊆ E. See Figure 10.2.

Proof. Indeed, if V1 ⊆ V2 ⊆ E, then for any f ∗ ∈ V 0
2 we have f ∗(v) = 0 for all v ∈ V2, and

thus f ∗(v) = 0 for all v ∈ V1, so f ∗ ∈ V 0
1 . Similarly, if U1 ⊆ U2 ⊆ E∗, then for any v ∈ U0

2 ,
we have f ∗(v) = 0 for all f ∗ ∈ U2, so f ∗(v) = 0 for all f ∗ ∈ U1, which means that v ∈ U0

1 .

Here are some examples.
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E

E

E*

E*

V VVV 12 1
00
2V V

U U1
2 U1

0U2
0

Figure 10.2: The top pair of figures schematically illustrates the relation if V1 ⊆ V2 ⊆ E, then
V 0

2 ⊆ V 0
1 ⊆ E∗, while the bottom pair of figures illustrates the relationship if U1 ⊆ U2 ⊆ E∗,

then U0
2 ⊆ U0

1 ⊆ E.

Example 10.2. Let E = M2(R), the space of real 2×2 matrices, and let V be the subspace
of M2(R) spanned by the matrices(

0 1
1 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
.

We check immediately that the subspace V consists of all matrices of the form(
b a
a c

)
,

that is, all symmetric matrices. The matrices(
a11 a12

a21 a22

)
in V satisfy the equation

a12 − a21 = 0,

and all scalar multiples of these equations, so V 0 is the subspace of E∗ spanned by the linear
form given by u∗(a11, a12, a21, a22) = a12 − a21. By the duality theorem (Theorem 10.4) we
have

dim(V 0) = dim(E)− dim(V ) = 4− 3 = 1.

Example 10.3. The above example generalizes to E = Mn(R) for any n ≥ 1, but this time,
consider the space U of linear forms asserting that a matrix A is symmetric; these are the
linear forms spanned by the n(n− 1)/2 equations

aij − aji = 0, 1 ≤ i < j ≤ n;
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Note there are no constraints on diagonal entries, and half of the equations

aij − aji = 0, 1 ≤ i 6= j ≤ n

are redundant. It is easy to check that the equations (linear forms) for which i < j are
linearly independent. To be more precise, let U be the space of linear forms in E∗ spanned
by the linear forms

u∗ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij − aji, 1 ≤ i < j ≤ n.

The dimension of U is n(n− 1)/2. Then the set U0 of common solutions of these equations
is the space S(n) of symmetric matrices. By the duality theorem (Theorem 10.4), this space
has dimension

n(n+ 1)

2
= n2 − n(n− 1)

2
.

We leave it as an exercise to find a basis of S(n).

Example 10.4. If E = Mn(R), consider the subspace U of linear forms in E∗ spanned by
the linear forms

u∗ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij + aji, 1 ≤ i < j ≤ n

u∗ii(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aii, 1 ≤ i ≤ n.

It is easy to see that these linear forms are linearly independent, so dim(U) = n(n + 1)/2.
The space U0 of matrices A ∈ Mn(R) satifying all of the above equations is clearly the
space Skew(n) of skew-symmetric matrices. By the duality theorem (Theorem 10.4), the
dimension of U0 is

n(n− 1)

2
= n2 − n(n+ 1)

2
.

We leave it as an exercise to find a basis of Skew(n).

Example 10.5. For yet another example with E = Mn(R), for any A ∈ Mn(R), consider
the linear form in E∗ given by

tr(A) = a11 + a22 + · · ·+ ann,

called the trace of A. The subspace U0 of E consisting of all matrices A such that tr(A) = 0
is a space of dimension n2 − 1. We leave it as an exercise to find a basis of this space.

The dimension equations

dim(V ) + dim(V 0) = dim(E)

dim(U) + dim(U0) = dim(E)

are always true (if E is finite-dimensional). This is part of the duality theorem (Theorem
10.4).
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Remark: In contrast with the previous examples, given a matrix A ∈ Mn(R), the equations
asserting that A>A = I are not linear constraints. For example, for n = 2, we have

a2
11 + a2

21 = 1

a2
21 + a2

22 = 1

a11a12 + a21a22 = 0.

Remarks:

(1) The notation V 0 (resp. U0) for the orthogonal of a subspace V of E (resp. a subspace
U of E∗) is not universal. Other authors use the notation V ⊥ (resp. U⊥). However,
the notation V ⊥ is also used to denote the orthogonal complement of a subspace V
with respect to an inner product on a space E, in which case V ⊥ is a subspace of E
and not a subspace of E∗ (see Chapter 11). To avoid confusion, we prefer using the
notation V 0.

(2) Since linear forms can be viewed as linear equations (at least in finite dimension), given
a subspace (or even a subset) U of E∗, we can define the set Z(U) of common zeros of
the equations in U by

Z(U) = {v ∈ E | u∗(v) = 0, for all u∗ ∈ U}.

Of course Z(U) = U0, but the notion Z(U) can be generalized to more general kinds
of equations, namely polynomial equations. In this more general setting, U is a set of
polynomials in n variables with coefficients in a field K (where n = dim(E)). Sets of
the form Z(U) are called algebraic varieties . Linear forms correspond to the special
case where homogeneous polynomials of degree 1 are considered.

If V is a subset of E, it is natural to associate with V the set of polynomials in
K[X1, . . . , Xn] that vanish on V . This set, usually denoted I(V ), has some special
properties that make it an ideal . If V is a linear subspace of E, it is natural to restrict
our attention to the space V 0 of linear forms that vanish on V , and in this case we
identify I(V ) and V 0 (although technically, I(V ) is no longer an ideal).

For any arbitrary set of polynomials U ⊆ K[X1, . . . , Xn] (resp. subset V ⊆ E), the
relationship between I(Z(U)) and U (resp. Z(I(V )) and V ) is generally not simple,
even though we always have

U ⊆ I(Z(U)) (resp. V ⊆ Z(I(V ))).

However, when the field K is algebraically closed, then I(Z(U)) is equal to the radical
of the ideal U , a famous result due to Hilbert known as the Nullstellensatz (see Lang
[41] or Dummit and Foote [19]). The study of algebraic varieties is the main subject
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of algebraic geometry , a beautiful but formidable subject. For a taste of algebraic
geometry, see Lang [41] or Dummit and Foote [19].

The duality theorem (Theorem 10.4) shows that the situation is much simpler if we
restrict our attention to linear subspaces; in this case

U = I(Z(U)) and V = Z(I(V )).

Proposition 10.3. We have V ⊆ V 00 for every subspace V of E, and U ⊆ U00 for every
subspace U of E∗.

Proof. Indeed, for any v ∈ V , to show that v ∈ V 00 we need to prove that u∗(v) = 0 for all
u∗ ∈ V 0. However, V 0 consists of all linear forms u∗ such that u∗(y) = 0 for all y ∈ V ; in
particular, for a fixed v ∈ V , we have u∗(v) = 0 for all u∗ ∈ V 0, as required.

Similarly, for any u∗ ∈ U , to show that u∗ ∈ U00 we need to prove that u∗(v) = 0 for
all v ∈ U0. However, U0 consists of all vectors v such that f ∗(v) = 0 for all f ∗ ∈ U ; in
particular, for a fixed u∗ ∈ U , we have u∗(v) = 0 for all v ∈ U0, as required.

We will see shortly that in finite dimension, we have V = V 00 and U = U00.

10.3 The Duality Theorem and Some Consequences

Given a vector space E of dimension n ≥ 1 and a subspace U of E, by Theorem 2.14, every
basis (u1, . . . , um) of U can be extended to a basis (u1, . . . , un) of E. We have the following
important theorem adapted from E. Artin [2] (Chapter 1).

Theorem 10.4. (Duality theorem) Let E be a vector space of dimension n. The following
properties hold:

(a) For every basis (u1, . . . , un) of E, the family of coordinate forms (u∗1, . . . , u
∗
n) is a basis

of E∗ (called the dual basis of (u1, . . . , un)).

(b) For every subspace V of E, we have V 00 = V .

(c) For every pair of subspaces V and W of E such that E = V ⊕W , with V of dimen-
sion m, for every basis (u1, . . . , un) of E such that (u1, . . . , um) is a basis of V and
(um+1, . . . , un) is a basis of W , the family (u∗1, . . . , u

∗
m) is a basis of the orthogonal W 0

of W in E∗, so that
dim(W ) + dim(W 0) = dim(E).

Furthermore, we have W 00 = W .

(d) For every subspace U of E∗, we have

dim(U) + dim(U0) = dim(E),

where U0 is the orthogonal of U in E, and U00 = U .
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Proof. (a) This part was proven in Theorem 2.24.

(b) By Proposition 10.3 we have V ⊆ V 00. If V 6= V 00, then let (u1, . . . , up) be a basis of
V 00 such that (u1, . . . , um) is a basis of V , with m < p. Since um+1 ∈ V 00, um+1 is orthogonal
to every linear form in V 0. By definition we have u∗m+1(ui) = 0 for all i = 1, . . . ,m, and
thus u∗m+1 ∈ V 0. However, u∗m+1(um+1) = 1, contradicting the fact that um+1 is orthogonal
to every linear form in V 0. Thus, V = V 00.

(c) Every linear form f ∗ ∈ W 0 is orthogonal to every uj for j = m + 1, . . . , n, and thus,
f ∗(uj) = 0 for j = m+ 1, . . . , n. For such a linear form f ∗ ∈ W 0, let

g∗ = f ∗(u1)u∗1 + · · ·+ f ∗(um)u∗m.

We have g∗(ui) = f ∗(ui), for every i, 1 ≤ i ≤ m. Furthermore, by definition, g∗ vanishes on
all uj with j = m+1, . . . , n. Thus, f ∗ and g∗ agree on the basis (u1, . . . , un) of E, and so g∗ =
f ∗. This shows that (u∗1, . . . , u

∗
m) generates W 0, and since it is also a linearly independent

family, (u∗1, . . . , u
∗
m) is a basis of W 0. It is then obvious that dim(W ) + dim(W 0) = dim(E),

and by Part (b), we have W 00 = W .

(d) The only remaining fact to prove is that U00 = U . Let (f ∗1 , . . . , f
∗
m) be a basis of U .

Note that the map h : E → Km defined such that

h(v) = (f ∗1 (v), . . . , f ∗m(v))

for every v ∈ E is a linear map, and that its kernel Kerh is precisely U0. Then by Proposition
5.11,

n = dim(E) = dim(Kerh) + dim(Imh) ≤ dim(U0) +m,

since dim(Imh) ≤ m. Thus, n − dim(U0) ≤ m. By (c), we have dim(U0) + dim(U00) =
dim(E) = n, so we get dim(U00) ≤ m. However, by Proposition 10.3 it is clear that U ⊆ U00,
which implies m = dim(U) ≤ dim(U00), so dim(U) = dim(U00) = m, and we must have
U = U00.

Part (a) of Theorem 10.4 shows that

dim(E) = dim(E∗),

and if (u1, . . . , un) is a basis of E, then (u∗1, . . . , u
∗
n) is a basis of the dual space E∗ called the

dual basis of (u1, . . . , un).

Define the function E (E for equations) from subspaces of E to subspaces of E∗ and the
function Z (Z for zeros) from subspaces of E∗ to subspaces of E by

E(V ) = V 0, V ⊆ E

Z(U) = U0, U ⊆ E∗.
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By Parts (c) and (d) of Theorem 10.4,

(Z ◦ E)(V ) = V 00 = V

(E ◦ Z)(U) = U00 = U,

so Z ◦ E = id and E ◦ Z = id, and the maps E and Z are inverse bijections. These maps
set up a duality between subspaces of E and subspaces of E∗. In particular, every subspace
V ⊆ E of dimension m is the set of common zeros of the space of linear forms (equations)
V 0, which has dimension n −m. This confirms the claim we made about the dimension of
the subpsace defined by a set of linear equations.

� One should be careful that this bijection does not hold if E has infinite dimension. Some
restrictions on the dimensions of U and V are needed.

Remark: However, even if E is infinite-dimensional, the identity V = V 00 holds for every
subspace V of E. The proof is basically the same but uses an infinite basis of V 00 extending
a basis of V .

We now discuss some applications of the duality theorem.

Problem 1 . Suppose that V is a subspace of Rn of dimension m and that (v1, . . . , vm)
is a basis of V . The problem is to find a basis of V 0.

We first extend (v1, . . . , vm) to a basis (v1, . . . , vn) of Rn, and then by part (c) of Theorem
10.4, we know that (v∗m+1, . . . , v

∗
n) is a basis of V 0.

Example 10.6. For example, suppose that V is the subspace of R4 spanned by the two
linearly independent vectors

v1 =


1
1
1
1

 v2 =


1
1
−1
−1

 ,

the first two vectors of the Haar basis in R4. The four columns of the Haar matrix

W =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


form a basis of R4, and the inverse of W is given by

W−1 =


1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 =


1/4 1/4 1/4 1/4
1/4 1/4 −1/4 −1/4
1/2 −1/2 0 0
0 0 1/2 −1/2

 .
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Since the dual basis (v∗1, v
∗
2, v
∗
3, v
∗
4) is given by the rows of W−1, the last two rows of W−1,(

1/2 −1/2 0 0
0 0 1/2 −1/2

)
,

form a basis of V 0. We also obtain a basis by rescaling by the factor 1/2, so the linear forms
given by the row vectors (

1 −1 0 0
0 0 1 −1

)
form a basis of V 0, the space of linear forms (linear equations) that vanish on the subspace
V .

The method that we described to find V 0 requires first extending a basis of V and then
inverting a matrix, but there is a more direct method. Indeed, let A be the n ×m matrix
whose columns are the basis vectors (v1, . . . , vm) of V . Then a linear form u represented by
a row vector belongs to V 0 iff uvi = 0 for i = 1, . . . ,m iff

uA = 0

iff
A>u> = 0.

Therefore, all we need to do is to find a basis of the nullspace of A>. This can be done quite
effectively using the reduction of a matrix to reduced row echelon form (rref); see Section
7.10.

Example 10.7. For example, if we reconsider the previous example, A>u> = 0 becomes

(
1 1 1 1
1 1 −1 −1

)
u1

u2

u3

u4

 =

(
0
0

)
.

Since the rref of A> is (
1 1 0 0
0 0 1 1

)
,

the above system is equivalent to

(
1 1 0 0
0 0 1 1

)
u1

u2

u3

u4

 =

(
u1 + u2

u3 + u4

)
=

(
0
0

)
,

where the free variables are associated with u2 and u4. Thus to determine a basis for the
kernel of A>, we set u2 = 1, u4 = 0 and u2 = 0, u4 = 1 and obtain a basis for V 0 as(

1 −1 0 0
)
,

(
0 0 1 −1

)
.
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Problem 2 . Let us now consider the problem of finding a basis of the hyperplane H in
Rn defined by the equation

c1x1 + · · ·+ cnxn = 0.

More precisely, if u∗(x1, . . . , xn) is the linear form in (Rn)∗ given by u∗(x1, . . . , xn) = c1x1 +
· · · + cnxn, then the hyperplane H is the kernel of u∗. Of course we assume that some cj is
nonzero, in which case the linear form u∗ spans a one-dimensional subspace U of (Rn)∗, and
U0 = H has dimension n− 1.

Since u∗ is not the linear form which is identically zero, there is a smallest positive index
j ≤ n such that cj 6= 0, so our linear form is really u∗(x1, . . . , xn) = cjxj + · · · + cnxn. We
claim that the following n− 1 vectors (in Rn) form a basis of H:

1 2 . . . j − 1 j j + 1 . . . n− 1

1
2
...

j − 1
j

j + 1
j + 2

...
n



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 −cj+1/cj −cj+2/cj . . . −cn/cj
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


.

Observe that the (n−1)×(n−1) matrix obtained by deleting row j is the identity matrix, so
the columns of the above matrix are linearly independent. A simple calculation also shows
that the linear form u∗(x1, . . . , xn) = cjxj + · · ·+cnxn vanishes on every column of the above
matrix. For a concrete example in R6, if u∗(x1, . . . , x6) = x3 + 2x4 + 3x5 + 4x6, we obtain
the basis for the hyperplane H of equation

x3 + 2x4 + 3x5 + 4x6 = 0

given by the following matrix: 
1 0 0 0 0
0 1 0 0 0
0 0 −2 −3 −4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Problem 3 . Conversely, given a hyperplane H in Rn given as the span of n− 1 linearly
vectors (u1, . . . , un−1), it is possible using determinants to find a linear form (λ1, . . . , λn) that
vanishes on H.
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In the case n = 3, we are looking for a row vector (λ1, λ2, λ3) such that if

u =

u1

u2

u3

 and v =

v1

v2

v3


are two linearly independent vectors, then

(
u1 u2 u2

v1 v2 v2

)λ1

λ2

λ3

 =

(
0
0

)
,

and the cross-product u× v of u and v given by

u× v =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


is a solution. In other words, the equation of the plane spanned by u and v is

(u2v3 − u3v2)x+ (u3v1 − u1v3)y + (u1v2 − u2v1)z = 0.

Problem 4 . Here is another example illustrating the power of Theorem 10.4. Let
E = Mn(R), and consider the equations asserting that the sum of the entries in every row
of a matrix A ∈ Mn(R) is equal to the same number. We have n− 1 equations

n∑
j=1

(aij − ai+1j) = 0, 1 ≤ i ≤ n− 1,

and it is easy to see that they are linearly independent. Therefore, the space U of linear
forms in E∗ spanned by the above linear forms (equations) has dimension n − 1, and the
space U0 of matrices satisfying all these equations has dimension n2 − n + 1. It is not so
obvious to find a basis for this space.

We will now pin down the relationship between a vector space E and its bidual E∗∗.

10.4 The Bidual and Canonical Pairings

Proposition 10.5. Let E be a vector space. The following properties hold:

(a) The linear map evalE : E → E∗∗ defined such that

evalE(v) = evalv for all v ∈ E,

that is, evalE(v)(u∗) = 〈u∗, v〉 = u∗(v) for every u∗ ∈ E∗, is injective.
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(b) When E is of finite dimension n, the linear map evalE : E → E∗∗ is an isomorphism
(called the canonical isomorphism).

Proof. (a) Let (ui)i∈I be a basis of E, and let v =
∑

i∈I viui. If evalE(v) = 0, then in
particular evalE(v)(u∗i ) = 0 for all u∗i , and since

evalE(v)(u∗i ) = 〈u∗i , v〉 = vi,

we have vi = 0 for all i ∈ I, that is, v = 0, showing that evalE : E → E∗∗ is injective.

If E is of finite dimension n, by Theorem 10.4, for every basis (u1, . . . , un), the family
(u∗1, . . . , u

∗
n) is a basis of the dual space E∗, and thus the family (u∗∗1 , . . . , u

∗∗
n ) is a basis of the

bidual E∗∗. This shows that dim(E) = dim(E∗∗) = n, and since by Part (a), we know that
evalE : E → E∗∗ is injective, in fact, evalE : E → E∗∗ is bijective (by Proposition 5.15).

When E is of finite dimension and (u1, . . . , un) is a basis of E, in view of the canon-
ical isomorphism evalE : E → E∗∗, the basis (u∗∗1 , . . . , u

∗∗
n ) of the bidual is identified with

(u1, . . . , un).

Proposition 10.5 can be reformulated very fruitfully in terms of pairings, a remarkably
useful concept discovered by Pontrjagin in 1931 (adapted from E. Artin [2], Chapter 1).
Given two vector spaces E and F over a field K, we say that a function ϕ : E × F → K
is bilinear if for every v ∈ V , the map u 7→ ϕ(u, v) (from E to K) is linear, and for every
u ∈ E, the map v 7→ ϕ(u, v) (from F to K) is linear.

Definition 10.4. Given two vector spaces E and F over K, a pairing between E and F is
a bilinear map ϕ : E × F → K. Such a pairing is nondegenerate iff

(1) for every u ∈ E, if ϕ(u, v) = 0 for all v ∈ F , then u = 0, and

(2) for every v ∈ F , if ϕ(u, v) = 0 for all u ∈ E, then v = 0.

A pairing ϕ : E × F → K is often denoted by 〈−,−〉 : E × F → K. For example, the
map 〈−,−〉 : E∗ × E → K defined earlier is a nondegenerate pairing (use the proof of (a)
in Proposition 10.5). If E = F and K = R, any inner product on E is a nondegenerate
pairing (because an inner product is positive definite); see Chapter 11. Other interesting
nondegenerate pairings arise in exterior algebra and differential geometry.

Given a pairing ϕ : E × F → K, we can define two maps lϕ : E → F ∗ and rϕ : F → E∗

as follows: For every u ∈ E, we define the linear form lϕ(u) in F ∗ such that

lϕ(u)(y) = ϕ(u, y) for every y ∈ F ,

and for every v ∈ F , we define the linear form rϕ(v) in E∗ such that

rϕ(v)(x) = ϕ(x, v) for every x ∈ E.

We have the following useful proposition.
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Proposition 10.6. Given two vector spaces E and F over K, for every nondegenerate
pairing ϕ : E × F → K between E and F , the maps lϕ : E → F ∗ and rϕ : F → E∗ are linear
and injective. Furthermore, if E and F have finite dimension, then this dimension is the
same and lϕ : E → F ∗ and rϕ : F → E∗ are bijections.

Proof. The maps lϕ : E → F ∗ and rϕ : F → E∗ are linear because a pairing is bilinear. If
lϕ(u) = 0 (the null form), then

lϕ(u)(v) = ϕ(u, v) = 0 for every v ∈ F ,

and since ϕ is nondegenerate, u = 0. Thus, lϕ : E → F ∗ is injective. Similarly, rϕ : F → E∗

is injective. When F has finite dimension n, we have seen that F and F ∗ have the same
dimension. Since lϕ : E → F ∗ is injective, we have m = dim(E) ≤ dim(F ) = n. The same
argument applies to E, and thus n = dim(F ) ≤ dim(E) = m. But then, dim(E) = dim(F ),
and lϕ : E → F ∗ and rϕ : F → E∗ are bijections.

When E has finite dimension, the nondegenerate pairing 〈−,−〉 : E∗ × E → K yields
another proof of the existence of a natural isomorphism between E and E∗∗. When E = F ,
the nondegenerate pairing induced by an inner product on E yields a natural isomorphism
between E and E∗ (see Section 11.2).

We now show the relationship between hyperplanes and linear forms.

10.5 Hyperplanes and Linear Forms

Actually Proposition 10.7 below follows from Parts (c) and (d) of Theorem 10.4, but we feel
that it is also interesting to give a more direct proof.

Proposition 10.7. Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f ∗ ∈ E∗, its kernel H = Ker f ∗ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form f ∗ ∈ E∗ such that H =
Ker f ∗.

(c) Given any hyperplane H in E and any (nonnull) linear form f ∗ ∈ E∗ such that H =
Ker f ∗, for every linear form g∗ ∈ E∗, H = Ker g∗ iff g∗ = λf ∗ for some λ 6= 0 in K.

Proof. (a) If f ∗ ∈ E∗ is nonnull, there is some vector v0 ∈ E such that f ∗(v0) 6= 0. Let
H = Ker f ∗. For every v ∈ E, we have

f ∗
(
v − f ∗(v)

f ∗(v0)
v0

)
= f ∗(v)− f ∗(v)

f ∗(v0)
f ∗(v0) = f ∗(v)− f ∗(v) = 0.

Thus,

v − f ∗(v)

f ∗(v0)
v0 = h ∈ H,
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and

v = h+
f ∗(v)

f ∗(v0)
v0,

that is, E = H +Kv0. Also since f ∗(v0) 6= 0, we have v0 /∈ H, that is, H ∩Kv0 = 0. Thus,
E = H ⊕Kv0, and H is a hyperplane.

(b) If H is a hyperplane, E = H ⊕ Kv0 for some v0 /∈ H. Then every v ∈ E can be
written in a unique way as v = h + λv0. Thus there is a well-defined function f ∗ : E → K,
such that, f ∗(v) = λ, for every v = h + λv0. We leave as a simple exercise the verification
that f ∗ is a linear form. Since f ∗(v0) = 1, the linear form f ∗ is nonnull. Also, by definition,
it is clear that λ = 0 iff v ∈ H, that is, Ker f ∗ = H.

(c) Let H be a hyperplane in E, and let f ∗ ∈ E∗ be any (nonnull) linear form such that
H = Ker f ∗. Clearly, if g∗ = λf ∗ for some λ 6= 0, then H = Ker g∗. Conversely, assume that
H = Ker g∗ for some nonnull linear form g∗. From (a), we have E = H ⊕Kv0, for some v0

such that f ∗(v0) 6= 0 and g∗(v0) 6= 0. Then observe that

g∗ − g∗(v0)

f ∗(v0)
f ∗

is a linear form that vanishes on H, since both f ∗ and g∗ vanish on H, but also vanishes on
Kv0. Thus, g∗ = λf ∗, with

λ =
g∗(v0)

f ∗(v0)
.

We leave as an exercise the fact that every subspace V 6= E of a vector space E is the
intersection of all hyperplanes that contain V . We now consider the notion of transpose of
a linear map and of a matrix.

10.6 Transpose of a Linear Map and of a Matrix

Given a linear map f : E → F , it is possible to define a map f> : F ∗ → E∗ which has some
interesting properties.

Definition 10.5. Given a linear map f : E → F , the transpose f> : F ∗ → E∗ of f is the
linear map defined such that

f>(v∗) = v∗ ◦ f, for every v∗ ∈ F ∗,

as shown in the diagram below:

E
f //

f>(v∗)   B
BB

BB
BB

B F

v∗

��
K.
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Equivalently, the linear map f> : F ∗ → E∗ is defined such that

〈v∗, f(u)〉 = 〈f>(v∗), u〉, (∗)

for all u ∈ E and all v∗ ∈ F ∗.

It is easy to verify that the following properties hold:

(f + g)> = f> + g>

(g ◦ f)> = f> ◦ g>

id>E = idE∗ .

� Note the reversal of composition on the right-hand side of (g ◦ f)> = f> ◦ g>.

The equation (g ◦ f)> = f> ◦ g> implies the following useful proposition.

Proposition 10.8. If f : E → F is any linear map, then the following properties hold:

(1) If f is injective, then f> is surjective.

(2) If f is surjective, then f> is injective.

Proof. If f : E → F is injective, then it has a retraction r : F → E such that r ◦ f = idE,
and if f : E → F is surjective, then it has a section s : F → E such that f ◦ s = idF . Now if
f : E → F is injective, then we have

(r ◦ f)> = f> ◦ r> = idE∗ ,

which implies that f> is surjective, and if f is surjective, then we have

(f ◦ s)> = s> ◦ f> = idF ∗ ,

which implies that f> is injective.

The following proposition shows the relationship between orthogonality and transposi-
tion.

Proposition 10.9. Given a linear map f : E → F , for any subspace V of E, we have

f(V )0 = (f>)−1(V 0) = {w∗ ∈ F ∗ | f>(w∗) ∈ V 0}.

As a consequence,
Ker f> = (Im f)0.

We also have
Ker f = (Im f>)0.
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Proof. We have
〈w∗, f(v)〉 = 〈f>(w∗), v〉,

for all v ∈ E and all w∗ ∈ F ∗, and thus, we have 〈w∗, f(v)〉 = 0 for every v ∈ V , i.e.
w∗ ∈ f(V )0 iff 〈f>(w∗), v〉 = 0 for every v ∈ V iff f>(w∗) ∈ V 0, i.e. w∗ ∈ (f>)−1(V 0),
proving that

f(V )0 = (f>)−1(V 0).

Since we already observed that E0 = (0), letting V = E in the above identity we obtain
that

Ker f> = (Im f)0.

From the equation
〈w∗, f(v)〉 = 〈f>(w∗), v〉,

we deduce that v ∈ (Im f>)0 iff 〈f>(w∗), v〉 = 0 for all w∗ ∈ F ∗ iff 〈w∗, f(v)〉 = 0 for all
w∗ ∈ F ∗. Assume that v ∈ (Im f>)0. If we pick a basis (wi)i∈I of F , then we have the linear
forms w∗i : F → K such that w∗i (wj) = δij, and since we must have 〈w∗i , f(v)〉 = 0 for all
i ∈ I and (wi)i∈I is a basis of F , we conclude that f(v) = 0, and thus v ∈ Ker f (this is
because 〈w∗i , f(v)〉 is the coefficient of f(v) associated with the basis vector wi). Conversely,
if v ∈ Ker f , then 〈w∗, f(v)〉 = 0 for all w∗ ∈ F ∗, so we conclude that v ∈ (Im f>)0.
Therefore, v ∈ (Im f>)0 iff v ∈ Ker f ; that is,

Ker f = (Im f>)0,

as claimed.

The following theorem shows the relationship between the rank of f and the rank of f>.

Theorem 10.10. Given a linear map f : E → F , the following properties hold.

(a) The dual (Im f)∗ of Im f is isomorphic to Im f> = f>(F ∗); that is,

(Im f)∗ ∼= Im f>.

(b) If F is finite dimensional, then rk(f) = rk(f>).

Proof. (a) Consider the linear maps

E
p−→ Im f

j−→ F,

where E
p−→ Im f is the surjective map induced by E

f−→ F , and Im f
j−→ F is the

injective inclusion map of Im f into F . By definition, f = j ◦ p. To simplify the notation,

let I = Im f . By Proposition 10.8, since E
p−→ I is surjective, I∗

p>−→ E∗ is injective, and

since Im f
j−→ F is injective, F ∗

j>−→ I∗ is surjective. Since f = j ◦ p, we also have

f> = (j ◦ p)> = p> ◦ j>,
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and since F ∗
j>−→ I∗ is surjective, and I∗

p>−→ E∗ is injective, we have an isomorphism
between (Im f)∗ and f>(F ∗).

(b) We already noted that Part (a) of Theorem 10.4 shows that dim(F ) = dim(F ∗),
for every vector space F of finite dimension. Consequently, dim(Im f) = dim((Im f)∗), and
thus, by Part (a) we have rk(f) = rk(f>).

Remark: When both E and F are finite-dimensional, there is also a simple proof of (b)
that doesn’t use the result of Part (a). By Theorem 10.4(c)

dim(Im f) + dim((Im f)0) = dim(F ),

and by Theorem 5.11
dim(Ker f>) + dim(Im f>) = dim(F ∗).

Furthermore, by Proposition 10.9, we have

Ker f> = (Im f)0,

and since F is finite-dimensional dim(F ) = dim(F ∗), so we deduce

dim(Im f) + dim((Im f)0) = dim((Im f)0) + dim(Im f>),

which yields dim(Im f) = dim(Im f>); that is, rk(f) = rk(f>).

The following proposition can be shown, but it requires a generalization of the duality
theorem, so its proof is omitted.

Proposition 10.11. If f : E → F is any linear map, then the following identities hold:

Im f> = (Ker (f))0

Ker (f>) = (Im f)0

Im f = (Ker (f>)0

Ker (f) = (Im f>)0.

Observe that the second and the fourth equation have already be proven in Proposition
10.9. Since for any subspace V ⊆ E, even infinite-dimensional, we have V 00 = V , the
third equation follows from the second equation by taking orthogonals. Actually, the fourth
equation follows from the first also by taking orthogonals. Thus the only equation to be
proven is the first equation. We will give a proof later in the case where E is finite-dimensional
(see Proposition 10.18).

The following proposition shows the relationship between the matrix representing a linear
map f : E → F and the matrix representing its transpose f> : F ∗ → E∗.
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Proposition 10.12. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for E
and (v1, . . . , vm) be a basis for F . Given any linear map f : E → F , if M(f) is the m× n-
matrix representing f w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm), then the n ×m-matrix
M(f>) representing f> : F ∗ → E∗ w.r.t. the dual bases (v∗1, . . . , v

∗
m) and (u∗1, . . . , u

∗
n) is the

transpose M(f)> of M(f).

Proof. Recall that the entry ai j in row i and column j of M(f) is the i-th coordinate of
f(uj) over the basis (v1, . . . , vm). By definition of v∗i , we have 〈v∗i , f(uj)〉 = ai j. The entry
a>j i in row j and column i of M(f>) is the j-th coordinate of

f>(v∗i ) = a>1 iu
∗
1 + · · ·+ a>j iu

∗
j + · · ·+ a>n iu

∗
n

over the basis (u∗1, . . . , u
∗
n), which is just a>j i = f>(v∗i )(uj) = 〈f>(v∗i ), uj〉. Since

〈v∗i , f(uj)〉 = 〈f>(v∗i ), uj〉,

we have ai j = a>j i, proving that M(f>) = M(f)>.

We now can give a very short proof of the fact that the rank of a matrix is equal to the
rank of its transpose.

Proposition 10.13. Given an m× n matrix A over a field K, we have rk(A) = rk(A>).

Proof. The matrix A corresponds to a linear map f : Kn → Km, and by Theorem 10.10,
rk(f) = rk(f>). By Proposition 10.12, the linear map f> corresponds to A>. Since rk(A) =
rk(f), and rk(A>) = rk(f>), we conclude that rk(A) = rk(A>).

Thus, given an m×n-matrix A, the maximum number of linearly independent columns is
equal to the maximum number of linearly independent rows. There are other ways of proving
this fact that do not involve the dual space, but instead some elementary transformations
on rows and columns.

Proposition 10.13 immediately yields the following criterion for determining the rank of
a matrix:

Proposition 10.14. Given any m×n matrix A over a field K (typically K = R or K = C),
the rank of A is the maximum natural number r such that there is an invertible r×r submatrix
of A obtained by selecting r rows and r columns of A.

For example, the 3× 2 matrix

A =

a11 a12

a21 a22

a31 a32
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has rank 2 iff one of the three 2× 2 matrices(
a11 a12

a21 a22

) (
a11 a12

a31 a32

) (
a21 a22

a31 a32

)
is invertible.

If we combine Proposition 6.12 with Proposition 10.14, we obtain the following criterion
for finding the rank of a matrix.

Proposition 10.15. Given any m×n matrix A over a field K (typically K = R or K = C),
the rank of A is the maximum natural number r such that there is an r × r submatrix B of
A obtained by selecting r rows and r columns of A, such that det(B) 6= 0.

This is not a very efficient way of finding the rank of a matrix. We will see that there
are better ways using various decompositions such as LU, QR, or SVD.

10.7 Properties of the Double Transpose

First we have the following property showing the naturality of the eval map.

Proposition 10.16. For any linear map f : E → F , we have

f>> ◦ evalE = evalF ◦ f,

or equivalently the following diagram commutes:

E∗∗
f>> // F ∗∗

E

evalE

OO

f
// F.

evalF

OO

Proof. For every u ∈ E and every ϕ ∈ F ∗, we have

(f>> ◦ evalE)(u)(ϕ) = 〈f>>(evalE(u)), ϕ〉
= 〈evalE(u), f>(ϕ)〉
= 〈f>(ϕ), u〉
= 〈ϕ, f(u)〉
= 〈evalF (f(u)), ϕ〉
= 〈(evalF ◦ f)(u), ϕ〉
= (evalF ◦ f)(u)(ϕ),

which proves that f>> ◦ evalE = evalF ◦ f , as claimed.
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If E and F are finite-dimensional, then evalE and evalF are isomorphisms, so Proposition
10.16 shows that

f>> = evalF ◦ f ◦ eval−1
E . (∗)

The above equation is often interpreted as follows: if we identify E with its bidual E∗∗ and
F with its bidual F ∗∗, then f>> = f . This is an abuse of notation; the rigorous statement
is (∗).

As a corollary of Proposition 10.16, we obtain the following result.

Proposition 10.17. If dim(E) is finite, then we have

Ker (f>>) = evalE(Ker (f)).

Proof. Indeed, if E is finite-dimensional, the map evalE : E → E∗∗ is an isomorphism, so
every ϕ ∈ E∗∗ is of the form ϕ = evalE(u) for some u ∈ E, the map evalF : F → F ∗∗ is
injective, and we have

f>>(ϕ) = 0 iff f>>(evalE(u)) = 0

iff evalF (f(u)) = 0

iff f(u) = 0

iff u ∈ Ker (f)

iff ϕ ∈ evalE(Ker (f)),

which proves that Ker (f>>) = evalE(Ker (f)).

Remarks: If dim(E) is finite, following an argument of Dan Guralnik, the fact that rk(f) =
rk(f>) can be proven using Proposition 10.17.

Proof. We know from Proposition 10.9 applied to f> : F ∗ → E∗ that

Ker (f>>) = (Im f>)0,

and we showed in Proposition 10.17 that

Ker (f>>) = evalE(Ker (f)).

It follows (since evalE is an isomorphism) that

dim((Im f>)0) = dim(Ker (f>>)) = dim(Ker (f)) = dim(E)− dim(Im f),

and since
dim(Im f>) + dim((Im f>)0) = dim(E),

we get
dim(Im f>) = dim(Im f).
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As indicated by Dan Guralnik, if dim(E) is finite, the above result can be used to prove
the following result.

Proposition 10.18. If dim(E) is finite, then for any linear map f : E → F , we have

Im f> = (Ker (f))0.

Proof. From
〈f>(ϕ), u〉 = 〈ϕ, f(u)〉

for all ϕ ∈ F ∗ and all u ∈ E, we see that if u ∈ Ker (f), then 〈f>(ϕ), u〉 = 〈ϕ, 0〉 = 0,
which means that f>(ϕ) ∈ (Ker (f))0, and thus, Im f> ⊆ (Ker (f))0. For the converse, since
dim(E) is finite, we have

dim((Ker (f))0) = dim(E)− dim(Ker (f)) = dim(Im f),

but we just proved that dim(Im f>) = dim(Im f), so we get

dim((Ker (f))0) = dim(Im f>),

and since Im f> ⊆ (Ker (f))0, we obtain

Im f> = (Ker (f))0,

as claimed.

Remarks:

1. By the duality theorem, since (Ker (f))00 = Ker (f), the above equation yields another
proof of the fact that

Ker (f) = (Im f>)0,

when E is finite-dimensional.

2. The equation
Im f> = (Ker (f))0

is actually valid even if when E if infinite-dimensional, but we will not prove this here.

10.8 The Four Fundamental Subspaces

Given a linear map f : E → F (where E and F are finite-dimensional), Proposition 10.9
revealed that the four spaces

Im f, Im f>, Ker f, Ker f>



10.8. THE FOUR FUNDAMENTAL SUBSPACES 401

play a special role. They are often called the fundamental subspaces associated with f . These
spaces are related in an intimate manner, since Proposition 10.9 shows that

Ker f = (Im f>)0

Ker f> = (Im f)0,

and Theorem 10.10 shows that

rk(f) = rk(f>).

It is instructive to translate these relations in terms of matrices (actually, certain linear
algebra books make a big deal about this!). If dim(E) = n and dim(F ) = m, given any basis
(u1, . . . , un) of E and a basis (v1, . . . , vm) of F , we know that f is represented by an m× n
matrix A = (ai j), where the jth column of A is equal to f(uj) over the basis (v1, . . . , vm).
Furthermore, the transpose map f> is represented by the n×m matrix A> (with respect to
the dual bases). Consequently, the four fundamental spaces

Im f, Im f>, Ker f, Ker f>

correspond to

(1) The column space of A, denoted by ImA or R(A); this is the subspace of Rm spanned
by the columns of A, which corresponds to the image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or N (A); this is the subspace of Rn

consisting of all vectors x ∈ Rn such that Ax = 0.

(3) The row space of A, denoted by ImA> or R(A>); this is the subspace of Rn spanned
by the rows of A, or equivalently, spanned by the columns of A>, which corresponds
to the image Im f> of f>.

(4) The left kernel or left nullspace of A denoted by KerA> or N (A>); this is the kernel
(nullspace) of A>, the subspace of Rm consisting of all vectors y ∈ Rm such that
A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal to the dimension of the column
space ImA = R(A), is the rank of A (and f). Then, some our previous results can be
reformulated as follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n− r.

3. The row space R(A>) has dimension r.

4. The left nullspace N (A>) of A has dimension m− r.
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The above statements constitute what Strang calls the Fundamental Theorem of Linear
Algebra, Part I (see Strang [64]).

The two statements

Ker f = (Im f>)0

Ker f> = (Im f)0

translate to

(1) The nullspace of A is the orthogonal of the row space of A.

(2) The left nullspace of A is the orthogonal of the column space of A.

The above statements constitute what Strang calls the Fundamental Theorem of Linear
Algebra, Part II (see Strang [64]).

Since vectors are represented by column vectors and linear forms by row vectors (over a
basis in E or F ), a vector x ∈ Rn is orthogonal to a linear form y iff

yx = 0.

Then, a vector x ∈ Rn is orthogonal to the row space of A iff x is orthogonal to every row
of A, namely Ax = 0, which is equivalent to the fact that x belong to the nullspace of A.
Similarly, the column vector y ∈ Rm (representing a linear form over the dual basis of F ∗)
belongs to the nullspace of A> iff A>y = 0, iff y>A = 0, which means that the linear form
given by y> (over the basis in F ) is orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space of A is equal to the orthogonal
of the left nullspace of A, we get the following criterion for the solvability of an equation of
the form Ax = b:

The equation Ax = b has a solution iff for all y ∈ Rm, if A>y = 0, then y>b = 0.

Indeed, the condition on the right-hand side says that b is orthogonal to the left nullspace
of A; that is, b belongs to the column space of A.

This criterion can be cheaper to check that checking directly that b is spanned by the
columns of A. For example, if we consider the system

x1 − x2 = b1

x2 − x3 = b2

x3 − x1 = b3

which, in matrix form, is written Ax = b as below: 1 −1 0
0 1 −1
−1 0 1

x1

x2

x3

 =

b1

b2

b3

 ,
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we see that the rows of the matrix A add up to 0. In fact, it is easy to convince ourselves that
the left nullspace of A is spanned by y = (1, 1, 1), and so the system is solvable iff y>b = 0,
namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively as follows:

The equation Ax = b has no solution iff there is some y ∈ Rm such that A>y = 0 and
y>b 6= 0.

Since A>y = 0 iff y>A = 0, we can view y> as a row vector representing a linear form,
and y>A = 0 asserts that the linear form y> vanishes on the columns A1, . . . , An of A but
does not vanish on b. Since the linear form y> defines the hyperplane H of equation y>z = 0
(with z ∈ Rm), geometrically the equation Ax = b has no solution iff there is a hyperplane
H containing A1, . . . , An and not containing b.

10.9 Summary

The main concepts and results of this chapter are listed below:

• The dual space E∗ and linear forms (covector). The bidual E∗∗.

• The bilinear pairing 〈−,−〉 : E∗ × E → K (the canonical pairing).

• Evaluation at v: evalv : E∗ → K.

• The map evalE : E → E∗∗.

• Othogonality between a subspace V of E and a subspace U of E∗; the orthogonal V 0

and the orthogonal U0.

• Coordinate forms .

• The Duality theorem (Theorem 10.4).

• The dual basis of a basis.

• The isomorphism evalE : E → E∗∗ when dim(E) is finite.

• Pairing between two vector spaces; nondegenerate pairing ; Proposition 10.6.

• Hyperplanes and linear forms.

• The transpose f> : F ∗ → E∗ of a linear map f : E → F .

• The fundamental identities:

Ker f> = (Im f)0 and Ker f = (Im f>)0

(Proposition 10.9).
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• If F is finite-dimensional, then

rk(f) = rk(f>).

(Theorem 10.10).

• The matrix of the transpose map f> is equal to the transpose of the matrix of the map
f (Proposition 10.12).

• For any m× n matrix A,

rk(A) = rk(A>).

• Characterization of the rank of a matrix in terms of a maximal invertible submatrix
(Proposition 10.14).

• The four fundamental subspaces :

Im f, Im f>, Ker f, Ker f>.

• The column space, the nullspace, the row space, and the left nullspace (of a matrix).

• Criterion for the solvability of an equation of the form Ax = b in terms of the left
nullspace.

10.10 Problems

Problem 10.1. Prove the following properties of transposition:

(f + g)> = f> + g>

(g ◦ f)> = f> ◦ g>

id>E = idE∗ .

Problem 10.2. Let (u1, . . . , un−1) be n − 1 linearly independent vectors ui ∈ Cn. Prove
that the hyperplane H spanned by (u1, . . . , un−1) is the nullspace of the linear form

x 7→ det(u1, . . . , un−1, x), x ∈ Cn.

Prove that if A is the n × n matrix whose columns are (u1, . . . , un−1, x), and if ci =
(−1)i+n det(Ain) is the cofactor of ain = xi for i = 1, . . . , n, then H is defined by the
equation

c1x1 + · · ·+ cnxn = 0.
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Problem 10.3. (1) Let ϕ : Rn × Rn → R be the map defined by

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + · · ·+ xnyn.

Prove that ϕ is a bilinear nondegenerate pairing. Deduce that (Rn)∗ is isomorphic to Rn.

Prove that ϕ(x, x) = 0 iff x = 0.

(2) Let ϕL : R4 × R4 → R be the map defined by

ϕL((x1, x2, x3, x4), (y1, y2, y3, , y4)) = x1y1 − x2y2 − x3y3 − x4y4.

Prove that ϕ is a bilinear nondegenerate pairing.

Show that there exist nonzero vectors x ∈ R4 such that ϕL(x, x) = 0.

Remark: The vector space R4 equipped with the above bilinear form called the Lorentz
form is called Minkowski space.

Problem 10.4. Given any two subspaces V1, V2 of a finite-dimensional vector space E, prove
that

(V1 + V2)0 = V 0
1 ∩ V 0

2

(V1 ∩ V2)0 = V 0
1 + V 0

2 .

Beware that in the second equation, V1 and V2 are subspaces of E, not E∗.

Hint . To prove the second equation, prove the inclusions V 0
1 +V 0

2 ⊆ (V1∩V2)0 and (V1∩V2)0 ⊆
V 0

1 + V 0
2 . Proving the second inclusion is a little tricky. First, prove that we can pick a

subspace W1 of V1 and a subspace W2 of V2 such that

1. V1 is the direct sum V1 = (V1 ∩ V2)⊕W1.

2. V2 is the direct sum V2 = (V1 ∩ V2)⊕W2.

3. V1 + V2 is the direct sum V1 + V2 = (V1 ∩ V2)⊕W1 ⊕W2.

Problem 10.5. (1) Let A be any n × n matrix such that the sum of the entries of every
row of A is the same (say c1), and the sum of entries of every column of A is the same (say
c2). Prove that c1 = c2.

(2) Prove that for any n ≥ 2, the 2n− 2 equations asserting that the sum of the entries
of every row of A is the same, and the sum of entries of every column of A is the same are
lineary independent. For example, when n = 4, we have the following 6 equations

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0.
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Hint . Group the equations as above; that is, first list the n− 1 equations relating the rows,
and then list the n− 1 equations relating the columns. Prove that the first n− 1 equations
are linearly independent, and that the last n − 1 equations are also linearly independent.
Then, find a relationship between the two groups of equations that will allow you to prove
that they span subspace V r and V c such that V r ∩ V c = (0).

(3) Now consider magic squares . Such matrices satisfy the two conditions about the sum
of the entries in each row and in each column to be the same number, and also the additional
two constraints that the main descending and the main ascending diagonals add up to this
common number. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbitrary real entries.
For example, in the case n = 4, we have the following system of 8 equations:

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0.

In general, the equation involving the descending diagonal is

a22 + a33 + · · ·+ ann − a12 − a13 − · · · − a1n = 0 (r)

and the equation involving the ascending diagonal is

an1 + an−12 + · · ·+ a2n−1 − a11 − a12 − · · · − a1n−1 = 0. (c)

Prove that if n ≥ 3, then the 2n equations asserting that a matrix is a generalized magic
square are linearly independent.

Hint . Equations are really linear forms, so find some matrix annihilated by all equations
except equation r, and some matrix annihilated by all equations except equation c.

Problem 10.6. Let U1, . . . , Up be some subspaces of a vector space E, and assume that
they form a direct sum U = U1 ⊕ · · · ⊕ Up. Let ji : Ui → U1 ⊕ · · · ⊕ Up be the canonical
injections, and let πi : U

∗
1 × · · · × U∗p → U∗i be the canonical projections. Prove that there is

an isomorphism f from (U1 ⊕ · · · ⊕ Up)∗ to U∗1 × · · · × U∗p such that

πi ◦ f = j>i , 1 ≤ i ≤ p.

Problem 10.7. Let U and V be two subspaces of a vector space E such that E = U ⊕ V .
Prove that

E∗ = U0 ⊕ V 0.



Chapter 11

Euclidean Spaces

Rien n’est beau que le vrai.

—Hermann Minkowski

11.1 Inner Products, Euclidean Spaces

So far the framework of vector spaces allows us to deal with ratios of vectors and linear
combinations, but there is no way to express the notion of angle or to talk about orthogonality
of vectors. A Euclidean structure allows us to deal with metric notions such as angles,
orthogonality, and length (or distance).

This chapter covers the bare bones of Euclidean geometry. Deeper aspects of Euclidean
geometry are investigated in Chapter 12. One of our main goals is to give the basic properties
of the transformations that preserve the Euclidean structure, rotations and reflections, since
they play an important role in practice. Euclidean geometry is the study of properties
invariant under certain affine maps called rigid motions . Rigid motions are the maps that
preserve the distance between points.

We begin by defining inner products and Euclidean spaces. The Cauchy–Schwarz in-
equality and the Minkowski inequality are shown. We define orthogonality of vectors and of
subspaces, orthogonal bases, and orthonormal bases. We prove that every finite-dimensional
Euclidean space has orthonormal bases. The first proof uses duality and the second one the
Gram–Schmidt orthogonalization procedure. The QR-decomposition for invertible matrices
is shown as an application of the Gram–Schmidt procedure. Linear isometries (also called or-
thogonal transformations) are defined and studied briefly. We conclude with a short section
in which some applications of Euclidean geometry are sketched. One of the most important
applications, the method of least squares, is discussed in Chapter 21.

For a more detailed treatment of Euclidean geometry see Berger [5, 6], Snapper and
Troyer [59], or any other book on geometry, such as Pedoe [51], Coxeter [15], Fresnel [22],
Tisseron [67], or Cagnac, Ramis, and Commeau [12]. Serious readers should consult Emil

407
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Artin’s famous book [2], which contains an in-depth study of the orthogonal group, as well
as other groups arising in geometry. It is still worth consulting some of the older classics,
such as Hadamard [30, 31] and Rouché and de Comberousse [52]. The first edition of [30]
was published in 1898 and finally reached its thirteenth edition in 1947! In this chapter it is
assumed that all vector spaces are defined over the field R of real numbers unless specified
otherwise (in a few cases, over the complex numbers C).

First we define a Euclidean structure on a vector space. Technically, a Euclidean structure
over a vector space E is provided by a symmetric bilinear form on the vector space satisfying
some extra properties. Recall that a bilinear form ϕ : E × E → R is definite if for every
u ∈ E, u 6= 0 implies that ϕ(u, u) 6= 0, and positive if for every u ∈ E, ϕ(u, u) ≥ 0.

Definition 11.1. A Euclidean space is a real vector space E equipped with a symmetric
bilinear form ϕ : E×E → R that is positive definite. More explicitly, ϕ : E×E → R satisfies
the following axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u 6= 0 implies that ϕ(u, u) > 0.

The real number ϕ(u, v) is also called the inner product (or scalar product) of u and v. We
also define the quadratic form associated with ϕ as the function Φ: E → R+ such that

Φ(u) = ϕ(u, u),

for all u ∈ E.

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is positive definite, we have the
stronger fact that

ϕ(u, u) = 0 iff u = 0,

that is, Φ(u) = 0 iff u = 0.

Given an inner product ϕ : E × E → R on a vector space E, we also denote ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),

and
√

Φ(u) by ‖u‖.

Example 11.1. The standard example of a Euclidean space is Rn, under the inner product
· defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · ·+ xnyn.

This Euclidean space is denoted by En.
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There are other examples.

Example 11.2. For instance, let E be a vector space of dimension 2, and let (e1, e2) be a
basis of E. If a > 0 and b2 − ac < 0, the bilinear form defined such that

ϕ(x1e1 + y1e2, x2e1 + y2e2) = ax1x2 + b(x1y2 + x2y1) + cy1y2

yields a Euclidean structure on E. In this case,

Φ(xe1 + ye2) = ax2 + 2bxy + cy2.

Example 11.3. Let C[a, b] denote the set of continuous functions f : [a, b] → R. It is
easily checked that C[a, b] is a vector space of infinite dimension. Given any two functions
f, g ∈ C[a, b], let

〈f, g〉 =

∫ b

a

f(t)g(t)dt.

We leave it as an easy exercise that 〈−,−〉 is indeed an inner product on C[a, b]. In the case
where a = −π and b = π (or a = 0 and b = 2π, this makes basically no difference), one
should compute

〈sin px, sin qx〉, 〈sin px, cos qx〉, and 〈cos px, cos qx〉,

for all natural numbers p, q ≥ 1. The outcome of these calculations is what makes Fourier
analysis possible!

Example 11.4. Let E = Mn(R) be the vector space of real n × n matrices. If we view
a matrix A ∈ Mn(R) as a “long” column vector obtained by concatenating together its
columns, we can define the inner product of two matrices A,B ∈ Mn(R) as

〈A,B〉 =
n∑

i,j=1

aijbij,

which can be conveniently written as

〈A,B〉 = tr(A>B) = tr(B>A).

Since this can be viewed as the Euclidean product on Rn2
, it is an inner product on Mn(R).

The corresponding norm

‖A‖F =
√

tr(A>A)

is the Frobenius norm (see Section 8.2).

Let us observe that ϕ can be recovered from Φ.
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Proposition 11.1. We have

ϕ(u, v) =
1

2
[Φ(u+ v)− Φ(u)− Φ(v)]

for all u, v ∈ E. We say that ϕ is the polar form of Φ.

Proof. By bilinearity and symmetry, we have

Φ(u+ v) = ϕ(u+ v, u+ v)

= ϕ(u, u+ v) + ϕ(v, u+ v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v).

If E is finite-dimensional and if ϕ : E × E → R is a bilinear form on E, given any basis
(e1, . . . , en) of E, we can write x =

∑n
i=1 xiei and y =

∑n
j=1 yjej, and we have

ϕ(x, y) = ϕ

( n∑
i=1

xiei,
n∑
j=1

yjej

)
=

n∑
i,j=1

xiyjϕ(ei, ej).

If we let G be the matrix G = (ϕ(ei, ej)), and if x and y are the column vectors associated
with (x1, . . . , xn) and (y1, . . . , yn), then we can write

ϕ(x, y) = x>Gy = y>G>x.

Note that we are committing an abuse of notation since x =
∑n

i=1 xiei is a vector in E, but
the column vector associated with (x1, . . . , xn) belongs to Rn. To avoid this minor abuse, we
could denote the column vector associated with (x1, . . . , xn) by x (and similarly y for the
column vector associated with (y1, . . . , yn)), in wich case the “correct” expression for ϕ(x, y)
is

ϕ(x, y) = x>Gy.

However, in view of the isomorphism between E and Rn, to keep notation as simple as
possible, we will use x and y instead of x and y.

Also observe that ϕ is symmetric iff G = G>, and ϕ is positive definite iff the matrix G
is positive definite, that is,

x>Gx > 0 for all x ∈ Rn, x 6= 0.

The matrix G associated with an inner product is called the Gram matrix of the inner
product with respect to the basis (e1, . . . , en).

Conversely, if A is a symmetric positive definite n×n matrix, it is easy to check that the
bilinear form

〈x, y〉 = x>Ay
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is an inner product. If we make a change of basis from the basis (e1, . . . , en) to the basis
(f1, . . . , fn), and if the change of basis matrix is P (where the jth column of P consists of
the coordinates of fj over the basis (e1, . . . , en)), then with respect to coordinates x′ and y′

over the basis (f1, . . . , fn), we have

x>Gy = x′>P>GPy′,

so the matrix of our inner product over the basis (f1, . . . , fn) is P>GP . We summarize these
facts in the following proposition.

Proposition 11.2. Let E be a finite-dimensional vector space, and let (e1, . . . , en) be a basis
of E.

1. For any inner product 〈−,−〉 on E, if G = (〈ei, ej〉) is the Gram matrix of the inner
product 〈−,−〉 w.r.t. the basis (e1, . . . , en), then G is symmetric positive definite.

2. For any change of basis matrix P , the Gram matrix of 〈−,−〉 with respect to the new
basis is P>GP .

3. If A is any n× n symmetric positive definite matrix, then

〈x, y〉 = x>Ay

is an inner product on E.

We will see later that a symmetric matrix is positive definite iff its eigenvalues are all
positive.

One of the very important properties of an inner product ϕ is that the map u 7→
√

Φ(u)
is a norm.

Proposition 11.3. Let E be a Euclidean space with inner product ϕ, and let Φ be the
corresponding quadratic form. For all u, v ∈ E, we have the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v),

the equality holding iff u and v are linearly dependent, where in addition if u 6= 0 and v 6= 0,
then u = λv for some λ > 0.
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Proof. For any vectors u, v ∈ E, we define the function T : R→ R such that

T (λ) = Φ(u+ λv),

for all λ ∈ R. Using bilinearity and symmetry, we have

Φ(u+ λv) = ϕ(u+ λv, u+ λv)

= ϕ(u, u+ λv) + λϕ(v, u+ λv)

= ϕ(u, u) + 2λϕ(u, v) + λ2ϕ(v, v)

= Φ(u) + 2λϕ(u, v) + λ2Φ(v).

Since ϕ is positive definite, Φ is nonnegative, and thus T (λ) ≥ 0 for all λ ∈ R. If Φ(v) = 0,
then v = 0, and we also have ϕ(u, v) = 0. In this case, the Cauchy–Schwarz inequality is
trivial, and v = 0 and u are linearly dependent.

Now assume Φ(v) > 0. Since T (λ) ≥ 0, the quadratic equation

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

cannot have distinct real roots, which means that its discriminant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))

is null or negative, which is precisely the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v).

Let us now consider the case where we have the equality

ϕ(u, v)2 = Φ(u)Φ(v).

There are two cases. If Φ(v) = 0, then v = 0 and u and v are linearly dependent. If Φ(v) 6= 0,
then the above quadratic equation has a double root λ0, and we have Φ(u+ λ0v) = 0. Since
ϕ is positive definite, Φ(u + λ0v) = 0 implies that u + λ0v = 0, which shows that u and v
are linearly dependent. Conversely, it is easy to check that we have equality when u and v
are linearly dependent.

The Minkowski inequality √
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

is equivalent to
Φ(u+ v) ≤ Φ(u) + Φ(v) + 2

√
Φ(u)Φ(v).

However, we have shown that

2ϕ(u, v) = Φ(u+ v)− Φ(u)− Φ(v),
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and so the above inequality is equivalent to

ϕ(u, v) ≤
√

Φ(u)Φ(v),

which is trivial when ϕ(u, v) ≤ 0, and follows from the Cauchy–Schwarz inequality when
ϕ(u, v) ≥ 0. Thus, the Minkowski inequality holds. Finally assume that u 6= 0 and v 6= 0,
and that √

Φ(u+ v) =
√

Φ(u) +
√

Φ(v).

When this is the case, we have

ϕ(u, v) =
√

Φ(u)Φ(v),

and we know from the discussion of the Cauchy–Schwarz inequality that the equality holds
iff u and v are linearly dependent. The Minkowski inequality is an equality when u or v is
null. Otherwise, if u 6= 0 and v 6= 0, then u = λv for some λ 6= 0, and since

ϕ(u, v) = λϕ(v, v) =
√

Φ(u)Φ(v),

by positivity, we must have λ > 0.

Note that the Cauchy–Schwarz inequality can also be written as

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski inequalities still
hold for a symmetric bilinear form that is positive, but not necessarily definite (i.e., ϕ(u, v) ≥
0 for all u, v ∈ E). However, u and v need not be linearly dependent when the equality holds.

The Minkowski inequality √
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√

Φ(u) satisfies the convexity inequality (also known as triangle
inequality), condition (N3) of Definition 8.1, and since ϕ is bilinear and positive definite, it
also satisfies conditions (N1) and (N2) of Definition 8.1, and thus it is a norm on E. The
norm induced by ϕ is called the Euclidean norm induced by ϕ.

The Cauchy–Schwarz inequality can be written as

|u · v| ≤ ‖u‖‖v‖,

and the Minkowski inequality as

‖u+ v‖ ≤ ‖u‖+ ‖v‖.
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If u and v are nonzero vectors then the Cauchy–Schwarz inequality implies that

−1 ≤ u · v
‖u‖ ‖v‖ ≤ +1.

Then there is a unique θ ∈ [0, π] such that

cos θ =
u · v
‖u‖ ‖v‖ .

We have u = v iff θ = 0 and u = −v iff θ = π. For 0 < θ < π, the vectors u and v are
linearly independent and there is an orientation of the plane spanned by u and v such that
θ is the angle between u and v. See Problem 11.8 for the precise notion of orientation. If u
is a unit vector (which means that ‖u‖ = 1), then the vector

(‖v‖ cos θ)u = (u · v)u = (v · u)u

is called the orthogonal projection of v onto the space spanned by u.

Remark: One might wonder if every norm on a vector space is induced by some Euclidean
inner product. In general this is false, but remarkably, there is a simple necessary and
sufficient condition, which is that the norm must satisfy the parallelogram law :

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

See Figure 11.1.

u

v

u + vu
-v

Figure 11.1: The parallelogram law states that the sum of the lengths of the diagonals of
the parallelogram determined by vectors u and v equals the sum of all the sides.

If 〈−,−〉 is an inner product, then we have

‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2〈u, v〉
‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u, v〉,
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and by adding and subtracting these identities, we get the parallelogram law and the equation

〈u, v〉 =
1

4
(‖u+ v‖2 − ‖u− v‖2),

which allows us to recover 〈−,−〉 from the norm.

Conversely, if ‖ ‖ is a norm satisfying the parallelogram law, and if it comes from an
inner product, then this inner product must be given by

〈u, v〉 =
1

4
(‖u+ v‖2 − ‖u− v‖2).

We need to prove that the above form is indeed symmetric and bilinear.

Symmetry holds because ‖u− v‖ = ‖−(u− v)‖ = ‖v − u‖. Let us prove additivity in
the variable u. By the parallelogram law, we have

2(‖x+ z‖2 + ‖y‖2) = ‖x+ y + z‖2 + ‖x− y + z‖2

which yields

‖x+ y + z‖2 = 2(‖x+ z‖2 + ‖y‖2)− ‖x− y + z‖2

‖x+ y + z‖2 = 2(‖y + z‖2 + ‖x‖2)− ‖y − x+ z‖2 ,

where the second formula is obtained by swapping x and y. Then by adding up these
equations, we get

‖x+ y + z‖2 = ‖x‖2 + ‖y‖2 + ‖x+ z‖2 + ‖y + z‖2 − 1

2
‖x− y + z‖2 − 1

2
‖y − x+ z‖2 .

Replacing z by −z in the above equation, we get

‖x+ y − z‖2 = ‖x‖2 + ‖y‖2 + ‖x− z‖2 + ‖y − z‖2 − 1

2
‖x− y − z‖2 − 1

2
‖y − x− z‖2 ,

Since ‖x− y + z‖ = ‖−(x− y + z)‖ = ‖y − x− z‖ and ‖y − x+ z‖ = ‖−(y − x+ z)‖ =
‖x− y − z‖, by subtracting the last two equations, we get

〈x+ y, z〉 =
1

4
(‖x+ y + z‖2 − ‖x+ y − z‖2)

=
1

4
(‖x+ z‖2 − ‖x− z‖2) +

1

4
(‖y + z‖2 − ‖y − z‖2)

= 〈x, z〉+ 〈y, z〉,

as desired.

Proving that
〈λx, y〉 = λ〈x, y〉 for all λ ∈ R
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is a little tricky. The strategy is to prove the identity for λ ∈ Z, then to promote it to Q,
and then to R by continuity.

Since

〈−u, v〉 =
1

4
(‖−u+ v‖2 − ‖−u− v‖2)

=
1

4
(‖u− v‖2 − ‖u+ v‖2)

= −〈u, v〉,

the property holds for λ = −1. By linearity and by induction, for any n ∈ N with n ≥ 1,
writing n = n− 1 + 1, we get

〈λx, y〉 = λ〈x, y〉 for all λ ∈ N,

and since the above also holds for λ = −1, it holds for all λ ∈ Z. For λ = p/q with p, q ∈ Z
and q 6= 0, we have

q〈(p/q)u, v〉 = 〈pu, v〉 = p〈u, v〉,
which shows that

〈(p/q)u, v〉 = (p/q)〈u, v〉,
and thus

〈λx, y〉 = λ〈x, y〉 for all λ ∈ Q.

To finish the proof, we use the fact that a norm is a continuous map x 7→ ‖x‖. Then, the
continuous function t 7→ 1

t
〈tu, v〉 defined on R − {0} agrees with 〈u, v〉 on Q − {0}, so it is

equal to 〈u, v〉 on R− {0}. The case λ = 0 is trivial, so we are done.

We now define orthogonality.

11.2 Orthogonality and Duality in Euclidean Spaces

An inner product on a vector space gives the ability to define the notion of orthogonality.
Families of nonnull pairwise orthogonal vectors must be linearly independent. They are
called orthogonal families. In a vector space of finite dimension it is always possible to find
orthogonal bases. This is very useful theoretically and practically. Indeed, in an orthogonal
basis, finding the coordinates of a vector is very cheap: It takes an inner product. Fourier
series make crucial use of this fact. When E has finite dimension, we prove that the inner
product on E induces a natural isomorphism between E and its dual space E∗. This allows
us to define the adjoint of a linear map in an intrinsic fashion (i.e., independently of bases).
It is also possible to orthonormalize any basis (certainly when the dimension is finite). We
give two proofs, one using duality, the other more constructive using the Gram–Schmidt
orthonormalization procedure.
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Definition 11.2. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal, or
perpendicular , if u · v = 0. Given a family (ui)i∈I of vectors in E, we say that (ui)i∈I is
orthogonal if ui · uj = 0 for all i, j ∈ I, where i 6= j. We say that the family (ui)i∈I is
orthonormal if ui · uj = 0 for all i, j ∈ I, where i 6= j, and ‖ui‖ = ui · ui = 1, for all i ∈ I.
For any subset F of E, the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},

of all vectors orthogonal to all vectors in F , is called the orthogonal complement of F .

Since inner products are positive definite, observe that for any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement F⊥ of F is a subspace of E.

Example 11.5. Going back to Example 11.3 and to the inner product

〈f, g〉 =

∫ π

−π
f(t)g(t)dt

on the vector space C[−π, π], it is easily checked that

〈sin px, sin qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 1,

〈cos px, cos qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 0,

and

〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and of course, 〈1, 1〉 =
∫ π
−π dx = 2π.

As a consequence, the family (sin px)p≥1∪(cos qx)q≥0 is orthogonal. It is not orthonormal,
but becomes so if we divide every trigonometric function by

√
π, and 1 by

√
2π.

Proposition 11.4. Given a Euclidean space E, for any family (ui)i∈I of nonnull vectors in
E, if (ui)i∈I is orthogonal, then it is linearly independent.

Proof. Assume there is a linear dependence∑
j∈J

λjuj = 0
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for some λj ∈ R and some finite subset J of I. By taking the inner product with ui for
any i ∈ J , and using the the bilinearity of the inner product and the fact that ui · uj = 0
whenever i 6= j, we get

0 = ui · 0 = ui ·
(∑
j∈J

λjuj

)
=
∑
j∈J

λj(ui · uj) = λi(ui · ui),

so
λi(ui · ui) = 0, for all i ∈ J,

and since ui 6= 0 and an inner product is positive definite, ui · ui 6= 0, so we obtain

λi = 0, for all i ∈ J,
which shows that the family (ui)i∈I is linearly independent.

We leave the following simple result as an exercise.

Proposition 11.5. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal iff

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

See Figure 11.2 for a geometrical interpretation.

u + vu

v

Figure 11.2: The sum of the lengths of the two sides of a right triangle is equal to the length
of the hypotenuse; i.e. the Pythagorean theorem.

One of the most useful features of orthonormal bases is that they afford a very simple
method for computing the coordinates of a vector over any basis vector. Indeed, assume
that (e1, . . . , em) is an orthonormal basis. For any vector

x = x1e1 + · · ·+ xmem,
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if we compute the inner product x · ei, we get

x · ei = x1e1 · ei + · · ·+ xiei · ei + · · ·+ xmem · ei = xi,

since

ei · ej =

{
1 if i = j,
0 if i 6= j

is the property characterizing an orthonormal family. Thus,

xi = x · ei,

which means that xiei = (x · ei)ei is the orthogonal projection of x onto the subspace
generated by the basis vector ei. See Figure 11.3. If the basis is orthogonal but not necessarily

e i

x

x ei i

Θ

Figure 11.3: The orthogonal projection of the red vector x onto the black basis vector ei is
the maroon vector xiei. Observe that x · ei = ‖x‖ cos θ.

orthonormal, then

xi =
x · ei
ei · ei

=
x · ei
‖ei‖2

.

All this is true even for an infinite orthonormal (or orthogonal) basis (ei)i∈I .

� However, remember that every vector x is expressed as a linear combination

x =
∑
i∈I

xiei

where the family of scalars (xi)i∈I has finite support, which means that xi = 0 for all
i ∈ I − J , where J is a finite set. Thus, even though the family (sin px)p≥1 ∪ (cos qx)q≥0 is
orthogonal (it is not orthonormal, but becomes so if we divide every trigonometric function by
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√
π, and 1 by

√
2π; we won’t because it looks messy!), the fact that a function f ∈ C0[−π, π]

can be written as a Fourier series as

f(x) = a0 +
∞∑
k=1

(ak cos kx+ bk sin kx)

does not mean that (sin px)p≥1 ∪ (cos qx)q≥0 is a basis of this vector space of functions,
because in general, the families (ak) and (bk) do not have finite support! In order for this
infinite linear combination to make sense, it is necessary to prove that the partial sums

a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

of the series converge to a limit when n goes to infinity. This requires a topology on the
space.

A very important property of Euclidean spaces of finite dimension is that the inner
product induces a canonical bijection (i.e., independent of the choice of bases) between the
vector space E and its dual E∗. The reason is that an inner product · : E × E → R defines
a nondegenerate pairing, as defined in Definition 10.4. Indeed, if u · v = 0 for all v ∈ E then
u = 0, and similarly if u · v = 0 for all u ∈ E then v = 0 (since an inner product is positive
definite and symmetric). By Proposition 10.6, there is a canonical isomorphism between E
and E∗. We feel that the reader will appreciate if we exhibit this mapping explicitly and
reprove that it is an isomorphism.

The mapping from E to E∗ is defined as follows.

Definition 11.3. For any vector u ∈ E, let ϕu : E → R be the map defined such that

ϕu(v) = u · v, for all v ∈ E.

Since the inner product is bilinear, the map ϕu is a linear form in E∗. Thus, we have a map
[ : E → E∗, defined such that

[(u) = ϕu.

Theorem 11.6. Given a Euclidean space E, the map [ : E → E∗ defined such that

[(u) = ϕu

is linear and injective. When E is also of finite dimension, the map [ : E → E∗ is a canonical
isomorphism.
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Proof. That [ : E → E∗ is a linear map follows immediately from the fact that the inner
product is bilinear. If ϕu = ϕv, then ϕu(w) = ϕv(w) for all w ∈ E, which by definition of ϕu
means that u · w = v · w for all w ∈ E, which by bilinearity is equivalent to

(v − u) · w = 0

for all w ∈ E, which implies that u = v, since the inner product is positive definite. Thus,
[ : E → E∗ is injective. Finally, when E is of finite dimension n, we know that E∗ is also of
dimension n, and then [ : E → E∗ is bijective.

The inverse of the isomorphism [ : E → E∗ is denoted by ] : E∗ → E.

As a consequence of Theorem 11.6 we have the following corollary.

Corollary 11.7. If E is a Euclidean space of finite dimension, every linear form f ∈ E∗
corresponds to a unique u ∈ E such that

f(v) = u · v, for every v ∈ E.

In particular, if f is not the zero form, the kernel of f , which is a hyperplane H, is precisely
the set of vectors that are orthogonal to u.

Remarks:

(1) The “musical map” [ : E → E∗ is not surjective when E has infinite dimension. The
result can be salvaged by restricting our attention to continuous linear maps, and by
assuming that the vector space E is a Hilbert space (i.e., E is a complete normed vector
space w.r.t. the Euclidean norm). This is the famous “little” Riesz theorem (or Riesz
representation theorem).

(2) Theorem 11.6 still holds if the inner product on E is replaced by a nondegenerate
symmetric bilinear form ϕ. We say that a symmetric bilinear form ϕ : E × E → R is
nondegenerate if for every u ∈ E,

if ϕ(u, v) = 0 for all v ∈ E, then u = 0.

For example, the symmetric bilinear form on R4 (the Lorentz form) defined such that

ϕ((x1, x2, x3, x4), (y1, y2, y3, y4)) = x1y1 + x2y2 + x3y3 − x4y4

is nondegenerate. However, there are nonnull vectors u ∈ R4 such that ϕ(u, u) = 0,
which is impossible in a Euclidean space. Such vectors are called isotropic.



422 CHAPTER 11. EUCLIDEAN SPACES

Example 11.6. Consider Rn with its usual Euclidean inner product. Given any differen-
tiable function f : U → R, where U is some open subset of Rn, by definition, for any x ∈ U ,
the total derivative dfx of f at x is the linear form defined so that for all u = (u1, . . . , un) ∈ Rn,

dfx(u) =

(
∂f

∂x1

(x) · · · ∂f

∂xn
(x)

)u1
...
un

 =
n∑
i=1

∂f

∂xi
(x)ui.

The unique vector v ∈ Rn such that

v · u = dfx(u) for all u ∈ Rn

is the transpose of the Jacobian matrix of f at x, the 1× n matrix(
∂f

∂x1

(x) · · · ∂f

∂xn
(x)

)
.

This is the gradient grad(f)x of f at x, given by

grad(f)x =


∂f

∂x1

(x)

...
∂f

∂xn
(x)

 .

Example 11.7. Given any two vectors u, v ∈ R3, let c(u, v) be the linear form given by

c(u, v)(w) = det(u, v, w) for all w ∈ R3.

Since

det(u, v, w) =

∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ = w1

∣∣∣∣u2 v2

u3 v3

∣∣∣∣− w2

∣∣∣∣u1 v1

u3 v3

∣∣∣∣+ w3

∣∣∣∣u1 v1

u2 v2

∣∣∣∣
= w1(u2v3 − u3v2) + w2(u3v1 − u1v3) + w3(u1v2 − u2v1),

we see that the unique vector z ∈ R3 such that

z · w = c(u, v)(w) = det(u, v, w) for all w ∈ R3

is the vector

z =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 .

This is just the cross-product u × v of u and v. Since det(u, v, u) = det(u, v, v) = 0, we see
that u×v is orthogonal to both u and v. The above allows us to generalize the cross-product
to Rn. Given any n − 1 vectors u1, . . . , un−1 ∈ Rn, the cross-product u1 × · · · × un−1 is the
unique vector in Rn such that

(u1 × · · · × un−1) · w = det(u1, . . . , un−1, w) for all w ∈ Rn.
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Example 11.8. Consider the vector space Mn(R) of real n × n matrices with the inner
product

〈A,B〉 = tr(A>B).

Let s : Mn(R)→ R be the function given by

s(A) =
n∑

i,j=1

aij,

where A = (aij). It is immediately verified that s is a linear form. It is easy to check that
the unique matrix Z such that

〈Z,A〉 = s(A) for all A ∈ Mn(R)

is the matrix Z = ones(n, n) whose entries are all equal to 1.

11.3 Adjoint of a Linear Map

The existence of the isomorphism [ : E → E∗ is crucial to the existence of adjoint maps.
The importance of adjoint maps stems from the fact that the linear maps arising in physical
problems are often self-adjoint, which means that f = f ∗. Moreover, self-adjoint maps can
be diagonalized over orthonormal bases of eigenvectors. This is the key to the solution of
many problems in mechanics and engineering in general (see Strang [63]).

Let E be a Euclidean space of finite dimension n, and let f : E → E be a linear map.
For every u ∈ E, the map

v 7→ u · f(v)

is clearly a linear form in E∗, and by Theorem 11.6, there is a unique vector in E denoted
by f ∗(u) such that

f ∗(u) · v = u · f(v),

for every v ∈ E. The following simple proposition shows that the map f ∗ is linear.

Proposition 11.8. Given a Euclidean space E of finite dimension, for every linear map
f : E → E, there is a unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f(v), for all u, v ∈ E.

Proof. Given u1, u2 ∈ E, since the inner product is bilinear, we have

(u1 + u2) · f(v) = u1 · f(v) + u2 · f(v),

for all v ∈ E, and
(f ∗(u1) + f ∗(u2)) · v = f ∗(u1) · v + f ∗(u2) · v,
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for all v ∈ E, and since by assumption,

f ∗(u1) · v = u1 · f(v) and f ∗(u2) · v = u2 · f(v),

for all v ∈ E. Thus we get

(f ∗(u1) + f ∗(u2)) · v = (u1 + u2) · f(v) = f ∗(u1 + u2) · v,

for all v ∈ E. Since our inner product is positive definite, this implies that

f ∗(u1 + u2) = f ∗(u1) + f ∗(u2).

Similarly,
(λu) · f(v) = λ(u · f(v)),

for all v ∈ E, and
(λf ∗(u)) · v = λ(f ∗(u) · v),

for all v ∈ E, and since by assumption,

f ∗(u) · v = u · f(v),

for all v ∈ E, we get

(λf ∗(u)) · v = λ(u · f(v)) = (λu) · f(v) = f ∗(λu) · v

for all v ∈ E. Since [ is bijective, this implies that

f ∗(λu) = λf ∗(u).

Thus, f ∗ is indeed a linear map, and it is unique since [ is a bijection.

Definition 11.4. Given a Euclidean space E of finite dimension, for every linear map
f : E → E, the unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f(v), for all u, v ∈ E

given by Proposition 11.8 is called the adjoint of f (w.r.t. to the inner product). Linear
maps f : E → E such that f = f ∗ are called self-adjoint maps.

Self-adjoint linear maps play a very important role because they have real eigenvalues,
and because orthonormal bases arise from their eigenvectors. Furthermore, many physical
problems lead to self-adjoint linear maps (in the form of symmetric matrices).

Remark: Proposition 11.8 still holds if the inner product on E is replaced by a nondegen-
erate symmetric bilinear form ϕ.
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Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are linear isometries , or isometries . Rotations are special
kinds of isometries. Another important class of linear maps are the linear maps satisfying
the property

f ∗ ◦ f = f ◦ f ∗,
called normal linear maps . We will see later on that normal maps can always be diagonalized
over orthonormal bases of eigenvectors, but this will require using a Hermitian inner product
(over C).

Given two Euclidean spaces E and F , where the inner product on E is denoted by 〈−,−〉1
and the inner product on F is denoted by 〈−,−〉2, given any linear map f : E → F , it is
immediately verified that the proof of Proposition 11.8 can be adapted to show that there
is a unique linear map f ∗ : F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

The following properties immediately follow from the definition of the adjoint map:

(1) For any linear map f : E → F , we have

f ∗∗ = f.

(2) For any two linear maps f, g : E → F and any scalar λ ∈ R:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗.

(3) If E,F,G are Euclidean spaces with respective inner products 〈−,−〉1, 〈−,−〉2, and
〈−,−〉3, and if f : E → F and g : F → G are two linear maps, then

(g ◦ f)∗ = f ∗ ◦ g∗.

Remark: Given any basis for E and any basis for F , it is possible to characterize the matrix
of the adjoint f ∗ of f in terms of the matrix of f and the Gram matrices defining the inner
products; see Problem 11.5. We will do so with respect to orthonormal bases in Proposition
11.14(2). Also, since inner products are symmetric, the adjoint f ∗ of f is also characterized
by

f(u) · v = u · f ∗(v),

for all u, v ∈ E.
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11.4 Existence and Construction of Orthonormal

Bases

We can also use Theorem 11.6 to show that any Euclidean space of finite dimension has an
orthonormal basis.

Proposition 11.9. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, there
is an orthonormal basis (u1, . . . , un) for E.

Proof. We proceed by induction on n. When n = 1, take any nonnull vector v ∈ E, which
exists since we assumed E nontrivial, and let

u =
v

‖v‖ .

If n ≥ 2, again take any nonnull vector v ∈ E, and let

u1 =
v

‖v‖ .

Consider the linear form ϕu1 associated with u1. Since u1 6= 0, by Theorem 11.6, the linear
form ϕu1 is nonnull, and its kernel is a hyperplane H. Since ϕu1(w) = 0 iff u1 · w = 0,
the hyperplane H is the orthogonal complement of {u1}. Furthermore, since u1 6= 0 and
the inner product is positive definite, u1 · u1 6= 0, and thus, u1 /∈ H, which implies that
E = H ⊕ Ru1. However, since E is of finite dimension n, the hyperplane H has dimension
n− 1, and by the induction hypothesis, we can find an orthonormal basis (u2, . . . , un) for H.
Now because H and the one dimensional space Ru1 are orthogonal and E = H ⊕ Ru1, it is
clear that (u1, . . . , un) is an orthonormal basis for E.

As a consequence of Proposition 11.9, given any Euclidean space of finite dimension n,
if (e1, . . . , en) is an orthonormal basis for E, then for any two vectors u = u1e1 + · · ·+ unen
and v = v1e1 + · · ·+ vnen, the inner product u · v is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · ·+ unen‖ =

( n∑
i=1

u2
i

)1/2

.

The fact that a Euclidean space always has an orthonormal basis implies that any Gram
matrix G can be written as

G = Q>Q,
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for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram
matrix G becomes G′ = P>GP . If the basis corresponding to G′ is orthonormal, then G′ = I,
so G = (P−1)>P−1.

There is a more constructive way of proving Proposition 11.9, using a procedure known as
the Gram–Schmidt orthonormalization procedure. Among other things, the Gram–Schmidt
orthonormalization procedure yields the QR-decomposition for matrices , an important tool
in numerical methods.

Proposition 11.10. Given any nontrivial Euclidean space E of finite dimension n ≥ 1,
from any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E,
with the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk)
generate the same subspace.

Proof. We proceed by induction on n. For n = 1, let

u1 =
e1

‖e1‖
.

For n ≥ 2, we also let

u1 =
e1

‖e1‖
,

and assuming that (u1, . . . , uk) is an orthonormal system that generates the same subspace
as (e1, . . . , ek), for every k with 1 ≤ k < n, we note that the vector

u′k+1 = ek+1 −
k∑
i=1

(ek+1 · ui)ui

is nonnull, since otherwise, because (u1, . . . , uk) and (e1, . . . , ek) generate the same subspace,
(e1, . . . , ek+1) would be linearly dependent, which is absurd, since (e1, . . ., en) is a basis.
Thus, the norm of the vector u′k+1 being nonzero, we use the following construction of the
vectors uk and u′k:

u′1 = e1, u1 =
u′1
‖u′1‖

,

and for the inductive step

u′k+1 = ek+1 −
k∑
i=1

(ek+1 · ui)ui, uk+1 =
u′k+1

‖u′k+1‖
,

where 1 ≤ k ≤ n − 1. It is clear that ‖uk+1‖ = 1, and since (u1, . . . , uk) is an orthonormal
system, we have

u′k+1 · ui = ek+1 · ui − (ek+1 · ui)ui · ui = ek+1 · ui − ek+1 · ui = 0,

for all i with 1 ≤ i ≤ k. This shows that the family (u1, . . . , uk+1) is orthonormal, and since
(u1, . . . , uk) and (e1, . . . , ek) generates the same subspace, it is clear from the definition of
uk+1 that (u1, . . . , uk+1) and (e1, . . . , ek+1) generate the same subspace. This completes the
induction step and the proof of the proposition.
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Note that u′k+1 is obtained by subtracting from ek+1 the projection of ek+1 itself onto the
orthonormal vectors u1, . . . , uk that have already been computed. Then u′k+1 is normalized.

Example 11.9. For a specific example of this procedure, let E = R3 with the standard
Euclidean norm. Take the basis

e1 =

1
1
1

 e2 =

1
0
1

 e3 =

1
1
0

 .

Then

u1 = 1/
√

3

1
1
1

 ,

and

u′2 = e2 − (e2 · u1)u1 =

1
0
1

− 2/3

1
1
1

 = 1/3

 1
−2
1

 .

This implies that

u2 = 1/
√

6

 1
−2
1

 ,

and that

u′3 = e3 − (e3 · u1)u1 − (e3 · u2)u2 =

1
1
0

− 2/3

1
1
1

+ 1/6

 1
−2
1

 = 1/2

 1
0
−1

 .

To complete the orthonormal basis, normalize u′3 to obtain

u3 = 1/
√

2

 1
0
−1

 .

An illustration of this example is provided by Figure 11.4.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this until
Section 11.8.

(2) The proof of Proposition 11.10 also works for a countably infinite basis for E, producing
a countably infinite orthonormal basis.
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e2
u

u 1

‘
2

u 1direction
u2

direction

e3 u3
‘

Figure 11.4: The top figure shows the construction of the blue u′2 as perpendicular to the
orthogonal projection of e2 onto u1, while the bottom figure shows the construction of the
green u′3 as normal to the plane determined by u1 and u2.

It should also be said that the Gram–Schmidt orthonormalization procedure that we have
presented is not very stable numerically, and instead, one should use the modified Gram–
Schmidt method . To compute u′k+1, instead of projecting ek+1 onto u1, . . . , uk in a single
step, it is better to perform k projections. We compute uk+1

1 , uk+1
2 , . . . , uk+1

k as follows:

uk+1
1 = ek+1 − (ek+1 · u1)u1,

uk+1
i+1 = uk+1

i − (uk+1
i · ui+1)ui+1,

where 1 ≤ i ≤ k − 1. It is easily shown that u′k+1 = uk+1
k .

Example 11.10. Let us apply the modified Gram–Schmidt method to the (e1, e2, e3) basis
of Example 11.9. The only change is the computation of u′3. For the modified Gram–Schmidt
procedure, we first calculate

u3
1 = e3 − (e3 · u1)u1 =

1
1
0

− 2/3

1
1
1

 = 1/3

 1
1
−2

 .

Then

u3
2 = u3

1 − (u3
1 · u2)u2 = 1/3

 1
1
−2

+ 1/6

 1
−2
1

 = 1/2

 1
0
−1

 ,
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u 1direction
u2

direction

e3
u3

1

u 1direction
u2

direction

u1
3

u3
2

Figure 11.5: The top figure shows the construction of the blue u3
1 as perpendicular to the

orthogonal projection of e3 onto u1, while the bottom figure shows the construction of the
sky blue u3

2 as perpendicular to the orthogonal projection of u3
1 onto u2.

and observe that u3
2 = u′3. See Figure 11.5.

The following Matlab program implements the modified Gram–Schmidt procedure.

function q = gramschmidt4(e)

n = size(e,1);

for i = 1:n

q(:,i) = e(:,i);

for j = 1:i-1

r = q(:,j)’*q(:,i);

q(:,i) = q(:,i) - r*q(:,j);

end

r = sqrt(q(:,i)’*q(:,i));

q(:,i) = q(:,i)/r;

end

end

If we apply the above function to the matrix1 1 1
1 0 1
1 1 0

 ,
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the ouput is the matrix 0.5774 0.4082 0.7071
0.5774 −0.8165 −0.0000
0.5774 0.4082 −0.7071

 ,

which matches the result of Example 11.9.

Example 11.11. If we consider polynomials and the inner product

〈f, g〉 =

∫ 1

−1

f(t)g(t)dt,

applying the Gram–Schmidt orthonormalization procedure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynomials in one variable with real coefficients, we get a family
of orthonormal polynomials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice properties. They are orthogonal, but
their norm is not always 1. The Legendre polynomials Pn(x) can be defined as follows.
Letting fn be the function

fn(x) = (x2 − 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),

where f
(n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x).

Here is an explicit summation for Pn(x):

Pn(x) =
1

2n

bn/2c∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k.

The polynomials Qn are related to the Legendre polynomials Pn as follows:

Qn(x) =

√
2n+ 1

2
Pn(x).
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Example 11.12. Consider polynomials over [−1, 1], with the symmetric bilinear form

〈f, g〉 =

∫ 1

−1

1√
1− t2

f(t)g(t)dt.

We leave it as an exercise to prove that the above defines an inner product. It can be shown
that the polynomials Tn(x) given by

Tn(x) = cos(n arccosx), n ≥ 0,

(equivalently, with x = cos θ, we have Tn(cos θ) = cos(nθ)) are orthogonal with respect to
the above inner product. These polynomials are the Chebyshev polynomials. Their norm is
not equal to 1. Instead, we have

〈Tn, Tn〉 =

{
π
2

if n > 0,

π if n = 0.

Using the identity (cos θ + i sin θ)n = cosnθ + i sinnθ and the binomial formula, we obtain
the following expression for Tn(x):

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k.

The Chebyshev polynomials are defined inductively as follows:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.

Using these recurrence equations, we can show that

Tn(x) =
(x−

√
x2 − 1)n + (x+

√
x2 − 1)n

2
.

The polynomial Tn has n distinct roots in the interval [−1, 1]. The Chebyshev polynomials
play an important role in approximation theory. They are used as an approximation to a
best polynomial approximation of a continuous function under the sup-norm (∞-norm).

The inner products of the last two examples are special cases of an inner product of the
form

〈f, g〉 =

∫ 1

−1

W (t)f(t)g(t)dt,

where W (t) is a weight function. If W is a continuous function such that W (x) > 0 on
(−1, 1), then the above bilinear form is indeed positive definite. Families of orthogonal
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polynomials used in approximation theory and in physics arise by a suitable choice of the
weight function W . Besides the previous two examples, the Hermite polynomials correspond
to W (x) = e−x

2
, the Laguerre polynomials to W (x) = e−x, and the Jacobi polynomials

to W (x) = (1 − x)α(1 + x)β, with α, β > −1. Comprehensive treatments of orthogonal
polynomials can be found in Lebedev [45], Sansone [53], and Andrews, Askey and Roy [1].

We can also prove the following proposition regarding orthogonal spaces.

Proposition 11.11. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, for
any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension n − k,
and E = F ⊕ F⊥. Furthermore, we have F⊥⊥ = F .

Proof. From Proposition 11.9, the subspace F has some orthonormal basis (u1, . . . , uk). This
linearly independent family (u1, . . . , uk) can be extended to a basis (u1, . . . , uk, vk+1, . . . , vn),
and by Proposition 11.10, it can be converted to an orthonormal basis (u1, . . . , un), which
contains (u1, . . . , uk) as an orthonormal basis of F . Now any vector w = w1u1+· · ·+wnun ∈ E
is orthogonal to F iff w · ui = 0, for every i, where 1 ≤ i ≤ k, iff wi = 0 for every i, where
1 ≤ i ≤ k. Clearly, this shows that (uk+1, . . . , un) is a basis of F⊥, and thus E = F⊕F⊥, and
F⊥ has dimension n− k. Similarly, any vector w = w1u1 + · · ·+ wnun ∈ E is orthogonal to
F⊥ iff w ·ui = 0, for every i, where k+ 1 ≤ i ≤ n, iff wi = 0 for every i, where k+ 1 ≤ i ≤ n.
Thus, (u1, . . . , uk) is a basis of F⊥⊥, and F⊥⊥ = F .

11.5 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the Euclidean
norm. These transformations, sometimes called rigid motions , play an important role in
geometry.

Definition 11.5. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, a function f : E → F is an orthogonal transformation, or a linear isometry , if
it is linear and

‖f(u)‖ = ‖u‖, for all u ∈ E.

Remarks:

(1) A linear isometry is often defined as a linear map such that

‖f(v)− f(u)‖ = ‖v − u‖,

for all u, v ∈ E. Since the map f is linear, the two definitions are equivalent. The
second definition just focuses on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 11.5 is called a metric
map, and a linear isometry is defined as a bijective metric map.
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An isometry (without the word linear) is sometimes defined as a function f : E → F (not
necessarily linear) such that

‖f(v)− f(u)‖ = ‖v − u‖,
for all u, v ∈ E, i.e., as a function that preserves the distance. This requirement turns out to
be very strong. Indeed, the next proposition shows that all these definitions are equivalent
when E and F are of finite dimension, and for functions such that f(0) = 0.

Proposition 11.12. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v)− f(u)‖ = ‖v − u‖, for all u, v ∈ E, and f(0) = 0;

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.

Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove that
if

‖f(v)− f(u)‖ = ‖v − u‖
for all u, v ∈ E, then for any vector τ ∈ E, the function g : E → F defined such that

g(u) = f(τ + u)− f(τ)

for all u ∈ E is a map satisfying Condition (2), and that (2) implies (3). Clearly, g(0) =
f(τ)− f(τ) = 0.

Note that from the hypothesis

‖f(v)− f(u)‖ = ‖v − u‖

for all u, v ∈ E, we conclude that

‖g(v)− g(u)‖ = ‖f(τ + v)− f(τ)− (f(τ + u)− f(τ))‖,
= ‖f(τ + v)− f(τ + u)‖,
= ‖τ + v − (τ + u)‖,
= ‖v − u‖,

for all u, v ∈ E. Since g(0) = 0, by setting u = 0 in

‖g(v)− g(u)‖ = ‖v − u‖,
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we get
‖g(v)‖ = ‖v‖

for all v ∈ E. In other words, g preserves both the distance and the norm.

To prove that g preserves the inner product, we use the simple fact that

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2

for all u, v ∈ E. Then since g preserves distance and norm, we have

2g(u) · g(v) = ‖g(u)‖2 + ‖g(v)‖2 − ‖g(u)− g(v)‖2

= ‖u‖2 + ‖v‖2 − ‖u− v‖2

= 2u · v,

and thus g(u) ·g(v) = u ·v, for all u, v ∈ E, which is (3). In particular, if f(0) = 0, by letting
τ = 0, we have g = f , and f preserves the scalar product, i.e., (3) holds.

Now assume that (3) holds. Since E is of finite dimension, we can pick an orthonormal
basis (e1, . . . , en) for E. Since f preserves inner products, (f(e1), . . ., f(en)) is also orthonor-
mal, and since F also has dimension n, it is a basis of F . Then note that since (e1, . . . , en)
and (f(e1), . . . , f(en)) are orthonormal bases, for any u ∈ E we have

u =
n∑
i=1

(u · ei)ei =
n∑
i=1

uiei

and

f(u) =
n∑
i=1

(f(u) · f(ei))f(ei),

and since f preserves inner products, this shows that

f(u) =
n∑
i=1

(f(u) · f(ei))f(ei) =
n∑
i=1

(u · ei)f(ei) =
n∑
i=1

uif(ei),

which proves that f is linear. Obviously, f preserves the Euclidean norm, and (3) implies
(1).

Finally, if f(u) = f(v), then by linearity f(v− u) = 0, so that ‖f(v− u)‖ = 0, and since
f preserves norms, we must have ‖v − u‖ = 0, and thus u = v. Thus, f is injective, and
since E and F have the same finite dimension, f is bijective.

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1) when f is not
known to be linear, and to prove that f is surjective, but the proof shows that (1)
implies that f is injective.
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(ii) The implication that (3) implies (1) holds if we also assume that f is surjective, even
if E has infinite dimension.

In (2), when f does not satisfy the condition f(0) = 0, the proof shows that f is an affine
map. Indeed, taking any vector τ as an origin, the map g is linear, and

f(τ + u) = f(τ) + g(u) for all u ∈ E.

By Proposition 5.19, this shows that f is affine with associated linear map g.

This fact is worth recording as the following proposition.

Proposition 11.13. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f : E → F , if

‖f(v)− f(u)‖ = ‖v − u‖ for all u, v ∈ E,

then f is an affine map, and its associated linear map g is an isometry.

In view of Proposition 11.12, we usually abbreviate “linear isometry” as “isometry,”
unless we wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries f : E → E of a Euclidean space
of finite dimension.

11.6 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and of
orthogonal matrices.

Proposition 11.14. Let E be any Euclidean space of finite dimension n, and let f : E → E
be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then the matrix
of f ∗ is the transpose A> of A, and f is an isometry iff A satisfies the identities

AA> = A>A = In,

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-
mal basis of Rn, iff the rows of A form an orthonormal basis of Rn.
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Proof. (1) The linear map f : E → E is an isometry iff

f(u) · f(v) = u · v,

for all u, v ∈ E, iff
f ∗(f(u)) · v = f(u) · f(v) = u · v

for all u, v ∈ E, which implies
(f ∗(f(u))− u) · v = 0

for all u, v ∈ E. Since the inner product is positive definite, we must have

f ∗(f(u))− u = 0

for all u ∈ E, that is,
f ∗ ◦ f = id.

But an endomorphism f of a finite-dimensional vector space that has a left inverse is an
isomorphism, so f ◦f ∗ = id. The converse is established by doing the above steps backward.

(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai j) be the matrix of f , and let
B = (bi j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f(v)

for all u, v ∈ E, using the fact that if w = w1e1 + · · · + wnen we have wk = w · ek for all k,
1 ≤ k ≤ n, letting u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = ai j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A>. Now if X and Y are arbitrary matrices over the
basis (e1, . . . , en), denoting as usual the jth column of X by Xj, and similarly for Y , a simple
calculation shows that

X>Y = (X i · Y j)1≤i,j≤n.

Then it is immediately verified that if X = Y = A, then

A>A = AA> = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that
(2) is clear (also because the rows of A are the columns of A>).

Proposition 11.14 shows that the inverse of an isometry f is its adjoint f ∗. Recall that
the set of all real n× n matrices is denoted by Mn(R). Proposition 11.14 also motivates the
following definition.

Definition 11.6. A real n× n matrix is an orthogonal matrix if

AA> = A>A = In.
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Remark: It is easy to show that the conditions AA> = In, A>A = In, and A−1 = A>, are
equivalent.

Given any two orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change of
basis matrix from (u1, . . . , un) to (v1, . . . , vn), since the columns of P are the coordinates
of the vectors vj with respect to the basis (u1, . . . , un), if vj1 =

∑n
i1=1 pi1j1ui1 and vj2 =∑n

i2=1 pi2j2ui2 , since (u1, . . . , un) is orthonormal,

vj1 · vj2 =
n∑

i1=1

n∑
i2=1

pi1j1pi2j2(ui1 · ui2) =
n∑
i=1

pij1pij2 ,

and since (v1, . . . , vn) is orthonormal, vj1 · vj2 = δj1 j2 , so the columns of P are orthonormal,
and by Proposition 11.14 (2), the matrix P is orthogonal.

The proof of Proposition 11.12 (3) also shows that if f is an isometry, then the image of an
orthonormal basis (u1, . . . , un) is an orthonormal basis. Students often ask why orthogonal
matrices are not called orthonormal matrices, since their columns (and rows) are orthonormal
bases! I have no good answer, but isometries do preserve orthogonality, and orthogonal
matrices correspond to isometries.

Recall that the determinant det(f) of a linear map f : E → E is independent of the
choice of a basis in E. Also, for every matrix A ∈ Mn(R), we have det(A) = det(A>), and
for any two n × n matrices A and B, we have det(AB) = det(A) det(B). Then if f is an
isometry, and A is its matrix with respect to any orthonormal basis, AA> = A>A = In
implies that det(A)2 = 1, that is, either det(A) = 1, or det(A) = −1. It is also clear that
the isometries of a Euclidean space of dimension n form a group, and that the isometries of
determinant +1 form a subgroup. This leads to the following definition.

Definition 11.7. Given a Euclidean space E of dimension n, the set of isometries f : E → E
forms a subgroup of GL(E) denoted by O(E), or O(n) when E = Rn, called the orthogonal
group (of E). For every isometry f , we have det(f) = ±1, where det(f) denotes the deter-
minant of f . The isometries such that det(f) = 1 are called rotations, or proper isometries,
or proper orthogonal transformations , and they form a subgroup of the special linear group
SL(E) (and of O(E)), denoted by SO(E), or SO(n) when E = Rn, called the special or-
thogonal group (of E). The isometries such that det(f) = −1 are called improper isometries,
or improper orthogonal transformations, or flip transformations .

11.7 The Rodrigues Formula

When n = 3 and A is a skew symmetric matrix, it is possible to work out an explicit formula
for eA. For any 3× 3 real skew symmetric matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,
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if we let θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

then we have the following result known as Rodrigues’ formula (1840). The (real) vector
space of n× n skew symmetric matrices is denoted by so(n).

Proposition 11.15. The exponential map exp: so(3)→ SO(3) is given by

eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2

if θ 6= 0, with e03 = I3.

Proof sketch. First observe that

A2 = −θ2I3 +B,

since

A2 =

 0 −c b
c 0 −a
−b a 0

 0 −c b
c 0 −a
−b a 0

 =

−c2 − b2 ba ca
ab −c2 − a2 cb
ac cb −b2 − a2


=

−a2 − b2 − c2 0 0
0 −a2 − b2 − c2 0
0 0 −a2 − b2 − c2

+

a2 ba ca
ab b2 cb
ac cb c2


= −θ2I3 +B,

and that

AB = BA = 0.

From the above, deduce that

A3 = −θ2A,

and for any k ≥ 0,

A4k+1 = θ4kA,

A4k+2 = θ4kA2,

A4k+3 = −θ4k+2A,

A4k+4 = −θ4k+2A2.
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Then prove the desired result by writing the power series for eA and regrouping terms so
that the power series for cos θ and sin θ show up. In particular

eA = I3 +
∑
p≥1

Ap

p!
= I3 +

∑
p≥0

A2p+1

(2p+ 1)!
+
∑
p≥1

A2p

(2p)!

= I3 +
∑
p≥0

(−1)pθ2p

(2p+ 1)!
A+

∑
p≥1

(−1)p−1θ2(p−1)

(2p)!
A2

= I3 +
A

θ

∑
p≥0

(−1)pθ2p+1

(2p+ 1)!
− A2

θ2

∑
p≥1

(−1)pθ2p

(2p)!

= I3 +
sin θ

θ
A− A2

θ2

∑
p≥0

(−1)pθ2p

(2p)!
+
A2

θ2

= I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2,

as claimed.

The above formulae are the well-known formulae expressing a rotation of axis specified
by the vector (a, b, c) and angle θ.

The Rodrigues formula can used to show that the exponential map exp: so(3)→ SO(3)
is surjective.

Given any rotation matrix R ∈ SO(3), we have the following cases:

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R).

Then there is a unique skew-symmetric B with corresponding θ satisfying 0 < θ < π
such that eB = R.

(3) If R 6= I and tr(R) = −1, then R is a rotation by the angle π and things are more
complicated, but a matrix B can be found. We leave this part as a good exercise: see
Problem 16.8.

The computation of a logarithm of a rotation in SO(3) as sketched above has applications
in kinematics, robotics, and motion interpolation.

As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain
the QR-decomposition for invertible matrices.
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11.8 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the Gram–
Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-
ces.

Definition 11.8. Given any real n × n matrix A, a QR-decomposition of A is any pair of
n×n matrices (Q,R), where Q is an orthogonal matrix and R is an upper triangular matrix
such that A = QR.

Note that if A is not invertible, then some diagonal entry in R must be zero.

Proposition 11.16. Given any real n × n matrix A, if A is invertible, then there is an
orthogonal matrix Q and an upper triangular matrix R with positive diagonal entries such
that A = QR.

Proof. We can view the columns of A as vectors A1, . . . , An in En. If A is invertible, then
they are linearly independent, and we can apply Proposition 11.10 to produce an orthonor-
mal basis using the Gram–Schmidt orthonormalization procedure. Recall that we construct
vectors Qk and Q

′k as follows:

Q
′1 = A1, Q1 =

Q
′1

‖Q′1‖ ,

and for the inductive step

Q
′k+1 = Ak+1 −

k∑
i=1

(Ak+1 ·Qi)Qi, Qk+1 =
Q
′k+1

‖Q′k+1‖ ,

where 1 ≤ k ≤ n − 1. If we express the vectors Ak in terms of the Qi and Q
′i, we get the

triangular system

A1 = ‖Q′1‖Q1,
...

Aj = (Aj ·Q1)Q1 + · · ·+ (Aj ·Qi)Qi + · · ·+ (Aj ·Qj−1)Qj−1 + ‖Q′j‖Qj,
...

An = (An ·Q1)Q1 + · · ·+ (An ·Qn−1)Qn−1 + ‖Q′n‖Qn.

Letting rk k = ‖Q′k‖, and ri j = Aj ·Qi (the reversal of i and j on the right-hand side is
intentional!), where 1 ≤ k ≤ n, 2 ≤ j ≤ n, and 1 ≤ i ≤ j − 1, and letting qi j be the ith
component of Qj, we note that ai j, the ith component of Aj, is given by

ai j = r1 jqi 1 + · · ·+ ri jqi i + · · ·+ rj jqi j = qi 1r1 j + · · ·+ qi iri j + · · ·+ qi jrj j.

If we let Q = (qi j), the matrix whose columns are the components of the Qj, and R = (ri j),
the above equations show that A = QR, where R is upper triangular. The diagonal entries
rk k = ‖Q′k‖ = Ak ·Qk are indeed positive.
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The reader should try the above procedure on some concrete examples for 2×2 and 3×3
matrices.

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q and R are unique.
More generally, if A is invertible and if A = Q1R1 = Q2R2 are two QR-decompositions
for A, then

R1R
−1
2 = Q>1 Q2.

The matrix Q>1 Q2 is orthogonal and it is easy to see that R1R
−1
2 is upper triangular.

But an upper triangular matrix which is orthogonal must be a diagonal matrix D with
diagonal entries ±1, so Q2 = Q1D and R1 = DR2.

(2) The QR-decomposition holds even when A is not invertible. In this case, R has some
zero on the diagonal. However, a different proof is needed. We will give a nice proof
using Householder matrices (see Proposition 12.4, and also Strang [63, 64], Golub and
Van Loan [29], Trefethen and Bau [68], Demmel [16], Kincaid and Cheney [39], or
Ciarlet [14]).

For better numerical stability, it is preferable to use the modified Gram–Schmidt method
to implement the QR-factorization method. Here is a Matlab program implementing QR-
factorization using modified Gram–Schmidt.

function [Q,R] = qrv4(A)

n = size(A,1);

for i = 1:n

Q(:,i) = A(:,i);

for j = 1:i-1

R(j,i) = Q(:,j)’*Q(:,i);

Q(:,i) = Q(:,i) - R(j,i)*Q(:,j);

end

R(i,i) = sqrt(Q(:,i)’*Q(:,i));

Q(:,i) = Q(:,i)/R(i,i);

end

end

Example 11.13. Consider the matrix

A =

0 0 5
0 4 1
1 1 1

 .

To determine the QR-decomposition of A, we first use the Gram-Schmidt orthonormalization
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procedure to calculate Q = (Q1Q2Q3). By definition

A1 = Q′1 = Q1 =

0
0
1

 ,

and since A2 =

0
4
1

, we discover that

Q′2 = A2 − (A2 ·Q1)Q1 =

0
4
1

−
0

0
1

 =

0
4
0

 .

Hence, Q2 =

0
1
0

. Finally,

Q′3 = A3 − (A3 ·Q1)Q1 − (A3 ·Q2)Q2 =

5
1
1

−
0

0
1

−
0

1
0

 =

5
0
0

 ,

which implies that Q3 =

1
0
0

. According to Proposition 11.16, in order to determine R we

need to calculate

r11 =
∥∥Q′1∥∥ = 1 r12 = A2 ·Q1 = 1 r13 = A3 ·Q1 = 1

r22 =
∥∥Q′2∥∥ = 4 r23 = A3 ·Q2 = 1

r33 =
∥∥Q′3∥∥ = 5.

In summary, we have found that the QR-decomposition of A =

0 0 5
0 4 1
1 1 1

 is

Q =

0 0 1
0 1 0
1 0 0

 and R =

1 1 1
0 4 1
0 0 5

 .

Example 11.14. Another example of QR-decomposition is

A =

1 1 2
0 0 1
1 0 0

 =

1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0

√2 1/
√

2
√

2

0 1/
√

2
√

2
0 0 1

 .
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Example 11.15. If we apply the above Matlab function to the matrix

A =


4 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

 ,

we obtain

Q =


0.9701 −0.2339 0.0619 −0.0166 0.0046
0.2425 0.9354 −0.2477 0.0663 −0.0184

0 0.2650 0.9291 −0.2486 0.0691
0 0 0.2677 0.9283 −0.2581
0 0 0 0.2679 0.9634


and

R =


4.1231 1.9403 0.2425 0 0

0 3.7730 1.9956 0.2650 0
0 0 3.7361 1.9997 0.2677
0 0 073.7324 2.0000
0 0 0 0 3.5956

 .

Remark: The Matlab function qr, called by [Q, R] = qr(A), does not necessarily return
an upper-triangular matrix whose diagonal entries are positive.

The QR-decomposition yields a rather efficient and numerically stable method for solving
systems of linear equations. Indeed, given a system Ax = b, where A is an n× n invertible
matrix, writing A = QR, since Q is orthogonal, we get

Rx = Q>b,

and since R is upper triangular, we can solve it by Gaussian elimination, by solving for the
last variable xn first, substituting its value into the system, then solving for xn−1, etc. The
QR-decomposition is also very useful in solving least squares problems (we will come back
to this in Chapter 21), and for finding eigenvalues; see Chapter 17. It can be easily adapted
to the case where A is a rectangular m×n matrix with independent columns (thus, n ≤ m).
In this case, Q is not quite orthogonal. It is an m×n matrix whose columns are orthogonal,
and R is an invertible n×n upper triangular matrix with positive diagonal entries. For more
on QR, see Strang [63, 64], Golub and Van Loan [29], Demmel [16], Trefethen and Bau [68],
or Serre [57].

A somewhat surprising consequence of the QR-decomposition is a famous determinantal
inequality due to Hadamard.
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Proposition 11.17. (Hadamard) For any real n× n matrix A = (aij), we have

| det(A)| ≤
n∏
i=1

( n∑
j=1

a2
ij

)1/2

and | det(A)| ≤
n∏
j=1

( n∑
i=1

a2
ij

)1/2

.

Moreover, equality holds iff either A has orthogonal rows in the left inequality or orthogonal
columns in the right inequality.

Proof. If det(A) = 0, then the inequality is trivial. In addition, if the righthand side is also
0, then either some column or some row is zero. If det(A) 6= 0, then we can factor A as
A = QR, with Q is orthogonal and R = (rij) upper triangular with positive diagonal entries.
Then since Q is orthogonal det(Q) = ±1, so

| det(A)| = | det(Q)| | det(R)| =
∏
j=1

rjj.

Now as Q is orthogonal, it preserves the Euclidean norm, so

n∑
i=1

a2
ij =

∥∥Aj∥∥2

2
=
∥∥QRj

∥∥2

2
=
∥∥Rj

∥∥2

2
=

n∑
i=1

r2
ij ≥ r2

jj,

which implies that

| det(A)| =
n∏
j=1

rjj ≤
n∏
j=1

∥∥Rj
∥∥

2
=

n∏
j=1

( n∑
i=1

a2
ij

)1/2

.

The other inequality is obtained by replacing A by A>. Finally, if det(A) 6= 0 and equality
holds, then we must have

rjj =
∥∥Aj∥∥

2
, 1 ≤ j ≤ n,

which can only occur if A has orthogonal columns.

Another version of Hadamard’s inequality applies to symmetric positive semidefinite
matrices.

Proposition 11.18. (Hadamard) For any real n × n matrix A = (aij), if A is symmetric
positive semidefinite, then we have

det(A) ≤
n∏
i=1

aii.

Moreover, if A is positive definite, then equality holds iff A is a diagonal matrix.
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Proof. If det(A) = 0, the inequality is trivial. Otherwise, A is positive definite, and by
Theorem 7.10 (the Cholesky Factorization), there is a unique upper triangular matrix B
with positive diagonal entries such that

A = B>B.

Thus, det(A) = det(B>B) = det(B>) det(B) = det(B)2. If we apply the Hadamard inequal-
ity (Proposition 11.17) to B, we obtain

det(B) ≤
n∏
j=1

( n∑
i=1

b2
ij

)1/2

. (∗)

However, the diagonal entries ajj of A = B>B are precisely the square norms ‖Bj‖2
2 =∑n

i=1 b
2
ij, so by squaring (∗), we obtain

det(A) = det(B)2 ≤
n∏
j=1

( n∑
i=1

b2
ij

)
=

n∏
j=1

ajj.

If det(A) 6= 0 and equality holds, then B must have orthogonal columns, which implies that
B is a diagonal matrix, and so is A.

We derived the second Hadamard inequality (Proposition 11.18) from the first (Proposi-
tion 11.17). We leave it as an exercise to prove that the first Hadamard inequality can be
deduced from the second Hadamard inequality.

11.9 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voronoi dia-
grams and Delaunay triangulations. In turn, Voronoi diagrams have applications in motion
planning (see O’Rourke [49]).

Euclidean geometry also has applications to matrix analysis. Recall that a real n × n
matrix A is symmetric if it is equal to its transpose A>. One of the most important properties
of symmetric matrices is that they have real eigenvalues and that they can be diagonalized
by an orthogonal matrix (see Chapter 16). This means that for every symmetric matrix A,
there is a diagonal matrix D and an orthogonal matrix P such that

A = PDP>.

Even though it is not always possible to diagonalize an arbitrary matrix, there are various
decompositions involving orthogonal matrices that are of great practical interest. For exam-
ple, for every real matrix A, there is the QR-decomposition, which says that a real matrix
A can be expressed as

A = QR,
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where Q is orthogonal and R is an upper triangular matrix. This can be obtained from the
Gram–Schmidt orthonormalization procedure, as we saw in Section 11.8, or better, using
Householder matrices, as shown in Section 12.2. There is also the polar decomposition,
which says that a real matrix A can be expressed as

A = QS,

where Q is orthogonal and S is symmetric positive semidefinite (which means that the eigen-
values of S are nonnegative). Such a decomposition is important in continuum mechanics
and in robotics, since it separates stretching from rotation. Finally, there is the wonderful
singular value decomposition, abbreviated as SVD, which says that a real matrix A can be
expressed as

A = V DU>,

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries (see
Chapter 20). This decomposition leads to the notion of pseudo-inverse, which has many
applications in engineering (least squares solutions, etc). For an excellent presentation of all
these notions, we highly recommend Strang [64, 63], Golub and Van Loan [29], Demmel [16],
Serre [57], and Trefethen and Bau [68].

The method of least squares, invented by Gauss and Legendre around 1800, is another
great application of Euclidean geometry. Roughly speaking, the method is used to solve
inconsistent linear systems Ax = b, where the number of equations is greater than the
number of variables. Since this is generally impossible, the method of least squares consists
in finding a solution x minimizing the Euclidean norm ‖Ax − b‖2, that is, the sum of the
squares of the “errors.” It turns out that there is always a unique solution x+ of smallest
norm minimizing ‖Ax− b‖2, and that it is a solution of the square system

A>Ax = A>b,

called the system of normal equations . The solution x+ can be found either by using the QR-
decomposition in terms of Householder transformations, or by using the notion of pseudo-
inverse of a matrix. The pseudo-inverse can be computed using the SVD decomposition.
Least squares methods are used extensively in computer vision. More details on the method
of least squares and pseudo-inverses can be found in Chapter 21.

11.10 Summary

The main concepts and results of this chapter are listed below:

• Bilinear forms; positive definite bilinear forms.

• Inner products , scalar products , Euclidean spaces .

• Quadratic form associated with a bilinear form.
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• The Euclidean space En.

• The polar form of a quadratic form.

• Gram matrix associated with an inner product.

• The Cauchy–Schwarz inequality ; the Minkowski inequality .

• The parallelogram law .

• Orthogonality , orthogonal complement F⊥; orthonormal family .

• The musical isomorphisms [ : E → E∗ and ] : E∗ → E (when E is finite-dimensional);
Theorem 11.6.

• The adjoint of a linear map (with respect to an inner product).

• Existence of an orthonormal basis in a finite-dimensional Euclidean space (Proposition
11.9).

• The Gram–Schmidt orthonormalization procedure (Proposition 11.10).

• The Legendre and the Chebyshev polynomials.

• Linear isometries (orthogonal transformations , rigid motions).

• The orthogonal group, orthogonal matrices .

• The matrix representing the adjoint f ∗ of a linear map f is the transpose of the matrix
representing f .

• The orthogonal group O(n) and the special orthogonal group SO(n).

• QR-decomposition for invertible matrices.

• The Hadamard inequality for arbitrary real matrices.

• The Hadamard inequality for symmetric positive semidefinite matrices.

• The Rodrigues formula for rotations in SO(3).
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11.11 Problems

Problem 11.1. E be a vector space of dimension 2, and let (e1, e2) be a basis of E. Prove
that if a > 0 and b2 − ac < 0, then the bilinear form defined such that

ϕ(x1e1 + y1e2, x2e1 + y2e2) = ax1x2 + b(x1y2 + x2y1) + cy1y2

is a Euclidean inner product.

Problem 11.2. Let C[a, b] denote the set of continuous functions f : [a, b]→ R. Given any
two functions f, g ∈ C[a, b], let

〈f, g〉 =

∫ b

a

f(t)g(t)dt.

Prove that the above bilinear form is indeed a Euclidean inner product.

Problem 11.3. Consider the inner product

〈f, g〉 =

∫ π

−π
f(t)g(t)dt

of Problem 11.2 on the vector space C[−π, π]. Prove that

〈sin px, sin qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 1,

〈cos px, cos qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 0,

〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and 〈1, 1〉 =
∫ π
−π dx = 2π.

Problem 11.4. Prove that the following matrix is orthogonal and skew-symmetric:

M =
1√
3


0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0

 .

Problem 11.5. Let E and F be two finite Euclidean spaces, let (u1, . . . , un) be a basis of
E, and let (v1, . . . , vm) be a basis of F . For any linear map f : E → F , if A is the matrix of
f w.r.t. the basis (u1, . . . , un) and B is the matrix of f ∗ w.r.t. the basis (v1, . . . , vm), if G1

is the Gram matrix of the inner product on E (w.r.t. (u1, . . . , un)) and if G2 is the Gram
matrix of the inner product on F (w.r.t. (v1, . . . , vm)), then

B = G−1
1 A>G2.
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Problem 11.6. Let A be an invertible matrix. Prove that if A = Q1R1 = Q2R2 are two
QR-decompositions of A and if the diagonal entries of R1 and R2 are positive, then Q1 = Q2

and R1 = R2.

Problem 11.7. Prove that the first Hadamard inequality can be deduced from the second
Hadamard inequality.

Problem 11.8. Let E be a real vector space of finite dimension, n ≥ 1. Say that two
bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where P
the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn), namely, the matrix whose jth
columns consist of the coordinates of vj over the basis (u1, . . . , un).

(1) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(2) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(3) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)

is a linear form. Then prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,
for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).
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Problem 11.9. Given p vectors (u1, . . . , up) in a Euclidean space E of dimension n ≥ p,
the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣ .
(1) Prove that

Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),
where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

Problem 11.10. Let ϕ : E × E → R be a bilinear form on a real vector space E of finite
dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined such
that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).

(1) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(2) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(3) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.
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Problem 11.11. Let ϕ : E ×E → R be a symmetric bilinear form on a real vector space E
of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal w.r.t. ϕ
if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of vectors
that are pairwise conjugate w.r.t. ϕ.

(1) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u1, . . . , un) that are pairwise
conjugate w.r.t. ϕ.

Hint . For the induction step, proceed as follows. Let (u1, e2, . . . , en) be a basis of E, with
ϕ(u1, u1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λiu1

is conjugate to u1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (u1, v2, . . . , vn) is a basis.

(2) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑
i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,

where D is a diagonal matrix.

(3) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx2

r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2

r ,
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where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First consider x in the subspace F spanned
by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.

(4) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem 11.12. Consider the n × n matrices Ri,j defined for all i, j with 1 ≤ i < j ≤ n
and n ≥ 3, such that the only nonzero entries are

Ri,j(i, j) = −1

Ri,j(i, i) = 0

Ri,j(j, i) = 1

Ri,j(j, j) = 0

Ri,j(k, k) = 1, 1 ≤ k ≤ n, k 6= i, j.

For example,

Ri,j =



1
. . .

1
0 0 · · · 0 −1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1



.

(1) Prove that the Ri,j are rotation matrices. Use the matrices Rij to form a basis of the
n× n skew-symmetric matrices.
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(2) Consider the n × n symmetric matrices Si,j defined for all i, j with 1 ≤ i < j ≤ n
and n ≥ 3, such that the only nonzero entries are

Si,j(i, j) = 1

Si,j(i, i) = 0

Si,j(j, i) = 1

Si,j(j, j) = 0

Si,j(k, k) = 1, 1 ≤ k ≤ n, k 6= i, j,

and if i+ 2 ≤ j then Si,j(i+ 1, i+ 1) = −1, else if i > 1 and j = i+ 1 then Si,j(1, 1) = −1,
and if i = 1 and j = 2, then Si,j(3, 3) = −1.

For example,

Si,j =



1
. . .

1
0 0 · · · 0 1
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1



.

Note that Si,j has a single diagonal entry equal to −1. Prove that the Si,j are rotations
matrices.

Use Problem 2.15 together with the Si,j to form a basis of the n×n symmetric matrices.

(3) Prove that if n ≥ 3, the set of all linear combinations of matrices in SO(n) is the
space Mn(R) of all n× n matrices.

Prove that if n ≥ 3 and if a matrix A ∈ Mn(R) commutes with all rotations matrices,
then A commutes with all matrices in Mn(R).

What happens for n = 2?

Problem 11.13. (1) Let H be the affine hyperplane in Rn given by the equation

a1x1 + · · ·+ anxn = c,

with ai 6= 0 for some i, 1 ≤ i ≤ n. The linear hyperplane H0 parallel to H is given by the
equation

a1x1 + · · ·+ anxn = 0,
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and we say that a vector y ∈ Rn is orthogonal (or perpendicular) to H iff y is orthogonal to
H0. Let h be the intersection of H with the line through the origin and perpendicular to H.
Prove that the coordinates of h are given by

c

a2
1 + · · ·+ a2

n

(a1, . . . , an).

(2) For any point p ∈ H, prove that ‖h‖ ≤ ‖p‖. Thus, it is natural to define the distance
d(O,H) from the origin O to the hyperplane H as d(O,H) = ‖h‖. Prove that

d(O,H) =
|c|

(a2
1 + · · ·+ a2

n)
1
2

.

(3) Let S be a finite set of n ≥ 3 points in the plane (R2). Prove that if for every pair of
distinct points pi, pj ∈ S, there is a third point pk ∈ S (distinct from pi and pj) such that
pi, pj, pk belong to the same (affine) line, then all points in S belong to a common (affine)
line.

Hint . Proceed by contradiction and use a minimality argument. This is either ∞-hard or
relatively easy, depending how you proceed!

Problem 11.14. (The space of closed polygons in R2, after Hausmann and Knutson)

An open polygon P in the plane is a sequence P = (v1, . . . , vn+1) of points vi ∈ R2

called vertices (with n ≥ 1). A closed polygon, for short a polygon, is an open polygon
P = (v1, . . . , vn+1) such that vn+1 = v1. The sequence of edge vectors (e1, . . . , en) associated
with the open (or closed) polygon P = (v1, . . . , vn+1) is defined by

ei = vi+1 − vi, i = 1, . . . , n.

Thus, a closed or open polygon is also defined by a pair (v1, (e1, . . . , en)), with the vertices
given by

vi+1 = vi + ei, i = 1, . . . , n.

Observe that a polygon (v1, (e1, . . . , en)) is closed iff

e1 + · · ·+ en = 0.

Since every polygon (v1, (e1, . . . , en)) can be translated by −v1, so that v1 = (0, 0), we
may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane R2 is isomorphic to C, via the isomorphism

(x, y) 7→ x+ iy.

We will represent each edge vector ek by the square of a complex number wk = ak+ibk. Thus,
every sequence of complex numbers (w1, . . . , wn) defines a polygon (namely, (w2

1, . . . , w
2
n)).
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This representation is many-to-one: the sequences (±w1, . . . ,±wn) describe the same poly-
gon. To every sequence of complex numbers (w1, . . . , wn), we associate the pair of vectors
(a, b), with a, b ∈ Rn, such that if wk = ak + ibk, then

a = (a1, . . . , an), b = (b1, . . . , bn).

The mapping
(w1, . . . , wn) 7→ (a, b)

is clearly a bijection, so we can also represent polygons by pairs of vectors (a, b) ∈ Rn ×Rn.

(1) Prove that a polygon P represented by a pair of vectors (a, b) ∈ Rn ×Rn is closed iff
a · b = 0 and ‖a‖2 = ‖b‖2.

(2) Given a polygon P represented by a pair of vectors (a, b) ∈ Rn ×Rn, the length l(P )
of the polygon P is defined by l(P ) = |w1|2 + · · ·+ |wn|2, with wk = ak + ibk. Prove that

l(P ) = ‖a‖2
2 + ‖b‖2

2 .

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented
by a n× 2 matrix A such that A>A = I.

Remark: The space of all a n× 2 real matrices A such that A>A = I is a space known as
the Stiefel manifold S(2, n).

(3) Recall that in R2, the rotation of angle θ specified by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is expressed in terms of complex numbers by the map

z 7→ zeiθ.

Let P be a polygon represented by a pair of vectors (a, b) ∈ Rn × Rn. Prove that the
polygon Rθ(P ) obtained by applying the rotation Rθ to every vertex w2

k = (ak + ibk)
2 of P

is specified by the pair of vectors

(cos(θ/2)a− sin(θ/2)b, sin(θ/2)a+ cos(θ/2)b) =


a1 b1

a2 b2
...

...
an bn


(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.

(4) The reflection ρx about the x-axis corresponds to the map

z 7→ z,
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whose matrix is, (
1 0
0 −1

)
.

Prove that the polygon ρx(P ) obtained by applying the reflection ρx to every vertex w2
k =

(ak + ibk)
2 of P is specified by the pair of vectors

(a,−b) =


a1 b1

a2 b2
...

...
an bn


(

1 0
0 −1

)
.

(5) Let Q ∈ O(2) be any isometry such that det(Q) = −1 (a reflection). Prove that there
is a rotation R−θ ∈ SO(2) such that

Q = ρx ◦R−θ.

Prove that the isometry Q, which is given by the matrix

Q =

(
cos θ sin θ
sin θ − cos θ

)
,

is the reflection about the line corresponding to the angle θ/2 (the line of equation y =
tan(θ/2)x).

Prove that the polygon Q(P ) obtained by applying the reflection Q = ρx ◦R−θ to every
vertex w2

k = (ak + ibk)
2 of P , is specified by the pair of vectors

(cos(θ/2)a+ sin(θ/2)b, sin(θ/2)a− cos(θ/2)b) =


a1 b1

a2 b2
...

...
an bn


(

cos(θ/2) sin(θ/2)
sin(θ/2) − cos(θ/2)

)
.

(6) Define an equivalence relation ∼ on S(2, n) such that if A1, A2 ∈ S(2, n) are any n×2
matrices such that A>1 A1 = A>2 A2 = I, then

A1 ∼ A2 iff A2 = A1Q for some Q ∈ O(2).

Prove that the quotient G(2, n) = S(2, n)/ ∼ is in bijection with the set of all 2-dimensional
subspaces (the planes) of Rn. The space G(2, n) is called a Grassmannian manifold .

Prove that up to translations and isometries in O(2) (rotations and reflections), the
n-sided closed polygons of length 2 are represented by planes in G(2, n).
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Problem 11.15. (1) Find two symmetric matrices, A and B, such that AB is not symmetric.

(2) Find two matrices A and B such that

eAeB 6= eA+B.

Hint . Try

A = π

0 0 0
0 0 −1
0 1 0

 and B = π

 0 0 1
0 0 0
−1 0 0

 ,

and use the Rodrigues formula.

(3) Find some square matrices A,B such that AB 6= BA, yet

eAeB = eA+B.

Hint . Look for 2× 2 matrices with zero trace and use Problem 8.15.

Problem 11.16. Given a field K and any nonempty set I, let K(I) be the subset of the
cartesian product KI consisting of all functions λ : I → K with finite support , which means
that λ(i) = 0 for all but finitely many i ∈ I. We usually denote the function defined by λ as
(λi)i∈I , and call is a family indexed by I. We define addition and multiplication by a scalar
as follows:

(λi)i∈I + (µi)i∈I = (λi + µi)i∈I ,

and
α · (µi)i∈I = (αµi)i∈I .

(1) Check that K(I) is a vector space.

(2) If I is any nonempty subset, for any i ∈ I, we denote by ei the family (ej)j∈I defined
so that

ej =

{
1 if j = i

0 if j 6= i.

Prove that the family (ei)i∈I is linearly independent and spans K(I), so that it is a basis of
K(I) called the canonical basis of K(I). When I is finite, say of cardinality n, then prove
that K(I) is isomorphic to Kn.

(3) The function ι : I → K(I), such that ι(i) = ei for every i ∈ I, is clearly an injection.

For any other vector space F , for any function f : I → F , prove that there is a unique
linear map f : K(I) → F , such that

f = f ◦ ι,
as in the following commutative diagram:

I ι //

f !!C
CC

CC
CC

CC K(I)

f
��
F

.
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We call the vector space K(I) the vector space freely generated by the set I.

Problem 11.17. (Some pitfalls of infinite dimension) Let E be the vector space freely
generated by the set of natural numbers, N = {0, 1, 2, . . .}, and let (e0, e1, e2, . . . , en, . . .) be
its canonical basis. We define the function ϕ such that

ϕ(ei, ej) =


δij if i, j ≥ 1,

1 if i = j = 0,

1/2j if i = 0, j ≥ 1,

1/2i if i ≥ 1, j = 0,

and we extend ϕ by bilinearity to a function ϕ : E×E → K. This means that if u =
∑

i∈N λiei
and v =

∑
j∈N µjej, then

ϕ

(∑
i∈N

λiei,
∑
j∈N

µjej

)
=
∑
i,j∈N

λiµjϕ(ei, ej),

but remember that λi 6= 0 and µj 6= 0 only for finitely many indices i, j.

(1) Prove that ϕ is positive definite, so that it is an inner product on E.

What would happen if we changed 1/2j to 1 (or any constant)?

(2) Let H be the subspace of E spanned by the family (ei)i≥1, a hyperplane in E. Find
H⊥ and H⊥⊥, and prove that

H 6= H⊥⊥.

(3) Let U be the subspace of E spanned by the family (e2i)i≥1, and let V be the subspace
of E spanned by the family (e2i−1)i≥1. Prove that

U⊥ = V

V ⊥ = U

U⊥⊥ = U

V ⊥⊥ = V,

yet

(U ∩ V )⊥ 6= U⊥ + V ⊥

and

(U + V )⊥⊥ 6= U + V.

If W is the subspace spanned by e0 and e1, prove that

(W ∩H)⊥ 6= W⊥ +H⊥.
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(4) Consider the dual space E∗ of E, and let (e∗i )i∈N be the family of dual forms of the
basis (ei)i∈N . Check that the family (e∗i )i∈N is linearly independent.

(5) Let f ∈ E∗ be the linear form defined by

f(ei) = 1 for all i ∈ N.

Prove that f is not in the subspace spanned by the e∗i . If F is the subspace of E∗ spanned
by the e∗i and f , find F 0 and F 00, and prove that

F 6= F 00.



Chapter 12

QR-Decomposition for Arbitrary
Matrices

12.1 Orthogonal Reflections

Hyperplane reflections are represented by matrices called Householder matrices. These ma-
trices play an important role in numerical methods, for instance for solving systems of linear
equations, solving least squares problems, for computing eigenvalues, and for transforming a
symmetric matrix into a tridiagonal matrix. We prove a simple geometric lemma that imme-
diately yields the QR-decomposition of arbitrary matrices in terms of Householder matrices.

Orthogonal symmetries are a very important example of isometries. First let us review
the definition of projections, introduced in Section 5.2, just after Proposition 5.5. Given a
vector space E, let F and G be subspaces of E that form a direct sum E = F ⊕ G. Since
every u ∈ E can be written uniquely as u = v + w, where v ∈ F and w ∈ G, we can define
the two projections pF : E → F and pG : E → G such that pF (u) = v and pG(u) = w. In
Section 5.2 we used the notation π1 and π2, but in this section it is more convenient to use
pF and pG.

It is immediately verified that pG and pF are linear maps, and that

p2
F = pF , p

2
G = pG, pF ◦ pG = pG ◦ pF = 0, and pF + pG = id.

.

Definition 12.1. Given a vector space E, for any two subspaces F and G that form a direct
sum E = F ⊕ G, the symmetry (or reflection) with respect to F and parallel to G is the
linear map s : E → E defined such that

s(u) = 2pF (u)− u,

for every u ∈ E.

461
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Because pF + pG = id, note that we also have

s(u) = pF (u)− pG(u)

and
s(u) = u− 2pG(u),

s2 = id, s is the identity on F , and s = −id on G.

We now assume that E is a Euclidean space of finite dimension.

Definition 12.2. Let E be a Euclidean space of finite dimension n. For any two subspaces
F and G, if F and G form a direct sum E = F ⊕ G and F and G are orthogonal, i.e.,
F = G⊥, the orthogonal symmetry (or reflection) with respect to F and parallel to G is the
linear map s : E → E defined such that

s(u) = 2pF (u)− u = pF (u)− pG(u),

for every u ∈ E. When F is a hyperplane, we call s a hyperplane symmetry with respect to
F (or reflection about F ), and when G is a plane (and thus dim(F ) = n − 2), we call s a
flip about F .

A reflection about a hyperplane F is shown in Figure 12.1.

u

s(u)

pG (u)

− pG (u)

pF (u)

F

G

Figure 12.1: A reflection about the peach hyperplane F . Note that u is purple, pF (u) is blue
and pG(u) is red.

For any two vectors u, v ∈ E, it is easily verified using the bilinearity of the inner product
that

‖u+ v‖2 − ‖u− v‖2 = 4(u · v). (∗)
In particular, if u · v = 0, then ‖u+ v‖ = ‖u− v‖. Then since

u = pF (u) + pG(u)
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and
s(u) = pF (u)− pG(u),

and since F and G are orthogonal, it follows that

pF (u) · pG(v) = 0,

and thus by (∗)

‖s(u)‖ = ‖pF (u)− pG(u)‖ = ‖pF (u) + pG(u)‖ = ‖u‖,

so that s is an isometry.

Using Proposition 11.10, it is possible to find an orthonormal basis (e1, . . . , en) of E
consisting of an orthonormal basis of F and an orthonormal basis of G. Assume that F
has dimension p, so that G has dimension n − p. With respect to the orthonormal basis
(e1, . . . , en), the symmetry s has a matrix of the form(

Ip 0
0 −In−p

)
.

Thus, det(s) = (−1)n−p, and s is a rotation iff n − p is even. In particular, when F is
a hyperplane H, we have p = n − 1 and n − p = 1, so that s is an improper orthogonal
transformation. When F = {0}, we have s = −id, which is called the symmetry with respect
to the origin. The symmetry with respect to the origin is a rotation iff n is even, and
an improper orthogonal transformation iff n is odd. When n is odd, since s ◦ s = id and
det(s) = (−1)n = −1, we observe that every improper orthogonal transformation f is the
composition f = (f ◦ s) ◦ s of the rotation f ◦ s with s, the symmetry with respect to the
origin. When G is a plane, p = n − 2, and det(s) = (−1)2 = 1, so that a flip about F is
a rotation. In particular, when n = 3, F is a line, and a flip about the line F is indeed a
rotation of measure π as illustrated by Figure 12.2.

Remark: Given any two orthogonal subspaces F,G forming a direct sum E = F ⊕ G, let
f be the symmetry with respect to F and parallel to G, and let g be the symmetry with
respect to G and parallel to F . We leave as an exercise to show that

f ◦ g = g ◦ f = −id.

When F = H is a hyperplane, we can give an explicit formula for s(u) in terms of any
nonnull vector w orthogonal to H. Indeed, from

u = pH(u) + pG(u),

since pG(u) ∈ G and G is spanned by w, which is orthogonal to H, we have

pG(u) = λw
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F

G

up  (u)Fs(u)

Figure 12.2: A flip in R3 is a rotation of π about the F axis.

for some λ ∈ R, and we get

u · w = λ‖w‖2,

and thus

pG(u) =
(u · w)

‖w‖2
w.

Since

s(u) = u− 2pG(u),

we get

s(u) = u− 2
(u · w)

‖w‖2
w.

Since the above formula is important, we record it in the following proposition.

Proposition 12.1. Let E be a finite-dimensional Euclidean space and let H be a hyperplane
in E. For any nonzero vector w orthogonal to H, the hyperplane reflection s about H is
given by

s(u) = u− 2
(u · w)

‖w‖2
w, u ∈ E.

Such reflections are represented by matrices called Householder matrices , which play an
important role in numerical matrix analysis (see Kincaid and Cheney [39] or Ciarlet [14]).

Definition 12.3. A Householder matrix is a matrix of the form

H = In − 2
WW>

‖W‖2
= In − 2

WW>

W>W
,

where W ∈ Rn is a nonzero vector.
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Householder matrices are symmetric and orthogonal. It is easily checked that over an
orthonormal basis (e1, . . . , en), a hyperplane reflection about a hyperplane H orthogonal to
a nonzero vector w is represented by the matrix

H = In − 2
WW>

‖W‖2
,

where W is the column vector of the coordinates of w over the basis (e1, . . . , en). Since

pG(u) =
(u · w)

‖w‖2
w,

the matrix representing pG is
WW>

W>W
,

and since pH + pG = id, the matrix representing pH is

In −
WW>

W>W
.

These formulae can be used to derive a formula for a rotation of R3, given the direction w
of its axis of rotation and given the angle θ of rotation.

The following fact is the key to the proof that every isometry can be decomposed as a
product of reflections.

Proposition 12.2. Let E be any nontrivial Euclidean space. For any two vectors u, v ∈ E,
if ‖u‖ = ‖v‖, then there is a hyperplane H such that the reflection s about H maps u to v,
and if u 6= v, then this reflection is unique. See Figure 12.3.

Proof. If u = v, then any hyperplane containing u does the job. Otherwise, we must have
H = {v − u}⊥, and by the above formula,

s(u) = u− 2
(u · (v − u))

‖(v − u)‖2
(v − u) = u+

2‖u‖2 − 2u · v
‖(v − u)‖2

(v − u),

and since
‖(v − u)‖2 = ‖u‖2 + ‖v‖2 − 2u · v

and ‖u‖ = ‖v‖, we have
‖(v − u)‖2 = 2‖u‖2 − 2u · v,

and thus, s(u) = v.

� If E is a complex vector space and the inner product is Hermitian, Proposition 12.2
is false. The problem is that the vector v−u does not work unless the inner product

u ·v is real! The proposition can be salvaged enough to yield the QR-decomposition in terms
of Householder transformations; see Section 13.5.

We now show that hyperplane reflections can be used to obtain another proof of the
QR-decomposition.
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H
v-u

us(u) = v

Figure 12.3: In R3, the (hyper)plane perpendicular to v − u reflects u onto v.

12.2 QR-Decomposition Using Householder Matrices

First we state the result geometrically. When translated in terms of Householder matrices,
we obtain the fact advertised earlier that every matrix (not necessarily invertible) has a
QR-decomposition.

Proposition 12.3. Let E be a nontrivial Euclidean space of dimension n. For any orthonor-
mal basis (e1, . . ., en) and for any n-tuple of vectors (v1, . . ., vn), there is a sequence of n
isometries h1, . . . , hn such that hi is a hyperplane reflection or the identity, and if (r1, . . . , rn)
are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n. Equivalently, the
matrix R whose columns are the components of the rj over the basis (e1, . . . , en) is an upper
triangular matrix. Furthermore, the hi can be chosen so that the diagonal entries of R are
nonnegative.

Proof. We proceed by induction on n. For n = 1, we have v1 = λe1 for some λ ∈ R. If
λ ≥ 0, we let h1 = id, else if λ < 0, we let h1 = −id, the reflection about the origin.

For n ≥ 2, we first have to find h1. Let

r1,1 = ‖v1‖.
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If v1 = r1,1e1, we let h1 = id. Otherwise, there is a unique hyperplane reflection h1 such that

h1(v1) = r1,1 e1,

defined such that

h1(u) = u− 2
(u · w1)

‖w1‖2
w1

for all u ∈ E, where
w1 = r1,1 e1 − v1.

The map h1 is the reflection about the hyperplane H1 orthogonal to the vector w1 = r1,1 e1−
v1. See Figure 12.4. Letting

e2

v1 H1

r
1,1

e1

Figure 12.4: The construction of h1 in Proposition 12.3.

r1 = h1(v1) = r1,1 e1,

it is obvious that r1 belongs to the subspace spanned by e1, and r1,1 = ‖v1‖ is nonnegative.

Next assume that we have found k linear maps h1, . . . , hk, hyperplane reflections or the
identity, where 1 ≤ k ≤ n− 1, such that if (r1, . . . , rk) are the vectors given by

rj = hk ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ k. See Figure
12.5. The vectors (e1, . . . , ek) form a basis for the subspace denoted by U ′k, the vectors
(ek+1, . . . , en) form a basis for the subspace denoted by U ′′k , the subspaces U ′k and U ′′k are
orthogonal, and E = U ′k ⊕ U ′′k . Let

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1).

We can write
uk+1 = u′k+1 + u′′k+1,
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e direction

e direction

e direction

1

2

3

v

v

1

2

e direction

e direction

e direction

1

2

3

v1

h
1

r1

Figure 12.5: The construction of r1 = h1(v1) in Proposition 12.3.

where u′k+1 ∈ U ′k and u′′k+1 ∈ U ′′k . See Figure 12.6. Let

rk+1,k+1 = ‖u′′k+1‖.
If u′′k+1 = rk+1,k+1 ek+1, we let hk+1 = id. Otherwise, there is a unique hyperplane reflection
hk+1 such that

hk+1(u′′k+1) = rk+1,k+1 ek+1,

defined such that

hk+1(u) = u− 2
(u · wk+1)

‖wk+1‖2
wk+1

for all u ∈ E, where
wk+1 = rk+1,k+1 ek+1 − u′′k+1.

The map hk+1 is the reflection about the hyperplane Hk+1 orthogonal to the vector wk+1 =
rk+1,k+1 ek+1−u′′k+1. However, since u′′k+1, ek+1 ∈ U ′′k and U ′k is orthogonal to U ′′k , the subspace
U ′k is contained in Hk+1, and thus, the vectors (r1, . . . , rk) and u′k+1, which belong to U ′k, are
invariant under hk+1. This proves that

hk+1(uk+1) = hk+1(u′k+1) + hk+1(u′′k+1) = u′k+1 + rk+1,k+1 ek+1

is a linear combination of (e1, . . . , ek+1). Letting

rk+1 = hk+1(uk+1) = u′k+1 + rk+1,k+1 ek+1,

since uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1), the vector

rk+1 = hk+1 ◦ · · · ◦ h2 ◦ h1(vk+1)

is a linear combination of (e1, . . . , ek+1). See Figure 12.7. The coefficient of rk+1 over ek+1

is rk+1,k+1 = ‖u′′k+1‖, which is nonnegative. This concludes the induction step, and thus the
proof.
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e direction

e direction

e direction

2

3

v2
h1

(v2)

e direction

e direction

e direction

1

2

3

h1
(v2)

u
2

u2 ‘
‘’

2

Figure 12.6: The construction of u2 = h1(v2) and its decomposition as u2 = u′2 + u′′2.

Remarks:

(1) Since every hi is a hyperplane reflection or the identity,

ρ = hn ◦ · · · ◦ h2 ◦ h1

is an isometry.

(2) If we allow negative diagonal entries in R, the last isometry hn may be omitted.

(3) Instead of picking rk,k = ‖u′′k‖, which means that

wk = rk,k ek − u′′k,

where 1 ≤ k ≤ n, it might be preferable to pick rk,k = −‖u′′k‖ if this makes ‖wk‖2

larger, in which case
wk = rk,k ek + u′′k.

Indeed, since the definition of hk involves division by ‖wk‖2, it is desirable to avoid
division by very small numbers.

(4) The method also applies to any m-tuple of vectors (v1, . . . , vm), with m ≤ n. Then
R is an upper triangular m × m matrix and Q is an n × m matrix with orthogonal
columns (Q>Q = Im). We leave the minor adjustments to the method as an exercise
to the reader

Proposition 12.3 directly yields the QR-decomposition in terms of Householder transfor-
mations (see Strang [63, 64], Golub and Van Loan [29], Trefethen and Bau [68], Kincaid and
Cheney [39], or Ciarlet [14]).
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Figure 12.7: The construction of h2 and r2 = h2 ◦ h1(v2) in Proposition 12.3.

Theorem 12.4. For every real n× n matrix A, there is a sequence H1, . . ., Hn of matrices,
where each Hi is either a Householder matrix or the identity, and an upper triangular matrix
R such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where Q is orthogonal and R is upper
triangular, such that A = QR (a QR-decomposition of A). Furthermore, R can be chosen
so that its diagonal entries are nonnegative.

Proof. The jth column of A can be viewed as a vector vj over the canonical basis (e1, . . . , en)
of En (where (ej)i = 1 if i = j, and 0 otherwise, 1 ≤ i, j ≤ n). Applying Proposition 12.3
to (v1, . . . , vn), there is a sequence of n isometries h1, . . . , hn such that hi is a hyperplane
reflection or the identity, and if (r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n. Letting R be the
matrix whose columns are the vectors rj, and Hi the matrix associated with hi, it is clear
that

R = Hn · · ·H2H1A,
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where R is upper triangular and every Hi is either a Householder matrix or the identity.
However, hi ◦ hi = id for all i, 1 ≤ i ≤ n, and so

vj = h1 ◦ h2 ◦ · · · ◦ hn(rj)

for all j, 1 ≤ j ≤ n. But ρ = h1 ◦ h2 ◦ · · · ◦ hn is an isometry represented by the orthogonal
matrix Q = H1H2 · · ·Hn. It is clear that A = QR, where R is upper triangular. As we noted
in Proposition 12.3, the diagonal entries of R can be chosen to be nonnegative.

Remarks:

(1) Letting
Ak+1 = Hk · · ·H2H1A,

with A1 = A, 1 ≤ k ≤ n, the proof of Proposition 12.3 can be interpreted in terms of
the computation of the sequence of matrices A1, . . . , An+1 = R. The matrix Ak+1 has
the shape

Ak+1 =



× × × uk+1
1 × × × ×

0 × ...
...

...
...

...
...

0 0 × uk+1
k × × × ×

0 0 0 uk+1
k+1 × × × ×

0 0 0 uk+1
k+2 × × × ×

...
...

...
...

...
...

...
...

0 0 0 uk+1
n−1 × × × ×

0 0 0 uk+1
n × × × ×


,

where the (k + 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1),

and thus
u′k+1 =

(
uk+1

1 , . . . , uk+1
k

)
and

u′′k+1 =
(
uk+1
k+1, u

k+1
k+2, . . . , u

k+1
n

)
.

If the last n− k− 1 entries in column k+ 1 are all zero, there is nothing to do, and we
let Hk+1 = I. Otherwise, we kill these n − k − 1 entries by multiplying Ak+1 on the
left by the Householder matrix Hk+1 sending(

0, . . . , 0, uk+1
k+1, . . . , u

k+1
n

)
to (0, . . . , 0, rk+1,k+1, 0, . . . , 0),

where rk+1,k+1 = ‖(uk+1
k+1, . . . , u

k+1
n )‖.
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(2) If A is invertible and the diagonal entries of R are positive, it can be shown that Q
and R are unique.

(3) If we allow negative diagonal entries in R, the matrix Hn may be omitted (Hn = I).

(4) The method allows the computation of the determinant of A. We have

det(A) = (−1)mr1,1 · · · rn,n,

where m is the number of Householder matrices (not the identity) among the Hi.

(5) The “condition number” of the matrix A is preserved (see Strang [64], Golub and Van
Loan [29], Trefethen and Bau [68], Kincaid and Cheney [39], or Ciarlet [14]). This is
very good for numerical stability.

(6) The method also applies to a rectangular m× n matrix. If m ≥ n, then R is an n× n
upper triangular matrix and Q is an m× n matrix such that Q>Q = In.

The following Matlab functions implement the QR-factorization method of a real square
(possibly singular) matrix A using Householder reflections

The main function houseqr computes the upper triangular matrixR obtained by applying
Householder reflections to A. It makes use of the function house, which computes a unit
vector u such that given a vector x ∈ Rp, the Householder transformation P = I−2uu> sets
to zero all entries in x but the first entry x1. It only applies if ‖x(2 : p)‖1 = |x2|+ · · ·+ |xp| >
0. Since computations are done in floating point, we use a tolerance factor tol, and if
‖x(2 : p)‖1 ≤ tol, then we return u = 0, which indicates that the corresponding Householder
transformation is the identity. To make sure that ‖Px‖ is as large as possible, we pick
uu = x + sign(x1) ‖x‖2 e1, where sign(z) = 1 if z ≥ 0 and sign(z) = −1 if z < 0. Note that
as a result, diagonal entries in R may be negative. We will take care of this issue later.

function s = signe(x)

% if x >= 0, then signe(x) = 1

% else if x < 0 then signe(x) = -1

%

if x < 0

s = -1;

else

s = 1;

end

end
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function [uu, u] = house(x)

% This constructs the unnormalized vector uu

% defining the Householder reflection that

% zeros all but the first entries in x.

% u is the normalized vector uu/||uu||

%

tol = 2*10^(-15); % tolerance

uu = x;

p = size(x,1);

% computes l^1-norm of x(2:p,1)

n1 = sum(abs(x(2:p,1)));

if n1 <= tol

u = zeros(p,1); uu = u;

else

l = sqrt(x’*x); % l^2 norm of x

uu(1) = x(1) + signe(x(1))*l;

u = uu/sqrt(uu’*uu);

end

end

The Householder transformations are recorded in an array u of n− 1 vectors. There are
more efficient implementations, but for the sake of clarity we present the following version.

function [R, u] = houseqr(A)

% This function computes the upper triangular R in the QR factorization

% of A using Householder reflections, and an implicit representation

% of Q as a sequence of n - 1 vectors u_i representing Householder

% reflections

n = size(A, 1);

R = A;

u = zeros(n,n-1);

for i = 1:n-1

[~, u(i:n,i)] = house(R(i:n,i));

if u(i:n,i) == zeros(n - i + 1,1)

R(i+1:n,i) = zeros(n - i,1);

else

R(i:n,i:n) = R(i:n,i:n) - 2*u(i:n,i)*(u(i:n,i)’*R(i:n,i:n));

end

end

end
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If only R is desired, then houseqr does the job. In order to obtain R, we need to compose
the Householder transformations. We present a simple method which is not the most efficient
(there is a way to avoid multiplying explicity the Householder matrices).

The function buildhouse creates a Householder reflection from a vector v.

function P = buildhouse(v,i)

% This function builds a Householder reflection

% [I 0 ]

% [0 PP]

% from a Householder reflection

% PP = I - 2uu*uu’

% where uu = v(i:n)

% If uu = 0 then P - I

%

n = size(v,1);

if v(i:n) == zeros(n - i + 1,1)

P = eye(n);

else

PP = eye(n - i + 1) - 2*v(i:n)*v(i:n)’;

P = [eye(i-1) zeros(i-1, n - i + 1); zeros(n - i + 1, i - 1) PP];

end

end

The function buildQ builds the matrix Q in the QR-decomposition of A.

function Q = buildQ(u)

% Builds the matrix Q in the QR decomposition

% of an nxn matrix A using Householder matrices,

% where u is a representation of the n - 1

% Householder reflection by a list u of vectors produced by

% houseqr

n = size(u,1);

Q = buildhouse(u(:,1),1);

for i = 2:n-1

Q = Q*buildhouse(u(:,i),i);

end

end

The function buildhouseQR computes a QR-factorization of A. At the end, if some
entries on the diagonal of R are negative, it creates a diagonal orthogonal matrix P such that
PR has nonnegative diagonal entries, so that A = (QP )(PR) is the desired QR-factorization
of A.
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function [Q,R] = buildhouseQR(A)

%

% Computes the QR decomposition of a square

% matrix A (possibly singular) using Householder reflections

n = size(A,1);

[R,u] = houseqr(A);

Q = buildQ(u);

% Produces a matrix R whose diagonal entries are

% nonnegative

P = eye(n);

for i = 1:n

if R(i,i) < 0

P(i,i) = -1;

end

end

Q = Q*P; R = P*R;

end

Example 12.1. Consider the matrix

A =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

 .

Running the function buildhouseQR, we get

Q =


0.1826 0.8165 0.4001 0.3741
0.3651 0.4082 −0.2546 −0.7970
0.5477 −0.0000 −0.6910 0.4717
0.7303 −0.4082 0.5455 −0.0488


and

R =


5.4772 7.3030 9.1287 10.9545

0 0.8165 1.6330 2.4495
0 −0.0000 0.0000 0.0000
0 −0.0000 0 0.0000

 .

Observe that A has rank 2. The reader should check that A = QR.

Remark: Curiously, running Matlab built-in function qr, the same R is obtained (up to
column signs) but a different Q is obtained (the last two columns are different).
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12.3 Summary

The main concepts and results of this chapter are listed below:

• Symmetry (or reflection) with respect to F and parallel to G.

• Orthogonal symmetry (or reflection) with respect to F and parallel to G; reflections ,
flips .

• Hyperplane reflections and Householder matrices .

• A key fact about reflections (Proposition 12.2).

• QR-decomposition in terms of Householder transformations (Theorem 12.4).

12.4 Problems

Problem 12.1. (1) Given a unit vector (− sin θ, cos θ), prove that the Householder matrix
determined by the vector (− sin θ, cos θ) is(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

Give a geometric interpretation (i.e., why the choice (− sin θ, cos θ)?).

(2) Given any matrix

A =

(
a b
c d

)
,

Prove that there is a Householder matrix H such that AH is lower triangular, i.e.,

AH =

(
a′ 0
c′ d′

)
for some a′, c′, d′ ∈ R.

Problem 12.2. Given a Euclidean space E of dimension n, if h is a reflection about some
hyperplane orthogonal to a nonzero vector u and f is any isometry, prove that f ◦ h ◦ f−1 is
the reflection about the hyperplane orthogonal to f(u).

Problem 12.3. (1) Given a matrix

A =

(
a b
c d

)
,

prove that there are Householder matrices G,H such that

GAH =

(
cos θ sin θ
sin θ − cos θ

)(
a b
c d

)(
cosϕ sinϕ
sinϕ − cosϕ

)
= D,
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where D is a diagonal matrix, iff the following equations hold:

(b+ c) cos(θ + ϕ) = (a− d) sin(θ + ϕ),

(c− b) cos(θ − ϕ) = (a+ d) sin(θ − ϕ).

(2) Discuss the solvability of the system. Consider the following cases:

Case 1: a− d = a+ d = 0.

Case 2a: a− d = b+ c = 0, a+ d 6= 0.

Case 2b: a− d = 0, b+ c 6= 0, a+ d 6= 0.

Case 3a: a+ d = c− b = 0, a− d 6= 0.

Case 3b: a+ d = 0, c− b 6= 0, a− d 6= 0.

Case 4: a+ d 6= 0, a− d 6= 0. Show that the solution in this case is

θ =
1

2

[
arctan

(
b+ c

a− d

)
+ arctan

(
c− b
a+ d

)]
,

ϕ =
1

2

[
arctan

(
b+ c

a− d

)
− arctan

(
c− b
a+ d

)]
.

If b = 0, show that the discussion is simpler: basically, consider c = 0 or c 6= 0.

(3) Expressing everything in terms of u = cot θ and v = cotϕ, show that the equations
in (2) become

(b+ c)(uv − 1) = (u+ v)(a− d),

(c− b)(uv + 1) = (−u+ v)(a+ d).

Problem 12.4. Let A be an n× n real invertible matrix.

(1) Prove that A>A is symmetric positive definite.

(2) Use the Cholesky factorization A>A = R>R with R upper triangular with positive di-
agonal entries to prove that Q = AR−1 is orthogonal, so that A = QR is the QR-factorization
of A.

Problem 12.5. Modify the function houseqr so that it applies to an m × n matrix with
m ≥ n, to produce an m× n upper-triangular matrix whose last m− n rows are zeros.

Problem 12.6. The purpose of this problem is to prove that given any self-adjoint linear
map f : E → E (i.e., such that f ∗ = f), where E is a Euclidean space of dimension n ≥ 3,
given an orthonormal basis (e1, . . . , en), there are n− 2 isometries hi, hyperplane reflections
or the identity, such that the matrix of

hn−2 ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hn−2
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is a symmetric tridiagonal matrix.

(1) Prove that for any isometry f : E → E, we have f = f ∗ = f−1 iff f ◦ f = id.

Prove that if f and h are self-adjoint linear maps (f ∗ = f and h∗ = h), then h ◦ f ◦ h is
a self-adjoint linear map.

(2) Let Vk be the subspace spanned by (ek+1, . . . , en). Proceed by induction. For the
base case, proceed as follows.

Let
f(e1) = a0

1e1 + · · ·+ a0
nen,

and let
r1, 2 =

∥∥a0
2e2 + · · ·+ a0

nen
∥∥ .

Find an isometry h1 (reflection or id) such that

h1(f(e1)− a0
1e1) = r1, 2 e2.

Observe that
w1 = r1, 2 e2 + a0

1e1 − f(e1) ∈ V1,

and prove that h1(e1) = e1, so that

h1 ◦ f ◦ h1(e1) = a0
1e1 + r1, 2 e2.

Let f1 = h1 ◦ f ◦ h1.

Assuming by induction that

fk = hk ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hk

has a tridiagonal matrix up to the kth row and column, 1 ≤ k ≤ n− 3, let

fk(ek+1) = akkek + akk+1ek+1 + · · ·+ aknen,

and let
rk+1, k+2 =

∥∥akk+2ek+2 + · · ·+ aknen
∥∥ .

Find an isometry hk+1 (reflection or id) such that

hk+1(fk(ek+1)− akkek − akk+1ek+1) = rk+1, k+2 ek+2.

Observe that

wk+1 = rk+1, k+2 ek+2 + akkek + akk+1ek+1 − fk(ek+1) ∈ Vk+1,

and prove that hk+1(ek) = ek and hk+1(ek+1) = ek+1, so that

hk+1 ◦ fk ◦ hk+1(ek+1) = akkek + akk+1ek+1 + rk+1, k+2 ek+2.
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Let fk+1 = hk+1 ◦ fk ◦ hk+1, and finish the proof.

(3) Prove that given any symmetric n×n-matrix A, there are n−2 matrices H1, . . . , Hn−2,
Householder matrices or the identity, such that

B = Hn−2 · · ·H1AH1 · · ·Hn−2

is a symmetric tridiagonal matrix.

(4) Write a computer program implementing the above method.

Problem 12.7. Recall from Problem 5.6 that an n × n matrix H is upper Hessenberg if
hjk = 0 for all (j, k) such that j − k ≥ 0. Adapt the proof of Problem 12.6 to prove that
given any n× n-matrix A, there are n− 2 ≥ 1 matrices H1, . . . , Hn−2, Householder matrices
or the identity, such that

B = Hn−2 · · ·H1AH1 · · ·Hn−2

is upper Hessenberg.

Problem 12.8. The purpose of this problem is to prove that given any linear map f : E → E,
where E is a Euclidean space of dimension n ≥ 2, given an orthonormal basis (e1, . . . , en),
there are isometries gi, hi, hyperplane reflections or the identity, such that the matrix of

gn ◦ · · · ◦ g1 ◦ f ◦ h1 ◦ · · · ◦ hn
is a lower bidiagonal matrix, which means that the nonzero entries (if any) are on the main
descending diagonal and on the diagonal below it.

(1) Let U ′k be the subspace spanned by (e1, . . . , ek) and U ′′k be the subspace spanned by
(ek+1, . . . , en), 1 ≤ k ≤ n− 1. Proceed by induction For the base case, proceed as follows.

Let v1 = f ∗(e1) and r1, 1 = ‖v1‖. Find an isometry h1 (reflection or id) such that

h1(f ∗(e1)) = r1, 1e1.

Observe that h1(f ∗(e1)) ∈ U ′1, so that

〈h1(f ∗(e1)), ej〉 = 0

for all j, 2 ≤ j ≤ n, and conclude that

〈e1, f ◦ h1(ej)〉 = 0

for all j, 2 ≤ j ≤ n.

Next let
u1 = f ◦ h1(e1) = u′1 + u′′1,

where u′1 ∈ U ′1 and u′′1 ∈ U ′′1 , and let r2, 1 = ‖u′′1‖. Find an isometry g1 (reflection or id) such
that

g1(u′′1) = r2, 1e2.
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Show that g1(e1) = e1,
g1 ◦ f ◦ h1(e1) = u′1 + r2, 1e2,

and that
〈e1, g1 ◦ f ◦ h1(ej)〉 = 0

for all j, 2 ≤ j ≤ n. At the end of this stage, show that g1 ◦ f ◦ h1 has a matrix such that
all entries on its first row except perhaps the first are zero, and that all entries on the first
column, except perhaps the first two, are zero.

Assume by induction that some isometries g1, . . . , gk and h1, . . . , hk have been found,
either reflections or the identity, and such that

fk = gk ◦ · · · ◦ g1 ◦ f ◦ h1 · · · ◦ hk
has a matrix which is lower bidiagonal up to and including row and column k, where 1 ≤
k ≤ n− 2.

Let
vk+1 = f ∗k (ek+1) = v′k+1 + v′′k+1,

where v′k+1 ∈ U ′k and v′′k+1 ∈ U ′′k , and let rk+1, k+1 =
∥∥v′′k+1

∥∥. Find an isometry hk+1 (reflection
or id) such that

hk+1(v′′k+1) = rk+1, k+1ek+1.

Show that if hk+1 is a reflection, then U ′k ⊆ Hk+1, where Hk+1 is the hyperplane defining the
reflection hk+1. Deduce that hk+1(v′k+1) = v′k+1, and that

hk+1(f ∗k (ek+1)) = v′k+1 + rk+1, k+1ek+1.

Observe that hk+1(f ∗k (ek+1)) ∈ U ′k+1, so that

〈hk+1(f ∗k (ek+1)), ej〉 = 0

for all j, k + 2 ≤ j ≤ n, and thus,

〈ek+1, fk ◦ hk+1(ej)〉 = 0

for all j, k + 2 ≤ j ≤ n.

Next let
uk+1 = fk ◦ hk+1(ek+1) = u′k+1 + u′′k+1,

where u′k+1 ∈ U ′k+1 and u′′k+1 ∈ U ′′k+1, and let rk+2, k+1 =
∥∥u′′k+1

∥∥. Find an isometry gk+1

(reflection or id) such that
gk+1(u′′k+1) = rk+2, k+1ek+2.

Show that if gk+1 is a reflection, then U ′k+1 ⊆ Gk+1, where Gk+1 is the hyperplane defining
the reflection gk+1. Deduce that gk+1(ei) = ei for all i, 1 ≤ i ≤ k + 1, and that

gk+1 ◦ fk ◦ hk+1(ek+1) = u′k+1 + rk+2, k+1ek+2.
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Since by induction hypothesis,
〈ei, fk ◦ hk+1(ej)〉 = 0

for all i, j, 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ n, and since gk+1(ei) = ei for all i, 1 ≤ i ≤ k + 1,
conclude that

〈ei, gk+1 ◦ fk ◦ hk+1(ej)〉 = 0

for all i, j, 1 ≤ i ≤ k + 1, k + 2 ≤ j ≤ n. Finish the proof.
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Chapter 13

Hermitian Spaces

13.1 Sesquilinear and Hermitian Forms, Pre-Hilbert

Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in Chapter
11 to vector spaces over the complex numbers. Such a generalization is inevitable and not
simply a luxury. For example, linear maps may not have real eigenvalues, but they always
have complex eigenvalues. Furthermore, some very important classes of linear maps can
be diagonalized if they are extended to the complexification of a real vector space. This
is the case for orthogonal matrices and, more generally, normal matrices. Also, complex
vector spaces are often the natural framework in physics or engineering, and they are more
convenient for dealing with Fourier series. However, some complications arise due to complex
conjugation.

Recall that for any complex number z ∈ C, if z = x+ iy where x, y ∈ R, we let <z = x,
the real part of z, and =z = y, the imaginary part of z. We also denote the conjugate of
z = x+ iy by z = x− iy, and the absolute value (or length, or modulus) of z by |z|. Recall
that |z|2 = zz = x2 + y2.

There are many natural situations where a map ϕ : E × E → C is linear in its first
argument and only semilinear in its second argument, which means that ϕ(u, µv) = µϕ(u, v),
as opposed to ϕ(u, µv) = µϕ(u, v). For example, the natural inner product to deal with
functions f : R→ C, especially Fourier series, is

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

which is semilinear (but not linear) in g. Thus, when generalizing a result from the real case
of a Euclidean space to the complex case, we always have to check very carefully that our
proofs do not rely on linearity in the second argument. Otherwise, we need to revise our
proofs, and sometimes the result is simply wrong!

483
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Before defining the natural generalization of an inner product, it is convenient to define
semilinear maps.

Definition 13.1. Given two vector spaces E and F over the complex field C, a function
f : E → F is semilinear if

f(u+ v) = f(u) + f(v),

f(λu) = λf(u),

for all u, v ∈ E and all λ ∈ C.

Remark: Instead of defining semilinear maps, we could have defined the vector space E as
the vector space with the same carrier set E whose addition is the same as that of E, but
whose multiplication by a complex number is given by

(λ, u) 7→ λu.

Then it is easy to check that a function f : E → C is semilinear iff f : E → C is linear.

We can now define sesquilinear forms and Hermitian forms.

Definition 13.2. Given a complex vector space E, a function ϕ : E×E → C is a sesquilinear
form if it is linear in its first argument and semilinear in its second argument, which means
that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, µv) = µϕ(u, v),

for all u, v, u1, u2, v1, v2 ∈ E, and all λ, µ ∈ C. A function ϕ : E × E → C is a Hermitian
form if it is sesquilinear and if

ϕ(v, u) = ϕ(u, v)

for all all u, v ∈ E.

Obviously, ϕ(0, v) = ϕ(u, 0) = 0. Also note that if ϕ : E × E → C is sesquilinear, we
have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + |µ|2ϕ(v, v),

and if ϕ : E × E → C is Hermitian, we have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + 2<(λµϕ(u, v)) + |µ|2ϕ(v, v).

Note that restricted to real coefficients, a sesquilinear form is bilinear (we sometimes say
R-bilinear).
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Definition 13.3. Given a sesquilinear form ϕ : E×E → C, the function Φ: E → C defined
such that Φ(u) = ϕ(u, u) for all u ∈ E is called the quadratic form associated with ϕ.

The standard example of a Hermitian form on Cn is the map ϕ defined such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with these issues, we show the following
useful proposition.

Proposition 13.1. Given a complex vector space E, the following properties hold:

(1) A sesquilinear form ϕ : E×E → C is a Hermitian form iff ϕ(u, u) ∈ R for all u ∈ E.

(2) If ϕ : E × E → C is a sesquilinear form, then

4ϕ(u, v) = ϕ(u+ v, u+ v)− ϕ(u− v, u− v)

+ iϕ(u+ iv, u+ iv)− iϕ(u− iv, u− iv),

and

2ϕ(u, v) = (1 + i)(ϕ(u, u) + ϕ(v, v))− ϕ(u− v, u− v)− iϕ(u− iv, u− iv).

These are called polarization identities.

Proof. (1) If ϕ is a Hermitian form, then

ϕ(v, u) = ϕ(u, v)

implies that
ϕ(u, u) = ϕ(u, u),

and thus ϕ(u, u) ∈ R. If ϕ is sesquilinear and ϕ(u, u) ∈ R for all u ∈ E, then

ϕ(u+ v, u+ v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v),

which proves that
ϕ(u, v) + ϕ(v, u) = α,

where α is real, and changing u to iu, we have

i(ϕ(u, v)− ϕ(v, u)) = β,

where β is real, and thus

ϕ(u, v) =
α− iβ

2
and ϕ(v, u) =

α + iβ

2
,

proving that ϕ is Hermitian.

(2) These identities are verified by expanding the right-hand side, and we leave them as
an exercise.
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Proposition 13.1 shows that a sesquilinear form is completely determined by the quadratic
form Φ(u) = ϕ(u, u), even if ϕ is not Hermitian. This is false for a real bilinear form, unless
it is symmetric. For example, the bilinear form ϕ : R2 × R2 → R defined such that

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1

is not identically zero, and yet it is null on the diagonal. However, a real symmetric bilinear
form is indeed determined by its values on the diagonal, as we saw in Chapter 11.

As in the Euclidean case, Hermitian forms for which ϕ(u, u) ≥ 0 play an important role.

Definition 13.4. Given a complex vector space E, a Hermitian form ϕ : E × E → C is
positive if ϕ(u, u) ≥ 0 for all u ∈ E, and positive definite if ϕ(u, u) > 0 for all u 6= 0. A
pair 〈E,ϕ〉 where E is a complex vector space and ϕ is a Hermitian form on E is called a
pre-Hilbert space if ϕ is positive, and a Hermitian (or unitary) space if ϕ is positive definite.

We warn our readers that some authors, such as Lang [42], define a pre-Hilbert space as
what we define as a Hermitian space. We prefer following the terminology used in Schwartz
[54] and Bourbaki [10]. The quantity ϕ(u, v) is usually called the Hermitian product of u
and v. We will occasionally call it the inner product of u and v.

Given a pre-Hilbert space 〈E,ϕ〉, as in the case of a Euclidean space, we also denote
ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),

and
√

Φ(u) by ‖u‖.

Example 13.1. The complex vector space Cn under the Hermitian form

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn

is a Hermitian space.

Example 13.2. Let `2 denote the set of all countably infinite sequences x = (xi)i∈N of
complex numbers such that

∑∞
i=0 |xi|2 is defined (i.e., the sequence

∑n
i=0 |xi|2 converges as

n→ ∞). It can be shown that the map ϕ : `2 × `2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑
i=0

xiyi

is well defined, and `2 is a Hermitian space under ϕ. Actually, `2 is even a Hilbert space.

Example 13.3. Let Cpiece[a, b] be the set of bounded piecewise continuous functions
f : [a, b]→ C under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive, but it is not definite. Thus, under
this Hermitian form, Cpiece[a, b] is only a pre-Hilbert space.
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Example 13.4. Let C[a, b] be the set of complex-valued continuous functions f : [a, b]→ C
under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive definite. Thus, C[a, b] is a Hermitian
space.

Example 13.5. Let E = Mn(C) be the vector space of complex n × n matrices. If we
view a matrix A ∈ Mn(C) as a “long” column vector obtained by concatenating together its
columns, we can define the Hermitian product of two matrices A,B ∈ Mn(C) as

〈A,B〉 =
n∑

i,j=1

aijbij,

which can be conveniently written as

〈A,B〉 = tr(A>B) = tr(B∗A).

Since this can be viewed as the standard Hermitian product on Cn2
, it is a Hermitian product

on Mn(C). The corresponding norm

‖A‖F =
√

tr(A∗A)

is the Frobenius norm (see Section 8.2).

If E is finite-dimensional and if ϕ : E × E → R is a sequilinear form on E, given any
basis (e1, . . . , en) of E, we can write x =

∑n
i=1 xiei and y =

∑n
j=1 yjej, and we have

ϕ(x, y) = ϕ

( n∑
i=1

xiei,
n∑
j=1

yjej

)
=

n∑
i,j=1

xiyjϕ(ei, ej).

If we let G = (gij) be the matrix given by gij = ϕ(ej, ei), and if x and y are the column
vectors associated with (x1, . . . , xn) and (y1, . . . , yn), then we can write

ϕ(x, y) = x>G> y = y∗Gx,

where y corresponds to (y1, . . . , yn). As in Section 11.1, we are committing the slight abuse of
notation of letting x denote both the vector x =

∑n
i=1 xiei and the column vector associated

with (x1, . . . , xn) (and similarly for y). The “correct” expression for ϕ(x, y) is

ϕ(x, y) = y∗Gx = x>G>y.

� Observe that in ϕ(x, y) = y∗Gx, the matrix involved is the transpose of the matrix
(ϕ(ei, ej)). The reason for this is that we want G to be positive definite when ϕ is

positive definite, not G>.
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Furthermore, observe that ϕ is Hermitian iff G = G∗, and ϕ is positive definite iff the
matrix G is positive definite, that is,

(Gx)>x = x∗Gx > 0 for all x ∈ Cn, x 6= 0.

Definition 13.5. The matrix G associated with a Hermitian product is called the Gram
matrix of the Hermitian product with respect to the basis (e1, . . . , en).

Conversely, if A is a Hermitian positive definite n×n matrix, it is easy to check that the
Hermitian form

〈x, y〉 = y∗Ax

is positive definite. If we make a change of basis from the basis (e1, . . . , en) to the basis
(f1, . . . , fn), and if the change of basis matrix is P (where the jth column of P consists of
the coordinates of fj over the basis (e1, . . . , en)), then with respect to coordinates x′ and y′

over the basis (f1, . . . , fn), we have

y∗Gx = (y′)∗P ∗GPx′,

so the matrix of our inner product over the basis (f1, . . . , fn) is P ∗GP . We summarize these
facts in the following proposition.

Proposition 13.2. Let E be a finite-dimensional vector space, and let (e1, . . . , en) be a basis
of E.

1. For any Hermitian inner product 〈−,−〉 on E, if G = (gij) with gij = 〈ej, ei〉 is the
Gram matrix of the Hermitian product 〈−,−〉 w.r.t. the basis (e1, . . . , en), then G is
Hermitian positive definite.

2. For any change of basis matrix P , the Gram matrix of 〈−,−〉 with respect to the new
basis is P ∗GP .

3. If A is any n× n Hermitian positive definite matrix, then

〈x, y〉 = y∗Ax

is a Hermitian product on E.

We will see later that a Hermitian matrix is positive definite iff its eigenvalues are all
positive.

The following result reminiscent of the first polarization identity of Proposition 13.1 can
be used to prove that two linear maps are identical.

Proposition 13.3. Given any Hermitian space E with Hermitian product 〈−,−〉, for any
linear map f : E → E, if 〈f(x), x〉 = 0 for all x ∈ E, then f = 0.
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Proof. Compute 〈f(x+ y), x+ y〉 and 〈f(x− y), x− y〉:

〈f(x+ y), x+ y〉 = 〈f(x), x〉+ 〈f(x), y〉+ 〈f(y), x〉+ 〈y, y〉
〈f(x− y), x− y〉 = 〈f(x), x〉 − 〈f(x), y〉 − 〈f(y), x〉+ 〈y, y〉;

then subtract the second equation from the first to obtain

〈f(x+ y), x+ y〉 − 〈f(x− y), x− y〉 = 2(〈f(x), y〉+ 〈f(y), x〉).

If 〈f(u), u〉 = 0 for all u ∈ E, we get

〈f(x), y〉+ 〈f(y), x〉 = 0 for all x, y ∈ E.

Then the above equation also holds if we replace x by ix, and we obtain

i〈f(x), y〉 − i〈f(y), x〉 = 0, for all x, y ∈ E,

so we have

〈f(x), y〉+ 〈f(y), x〉 = 0

〈f(x), y〉 − 〈f(y), x〉 = 0,

which implies that 〈f(x), y〉 = 0 for all x, y ∈ E. Since 〈−,−〉 is positive definite, we have
f(x) = 0 for all x ∈ E; that is, f = 0.

One should be careful not to apply Proposition 13.3 to a linear map on a real Euclidean
space because it is false! The reader should find a counterexample.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-Hilbert
spaces and to Hermitian spaces.

Proposition 13.4. Let 〈E,ϕ〉 be a pre-Hilbert space with associated quadratic form Φ. For
all u, v ∈ E, we have the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are linearly de-
pendent.

We also have the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are linearly de-
pendent, where in addition, if u 6= 0 and v 6= 0, then u = λv for some real λ such that
λ > 0.
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Proof. For all u, v ∈ E and all µ ∈ C, we have observed that

ϕ(u+ µv, u+ µv) = ϕ(u, u) + 2<(µϕ(u, v)) + |µ|2ϕ(v, v).

Let ϕ(u, v) = ρeiθ, where |ϕ(u, v)| = ρ (ρ ≥ 0). Let F : R→ R be the function defined such
that

F (t) = Φ(u+ teiθv),

for all t ∈ R. The above shows that

F (t) = ϕ(u, u) + 2t|ϕ(u, v)|+ t2ϕ(v, v) = Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v).

Since ϕ is assumed to be positive, we have F (t) ≥ 0 for all t ∈ R. If Φ(v) = 0, we must have
ϕ(u, v) = 0, since otherwise, F (t) could be made negative by choosing t negative and small
enough. If Φ(v) > 0, in order for F (t) to be nonnegative, the equation

Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v) = 0

must not have distinct real roots, which is equivalent to

|ϕ(u, v)|2 ≤ Φ(u)Φ(v).

Taking the square root on both sides yields the Cauchy–Schwarz inequality.

For the second part of the claim, if ϕ is positive definite, we argue as follows. If u and v
are linearly dependent, it is immediately verified that we get an equality. Conversely, if

|ϕ(u, v)|2 = Φ(u)Φ(v),

then there are two cases. If Φ(v) = 0, since ϕ is positive definite, we must have v = 0, so u
and v are linearly dependent. Otherwise, the equation

Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v) = 0

has a double root t0, and thus
Φ(u+ t0e

iθv) = 0.

Since ϕ is positive definite, we must have

u+ t0e
iθv = 0,

which shows that u and v are linearly dependent.

If we square the Minkowski inequality, we get

Φ(u+ v) ≤ Φ(u) + Φ(v) + 2
√

Φ(u)
√

Φ(v).

However, we observed earlier that

Φ(u+ v) = Φ(u) + Φ(v) + 2<(ϕ(u, v)).
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Thus, it is enough to prove that

<(ϕ(u, v)) ≤
√

Φ(u)
√

Φ(v),

but this follows from the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v)

and the fact that <z ≤ |z|.
If ϕ is positive definite and u and v are linearly dependent, it is immediately verified that

we get an equality. Conversely, if equality holds in the Minkowski inequality, we must have

<(ϕ(u, v)) =
√

Φ(u)
√

Φ(v),

which implies that
|ϕ(u, v)| =

√
Φ(u)

√
Φ(v),

since otherwise, by the Cauchy–Schwarz inequality, we would have

<(ϕ(u, v)) ≤ |ϕ(u, v)| <
√

Φ(u)
√

Φ(v).

Thus, equality holds in the Cauchy–Schwarz inequality, and

<(ϕ(u, v)) = |ϕ(u, v)|.

But then we proved in the Cauchy–Schwarz case that u and v are linearly dependent. Since
we also just proved that ϕ(u, v) is real and nonnegative, the coefficient of proportionality
between u and v is indeed nonnegative.

As in the Euclidean case, if 〈E,ϕ〉 is a Hermitian space, the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√

Φ(u) is a norm on E. The norm induced by ϕ is called the

Hermitian norm induced by ϕ. We usually denote
√

Φ(u) by ‖u‖, and the Cauchy–Schwarz
inequality is written as

|u · v| ≤ ‖u‖‖v‖.

Since a Hermitian space is a normed vector space, it is a topological space under the
topology induced by the norm (a basis for this topology is given by the open balls B0(u, ρ)
of center u and radius ρ > 0, where

B0(u, ρ) = {v ∈ E | ‖v − u‖ < ρ}.

If E has finite dimension, every linear map is continuous; see Chapter 8 (or Lang [42, 43],
Dixmier [18], or Schwartz [54, 55]). The Cauchy–Schwarz inequality

|u · v| ≤ ‖u‖‖v‖
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shows that ϕ : E × E → C is continuous, and thus, that ‖ ‖ is continuous.

If 〈E,ϕ〉 is only pre-Hilbertian, ‖u‖ is called a seminorm. In this case, the condition

‖u‖ = 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that if ‖u‖ = 0, then
u · v = 0 for all v ∈ E.

Remark: As in the case of real vector spaces, a norm on a complex vector space is induced
by some positive definite Hermitian product 〈−,−〉 iff it satisfies the parallelogram law :

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

This time the Hermitian product is recovered using the polarization identity from Proposition
13.1:

4〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2 + i ‖u+ iv‖2 − i ‖u− iv‖2 .

It is easy to check that 〈u, u〉 = ‖u‖2, and

〈v, u〉 = 〈u, v〉
〈iu, v〉 = i〈u, v〉,

so it is enough to check linearity in the variable u, and only for real scalars. This is easily
done by applying the proof from Section 11.1 to the real and imaginary part of 〈u, v〉; the
details are left as an exercise.

We will now basically mirror the presentation of Euclidean geometry given in Chapter
11 rather quickly, leaving out most proofs, except when they need to be seriously amended.

13.2 Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We denote the Her-
mitian inner product by u · v or 〈u, v〉. The concepts of orthogonality, orthogonal family of
vectors, orthonormal family of vectors, and orthogonal complement of a set of vectors are
unchanged from the Euclidean case (Definition 11.2).

For example, the set C[−π, π] of continuous functions f : [−π, π] → C is a Hermitian
space under the product

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

and the family (eikx)k∈Z is orthogonal.

Propositions 11.4 and 11.5 hold without any changes. It is easy to show that∥∥∥∥∥
n∑
i=1

ui

∥∥∥∥∥
2

=
n∑
i=1

‖ui‖2 +
∑

1≤i<j≤n
2<(ui · uj).



13.2. ORTHOGONALITY, DUALITY, ADJOINT OF A LINEAR MAP 493

Analogously to the case of Euclidean spaces of finite dimension, the Hermitian product
induces a canonical bijection (i.e., independent of the choice of bases) between the vector
space E and the space E∗. This is one of the places where conjugation shows up, but in this
case, troubles are minor.

Given a Hermitian space E, for any vector u ∈ E, let ϕlu : E → C be the map defined
such that

ϕlu(v) = u · v, for all v ∈ E.
Similarly, for any vector v ∈ E, let ϕrv : E → C be the map defined such that

ϕrv(u) = u · v, for all u ∈ E.

Since the Hermitian product is linear in its first argument u, the map ϕrv is a linear form
in E∗, and since it is semilinear in its second argument v, the map ϕlu is also a linear form
in E∗. Thus, we have two maps [l : E → E∗ and [r : E → E∗, defined such that

[l(u) = ϕlu, and [r(v) = ϕrv.

Proposition 13.5. The equations ϕlu = ϕru and [l = [r hold.

Proof. Indeed, for all u, v ∈ E, we have

[l(u)(v) = ϕlu(v)

= u · v
= v · u
= ϕru(v)

= [r(u)(v).

Therefore, we use the notation ϕu for both ϕlu and ϕru, and [ for both [l and [r.

Theorem 13.6. Let E be a Hermitian space E. The map [ : E → E∗ defined such that

[(u) = ϕlu = ϕru for all u ∈ E
is semilinear and injective. When E is also of finite dimension, the map [ : E → E∗ is a
canonical isomorphism.

Proof. That [ : E → E∗ is a semilinear map follows immediately from the fact that [ = [r,
and that the Hermitian product is semilinear in its second argument. If ϕu = ϕv, then
ϕu(w) = ϕv(w) for all w ∈ E, which by definition of ϕu and ϕv means that

w · u = w · v
for all w ∈ E, which by semilinearity on the right is equivalent to

w · (v − u) = 0 for all w ∈ E,
which implies that u = v, since the Hermitian product is positive definite. Thus, [ : E → E∗

is injective. Finally, when E is of finite dimension n, E∗ is also of dimension n, and then
[ : E → E∗ is bijective. Since [ is semilinar, the map [ : E → E∗ is an isomorphism.
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The inverse of the isomorphism [ : E → E∗ is denoted by ] : E∗ → E.

As a corollary of the isomorphism [ : E → E∗ we have the following result.

Proposition 13.7. If E is a Hermitian space of finite dimension, then every linear form
f ∈ E∗ corresponds to a unique v ∈ E, such that

f(u) = u · v, for every u ∈ E.

In particular, if f is not the zero form, the kernel of f , which is a hyperplane H, is precisely
the set of vectors that are orthogonal to v.

Remarks:

1. The “musical map” [ : E → E∗ is not surjective when E has infinite dimension. This
result can be salvaged by restricting our attention to continuous linear maps and by
assuming that the vector space E is a Hilbert space.

2. Dirac’s “bra-ket” notation. Dirac invented a notation widely used in quantum me-
chanics for denoting the linear form ϕu = [(u) associated to the vector u ∈ E via the
duality induced by a Hermitian inner product. Dirac’s proposal is to denote the vectors
u in E by |u〉, and call them kets ; the notation |u〉 is pronounced “ket u.” Given two
kets (vectors) |u〉 and |v〉, their inner product is denoted by

〈u|v〉

(instead of |u〉 · |v〉). The notation 〈u|v〉 for the inner product of |u〉 and |v〉 anticipates
duality. Indeed, we define the dual (usually called adjoint) bra u of ket u, denoted by
〈u|, as the linear form whose value on any ket v is given by the inner product, so

〈u|(|v〉) = 〈u|v〉.

Thus, bra u = 〈u| is Dirac’s notation for our [(u). Since the map [ is semi-linear, we
have

〈λu| = λ〈u|.
Using the bra-ket notation, given an orthonormal basis (|u1〉, . . . , |un〉), ket v (a vector)
is written as

|v〉 =
n∑
i=1

〈v|ui〉|ui〉,

and the corresponding linear form bra v is written as

〈v| =
n∑
i=1

〈v|ui〉〈ui| =
n∑
i=1

〈ui|v〉〈ui|

over the dual basis (〈u1|, . . . , 〈un|). As cute as it looks, we do not recommend using
the Dirac notation.
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The existence of the isomorphism [ : E → E∗ is crucial to the existence of adjoint maps.
Indeed, Theorem 13.6 allows us to define the adjoint of a linear map on a Hermitian space.
Let E be a Hermitian space of finite dimension n, and let f : E → E be a linear map. For
every u ∈ E, the map

v 7→ u · f(v)

is clearly a linear form in E∗, and by Theorem 13.6, there is a unique vector in E denoted
by f ∗(u), such that

f ∗(u) · v = u · f(v),

that is,
f ∗(u) · v = u · f(v), for every v ∈ E.

The following proposition shows that the map f ∗ is linear.

Proposition 13.8. Given a Hermitian space E of finite dimension, for every linear map
f : E → E there is a unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f(v), for all u, v ∈ E.
Proof. Careful inspection of the proof of Proposition 11.8 reveals that it applies unchanged.
The only potential problem is in proving that f ∗(λu) = λf ∗(u), but everything takes place
in the first argument of the Hermitian product, and there, we have linearity.

Definition 13.6. Given a Hermitian space E of finite dimension, for every linear map
f : E → E, the unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f(v), for all u, v ∈ E
given by Proposition 13.8 is called the adjoint of f (w.r.t. to the Hermitian product).

The fact that
v · u = u · v

implies that the adjoint f ∗ of f is also characterized by

f(u) · v = u · f ∗(v),

for all u, v ∈ E.

Given two Hermitian spaces E and F , where the Hermitian product on E is denoted
by 〈−,−〉1 and the Hermitian product on F is denoted by 〈−,−〉2, given any linear map
f : E → F , it is immediately verified that the proof of Proposition 13.8 can be adapted to
show that there is a unique linear map f ∗ : F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

As in the Euclidean case, the following properties immediately follow from the definition
of the adjoint map.
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Proposition 13.9. (1) For any linear map f : E → F , we have

f ∗∗ = f.

(2) For any two linear maps f, g : E → F and any scalar λ ∈ R:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗.

(3) If E,F,G are Hermitian spaces with respective inner products 〈−,−〉1, 〈−,−〉2, and
〈−,−〉3, and if f : E → F and g : F → G are two linear maps, then

(g ◦ f)∗ = f ∗ ◦ g∗.

As in the Euclidean case, a linear map f : E → E (where E is a finite-dimensional
Hermitian space) is self-adjoint if f = f ∗. The map f is positive semidefinite iff

〈f(x), x〉 ≥ 0 all x ∈ E;

positive definite iff
〈f(x), x〉 > 0 all x ∈ E, x 6= 0.

An interesting corollary of Proposition 13.3 is that a positive semidefinite linear map must
be self-adjoint. In fact, we can prove a slightly more general result.

Proposition 13.10. Given any finite-dimensional Hermitian space E with Hermitian prod-
uct 〈−,−〉, for any linear map f : E → E, if 〈f(x), x〉 ∈ R for all x ∈ E, then f is
self-adjoint. In particular, any positive semidefinite linear map f : E → E is self-adjoint.

Proof. Since 〈f(x), x〉 ∈ R for all x ∈ E, we have

〈f(x), x〉 = 〈f(x), x〉
= 〈x, f(x)〉
= 〈f ∗(x), x〉,

so we have
〈(f − f ∗)(x), x〉 = 0 all x ∈ E,

and Proposition 13.3 implies that f − f ∗ = 0.

Beware that Proposition 13.10 is false if E is a real Euclidean space.

As in the Euclidean case, Theorem 13.6 can be used to show that any Hermitian space
of finite dimension has an orthonormal basis. The proof is unchanged.

Proposition 13.11. Given any nontrivial Hermitian space E of finite dimension n ≥ 1,
there is an orthonormal basis (u1, . . . , un) for E.
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The Gram–Schmidt orthonormalization procedure also applies to Hermitian spaces of
finite dimension, without any changes from the Euclidean case!

Proposition 13.12. Given a nontrivial Hermitian space E of finite dimension n ≥ 1, from
any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E with
the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate
the same subspace.

Remark: The remarks made after Proposition 11.10 also apply here, except that in the
QR-decomposition, Q is a unitary matrix.

As a consequence of Proposition 11.9 (or Proposition 13.12), given any Hermitian space
of finite dimension n, if (e1, . . . , en) is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · ·+ unen and v = v1e1 + · · ·+ vnen, the Hermitian product u · v is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · ·+ unen‖ =

( n∑
i=1

|ui|2
)1/2

.

The fact that a Hermitian space always has an orthonormal basis implies that any Gram
matrix G can be written as

G = Q∗Q,

for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram
matrix G becomes G′ = P ∗GP . If the basis corresponding to G′ is orthonormal, then G′ = I,
so G = (P−1)∗P−1.

Proposition 11.11 also holds unchanged.

Proposition 13.13. Given any nontrivial Hermitian space E of finite dimension n ≥ 1, for
any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension n − k,
and E = F ⊕ F⊥. Furthermore, we have F⊥⊥ = F .

13.3 Linear Isometries (Also Called Unitary Transfor-

mations)

In this section we consider linear maps between Hermitian spaces that preserve the Hermitian
norm. All definitions given for Euclidean spaces in Section 11.5 extend to Hermitian spaces,
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except that orthogonal transformations are called unitary transformation, but Proposition
11.12 extends only with a modified Condition (2). Indeed, the old proof that (2) implies
(3) does not work, and the implication is in fact false! It can be repaired by strengthening
Condition (2). For the sake of completeness, we state the Hermitian version of Definition
11.5.

Definition 13.7. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, a function f : E → F is a unitary transformation, or a linear isometry , if it is
linear and

‖f(u)‖ = ‖u‖, for all u ∈ E.

Proposition 11.12 can be salvaged by strengthening Condition (2).

Proposition 13.14. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v)− f(u)‖ = ‖v − u‖ and f(iu) = if(u), for all u, v ∈ E.

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Proposition 11.12 needs to be revised as
follows. We use the polarization identity

2ϕ(u, v) = (1 + i)(‖u‖2 + ‖v‖2)− ‖u− v‖2 − i‖u− iv‖2.

Since f(iv) = if(v), we get f(0) = 0 by setting v = 0, so the function f preserves distance
and norm, and we get

2ϕ(f(u), f(v)) = (1 + i)(‖f(u)‖2 + ‖f(v)‖2)− ‖f(u)− f(v)‖2

− i‖f(u)− if(v)‖2

= (1 + i)(‖f(u)‖2 + ‖f(v)‖2)− ‖f(u)− f(v)‖2

− i‖f(u)− f(iv)‖2

= (1 + i)(‖u‖2 + ‖v‖2)− ‖u− v‖2 − i‖u− iv‖2

= 2ϕ(u, v),

which shows that f preserves the Hermitian inner product as desired. The rest of the proof
is unchanged.

Remarks:
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(i) In the Euclidean case, we proved that the assumption

‖f(v)− f(u)‖ = ‖v − u‖ for all u, v ∈ E and f(0) = 0 (2′)

implies (3). For this we used the polarization identity

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2.

In the Hermitian case the polarization identity involves the complex number i. In fact,
the implication (2′) implies (3) is false in the Hermitian case! Conjugation z 7→ z
satisfies (2′) since

|z2 − z1| = |z2 − z1| = |z2 − z1|,
and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring that there be some
τ ∈ E such that

f(τ + iu) = f(τ) + i(f(τ + u)− f(τ))

for all u ∈ E, then the function g : E → E defined such that

g(u) = f(τ + u)− f(τ)

satisfies the old conditions of (2), and the implications (2)→ (3) and (3)→ (1) prove
that g is linear, and thus that f is affine. In view of the first remark, some condition
involving i is needed on f , in addition to the fact that f is distance-preserving.

13.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean space,
we explore some of the fundamental properties of the unitary group and of unitary matrices.
As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain
the QR-decomposition for invertible matrices. In the Hermitian framework, the matrix of
the adjoint of a linear map is not given by the transpose of the original matrix, but by
the conjugate of the original matrix. For the reader’s convenience we recall the following
definitions from Section 8.2.

Definition 13.8. Given a complex m × n matrix A, the transpose A> of A is the n × m
matrix A> =

(
a>i j
)

defined such that

a>i j = aj i,

and the conjugate A of A is the m× n matrix A = (bi j) defined such that

bi j = ai j
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for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The adjoint A∗ of A is the matrix defined such that

A∗ = (A>) =
(
A
)>
.

Proposition 13.15. Let E be any Hermitian space of finite dimension n, and let f : E → E
be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then the matrix
of f ∗ is the adjoint A∗ of A, and f is an isometry iff A satisfies the identities

AA∗ = A∗A = In,

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-
mal basis of Cn, iff the rows of A form an orthonormal basis of Cn.

Proof. (1) The proof is identical to that of Proposition 11.14 (1).

(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai j) be the matrix of f , and let
B = (bi j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f(v)

for all u, v ∈ E, using the fact that if w = w1e1 + · · ·+ wnen, we have wk = w · ek, for all k,
1 ≤ k ≤ n; letting u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = f(ej) · ei = ai j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A∗. Now if X and Y are arbitrary matrices over the basis
(e1, . . . , en), denoting as usual the jth column of X by Xj, and similarly for Y , a simple
calculation shows that

Y ∗X = (Xj · Y i)1≤i,j≤n.

Then it is immediately verified that if X = Y = A, then A∗A = AA∗ = In iff the column
vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that (2) is clear.

Proposition 11.14 shows that the inverse of an isometry f is its adjoint f ∗. Proposition
11.14 also motivates the following definition.

Definition 13.9. A complex n× n matrix is a unitary matrix if

AA∗ = A∗A = In.
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Remarks:

(1) The conditions AA∗ = In, A∗A = In, and A−1 = A∗ are equivalent. Given any two
orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn), it is easy to show that the matrix P is unitary. The proof
of Proposition 13.14 (3) also shows that if f is an isometry, then the image of an
orthonormal basis (u1, . . . , un) is an orthonormal basis.

(2) Using the explicit formula for the determinant, we see immediately that

det(A) = det(A).

If f is a unitary transformation and A is its matrix with respect to any orthonormal
basis, from AA∗ = I, we get

det(AA∗) = det(A) det(A∗) = det(A)det(A>) = det(A)det(A) = | det(A)|2,

and so | det(A)| = 1. It is clear that the isometries of a Hermitian space of dimension
n form a group, and that the isometries of determinant +1 form a subgroup.

This leads to the following definition.

Definition 13.10. Given a Hermitian space E of dimension n, the set of isometries f : E →
E forms a subgroup of GL(E,C) denoted by U(E), or U(n) when E = Cn, called the
unitary group (of E). For every isometry f we have | det(f)| = 1, where det(f) denotes
the determinant of f . The isometries such that det(f) = 1 are called rotations, or proper
isometries, or proper unitary transformations , and they form a subgroup of the special
linear group SL(E,C) (and of U(E)), denoted by SU(E), or SU(n) when E = Cn, called
the special unitary group (of E). The isometries such that det(f) 6= 1 are called improper
isometries, or improper unitary transformations, or flip transformations .

A very important example of unitary matrices is provided by Fourier matrices (up to a
factor of

√
n), matrices that arise in the various versions of the discrete Fourier transform.

For more on this topic, see the problems, and Strang [63, 66].

The group SU(2) turns out to be the group of unit quaternions , invented by Hamilton.
This group plays an important role in the representation of rotations in SO(3) used in
computer graphics and robotics; see Chapter 15.

Now that we have the definition of a unitary matrix, we can explain how the Gram–
Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-
ces.

Definition 13.11. Given any complex n×n matrix A, a QR-decomposition of A is any pair
of n× n matrices (U,R), where U is a unitary matrix and R is an upper triangular matrix
such that A = UR.
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Proposition 13.16. Given any n× n complex matrix A, if A is invertible, then there is a
unitary matrix U and an upper triangular matrix R with positive diagonal entries such that
A = UR.

The proof is absolutely the same as in the real case!

Remark: If A is invertible and if A = U1R1 = U2R2 are two QR-decompositions for A,
then

R1R
−1
2 = U∗1U2.

Then it is easy to show that there is a diagonal matrix D with diagonal entries such that
|dii| = 1 for i = 1, . . . , n, and U2 = U1D, R2 = D∗R1.

We have the following version of the Hadamard inequality for complex matrices. The
proof is essentially the same as in the Euclidean case but it uses Proposition 13.16 instead
of Proposition 11.16.

Proposition 13.17. (Hadamard) For any complex n× n matrix A = (aij), we have

| det(A)| ≤
n∏
i=1

( n∑
j=1

|aij|2
)1/2

and | det(A)| ≤
n∏
j=1

( n∑
i=1

|aij|2
)1/2

.

Moreover, equality holds iff either A has orthogonal rows in the left inequality or orthogonal
columns in the right inequality.

We also have the following version of Proposition 11.18 for Hermitian matrices. The
proof of Proposition 11.18 goes through because the Cholesky decomposition for a Hermitian
positive definite A matrix holds in the form A = B∗B, where B is upper triangular with
positive diagonal entries. The details are left to the reader.

Proposition 13.18. (Hadamard) For any complex n×n matrix A = (aij), if A is Hermitian
positive semidefinite, then we have

det(A) ≤
n∏
i=1

aii.

Moreover, if A is positive definite, then equality holds iff A is a diagonal matrix.

13.5 Hermitian Reflections and QR-Decomposition

If A is an n × n complex singular matrix, there is some (not necessarily unique) QR-
decomposition A = QR with Q a unitary matrix which is a product of Householder re-
flections and R an upper triangular matrix, but the proof is more involved. One way to
proceed is to generalize the notion of hyperplane reflection. This is not really surprising
since in the Hermitian case there are improper isometries whose determinant can be any
unit complex number. Hyperplane reflections are generalized as follows.
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Definition 13.12. Let E be a Hermitian space of finite dimension. For any hyperplane H,
for any nonnull vector w orthogonal to H, so that E = H ⊕G, where G = Cw, a Hermitian
reflection about H of angle θ is a linear map of the form ρH, θ : E → E, defined such that

ρH, θ(u) = pH(u) + eiθpG(u),

for any unit complex number eiθ 6= 1 (i.e. θ 6= k2π). For any nonzero vector w ∈ E, we
denote by ρw,θ the Hermitian reflection given by ρH,θ, where H is the hyperplane orthogonal
to w.

Since u = pH(u) + pG(u), the Hermitian reflection ρw, θ is also expressed as

ρw, θ(u) = u+ (eiθ − 1)pG(u),

or as

ρw, θ(u) = u+ (eiθ − 1)
(u · w)

‖w‖2 w.

Note that the case of a standard hyperplane reflection is obtained when eiθ = −1, i.e., θ = π.
In this case,

ρw, π(u) = u− 2
(u · w)

‖w‖2 w,

and the matrix of such a reflection is a Householder matrix, as in Section 12.1, except that
w may be a complex vector.

We leave as an easy exercise to check that ρw, θ is indeed an isometry, and that the inverse
of ρw, θ is ρw,−θ. If we pick an orthonormal basis (e1, . . . , en) such that (e1, . . . , en−1) is an
orthonormal basis of H, the matrix of ρw, θ is(

In−1 0
0 eiθ

)
We now come to the main surprise. Given any two distinct vectors u and v such that

‖u‖ = ‖v‖, there isn’t always a hyperplane reflection mapping u to v, but this can be done
using two Hermitian reflections!

Proposition 13.19. Let E be any nontrivial Hermitian space.

(1) For any two vectors u, v ∈ E such that u 6= v and ‖u‖ = ‖v‖, if u · v = eiθ|u · v|, then
the (usual) reflection s about the hyperplane orthogonal to the vector v − e−iθu is such
that s(u) = eiθv.

(2) For any nonnull vector v ∈ E, for any unit complex number eiθ 6= 1, there is a Hermi-
tian reflection ρv,θ such that

ρv,θ(v) = eiθv.

As a consequence, for u and v as in (1), we have ρv,−θ ◦ s(u) = v.
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Proof. (1) Consider the (usual) reflection about the hyperplane orthogonal to w = v−e−iθu.
We have

s(u) = u− 2
(u · (v − e−iθu))

‖v − e−iθu‖2 (v − e−iθu).

We need to compute

−2u · (v − e−iθu) and (v − e−iθu) · (v − e−iθu).

Since u · v = eiθ|u · v|, we have

e−iθu · v = |u · v| and eiθv · u = |u · v|.

Using the above and the fact that ‖u‖ = ‖v‖, we get

−2u · (v − e−iθu) = 2eiθ ‖u‖2 − 2u · v,
= 2eiθ(‖u‖2 − |u · v|),

and

(v − e−iθu) · (v − e−iθu) = ‖v‖2 + ‖u‖2 − e−iθu · v − eiθv · u,
= 2(‖u‖2 − |u · v|),

and thus,

−2
(u · (v − e−iθu))

‖(v − e−iθu)‖2 (v − e−iθu) = eiθ(v − e−iθu).

But then,
s(u) = u+ eiθ(v − e−iθu) = u+ eiθv − u = eiθv,

and s(u) = eiθv, as claimed.

(2) This part is easier. Consider the Hermitian reflection

ρv,θ(u) = u+ (eiθ − 1)
(u · v)

‖v‖2 v.

We have

ρv,θ(v) = v + (eiθ − 1)
(v · v)

‖v‖2 v,

= v + (eiθ − 1)v,

= eiθv.

Thus, ρv,θ(v) = eiθv. Since ρv,θ is linear, changing the argument v to eiθv, we get

ρv,−θ(e
iθv) = v,

and thus, ρv,−θ ◦ s(u) = v.
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Remarks:

(1) If we use the vector v + e−iθu instead of v − e−iθu, we get s(u) = −eiθv.

(2) Certain authors, such as Kincaid and Cheney [39] and Ciarlet [14], use the vector
u + eiθv instead of the vector v + e−iθu. The effect of this choice is that they also get
s(u) = −eiθv.

(3) If v = ‖u‖ e1, where e1 is a basis vector, u · e1 = a1, where a1 is just the coefficient
of u over the basis vector e1. Then, since u · e1 = eiθ|a1|, the choice of the plus sign
in the vector ‖u‖ e1 + e−iθu has the effect that the coefficient of this vector over e1 is
‖u‖+ |a1|, and no cancellations takes place, which is preferable for numerical stability
(we need to divide by the square norm of this vector).

We now show that the QR-decomposition in terms of (complex) Householder matrices
holds for complex matrices. We need the version of Proposition 13.19 and a trick at the end
of the argument, but the proof is basically unchanged.

Proposition 13.20. Let E be a nontrivial Hermitian space of dimension n. Given any
orthonormal basis (e1, . . . , en), for any n-tuple of vectors (v1, . . . , vn), there is a sequence
of n − 1 isometries h1, . . . , hn−1, such that hi is a (standard) hyperplane reflection or the
identity, and if (r1, . . . , rn) are the vectors given by

rj = hn−1 ◦ · · · ◦ h2 ◦ h1(vj), 1 ≤ j ≤ n,

then every rj is a linear combination of the vectors (e1, . . . , ej), (1 ≤ j ≤ n). Equivalently,
the matrix R whose columns are the components of the rj over the basis (e1, . . . , en) is an
upper triangular matrix. Furthermore, if we allow one more isometry hn of the form

hn = ρen, ϕn ◦ · · · ◦ ρe1,ϕ1

after h1, . . . , hn−1, we can ensure that the diagonal entries of R are nonnegative.

Proof. The proof is very similar to the proof of Proposition 12.3, but it needs to be modified
a little bit since Proposition 13.19 is weaker than Proposition 12.2. We explain how to
modify the induction step, leaving the base case and the rest of the proof as an exercise.

As in the proof of Proposition 12.3, the vectors (e1, . . . , ek) form a basis for the subspace
denoted as U ′k, the vectors (ek+1, . . . , en) form a basis for the subspace denoted as U ′′k , the
subspaces U ′k and U ′′k are orthogonal, and E = U ′k ⊕ U ′′k . Let

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1).

We can write

uk+1 = u′k+1 + u′′k+1,
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where u′k+1 ∈ U ′k and u′′k+1 ∈ U ′′k . Let

rk+1,k+1 =
∥∥u′′k+1

∥∥ , and eiθk+1|u′′k+1 · ek+1| = u′′k+1 · ek+1.

If u′′k+1 = eiθk+1rk+1,k+1 ek+1, we let hk+1 = id. Otherwise, by Proposition 13.19(1) (with
u = u′′k+1 and v = rk+1,k+1 ek+1), there is a unique hyperplane reflection hk+1 such that

hk+1(u′′k+1) = eiθk+1rk+1,k+1 ek+1,

where hk+1 is the reflection about the hyperplane Hk+1 orthogonal to the vector

wk+1 = rk+1,k+1 ek+1 − e−iθk+1u′′k+1.

At the end of the induction, we have a triangular matrix R, but the diagonal entries
eiθjrj, j of R may be complex. Letting

hn = ρen,−θn ◦ · · · ◦ ρe1,−θ1 ,
we observe that the diagonal entries of the matrix of vectors

r′j = hn ◦ hn−1 ◦ · · · ◦ h2 ◦ h1(vj)

is triangular with nonnegative entries.

Remark: For numerical stability, it is preferable to use wk+1 = rk+1,k+1 ek+1 + e−iθk+1u′′k+1

instead of wk+1 = rk+1,k+1 ek+1 − e−iθk+1u′′k+1. The effect of that choice is that the diagonal
entries in R will be of the form −eiθjrj, j = ei(θj+π)rj, j. Of course, we can make these entries
nonegative by applying

hn = ρen, π−θn ◦ · · · ◦ ρe1,π−θ1
after hn−1.

As in the Euclidean case, Proposition 13.20 immediately implies the QR-decomposition
for arbitrary complex n× n-matrices, where Q is now unitary (see Kincaid and Cheney [39]
and Ciarlet [14]).

Proposition 13.21. For every complex n × n-matrix A, there is a sequence H1, . . . , Hn−1

of matrices, where each Hi is either a Householder matrix or the identity, and an upper
triangular matrix R, such that

R = Hn−1 · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where Q is unitary and R is upper triangular,
such that A = QR (a QR-decomposition of A). Furthermore, R can be chosen so that its
diagonal entries are nonnegative. This can be achieved by a diagonal matrix D with entries
such that |dii| = 1 for i = 1, . . . , n, and we have A = Q̃R̃ with

Q̃ = H1 · · ·Hn−1D, R̃ = D∗R,

where R̃ is upper triangular and has nonnegative diagonal entries.

Proof. It is essentially identical to the proof of Proposition 12.4, and we leave the details as
an exercise. For the last statement, observe that hn ◦ · · · ◦ h1 is also an isometry.
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13.6 Orthogonal Projections and Involutions

In this section we begin by assuming that the field K is not a field of characteristic 2. Recall
that a linear map f : E → E is an involution iff f 2 = id, and is idempotent iff f 2 = f . We
know from Proposition 5.7 that if f is idempotent, then

E = Im(f)⊕Ker (f),

and that the restriction of f to its image is the identity. For this reason, a linear idempotent
map is called a projection. The connection between involutions and projections is given by
the following simple proposition.

Proposition 13.22. For any linear map f : E → E, we have f 2 = id iff 1
2
(id − f) is a

projection iff 1
2
(id + f) is a projection; in this case, f is equal to the difference of the two

projections 1
2
(id + f) and 1

2
(id− f).

Proof. We have (
1

2
(id− f)

)2

=
1

4
(id− 2f + f 2)

so (
1

2
(id− f)

)2

=
1

2
(id− f) iff f 2 = id.

We also have (
1

2
(id + f)

)2

=
1

4
(id + 2f + f 2),

so (
1

2
(id + f)

)2

=
1

2
(id + f) iff f 2 = id.

Obviously, f = 1
2
(id + f)− 1

2
(id− f).

Proposition 13.23. For any linear map f : E → E, let U+ = Ker (1
2
(id − f)) and let

U− = Im(1
2
(id− f)). If f 2 = id, then

U+ = Ker

(
1

2
(id− f)

)
= Im

(
1

2
(id + f)

)
,

and so, f(u) = u on U+ and f(u) = −u on U−.

Proof. If f 2 = id, then

(id− f) ◦ (id + f) = id− f 2 = id− id = 0,

which implies that

Im

(
1

2
(id + f)

)
⊆ Ker

(
1

2
(id− f)

)
.
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Conversely, if u ∈ Ker
(

1
2
(id− f)

)
, then f(u) = u, so

1

2
(id + f)(u) =

1

2
(u+ u) = u,

and thus

Ker

(
1

2
(id− f)

)
⊆ Im

(
1

2
(id + f)

)
.

Therefore,

U+ = Ker

(
1

2
(id− f)

)
= Im

(
1

2
(id + f)

)
,

and so, f(u) = u on U+ and f(u) = −u on U−.

We now assume that K = C. The involutions of E that are unitary transformations are
characterized as follows.

Proposition 13.24. Let f ∈ GL(E) be an involution. The following properties are equiva-
lent:

(a) The map f is unitary; that is, f ∈ U(E).

(b) The subspaces U− = Im(1
2
(id− f)) and U+ = Im(1

2
(id + f)) are orthogonal.

Furthermore, if E is finite-dimensional, then (a) and (b) are equivalent to (c) below:

(c) The map is self-adjoint; that is, f = f ∗.

Proof. If f is unitary, then from 〈f(u), f(v)〉 = 〈u, v〉 for all u, v ∈ E, we see that if u ∈ U+

and v ∈ U−, we get
〈u, v〉 = 〈f(u), f(v)〉 = 〈u,−v〉 = −〈u, v〉,

so 2〈u, v〉 = 0, which implies 〈u, v〉 = 0, that is, U+ and U− are orthogonal. Thus, (a)
implies (b).

Conversely, if (b) holds, since f(u) = u on U+ and f(u) = −u on U−, we see that
〈f(u), f(v)〉 = 〈u, v〉 if u, v ∈ U+ or if u, v ∈ U−. Since E = U+ ⊕ U− and since U+ and U−

are orthogonal, we also have 〈f(u), f(v)〉 = 〈u, v〉 for all u, v ∈ E, and (b) implies (a).

If E is finite-dimensional, the adjoint f ∗ of f exists, and we know that f−1 = f ∗. Since
f is an involution, f 2 = id, which implies that f ∗ = f−1 = f .

A unitary involution is the identity on U+ = Im(1
2
(id + f)), and f(v) = −v for all

v ∈ U− = Im(1
2
(id−f)). Furthermore, E is an orthogonal direct sum E = U+⊕U−. We say

that f is an orthogonal reflection about U+. In the special case where U+ is a hyperplane,
we say that f is a hyperplane reflection. We already studied hyperplane reflections in the
Euclidean case; see Chapter 12.
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If f : E → E is a projection (f 2 = f), then

(id− 2f)2 = id− 4f + 4f 2 = id− 4f + 4f = id,

so id− 2f is an involution. As a consequence, we get the following result.

Proposition 13.25. If f : E → E is a projection (f 2 = f), then Ker (f) and Im(f) are
orthogonal iff f ∗ = f .

Proof. Apply Proposition 13.24 to g = id− 2f . Since id− g = 2f we have

U+ = Ker

(
1

2
(id− g)

)
= Ker (f)

and

U− = Im

(
1

2
(id− g)

)
= Im(f),

which proves the proposition.

A projection such that f = f ∗ is called an orthogonal projection.

If (a1 . . . , ak) are k linearly independent vectors in Rn, let us determine the matrix P of
the orthogonal projection onto the subspace of Rn spanned by (a1, . . . , ak). Let A be the
n×k matrix whose jth column consists of the coordinates of the vector aj over the canonical
basis (e1, . . . , en).

Any vector in the subspace (a1, . . . , ak) is a linear combination of the form Ax, for some
x ∈ Rk. Given any y ∈ Rn, the orthogonal projection Py = Ax of y onto the subspace
spanned by (a1, . . . , ak) is the vector Ax such that y − Ax is orthogonal to the subspace
spanned by (a1, . . . , ak) (prove it). This means that y−Ax is orthogonal to every aj, which
is expressed by

A>(y − Ax) = 0;

that is,
A>Ax = A>y.

The matrix A>A is invertible because A has full rank k, thus we get

x = (A>A)−1A>y,

and so
Py = Ax = A(A>A)−1A>y.

Therefore, the matrix P of the projection onto the subspace spanned by (a1 . . . , ak) is given
by

P = A(A>A)−1A>.

The reader should check that P 2 = P and P> = P .
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13.7 Dual Norms

In the remark following the proof of Proposition 8.10, we explained that if (E, ‖ ‖) and
(F, ‖ ‖) are two normed vector spaces and if we let L(E;F ) denote the set of all continuous
(equivalently, bounded) linear maps from E to F , then, we can define the operator norm (or
subordinate norm) ‖ ‖ on L(E;F ) as follows: for every f ∈ L(E;F ),

‖f‖ = sup
x∈E
x6=0

‖f(x)‖
‖x‖ = sup

x∈E
‖x‖=1

‖f(x)‖ .

In particular, if F = C, then L(E;F ) = E ′ is the dual space of E, and we get the operator
norm denoted by ‖ ‖∗ given by

‖f‖∗ = sup
x∈E
‖x‖=1

|f(x)|.

The norm ‖ ‖∗ is called the dual norm of ‖ ‖ on E ′.

Let us now assume that E is a finite-dimensional Hermitian space, in which case E ′ = E∗.
Theorem 13.6 implies that for every linear form f ∈ E∗, there is a unique vector y ∈ E so
that

f(x) = 〈x, y〉,
for all x ∈ E, and so we can write

‖f‖∗ = sup
x∈E
‖x‖=1

|〈x, y〉|.

The above suggests defining a norm ‖ ‖D on E.

Definition 13.13. If E is a finite-dimensional Hermitian space and ‖ ‖ is any norm on E,
for any y ∈ E we let

‖y‖D = sup
x∈E
‖x‖=1

|〈x, y〉|,

be the dual norm of ‖ ‖ (on E). If E is a real Euclidean space, then the dual norm is defined
by

‖y‖D = sup
x∈E
‖x‖=1

〈x, y〉

for all y ∈ E.

Beware that ‖ ‖ is generally not the Hermitian norm associated with the Hermitian inner
product. The dual norm shows up in convex programming; see Boyd and Vandenberghe [11],
Chapters 2, 3, 6, 9.

The fact that ‖ ‖D is a norm follows from the fact that ‖ ‖∗ is a norm and can also be

checked directly. It is worth noting that the triangle inequality for ‖ ‖D comes “for free,” in
the sense that it holds for any function p : E → R.
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Proposition 13.26. For any function p : E → R, if we define pD by

pD(x) = sup
p(z)=1

|〈z, x〉|,

then we have
pD(x+ y) ≤ pD(x) + pD(y).

Proof. We have

pD(x+ y) = sup
p(z)=1

|〈z, x+ y〉|

= sup
p(z)=1

(|〈z, x〉+ 〈z, y〉|)

≤ sup
p(z)=1

(|〈z, x〉|+ |〈z, y〉|)

≤ sup
p(z)=1

|〈z, x〉|+ sup
p(z)=1

|〈z, y〉|

= pD(x) + pD(y).

Definition 13.14. If p : E → R is a function such that

(1) p(x) ≥ 0 for all x ∈ E, and p(x) = 0 iff x = 0;

(2) p(λx) = |λ|p(x), for all x ∈ E and all λ ∈ C;

(3) p is continuous, in the sense that for some basis (e1, . . . , en) of E, the function

(x1, . . . , xn) 7→ p(x1e1 + · · ·+ xnen)

from Cn to R is continuous,

then we say that p is a pre-norm.

Obviously, every norm is a pre-norm, but a pre-norm may not satisfy the triangle in-
equality.

Corollary 13.27. The dual norm of any pre-norm is actually a norm.

Proposition 13.28. For all y ∈ E, we have

‖y‖D = sup
x∈E
‖x‖=1

|〈x, y〉| = sup
x∈E
‖x‖=1

<〈x, y〉.

Proof. Since E is finite dimensional, the unit sphere Sn−1 = {x ∈ E | ‖x‖ = 1} is compact,
so there is some x0 ∈ Sn−1 such that

‖y‖D = |〈x0, y〉|.
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If 〈x0, y〉 = ρeiθ, with ρ ≥ 0, then

|〈e−iθx0, y〉| = |e−iθ〈x0, y〉| = |e−iθρeiθ| = ρ,

so

‖y‖D = ρ = 〈e−iθx0, y〉, (∗)
with

∥∥e−iθx0

∥∥ = ‖x0‖ = 1. On the other hand,

<〈x, y〉 ≤ |〈x, y〉|,

so by (∗) we get

‖y‖D = sup
x∈E
‖x‖=1

|〈x, y〉| = sup
x∈E
‖x‖=1

<〈x, y〉,

as claimed.

Proposition 13.29. For all x, y ∈ E, we have

|〈x, y〉| ≤ ‖x‖ ‖y‖D

|〈x, y〉| ≤ ‖x‖D ‖y‖ .

Proof. If x = 0, then 〈x, y〉 = 0 and these inequalities are trivial. If x 6= 0, since ‖x/ ‖x‖‖ = 1,
by definition of ‖y‖D, we have

|〈x/ ‖x‖ , y〉| ≤ sup
‖z‖=1

|〈z, y〉| = ‖y‖D ,

which yields

|〈x, y〉| ≤ ‖x‖ ‖y‖D .
The second inequality holds because |〈x, y〉| = |〈y, x〉|.

It is not hard to show that for all y ∈ Cn,

‖y‖D1 = ‖y‖∞
‖y‖D∞ = ‖y‖1

‖y‖D2 = ‖y‖2 .

Thus, the Euclidean norm is autodual. More generally, the following proposition holds.

Proposition 13.30. If p, q ≥ 1 and 1/p + 1/q = 1, or p = 1 and q = ∞, or p = ∞ and
q = 1, then for all y ∈ Cn, we have

‖y‖Dp = ‖y‖q .
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Proof. By Hölder’s inequality (Corollary 8.2), for all x, y ∈ Cn, we have

|〈x, y〉| ≤ ‖x‖p ‖y‖q ,

so
‖y‖Dp = sup

x∈Cn
‖x‖p=1

|〈x, y〉| ≤ ‖y‖q .

For the converse, we consider the cases p = 1, 1 < p < +∞, and p = +∞. First assume
p = 1. The result is obvious for y = 0, so assume y 6= 0. Given y, if we pick xj = 1
for some index j such that ‖y‖∞ = max1≤i≤n |yi| = |yj|, and xk = 0 for k 6= j, then

|〈x, y〉| = |yj| = ‖y‖∞, so ‖y‖D1 = ‖y‖∞.

Now we turn to the case 1 < p < +∞. Then we also have 1 < q < +∞, and the equation
1/p + 1/q = 1 is equivalent to pq = p + q, that is, p(q − 1) = q. Pick zj = yj|yj|q−2 for
j = 1, . . . , n, so that

‖z‖p =

(
n∑
j=1

|zj|p
)1/p

=

(
n∑
j=1

|yj|(q−1)p

)1/p

=

(
n∑
j=1

|yj|q
)1/p

.

Then if x = z/ ‖z‖p, we have

|〈x, y〉| =

∣∣∣∑n
j=1 zjyj

∣∣∣
‖z‖p

=

∣∣∣∑n
j=1 yjyj|yj|q−2

∣∣∣
‖z‖p

=

∑n
j=1 |yj|q(∑n

j=1 |yj|q
)1/p

=

(
n∑
j=1

|yj|q
)1/q

= ‖y‖q .

Thus ‖y‖Dp = ‖y‖q.
Finally, if p =∞, then pick xj = yj/|yj| if yj 6= 0, and xj = 0 if yj = 0. Then

|〈x, y〉| =

∣∣∣∣∣∣
n∑

yj 6=0

yjyj/|yj|

∣∣∣∣∣∣ =
∑
yj 6=0

|yj| = ‖y‖1 .

Thus ‖y‖D∞ = ‖y‖1.

We can show that the dual of the spectral norm is the trace norm (or nuclear norm)
also discussed in Section 20.5. Recall from Proposition 8.10 that the spectral norm ‖A‖2 of
a matrix A is the square root of the largest eigenvalue of A∗A, that is, the largest singular
value of A.

Proposition 13.31. The dual of the spectral norm is given by

‖A‖D2 = σ1 + · · ·+ σr,

where σ1 > · · · > σr > 0 are the singular values of A ∈ Mn(C) (which has rank r).
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Proof. In this case the inner product on Mn(C) is the Frobenius inner product 〈A,B〉 =
tr(B∗A), and the dual norm of the spectral norm is given by

‖A‖D2 = sup{|tr(A∗B)| | ‖B‖2 = 1}.

If we factor A using an SVD as A = V ΣU∗, where U and V are unitary and Σ is a diagonal
matrix whose r nonzero entries are the singular values σ1 > · · · > σr > 0, where r is the
rank of A, then

|tr(A∗B)| = |tr(UΣV ∗B)| = |tr(ΣV ∗BU)|,
so if we pick B = V U∗, a unitary matrix such that ‖B‖2 = 1, we get

|tr(A∗B)| = tr(Σ) = σ1 + · · ·+ σr,

and thus

‖A‖D2 ≥ σ1 + · · ·+ σr.

Since ‖B‖2 = 1 and U and V are unitary, by Proposition 8.10 we have ‖V ∗BU‖2 =
‖B‖2 = 1. If Z = V ∗BU , by definition of the operator norm

1 = ‖Z‖2 = sup{‖Zx‖2 | ‖x‖2 = 1},

so by picking x to be the canonical vector ej, we see that ‖Zj‖2 ≤ 1 where Zj is the jth
column of Z, so |zjj| ≤ 1, and since

|tr(ΣV ∗BU)| = |tr(ΣZ)| =
∣∣∣∣∣
r∑
j=1

σjzjj

∣∣∣∣∣ ≤
r∑
j=1

σj|zjj| ≤
r∑
j=1

σj,

and we conclude that

|tr(ΣV ∗BU)| ≤
r∑
j=1

σj.

The above implies that

‖A‖D2 ≤ σ1 + · · ·+ σr,

and since we also have ‖A‖D2 ≥ σ1 + · · ·+ σr, we conclude that

‖A‖D2 = σ1 + · · ·+ σr,

proving our proposition.

Definition 13.15. Given any complex matrix n × n matrix A of rank r, its nuclear norm
(or trace norm) is given by

‖A‖N = σ1 + · · ·+ σr.
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The nuclear norm can be generalized to m× n matrices (see Section 20.5). The nuclear
norm σ1 + · · · + σr of an m × n matrix A (where r is the rank of A) is denoted by ‖A‖N .
The nuclear norm plays an important role in matrix completion. The problem is this. Given
a matrix A0 with missing entries (missing data), one would like to fill in the missing entries
in A0 to obtain a matrix A of minimal rank. For example, consider the matrices

A0 =

(
1 2
∗ ∗

)
, B0 =

(
1 ∗
∗ 4

)
, C0 =

(
1 2
3 ∗

)
.

All can be completed with rank 1. For A0, use any multiple of (1, 2) for the second row. For
B0, use any numbers b and c such that bc = 4. For C0, the only possibility is d = 6.

A famous example of this problem is the Netflix competition. The ratings of m films by
n viewers goes into A0. But the customers didn’t see all the movies. Many ratings were
missing. Those had to be predicted by a recommender system. The nuclear norm gave a
good solution that needed to be adjusted for human psychology.

Since the rank of a matrix is not a norm, in order to solve the matrix completion problem
we can use the following “convex relaxation.” Let A0 be an incomplete m× n matrix:

Minimize ‖A‖N subject to A = A0 in the known entries.

The above problem has been extensively studied, in particular by Candès and Recht.
Roughly, they showed that if A is an n × n matrix of rank r and K entries are known in
A, then if K is large enough (K > Cn5/4r log n), with high probability, the recovery of A is
perfect. See Strang [65] for details (Section III.5).

We close this section by stating the following duality theorem.

Theorem 13.32. If E is a finite-dimensional Hermitian space, then for any norm ‖ ‖ on
E, we have

‖y‖DD = ‖y‖
for all y ∈ E.

Proof. By Proposition 13.29, we have

|〈x, y〉| ≤ ‖x‖D ‖y‖ ,

so we get
‖y‖DD = sup

‖x‖D=1

|〈x, y〉| ≤ ‖y‖ , for all y ∈ E.

It remains to prove that
‖y‖ ≤ ‖y‖DD , for all y ∈ E.

Proofs of this fact can be found in Horn and Johnson [36] (Section 5.5), and in Serre [57]
(Chapter 7). The proof makes use of the fact that a nonempty, closed, convex set has a
supporting hyperplane through each of its boundary points, a result known as Minkowski’s
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lemma. For a geometric interpretation of supporting hyperplane see Figure 13.1. This result
is a consequence of the Hahn–Banach theorem; see Gallier [24]. We give the proof in the
case where E is a real Euclidean space. Some minor modifications have to be made when
dealing with complex vector spaces and are left as an exercise.

x

Figure 13.1: The orange tangent plane is a supporting hyperplane to the unit ball in R3

since this ball is entirely contained in “one side” of the tangent plane.

Since the unit ball B = {z ∈ E | ‖z‖ ≤ 1} is closed and convex, the Minkowski lemma
says for every x such that ‖x‖ = 1, there is an affine map g of the form

g(z) = 〈z, w〉 − 〈x,w〉
with ‖w‖ = 1, such that g(x) = 0 and g(z) ≤ 0 for all z such that ‖z‖ ≤ 1. Then it is clear
that

sup
‖z‖=1

〈z, w〉 = 〈x,w〉,

and so
‖w‖D = 〈x,w〉.

It follows that

‖x‖DD ≥ 〈w/ ‖w‖D , x〉 =
〈x,w〉
‖w‖D

= 1 = ‖x‖

for all x such that ‖x‖ = 1. By homogeneity, this is true for all y ∈ E, which completes the
proof in the real case. When E is a complex vector space, we have to view the unit ball B
as a closed convex set in R2n and we use the fact that there is real affine map of the form

g(z) = <〈z, w〉 − <〈x,w〉
such that g(x) = 0 and g(z) ≤ 0 for all z with ‖z‖ = 1, so that ‖w‖D = <〈x,w〉.

More details on dual norms and unitarily invariant norms can be found in Horn and
Johnson [36] (Chapters 5 and 7).
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13.8 Summary

The main concepts and results of this chapter are listed below:

• Semilinear maps .

• Sesquilinear forms ; Hermitian forms .

• Quadratic form associated with a sesquilinear form.

• Polarization identities .

• Positive and positive definite Hermitian forms; pre-Hilbert spaces , Hermitian spaces .

• Gram matrix associated with a Hermitian product.

• The Cauchy–Schwarz inequality and the Minkowski inequality .

• Hermitian inner product , Hermitian norm.

• The parallelogram law .

• The musical isomorphisms [ : E → E∗ and ] : E∗ → E; Theorem 13.6 (E is finite-
dimensional).

• The adjoint of a linear map (with respect to a Hermitian inner product).

• Existence of orthonormal bases in a Hermitian space (Proposition 13.11).

• Gram–Schmidt orthonormalization procedure.

• Linear isometries (unitary transformations).

• The unitary group, unitary matrices .

• The unitary group U(n).

• The special unitary group SU(n).

• QR-Decomposition for arbitrary complex matrices.

• The Hadamard inequality for complex matrices.

• The Hadamard inequality for Hermitian positive semidefinite matrices.

• Orthogonal projections and involutions; orthogonal reflections.

• Dual norms.

• Nuclear norm (also called trace norm).

• Matrix completion.
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13.9 Problems

Problem 13.1. Let (E, 〈−,−〉) be a Hermitian space of finite dimension. Prove that if
f : E → E is a self-adjoint linear map (that is, f ∗ = f), then 〈f(x), x〉 ∈ R for all x ∈ E.

Problem 13.2. Prove the polarization identities of Proposition 13.1.

Problem 13.3. Let E be a real Euclidean space. Give an example of a nonzero linear map
f : E → E such that 〈f(u), u〉 = 0 for all u ∈ E.

Problem 13.4. Prove Proposition 13.9.

Problem 13.5. (1) Prove that every matrix in SU(2) is of the form

A =

(
a+ ib c+ id
−c+ id a− ib

)
, a2 + b2 + c2 + d2 = 1, a, b, c, d ∈ R,

(2) Prove that the matrices(
1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
all belong to SU(2) and are linearly independent over C.

(3) Prove that the linear span of SU(2) over C is the complex vector space M2(C) of all
complex 2× 2 matrices.

Problem 13.6. The purpose of this problem is to prove that the linear span of SU(n) over
C is Mn(C) for all n ≥ 3. One way to prove this result is to adapt the method of Problem
11.12, so please review this problem.

Every complex matrix A ∈ Mn(C) can be written as

A =
A+ A∗

2
+
A− A∗

2

where the first matrix is Hermitian and the second matrix is skew-Hermitian. Observe that
if A = (zij) is a Hermitian matrix, that is A∗ = A, then zji = zij, so if zij = aij + ibij with
aij, bij ∈ R, then aij = aji and bij = −bji. On the other hand, if A = (zij) is a skew-Hermitian
matrix, that is A∗ = −A, then zji = −zij, so aij = −aji and bij = bji.

The Hermitian and the skew-Hermitian matrices do not form complex vector spaces
because they are not closed under multiplication by a complex number, but we can get around
this problem by treating the real part and the complex part of these matrices separately and
using multiplication by reals.
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(1) Consider the matrices of the form

Ri,j
c =



1
. . .

1
0 0 · · · 0 i
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
i 0 · · · 0 0

1
. . .

1



.

Prove that (Ri,j
c )∗Ri,j

c = I and det(Ri,j
c ) = +1. Use the matrices Ri,j, Ri,j

c ∈ SU(n) and
the matrices (Ri,j−(Ri,j)∗)/2 (from Problem 11.12) to form the real part of a skew-Hermitian
matrix and the matrices (Ri,j

c − (Ri,j
c )∗)/2 to form the imaginary part of a skew-Hermitian

matrix. Deduce that the matrices in SU(n) span all skew-Hermitian matrices.

(2) Consider matrices of the form

Type 1

S1,2
c =



0 −i 0 0 . . . 0
i 0 0 0 . . . 0
0 0 −1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


.

Type 2

Si,i+1
c =



−1
1

. . .

1
0 −i
i 0

1
. . .

1


.
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Type 3

Si,jc =



1
. . .

1
0 0 · · · 0 −i
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
i 0 · · · 0 0

1
. . .

1



.

Prove that Si,j, Si,jc ∈ SU(n), and using diagonal matrices as in Problem 11.12, prove
that the matrices Si,j can be used to form the real part of a Hermitian matrix and the
matrices Si,jc can be used to form the imaginary part of a Hermitian matrix.

(3) Use (1) and (2) to prove that the matrices in SU(n) span all Hermitian matrices. It
follows that SU(n) spans Mn(C) for n ≥ 3.

Problem 13.7. Consider the complex matrix

A =

(
i 1
1 −i

)
.

Check that this matrix is symmetric but not Hermitian. Prove that

det(λI − A) = λ2,

and so the eigenvalues of A are 0, 0.

Problem 13.8. Let (E, 〈−,−〉) be a Hermitian space of finite dimension and let f : E → E
be a linear map. Prove that the following conditions are equivalent.

(1) f ◦ f ∗ = f ∗ ◦ f (f is normal).

(2) 〈f(x), f(y)〉 = 〈f ∗(x), f ∗(y)〉 for all x, y ∈ E.

(3) ‖f(x)‖ = ‖f ∗(x)‖ for all x ∈ E.

(4) The map f can be diagonalized with respect to an orthonormal basis of eigenvectors.

(5) There exist some linear maps g, h : E → E such that, g = g∗, 〈x, g(x)〉 ≥ 0 for all
x ∈ E, h−1 = h∗, and f = g ◦ h = h ◦ g.

(6) There exist some linear map h : E → E such that h−1 = h∗ and f ∗ = h ◦ f .
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(7) There is a polynomial P (with complex coefficients) such that f ∗ = P (f).

Problem 13.9. Recall from Problem 12.7 that a complex n×n matrix H is upper Hessenberg
if hjk = 0 for all (j, k) such that j − k ≥ 0. Adapt the proof of Problem 12.7 to prove that
given any complex n × n-matrix A, there are n − 2 ≥ 1 complex matrices H1, . . . , Hn−2,
Householder matrices or the identity, such that

B = Hn−2 · · ·H1AH1 · · ·Hn−2

is upper Hessenberg.

Problem 13.10. Prove that all y ∈ Cn,

‖y‖D1 = ‖y‖∞
‖y‖D∞ = ‖y‖1

‖y‖D2 = ‖y‖2 .

Problem 13.11. The purpose of this problem is to complete each of the matrices A0, B0, C0

of Section 13.7 to a matrix A in such way that the nuclear norm ‖A‖N is minimized.

(1) Prove that the squares σ2
1 and σ2

2 of the singular values of

A =

(
1 2
c d

)
are the zeros of the equation

λ2 − (5 + c2 + d2)λ+ (2c− d)2 = 0.

(2) Using the fact that

‖A‖N = σ1 + σ2 =
√
σ2

1 + σ2
2 + 2σ1σ2,

prove that
‖A‖2

N = 5 + c2 + d2 + 2|2c− d|.
Consider the cases where 2c − d ≥ 0 and 2c − d ≤ 0, and show that in both cases we must
have c = −2d, and that the minimum of f(c, d) = 5 + c2 + d2 + 2|2c − d| is achieved by
c = d = 0. Conclude that the matrix A completing A0 that minimizes ‖A‖N is

A =

(
1 2
0 0

)
.

(3) Prove that the squares σ2
1 and σ2

2 of the singular values of

A =

(
1 b
c 4

)
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are the zeros of the equation

λ2 − (17 + b2 + c2)λ+ (4− bc)2 = 0.

(4) Prove that
‖A‖2

N = 17 + b2 + c2 + 2|4− bc|.
Consider the cases where 4 − bc ≥ 0 and 4 − bc ≤ 0, and show that in both cases we must
have b2 = c2. Then show that the minimum of f(c, d) = 17+ b2 + c2 +2|4− bc| is achieved by
b = c with −2 ≤ b ≤ 2. Conclude that the matrices A completing B0 that minimize ‖A‖N
are given by

A =

(
1 b
b 4

)
, −2 ≤ b ≤ 2.

(5) Prove that the squares σ2
1 and σ2

2 of the singular values of

A =

(
1 2
3 d

)
are the zeros of the equation

λ2 − (14 + d2)λ+ (6− d)2 = 0

(6) Prove that
‖A‖2

N = 14 + d2 + 2|6− d|.
Consider the cases where 6− d ≥ 0 and 6− d ≤ 0, and show that the minimum of f(c, d) =
14 + d2 + 2|6− d| is achieved by d = 1. Conclude that the the matrix A completing C0 that
minimizes ‖A‖N is given by

A =

(
1 2
3 1

)
.

Problem 13.12. Prove Theorem 13.32 when E is a finite-dimensional Hermitian space.



Chapter 14

Eigenvectors and Eigenvalues

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of
concreteness, the reader may safely assume that K = R or K = C.

14.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let f : E → E be any linear map. If by luck there
is a basis (e1, . . . , en) of E with respect to which f is represented by a diagonal matrix

D =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,

then the action of f on E is very simple; in every “direction” ei, we have

f(ei) = λiei.

We can think of f as a transformation that stretches or shrinks space along the direction
e1, . . . , en (at least if E is a real vector space). In terms of matrices, the above property
translates into the fact that there is an invertible matrix P and a diagonal matrix D such
that a matrix A can be factored as

A = PDP−1.

When this happens, we say that f (or A) is diagonalizable, the λi’s are called the eigenvalues
of f , and the ei’s are eigenvectors of f . For example, we will see that every symmetric matrix
can be diagonalized. Unfortunately, not every matrix can be diagonalized. For example, the
matrix

A1 =

(
1 1
0 1

)
523
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can’t be diagonalized. Sometimes a matrix fails to be diagonalizable because its eigenvalues
do not belong to the field of coefficients, such as

A2 =

(
0 −1
1 0

)
,

whose eigenvalues are ±i. This is not a serious problem because A2 can be diagonalized over
the complex numbers. However, A1 is a “fatal” case! Indeed, its eigenvalues are both 1 and
the problem is that A1 does not have enough eigenvectors to span E.

The next best thing is that there is a basis with respect to which f is represented by
an upper triangular matrix. In this case we say that f can be triangularized , or that f is
triangulable. As we will see in Section 14.2, if all the eigenvalues of f belong to the field of
coefficients K, then f can be triangularized. In particular, this is the case if K = C.

Now an alternative to triangularization is to consider the representation of f with respect
to two bases (e1, . . . , en) and (f1, . . . , fn), rather than a single basis. In this case, if K = R
or K = C, it turns out that we can even pick these bases to be orthonormal , and we get a
diagonal matrix Σ with nonnegative entries , such that

f(ei) = σifi, 1 ≤ i ≤ n.

The nonzero σi’s are the singular values of f , and the corresponding representation is the
singular value decomposition, or SVD . The SVD plays a very important role in applications,
and will be considered in detail in Chapter 20.

In this section we focus on the possibility of diagonalizing a linear map, and we introduce
the relevant concepts to do so. Given a vector space E over a field K, let id denote the
identity map on E.

The notion of eigenvalue of a linear map f : E → E defined on an infinite-dimensional
space E is quite subtle because it cannot be defined in terms of eigenvectors as in the finite-
dimensional case. The problem is that the map λ id− f (with λ ∈ C) could be noninvertible
(because it is not surjective) and yet injective. In finite dimension this cannot happen, so
until further notice we assume that E is of finite dimension n.

Definition 14.1. Given any vector space E of finite dimension n and any linear map f : E →
E, a scalar λ ∈ K is called an eigenvalue, or proper value, or characteristic value of f if
there is some nonzero vector u ∈ E such that

f(u) = λu.

Equivalently, λ is an eigenvalue of f if Ker (λ id− f) is nontrivial (i.e., Ker (λ id− f) 6= {0})
iff λ id−f is not invertible (this is where the fact that E is finite-dimensional is used; a linear
map from E to itself is injective iff it is invertible). A vector u ∈ E is called an eigenvector,
or proper vector, or characteristic vector of f if u 6= 0 and if there is some λ ∈ K such that

f(u) = λu;
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the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with
λ. Given any eigenvalue λ ∈ K, the nontrivial subspace Ker (λ id− f) consists of all the
eigenvectors associated with λ together with the zero vector; this subspace is denoted by
Eλ(f), or E(λ, f), or even by Eλ, and is called the eigenspace associated with λ, or proper
subspace associated with λ.

Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct
eigenvalues correspond to disjoint sets of eigenvectors.

Remark: As we emphasized in the remark following Definition 8.4, we require an eigenvector
to be nonzero. This requirement seems to have more benefits than inconveniences, even
though it may considered somewhat inelegant because the set of all eigenvectors associated
with an eigenvalue is not a subspace since the zero vector is excluded.

The next proposition shows that the eigenvalues of a linear map f : E → E are the roots
of a polynomial associated with f .

Proposition 14.1. Let E be any vector space of finite dimension n and let f be any linear
map f : E → E. The eigenvalues of f are the roots (in K) of the polynomial

det(λ id− f).

Proof. A scalar λ ∈ K is an eigenvalue of f iff there is some vector u 6= 0 in E such that

f(u) = λu

iff

(λ id− f)(u) = 0

iff (λ id− f) is not invertible iff, by Proposition 6.14,

det(λ id− f) = 0.

In view of the importance of the polynomial det(λ id−f), we have the following definition.

Definition 14.2. Given any vector space E of dimension n, for any linear map f : E → E,
the polynomial Pf (X) = χf (X) = det(X id − f) is called the characteristic polynomial of
f . For any square matrix A, the polynomial PA(X) = χA(X) = det(XI − A) is called the
characteristic polynomial of A.

Note that we already encountered the characteristic polynomial in Section 6.7; see Defi-
nition 6.11.
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Given any basis (e1, . . . , en), if A = M(f) is the matrix of f w.r.t. (e1, . . . , en), we
can compute the characteristic polynomial χf (X) = det(X id − f) of f by expanding the
following determinant:

det(XI − A) =

∣∣∣∣∣∣∣∣∣
X − a1 1 −a1 2 . . . −a1n

−a2 1 X − a2 2 . . . −a2n
...

...
. . .

...
−an 1 −an 2 . . . X − ann

∣∣∣∣∣∣∣∣∣ .
If we expand this determinant, we find that

χA(X) = det(XI − A) = Xn − (a1 1 + · · ·+ ann)Xn−1 + · · ·+ (−1)n det(A).

The sum tr(A) = a1 1 + · · ·+ann of the diagonal elements of A is called the trace of A. Since
we proved in Section 6.7 that the characteristic polynomial only depends on the linear map
f , the above shows that tr(A) has the same value for all matrices A representing f . Thus,
the trace of a linear map is well-defined; we have tr(f) = tr(A) for any matrix A representing
f .

Remark: The characteristic polynomial of a linear map is sometimes defined as det(f −
X id). Since

det(f −X id) = (−1)n det(X id− f),

this makes essentially no difference but the version det(X id − f) has the small advantage
that the coefficient of Xn is +1.

If we write

χA(X) = det(XI − A) = Xn − τ1(A)Xn−1 + · · ·+ (−1)kτk(A)Xn−k + · · ·+ (−1)nτn(A),

then we just proved that

τ1(A) = tr(A) and τn(A) = det(A).

It is also possible to express τk(A) in terms of determinants of certain submatrices of A.
For any nonempty ordered subset, I ⊆ {1, . . . , n}, say I = {i1 < · · · < ik}, let AI,I be the
k × k submatrix of A whose jth column consists of the elements aih ij , where h = 1, . . . , k.
Equivalently, AI,I is the matrix obtained from A by first selecting the columns whose indices
belong to I, and then the rows whose indices also belong to I. Then it can be shown that

τk(A) =
∑

I⊆{1,...,n}
I={i1,...,ik}
i1<···<ik

det(AI,I);
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see Jacobson [38], Section 3.10, just after Formula (33).

If all the roots, λ1, . . . , λn, of the polynomial det(XI −A) belong to the field K, then we
can write

χA(X) = det(XI − A) = (X − λ1) · · · (X − λn),

where some of the λi’s may appear more than once. Consequently,

χA(X) = det(XI − A) = Xn − σ1(λ)Xn−1 + · · ·+ (−1)kσk(λ)Xn−k + · · ·+ (−1)nσn(λ),

where
σk(λ) =

∑
I⊆{1,...,n}
|I|=k

∏
i∈I

λi,

the kth elementary symmetric polynomial (or function) of the λi’s, where λ = (λ1, . . . , λn).
The elementary symmetric polynomial σk(λ) is often denoted Ek(λ), but this notation may be
confusing in the context of linear algebra. For n = 5, the elementary symmetric polynomials
are listed below:

σ0(λ) = 1

σ1(λ) = λ1 + λ2 + λ3 + λ4 + λ5

σ2(λ) = λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5

+ λ3λ4 + λ3λ5 + λ4λ5

σ3(λ) = λ3λ4λ5 + λ2λ4λ5 + λ2λ3λ5 + λ2λ3λ4 + λ1λ4λ5

+ λ1λ3λ5 + λ1λ3λ4 + λ1λ2λ5 + λ1λ2λ4 + λ1λ2λ3

σ4(λ) = λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ1λ3λ4λ5 + λ2λ3λ4λ5

σ5(λ) = λ1λ2λ3λ4λ5.

Since

χA(X) = Xn − τ1(A)Xn−1 + · · ·+ (−1)kτk(A)Xn−k + · · ·+ (−1)nτn(A)

= Xn − σ1(λ)Xn−1 + · · ·+ (−1)kσk(λ)Xn−k + · · ·+ (−1)nσn(λ),

we have
σk(λ) = τk(A), k = 1, . . . , n,

and in particular, the product of the eigenvalues of f is equal to det(A) = det(f), and the
sum of the eigenvalues of f is equal to the trace tr(A) = tr(f), of f ; for the record,

tr(f) = λ1 + · · ·+ λn

det(f) = λ1 · · ·λn,

where λ1, . . . , λn are the eigenvalues of f (and A), where some of the λi’s may appear more
than once. In particular, f is not invertible iff it admits 0 has an eigenvalue (since f is
singular iff λ1 · · ·λn = det(f) = 0).
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Remark: Depending on the field K, the characteristic polynomial χA(X) = det(XI − A)
may or may not have roots in K. This motivates considering algebraically closed fields ,
which are fields K such that every polynomial with coefficients in K has all its root in K.
For example, over K = R, not every polynomial has real roots. If we consider the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
,

then the characteristic polynomial det(XI − A) has no real roots unless θ = kπ. However,
over the field C of complex numbers, every polynomial has roots. For example, the matrix
above has the roots cos θ ± i sin θ = e±iθ.

Remark: It is possible to show that every linear map f over a complex vector space E
must have some (complex) eigenvalue without having recourse to determinants (and the
characteristic polynomial). Let n = dim(E), pick any nonzero vector u ∈ E, and consider
the sequence

u, f(u), f 2(u), . . . , fn(u).

Since the above sequence has n + 1 vectors and E has dimension n, these vectors must be
linearly dependent, so there are some complex numbers c0, . . . , cm, not all zero, such that

c0f
m(u) + c1f

m−1(u) + · · ·+ cmu = 0,

where m ≤ n is the largest integer such that the coefficient of fm(u) is nonzero (m must
exits since we have a nontrivial linear dependency). Now because the field C is algebraically
closed, the polynomial

c0X
m + c1X

m−1 + · · ·+ cm

can be written as a product of linear factors as

c0X
m + c1X

m−1 + · · ·+ cm = c0(X − λ1) · · · (X − λm)

for some complex numbers λ1, . . . , λm ∈ C, not necessarily distinct. But then since c0 6= 0,

c0f
m(u) + c1f

m−1(u) + · · ·+ cmu = 0

is equivalent to
(f − λ1 id) ◦ · · · ◦ (f − λm id)(u) = 0.

If all the linear maps f − λi id were injective, then (f − λ1 id) ◦ · · · ◦ (f − λm id) would be
injective, contradicting the fact that u 6= 0. Therefore, some linear map f − λi id must have
a nontrivial kernel, which means that there is some v 6= 0 so that

f(v) = λiv;

that is, λi is some eigenvalue of f and v is some eigenvector of f .

As nice as the above argument is, it does not provide a method for finding the eigenvalues
of f , and even if we prefer avoiding determinants as much as possible, we are forced to deal
with the characteristic polynomial det(X id− f).
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Definition 14.3. Let A be an n × n matrix over a field K. Assume that all the roots of
the characteristic polynomial χA(X) = det(XI − A) of A belong to K, which means that
we can write

det(XI − A) = (X − λ1)k1 · · · (X − λm)km ,

where λ1, . . . , λm ∈ K are the distinct roots of det(XI − A) and k1 + · · · + km = n. The
integer ki is called the algebraic multiplicity of the eigenvalue λi, and the dimension of the
eigenspace Eλi = Ker(λiI − A) is called the geometric multiplicity of λi. We denote the
algebraic multiplicity of λi by alg(λi), and its geometric multiplicity by geo(λi).

By definition, the sum of the algebraic multiplicities is equal to n, but the sum of the
geometric multiplicities can be strictly smaller.

Proposition 14.2. Let A be an n×n matrix over a field K and assume that all the roots of
the characteristic polynomial χA(X) = det(XI−A) of A belong to K. For every eigenvalue λi
of A, the geometric multiplicity of λi is always less than or equal to its algebraic multiplicity,
that is,

geo(λi) ≤ alg(λi).

Proof. To see this, if ni is the dimension of the eigenspace Eλi associated with the eigenvalue
λi, we can form a basis of Kn obtained by picking a basis of Eλi and completing this linearly
independent family to a basis of Kn. With respect to this new basis, our matrix is of the
form

A′ =

(
λiIni B

0 D

)
,

and a simple determinant calculation shows that

det(XI − A) = det(XI − A′) = (X − λi)ni det(XIn−ni −D).

Therefore, (X−λi)ni divides the characteristic polynomial of A′, and thus, the characteristic
polynomial of A. It follows that ni is less than or equal to the algebraic multiplicity of λi.

The following proposition shows an interesting property of eigenspaces.

Proposition 14.3. Let E be any vector space of finite dimension n and let f be any linear
map. If u1, . . . , um are eigenvectors associated with pairwise distinct eigenvalues λ1, . . . , λm,
then the family (u1, . . . , um) is linearly independent.

Proof. Assume that (u1, . . . , um) is linearly dependent. Then there exists µ1, . . . , µk ∈ K
such that

µ1ui1 + · · ·+ µkuik = 0,

where 1 ≤ k ≤ m, µi 6= 0 for all i, 1 ≤ i ≤ k, {i1, . . . , ik} ⊆ {1, . . . ,m}, and no proper
subfamily of (ui1 , . . . , uik) is linearly dependent (in other words, we consider a dependency
relation with k minimal). Applying f to this dependency relation, we get

µ1λi1ui1 + · · ·+ µkλikuik = 0,
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and if we multiply the original dependency relation by λi1 and subtract it from the above,
we get

µ2(λi2 − λi1)ui2 + · · ·+ µk(λik − λi1)uik = 0,

which is a nontrivial linear dependency among a proper subfamily of (ui1 , . . . , uik) since the
λj are all distinct and the µi are nonzero, a contradiction.

As a corollary of Proposition 14.3 we have the following result.

Corollary 14.4. If λ1, . . . , λm are all the pairwise distinct eigenvalues of f (where m ≤ n),
we have a direct sum

Eλ1 ⊕ · · · ⊕ Eλm
of the eigenspaces Eλi.

Unfortunately, it is not always the case that

E = Eλ1 ⊕ · · · ⊕ Eλm .

Definition 14.4. When

E = Eλ1 ⊕ · · · ⊕ Eλm ,
we say that f is diagonalizable (and similarly for any matrix associated with f).

Indeed, picking a basis in each Eλi , we obtain a matrix which is a diagonal matrix
consisting of the eigenvalues, each λi occurring a number of times equal to the dimension
of Eλi . This happens if the algebraic multiplicity and the geometric multiplicity of every
eigenvalue are equal. In particular, when the characteristic polynomial has n distinct roots,
then f is diagonalizable. It can also be shown that symmetric matrices have real eigenvalues
and can be diagonalized.

For a negative example, we leave it as exercise to show that the matrix

M =

(
1 1
0 1

)
cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace
of 1 only has dimension 1. The matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
cannot be diagonalized either, because it has no real eigenvalues, unless θ = kπ. However,
over the field of complex numbers, it can be diagonalized.
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14.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized. The
next best thing is to “triangularize,” which means to find a basis over which the matrix has
zero entries below the main diagonal. Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has the following shape,

a1 1 a1 2 a1 3 . . . a1n−1 a1n

0 a2 2 a2 3 . . . a2n−1 a2n

0 0 a3 3 . . . a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann


,

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n.

Theorem 14.5. Given any finite dimensional vector space over a field K, for any linear
map f : E → E, there is a basis (u1, . . . , un) with respect to which f is represented by an
upper triangular matrix (in Mn(K)) iff all the eigenvalues of f belong to K. Equivalently,
for every n× n matrix A ∈ Mn(K), there is an invertible matrix P and an upper triangular
matrix T (both in Mn(K)) such that

A = PTP−1

iff all the eigenvalues of A belong to K.

Proof. If there is a basis (u1, . . . , un) with respect to which f is represented by an upper
triangular matrix T in Mn(K), then since the eigenvalues of f are the diagonal entries of T ,
all the eigenvalues of f belong to K.

For the converse, we proceed by induction on the dimension n of E. For n = 1 the result
is obvious. If n > 1, since by assumption f has all its eigenvalues in K, pick some eigenvalue
λ1 ∈ K of f , and let u1 be some corresponding (nonzero) eigenvector. We can find n − 1
vectors (v2, . . . , vn) such that (u1, v2, . . . , vn) is a basis of E, and let F be the subspace of
dimension n − 1 spanned by (v2, . . . , vn). In the basis (u1, v2 . . . , vn), the matrix of f is of
the form

U =


λ1 a1 2 . . . a1n

0 a2 2 . . . a2n
...

...
. . .

...
0 an 2 . . . ann

 ,

since its first column contains the coordinates of λ1u1 over the basis (u1, v2, . . . , vn). If we
let p : E → F be the projection defined such that p(u1) = 0 and p(vi) = vi when 2 ≤ i ≤ n,
the linear map g : F → F defined as the restriction of p ◦ f to F is represented by the
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(n− 1)× (n− 1) matrix V = (ai j)2≤i,j≤n over the basis (v2, . . . , vn). We need to prove that
all the eigenvalues of g belong to K. However, since the entries in the first column of U are
all zero for i = 2, . . . , n, we get

χU(X) = det(XI − U) = (X − λ1) det(XI − V ) = (X − λ1)χV (X),

where χU(X) is the characteristic polynomial of U and χV (X) is the characteristic polynomial
of V . It follows that χV (X) divides χU(X), and since all the roots of χU(X) are in K, all
the roots of χV (X) are also in K. Consequently, we can apply the induction hypothesis, and
there is a basis (u2, . . . , un) of F such that g is represented by an upper triangular matrix
(bi j)1≤i,j≤n−1. However,

E = Ku1 ⊕ F,
and thus (u1, . . . , un) is a basis for E. Since p is the projection from E = Ku1 ⊕ F onto F
and g : F → F is the restriction of p ◦ f to F , we have

f(u1) = λ1u1

and

f(ui+1) = a1 iu1 +
i∑

j=1

bi juj+1

for some a1 i ∈ K, when 1 ≤ i ≤ n−1. But then the matrix of f with respect to (u1, . . . , un)
is upper triangular.

For the matrix version, we assume that A is the matrix of f with respect to some basis,
Then we just proved that there is a change of basis matrix P such that A = PTP−1 where
T is upper triangular.

If A = PTP−1 where T is upper triangular, note that the diagonal entries of T are the
eigenvalues λ1, . . . , λn of A. Indeed, A and T have the same characteristic polynomial. Also,
if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A
is a rational matrix whose eigenvalues are all rational, then P can be chosen rational. Since
any polynomial over C has all its roots in C, Theorem 14.5 implies that every complex n×n
matrix can be triangularized.

If E is a Hermitian space (see Chapter 13), the proof of Theorem 14.5 can be easily
adapted to prove that there is an orthonormal basis (u1, . . . , un) with respect to which the
matrix of f is upper triangular. This is usually known as Schur’s lemma.

Theorem 14.6. (Schur decomposition) Given any linear map f : E → E over a complex
Hermitian space E, there is an orthonormal basis (u1, . . . , un) with respect to which f is
represented by an upper triangular matrix. Equivalently, for every n×n matrix A ∈ Mn(C),
there is a unitary matrix U and an upper triangular matrix T such that

A = UTU∗.
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If A is real and if all its eigenvalues are real, then there is an orthogonal matrix Q and a
real upper triangular matrix T such that

A = QTQ>.

Proof. During the induction, we choose F to be the orthogonal complement of Cu1 and we
pick orthonormal bases (use Propositions 13.13 and 13.12). If E is a real Euclidean space
and if the eigenvalues of f are all real, the proof also goes through with real matrices (use
Propositions 11.11 and 11.10).

If λ is an eigenvalue of the matrix A and if u is an eigenvector associated with λ, from

Au = λu,

we obtain
A2u = A(Au) = A(λu) = λAu = λ2u,

which shows that λ2 is an eigenvalue of A2 for the eigenvector u. An obvious induction shows
that λk is an eigenvalue of Ak for the eigenvector u, for all k ≥ 1. Now, if all eigenvalues
λ1, . . . , λn of A are in K, it follows that λk1, . . . , λ

k
n are eigenvalues of Ak. However, it is not

obvious that Ak does not have other eigenvalues. In fact, this can’t happen, and this can be
proven using Theorem 14.5.

Proposition 14.7. Given any n × n matrix A ∈ Mn(K) with coefficients in a field K,
if all eigenvalues λ1, . . . , λn of A are in K, then for every polynomial q(X) ∈ K[X], the
eigenvalues of q(A) are exactly (q(λ1), . . . , q(λn)).

Proof. By Theorem 14.5, there is an upper triangular matrix T and an invertible matrix P
(both in Mn(K)) such that

A = PTP−1.

Since A and T are similar, they have the same eigenvalues (with the same multiplicities), so
the diagonal entries of T are the eigenvalues of A. Since

Ak = PT kP−1, k ≥ 1,

for any polynomial q(X) = c0X
m + · · ·+ cm−1X + cm, we have

q(A) = c0A
m + · · ·+ cm−1A+ cmI

= c0PT
mP−1 + · · ·+ cm−1PTP

−1 + cmPIP
−1

= P (c0T
m + · · ·+ cm−1T + cmI)P−1

= Pq(T )P−1.

Furthermore, it is easy to check that q(T ) is upper triangular and that its diagonal entries
are q(λ1), . . . , q(λn), where λ1, . . . , λn are the diagonal entries of T , namely the eigenvalues
of A. It follows that q(λ1), . . . , q(λn) are the eigenvalues of q(A).
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Remark: There is another way to prove Proposition 14.7 that does not use Theorem 14.5,
but instead uses the fact that given any field K, there is field extension K of K (K ⊆ K) such
that every polynomial q(X) = c0X

m + · · ·+ cm−1X + cm (of degree m ≥ 1) with coefficients
ci ∈ K factors as

q(X) = c0(X − α1) · · · (X − αn), αi ∈ K, i = 1, . . . , n.

The field K is called an algebraically closed field (and an algebraic closure of K).

Assume that all eigenvalues λ1, . . . , λn of A belong to K. Let q(X) be any polynomial
(in K[X]) and let µ ∈ K be any eigenvalue of q(A) (this means that µ is a zero of the
characteristic polynomial χq(A)(X) ∈ K[X] of q(A). Since K is algebraically closed, χq(A)(X)
has all its roots in K). We claim that µ = q(λi) for some eigenvalue λi of A.

Proof. (After Lax [44], Chapter 6). Since K is algebraically closed, the polynomial µ− q(X)
factors as

µ− q(X) = c0(X − α1) · · · (X − αn),

for some αi ∈ K. Now µI− q(A) is a matrix in Mn(K), and since µ is an eigenvalue of q(A),
it must be singular. We have

µI − q(A) = c0(A− α1I) · · · (A− αnI),

and since the left-hand side is singular, so is the right-hand side, which implies that some
factor A−αiI is singular. This means that αi is an eigenvalue of A, say αi = λi. As αi = λi
is a zero of µ− q(X), we get

µ = q(λi),

which proves that µ is indeed of the form q(λi) for some eigenvalue λi of A.

Using Theorem 14.6, we can derive two very important results.

Proposition 14.8. If A is a Hermitian matrix (i.e. A∗ = A), then its eigenvalues are real
and A can be diagonalized with respect to an orthonormal basis of eigenvectors. In matrix
terms, there is a unitary matrix U and a real diagonal matrix D such that A = UDU∗. If
A is a real symmetric matrix (i.e. A> = A), then its eigenvalues are real and A can be
diagonalized with respect to an orthonormal basis of eigenvectors. In matrix terms, there is
an orthogonal matrix Q and a real diagonal matrix D such that A = QDQ>.

Proof. By Theorem 14.6, we can write A = UTU∗ where T = (tij) is upper triangular and
U is a unitary matrix. If A∗ = A, we get

UTU∗ = UT ∗U∗,

and this implies that T = T ∗. Since T is an upper triangular matrix, T ∗ is a lower triangular
matrix, which implies that T is a diagonal matrix. Furthermore, since T = T ∗, we have
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tii = tii for i = 1, . . . , n, which means that the tii are real, so T is indeed a real diagonal
matrix, say D.

If we apply this result to a (real) symmetric matrix A, we obtain the fact that all the
eigenvalues of a symmetric matrix are real, and by applying Theorem 14.6 again, we conclude
that A = QDQ>, where Q is orthogonal and D is a real diagonal matrix.

More general versions of Proposition 14.8 are proven in Chapter 16.

When a real matrix A has complex eigenvalues, there is a version of Theorem 14.6
involving only real matrices provided that we allow T to be block upper-triangular (the
diagonal entries may be 2× 2 matrices or real entries).

Theorem 14.6 is not a very practical result but it is a useful theoretical result to cope
with matrices that cannot be diagonalized. For example, it can be used to prove that
every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct
eigenvalues!

14.3 Location of Eigenvalues

If A is an n×n complex (or real) matrix A, it would be useful to know, even roughly, where
the eigenvalues of A are located in the complex plane C. The Gershgorin discs provide some
precise information about this.

Definition 14.5. For any complex n× n matrix A, for i = 1, . . . , n, let

R′i(A) =
n∑
j=1
j 6=i

|ai j|

and let

G(A) =
n⋃
i=1

{z ∈ C | |z − ai i| ≤ R′i(A)}.

Each disc {z ∈ C | |z − ai i| ≤ R′i(A)} is called a Gershgorin disc and their union G(A) is

called the Gershgorin domain. An example of Gershgorin domain for A =

1 2 3
4 i 6
7 8 1 + i


is illustrated in Figure 14.1.

Although easy to prove, the following theorem is very useful:

Theorem 14.9. (Gershgorin’s disc theorem) For any complex n×n matrix A, all the eigen-
values of A belong to the Gershgorin domain G(A). Furthermore the following properties
hold:
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Figure 14.1: Let A be the 3 × 3 matrix specified at the end of Definition 14.5. For this
particular A, we find that R′1(A) = 5, R′2(A) = 10, and R′3(A) = 15. The blue/purple disk
is |z − 1| ≤ 5, the pink disk is |z − i| ≤ 10, the peach disk is |z − 1 − i| ≤ 15, and G(A) is
the union of these three disks.

(1) If A is strictly row diagonally dominant, that is

|ai i| >
n∑

j=1, j 6=i
|ai j|, for i = 1, . . . , n,

then A is invertible.

(2) If A is strictly row diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

Proof. Let λ be any eigenvalue of A and let u be a corresponding eigenvector (recall that we
must have u 6= 0). Let k be an index such that

|uk| = max
1≤i≤n

|ui|.

Since Au = λu, we have

(λ− ak k)uk =
n∑
j=1
j 6=k

ak juj,

which implies that

|λ− ak k||uk| ≤
n∑
j=1
j 6=k

|ak j||uj| ≤ |uk|
n∑
j=1
j 6=k

|ak j|.

Since u 6= 0 and |uk| = max1≤i≤n |ui|, we must have |uk| 6= 0, and it follows that

|λ− ak k| ≤
n∑
j=1
j 6=k

|ak j| = R′k(A),
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and thus
λ ∈ {z ∈ C | |z − ak k| ≤ R′k(A)} ⊆ G(A),

as claimed.

(1) Strict row diagonal dominance implies that 0 does not belong to any of the Gershgorin
discs, so all eigenvalues of A are nonzero, and A is invertible.

(2) If A is strictly row diagonally dominant and ai i > 0 for i = 1, . . . , n, then each of the
Gershgorin discs lies strictly in the right half-plane, so every eigenvalue of A has a strictly
positive real part.

In particular, Theorem 14.9 implies that if a symmetric matrix is strictly row diagonally
dominant and has strictly positive diagonal entries, then it is positive definite. Theorem 14.9
is sometimes called the Gershgorin–Hadamard theorem.

Since A and A> have the same eigenvalues (even for complex matrices) we also have a
version of Theorem 14.9 for the discs of radius

C ′j(A) =
n∑
i=1
i 6=j

|ai j|,

whose domain G(A>) is given by

G(A>) =
n⋃
i=1

{z ∈ C | |z − ai i| ≤ C ′i(A)}.

Figure 14.2 shows G(A>) for A =

1 2 3
4 i 6
7 8 1 + i

.

10 5 0 5 10

10

5
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Figure 14.2: Let A be the 3 × 3 matrix specified at the end of Definition 14.5. For this
particular A, we find that C ′1(A) = 11, C ′2(A) = 10, and C ′3(A) = 9. The pale blue disk is
|z − 1| ≤ 11, the pink disk is |z − i| ≤ 10, the ocher disk is |z − 1− i| ≤ 9, and G(A>) is the
union of these three disks.
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Thus we get the following:

Theorem 14.10. For any complex n × n matrix A, all the eigenvalues of A belong to the
intersection of the Gershgorin domains G(A) ∩ G(A>). See Figure 14.3. Furthermore the
following properties hold:

(1) If A is strictly column diagonally dominant, that is

|ai i| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n,

then A is invertible.

(2) If A is strictly column diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

10 5 0 5 10 15

10

5

5

10

15

G(A   ) g G(A)T

10 5 0 5 10 15

10

5

5

10

15

G(A   ) h G(A)T

Figure 14.3: Let A be the 3× 3 matrix specified at the end of Definition 14.5. The colored
region in the second figure is G(A) ∩G(A>).

There are refinements of Gershgorin’s theorem and eigenvalue location results involving
other domains besides discs; for more on this subject, see Horn and Johnson [36], Sections
6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are
necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row
diagonal dominance (or column diagonal dominance) is not a sufficient condition for invert-
ibility.
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14.4 Conditioning of Eigenvalue Problems

The following n× n matrix

A =



0
1 0

1 0
. . . . . .

1 0
1 0


has the eigenvalue 0 with multiplicity n. However, if we perturb the top rightmost entry of
A by ε, it is easy to see that the characteristic polynomial of the matrix

A(ε) =



0 ε
1 0

1 0
. . . . . .

1 0
1 0


is Xn − ε. It follows that if n = 40 and ε = 10−40, A(10−40) has the eigenvalues 10−1ek2πi/40

with k = 1, . . . , 40. Thus, we see that a very small change (ε = 10−40) to the matrix A causes
a significant change to the eigenvalues of A (from 0 to 10−1ek2πi/40 ). Indeed, the relative
error is 10−39. Worse, due to machine precision, since very small numbers are treated as 0,
the error on the computation of eigenvalues (for example, of the matrix A(10−40)) can be
very large.

This phenomenon is similar to the phenomenon discussed in Section 8.5 where we studied
the effect of a small perturbation of the coefficients of a linear system Ax = b on its solution.
In Section 8.5, we saw that the behavior of a linear system under small perturbations is
governed by the condition number cond(A) of the matrix A. In the case of the eigenvalue
problem (finding the eigenvalues of a matrix), we will see that the conditioning of the problem
depends on the condition number of the change of basis matrix P used in reducing the matrix
A to its diagonal form D = P−1AP , rather than on the condition number of A itself. The
following proposition in which we assume that A is diagonalizable and that the matrix norm
‖ ‖ satisfies a special condition (satisfied by the operator norms ‖ ‖p for p = 1, 2,∞), is due
to Bauer and Fike (1960).

Proposition 14.11. Let A ∈ Mn(C) be a diagonalizable matrix, P be an invertible matrix,
and D be a diagonal matrix D = diag(λ1, . . . , λn) such that

A = PDP−1,
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and let ‖ ‖ be a matrix norm such that

‖diag(α1, . . . , αn)‖ = max
1≤i≤n

|αi|,

for every diagonal matrix. Then for every perturbation matrix ∆A, if we write

Bi = {z ∈ C | |z − λi| ≤ cond(P ) ‖∆A‖},

for every eigenvalue λ of A+ ∆A, we have

λ ∈
n⋃
k=1

Bk.

Proof. Let λ be any eigenvalue of the matrix A+ ∆A. If λ = λj for some j, then the result
is trivial. Thus assume that λ 6= λj for j = 1, . . . , n. In this case the matrix D − λI is
invertible (since its eigenvalues are λ− λj for j = 1, . . . , n), and we have

P−1(A+ ∆A− λI)P = D − λI + P−1(∆A)P

= (D − λI)(I + (D − λI)−1P−1(∆A)P ).

Since λ is an eigenvalue of A+ ∆A, the matrix A+ ∆A− λI is singular, so the matrix

I + (D − λI)−1P−1(∆A)P

must also be singular. By Proposition 8.11(2), we have

1 ≤
∥∥(D − λI)−1P−1(∆A)P

∥∥ ,
and since ‖ ‖ is a matrix norm,∥∥(D − λI)−1P−1(∆A)P

∥∥ ≤ ∥∥(D − λI)−1
∥∥∥∥P−1

∥∥ ‖∆A‖ ‖P‖ ,
so we have

1 ≤
∥∥(D − λI)−1

∥∥∥∥P−1
∥∥ ‖∆A‖ ‖P‖ .

Now (D − λI)−1 is a diagonal matrix with entries 1/(λi − λ), so by our assumption on the
norm, ∥∥(D − λI)−1

∥∥ =
1

mini(|λi − λ|)
.

As a consequence, since there is some index k for which mini(|λi − λ|) = |λk − λ|, we have∥∥(D − λI)−1
∥∥ =

1

|λk − λ|
,

and we obtain
|λ− λk| ≤

∥∥P−1
∥∥ ‖∆A‖ ‖P‖ = cond(P ) ‖∆A‖ ,

which proves our result.
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Proposition 14.11 implies that for any diagonalizable matrix A, if we define Γ(A) by

Γ(A) = inf{cond(P ) | P−1AP = D},

then for every eigenvalue λ of A+ ∆A, we have

λ ∈
n⋃
k=1

{z ∈ Cn | |z − λk| ≤ Γ(A) ‖∆A‖}.

Definition 14.6. The number Γ(A) = inf{cond(P ) | P−1AP = D} is called the conditioning
of A relative to the eigenvalue problem.

If A is a normal matrix, since by Theorem 16.22, A can be diagonalized with respect
to a unitary matrix U , and since for the spectral norm ‖U‖2 = 1, we see that Γ(A) = 1.
Therefore, normal matrices are very well conditionned w.r.t. the eigenvalue problem. In
fact, for every eigenvalue λ of A+ ∆A (with A normal), we have

λ ∈
n⋃
k=1

{z ∈ Cn | |z − λk| ≤ ‖∆A‖2}.

If A and A+∆A are both symmetric (or Hermitian), there are sharper results; see Proposition
16.28.

Note that the matrix A(ε) from the beginning of the section is not normal.

14.5 Eigenvalues of the Matrix Exponential

The Schur decomposition yields a characterization of the eigenvalues of the matrix exponen-
tial eA in terms of the eigenvalues of the matrix A. First we have the following proposition.

Proposition 14.12. Let A and U be (real or complex) matrices and assume that U is
invertible. Then

eUAU
−1

= UeAU−1.

Proof. A trivial induction shows that

UApU−1 = (UAU−1)p,

and thus

eUAU
−1

=
∑
p≥0

(UAU−1)p

p!
=
∑
p≥0

UApU−1

p!

= U

(∑
p≥0

Ap

p!

)
U−1 = UeAU−1,

as claimed.
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Proposition 14.13. Given any complex n × n matrix A, if λ1, . . . , λn are the eigenvalues
of A, then eλ1 , . . . , eλn are the eigenvalues of eA. Furthermore, if u is an eigenvector of A
for λi, then u is an eigenvector of eA for eλi.

Proof. By Theorem 14.5, there is an invertible matrix P and an upper triangular matrix T
such that

A = PTP−1.

By Proposition 14.12,

ePTP
−1

= PeTP−1.

Note that eT =
∑

p≥0
T p

p!
is upper triangular since T p is upper triangular for all p ≥ 0. If

λ1, λ2, . . . , λn are the diagonal entries of T , the properties of matrix multiplication, when
combined with an induction on p, imply that the diagonal entries of T p are λp1, λ

p
2, . . . , λ

p
n.

This in turn implies that the diagonal entries of eT are
∑

p≥0
λpi
p!

= eλi for 1 ≤ i ≤ n. Since
A and T are similar matrices, we know that they have the same eigenvalues, namely the
diagonal entries λ1, . . . , λn of T . Since eA = ePTP

−1
= PeTP−1, and eT is upper triangular,

we use the same argument to conclude that both eA and eT have the same eigenvalues, which
are the diagonal entries of eT , where the diagonal entries of eT are of the form eλ1 , . . . , eλn .
Now, if u is an eigenvector of A for the eigenvalue λ, a simple induction shows that u is an
eigenvector of An for the eigenvalue λn, from which is follows that

eAu =

[
I +

A

1!
+
A2

2!
+
A3

3!
+ . . .

]
u = u+ Au+

A2

2!
u+

A3

3!
u+ . . .

= u+ λu+
λ2

2!
u+

λ3

3!
u+ · · · =

[
1 + λ+

λ2

2!
+
λ3

3!
+ . . .

]
u = eλu,

which shows that u is an eigenvector of eA for eλ.

As a consequence, we obtain the following result.

Proposition 14.14. For every complex (or real) square matrix A, we have

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a1 1 + · · ·+ ann of its diagonal entries.

Proof. The trace of a matrix A is equal to the sum of the eigenvalues of A. The determinant
of a matrix is equal to the product of its eigenvalues, and if λ1, . . . , λn are the eigenvalues of
A, then by Proposition 14.13, eλ1 , . . . , eλn are the eigenvalues of eA, and thus

det
(
eA
)

= eλ1 · · · eλn = eλ1+···+λn = etr(A),

as desired.
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If B is a skew symmetric matrix, since tr(B) = 0, we deduce that det(eB) = e0 = 1.
This allows us to obtain the following result. Recall that the (real) vector space of skew
symmetric matrices is denoted by so(n).

Proposition 14.15. For every skew symmetric matrix B ∈ so(n), we have eB ∈ SO(n),
that is, eB is a rotation.

Proof. By Proposition 8.23, eB is an orthogonal matrix. Since tr(B) = 0, we deduce that
det(eB) = e0 = 1. Therefore, eB ∈ SO(n).

Proposition 14.15 shows that the map B 7→ eB is a map exp: so(n) → SO(n). It is not
injective, but it can be shown (using one of the spectral theorems) that it is surjective.

If B is a (real) symmetric matrix, then

(eB)> = eB
>

= eB,

so eB is also symmetric. Since the eigenvalues λ1, . . . , λn of B are real, by Proposition
14.13, since the eigenvalues of eB are eλ1 , . . . , eλn and the λi are real, we have eλi > 0 for
i = 1, . . . , n, which implies that eB is symmetric positive definite. In fact, it can be shown
that for every symmetric positive definite matrix A, there is a unique symmetric matrix B
such that A = eB; see Gallier [24].

14.6 Summary

The main concepts and results of this chapter are listed below:

• Diagonal matrix .

• Eigenvalues, eigenvectors ; the eigenspace associated with an eigenvalue.

• Characteristic polynomial .

• Trace.

• Algebraic and geometric multiplicity .

• Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 14.3).

• Reduction of a matrix to an upper-triangular matrix.

• Schur decomposition.

• The Gershgorin’s discs can be used to locate the eigenvalues of a complex matrix; see
Theorems 14.9 and 14.10.

• The conditioning of eigenvalue problems.

• Eigenvalues of the matrix exponential. The formula det(eA) = etr(A).
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14.7 Problems

Problem 14.1. Let A be the following 2× 2 matrix

A =

(
1 −1
1 −1

)
.

(1) Prove that A has the eigenvalue 0 with multiplicity 2 and that A2 = 0.

(2) Let A be any real 2× 2 matrix

A =

(
a b
c d

)
.

Prove that if bc > 0, then A has two distinct real eigenvalues. Prove that if a, b, c, d > 0,
then there is a positive eigenvector u associated with the largest of the two eigenvalues of A,
which means that if u = (u1, u2), then u1 > 0 and u2 > 0.

(3) Suppose now that A is any complex 2 × 2 matrix as in (2). Prove that if A has the
eigenvalue 0 with multiplicity 2, then A2 = 0. Prove that if A is real symmetric, then A = 0.

Problem 14.2. Let A be any complex n × n matrix. Prove that if A has the eigenvalue
0 with multiplicity n, then An = 0. Give an example of a matrix A such that An = 0 but
A 6= 0.

Problem 14.3. Let A be a complex 2 × 2 matrix, and let λ1 and λ2 be the eigenvalues of
A. Prove that if λ1 6= λ2, then

eA =
λ1e

λ2 − λ2e
λ1

λ1 − λ2

I +
eλ1 − eλ2
λ1 − λ2

A.

Problem 14.4. Let A be the real symmetric 2× 2 matrix

A =

(
a b
b c

)
.

(1) Prove that the eigenvalues of A are real and given by

λ1 =
a+ c+

√
4b2 + (a− c)2

2
, λ2 =

a+ c−
√

4b2 + (a− c)2

2
.

(2) Prove that A has a double eigenvalue (λ1 = λ2 = a) if and only if b = 0 and a = c;
that is, A is a diagonal matrix.

(3) Prove that the eigenvalues of A are nonnegative iff b2 ≤ ac and a+ c ≥ 0.

(4) Prove that the eigenvalues of A are positive iff b2 < ac, a > 0 and c > 0.
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Problem 14.5. Find the eigenvalues of the matrices

A =

(
3 0
1 1

)
, B =

(
1 1
0 3

)
, C = A+B =

(
4 1
1 4

)
.

Check that the eigenvalues of A + B are not equal to the sums of eigenvalues of A plus
eigenvalues of B.

Problem 14.6. Let A be a real symmetric n×n matrix and B be a real symmetric positive
definite n×n matrix. We would like to solve the generalized eigenvalue problem: find λ ∈ R
and u 6= 0 such that

Au = λBu. (∗)

(1) Use the Cholseky decomposition B = CC> to show that λ and u are solutions of
the generalized eigenvalue problem (∗) iff λ and v are solutions the (ordinary) eigenvalue
problem

C−1A(C>)−1v = λv, with v = C>u.

Check that C−1A(C>)−1 is symmetric.

(2) Prove that if Au1 = λ1Bu1, Au2 = λ2Bu2, with u1 6= 0, u2 6= 0 and λ1 6= λ2, then
u>1 Bu2 = 0.

(3) Prove that B−1A and C−1A(C>)−1 have the same eigenvalues.

Problem 14.7. The sequence of Fibonacci numbers , 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . , is
given by the recurrence

Fn+2 = Fn+1 + Fn,

with F0 = 0 and F1 = 1. In matrix form, we can write(
Fn+1

Fn

)
=

(
1 1
1 0

)(
Fn
Fn−1

)
, n ≥ 1,

(
F1

F0

)
=

(
1
0

)
.

(1) Show that (
Fn+1

Fn

)
=

(
1 1
1 0

)n(
1
0

)
.

(2) Prove that the eigenvalues of the matrix

A =

(
1 1
1 0

)
are

λ =
1±
√

5

2
.

The number

ϕ =
1 +
√

5

2
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is called the golden ratio. Show that the eigenvalues of A are ϕ and −ϕ−1.

(3) Prove that A is diagonalized as

A =

(
1 1
1 0

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
ϕ 0
0 −ϕ−1

)(
1 ϕ−1

−1 ϕ

)
.

Prove that (
Fn+1

Fn

)
=

1√
5

(
ϕ −ϕ−1

1 1

)(
ϕn

−(−ϕ−1)n

)
,

and thus

Fn =
1√
5

(ϕn − (−ϕ−1)n) =
1√
5

[(
1 +
√

5

2

)n

−
(

1−
√

5

2

)n]
, n ≥ 0.

Problem 14.8. Let A be an n × n matrix. For any subset I of {1, . . . , n}, let AI,I be the
matrix obtained from A by first selecting the columns whose indices belong to I, and then
the rows whose indices also belong to I. Prove that

τk(A) =
∑

I⊆{1,...,n}
|I|=k

det(AI,I).

Problem 14.9. (1) Consider the matrix

A =

0 0 −a3

1 0 −a2

0 1 −a1

 .

Prove that the characteristic polynomial χA(z) = det(zI − A) of A is given by

χA(z) = z3 + a1z
2 + a2z + a3.

(2) Consider the matrix

A =


0 0 0 −a4

1 0 0 −a3

0 1 0 −a2

0 0 1 −a1

 .

Prove that the characteristic polynomial χA(z) = det(zI − A) of A is given by

χA(z) = z4 + a1z
3 + a2z

2 + a3z + a4.
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(3) Consider the n× n matrix (called a companion matrix )

A =



0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2
...

. . . . . . . . .
...

...

0 0 0
. . . 0 −a2

0 0 0 · · · 1 −a1


.

Prove that the characteristic polynomial χA(z) = det(zI − A) of A is given by

χA(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an.

Hint . Use induction.

Explain why finding the roots of a polynomial (with real or complex coefficients) and
finding the eigenvalues of a (real or complex) matrix are equivalent problems, in the sense
that if we have a method for solving one of these problems, then we have a method to solve
the other.

Problem 14.10. Let A be a complex n× n matrix. Prove that if A is invertible and if the
eigenvalues of A are (λ1, . . . , λn), then the eigenvalues of A−1 are (λ−1

1 , . . . , λ−1
n ). Prove that

if u is an eigenvector of A for λi, then u is an eigenvector of A−1 for λ−1
i .

Problem 14.11. Prove that every complex matrix is the limit of a sequence of diagonalizable
matrices that have distinct eigenvalues.

Problem 14.12. Consider the following tridiagonal n× n matrices

A =


2 −1 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 2

 , S =


0 1 0
1 0 1

. . . . . . . . .

1 0 1
0 1 0

 .

Observe that A = 2I − S and show that the eigenvalues of A are λk = 2− µk, where the µk
are the eigenvalues of S.

(2) Using Problem 9.6, prove that the eigenvalues of the matrix A are given by

λk = 4 sin2

(
kπ

2(n+ 1)

)
, k = 1, . . . , n.

Show that A is symmetric positive definite.

(3) Find the condition number of A with respect to the 2-norm.

(4) Show that an eigenvector (y
(k)
1 , . . . , y

(k)
n ) associated wih the eigenvalue λk is given by

y
(k)
j = sin

(
kjπ

n+ 1

)
, j = 1, . . . , n.
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Problem 14.13. Consider the following real tridiagonal symmetric n× n matrix

A =


c 1 0
1 c 1

. . . . . . . . .

1 c 1
0 1 c

 .

(1) Using Problem 9.6, prove that the eigenvalues of the matrix A are given by

λk = c+ 2 cos

(
kπ

n+ 1

)
, k = 1, . . . , n.

(2) Find a condition on c so that A is positive definite. It is satisfied by c = 4?

Problem 14.14. Let A be an m× n matrix and B be an n×m matrix (over C).

(1) Prove that
det(Im − AB) = det(In −BA).

Hint . Consider the matrices

X =

(
Im A
B In

)
and Y =

(
Im 0
−B In

)
.

(2) Prove that
λn det(λIm − AB) = λm det(λIn −BA).

Hint . Consider the matrices

X =

(
λIm A
B In

)
and Y =

(
Im 0
−B λIn

)
.

Deduce that AB and BA have the same nonzero eigenvalues with the same multiplicity.

Problem 14.15. The purpose of this problem is to prove that the characteristic polynomial
of the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n− 1


is

PA(λ) = λn−2

(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.
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(1) Prove that the characteristic polynomial PA(λ) is given by

PA(λ) = λn−2P (λ),

with

P (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n
−λ− 1 λ− 1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2) Prove that the sum of the roots λ1, λ2 of the (degree two) polynomial P (λ) is

λ1 + λ2 = n2.

The problem is thus to compute the product λ1λ2 of these roots. Prove that

λ1λ2 = P (0).

(3) The problem is now to evaluate dn = P (0), where

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n
−1 −1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding

a suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1.
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Do this twice.

You will notice that the first two entries on row 1 and the first two entries on row 2
change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries uk, vk, xk, yk in the determinant

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk xk −3 −4 · · · −n+ k − 3 −n+ k − 2 −n+ k − 1 −n+ k

vk yk −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

starting with k = 0, with

u0 = −1, v0 = −1, x0 = −2, y0 = −1,

and ending with k = n− 2, so that

dn = Dn−2 =

∣∣∣∣∣∣
un−3 xn−3 −3
vn−3 yn−3 −1

1 −2 1

∣∣∣∣∣∣ =

∣∣∣∣un−2 xn−2

vn−2 yn−2

∣∣∣∣ .
Prove that we have the recurrence relations

uk+1

vk+1

xk+1

yk+1

 =


2 −2 1 −1
0 2 0 1
−1 1 0 0
0 −1 0 0



uk
vk
xk
yk

+


0
0
−2
−1

 .

These appear to be nasty affine recurrence relations, so we will use the trick to convert
this affine map to a linear map.

(4) Consider the linear map given by
uk+1

vk+1

xk+1

yk+1

1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1



uk
vk
xk
yk
1

 ,
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and show that its action on uk, vk, xk, yk is the same as the affine action of Part (3).

Use Matlab to find the eigenvalues of the matrix

T =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1

 .

You will be stunned!

Let N be the matrix given by
N = T − I.

Prove that
N4 = 0.

Use this to prove that

T k = I + kN +
1

2
k(k − 1)N2 +

1

6
k(k − 1)(k − 2)N3,

for all k ≥ 0.

(5) Prove that
uk
vk
xk
yk
1

 = T k


−1
−1
−2
−1
1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1


k
−1
−1
−2
−1
1

 ,

for k ≥ 0.

Prove that

T k =



k + 1 −k(k + 1) k −k2 1
6
(k − 1)k(2k − 7)

0 k + 1 0 k −1
2
(k − 1)k

−k k2 1− k (k − 1)k −1
3
k((k − 6)k + 11)

0 −k 0 1− k 1
2
(k − 3)k

0 0 0 0 1


,

and thus that 
uk

vk

xk

yk

 =


1
6
(2k3 + 3k2 − 5k − 6)

−1
2
(k2 + 3k + 2)

1
3
(−k3 + k − 6)

1
2
(k2 + k − 2)

 ,
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and that ∣∣∣∣uk xk
vk yk

∣∣∣∣ = −1− 7

3
k − 23

12
k2 − 2

3
k3 − 1

12
k4.

As a consequence, prove that amazingly

dn = Dn−2 = − 1

12
n2(n2 − 1).

(6) Prove that the characteristic polynomial of A is indeed

PA(λ) = λn−2

(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.

Use the above to show that the two nonzero eigenvalues of A are

λ =
n

2

(
n±
√

3

3

√
4n2 − 1

)
.

The negative eigenvalue λ1 can also be expressed as

λ1 = n2 (3− 2
√

3)

6

√
1− 1

4n2
.

Use this expression to explain the following phenomenon: if we add any number greater than
or equal to (2/25)n2 to every diagonal entry of A we get an invertible matrix. What about
0.077351n2? Try it!

Problem 14.16. Let A be a symmetric tridiagonal n× n-matrix

A =



b1 c1

c1 b2 c2

c2 b3 c3

. . . . . . . . .

cn−2 bn−1 cn−1

cn−1 bn


,

where it is assumed that ci 6= 0 for all i, 1 ≤ i ≤ n − 1, and let Ak be the k × k-submatrix
consisting of the first k rows and columns of A, 1 ≤ k ≤ n. We define the polynomials Pk(x)
as follows: (0 ≤ k ≤ n).

P0(x) = 1,

P1(x) = b1 − x,
Pk(x) = (bk − x)Pk−1(x)− c2

k−1Pk−2(x),
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where 2 ≤ k ≤ n.

(1) Prove the following properties:

(i) Pk(x) is the characteristic polynomial of Ak, where 1 ≤ k ≤ n.

(ii) limx→−∞ Pk(x) = +∞, where 1 ≤ k ≤ n.

(iii) If Pk(x) = 0, then Pk−1(x)Pk+1(x) < 0, where 1 ≤ k ≤ n− 1.

(iv) Pk(x) has k distinct real roots that separate the k + 1 roots of Pk+1(x), where
1 ≤ k ≤ n− 1.

(2) Given any real number µ > 0, for every k, 1 ≤ k ≤ n, define the function sgk(µ) as
follows:

sgk(µ) =

{
sign of Pk(µ) if Pk(µ) 6= 0,
sign of Pk−1(µ) if Pk(µ) = 0.

We encode the sign of a positive number as +, and the sign of a negative number as −.
Then let E(k, µ) be the ordered list

E(k, µ) = 〈+, sg1(µ), sg2(µ), . . . , sgk(µ)〉 ,

and let N(k, µ) be the number changes of sign between consecutive signs in E(k, µ).

Prove that sgk(µ) is well defined and that N(k, µ) is the number of roots λ of Pk(x) such
that λ < µ.

Remark: The above can be used to compute the eigenvalues of a (tridiagonal) symmetric
matrix (the method of Givens-Householder).
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Chapter 15

Unit Quaternions and Rotations in
SO(3)

This chapter is devoted to the representation of rotations in SO(3) in terms of unit quater-
nions. Since we already defined the unitary groups SU(n), the quickest way to introduce
the unit quaternions is to define them as the elements of the group SU(2).

The skew field H of quaternions and the group SU(2) of unit quaternions are discussed in
Section 15.1. In Section 15.2, we define a homomorphism r : SU(2)→ SO(3) and prove that
its kernel is {−I, I}. We compute the rotation matrix Rq associated with the rotation rq
induced by a unit quaternion q in Section 15.3. In Section 15.4, we prove that the homomor-
phism r : SU(2)→ SO(3) is surjective by providing an algorithm to construct a quaternion
from a rotation matrix. In Section 15.5 we define the exponential map exp: su(2)→ SU(2)
where su(2) is the real vector space of skew-Hermitian 2 × 2 matrices with zero trace. We
prove that exponential map exp: su(2) → SU(2) is surjective and give an algorithm for
finding a logarithm. We discuss quaternion interpolation and prove the famous slerp inter-
polation formula due to Ken Shoemake in Section 15.6. This formula is used in robotics and
computer graphics to deal with interpolation problems. In Section 15.7, we prove that there
is no “nice” section s : SO(3) → SU(2) of the homomorphism r : SU(2) → SO(3), in the
sense that any section of r is neither a homomorphism nor continuous.

15.1 The Group SU(2) of Unit Quaternions and the

Skew Field H of Quaternions

Definition 15.1. The unit quaternions are the elements of the group SU(2), namely the
group of 2× 2 complex matrices of the form(

α β

−β α

)
α, β ∈ C, αα + ββ = 1.

The quaternions are the elements of the real vector space H = RSU(2).

555
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Let 1, i, j,k be the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

then H is the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Indeed, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

It is easy (but a bit tedious) to verify that the quaternions 1, i, j,k satisfy the famous
identities discovered by Hamilton:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Thus, the quaternions are a generalization of the complex numbers, but there are three
square roots of −1 and multiplication is not commutative.

Given any two quaternions X = a1+ bi+cj+dk and Y = a′1+ b′i+c′j+d′k, Hamilton’s
famous formula

XY = (aa′ − bb′ − cc′ − dd′)1 + (ab′ + ba′ + cd′ − dc′)i
+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k

looks mysterious, but it is simply the result of multiplying the two matrices

X =

(
a+ ib c+ id
−(c− id) a− ib

)
and Y =

(
a′ + ib′ c′ + id′

−(c′ − id′) a′ − ib′
)
.

It is worth noting that this formula was discovered independently by Olinde Rodrigues
in 1840, a few years before Hamilton (Veblen and Young [72]). However, Rodrigues was
working with a different formalism, homogeneous transformations, and he did not discover
the quaternions.

If

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R,

it is immediately verified that

XX∗ = X∗X = (a2 + b2 + c2 + d2)1.
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Also observe that

X∗ =

(
a− ib −(c+ id)
c− id a+ ib

)
= a1− bi− cj− dk.

This implies that if X 6= 0, then X is invertible and its inverse is given by

X−1 = (a2 + b2 + c2 + d2)−1X∗.

As a consequence, it can be verified that H is a skew field (a noncommutative field). It
is also a real vector space of dimension 4 with basis (1, i, j,k); thus as a vector space, H is
isomorphic to R4.

Definition 15.2. A concise notation for the quaternion X defined by α = a + ib and
β = c+ id is

X = [a, (b, c, d)].

We call a the scalar part of X and (b, c, d) the vector part of X. With this notation,
X∗ = [a,−(b, c, d)], which is often denoted by X. The quaternion X is called the conjugate
of X. If q is a unit quaternion, then q is the multiplicative inverse of q.

15.2 Representation of Rotations in SO(3) by Quater-

nions in SU(2)

The key to representation of rotations in SO(3) by unit quaternions is a certain group
homomorphism called the adjoint representation of SU(2). To define this mapping, first we
define the real vector space su(2) of skew Hermitian matrices.

Definition 15.3. The (real) vector space su(2) of 2× 2 skew Hermitian matrices with zero
trace is given by

su(2) =

{(
ix y + iz

−y + iz −ix

) ∣∣∣∣ (x, y, z) ∈ R3

}
.

Observe that for every matrix A ∈ su(2), we have A∗ = −A, that is, A is skew Hermitian,
and that tr(A) = 0.

Definition 15.4. The adjoint representation of the group SU(2) is the group homomorphism
Ad: SU(2)→ GL(su(2)) defined such that for every q ∈ SU(2), with

q =

(
α β

−β α

)
∈ SU(2),

we have
Adq(A) = qAq∗, A ∈ su(2),

where q∗ is the inverse of q (since SU(2) is a unitary group) and is given by

q∗ =

(
α −β
β α

)
.
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One needs to verify that the map Adq is an invertible linear map from su(2) to itself, and
that Ad is a group homomorphism, which is easy to do.

In order to associate a rotation ρq (in SO(3)) to q, we need to embed R3 into H as the
pure quaternions, by

ψ(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Then q defines the map ρq (on R3) given by

ρq(x, y, z) = ψ−1(qψ(x, y, z)q∗).

Therefore, modulo the isomorphism ψ, the linear map ρq is the linear isomorphism Adq.
In fact, it turns out that ρq is a rotation (and so is Adq), which we will prove shortly. So, the
representation of rotations in SO(3) by unit quaternions is just the adjoint representation
of SU(2); its image is a subgroup of GL(su(2)) isomorphic to SO(3).

Technically, it is a bit simpler to embed R3 in the (real) vector spaces of Hermitian
matrices with zero trace, {(

x z − iy
z + iy −x

) ∣∣∣∣ x, y, z ∈ R
}
.

Since the matrix ψ(x, y, z) is skew-Hermitian, the matrix −iψ(x, y, z) is Hermitian, and
we have

−iψ(x, y, z) =

(
x z − iy

z + iy −x

)
= xσ3 + yσ2 + zσ1,

where σ1, σ2, σ3 are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Matrices of the form xσ3 + yσ2 + zσ1 are Hermitian matrices with zero trace.

It is easy to see that every 2× 2 Hermitian matrix with zero trace must be of this form.
(observe that (iσ1, iσ2, iσ3) forms a basis of su(2). Also, i = iσ3, j = iσ2, k = iσ1.)

Now, if A = xσ3 + yσ2 + zσ1 is a Hermitian 2× 2 matrix with zero trace, we have

(qAq∗)∗ = qA∗q∗ = qAq∗,

so qAq∗ is also Hermitian, and

tr(qAq∗) = tr(Aq∗q) = tr(A),

and qAq∗ also has zero trace. Therefore, the map A 7→ qAq∗ preserves the Hermitian matrices
with zero trace. We also have

det(xσ3 + yσ2 + zσ1) = det

(
x z − iy

z + iy −x

)
= −(x2 + y2 + z2),
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and
det(qAq∗) = det(q) det(A) det(q∗) = det(A) = −(x2 + y2 + z2).

We can embed R3 into the space of Hermitian matrices with zero trace by

ϕ(x, y, z) = xσ3 + yσ2 + zσ1.

Note that
ϕ = −iψ and ϕ−1 = iψ−1.

Definition 15.5. The unit quaternion q ∈ SU(2) induces a map rq on R3 by

rq(x, y, z) = ϕ−1(qϕ(x, y, z)q∗) = ϕ−1(q(xσ3 + yσ2 + zσ1)q∗).

The map rq is clearly linear since ϕ is linear.

Proposition 15.1. For every unit quaternion q ∈ SU(2), the linear map rq is orthogonal,
that is, rq ∈ O(3).

Proof. Since

−‖(x, y, z)‖2 = −(x2 + y2 + z2) = det(xσ3 + yσ2 + zσ1) = det(ϕ(x, y, z)),

we have

−‖rq(x, y, z)‖2 = det(ϕ(rq(x, y, z))) = det(q(xσ3 + yσ2 + zσ1)q∗)

= det(xσ3 + yσ2 + zσ1) = −
∥∥(x, y, z)2

∥∥ ,
and we deduce that rq is an isometry. Thus, rq ∈ O(3).

In fact, rq is a rotation, and we can show this by finding the fixed points of rq. Let q be
a unit quaternion of the form

q =

(
α β

−β α

)
with α = a+ ib, β = c+ id, and a2 + b2 + c2 + d2 = 1 (a, b, c, d ∈ R).

If b = c = d = 0, then q = I and rq is the identity so we may assume that (b, c, d) 6=
(0, 0, 0).

Proposition 15.2. If (b, c, d) 6= (0, 0, 0), then the fixed points of rq are solutions (x, y, z) of
the linear system

−dy + cz = 0

cx− by = 0

dx− bz = 0.

This linear system has the nontrivial solution (b, c, d) and has rank 2. Therefore, rq has the
eigenvalue 1 with multiplicity 1, and rq is a rotation whose axis is determined by (b, c, d).
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Proof. We have rq(x, y, z) = (x, y, z) iff

ϕ−1(q(xσ3 + yσ2 + zσ1)q∗) = (x, y, z)

iff

q(xσ3 + yσ2 + zσ1)q∗ = ϕ(x, y, z),

and since

ϕ(x, y, z) = xσ3 + yσ2 + zσ1 = A

with

A =

(
x z − iy

z + iy −x

)
,

we see that rq(x, y, z) = (x, y, z) iff

qAq∗ = A iff qA = Aq.

We have

qA =

(
α β

−β α

)(
x z − iy

z + iy −x

)
=

(
αx+ βz + iβy αz − iαy − βx
−βx+ αz + iαy −βz + iβy − αx

)
and

Aq =

(
x z − iy

z + iy −x

)(
α β

−β α

)
=

(
αx− βz + iβy βx+ αz − iαy
αz + iαy + βx βz + iβy − αx

)
.

By equating qA and Aq, we get

i(β − β)y + (β + β)z = 0

2βx+ i(α− α)y + (α− α)z = 0

2βx+ i(α− α)y + (α− α)z = 0

i(β − β)y + (β + β)z = 0.

The first and the fourth equation are identical and the third equation is obtained by conju-
gating the second, so the above system reduces to

i(β − β)y + (β + β)z = 0

2βx+ i(α− α)y + (α− α)z = 0.

Replacing α by a+ ib and β by c+ id, we get

−dy + cz = 0

cx− by + i(dx− bz) = 0,
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which yields the equations

−dy + cz = 0

cx− by = 0

dx− bz = 0.

This linear system has the nontrivial solution (b, c, d) and the matrix of this system is0 −d c
c −b 0
d 0 −b

 .

Since (b, c, d) 6= (0, 0, 0), this matrix always has a 2 × 2 submatrix which is nonsingular, so
it has rank 2, and consequently its kernel is the one-dimensional space spanned by (b, c, d).
Therefore, rq has the eigenvalue 1 with multiplicity 1. If we had det(rq) = −1, then the
eigenvalues of rq would be either (−1, 1, 1) or (−1, eiθ, e−iθ) with θ 6= k2π (with k ∈ Z),
contradicting the fact that 1 is an eigenvalue with multiplicity 1. Therefore, rq is a rotation;
in fact, its axis is determined by (b, c, d).

In summary, q 7→ rq is a map r from SU(2) to SO(3).

Theorem 15.3. The map r : SU(2)→ SO(3) is a homomorphism whose kernel is {I,−I}.

Proof. This map is a homomorphism, because if q1, q2 ∈ SU(2), then

rq2(rq1(x, y, z)) = ϕ−1(q2ϕ(rq1(x, y, z))q∗2)

= ϕ−1(q2ϕ(ϕ−1(q1ϕ(x, y, z)q∗1))q∗2)

= ϕ−1((q2q1)ϕ(x, y, z)(q2q1)∗)

= rq2q1(x, y, z).

The computation that showed that if (b, c, d) 6= (0, 0, 0), then rq has the eigenvalue 1 with
multiplicity 1 implies the following: if rq = I3, namely rq has the eigenvalue 1 with multi-
plicity 3, then (b, c, d) = (0, 0, 0). But then a = ±1, and so q = ±I2. Therefore, the kernel
of the homomorphism r : SU(2)→ SO(3) is {I,−I}.

Remark: Perhaps the quickest way to show that r maps SU(2) into SO(3) is to observe
that the map r is continuous. Then, since it is known that SU(2) is connected, its image by
r lies in the connected component of I, namely SO(3).

Proposition 15.2 showed that if u = (b, c, d) 6= (0, 0, 0), then rq is a rotation whose axis
is determined by u = (b, c, d). The angle θ of this rotation can also be determined. The
following result is proven in Gallier [24] (Chapter 9).
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Theorem 15.4. Let r : SU(2)→ SO(3) be the homomorphism of Definition 15.5. For every
unit quaternion

q =

(
a+ ib c+ id
−(c− id) a− ib

)
,

we have rq = I3 iff u = (b, c, d) = 0 iff |a| = 1. If u 6= 0, then either a = 0 and rq is a
rotation by π around the axis of rotation determined by the vector u = (b, c, d), or 0 < |a| < 1
and rq is the rotation around the axis of rotation determined by the vector u = (b, c, d) and
the angle of rotation θ 6= π with 0 < θ < 2π, is given by

tan(θ/2) =
‖u‖
a
.

Here we are assuming that a basis (w1, w2) has been chosen in the plane orthogonal to
u = (b, c, d) such that (w1, w2, u) is positively oriented, that is, det(w1, w2, u) > 0 (where
w1, w2, u are expressed over the canonical basis (e1, e2, e3), which is chosen to define positive
orientation).

Remark: Under the orientation defined above, we have

cos(θ/2) = a, 0 < θ < 2π.

Note that the condition 0 < θ < 2π implies that θ is uniquely determined by the above
equation. This is not the case if we choose π such that −π < θ < π since both θ and −θ
satisfy the equation, and this shows why the condition 0 < θ < 2π is preferable. If 0 < a < 1,
then 0 < θ < π, and if −1 < a < 0, then π < θ < 2π. In the second case, rq is also the
rotation of axis −u and of angle −(2π− θ) = θ− 2π with 0 < 2π− θ < π, but this time the
orientation of the plane orthogonal to −u = (b, c, d) is the opposite orientation from before.
This orientation is given by (w2, w1), so that (w2, w1,−u) has positive orientation. Since the
quaternions q and −q define the same rotation, we may assume that a > 0, in which case
0 < θ < π, but we have to remember that if a < 0 and if we pick −q instead of q, the vector
defining the axis of rotation becomes −u, which amounts to flipping the orientation of the
plane orthogonal to the axis of rotation.

The map r is surjective, but this is not obvious. We will return to this point after finding
the matrix representing rq explicitly.

15.3 Matrix Representation of the Rotation rq

Given a unit quaternion q of the form

q =

(
α β

−β α

)



15.3. MATRIX REPRESENTATION OF THE ROTATION rq 563

with α = a + ib, β = c + id, and a2 + b2 + c2 + d2 = 1 (a, b, c, d ∈ R), to find the matrix
representing the rotation rq we need to compute

q(xσ3 + yσ2 + zσ1)q∗ =

(
α β

−β α

)(
x z − iy

z + iy −x

)(
α −β
β α

)
.

First, we have(
x z − iy

z + iy −x

)(
α −β
β α

)
=

(
xα + zβ − iyβ −xβ + zα− iyα
zα + iyα− xβ −zβ − iyβ − xα

)
.

Next, we have(
α β

−β α

)(
xα + zβ − iyβ −xβ + zα− iyα
zα + iyα− xβ −zβ − iyβ − xα

)
=(

(αα− ββ)x+ i(αβ − αβ)y + (αβ + αβ)z −2αβx− i(α2 + β2)y + (α2 − β2)z

−2αβx+ i(α2 + β
2
)y + (α2 − β2

)z −(αα− ββ)x− i(αβ − αβ)y − (αβ + αβ)z

)
Since α = a+ ib and β = c+ id, with a, b, c, d ∈ R, we have

αα− ββ = a2 + b2 − c2 − d2

i(αβ − αβ) = 2(bc− ad)

αβ + αβ = 2(ac+ bd)

−αβ = −ac+ bd− i(ad+ bc)

−i(α2 + β2) = 2(ab+ cd)− i(a2 − b2 + c2 − d2)

α2 − β2 = a2 − b2 − c2 + d2 + i2(ab− cd).

Using the above, we get

(αα− ββ)x+ i(αβ − αβ)y + (αβ + αβ)z = (a2 + b2 − c2 − d2)x+ 2(bc− ad)y + 2(ac+ bd)z,

and

− 2αβx− i(α2 + β2)y + (α2 − β2)z = 2(−ac+ bd)x+ 2(ab+ cd)y + (a2 − b2 − c2 + d2)z

− i[2(ad+ bc)x+ (a2 − b2 + c2 − d2)y + 2(−ab+ cd)z].

If we write

q(xσ3 + yσ2 + zσ1)q∗ =

(
x′ z′ − iy′

z′ + iy′ −x′
)
,

we obtain

x′ = (a2 + b2 − c2 − d2)x+ 2(bc− ad)y + 2(ac+ bd)z

y′ = 2(ad+ bc)x+ (a2 − b2 + c2 − d2)y + 2(−ab+ cd)z

z′ = 2(−ac+ bd)x+ 2(ab+ cd)y + (a2 − b2 − c2 + d2)z.

In summary, we proved the following result.
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Proposition 15.5. The matrix representing rq is

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .

Since a2 + b2 + c2 + d2 = 1, this matrix can also be written as

Rq =

2a2 + 2b2 − 1 2bc− 2ad 2ac+ 2bd
2bc+ 2ad 2a2 + 2c2 − 1 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd 2a2 + 2d2 − 1

 .

The above is the rotation matrix in Euler form induced by the quaternion q, which is the
matrix corresponding to ρq. This is because

ϕ = −iψ, ϕ−1 = iψ−1,

so

rq(x, y, z) = ϕ−1(qϕ(x, y, z)q∗) = iψ−1(q(−iψ(x, y, z))q∗) = ψ−1(qψ(x, y, z)q∗) = ρq(x, y, z),

and so rq = ρq.

We showed that every unit quaternion q ∈ SU(2) induces a rotation rq ∈ SO(3), but it
is not obvious that every rotation can be represented by a quaternion. This can shown in
various ways.

One way to is use the fact that every rotation in SO(3) is the composition of two reflec-
tions, and that every reflection σ of R3 can be represented by a quaternion q, in the sense
that

σ(x, y, z) = −ϕ−1(qϕ(x, y, z)q∗).

Note the presence of the negative sign. This is the method used in Gallier [24] (Chapter 9).

15.4 An Algorithm to Find a Quaternion Representing

a Rotation

Theorem 15.6. The homomorphism r : SU(2)→ SO(3) is surjective.

Here is an algorithmic method to find a unit quaternion q representing a rotation matrix
R, which provides a proof of Theorem 15.6.

Let

q =

(
a+ ib c+ id
−(c− id) a− ib

)
, a2 + b2 + c2 + d2 = 1, a, b, c, d ∈ R.
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First observe that the trace of Rq is given by

tr(Rq) = 3a2 − b2 − c2 − d2,

but since a2 + b2 + c2 + d2 = 1, we get tr(Rq) = 4a2 − 1, so

a2 =
tr(Rq) + 1

4
.

If R ∈ SO(3) is any rotation matrix and if we write

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33,


we are looking for a unit quaternion q ∈ SU(2) such that Rq = R. Therefore, we must have

a2 =
tr(R) + 1

4
.

We also know that
tr(R) = 1 + 2 cos θ,

where θ ∈ [0, π] is the angle of the rotation R, so we get

a2 =
cos θ + 1

2
= cos2

(
θ

2

)
,

which implies that

|a| = cos

(
θ

2

)
(0 ≤ θ ≤ π).

Note that we may assume that θ ∈ [0, π], because if π ≤ θ ≤ 2π, then θ − 2π ∈ [−π, 0], and
then the rotation of angle θ − 2π and axis determined by the vector (b, c, d) is the same as
the rotation of angle 2π − θ ∈ [0, π] and axis determined by the vector −(b, c, d). There are
two cases.

Case 1 . tr(R) 6= −1, or equivalently θ 6= π. In this case a 6= 0. Pick

a =

√
tr(R) + 1

2
.

Then by equating R−R> and Rq −R>q , we get

4ab = r32 − r23

4ac = r13 − r31

4ad = r21 − r12,
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which yields

b =
r32 − r23

4a
, c =

r13 − r31

4a
, d =

r21 − r12

4a
.

Case 2 . tr(R) = −1, or equivalently θ = π. In this case a = 0. By equating R+R> and
Rq +R>q , we get

4bc = r21 + r12

4bd = r13 + r31

4cd = r32 + r23.

By equating the diagonal terms of R and Rq, we also get

b2 =
1 + r11

2

c2 =
1 + r22

2

d2 =
1 + r33

2
.

Since q 6= 0 and a = 0, at least one of b, c, d is nonzero.

If b 6= 0, let

b =

√
1 + r11√

2
,

and determine c, d using

4bc = r21 + r12

4bd = r13 + r31.

If c 6= 0, let

c =

√
1 + r22√

2
,

and determine b, d using

4bc = r21 + r12

4cd = r32 + r23.

If d 6= 0, let

d =

√
1 + r33√

2
,

and determine b, c using

4bd = r13 + r31

4cd = r32 + r23.
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It is easy to check that whenever we computed a square root, if we had chosen a negative
sign instead of a positive sign, we would obtain the quaternion −q. However, both q and −q
determine the same rotation rq.

The above discussion involving the cases tr(R) 6= −1 and tr(R) = −1 is reminiscent of
the procedure for finding a logarithm of a rotation matrix using the Rodrigues formula (see
Section 11.7). This is not surprising, because if

B =

 0 −u3 u2

u3 0 −u1

−u2 u1 0


and if we write θ =

√
u2

1 + u2
2 + u2

3 (with 0 ≤ θ ≤ 2π), then the Rodrigues formula says that

eB = I +
sin θ

θ
B +

(1− cos θ)

θ2
B2, θ 6= 0,

with e0 = I. It is easy to check that tr(eB) = 1 + 2 cos θ. Then it is an easy exercise to check
that the quaternion q corresponding to the rotation R = eB (with B 6= 0) is given by

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)(u1

θ
,
u2

θ
,
u3

θ

)]
.

So the method for finding the logarithm of a rotation R is essentially the same as the method
for finding a quaternion defining R.

Remark: Geometrically, the group SU(2) is homeomorphic to the 3-sphere S3 in R4,

S3 = {(x, y, z, t) ∈ R4 | x2 + y2 + z2 + t2 = 1}.
However, since the kernel of the surjective homomorphism r : SU(2)→ SO(3) is {I,−I}, as
a topological space, SO(3) is homeomorphic to the quotient of S3 obtained by identifying
antipodal points (x, y, z, t) and −(x, y, z, t). This quotient space is the (real) projective space
RP3, and it is more complicated than S3. The space S3 is simply-connected, but RP3 is not.

15.5 The Exponential Map exp : su(2)→ SU(2)

Given any matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

it is easy to check that

A2 = −θ2

(
1 0
0 1

)
,

with θ =
√
u2

1 + u2
2 + u2

3. Then we have the following formula whose proof is very similar to
the proof of the formula given in Proposition 8.22.
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Proposition 15.7. For every matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

if we write θ =
√
u2

1 + u2
2 + u2

3, then

eA = cos θI +
sin θ

θ
A, θ 6= 0,

and e0 = I.

Therefore, by the discussion at the end of the previous section, eA is a unit quaternion
representing the rotation of angle 2θ and axis (u1, u2, u3) (or I when θ = kπ, k ∈ Z). The
above formula shows that we may assume that 0 ≤ θ ≤ π. Proposition 15.7 shows that
the exponential yields a map exp: su(2) → SU(2). It is an analog of the exponential map
exp: so(3)→ SO(3).

Remark: Because so(3) and su(2) are real vector spaces of dimension 3, they are isomorphic,
and it is easy to construct an isomorphism. In fact, so(3) and su(2) are isomorphic as Lie
algebras, which means that there is a linear isomorphism preserving the the Lie bracket
[A,B] = AB − BA. However, as observed earlier, the groups SU(2) and SO(3) are not
isomorphic.

An equivalent, but often more convenient, formula is obtained by assuming that u =
(u1, u2, u3) is a unit vector, equivalently det(A) = 1, in which case A2 = −I, so we have

eθA = cos θI + sin θA.

Using the quaternion notation, this is read as

eθA = [cos θ, sin θ u].

Proposition 15.8. The exponential map exp: su(2)→ SU(2) is surjective

Proof. We give an algorithm to find the logarithm A ∈ su(2) of a unit quaternion

q =

(
α β

−β α

)
with α = a+ bi and β = c+ id.

If q = I (i.e. a = 1), then A = 0. If q = −I (i.e. a = −1), then

A = ±π
(
i 0
0 −i

)
.
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Otherwise, a 6= ±1 and (b, c, d) 6= (0, 0, 0), and we are seeking some A = θB ∈ su(2) with
det(B) = 1 and 0 < θ < π, such that, by Proposition 15.7,

q = eθB = cos θI + sin θB.

Let

B =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

with u = (u1, u2, u3) a unit vector. We must have

a = cos θ, eθB − (eθB)∗ = q − q∗.

Since 0 < θ < π, we have sin θ 6= 0, and

2 sin θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
=

(
α− α 2β

−2β α− α

)
.

Thus, we get

u1 =
1

sin θ
b, u2 + iu3 =

1

sin θ
(c+ id);

that is,

cos θ = a (0 < θ < π)

(u1, u2, u3) =
1

sin θ
(b, c, d).

Since a2+b2+c2+d2 = 1 and a = cos θ, the vector (b, c, d)/ sin θ is a unit vector. Furthermore
if the quaternion q is of the form q = [cos θ, sin θu] where u = (u1, u2, u3) is a unit vector
(with 0 < θ < π), then

A = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
(∗log)

is a logarithm of q.

Observe that not only is the exponential map exp: su(2) → SU(2) surjective, but the
above proof shows that it is injective on the open ball

{θB ∈ su(2) | det(B) = 1, 0 ≤ θ < π}.

Also, unlike the situation where in computing the logarithm of a rotation matrix R ∈
SO(3) we needed to treat the case where tr(R) = −1 (the angle of the rotation is π) in a
special way, computing the logarithm of a quaternion (other than ±I) does not require any
case analysis; no special case is needed when the angle of rotation is π.



570 CHAPTER 15. UNIT QUATERNIONS AND ROTATIONS IN SO(3)

15.6 Quaternion Interpolation ~

We are now going to derive a formula for interpolating between two quaternions. This
formula is due to Ken Shoemake, once a Penn student and my TA! Since rotations in SO(3)
can be defined by quaternions, this has applications to computer graphics, robotics, and
computer vision.

First we observe that multiplication of quaternions can be expressed in terms of the
inner product and the cross-product in R3. Indeed, if q1 = [a, u1] and q2 = [a2, u2], it can be
verified that

q1q2 = [a1, u1][a2, u2] = [a1a2 − u1 · u2, a1u2 + a2u1 + u1 × u2]. (∗mult)

We will also need the identity

u× (u× v) = (u · v)u− (u · u)v.

Given a quaternion q expressed as q = [cos θ, sin θ u], where u is a unit vector, we can
interpolate between I and q by finding the logs of I and q, interpolating in su(2), and then
exponentiating. We have

A = log(I) =

(
0 0
0 0

)
, B = log(q) = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

and so q = eB. Since SU(2) is a compact Lie group and since the inner product on su(2)
given by

〈X, Y 〉 = tr(X>Y )

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on SU(2), and the curve

λ 7→ eλB, λ ∈ [0, 1]

is a geodesic from I to q in SU(2). We write qλ = eλB. Given two quaternions q1 and q2,
because the metric is left invariant, the curve

λ 7→ Z(λ) = q1(q−1
1 q2)λ, λ ∈ [0, 1]

is a geodesic from q1 to q2. Remarkably, there is a closed-form formula for the interpolant
Z(λ).

Say q1 = [cos θ, sin θ u] and q2 = [cosϕ, sinϕv], and assume that q1 6= q2 and q1 6= −q2.
First, we compute q−1q2. Since q−1 = [cos θ,− sin θ u], we have

q−1q2 = [cos θ cosϕ+ sin θ sinϕ(u · v), − sin θ cosϕu+ cos θ sinϕv − sin θ sinϕ(u× v)].

Define Ω by
cos Ω = cos θ cosϕ+ sin θ sinϕ(u · v). (∗Ω)
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Since q1 6= q2 and q1 6= −q2, we have 0 < Ω < π, so we get

q−1
1 q2 =

[
cos Ω, sin Ω

(− sin θ cosϕu+ cos θ sinϕv − sin θ sinϕ(u× v)

sin Ω

]
,

where the term multiplying sin Ω is a unit vector because q1 and q2 are unit quaternions, so
q−1

1 q2 is also a unit quaternion. By (∗log), we have

(q−1
1 q2)λ =

[
cosλΩ, sinλΩ

(− sin θ cosϕu+ cos θ sinϕv − sin θ sinϕ(u× v)

sin Ω

]
.

Next we need to compute q1(q−1
1 q2)λ. The scalar part of this product is

s = cos θ cosλΩ +
sinλΩ

sin Ω
sin2 θ cosϕ(u · u)− sinλΩ

sin Ω
sin θ sinϕ cos θ(u · v)

+
sinλΩ

sin Ω
sin2 θ sinϕ(u · (u× v)).

Since u · (u× v) = 0, the last term is zero, and since u · u = 1 and

sin θ sinϕ(u · v) = cos Ω− cos θ cosϕ,

we get

s = cos θ cosλΩ +
sinλΩ

sin Ω
sin2 θ cosϕ− sinλΩ

sin Ω
cos θ(cos Ω− cos θ cosϕ)

= cos θ cosλΩ +
sinλΩ

sin Ω
(sin2 θ + cos2 θ) cosϕ− sinλΩ

sin Ω
cos θ cos Ω

=
(cosλΩ sin Ω− sinλΩ cos Ω) cos θ

sin Ω
+

sinλΩ

sin Ω
cosϕ

=
sin(1− λ)Ω

sin Ω
cos θ +

sinλΩ

sin Ω
cosϕ.

The vector part of the product q1(q−1
1 q2)λ is given by

ν = −sinλΩ

sin Ω
cos θ sin θ cosϕu+

sinλΩ

sin Ω
cos2 θ sinϕv − sinλΩ

sin Ω
cos θ sin θ sinϕ(u× v)

+ cosλΩ sin θ u− sinλΩ

sin Ω
sin2 θ cosϕ(u× u) +

sinλΩ

sin Ω
cos θ sin θ sinϕ(u× v)

− sinλΩ

sin Ω
sin2 θ sinϕ(u× (u× v)).

We have u× u = 0, the two terms involving u× v cancel out,

u× (u× v) = (u · v)u− (u · u)v,
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and u · u = 1, so we get

ν = −sinλΩ

sin Ω
cos θ sin θ cosϕu+ cosλΩ sin θ u+

sinλΩ

sin Ω
cos2 θ sinϕv

+
sinλΩ

sin Ω
sin2 θ sinϕv − sinλΩ

sin Ω
sin2 θ sinϕ(u · v)u.

Using
sin θ sinϕ(u · v) = cos Ω− cos θ cosϕ,

we get

ν = −sinλΩ

sin Ω
cos θ sin θ cosϕu+ cosλΩ sin θ u+

sinλΩ

sin Ω
sinϕv

− sinλΩ

sin Ω
sin θ(cos Ω− cos θ cosϕ)u

= cosλΩ sin θ u+
sinλΩ

sin Ω
sinϕv − sinλΩ

sin Ω
sin θ cos Ωu

=
(cosλΩ sin Ω− sinλΩ cos Ω)

sin Ω
sin θ u+

sinλΩ

sin Ω
sinϕv

=
sin(1− λ)Ω

sin Ω
sin θ u+

sinλΩ

sin Ω
sinϕv.

Putting the scalar part and the vector part together, we obtain

q1(q−1
1 q2)λ =

[
sin(1− λ)Ω

sin Ω
cos θ +

sinλΩ

sin Ω
cosϕ,

sin(1− λ)Ω

sin Ω
sin θ u+

sinλΩ

sin Ω
sinϕv

]
,

=
sin(1− λ)Ω

sin Ω
[cos θ, sin θ u] +

sinλΩ

sin Ω
[cosϕ, sinϕv].

This yields the celebrated slerp interpolation formula

Z(λ) = q1(q−1
1 q2)λ =

sin(1− λ)Ω

sin Ω
q1 +

sinλΩ

sin Ω
q2,

with
cos Ω = cos θ cosϕ+ sin θ sinϕ(u · v).

15.7 Nonexistence of a “Nice” Section from SO(3) to

SU(2)

We conclude by discussing the problem of a consistent choice of sign for the quaternion q
representing a rotation R = ρq ∈ SO(3). We are looking for a “nice” section s : SO(3) →
SU(2), that is, a function s satisfying the condition

ρ ◦ s = id,

where ρ is the surjective homomorphism ρ : SU(2)→ SO(3).
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Proposition 15.9. Any section s : SO(3) → SU(2) of ρ is neither a homomorphism nor
continuous.

Intuitively, this means that there is no “nice and simple ” way to pick the sign of the
quaternion representing a rotation.

The following proof is due to Marcel Berger.

Proof. Let Γ be the subgroup of SU(2) consisting of all quaternions of the form q =
[a, (b, 0, 0)]. Then, using the formula for the rotation matrix Rq corresponding to q (and
the fact that a2 + b2 = 1), we get

Rq =

1 0 0
0 2a2 − 1 −2ab
0 2ab 2a2 − 1

 .

Since a2 + b2 = 1, we may write a = cos θ, b = sin θ, and we see that

Rq =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 ,

a rotation of angle 2θ around the x-axis. Thus, both Γ and its image are isomorphic to
SO(2), which is also isomorphic to U(1) = {w ∈ C | |w| = 1}. By identifying i and i, and
identifying Γ and its image to U(1), if we write w = cos θ+ i sin θ ∈ Γ, the restriction of the
map ρ to Γ is given by ρ(w) = w2.

We claim that any section s of ρ is not a homomorphism. Consider the restriction of s
to U(1). Then since ρ ◦ s = id and ρ(w) = w2, for −1 ∈ ρ(Γ) ≈ U(1), we have

−1 = ρ(s(−1)) = (s(−1))2.

On the other hand, if s is a homomorphism, then

(s(−1))2 = s((−1)2) = s(1) = 1,

contradicting (s(−1))2 = −1.

We also claim that s is not continuous. Assume that s(1) = 1, the case where s(1) = −1
being analogous. Then s is a bijection inverting ρ on Γ whose restriction to U(1) must be
given by

s(cos θ + i sin θ) = cos(θ/2) + i sin(θ/2), −π ≤ θ < π.

If θ tends to π, that is z = cos θ+ i sin θ tends to −1 in the upper-half plane, then s(z) tends
to i, but if θ tends to −π, that is z tends to −1 in the lower-half plane, then s(z) tends to
−i, which shows that s is not continuous.
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Another way (due to Jean Dieudonné) to prove that a section s of ρ is not a homomor-
phism is to prove that any unit quaternion is the product of two unit pure quaternions.
Indeed, if q = [a, u] is a unit quaternion, if we let q1 = [0, u1], where u1 is any unit vector
orthogonal to u, then

q1q = [−u1 · u, au1 + u1 × u] = [0, au1 + u1 × u] = q2

is a nonzero unit pure quaternion. This is because if a 6= 0 then au1 +u1×u 6= 0 (since u1×u
is orthogonal to au1 6= 0), and if a = 0 then u 6= 0, so u1 × u 6= 0 (since u1 is orthogonal to
u). But then, q−1

1 = [0,−u1] is a unit pure quaternion and we have

q = q−1
1 q2,

a product of two pure unit quaternions.

We also observe that for any two pure quaternions q1, q2, there is some unit quaternion
q such that

q2 = qq1q
−1.

This is just a restatement of the fact that the group SO(3) is transitive. Since the kernel
of ρ : SU(2) → SO(3) is {I,−I}, the subgroup s(SO(3)) would be a normal subgroup of
index 2 in SU(2). Then we would have a surjective homomorphism η from SU(2) onto the
quotient group SU(2)/s(SO(3)), which is isomorphic to {1,−1}. Now, since any two pure
quaternions are conjugate of each other, η would have a constant value on the unit pure
quaternions. Since k = ij, we would have

η(k) = η(ij) = (η(i))2 = 1.

Consequently, η would map all pure unit quaternions to 1. But since every unit quaternion is
the product of two pure quaternions, η would map every unit quaternion to 1, contradicting
the fact that it is surjective onto {−1, 1}.

15.8 Summary

The main concepts and results of this chapter are listed below:

• The group SU(2) of unit quaternions.

• The skew field H of quaternions.

• Hamilton’s identities.

• The (real) vector space su(2) of 2× 2 skew Hermitian matrices with zero trace.

• The adjoint representation of SU(2).
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• The (real) vector space su(2) of 2× 2 Hermitian matrices with zero trace.

• The group homomorphism r : SU(2)→ SO(3); Ker (r) = {+I,−I}.

• The matrix representation Rq of the rotation rq induced by a unit quaternion q.

• Surjectivity of the homomorphism r : SU(2)→ SO(3).

• The exponential map exp: su(2)→ SU(2).

• Surjectivity of the exponential map exp: su(2)→ SU(2).

• Finding a logarithm of a quaternion.

• Quaternion interpolation.

• Shoemake’s slerp interpolation formula.

• Sections s : SO(3)→ SU(2) of r : SU(2)→ SO(3).

15.9 Problems

Problem 15.1. Verify the quaternion identities

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Problem 15.2. Check that for every quaternion X = a1 + bi + cj + dk, we have

XX∗ = X∗X = (a2 + b2 + c2 + d2)1.

Conclude that if X 6= 0, then X is invertible and its inverse is given by

X−1 = (a2 + b2 + c2 + d2)−1X∗.

Problem 15.3. Given any two quaternions X = a1+bi+cj+dk and Y = a′1+b′i+c′j+d′k,
prove that

XY = (aa′ − bb′ − cc′ − dd′)1 + (ab′ + ba′ + cd′ − dc′)i
+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k.

Also prove that if X = [a, U ] and Y = [a′, U ′], the quaternion product XY can be
expressed as

XY = [aa′ − U · U ′, aU ′ + a′U + U × U ′].
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Problem 15.4. Let Ad: SU(2) → GL(su(2)) be the map defined such that for every
q ∈ SU(2),

Adq(A) = qAq∗, A ∈ su(2),

where q∗ is the inverse of q (since SU(2) is a unitary group) Prove that the map Adq is an
invertible linear map from su(2) to itself and that Ad is a group homomorphism.

Problem 15.5. Prove that every Hermitian matrix with zero trace is of the form xσ3 +
yσ2 + zσ1, with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Check that i = iσ3, j = iσ2, and that k = iσ1.

Problem 15.6. If

B =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ,

and if we write θ =
√
u2

1 + u2
2 + u2

3 (with 0 ≤ θ ≤ π), then the Rodrigues formula says that

eB = I +
sin θ

θ
B +

(1− cos θ)

θ2
B2, θ 6= 0,

with e0 = I. Check that tr(eB) = 1 + 2 cos θ. Prove that the quaternion q corresponding to
the rotation R = eB (with B 6= 0) is given by

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)(u1

θ
,
u2

θ
,
u3

θ

)]
.

Problem 15.7. For every matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

prove that if we write θ =
√
u2

1 + u2
2 + u2

3, then

eA = cos θI +
sin θ

θ
A, θ 6= 0,

and e0 = I. Conclude that eA is a unit quaternion representing the rotation of angle 2θ and
axis (u1, u2, u3) (or I when θ = kπ, k ∈ Z).

Problem 15.8. Write a Matlab program implementing the method of Section 15.4 for
finding a unit quaternion corresponding to a rotation matrix.

Problem 15.9. Show that there is a very simple method for producing an orthonormal
frame in R4 whose first vector is any given nonnull vector (a, b, c, d).
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Problem 15.10. Let i, j, and k, be the unit vectors of coordinates (1, 0, 0), (0, 1, 0), and
(0, 0, 1) in R3.

(1) Describe geometrically the rotations defined by the following quaternions:

p = (0, i), q = (0, j).

Prove that the interpolant Z(λ) = p(p−1q)λ is given by

Z(λ) = (0, cos(λπ/2)i+ sin(λπ/2)j) .

Describe geometrically what this rotation is.

(2) Repeat Question (1) with the rotations defined by the quaternions

p =

(
1

2
,

√
3

2
i

)
, q = (0, j).

Prove that the interpolant Z(λ) is given by

Z(λ) =

(
1

2
cos(λπ/2),

√
3

2
cos(λπ/2)i+ sin(λπ/2)j

)
.

Describe geometrically what this rotation is.

(3) Repeat Question (1) with the rotations defined by the quaternions

p =

(
1√
2
,

1√
2
i

)
, q =

(
0,

1√
2

(i+ j)

)
.

Prove that the interpolant Z(λ) is given by

Z(λ) =

(
1√
2

cos(λπ/3)− 1√
6

sin(λπ/3),

(1/
√

2 cos(λπ/3) + 1/
√

6 sin(λπ/3))i+
2√
6

sin(λπ/3)j

)
.

Problem 15.11. Prove that

w × (u× v) = (w · v)u− (u · w)v.

Conclude that
u× (u× v) = (u · v)u− (u · u)v.
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Chapter 16

Spectral Theorems in Euclidean and
Hermitian Spaces

16.1 Introduction

The goal of this chapter is to show that there are nice normal forms for symmetric matrices,
skew-symmetric matrices, orthogonal matrices, and normal matrices. The spectral theorem
for symmetric matrices states that symmetric matrices have real eigenvalues and that they
can be diagonalized over an orthonormal basis. The spectral theorem for Hermitian matrices
states that Hermitian matrices also have real eigenvalues and that they can be diagonalized
over a complex orthonormal basis. Normal real matrices can be block diagonalized over an
orthonormal basis with blocks having size at most two and there are refinements of this
normal form for skew-symmetric and orthogonal matrices.

The spectral result for real symmetric matrices can be used to prove two characterizations
of the eigenvalues of a symmetric matrix in terms of the Rayleigh ratio. The first charac-
terization is the Rayleigh–Ritz theorem and the second one is the Courant–Fischer theorem.
Both results are used in optimization theory and to obtain results about perturbing the
eigenvalues of a symmetric matrix.

In this chapter all vector spaces are finite-dimensional real or complex vector spaces.

16.2 Normal Linear Maps: Eigenvalues and Eigenvec-

tors

We begin by studying normal maps, to understand the structure of their eigenvalues and
eigenvectors. This section and the next three were inspired by Lang [41], Artin [3], Mac
Lane and Birkhoff [46], Berger [5], and Bertin [7].

579
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Definition 16.1. Given a Euclidean or Hermitian space E, a linear map f : E → E is
normal if

f ◦ f ∗ = f ∗ ◦ f.
A linear map f : E → E is self-adjoint if f = f ∗, skew-self-adjoint if f = −f ∗, and orthogonal
if f ◦ f ∗ = f ∗ ◦ f = id.

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal linear
map. Our first goal is to show that for every normal linear map f : E → E, there is an
orthonormal basis (w.r.t. 〈−,−〉) such that the matrix of f over this basis has an especially
nice form: it is a block diagonal matrix in which the blocks are either one-dimensional
matrices (i.e., single entries) or two-dimensional matrices of the form

(
λ µ
−µ λ

)
.

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or orthog-
onal. As a first step we show that f and f ∗ have the same kernel when f is normal.

Proposition 16.1. Given a Euclidean space E, if f : E → E is a normal linear map, then
Ker f = Ker f ∗.

Proof. First let us prove that

〈f(u), f(v)〉 = 〈f ∗(u), f ∗(v)〉

for all u, v ∈ E. Since f ∗ is the adjoint of f and f ◦ f ∗ = f ∗ ◦ f , we have

〈f(u), f(u)〉 = 〈u, (f ∗ ◦ f)(u)〉,
= 〈u, (f ◦ f ∗)(u)〉,
= 〈f ∗(u), f ∗(u)〉.

Since 〈−,−〉 is positive definite,

〈f(u), f(u)〉 = 0 iff f(u) = 0,

〈f ∗(u), f ∗(u)〉 = 0 iff f ∗(u) = 0,

and since
〈f(u), f(u)〉 = 〈f ∗(u), f ∗(u)〉,

we have
f(u) = 0 iff f ∗(u) = 0.

Consequently, Ker f = Ker f ∗.
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Assuming again that E is a Hermitian space, observe that Proposition 16.1 also holds.
We deduce the following corollary.

Proposition 16.2. Given a Hermitian space E, for any normal linear map f : E → E, we
have Ker (f) ∩ Im(f) = (0).

Proof. Assume v ∈ Ker (f) ∩ Im(f), which means that v = f(u) for some u ∈ E, and
f(v) = 0. By Proposition 16.1, Ker (f) = Ker (f ∗), so f(v) = 0 implies that f ∗(v) = 0.
Consequently,

0 = 〈f ∗(v), u〉
= 〈v, f(u)〉
= 〈v, v〉,

and thus, v = 0.

We also have the following crucial proposition relating the eigenvalues of f and f ∗.

Proposition 16.3. Given a Hermitian space E, for any normal linear map f : E → E, a
vector u is an eigenvector of f for the eigenvalue λ (in C) iff u is an eigenvector of f ∗ for
the eigenvalue λ.

Proof. First it is immediately verified that the adjoint of f − λ id is f ∗ − λ id. Furthermore,
f − λ id is normal. Indeed,

(f − λ id) ◦ (f − λ id)∗ = (f − λ id) ◦ (f ∗ − λ id),

= f ◦ f ∗ − λf − λf ∗ + λλ id,

= f ∗ ◦ f − λf ∗ − λf + λλ id,

= (f ∗ − λ id) ◦ (f − λ id),

= (f − λ id)∗ ◦ (f − λ id).

Applying Proposition 16.1 to f − λ id, for every nonnull vector u, we see that

(f − λ id)(u) = 0 iff (f ∗ − λ id)(u) = 0,

which is exactly the statement of the proposition.

The next proposition shows a very important property of normal linear maps: eigenvec-
tors corresponding to distinct eigenvalues are orthogonal.

Proposition 16.4. Given a Hermitian space E, for any normal linear map f : E → E, if
u and v are eigenvectors of f associated with the eigenvalues λ and µ (in C) where λ 6= µ,
then 〈u, v〉 = 0.
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Proof. Let us compute 〈f(u), v〉 in two different ways. Since v is an eigenvector of f for µ,
by Proposition 16.3, v is also an eigenvector of f ∗ for µ, and we have

〈f(u), v〉 = 〈λu, v〉 = λ〈u, v〉,

and
〈f(u), v〉 = 〈u, f ∗(v)〉 = 〈u, µv〉 = µ〈u, v〉,

where the last identity holds because of the semilinearity in the second argument. Thus

λ〈u, v〉 = µ〈u, v〉,

that is,
(λ− µ)〈u, v〉 = 0,

which implies that 〈u, v〉 = 0, since λ 6= µ.

We can show easily that the eigenvalues of a self-adjoint linear map are real.

Proposition 16.5. Given a Hermitian space E, all the eigenvalues of any self-adjoint linear
map f : E → E are real.

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for z. We compute
〈f(u), u〉 in two different ways. We have

〈f(u), u〉 = 〈zu, u〉 = z〈u, u〉,

and since f = f ∗, we also have

〈f(u), u〉 = 〈u, f ∗(u)〉 = 〈u, f(u)〉 = 〈u, zu〉 = z〈u, u〉.

Thus,
z〈u, u〉 = z〈u, u〉,

which implies that z = z, since u 6= 0, and z is indeed real.

There is also a version of Proposition 16.5 for a (real) Euclidean space E and a self-adjoint
map f : E → E since every real vector space E can be embedded into a complex vector space
EC, and every linear map f : E → E can be extended to a linear map fC : EC → EC.

Definition 16.2. Given a real vector space E, let EC be the structure E × E under the
addition operation

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

and let multiplication by a complex scalar z = x+ iy be defined such that

(x+ iy) · (u, v) = (xu− yv, yu+ xv).

The space EC is called the complexification of E.
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It is easily shown that the structure EC is a complex vector space. It is also immediate
that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consisting of all vectors of the form (u, 0),
we can write

(u, v) = u+ iv.

Observe that if (e1, . . . , en) is a basis of E (a real vector space), then (e1, . . . , en) is also
a basis of EC (recall that ei is an abbreviation for (ei, 0)).

A linear map f : E → E is extended to the linear map fC : EC → EC defined such that

fC(u+ iv) = f(u) + if(v).

For any basis (e1, . . . , en) of E, the matrix M(f) representing f over (e1, . . . , en) is iden-
tical to the matrix M(fC) representing fC over (e1, . . . , en), where we view (e1, . . . , en) as a
basis of EC. As a consequence, det(zI −M(f)) = det(zI −M(fC)), which means that f
and fC have the same characteristic polynomial (which has real coefficients). We know that
every polynomial of degree n with real (or complex) coefficients always has n complex roots
(counted with their multiplicity), and the roots of det(zI −M(fC)) that are real (if any) are
the eigenvalues of f .

Next we need to extend the inner product on E to an inner product on EC.

The inner product 〈−,−〉 on a Euclidean space E is extended to the Hermitian positive
definite form 〈−,−〉C on EC as follows:

〈u1 + iv1, u2 + iv2〉C = 〈u1, u2〉+ 〈v1, v2〉+ i(〈v1, u2〉 − 〈u1, v2〉).

It is easily verified that 〈−,−〉C is indeed a Hermitian form that is positive definite,
and it is clear that 〈−,−〉C agrees with 〈−,−〉 on real vectors. Then given any linear map
f : E → E, it is easily verified that the map f ∗C defined such that

f ∗C(u+ iv) = f ∗(u) + if ∗(v)

for all u, v ∈ E is the adjoint of fC w.r.t. 〈−,−〉C.

Proposition 16.6. Given a Euclidean space E, if f : E → E is any self-adjoint linear map,
then every eigenvalue λ of fC is real and is actually an eigenvalue of f (which means that
there is some real eigenvector u ∈ E such that f(u) = λu). Therefore, all the eigenvalues of
f are real.
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Proof. Let EC be the complexification of E, 〈−,−〉C the complexification of the inner product
〈−,−〉 on E, and fC : EC → EC the complexification of f : E → E. By definition of fC and
〈−,−〉C, if f is self-adjoint, we have

〈fC(u1 + iv1), u2 + iv2〉C = 〈f(u1) + if(v1), u2 + iv2〉C
= 〈f(u1), u2〉+ 〈f(v1), v2〉+ i(〈u2, f(v1)〉 − 〈f(u1), v2〉)
= 〈u1, f(u2)〉+ 〈v1, f(v2)〉+ i(〈f(u2), v1〉 − 〈u1, f(v2)〉)
= 〈u1 + iv1, f(u2) + if(v2)〉C
= 〈u1 + iv1, fC(u2 + iv2)〉C,

which shows that fC is also self-adjoint with respect to 〈−,−〉C.

As we pointed out earlier, f and fC have the same characteristic polynomial det(zI−fC) =
det(zI − f), which is a polynomial with real coefficients. Proposition 16.5 shows that the
zeros of det(zI − fC) = det(zI − f) are all real, and for each real zero λ of det(zI − f), the
linear map λid − f is singular, which means that there is some nonzero u ∈ E such that
f(u) = λu. Therefore, all the eigenvalues of f are real.

Proposition 16.7. Given a Hermitian space E, for any linear map f : E → E, if f is skew-
self-adjoint, then f has eigenvalues that are pure imaginary or zero, and if f is unitary, then
f has eigenvalues of absolute value 1.

Proof. If f is skew-self-adjoint, f ∗ = −f , and then by the definition of the adjoint map, for
any eigenvalue λ and any eigenvector u associated with λ, we have

λ〈u, u〉 = 〈λu, u〉 = 〈f(u), u〉 = 〈u, f ∗(u)〉 = 〈u,−f(u)〉 = −〈u, λu〉 = −λ〈u, u〉,

and since u 6= 0 and 〈−,−〉 is positive definite, 〈u, u〉 6= 0, so

λ = −λ,

which shows that λ = ir for some r ∈ R.

If f is unitary, then f is an isometry, so for any eigenvalue λ and any eigenvector u
associated with λ, we have

|λ|2〈u, u〉 = λλ〈u, u〉 = 〈λu, λu〉 = 〈f(u), f(u)〉 = 〈u, u〉,

and since u 6= 0, we obtain |λ|2 = 1, which implies

|λ| = 1.
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16.3 Spectral Theorem for Normal Linear Maps

Given a Euclidean space E, our next step is to show that for every linear map f : E → E
there is some subspace W of dimension 1 or 2 such that f(W ) ⊆ W . When dim(W ) = 1, the
subspace W is actually an eigenspace for some real eigenvalue of f . Furthermore, when f is
normal, there is a subspace W of dimension 1 or 2 such that f(W ) ⊆ W and f ∗(W ) ⊆ W .
The difficulty is that the eigenvalues of f are not necessarily real. One way to get around
this problem is to complexify both the vector space E and the inner product 〈−,−〉 as we
did in Section 16.2.

Given any subspace W of a Euclidean space E, recall that the orthogonal complement
W⊥ of W is the subspace defined such that

W⊥ = {u ∈ E | 〈u,w〉 = 0, for all w ∈ W}.

Recall from Proposition 11.11 that E = W ⊕W⊥ (this can be easily shown, for example,
by constructing an orthonormal basis of E using the Gram–Schmidt orthonormalization
procedure). The same result also holds for Hermitian spaces; see Proposition 13.13.

As a warm up for the proof of Theorem 16.12, let us prove that every self-adjoint map on
a Euclidean space can be diagonalized with respect to an orthonormal basis of eigenvectors.

Theorem 16.8. (Spectral theorem for self-adjoint linear maps on a Euclidean space) Given
a Euclidean space E of dimension n, for every self-adjoint linear map f : E → E, there is
an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this
basis is a diagonal matrix 

λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn

 ,

with λi ∈ R.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is
trivial. Assume now that n ≥ 2. From Proposition 16.6, all the eigenvalues of f are real, so
pick some eigenvalue λ ∈ R, and let w be some eigenvector for λ. By dividing w by its norm,
we may assume that w is a unit vector. Let W be the subspace of dimension 1 spanned by w.
Clearly, f(W ) ⊆ W . We claim that f(W⊥) ⊆ W⊥, where W⊥ is the orthogonal complement
of W .

Indeed, for any v ∈ W⊥, that is, if 〈v, w〉 = 0, because f is self-adjoint and f(w) = λw,
we have

〈f(v), w〉 = 〈v, f(w)〉
= 〈v, λw〉
= λ〈v, w〉 = 0
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since 〈v, w〉 = 0. Therefore,
f(W⊥) ⊆ W⊥.

Clearly, the restriction of f to W⊥ is self-adjoint, and we conclude by applying the induction
hypothesis to W⊥ (whose dimension is n− 1).

We now come back to normal linear maps. One of the key points in the proof of Theorem
16.8 is that we found a subspace W with the property that f(W ) ⊆ W implies that f(W⊥) ⊆
W⊥. In general, this does not happen, but normal maps satisfy a stronger property which
ensures that such a subspace exists .

The following proposition provides a condition that will allow us to show that a nor-
mal linear map can be diagonalized. It actually holds for any linear map. We found the
inspiration for this proposition in Berger [5].

Proposition 16.9. Given a Hermitian space E, for any linear map f : E → E and any
subspace W of E, if f(W ) ⊆ W , then f ∗

(
W⊥) ⊆ W⊥. Consequently, if f(W ) ⊆ W and

f ∗(W ) ⊆ W , then f
(
W⊥) ⊆ W⊥ and f ∗

(
W⊥) ⊆ W⊥.

Proof. If u ∈ W⊥, then
〈w, u〉 = 0 for all w ∈ W.

However,
〈f(w), u〉 = 〈w, f ∗(u)〉,

and f(W ) ⊆ W implies that f(w) ∈ W . Since u ∈ W⊥, we get

0 = 〈f(w), u〉 = 〈w, f ∗(u)〉,
which shows that 〈w, f ∗(u)〉 = 0 for all w ∈ W , that is, f ∗(u) ∈ W⊥. Therefore, we have
f ∗(W⊥) ⊆ W⊥.

We just proved that if f(W ) ⊆ W , then f ∗
(
W⊥) ⊆ W⊥. If we also have f ∗(W ) ⊆ W ,

then by applying the above fact to f ∗, we get f ∗∗(W⊥) ⊆ W⊥, and since f ∗∗ = f , this is
just f(W⊥) ⊆ W⊥, which proves the second statement of the proposition.

It is clear that the above proposition also holds for Euclidean spaces.

Although we are ready to prove that for every normal linear map f (over a Hermitian
space) there is an orthonormal basis of eigenvectors (see Theorem 16.13 below), we now
return to real Euclidean spaces.

Proposition 16.10. If f : E → E is a linear map and w = u + iv is an eigenvector of
fC : EC → EC for the eigenvalue z = λ+ iµ, where u, v ∈ E and λ, µ ∈ R, then

f(u) = λu− µv and f(v) = µu+ λv. (∗)
As a consequence,

fC(u− iv) = f(u)− if(v) = (λ− iµ)(u− iv),

which shows that w = u− iv is an eigenvector of fC for z = λ− iµ.
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Proof. Since
fC(u+ iv) = f(u) + if(v)

and
fC(u+ iv) = (λ+ iµ)(u+ iv) = λu− µv + i(µu+ λv),

we have
f(u) = λu− µv and f(v) = µu+ λv.

Using this fact, we can prove the following proposition.

Proposition 16.11. Given a Euclidean space E, for any normal linear map f : E → E, if
w = u+ iv is an eigenvector of fC associated with the eigenvalue z = λ+ iµ (where u, v ∈ E
and λ, µ ∈ R), if µ 6= 0 (i.e., z is not real) then 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉, which implies
that u and v are linearly independent, and if W is the subspace spanned by u and v, then
f(W ) = W and f ∗(W ) = W . Furthermore, with respect to the (orthogonal) basis (u, v), the
restriction of f to W has the matrix (

λ µ
−µ λ

)
.

If µ = 0, then λ is a real eigenvalue of f , and either u or v is an eigenvector of f for λ. If
W is the subspace spanned by u if u 6= 0, or spanned by v 6= 0 if u = 0, then f(W ) ⊆ W and
f ∗(W ) ⊆ W .

Proof. Since w = u+ iv is an eigenvector of fC, by definition it is nonnull, and either u 6= 0
or v 6= 0. Proposition 16.10 implies that u− iv is an eigenvector of fC for λ− iµ. It is easy
to check that fC is normal. However, if µ 6= 0, then λ + iµ 6= λ− iµ, and from Proposition
16.4, the vectors u+ iv and u− iv are orthogonal w.r.t. 〈−,−〉C, that is,

〈u+ iv, u− iv〉C = 〈u, u〉 − 〈v, v〉+ 2i〈u, v〉 = 0.

Thus we get 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉, and since u 6= 0 or v 6= 0, u and v are linearly
independent. Since

f(u) = λu− µv and f(v) = µu+ λv

and since by Proposition 16.3 u+ iv is an eigenvector of f ∗C for λ− iµ, we have

f ∗(u) = λu+ µv and f ∗(v) = −µu+ λv,

and thus f(W ) = W and f ∗(W ) = W , where W is the subspace spanned by u and v.

When µ = 0, we have
f(u) = λu and f(v) = λv,

and since u 6= 0 or v 6= 0, either u or v is an eigenvector of f for λ. If W is the subspace
spanned by u if u 6= 0, or spanned by v if u = 0, it is obvious that f(W ) ⊆ W and
f ∗(W ) ⊆ W . Note that λ = 0 is possible, and this is why ⊆ cannot be replaced by =.
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The beginning of the proof of Proposition 16.11 actually shows that for every linear map
f : E → E there is some subspace W such that f(W ) ⊆ W , where W has dimension 1 or
2. In general, it doesn’t seem possible to prove that W⊥ is invariant under f . However, this
happens when f is normal .

We can finally prove our first main theorem.

Theorem 16.12. (Main spectral theorem) Given a Euclidean space E of dimension n, for
every normal linear map f : E → E, there is an orthonormal basis (e1, . . . , en) such that the
matrix of f w.r.t. this basis is a block diagonal matrix of the form

A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap


such that each block Aj is either a one-dimensional matrix (i.e., a real scalar) or a two-
dimensional matrix of the form

Aj =

(
λj −µj
µj λj

)
,

where λj, µj ∈ R, with µj > 0.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is
trivial. Assume now that n ≥ 2. First, since C is algebraically closed (i.e., every polynomial
has a root in C), the linear map fC : EC → EC has some eigenvalue z = λ + iµ (where
λ, µ ∈ R). Let w = u + iv be some eigenvector of fC for λ + iµ (where u, v ∈ E). We can
now apply Proposition 16.11.

If µ = 0, then either u or v is an eigenvector of f for λ ∈ R. Let W be the subspace
of dimension 1 spanned by e1 = u/‖u‖ if u 6= 0, or by e1 = v/‖v‖ otherwise. It is obvious
that f(W ) ⊆ W and f ∗(W ) ⊆ W . The orthogonal W⊥ of W has dimension n − 1, and by
Proposition 16.9, we have f

(
W⊥) ⊆ W⊥. But the restriction of f to W⊥ is also normal,

and we conclude by applying the induction hypothesis to W⊥.

If µ 6= 0, then 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉, and if W is the subspace spanned by u/‖u‖
and v/‖v‖, then f(W ) = W and f ∗(W ) = W . We also know that the restriction of f to W
has the matrix (

λ µ
−µ λ

)
with respect to the basis (u/‖u‖, v/‖v‖). If µ < 0, we let λ1 = λ, µ1 = −µ, e1 = u/‖u‖, and
e2 = v/‖v‖. If µ > 0, we let λ1 = λ, µ1 = µ, e1 = v/‖v‖, and e2 = u/‖u‖. In all cases, it
is easily verified that the matrix of the restriction of f to W w.r.t. the orthonormal basis
(e1, e2) is

A1 =

(
λ1 −µ1

µ1 λ1

)
,
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where λ1, µ1 ∈ R, with µ1 > 0. However, W⊥ has dimension n− 2, and by Proposition 16.9,
f
(
W⊥) ⊆ W⊥. Since the restriction of f to W⊥ is also normal, we conclude by applying

the induction hypothesis to W⊥.

After this relatively hard work, we can easily obtain some nice normal forms for the
matrices of self-adjoint, skew-self-adjoint, and orthogonal linear maps. However, for the sake
of completeness (and since we have all the tools to so do), we go back to the case of a
Hermitian space and show that normal linear maps can be diagonalized with respect to an
orthonormal basis. The proof is a slight generalization of the proof of Theorem 16.6.

Theorem 16.13. (Spectral theorem for normal linear maps on a Hermitian space) Given
a Hermitian space E of dimension n, for every normal linear map f : E → E there is an
orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this basis
is a diagonal matrix 

λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn

 ,

where λj ∈ C.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is
trivial. Assume now that n ≥ 2. Since C is algebraically closed (i.e., every polynomial has
a root in C), the linear map f : E → E has some eigenvalue λ ∈ C, and let w be some unit
eigenvector for λ. Let W be the subspace of dimension 1 spanned by w. Clearly, f(W ) ⊆ W .
By Proposition 16.3, w is an eigenvector of f ∗ for λ, and thus f ∗(W ) ⊆ W . By Proposition
16.9, we also have f(W⊥) ⊆ W⊥. The restriction of f to W⊥ is still normal, and we conclude
by applying the induction hypothesis to W⊥ (whose dimension is n− 1).

Theorem 16.13 implies that (complex) self-adjoint, skew-self-adjoint, and orthogonal lin-
ear maps can be diagonalized with respect to an orthonormal basis of eigenvectors. In this
latter case, though, an orthogonal map is called a unitary map. Proposition 16.5 also shows
that the eigenvalues of a self-adjoint linear map are real, and Proposition 16.7 shows that the
eigenvalues of a skew self-adjoint map are pure imaginary or zero, and that the eigenvalues
of a unitary map have absolute value 1.

Remark: There is a converse to Theorem 16.13, namely, if there is an orthonormal basis
(e1, . . . , en) of eigenvectors of f , then f is normal. We leave the easy proof as an exercise.

In the next section we specialize Theorem 16.12 to self-adjoint, skew-self-adjoint, and
orthogonal linear maps. Due to the additional structure, we obtain more precise normal
forms.
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16.4 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal

Linear Maps

We begin with self-adjoint maps.

Theorem 16.14. Given a Euclidean space E of dimension n, for every self-adjoint linear
map f : E → E, there is an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the
matrix of f w.r.t. this basis is a diagonal matrix

λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn

 ,

where λi ∈ R.

Proof. We already proved this; see Theorem 16.8. However, it is instructive to give a more
direct method not involving the complexification of 〈−,−〉 and Proposition 16.5.

Since C is algebraically closed, fC has some eigenvalue λ + iµ, and let u + iv be some
eigenvector of fC for λ+ iµ, where λ, µ ∈ R and u, v ∈ E. We saw in the proof of Proposition
16.10 that

f(u) = λu− µv and f(v) = µu+ λv.

Since f = f ∗,
〈f(u), v〉 = 〈u, f(v)〉

for all u, v ∈ E. Applying this to

f(u) = λu− µv and f(v) = µu+ λv,

we get
〈f(u), v〉 = 〈λu− µv, v〉 = λ〈u, v〉 − µ〈v, v〉

and
〈u, f(v)〉 = 〈u, µu+ λv〉 = µ〈u, u〉+ λ〈u, v〉,

and thus we get
λ〈u, v〉 − µ〈v, v〉 = µ〈u, u〉+ λ〈u, v〉,

that is,
µ(〈u, u〉+ 〈v, v〉) = 0,

which implies µ = 0, since either u 6= 0 or v 6= 0. Therefore, λ is a real eigenvalue of f .

Now going back to the proof of Theorem 16.12, only the case where µ = 0 applies, and
the induction shows that all the blocks are one-dimensional.
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Theorem 16.14 implies that if λ1, . . . , λp are the distinct real eigenvalues of f , and Ei is
the eigenspace associated with λi, then

E = E1 ⊕ · · · ⊕ Ep,

where Ei and Ej are orthogonal for all i 6= j.

Remark: Another way to prove that a self-adjoint map has a real eigenvalue is to use a
little bit of calculus. We learned such a proof from Herman Gluck. The idea is to consider
the real-valued function Φ: E → R defined such that

Φ(u) = 〈f(u), u〉

for every u ∈ E. This function is C∞, and if we represent f by a matrix A over some
orthonormal basis, it is easy to compute the gradient vector

∇Φ(X) =

(
∂Φ

∂x1

(X), . . . ,
∂Φ

∂xn
(X)

)
of Φ at X. Indeed, we find that

∇Φ(X) = (A+ A>)X,

where X is a column vector of size n. But since f is self-adjoint, A = A>, and thus

∇Φ(X) = 2AX.

The next step is to find the maximum of the function Φ on the sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1}.

Since Sn−1 is compact and Φ is continuous, and in fact C∞, Φ takes a maximum at some X
on Sn−1. But then it is well known that at an extremum X of Φ we must have

dΦX(Y ) = 〈∇Φ(X), Y 〉 = 0

for all tangent vectors Y to Sn−1 at X, and so ∇Φ(X) is orthogonal to the tangent plane at
X, which means that

∇Φ(X) = λX

for some λ ∈ R. Since ∇Φ(X) = 2AX, we get

2AX = λX,

and thus λ/2 is a real eigenvalue of A (i.e., of f).

Next we consider skew-self-adjoint maps.
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Theorem 16.15. Given a Euclidean space E of dimension n, for every skew-self-adjoint
linear map f : E → E there is an orthonormal basis (e1, . . . , en) such that the matrix of f
w.r.t. this basis is a block diagonal matrix of the form

A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap


such that each block Aj is either 0 or a two-dimensional matrix of the form

Aj =

(
0 −µj
µj 0

)
,

where µj ∈ R, with µj > 0. In particular, the eigenvalues of fC are pure imaginary of the
form ±iµj or 0.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 16.12, fC has some
eigenvalue z = λ+ iµ, where λ, µ ∈ R. We claim that λ = 0. First we show that

〈f(w), w〉 = 0

for all w ∈ E. Indeed, since f = −f ∗, we get

〈f(w), w〉 = 〈w, f ∗(w)〉 = 〈w,−f(w)〉 = −〈w, f(w)〉 = −〈f(w), w〉,

since 〈−,−〉 is symmetric. This implies that

〈f(w), w〉 = 0.

Applying this to u and v and using the fact that

f(u) = λu− µv and f(v) = µu+ λv,

we get
0 = 〈f(u), u〉 = 〈λu− µv, u〉 = λ〈u, u〉 − µ〈u, v〉

and
0 = 〈f(v), v〉 = 〈µu+ λv, v〉 = µ〈u, v〉+ λ〈v, v〉,

from which, by addition, we get

λ(〈v, v〉+ 〈v, v〉) = 0.

Since u 6= 0 or v 6= 0, we have λ = 0.

Then going back to the proof of Theorem 16.12, unless µ = 0, the case where u and v
are orthogonal and span a subspace of dimension 2 applies, and the induction shows that all
the blocks are two-dimensional or reduced to 0.
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Remark: One will note that if f is skew-self-adjoint, then ifC is self-adjoint w.r.t. 〈−,−〉C.
By Proposition 16.5, the map ifC has real eigenvalues, which implies that the eigenvalues of
fC are pure imaginary or 0.

Finally we consider orthogonal linear maps.

Theorem 16.16. Given a Euclidean space E of dimension n, for every orthogonal linear
map f : E → E there is an orthonormal basis (e1, . . . , en) such that the matrix of f w.r.t.
this basis is a block diagonal matrix of the form

A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap


such that each block Aj is either 1, −1, or a two-dimensional matrix of the form

Aj =

(
cos θj − sin θj
sin θj cos θj

)
where 0 < θj < π. In particular, the eigenvalues of fC are of the form cos θj ± i sin θj, 1, or
−1.

Proof. The case where n = 1 is trivial. It is immediately verified that f ◦ f ∗ = f ∗ ◦ f = id
implies that fC ◦ f ∗C = f ∗C ◦ fC = id, so the map fC is unitary. By Proposition 16.7, the
eigenvalues of fC have absolute value 1. As a consequence, the eigenvalues of fC are of the
form cos θ ± i sin θ, 1, or −1. The theorem then follows immediately from Theorem 16.12,
where the condition µ > 0 implies that sin θj > 0, and thus, 0 < θj < π.

It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem
16.16, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

A1 . . .
...

. . .
...

...
. . . Ar

−Iq
. . . Ip


where each block Aj is a two-dimensional rotation matrix Aj 6= ±I2 of the form

Aj =

(
cos θj − sin θj
sin θj cos θj

)
with 0 < θj < π.
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The linear map f has an eigenspace E(1, f) = Ker (f − id) of dimension p for the eigen-
value 1, and an eigenspace E(−1, f) = Ker (f + id) of dimension q for the eigenvalue −1. If
det(f) = +1 (f is a rotation), the dimension q of E(−1, f) must be even, and the entries in
−Iq can be paired to form two-dimensional blocks, if we wish. In this case, every rotation
in SO(n) has a matrix of the form

A1 . . .
...

. . .
...

. . . Am
. . . In−2m


where the first m blocks Aj are of the form

Aj =

(
cos θj − sin θj
sin θj cos θj

)
with 0 < θj ≤ π.

Theorem 16.16 can be used to prove a version of the Cartan–Dieudonné theorem.

Theorem 16.17. Let E be a Euclidean space of dimension n ≥ 2. For every isometry
f ∈ O(E), if p = dim(E(1, f)) = dim(Ker (f − id)), then f is the composition of n − p
reflections, and n− p is minimal.

Proof. From Theorem 16.16 there are r subspaces F1, . . . , Fr, each of dimension 2, such that

E = E(1, f)⊕ E(−1, f)⊕ F1 ⊕ · · · ⊕ Fr,

and all the summands are pairwise orthogonal. Furthermore, the restriction ri of f to each
Fi is a rotation ri 6= ±id. Each 2D rotation ri can be written as the composition ri = s′i ◦ si
of two reflections si and s′i about lines in Fi (forming an angle θi/2). We can extend si and
s′i to hyperplane reflections in E by making them the identity on F⊥i . Then

s′r ◦ sr ◦ · · · ◦ s′1 ◦ s1

agrees with f on F1 ⊕ · · · ⊕ Fr and is the identity on E(1, f) ⊕ E(−1, f). If E(−1, f)
has an orthonormal basis of eigenvectors (v1, . . . , vq), letting s′′j be the reflection about the
hyperplane (vj)

⊥, it is clear that

s′′q ◦ · · · ◦ s′′1
agrees with f on E(−1, f) and is the identity on E(1, f)⊕ F1 ⊕ · · · ⊕ Fr. But then

f = s′′q ◦ · · · ◦ s′′1 ◦ s′r ◦ sr ◦ · · · ◦ s′1 ◦ s1,

the composition of 2r + q = n− p reflections.
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If

f = st ◦ · · · ◦ s1,

for t reflections si, it is clear that

F =
t⋂
i=1

E(1, si) ⊆ E(1, f),

where E(1, si) is the hyperplane defining the reflection si. By the Grassmann relation, if
we intersect t ≤ n hyperplanes, the dimension of their intersection is at least n − t. Thus,
n− t ≤ p, that is, t ≥ n−p, and n−p is the smallest number of reflections composing f .

As a corollary of Theorem 16.17, we obtain the following fact: If the dimension n of the
Euclidean space E is odd, then every rotation f ∈ SO(E) admits 1 as an eigenvalue.

Proof. The characteristic polynomial det(XI − f) of f has odd degree n and has real coef-
ficients, so it must have some real root λ. Since f is an isometry, its n eigenvalues are of
the form, +1,−1, and e±iθ, with 0 < θ < π, so λ = ±1. Now the eigenvalues e±iθ appear in
conjugate pairs, and since n is odd, the number of real eigenvalues of f is odd. This implies
that +1 is an eigenvalue of f , since otherwise −1 would be the only real eigenvalue of f , and
since its multiplicity is odd, we would have det(f) = −1, contradicting the fact that f is a
rotation.

When n = 3, we obtain the result due to Euler which says that every 3D rotation R has
an invariant axis D, and that restricted to the plane orthogonal to D, it is a 2D rotation.
Furthermore, if (a, b, c) is a unit vector defining the axis D of the rotation R and if the angle
of the rotation is θ, if B is the skew-symmetric matrix

B =

 0 −c b
c 0 −a
−b a 0

 ,

then the Rodigues formula (Proposition 11.15) states that

R = I + sin θB + (1− cos θ)B2.

The theorems of this section and of the previous section can be immediately translated
in terms of matrices. The matrix versions of these theorems is often used in applications so
we briefly present them in the section.
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16.5 Normal and Other Special Matrices

First we consider real matrices. Recall the following definitions.

Definition 16.3. Given a real m× n matrix A, the transpose A> of A is the n×m matrix
A> = (a>i j) defined such that

a>i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n× n matrix A is

• normal if

AA> = A>A,

• symmetric if

A> = A,

• skew-symmetric if

A> = −A,

• orthogonal if

AA> = A>A = In.

Recall from Proposition 11.14 that when E is a Euclidean space and (e1, . . ., en) is an
orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis
(e1, . . . , en), then A> is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map
has a normal matrix, a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint
linear map has a skew-symmetric matrix, and an orthogonal linear map has an orthogonal
matrix.

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of
basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then
P is orthogonal, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en)
and B is the matrix of f w.r.t. (u1, . . . , un), then

B = P>AP.

As a consequence, Theorems 16.12 and 16.14–16.16 can be restated as follows.
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Theorem 16.18. For every normal matrix A there is an orthogonal matrix P and a block
diagonal matrix D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Dj is either a one-dimensional matrix (i.e., a real scalar) or a two-
dimensional matrix of the form

Dj =

(
λj −µj
µj λj

)
,

where λj, µj ∈ R, with µj > 0.

Theorem 16.19. For every symmetric matrix A there is an orthogonal matrix P and a
diagonal matrix D such that A = PDP>, where D is of the form

D =


λ1 . . .

λ2 . . .
...

...
. . .

...
. . . λn

 ,

where λi ∈ R.

Theorem 16.20. For every skew-symmetric matrix A there is an orthogonal matrix P and
a block diagonal matrix D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Dj is either 0 or a two-dimensional matrix of the form

Dj =

(
0 −µj
µj 0

)
,

where µj ∈ R, with µj > 0. In particular, the eigenvalues of A are pure imaginary of the
form ±iµj, or 0.

Theorem 16.21. For every orthogonal matrix A there is an orthogonal matrix P and a
block diagonal matrix D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp
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such that each block Dj is either 1, −1, or a two-dimensional matrix of the form

Dj =

(
cos θj − sin θj
sin θj cos θj

)
where 0 < θj < π. In particular, the eigenvalues of A are of the form cos θj ± i sin θj, 1, or
−1.

Theorem 16.21 can be used to show that the exponential map exp: so(n) → SO(n) is
surjective; see Gallier [24].

We now consider complex matrices.

Definition 16.4. Given a complex m × n matrix A, the transpose A> of A is the n × m
matrix A> =

(
a>i j
)

defined such that

a>i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of A is the m × n matrix A = (bi j)
defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an m× n complex matrix A, the adjoint A∗ of A is
the matrix defined such that

A∗ = (A>) = (A)>.

A complex n× n matrix A is

• normal if

AA∗ = A∗A,

• Hermitian if

A∗ = A,

• skew-Hermitian if

A∗ = −A,

• unitary if

AA∗ = A∗A = In.
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Recall from Proposition 13.15 that when E is a Hermitian space and (e1, . . ., en) is an
orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis
(e1, . . . , en), then A∗ is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map
has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint
linear map has a skew-Hermitian matrix, and a unitary linear map has a unitary matrix.

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of
basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then
P is unitary, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en) and
B is the matrix of f w.r.t. (u1, . . . , un), then

B = P ∗AP.

Theorem 16.13 and Proposition 16.7 can be restated in terms of matrices as follows.

Theorem 16.22. For every complex normal matrix A there is a unitary matrix U and a
diagonal matrix D such that A = UDU∗. Furthermore, if A is Hermitian, then D is a real
matrix; if A is skew-Hermitian, then the entries in D are pure imaginary or zero; and if A
is unitary, then the entries in D have absolute value 1.

16.6 Rayleigh–Ritz Theorems and Eigenvalue Interlac-

ing

A fact that is used frequently in optimization problems is that the eigenvalues of a symmetric
matrix are characterized in terms of what is known as the Rayleigh ratio, defined by

R(A)(x) =
x>Ax

x>x
, x ∈ Rn, x 6= 0.

The following proposition is often used to prove the correctness of various optimization
or approximation problems (for example PCA; see Section 21.4). It is also used to prove
Proposition 16.25, which is used to justify the correctness of a method for graph-drawing
(see Chapter 19).

Proposition 16.23. (Rayleigh–Ritz) If A is a symmetric n × n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where
ui is a unit eigenvector associated with λi, then

max
x 6=0

x>Ax

x>x
= λn

(with the maximum attained for x = un), and

max
x 6=0,x∈{un−k+1,...,un}⊥

x>Ax

x>x
= λn−k
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(with the maximum attained for x = un−k), where 1 ≤ k ≤ n− 1. Equivalently, if Vk is the
subspace spanned by (u1, . . . , uk), then

λk = max
x 6=0,x∈Vk

x>Ax

x>x
, k = 1, . . . , n.

Proof. First observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x∈{un−k+1,...,un}⊥

x>Ax

x>x
= max

x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect
to an orthonormal basis of eigenvectors, so let (u1, . . . , un) be such a basis. If we write

x =
n∑
i=1

xiui,

a simple computation shows that

x>Ax =
n∑
i=1

λix
2
i .

If x>x = 1, then
∑n

i=1 x
2
i = 1, and since we assumed that λ1 ≤ λ2 ≤ · · · ≤ λn, we get

x>Ax =
n∑
i=1

λix
2
i ≤ λn

( n∑
i=1

x2
i

)
= λn.

Thus,
max
x

{
x>Ax | x>x = 1

}
≤ λn,

and since this maximum is achieved for en = (0, 0, . . . , 1), we conclude that

max
x

{
x>Ax | x>x = 1

}
= λn.

Next observe that x ∈ {un−k+1, . . . , un}⊥ and x>x = 1 iff xn−k+1 = · · · = xn = 0 and∑n−k
i=1 x

2
i = 1. Consequently, for such an x, we have

x>Ax =
n−k∑
i=1

λix
2
i ≤ λn−k

(n−k∑
i=1

x2
i

)
= λn−k.
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Thus,
max
x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
≤ λn−k,

and since this maximum is achieved for en−k = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position
n− k, we conclude that

max
x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
= λn−k,

as claimed.

For our purposes we need the version of Proposition 16.23 applying to min instead of
max, whose proof is obtained by a trivial modification of the proof of Proposition 16.23.

Proposition 16.24. (Rayleigh–Ritz) If A is a symmetric n × n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where
ui is a unit eigenvector associated with λi, then

min
x 6=0

x>Ax

x>x
= λ1

(with the minimum attained for x = u1), and

min
x 6=0,x∈{u1,...,ui−1}⊥

x>Ax

x>x
= λi

(with the minimum attained for x = ui), where 2 ≤ i ≤ n. Equivalently, if Wk = V ⊥k−1

denotes the subspace spanned by (uk, . . . , un) (with V0 = (0)), then

λk = min
x 6=0,x∈Wk

x>Ax

x>x
= min

x 6=0,x∈V ⊥k−1

x>Ax

x>x
, k = 1, . . . , n.

Propositions 16.23 and 16.24 together are known as the Rayleigh–Ritz theorem.

Observe that Proposition 16.24 immediately implies that if A is a symmetric matrix, then
A is positive definite iff all its eigenvalues are positive. We also prove this fact in Section
20.1; see Proposition 20.3.

As an application of Propositions 16.23 and 16.24, we prove a proposition which allows
us to compare the eigenvalues of two symmetric matrices A and B = R>AR, where R is a
rectangular matrix satisfying the equation R>R = I.

First we need a definition.

Definition 16.5. Given an n × n symmetric matrix A and an m ×m symmetric B, with
m ≤ n, if λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µm are the
eigenvalues of B, then we say that the eigenvalues of B interlace the eigenvalues of A if

λi ≤ µi ≤ λn−m+i, i = 1, . . . ,m.
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For example, if n = 5 and m = 3, we have

λ1 ≤ µ1 ≤ λ3

λ2 ≤ µ2 ≤ λ4

λ3 ≤ µ3 ≤ λ5.

Proposition 16.25. Let A be an n× n symmetric matrix, R be an n×m matrix such that
R>R = I (with m ≤ n), and let B = R>AR (an m ×m matrix). The following properties
hold:

(a) The eigenvalues of B interlace the eigenvalues of A.

(b) If λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µm are the
eigenvalues of B, and if λi = µi, then there is an eigenvector v of B with eigenvalue
µi such that Rv is an eigenvector of A with eigenvalue λi.

Proof. (a) Let (u1, . . . , un) be an orthonormal basis of eigenvectors for A, and let (v1, . . . , vm)
be an orthonormal basis of eigenvectors for B. Let Uj be the subspace spanned by (u1, . . . , uj)
and let Vj be the subspace spanned by (v1, . . . , vj). For any i, the subspace Vi has dimension
i and the subspace R>Ui−1 has dimension at most i − 1. Therefore, there is some nonzero
vector v ∈ Vi ∩ (R>Ui−1)⊥, and since

v>R>uj = (Rv)>uj = 0, j = 1, . . . , i− 1,

we have Rv ∈ (Ui−1)⊥. By Proposition 16.24 and using the fact that R>R = I, we have

λi ≤
(Rv)>ARv

(Rv)>Rv
=
v>Bv

v>v
.

On the other hand, by Proposition 16.23,

µi = max
x 6=0,x∈{vi+1,...,vn}⊥

x>Bx

x>x
= max

x 6=0,x∈{v1,...,vi}

x>Bx

x>x
,

so
w>Bw

w>w
≤ µi for all w ∈ Vi,

and since v ∈ Vi, we have

λi ≤
v>Bv

v>v
≤ µi, i = 1, . . . ,m.

We can apply the same argument to the symmetric matrices −A and −B, to conclude that

−λn−m+i ≤ −µi,



16.6. RAYLEIGH–RITZ THEOREMS AND EIGENVALUE INTERLACING 603

that is,

µi ≤ λn−m+i, i = 1, . . . ,m.

Therefore,

λi ≤ µi ≤ λn−m+i, i = 1, . . . ,m,

as desired.

(b) If λi = µi, then

λi =
(Rv)>ARv

(Rv)>Rv
=
v>Bv

v>v
= µi,

so v must be an eigenvector for B and Rv must be an eigenvector for A, both for the
eigenvalue λi = µi.

Proposition 16.25 immediately implies the Poincaré separation theorem. It can be used
in situations, such as in quantum mechanics, where one has information about the inner
products u>i Auj.

Proposition 16.26. (Poincaré separation theorem) Let A be a n×n symmetric (or Hermi-
tian) matrix, let m be some integer with 1 ≤ m ≤ n, and let (u1, . . . , um) be m orthonormal
vectors. Let B = (u>i Auj) (an m ×m matrix), let λ1(A) ≤ . . . ≤ λn(A) be the eigenvalues
of A and λ1(B) ≤ . . . ≤ λm(B) be the eigenvalues of B; then we have

λk(A) ≤ λk(B) ≤ λk+n−m(A), k = 1, . . . ,m.

Observe that Proposition 16.25 implies that

λ1 + · · ·+ λm ≤ tr(R>AR) ≤ λn−m+1 + · · ·+ λn.

If P1 is the the n × (n − 1) matrix obtained from the identity matrix by dropping its last
column, we have P>1 P1 = I, and the matrix B = P>1 AP1 is the matrix obtained from A by
deleting its last row and its last column. In this case the interlacing result is

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−2 ≤ λn−1 ≤ µn−1 ≤ λn,

a genuine interlacing. We obtain similar results with the matrix Pn−m obtained by dropping
the last n−m columns of the identity matrix and setting B = P>n−mAPn−m (B is the m×m
matrix obtained from A by deleting its last n−m rows and columns). In this case we have
the following interlacing inequalities known as Cauchy interlacing theorem:

λk ≤ µk ≤ λk+n−m, k = 1, . . . ,m. (∗)
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16.7 The Courant–Fischer Theorem; Perturbation Re-

sults

Another useful tool to prove eigenvalue equalities is the Courant–Fischer characterization of
the eigenvalues of a symmetric matrix, also known as the Min-max (and Max-min) theorem.

Theorem 16.27. (Courant–Fischer) Let A be a symmetric n× n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. If Vk denotes the set of subspaces of Rn of dimension k, then

λk = max
W∈Vn−k+1

min
x∈W,x6=0

x>Ax

x>x

λk = min
W∈Vk

max
x∈W,x6=0

x>Ax

x>x
.

Proof. Let us consider the second equality, the proof of the first equality being similar. Let
(u1, . . . , un) be any orthonormal basis of eigenvectors of A, where ui is a unit eigenvector
associated with λi. Observe that the space Vk spanned by (u1, . . . , uk) has dimension k, and
by Proposition 16.23, we have

λk = max
x 6=0,x∈Vk

x>Ax

x>x
≥ inf

W∈Vk
max

x∈W,x6=0

x>Ax

x>x
.

Therefore, we need to prove the reverse inequality; that is, we have to show that

λk ≤ max
x 6=0,x∈W

x>Ax

x>x
, for all W ∈ Vk.

Now for any W ∈ Vk, if we can prove that W∩V ⊥k−1 6= (0), then for any nonzero v ∈ W∩V ⊥k−1,
by Proposition 16.24 , we have

λk = min
x 6=0,x∈V ⊥k−1

x>Ax

x>x
≤ v>Av

v>v
≤ max

x∈W,x6=0

x>Ax

x>x
.

It remains to prove that dim(W ∩ V ⊥k−1) ≥ 1. However, dim(Vk−1) = k − 1, so dim(V ⊥k−1) =
n− k + 1, and by hypothesis dim(W ) = k. By the Grassmann relation,

dim(W ) + dim(V ⊥k−1) = dim(W ∩ V ⊥k−1) + dim(W + V ⊥k−1),

and since dim(W + V ⊥k−1) ≤ dim(Rn) = n, we get

k + n− k + 1 ≤ dim(W ∩ V ⊥k−1) + n;

that is, 1 ≤ dim(W ∩ V ⊥k−1), as claimed. Thus we proved that

λk = inf
W∈Vk

max
x∈W,x6=0

x>Ax

x>x
,

but since the inf is achieved for the subspace Vk, the equation also holds with inf replaced
by min.



16.7. THE COURANT–FISCHER THEOREM; PERTURBATION RESULTS 605

The Courant–Fischer theorem yields the following useful result about perturbing the
eigenvalues of a symmetric matrix due to Hermann Weyl.

Proposition 16.28. Given two n×n symmetric matrices A and B = A+∆A, if α1 ≤ α2 ≤
· · · ≤ αn are the eigenvalues of A and β1 ≤ β2 ≤ · · · ≤ βn are the eigenvalues of B, then

|αk − βk| ≤ ρ(∆A) ≤ ‖∆A‖2 , k = 1, . . . , n.

Proof. Let Vk be defined as in the Courant–Fischer theorem and let Vk be the subspace
spanned by the k eigenvectors associated with α1, . . . , αk. By the Courant–Fischer theorem
applied to B, we have

βk = min
W∈Vk

max
x∈W,x6=0

x>Bx

x>x

≤ max
x∈Vk

x>Bx

x>x

= max
x∈Vk

(
x>Ax

x>x
+
x>∆Ax

x>x

)
≤ max

x∈Vk

x>Ax

x>x
+ max

x∈Vk

x>∆Ax

x>x
.

By Proposition 16.23, we have

αk = max
x∈Vk

x>Ax

x>x
,

so we obtain

βk ≤ max
x∈Vk

x>Ax

x>x
+ max

x∈Vk

x>∆Ax

x>x

= αk + max
x∈Vk

x>∆Ax

x>x

≤ αk + max
x∈Rn

x>∆Ax

x>x
.

Now by Proposition 16.23 and Proposition 8.9, we have

max
x∈Rn

x>∆Ax

x>x
= max

i
λi(∆A) ≤ ρ(∆A) ≤ ‖∆A‖2 ,

where λi(∆A) denotes the ith eigenvalue of ∆A, which implies that

βk ≤ αk + ρ(∆A) ≤ αk + ‖∆A‖2 .

By exchanging the roles of A and B, we also have

αk ≤ βk + ρ(∆A) ≤ βk + ‖∆A‖2 ,

and thus,
|αk − βk| ≤ ρ(∆A) ≤ ‖∆A‖2 , k = 1, . . . , n,

as claimed.
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Proposition 16.28 also holds for Hermitian matrices.

A pretty result of Wielandt and Hoffman asserts that

n∑
k=1

(αk − βk)2 ≤ ‖∆A‖2
F ,

where ‖ ‖F is the Frobenius norm. However, the proof is significantly harder than the above
proof; see Lax [44].

The Courant–Fischer theorem can also be used to prove some famous inequalities due to
Hermann Weyl. These can also be viewed as perturbation results. Given two symmetric (or
Hermitian) matrices A and B, let λi(A), λi(B), and λi(A + B) denote the ith eigenvalue of
A,B, and A+B, respectively, arranged in nondecreasing order.

Proposition 16.29. (Weyl) Given two symmetric (or Hermitian) n×n matrices A and B,
the following inequalities hold: For all i, j, k with 1 ≤ i, j, k ≤ n:

1. If i+ j = k + 1, then

λi(A) + λj(B) ≤ λk(A+B).

2. If i+ j = k + n, then

λk(A+B) ≤ λi(A) + λj(B).

Proof. Observe that the first set of inequalities is obtained from the second set by replacing
A by −A and B by −B, so it is enough to prove the second set of inequalities. By the
Courant–Fischer theorem, there is a subspace H of dimension n− k + 1 such that

λk(A+B) = min
x∈H,x 6=0

x>(A+B)x

x>x
.

Similarly, there exists a subspace F of dimension i and a subspace G of dimension j such
that

λi(A) = max
x∈F,x6=0

x>Ax

x>x
, λj(B) = max

x∈G,x 6=0

x>Bx

x>x
.

We claim that F ∩G∩H 6= (0). To prove this, we use the Grassmann relation twice. First,

dim(F ∩G∩H) = dim(F ) + dim(G∩H)− dim(F + (G∩H)) ≥ dim(F ) + dim(G∩H)− n,

and second,

dim(G ∩H) = dim(G) + dim(H)− dim(G+H) ≥ dim(G) + dim(H)− n,

so

dim(F ∩G ∩H) ≥ dim(F ) + dim(G) + dim(H)− 2n.
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However,
dim(F ) + dim(G) + dim(H) = i+ j + n− k + 1

and i+ j = k + n, so we have

dim(F ∩G ∩H) ≥ i+ j + n− k + 1− 2n = k + n+ n− k + 1− 2n = 1,

which shows that F ∩G∩H 6= (0). Then for any unit vector z ∈ F ∩G∩H 6= (0), we have

λk(A+B) ≤ z>(A+B)z, λi(A) ≥ z>Az, λj(B) ≥ z>Bz,

establishing the desired inequality λk(A+B) ≤ λi(A) + λj(B).

In the special case i = j = k, we obtain

λ1(A) + λ1(B) ≤ λ1(A+B), λn(A+B) ≤ λn(A) + λn(B).

It follows that λ1 (as a function) is concave, while λn (as a function) is convex.

If i = k and j = 1, we obtain

λk(A) + λ1(B) ≤ λk(A+B),

and if i = k and j = n, we obtain

λk(A+B) ≤ λk(A) + λn(B),

and combining them, we get

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

In particular, if B is positive semidefinite, since its eigenvalues are nonnegative, we obtain
the following inequality known as the monotonicity theorem for symmetric (or Hermitian)
matrices: if A and B are symmetric (or Hermitian) and B is positive semidefinite, then

λk(A) ≤ λk(A+B) k = 1, . . . , n.

The reader is referred to Horn and Johnson [36] (Chapters 4 and 7) for a very complete
treatment of matrix inequalities and interlacing results, and also to Lax [44] and Serre [57].

16.8 Summary

The main concepts and results of this chapter are listed below:

• Normal linear maps, self-adjoint linear maps, skew-self-adjoint linear maps, and or-
thogonal linear maps.
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• Properties of the eigenvalues and eigenvectors of a normal linear map.

• The complexification of a real vector space, of a linear map, and of a Euclidean inner
product.

• The eigenvalues of a self-adjoint map in a Hermitian space are real .

• The eigenvalues of a self-adjoint map in a Euclidean space are real .

• Every self-adjoint linear map on a Euclidean space has an orthonormal basis of eigen-
vectors.

• Every normal linear map on a Euclidean space can be block diagonalized (blocks of
size at most 2× 2) with respect to an orthonormal basis of eigenvectors.

• Every normal linear map on a Hermitian space can be diagonalized with respect to an
orthonormal basis of eigenvectors.

• The spectral theorems for self-adjoint, skew-self-adjoint, and orthogonal linear maps
(on a Euclidean space).

• The spectral theorems for normal, symmetric, skew-symmetric, and orthogonal (real)
matrices.

• The spectral theorems for normal, Hermitian, skew-Hermitian, and unitary (complex)
matrices.

• The Rayleigh ratio and the Rayleigh–Ritz theorem.

• Interlacing inequalities and the Cauchy interlacing theorem.

• The Poincaré separation theorem.

• The Courant–Fischer theorem.

• Inequalities involving perturbations of the eigenvalues of a symmetric matrix.

• The Weyl inequalities .

16.9 Problems

Problem 16.1. Prove that the structure EC introduced in Definition 16.2 is indeed a com-
plex vector space.
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Problem 16.2. Prove that the formula

〈u1 + iv1, u2 + iv2〉C = 〈u1, u2〉+ 〈v1, v2〉+ i(〈v1, u2〉 − 〈u1, v2〉)

defines a Hermitian form on EC that is positive definite and that 〈−,−〉C agrees with 〈−,−〉
on real vectors.

Problem 16.3. Given any linear map f : E → E, prove the map f ∗C defined such that

f ∗C(u+ iv) = f ∗(u) + if ∗(v)

for all u, v ∈ E is the adjoint of fC w.r.t. 〈−,−〉C.

Problem 16.4. Let A be a real symmetric n×n matrix whose eigenvalues are nonnegative.
Prove that for every p > 0, there is a real symmetric matrix S whose eigenvalues are
nonnegative such that Sp = A.

Problem 16.5. Let A be a real symmetric n× n matrix whose eigenvalues are positive.

(1) Prove that there is a real symmetric matrix S such that A = eS.

(2) Let S be a real symmetric n×n matrix. Prove that A = eS is a real symmetric n×n
matrix whose eigenvalues are positive.

Problem 16.6. Let A be a complex matrix. Prove that if A can be diagonalized with
respect to an orthonormal basis, then A is normal.

Problem 16.7. Let f : Cn → Cn be a linear map.

(1) Prove that if f is diagonalizable and if λ1, . . . , λn are the eigenvalues of f , then
λ2

1, . . . , λ
2
n are the eigenvalues of f 2, and if λ2

i = λ2
j implies that λi = λj, then f and f 2 have

the same eigenspaces.

(2) Let f and g be two real self-adjoint linear maps f, g : Rn → Rn. Prove that if f and g
have nonnegative eigenvalues (f and g are positve semidefinite) and if f 2 = g2, then f = g.

Problem 16.8. (1) Let so(3) be the space of 3× 3 skew symmetric matrices

so(3) =


 0 −c b
c 0 −a
−b a 0

 ∣∣∣∣ a, b, c ∈ R

 .

For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ∈ so(3),

if we let θ =
√
a2 + b2 + c2, recall from Section 11.7 (the Rodrigues formula) that the expo-

nential map exp: so(3)→ SO(3) is given by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2, if θ 6= 0,
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with exp(03) = I3.

(2) Prove that eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(3) Prove that the exponential map exp: so(3) → SO(3) is surjective. For this proceed
as follows: Pick any rotation matrix R ∈ SO(3);

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding θ satisfying 0 <
θ < π such that eB = R.

(3) If R 6= I and tr(R) = −1, then prove that the eigenvalues of R are 1,−1,−1, that
R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R− I)

is a symmetric matrix whose eigenvalues are −1,−1, 0. Thus S can be diagonalized
with respect to an orthogonal matrix Q as

S = Q

−1 0 0
0 −1 0
0 0 0

Q>.

Prove that there exists a skew symmetric matrix

U =

 0 −d c
d 0 −b
−c b 0


so that

U2 = S =
1

2
(R− I).

Observe that

U2 =

−(c2 + d2) bc bd
bc −(b2 + d2) cd
bd cd −(b2 + c2)

 ,
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and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then show that

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 ,

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix
U , we have U2 = S.

(4) To find a skew symmetric matrix U so that U2 = S = 1
2
(R − I) as in (3), we can

solve the system b2 − 1 bc bd
bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

Implement a computer program in Matlab to solve the above system.

Problem 16.9. It was shown in Proposition 14.15 that the exponential map is a map
exp: so(n)→ SO(n), where so(n) is the vector space of real n×n skew-symmetric matrices.
Use the spectral theorem to prove that the map exp: so(n)→ SO(n) is surjective.

Problem 16.10. Let u(n) be the space of (complex) n× n skew-Hermitian matrices (B∗ =
−B) and let su(n) be its subspace consisting of skew-Hermitian matrice with zero trace
(tr(B) = 0).

(1) Prove that if B ∈ u(n), then eB ∈ U(n), and if if B ∈ su(n), then eB ∈ SU(n). Thus
we have well-defined maps exp: u(n)→ U(n) and exp: su(n)→ SU(n).

(2) Prove that the map exp: u(n)→ U(n) is surjective.

(3) Prove that the map exp: su(n)→ SU(n) is surjective.

Problem 16.11. Recall that a matrix B ∈ Mn(R) is skew-symmetric if B> = −B. Check
that the set so(n) of skew-symmetric matrices is a vector space of dimension n(n−1)/2, and
thus is isomorphic to Rn(n−1)/2.

(1) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I +B)−1.
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(2) Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary
(that is, of the form iµ for µ ∈ R.).

Let C : so(n)→ Mn(R) be the function (called the Cayley transform of B) given by

C(B) = (I −B)(I +B)−1.

Prove that if B is skew-symmetric, then I − B and I + B are invertible, and so C is well-
defined. Prove that

(I +B)(I −B) = (I −B)(I +B),

and that
(I +B)(I −B)−1 = (I −B)−1(I +B).

Prove that
(C(B))>C(B) = I

and that
detC(B) = +1,

so that C(B) is a rotation matrix. Furthermore, show that C(B) does not admit −1 as an
eigenvalue.

(3) Let SO(n) be the group of n× n rotation matrices. Prove that the map

C : so(n)→ SO(n)

is bijective onto the subset of rotation matrices that do not admit −1 as an eigenvalue. Show
that the inverse of this map is given by

B = (I +R)−1(I −R) = (I −R)(I +R)−1,

where R ∈ SO(n) does not admit −1 as an eigenvalue.

Problem 16.12. Please refer back to Problem 3.6. Let λ1, . . . , λn be the eigenvalues of A
(not necessarily distinct). Using Schur’s theorem, A is similar to an upper triangular matrix
B, that is, A = PBP−1 with B upper triangular, and we may assume that the diagonal
entries of B in descending order are λ1, . . . , λn.

(1) If the Eij are listed according to total order given by

(i, j) < (h, k) iff

{
i = h and j > k
or i < h.

prove that RB is an upper triangular matrix whose diagonal entries are

(λn, . . . , λ1, . . . , λn, . . . , λ1︸ ︷︷ ︸
n2

),
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and that LB is an upper triangular matrix whose diagonal entries are

(λ1, . . . , λ1︸ ︷︷ ︸
n

. . . , λn, . . . , λn︸ ︷︷ ︸
n

).

Hint . Figure out what are RB(Eij) = EijB and LB(Eij) = BEij.

(2) Use the fact that

LA = LP ◦ LB ◦ L−1
P , RA = R−1

P ◦RB ◦RP ,

to express adA = LA − RA in terms of LB − RB, and conclude that the eigenvalues of adA
are λi − λj, for i = 1, . . . , n, and for j = n, . . . , 1.
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Chapter 17

Computing Eigenvalues and
Eigenvectors

After the problem of solving a linear system, the problem of computing the eigenvalues and
the eigenvectors of a real or complex matrix is one of most important problems of numerical
linear algebra. Several methods exist, among which we mention Jacobi, Givens–Householder,
divide-and-conquer, QR iteration, and Rayleigh–Ritz; see Demmel [16], Trefethen and Bau
[68], Meyer [48], Serre [57], Golub and Van Loan [29], and Ciarlet [14]. Typically, better
performing methods exist for special kinds of matrices, such as symmetric matrices.

In theory, given an n×n complex matrix A, if we could compute a Schur form A = UTU∗,
where T is upper triangular and U is unitary, we would obtain the eigenvalues of A, since they
are the diagonal entries in T . However, this would require finding the roots of a polynomial,
but methods for doing this are known to be numerically very unstable, so this is not a
practical method.

A common paradigm is to construct a sequence (Pk) of matrices such that Ak = P−1
k APk

converges, in some sense, to a matrix whose eigenvalues are easily determined. For example,
Ak = P−1

k APk could become upper triangular in the limit. Furthermore, Pk is typically a
product of “nice” matrices, for example, orthogonal matrices.

For general matrices, that is, matrices that are not symmetric, the QR iteration algo-
rithm, due to Rutishauser, Francis, and Kublanovskaya in the early 1960s, is one of the
most efficient algorithms for computing eigenvalues. A fascinating account of the history
of the QR algorithm is given in Golub and Uhlig [28]. The QR algorithm constructs a se-
quence of matrices (Ak), where Ak+1 is obtained from Ak by performing a QR-decomposition
Ak = QkRk of Ak and then setting Ak+1 = RkQk, the result of swapping Qk and Rk. It
is immediately verified that Ak+1 = Q∗kAkQk, so Ak and Ak+1 have the same eigenvalues,
which are the eigenvalues of A.

The basic version of this algorithm runs into difficulties with matrices that have several
eigenvalues with the same modulus (it may loop or not “converge” to an upper triangular
matrix). There are ways of dealing with some of these problems, but for ease of exposition,

615
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we first present a simplified version of the QR algorithm which we call basic QR algorithm.
We prove a convergence theorem for the basic QR algorithm, under the rather restrictive
hypothesis that the input matrix A is diagonalizable and that its eigenvalues are nonzero
and have distinct moduli. The proof shows that the part of Ak strictly below the diagonal
converges to zero and that the diagonal entries of Ak converge to the eigenvalues of A.

Since the convergence of the QR method depends crucially only on the fact that the part
of Ak below the diagonal goes to zero, it would be highly desirable if we could replace A
by a similar matrix U∗AU easily computable from A and having lots of zero strictly below
the diagonal. It turns out that there is a way to construct a matrix H = U∗AU which
is almost triangular, except that it may have an extra nonzero diagonal below the main
diagonal. Such matrices called, Hessenberg matrices , are discussed in Section 17.2. An n×n
diagonalizable Hessenberg matrix H having the property that hi+1i 6= 0 for i = 1, . . . , n− 1
(such a matrix is called unreduced) has the nice property that its eigenvalues are all distinct.
Since every Hessenberg matrix is a block diagonal matrix of unreduced Hessenberg blocks,
it suffices to compute the eigenvalues of unreduced Hessenberg matrices. There is a special
case of particular interest: symmetric (or Hermitian) positive definite tridiagonal matrices.
Such matrices must have real positive distinct eigenvalues, so the QR algorithm converges
to a diagonal matrix.

In Section 17.3, we consider techniques for making the basic QR method practical and
more efficient. The first step is to convert the original input matrix A to a similar matrix H
in Hessenberg form, and to apply the QR algorithm to H (actually, to the unreduced blocks
of H). The second and crucial ingredient to speed up convergence is to add shifts.

A shift is the following step: pick some σk, hopefully close to some eigenvalue of A (in
general, λn), QR-factor Ak − σkI as

Ak − σkI = QkRk,

and then form

Ak+1 = RkQk + σkI.

It is easy to see that we still have Ak+1 = Q∗kAkQk. A judicious choice of σk can speed up
convergence considerably. If H is real and has pairs of complex conjugate eigenvalues, we
can perform a double shift, and it can be arranged that we work in real arithmetic.

The last step for improving efficiency is to compute Ak+1 = Q∗kAkQk without even per-
forming a QR-factorization of Ak−σkI. This can be done when Ak is unreduced Hessenberg.
Such a method is called QR iteration with implicit shifts. There is also a version of QR
iteration with implicit double shifts.

If the dimension of the matrix A is very large, we can find approximations of some of the
eigenvalues of A by using a truncated version of the reduction to Hessenberg form due to
Arnoldi in general and to Lanczos in the symmetric (or Hermitian) tridiagonal case. Arnoldi
iteration is discussed in Section 17.4. If A is an m×m matrix, for n� m (n much smaller
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than m) the idea is to generate the n × n Hessenberg submatrix Hn of the full Hessenberg
matrix H (such that A = UHU∗) consisting of its first n rows and n columns; the matrix Un
consisting of the first n columns of U is also produced. The Rayleigh–Ritz method consists
in computing the eigenvalues of Hn using the QR- method with shifts. These eigenvalues,
called Ritz values , are approximations of the eigenvalues of A. Typically, extreme eigenvalues
are found first.

Arnoldi iteration can also be viewed as a way of computing an orthonormal basis of a
Krylov subspace, namely the subspace Kn(A, b) spanned by (b, Ab, . . . , Anb). We can also use
Arnoldi iteration to find an approximate solution of a linear equation Ax = b by minimizing
‖b− Axn‖2 for all xn is the Krylov space Kn(A, b). This method named GMRES is discussed
in Section 17.5.

The special case where H is a symmetric (or Hermitian) tridiagonal matrix is discussed
in Section 17.6. In this case, Arnoldi’s algorithm becomes Lanczos’ algorithm. It is much
more efficient than Arnoldi iteration.

We close this chapter by discussing two classical methods for computing a single eigen-
vector and a single eigenvalue: power iteration and inverse (power) iteration; see Section
17.7.

17.1 The Basic QR Algorithm

Let A be an n × n matrix which is assumed to be diagonalizable and invertible. The basic
QR algorithm makes use of two very simple steps. Starting with A1 = A, we construct
sequences of matrices (Ak), (Qk) (Rk) and (Pk) as follows:

Factor A1 = Q1R1

Set A2 = R1Q1

Factor A2 = Q2R2

Set A3 = R2Q2

...

Factor Ak = QkRk

Set Ak+1 = RkQk

...

Thus, Ak+1 is obtained from a QR-factorization Ak = QkRk of Ak by swapping Qk and
Rk. Define Pk by

Pk = Q1Q2 · · ·Qk.

Since Ak = QkRk, we have Rk = Q∗kAk, and since Ak+1 = RkQk, we obtain

Ak+1 = Q∗kAkQk. (∗1)
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An obvious induction shows that

Ak+1 = Q∗k · · ·Q∗1A1Q1 · · ·Qk = P ∗kAPk,

that is

Ak+1 = P ∗kAPk. (∗2)

Therefore, Ak+1 and A are similar, so they have the same eigenvalues.

The basic QR iteration method consists in computing the sequence of matrices Ak, and
in the ideal situation, to expect that Ak “converges” to an upper triangular matrix, more
precisely that the part of Ak below the main diagonal goes to zero, and the diagonal entries
converge to the eigenvalues of A.

This ideal situation is only achieved in rather special cases. For one thing, if A is unitary
(or orthogonal in the real case), since in the QR decomposition we have R = I, we get
A2 = IQ = Q = A1, so the method does not make any progress. Also, if A is a real matrix,
since the Ak are also real, if A has complex eigenvalues, then the part of Ak below the main
diagonal can’t go to zero. Generally, the method runs into troubles whenever A has distinct
eigenvalues with the same modulus.

The convergence of the sequence (Ak) is only known under some fairly restrictive hy-
potheses. Even under such hypotheses, this is not really genuine convergence. Indeed, it can
be shown that the part of Ak below the main diagonal goes to zero, and the diagonal entries
converge to the eigenvalues of A, but the part of Ak above the diagonal may not converge.
However, for the purpose of finding the eigenvalues of A, this does not matter.

The following convergence result is proven in Ciarlet [14] (Chapter 6, Theorem 6.3.10
and Serre [57] (Chapter 13, Theorem 13.2). It is rarely applicable in practice, except for
symmetric (or Hermitian) positive definite matrices, as we will see shortly.

Theorem 17.1. Suppose the (complex) n×n matrix A is invertible, diagonalizable, and that
its eigenvalues λ1, . . . , λn have different moduli, so that

|λ1| > |λ2| > · · · > |λn| > 0.

If A = PΛP−1, where Λ = diag(λ1, . . . , λn), and if P−1 has an LU-factorization, then the
strictly lower-triangular part of Ak converges to zero, and the diagonal of Ak converges to Λ.

Proof. We reproduce the proof in Ciarlet [14] (Chapter 6, Theorem 6.3.10). The strategy is
to study the asymptotic behavior of the matrices Pk = Q1Q2 · · ·Qk. For this, it turns out
that we need to consider the powers Ak.

Step 1 . Let Rk = Rk · · ·R2R1. We claim that

Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1) = PkRk. (∗3)



17.1. THE BASIC QR ALGORITHM 619

We proceed by induction. The base case k = 1 is trivial. For the induction step, from
(∗2), we have

PkAk+1 = APk.

Since Ak+1 = RkQk = Qk+1Rk+1, we have

Pk+1Rk+1 = PkQk+1Rk+1Rk = PkAk+1Rk = APkRk = AAk = Ak+1

establishing the induction step.

Step 2 . We will express the matrix Pk as Pk = QQ̃kDk, in terms of a diagonal matrix
Dk with unit entries, with Q and Q̃k unitary.

Let P = QR, a QR-factorization of P (with R an upper triangular matrix with positive
diagonal entries), and P−1 = LU , an LU -factorization of P−1. Since A = PΛP−1, we have

Ak = PΛkP−1 = QRΛkLU = QR(ΛkLΛ−k)ΛkU. (∗4)

Here, Λ−k is the diagonal matrix with entries λ−ki . The reason for introducing the matrix
ΛkLΛ−k is that its asymptotic behavior is easy to determine. Indeed, we have

(ΛkLΛ−k)ij =


0 if i < j

1 if i = j(
λi
λj

)k
Lij if i > j.

The hypothesis that |λ1| > |λ2| > · · · > |λn| > 0 implies that

lim
k 7→∞

ΛkLΛ−k = I. (†)

Note that it is to obtain this limit that we made the hypothesis on the moduli of the
eigenvalues. We can write

ΛkLΛ−k = I + Fk, with lim
k 7→∞

Fk = 0,

and consequently, since R(ΛkLΛ−k) = R(I + Fk) = R + RFkR
−1R = (I + RFkR

−1)R, we
have

R(ΛkLΛ−k) = (I +RFkR
−1)R. (∗5)

By Proposition 8.11(1), since limk 7→∞ Fk = 0, and thus limk 7→∞RFkR−1 = 0, the matrices
I + RFkR

−1 are invertible for k large enough. Consequently for k large enough, we have a
QR-factorization

I +RFkR
−1 = Q̃kR̃k, (∗6)

with (R̃k)ii > 0 for i = 1, . . . , n. Since the matrices Q̃k are unitary, we have
∥∥∥Q̃k

∥∥∥
2

= 1,

so the sequence (Q̃k) is bounded. It follows that it has a convergent subsequence (Q̃`) that

converges to some matrix Q̃, which is also unitary. Since

R̃` = (Q̃`)
∗(I +RF`R

−1),
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we deduce that the subsequence (R̃`) also converges to some matrix R̃, which is also upper
triangular with positive diagonal entries. By passing to the limit (using the subsequences),

we get R̃ = (Q̃)∗, that is,

I = Q̃R̃.

By the uniqueness of a QR-decomposition (when the diagonal entries of R are positive), we
get

Q̃ = R̃ = I.

Since the above reasoning applies to any subsequences of (Q̃k) and (R̃k), by the uniqueness

of limits, we conclude that the “full” sequences (Q̃k) and (R̃k) converge:

lim
k 7→∞

Q̃k = I, lim
k 7→∞

R̃k = I.

Since by (∗4),
Ak = QR(ΛkLΛ−k)ΛkU,

by (∗5),
R(ΛkLΛ−k) = (I +RFkR

−1)R,

and by (∗6)

I +RFkR
−1 = Q̃kR̃k,

we proved that
Ak = (QQ̃k)(R̃kRΛkU). (∗7)

Observe that QQ̃k is a unitary matrix, and R̃kRΛkU is an upper triangular matrix, as a
product of upper triangular matrices. However, some entries in Λ may be negative, so
we can’t claim that R̃kRΛkU has positive diagonal entries. Nevertheless, we have another
QR-decomposition of Ak,

Ak = (QQ̃k)(R̃kRΛkU) = PkRk.

It is easy to prove that there is diagonal matrix Dk with |(Dk)ii| = 1 for i = 1, . . . , n, such
that

Pk = QQ̃kDk. (∗8)

The existence of Dk is consequence of the following fact: If an invertible matrix B has two
QR factorizations B = Q1R1 = Q2R2, then there is a diagonal matrix D with unit entries
such that Q2 = DQ1.

The expression for Pk in (∗8) is that which we were seeking.

Step 3 . Asymptotic behavior of the matrices Ak+1 = P ∗kAPk.

Since A = PΛP−1 = QRΛR−1Q−1 and by (∗8), Pk = QQ̃kDk, we get

Ak+1 = D∗k(Q̃k)
∗Q∗QRΛR−1Q−1QQ̃kDk = D∗k(Q̃k)

∗RΛR−1Q̃kDk. (∗9)
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Since limk 7→∞ Q̃k = I, we deduce that

lim
k 7→∞

(Q̃k)
∗RΛR−1Q̃k = RΛR−1 =


λ1 ∗ · · · ∗
0 λ2 · · · ∗
...

. . .
...

0 0 · · · λn

 ,

an upper triangular matrix with the eigenvalues of A on the diagonal. Since R is upper
triangular, the order of the eigenvalues is preserved. If we let

Dk = (Q̃k)
∗RΛR−1Q̃k, (∗10)

then by (∗9) we have Ak+1 = D∗kDkDk, and since the matrices Dk are diagonal matrices, we
have

(Ak+1)jj = (D∗kDkDk)ij = (Dk)ii(Dk)jj(Dk)ij,
which implies that

(Ak+1)ii = (Dk)ii, i = 1, . . . , n, (∗11)

since |(Dk)ii| = 1 for i = 1, . . . , n. Since limk 7→∞Dk = RΛR−1, we conclude that the strictly
lower-triangular part of Ak+1 converges to zero, and the diagonal of Ak+1 converges to Λ.

Observe that if the matrix A is real, then the hypothesis that the eigenvalues have distinct
moduli implies that the eigenvalues are all real and simple.

The following Matlab program implements the basic QR-method using the function qrv4

from Section 11.8.

function T = qreigen(A,m)

T = A;

for k = 1:m

[Q R] = qrv4(T);

T = R*Q;

end

end

Example 17.1. If we run the function qreigen with 100 iterations on the 8× 8 symmetric
matrix

A =



4 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
0 1 4 1 0 0 0 0
0 0 1 4 1 0 0 0
0 0 0 1 4 1 0 0
0 0 0 0 1 4 1 0
0 0 0 0 0 1 4 1
0 0 0 0 0 0 1 4


,
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we find the matrix

T =



5.8794 0.0015 0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000
0.0015 5.5321 0.0001 0.0000 −0.0000 0.0000 0.0000 0.0000

0 0.0001 5.0000 0.0000 −0.0000 0.0000 0.0000 0.0000
0 0 0.0000 4.3473 0.0000 0.0000 0.0000 0.0000
0 0 0 0.0000 3.6527 0.0000 0.0000 −0.0000
0 0 0 0 0.0000 3.0000 0.0000 −0.0000
0 0 0 0 0 0.0000 2.4679 0.0000
0 0 0 0 0 0 0.0000 2.1206


.

The diagonal entries match the eigenvalues found by running the Matlab function eig(A).

If several eigenvalues have the same modulus, then the proof breaks down, we can no
longer claim (†), namely that

lim
k 7→∞

ΛkLΛ−k = I.

If we assume that P−1 has a suitable “block LU -factorization,” it can be shown that the
matrices Ak+1 converge to a block upper-triangular matrix, where each block corresponds to
eigenvalues having the same modulus. For example, if A is a 9× 9 matrix with eigenvalues
λi such that |λ1| = |λ2| = |λ3| > |λ4| > |λ5| = |λ6| = |λ7| = |λ8| = |λ9|, then Ak converges to
a block diagonal matrix (with three blocks, a 3× 3 block, a 1× 1 block, and a 5× 5 block)
of the form 

? ? ? ∗ ∗ ∗ ∗ ∗ ∗
? ? ? ∗ ∗ ∗ ∗ ∗ ∗
? ? ? ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ? ∗ ∗ ∗ ∗ ∗
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?


.

See Ciarlet [14] (Chapter 6 Section 6.3) for more details.

Under the conditions of Theorem 17.1, in particular, if A is a symmetric (or Hermitian)
positive definite matrix, the eigenvectors of A can be approximated. However, when A is
not a symmetric matrix, since the upper triangular part of Ak does not necessarily converge,
one has to be cautious that a rigorous justification is lacking.

Suppose we apply the QR algorithm to a matrix A satisfying the hypotheses of Theorem
Theorem 17.1. For k large enough, Ak+1 = P ∗kAPk is nearly upper triangular and the
diagonal entries of Ak+1 are all distinct, so we can consider that they are the eigenvalues of
Ak+1, and thus of A. To avoid too many subscripts, write T for the upper triangular matrix
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obtained by settting the entries of the part of Ak+1 below the diagonal to 0. Then we can
find the corresponding eigenvectors by solving the linear system

Tv = tiiv,

and since T is upper triangular, this can be done by bottom-up elimination. We leave it as
an exercise to show that the following vectors vi = (vi1, . . . , v

i
n) are eigenvectors:

v1 = e1,

and if i = 2, . . . , n, then

vij =


0 if i+ 1 ≤ j ≤ n

1 if j = i

−tjj+1v
i
j+1 + · · ·+ tjiv

i
i

tjj − tii
if i− 1 ≥ j ≥ 1.

Then the vectors (Pkv
1, . . . , Pkv

n) are a basis of (approximate) eigenvectors for A. In the
special case where T is a diagonal matrix, then vi = ei for i = 1, . . . , n and the columns of
Pk are an orthonormal basis of (approximate) eigenvectors for A.

If A is a real matrix whose eigenvalues are not all real, then there is some complex pair of
eigenvalues λ + iµ (with µ 6= 0), and the QR-algorithm cannot converge to a matrix whose
strictly lower-triangular part is zero. There is a way to deal with this situation using upper
Hessenberg matrices which will be discussed in the next section.

Since the convergence of the QR method depends crucially only on the fact that the part
of Ak below the diagonal goes to zero, it would be highly desirable if we could replace A
by a similar matrix U∗AU easily computable from A having lots of zero strictly below the
diagonal. We can’t expect U∗AU to be a diagonal matrix (since this would mean that A was
easily diagonalized), but it turns out that there is a way to construct a matrix H = U∗AU
which is almost triangular, except that it may have an extra nonzero diagonal below the
main diagonal. Such matrices called Hessenberg matrices are discussed in the next section.

17.2 Hessenberg Matrices

Definition 17.1. An n× n matrix (real or complex) H is an (upper) Hessenberg matrix if
it is almost triangular, except that it may have an extra nonzero diagonal below the main
diagonal. Technically, hjk = 0 for all (j, k) such that j − k ≥ 2.

The 5× 5 matrix below is an example of a Hessenberg matrix.

H =


∗ ∗ ∗ ∗ ∗
h21 ∗ ∗ ∗ ∗
0 h32 ∗ ∗ ∗
0 0 h43 ∗ ∗
0 0 0 h54 ∗

 .
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The following result can be shown.

Theorem 17.2. Every n × n complex or real matrix A is similar to an upper Hessenberg
matrix H, that is, A = UHU∗ for some unitary matrix U . Furthermore, U can be constructed
as a product of Householder matrices (the definition is the same as in Section 12.1, except
that W is a complex vector, and that the inner product is the Hermitian inner product on
Cn). If A is a real matrix, then U is an orthogonal matrix (and H is a real matrix).

Theorem 17.2 and algorithms for converting a matrix to Hessenberg form are discussed in
Trefethen and Bau [68] (Lecture 26), Demmel [16] (Section 4.4.6, in the real case), Serre [57]
(Theorem 13.1), and Meyer [48] (Example 5.7.4, in the real case). The proof of correctness
is not difficult and will be the object of a homework problem.

The following functions written in Matlab implement a function to compute a Hessenberg
form of a matrix.

The function house constructs the normalized vector u defining the Householder reflection
that zeros all but the first entries in a vector x.

function [uu, u] = house(x)

tol = 2*10^(-15); % tolerance

uu = x;

p = size(x,1);

% computes l^1-norm of x(2:p,1)

n1 = sum(abs(x(2:p,1)));

if n1 <= tol

u = zeros(p,1); uu = u;

else

l = sqrt(x’*x); % l^2 norm of x

uu(1) = x(1) + signe(x(1))*l;

u = uu/sqrt(uu’*uu);

end

end

The function signe(z) returms −1 if z < 0, else +1.

The function buildhouse builds a Householder reflection from a vector uu.

function P = buildhouse(v,i)

% This function builds a Householder reflection

% [I 0 ]

% [0 PP]

% from a Householder reflection

% PP = I - 2uu*uu’

% where uu = v(i:n)
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% If uu = 0 then P - I

%

n = size(v,1);

if v(i:n) == zeros(n - i + 1,1)

P = eye(n);

else

PP = eye(n - i + 1) - 2*v(i:n)*v(i:n)’;

P = [eye(i-1) zeros(i-1, n - i + 1); zeros(n - i + 1, i - 1) PP];

end

end

The function Hessenberg1 computes an upper Hessenberg matrix H and an orthogonal
matrix Q such that A = Q>HQ.

function [H, Q] = Hessenberg1(A)

%

% This function constructs an upper Hessenberg

% matrix H and an orthogonal matrix Q such that

% A = Q’ H Q

n = size(A,1);

H = A;

Q = eye(n);

for i = 1:n-2

% H(i+1:n,i)

[~,u] = house(H(i+1:n,i));

% u

P = buildhouse(u,1);

Q(i+1:n,i:n) = P*Q(i+1:n,i:n);

H(i+1:n,i:n) = H(i+1:n,i:n) - 2*u*(u’)*H(i+1:n,i:n);

H(1:n,i+1:n) = H(1:n,i+1:n) - 2*H(1:n,i+1:n)*u*(u’);

end

end

Example 17.2. If

A =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

 ,
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running Hessenberg1 we find

H =


1.0000 −5.3852 0 0
−5.3852 15.2069 −1.6893 −0.0000
−0.0000 −1.6893 −0.2069 −0.0000

0 −0.0000 0.0000 0.0000



Q =


1.0000 0 0 0

0 −0.3714 −0.5571 −0.7428
0 0.8339 0.1516 −0.5307
0 0.4082 −0.8165 0.4082

 .

An important property of (upper) Hessenberg matrices is that if some subdiagonal entry
Hp+1p = 0, then H is of the form

H =

(
H11 H12

0 H22

)
,

where both H11 and H22 are upper Hessenberg matrices (with H11 a p× p matrix and H22 a
(n− p)× (n− p) matrix), and the eigenvalues of H are the eigenvalues of H11 and H22. For
example, in the matrix

H =


∗ ∗ ∗ ∗ ∗
h21 ∗ ∗ ∗ ∗
0 h32 ∗ ∗ ∗
0 0 h43 ∗ ∗
0 0 0 h54 ∗

 ,

if h43 = 0, then we have the block matrix

H =


∗ ∗ ∗ ∗ ∗
h21 ∗ ∗ ∗ ∗
0 h32 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 h54 ∗

 .

Then the list of eigenvalues of H is the concatenation of the list of eigenvalues of H11 and
the list of the eigenvalues of H22. This is easily seen by induction on the dimension of the
block H11.

More generally, every upper Hessenberg matrix can be written in such a way that it has
diagonal blocks that are Hessenberg blocks whose subdiagonal is not zero.

Definition 17.2. An upper Hessenberg n × n matrix H is unreduced if hi+1i 6= 0 for i =
1, . . . , n− 1. A Hessenberg matrix which is not unreduced is said to be reduced .
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The following is an example of an 8 × 8 matrix consisting of three diagonal unreduced
Hessenberg blocks:

H =



? ? ? ∗ ∗ ∗ ∗ ∗
h21 ? ? ∗ ∗ ∗ ∗ ∗
0 h32 ? ∗ ∗ ∗ ∗ ∗
0 0 0 ? ? ? ∗ ∗
0 0 0 h54 ? ? ∗ ∗
0 0 0 0 h65 ? ∗ ∗
0 0 0 0 0 0 ? ?
0 0 0 0 0 0 h87 ?


.

An interesting and important property of unreduced Hessenberg matrices is the following.

Proposition 17.3. Let H be an n× n complex or real unreduced Hessenberg matrix. Then
every eigenvalue of H is geometrically simple, that is, dim(Eλ) = 1 for every eigenvalue λ,
where Eλ is the eigenspace associated with λ. Furthermore, if H is diagonalizable, then every
eigenvalue is simple, that is, H has n distinct eigenvalues.

Proof. We follow Serre’s proof [57] (Proposition 3.26). Let λ be any eigenvalue of H, let
M = λIn −H, and let N be the (n − 1) × (n − 1) matrix obtained from M by deleting its
first row and its last column. Since H is upper Hessenberg, N is a diagonal matrix with
entries −hi+1i 6= 0, i = 1, . . . , n− 1. Thus N is invertible and has rank n− 1. But a matrix
has rank greater than or equal to the rank of any of its submatrices, so rank(M) = n − 1,
since M is singular. By the rank-nullity theorem, rank(KerN) = 1, that is, dim(Eλ) = 1, as
claimed.

If H is diagonalizable, then the sum of the dimensions of the eigenspaces is equal to n,
which implies that the eigenvalues of H are distinct.

As we said earlier, a case where Theorem 17.1 applies is the case where A is a symmetric
(or Hermitian) positive definite matrix. This follows from two facts.

The first fact is that if A is Hermitian (or symmetric in the real case), then it is easy
to show that the Hessenberg matrix similar to A is a Hermitian (or symmetric in real case)
tridiagonal matrix . The conversion method is also more efficient. Here is an example of a
symmetric tridiagonal matrix consisting of three unreduced blocks:

H =



α1 β1 0 0 0 0 0 0
β1 α2 β2 0 0 0 0 0
0 β2 α3 0 0 0 0 0
0 0 0 α4 β4 0 0 0
0 0 0 β4 α5 β5 0 0
0 0 0 0 β5 α6 0 0
0 0 0 0 0 0 α7 β7
0 0 0 0 0 0 β7 α8


.
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Thus the problem of finding the eigenvalues of a symmetric (or Hermitian) matrix reduces
to the problem of finding the eigenvalues of a symmetric (resp. Hermitian) tridiagonal matrix,
and this can be done much more efficiently.

The second fact is that if H is an upper Hessenberg matrix and if it is diagonalizable, then
there is an invertible matrix P such that H = PΛP−1 with Λ a diagonal matrix consisting
of the eigenvalues of H, such that P−1 has an LU -decomposition; see Serre [57] (Theorem
13.3).

As a consequence, since any symmetric (or Hermitian) tridiagonal matrix is a block diag-
onal matrix of unreduced symmetric (resp. Hermitian) tridiagonal matrices, by Proposition
17.3, we see that the QR algorithm applied to a tridiagonal matrix which is symmetric (or
Hermitian) positive definite converges to a diagonal matrix consisting of its eigenvalues. Let
us record this important fact.

Theorem 17.4. Let H be a symmetric (or Hermitian) positive definite tridiagonal matrix.
If H is unreduced, then the QR algorithm converges to a diagonal matrix consisting of the
eigenvalues of H.

Since every symmetric (or Hermitian) positive definite matrix is similar to a tridiagonal
symmetric (resp. Hermitian) positive definite matrix, we deduce that we have a method
for finding the eigenvalues of a symmetric (resp. Hermitian) positive definite matrix (more
accurately, to find approximations as good as we want for these eigenvalues).

If A is a symmetric (or Hermitian) matrix, since its eigenvalues are real, for some µ > 0
large enough (pick µ > ρ(A)), A + µI is symmetric (resp. Hermitan) positive definite, so
we can apply the QR algorithm to an upper Hessenberg matrix similar to A+ µI to find its
eigenvalues, and then the eigenvalues of A are obtained by subtracting µ.

The problem of finding the eigenvalues of a symmetric matrix is discussed extensively in
Parlett [50], one of the best references on this topic.

The upper Hessenberg form also yields a way to handle singular matrices. First, checking
the proof of Proposition 13.21 that an n × n complex matrix A (possibly singular) can be
factored as A = QR where Q is a unitary matrix which is a product of Householder reflections
and R is upper triangular, it is easy to see that if A is upper Hessenberg, then Q is also upper
Hessenberg. If H is an unreduced upper Hessenberg matrix, since Q is upper Hessenberg and
R is upper triangular, we have hi+1i = qi+1irii for i = 1 . . . , n− 1, and since H is unreduced,
rii 6= 0 for i = 1, . . . , n− 1. Consequently H is singular iff rnn = 0. Then the matrix RQ is a
matrix whose last row consists of zero’s thus we can deflate the problem by considering the
(n − 1) × (n − 1) unreduced Hessenberg matrix obtained by deleting the last row and the
last column. After finitely many steps (not larger that the multiplicity of the eigenvalue 0),
there remains an invertible unreduced Hessenberg matrix. As an alternative, see Serre [57]
(Chapter 13, Section 13.3.2).

As is, the QR algorithm, although very simple, is quite inefficient for several reasons. In
the next section, we indicate how to make the method more efficient. This involves a lot of
work and we only discuss the main ideas at a high level.
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17.3 Making the QR Method More Efficient

Using Shifts

To improve efficiency and cope with pairs of complex conjugate eigenvalues in the case of
real matrices, the following steps are taken:

(1) Initially reduce the matrix A to upper Hessenberg form, as A = UHU∗. Then apply
the QR-algorithm to H (actually, to its unreduced Hessenberg blocks). It is easy to
see that the matrices Hk produced by the QR algorithm remain upper Hessenberg.

(2) To accelerate convergence, use shifts , and to deal with pairs of complex conjugate
eigenvalues, use double shifts .

(3) Instead of computing a QR-factorization explicitly while doing a shift, perform an
implicit shift which computes Ak+1 = Q∗kAkQk without having to compute a QR-
factorization (of Ak − σkI), and similarly in the case of a double shift. This is the
most intricate modification of the basic QR algorithm and we will not discuss it here.
This method is usually referred as bulge chasing . Details about this technique for
real matrices can be found in Demmel [16] (Section 4.4.8) and Golub and Van Loan
[29] (Section 7.5). Watkins discusses the QR algorithm with shifts as a bulge chasing
method in the more general case of complex matrices [73, 74].

Let us repeat an important remark made in the previous section. If we start with a
matrix H in upper Hessenberg form, if at any stage of the QR algorithm we find that some
subdiagonal entry (Hk)p+1p = 0 or is very small , then Hk is of the form

Hk =

(
H11 H12

0 H22

)
,

where both H11 and H22 are upper Hessenberg matrices (with H11 a p × p matrix and H22

a (n − p) × (n − p) matrix), and the eigenvalues of Hk are the eigenvalues of H11 and H22.
For example, in the matrix

H =


∗ ∗ ∗ ∗ ∗
h21 ∗ ∗ ∗ ∗
0 h32 ∗ ∗ ∗
0 0 h43 ∗ ∗
0 0 0 h54 ∗

 ,

if h43 = 0, then we have the block matrix

H =


∗ ∗ ∗ ∗ ∗
h21 ∗ ∗ ∗ ∗
0 h32 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 h54 ∗

 .
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Then we can recursively apply the QR algorithm to H11 and H22.

In particular, if (Hk)nn−1 = 0 or is very small, then (Hk)nn is a good approximation of
an eigenvalue, so we can delete the last row and the last column of Hk and apply the QR
algorithm to this submatrix. This process is called deflation. If (Hk)n−1n−2 = 0 or is very
small, then the 2× 2 “corner block”(

(Hk)n−1n−1 (Hk)n−1n

(Hk)nn−1 (Hk)nn

)
appears, and its eigenvalues can be computed immediately by solving a quadratic equation.
Then we deflate Hk by deleting its last two rows and its last two columns and apply the QR
algorithm to this submatrix.

Thus it would seem desirable to modify the basic QR algorithm so that the above situ-
ations arises, and this is what shifts are designed for. More precisely, under the hypotheses
of Theorem 17.1, it can be shown (see Ciarlet [14], Section 6.3) that the entry (Ak)ij with
i > j converges to 0 as |λi/λj|k converges to 0. Also, if we let ri be defined by

r1 =

∣∣∣∣λ2

λ1

∣∣∣∣ , ri = max

{∣∣∣∣ λiλi−1

∣∣∣∣ , ∣∣∣∣λi+1

λi

∣∣∣∣} , 2 ≤ i ≤ n− 1, rn =

∣∣∣∣ λnλn−1

∣∣∣∣ ,
then there is a constant C (independent of k) such that

|(Ak)ii − λi| ≤ Crki , 1 ≤ i ≤ n.

In particular, ifH is upper Hessenberg, then the entry (Hk)i+1i converges to 0 as |λi+1/λi|k
converges to 0. Thus if we pick σk close to λi, we expect that (Hk − σkI)i+1i converges to 0
as |(λi+1−σk)/(λi−σk)|k converges to 0, and this ratio is much smaller than 1 as σk is closer
to λi. Typically, we apply a shift to accelerate convergence to λn (so i = n − 1). In this
case, both (Hk − σkI)nn−1 and |(Hk − σkI)nn− λn| converge to 0 as |(λn− σk)/(λn−1− σk)|k
converges to 0.

A shift is the following modified QR-steps (switching back to an arbitrary matrix A, since
the shift technique applies in general). Pick some σk, hopefully close to some eigenvalue of
A (in general, λn), and QR-factor Ak − σkI as

Ak − σkI = QkRk,

and then form
Ak+1 = RkQk + σkI.

Since

Ak+1 = RkQk + σkI

= Q∗kQkRkQk +Q∗kQkσk

= Q∗k(QkRk + σkI)Qk

= Q∗kAkQk,
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Ak+1 is similar to Ak, as before. If Ak is upper Hessenberg, then it is easy to see that Ak+1

is also upper Hessenberg.

If A is upper Hessenberg and if σi is exactly equal to an eigenvalue, then Ak − σkI is
singular, and forming the QR-factorization will detect that Rk has some diagonal entry equal
to 0. Assuming that the QR-algorithm returns (Rk)nn = 0 (if not, the argument is easily
adapted), then the last row of RkQk is 0, so the last row of Ak+1 = RkQk + σkI ends with
σk (all other entries being zero), so we are in the case where we can deflate Ak (and σk is
indeed an eigenvalue).

The question remains, what is a good choice for the shift σk?

Assuming again that H is in upper Hessenberg form, it turns out that when (Hk)nn−1

is small enough, then a good choice for σk is (Hk)nn. In fact, the rate of convergence is
quadratic, which means roughly that the number of correct digits doubles at every iteration.
The reason is that shifts are related to another method known as inverse iteration, and such
a method converges very fast. For further explanations about this connection, see Demmel
[16] (Section 4.4.4) and Trefethen and Bau [68] (Lecture 29).

One should still be cautious that theQR method with shifts does not necessarily converge,
and that our convergence proof no longer applies, because instead of having the identity
Ak = PkRk, we have

(A− σkI) · · · (A− σ2I)(A− σ1I) = PkRk.

Of course, the QR algorithm loops immediately when applied to an orthogonal matrix
A. This is also the case when A is symmetric but not positive definite. For example, both
the QR algorithm and the QR algorithm with shifts loop on the matrix

A =

(
0 1
1 0

)
.

In the case of symmetric matrices, Wilkinson invented a shift which helps the QR algo-
rithm with shifts to make progress. Again, looking at the lower corner of Ak, say

B =

(
an−1 bn−1

bn−1 an

)
,

the Wilkinson shift picks the eigenvalue of B closer to an. If we let

δ =
an−1 − an

2
,

it is easy to see that the eigenvalues of B are given by

λ =
an + an−1

2
±
√
δ2 + b2

n−1.
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It follows that

λ− an = δ ±
√
δ2 + b2

n−1,

and from this it is easy to see that the eigenvalue closer to an is given by

µ = an −
sign(δ)b2

n−1

(|δ|+
√
δ2 + b2

n−1)
.

If δ = 0, then we pick arbitrarily one of the two eigenvalues. Observe that the Wilkinson
shift applied to the matrix

A =

(
0 1
1 0

)
is either +1 or−1, and in one step, deflation occurs and the algorithm terminates successfully.

We now discuss double shifts, which are intended to deal with pairs of complex conjugate
eigenvalues.

Let us assume that A is a real matrix. For any complex number σk with nonzero imaginary
part, a double shift consists of the following steps:

Ak − σkI = QkRk

Ak+1 = RkQk + σkI

Ak+1 − σkI = Qk+1Rk+1

Ak+2 = Rk+1Qk+1 + σkI.

From the computation made for a single shift, we have Ak+1 = Q∗kAkQk and Ak+2 =
Q∗k+1Ak+1Qk+1, so we obtain

Ak+2 = Q∗k+1Q
∗
kAkQkQk+1.

The matrices Qk are complex, so we would expect that the Ak are also complex, but
remarkably we can keep the products QkQk+1 real, and so the Ak also real. This is highly
desirable to avoid complex arithmetic, which is more expensive.

Observe that since

Qk+1Rk+1 = Ak+1 − σkI = RkQk + (σk − σk)I,

we have

QkQk+1Rk+1Rk = Qk(RkQk + (σk − σk)I)Rk

= QkRkQkRk + (σk − σk)QkRk

= (Ak − σkI)2 + (σk − σk)(Ak − σkI)

= A2
k − 2(<σk)Ak + |σk|2I.
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If we assume by induction that matrix Ak is real (with k = 2`+1, ` ≥ 0), then the matrix
S = A2

k − 2(<σk)Ak + |σk|2I is also real, and since QkQk+1 is unitary and Rk+1Rk is upper
triangular, we see that

S = QkQk+1Rk+1Rk

is a QR-factorization of the real matrix S, thus QkQk+1 and Rk+1Rk can be chosen to be
real matrices, in which case (QkQk+1)∗ is also real, and thus

Ak+2 = Q∗k+1Q
∗
kAkQkQk+1 = (QkQk+1)∗AkQkQk+1

is real. Consequently, if A1 = A is real, then A2`+1 is real for all ` ≥ 0.

The strategy that consists in picking σk and σk as the complex conjugate eigenvalues of
the corner block (

(Hk)n−1n−1 (Hk)n−1n

(Hk)nn−1 (Hk)nn

)
is called the Francis shift (here we are assuming that A has be reduced to upper Hessenberg
form).

It should be noted that there are matrices for which neither a shift by (Hk)nn nor the
Francis shift works. For instance, the permutation matrix

A =

0 0 1
1 0 0
0 1 0


has eigenvalues ei2π/3, ei4π/3,+1, and neither of the above shifts apply to the matrix(

0 0
1 0

)
.

However, a shift by 1 does work. There are other kinds of matrices for which the QR
algorithm does not converge. Demmel gives the example of matrices of the form

0 1 0 0
1 0 h 0
0 −h 0 1
0 0 1 0


where h is small.

Algorithms implementing the QR algorithm with shifts and double shifts perform “ex-
ceptional” shifts every 10 shifts. Despite the fact that the QR algorithm has been perfected
since the 1960’s, it is still an open problem to find a shift strategy that ensures convergence
of all matrices.

Implicit shifting is based on a result known as the implicit Q theorem. This theorem
says that if A is reduced to upper Hessenberg form as A = UHU∗ and if H is unreduced
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(hi+1i 6= 0 for i = 1, . . . , n−1), then the columns of index 2, . . . , n of U are determined by the
first column of U up to sign; see Demmel [16] (Theorem 4.9) and Golub and Van Loan [29]
(Theorem 7.4.2) for the proof in the case of real matrices. Actually, the proof is not difficult
and will be the object of a homework exercise. In the case of a single shift, an implicit shift
generates Ak+1 = Q∗kAkQk without having to compute a QR-factorization of Ak − σkI. For
real matrices, this is done by applying a sequence of Givens rotations which perform a bulge
chasing process (a Givens rotation is an orthogonal block diagonal matrix consisting of a
single block which is a 2D rotation, the other diagonal entries being equal to 1). Similarly,
in the case of a double shift, Ak+2 = (QkQk+1)∗AkQkQk+1 is generated without having to
compute the QR-factorizations of Ak − σkI and Ak+1 − σkI. Again, (QkQk+1)∗AkQkQk+1

is generated by applying some simple orthogonal matrices which perform a bulge chasing
process. See Demmel [16] (Section 4.4.8) and Golub and Van Loan [29] (Section 7.5) for
further explanations regarding implicit shifting involving bulge chasing in the case of real
matrices. Watkins [73, 74] discusses bulge chasing in the more general case of complex
matrices.

The Matlab function for finding the eigenvalues and the eigenvectors of a matrix A is
eig and is called as [U, D] = eig(A). It is implemented using an optimized version of the
QR-algorithm with implicit shifts.

If the dimension of the matrix A is very large, we can find approximations of some of
the eigenvalues of A by using a truncated version of the reduction to Hessenberg form due
to Arnoldi in general and to Lanczos in the symmetric (or Hermitian) tridiagonal case.

17.4 Krylov Subspaces; Arnoldi Iteration

In this section, we denote the dimension of the square real or complex matrix A by m rather
than n, to make it easier for the reader to follow Trefethen and Bau exposition [68], which
is particularly lucid.

Suppose that the m ×m matrix A has been reduced to the upper Hessenberg form H,
as A = UHU∗. For any n ≤ m (typically much smaller than m), consider the (n + 1) × n
upper left block

H̃n =



h11 h12 h13 · · · h1n

h21 h22 h23 · · · h2n

0 h32 h33 · · · h3n
...

. . . . . . . . .
...

0 · · · 0 hnn−1 hnn
0 · · · 0 0 hn+1n
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of H, and the n× n upper Hessenberg matrix Hn obtained by deleting the last row of H̃n,

Hn =


h11 h12 h13 · · · h1n

h21 h22 h23 · · · h2n

0 h32 h33 · · · h3n
...

. . . . . . . . .
...

0 · · · 0 hnn−1 hnn

 .

If we denote by Un the m×n matrix consisting of the first n columns of U , denoted u1, . . . , un,
then the matrix consisting of the first n columns of the matrix UH = AU can be expressed
as

AUn = Un+1H̃n. (∗1)

It follows that the nth column of this matrix can be expressed as

Aun = h1nu1 + · · ·+ hnnun + hn+1nun+1. (∗2)

Since (u1, . . . , un) form an orthonormal basis, we deduce from (∗2) that

〈uj, Aun〉 = u∗jAun = hjn, j = 1, . . . , n. (∗3)

Equations (∗2) and (∗3) show that Un+1 and H̃n can be computed iteratively using the
following algorithm due to Arnoldi, known as Arnoldi iteration:

Given an arbitrary nonzero vector b ∈ Cm, let u1 = b/ ‖b‖;
for n = 1, 2, 3, . . . do

z := Aun;

for j = 1 to n do

hjn := u∗jz;

z := z − hjnuj
endfor

hn+1n := ‖z‖;
if hn+1n = 0 quit

un+1 = z/hn+1n

When hn+1n = 0, we say that we have a breakdown of the Arnoldi iteration.

Arnoldi iteration is an algorithm for producing the n×n Hessenberg submatrix Hn of the
full Hessenberg matrix H consisting of its first n rows and n columns (the first n columns
of U are also produced), not using Householder matrices.

As long as hj+1j 6= 0 for j = 1, . . . , n, Equation (∗2) shows by an easy induction
that un+1 belong to the span of (b, Ab, . . . , Anb), and obviously Aun belongs to the span
of (u1, . . . , un+1), and thus the following spaces are identical:

Span(b, Ab, . . . , Anb) = Span(u1, . . . , un+1).
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The space Kn(A, b) = Span(b, Ab, . . . , An−1b) is called a Krylov subspace. We can view
Arnoldi’s algorithm as the construction of an orthonormal basis for Kn(A, b). It is a sort of
Gram–Schmidt procedure.

Equation (∗2) shows that if Kn is the m × n matrix whose columns are the vectors
(b, Ab, . . . , An−1b), then there is a n× n upper triangular matrix Rn such that

Kn = UnRn. (∗4)

The above is called a reduced QR factorization of Kn.

Since (u1, . . . , un) is an orthonormal system, the matrix U∗nUn+1 is the n× (n+ 1) matrix

consisting of the identity matrix In plus an extra column of 0’s, so U∗nUn+1H̃n = U∗nAUn is

obtained by deleting the last row of H̃n, namely Hn, and so

U∗nAUn = Hn. (∗5)

We summarize the above facts in the following proposition.

Proposition 17.5. If Arnoldi iteration run on an m×m matrix A starting with a nonzero
vector b ∈ Cm does not have a breakdown at stage n ≤ m, then the following properties hold:

(1) If Kn is the m× n Krylov matrix associated with the vectors (b, Ab, . . . , An−1b) and if
Un is the m× n matrix of orthogonal vectors produced by Arnoldi iteration, then there
is a QR-factorization

Kn = UnRn,

for some n× n upper triangular matrix Rn.

(2) The m×n upper Hessenberg matrices Hn produced by Arnoldi iteration are the projec-
tion of A onto the Krylov space Kn(A, b), that is,

Hn = U∗nAUn.

(3) The successive iterates are related by the formula

AUn = Un+1H̃n.

Remark: If Arnoldi iteration has a breakdown at stage n, that is, hn+1 = 0, then we found
the first unreduced block of the Hessenberg matrix H. It can be shown that the eigenvalues
of Hn are eigenvalues of A. So a breakdown is actually a good thing. In this case, we can
pick some new nonzero vector un+1 orthogonal to the vectors (u1, . . . , un) as a new starting
vector and run Arnoldi iteration again. Such a vector exists since the (n+ 1)th column of U
works. So repeated application of Arnoldi yields a full Hessenberg reduction of A. However,
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this is not what we are after, since m is very large an we are only interested in a “small”
number of eigenvalues of A.

There is another aspect of Arnoldi iteration, which is that it solves an optimization
problem involving polynomials of degree n. Let Pn denote the set of (complex) monic
polynomials of degree n, that is, polynomials of the form

p(z) = zn + cn−1z
n−1 + · · ·+ c1z + c0 (ci ∈ C).

For any m×m matrix A, we write

p(A) = An + cn−1A
n−1 + · · ·+ c1A+ c0I.

The following result is proven in Trefethen and Bau [68] (Lecture 34, Theorem 34.1).

Theorem 17.6. If Arnoldi iteration run on an m × m matrix A starting with a nonzero
vector b does not have a breakdown at stage n ≤ m, then there is a unique polynomial p ∈ Pn
such that ‖p(A)b‖2 is minimum, namely the characteristic polynomial det(zI −Hn) of Hn.

Theorem 17.6 can be viewed as the “justification” for a method to find some of the
eigenvalues of A (say n � m of them). Intuitively, the closer the roots of the character-
istic polynomials of Hn are to the eigenvalues of A, the smaller ‖p(A)b‖2 should be, and
conversely. In the extreme case where m = n, by the Cayley–Hamilton theorem, p(A) = 0
(where p is the characteristic polynomial of A), so this idea is plausible, but this is far from
constituting a proof (also, b should have nonzero coordinates in all directions associated with
the eigenvalues).

The method known as the Rayleigh–Ritz method is to run Arnoldi iteration on A and
some b 6= 0 chosen at random for n � m steps before or until a breakdown occurs. Then
run the QR algorithm with shifts on Hn. The eigenvalues of the Hessenberg matrix Hn may
then be considered as approximations of the eigenvalues of A. The eigenvalues of Hn are
called Arnoldi estimates or Ritz values . One has to be cautious because Hn is a truncated
version of the full Hessenberg matrix H, so not all of the Ritz values are necessarily close
to eigenvalues of A. It has been observed that the eigenvalues that are found first are the
extreme eigenvalues of A, namely those close to the boundary of the spectrum of A plotted in
C. So if A has real eigenvalues, the largest and the smallest eigenvalues appear first as Ritz
values. In many problems where eigenvalues occur, the extreme eigenvalues are the one that
need to be computed. Similarly, the eigenvectors of Hn may be considered as approximations
of eigenvectors of A.

The Matlab function eigs is based on the computation of Ritz values. It computes the
six eigenvalues of largest magnitude of a matrix A, and the call is [V, D] = eigs(A). More
generally, to get the top k eigenvalues, use [V, D] = eigs(A, k).

In the absence of rigorous theorems about error estimates, it is hard to make the above
statements more precise; see Trefethen and Bau [68] (Lecture 34) for more on this subject.
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However, if A is a symmetric (or Hermitian) matrix, then Hn is a symmetric (resp.
Hermitian) tridiagonal matrix and more precise results can be shown; see Demmel [16]
(Chapter 7, especially Section 7.2). We will consider the symmetric (and Hermitan) case in
the next section, but first we show how Arnoldi iteration can be used to find approximations
for the solution of a linear system Ax = b where A is invertible but of very large dimension
m.

17.5 GMRES

Suppose A is an invertible m×m matrix and let b be a nonzero vector in Cm. Let x0 = A−1b,
the unique solution of Ax = b. It is not hard to show that x0 ∈ Kn(A, b) for some n ≤ m. In
fact, there is a unique monic polynomial p(z) of minimal degree s ≤ m such that p(A)b = 0,
so x0 ∈ Ks(A, b). Thus it makes sense to search for a solution of Ax = b in Krylov spaces
of dimension m ≤ s. The idea is to find an approximation xn ∈ Kn(A, b) of x0 such that
rn = b − Axn is minimized, that is, ‖rn‖2 = ‖b− Axn‖2 is minimized over xn ∈ Kn(A, b).
This minimization problem can be stated as

minimize ‖rn‖2 = ‖Axn − b‖2 , xn ∈ Kn(A, b).

This is a least-squares problem, and we know how to solve it (see Section 21.1). The
quantity rn is known as the residual and the method which consists in minimizing ‖rn‖2 is
known as GMRES, for generalized minimal residuals .

Now since (u1, . . . , un) is a basis of Kn(A, b) (since n ≤ s, no breakdown occurs, except
for n = s), we may write xn = Uny, so our minimization problem is

minimize ‖AUny − b‖2 , y ∈ Cn.

Since by (∗1) of Section 17.4, we have AUn = Un+1H̃n, minimizing ‖AUny − b‖2 is equiv-

alent to minimizing ‖Un+1H̃ny − b‖2 over Cm. Since Un+1H̃ny and b belong to the column

space of Un+1, minimizing ‖Un+1H̃ny − b‖2 is equivalent to minimizing ‖H̃ny − U∗n+1b‖2.
However, by construction,

U∗n+1b = ‖b‖2e1 ∈ Cn+1,

so our minimization problem can be stated as

minimize ‖H̃ny − ‖b‖2e1‖2, y ∈ Cn.

The approximate solution of Ax = b is then

xn = Uny.

Starting with u1 = b/ ‖b‖2 and with n = 1, the GMRES method runs n ≤ s Arnoldi

iterations to find Un and H̃n, and then runs a method to solve the least squares problem

minimize ‖H̃ny − ‖b‖2e1‖2, y ∈ Cn.
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When ‖rn‖2 = ‖H̃ny−‖b‖2e1‖2 is considered small enough, we stop and the approximate
solution of Ax = b is then

xn = Uny.

There are ways of improving efficiency of the “naive” version of GMRES that we just
presented; see Trefethen and Bau [68] (Lecture 35). We now consider the case where A is a
Hermitian (or symmetric) matrix.

17.6 The Hermitian Case; Lanczos Iteration

If A is an m×m symmetric or Hermitian matrix, then Arnoldi’s method is simpler and much
more efficient. Indeed, in this case, it is easy to see that the upper Hessenberg matrices Hn

are also symmetric (Hermitian respectively), and thus tridiagonal. Also, the eigenvalues of
A and Hn are real. It is convenient to write

Hn =


α1 β1

β1 α2 β2

β2 α3
. . .

. . . . . . βn−1

βn−1 αn

 .

The recurrence (∗2) of Section 17.4 becomes the three-term recurrence

Aun = βn−1un−1 + αnun + βnun+1. (∗6)

We also have αn = u∗nAun, so Arnoldi’s algorithm becomes the following algorithm known
as Lanczos’ algorithm (or Lanczos iteration). The inner loop on j from 1 to n has been
eliminated and replaced by a single assignment.

Given an arbitrary nonzero vector b ∈ Cm, let u1 = b/ ‖b‖;
for n = 1, 2, 3, . . . do

z := Aun;

αn := u∗nz;

z := z − βn−1un−1 − αnun
βn := ‖z‖;
if βn = 0 quit

un+1 = z/βn

When βn = 0, we say that we have a breakdown of the Lanczos iteration.

Versions of Proposition 17.5 and Theorem 17.6 apply to Lanczos iteration.

Besides being much more efficient than Arnoldi iteration, Lanczos iteration has the advan-
tage that the Rayleigh–Ritz method for finding some of the eigenvalues of A as the eigenvalues



640 CHAPTER 17. COMPUTING EIGENVALUES AND EIGENVECTORS

of the symmetric (respectively Hermitian) tridiagonal matrix Hn applies, but there are more
methods for finding the eigenvalues of symmetric (respectively Hermitian) tridiagonal matri-
ces. Also theorems about error estimates exist. The version of Lanczos iteration given above
may run into problems in floating point arithmetic. What happens is that the vectors uj
may lose the property of being orthogonal, so it may be necessary to reorthogonalize them.
For more on all this, see Demmel [16] (Chapter 7, in particular Section 7.2-7.4). The version
of GMRES using Lanczos iteration is called MINRES.

We close our brief survey of methods for computing the eigenvalues and the eigenvectors
of a matrix with a quick discussion of two methods known as power methods.

17.7 Power Methods

Let A be an m ×m complex or real matrix. There are two power methods, both of which
yield one eigenvalue and one eigenvector associated with this vector:

(1) Power iteration.

(2) Inverse (power) iteration.

Power iteration only works if the matrix A has an eigenvalue λ of largest modulus, which
means that if λ1, . . . , λm are the eigenvalues of A, then

|λ1| > |λ2| ≥ · · · ≥ |λm| ≥ 0.

In particular, if A is a real matrix, then λ1 must be real (since otherwise there are two complex
conjugate eigenvalues of the same largest modulus). If the above condition is satisfied, then
power iteration yields λ1 and some eigenvector associated with it. The method is simple
enough:

Pick some initial unit vector x0 and compute the following sequence (xk), where

xk+1 =
Axk

‖Axk‖ , k ≥ 0.

We would expect that (xk) converges to an eigenvector associated with λ1, but this is not
quite correct. The following results are proven in Serre [57] (Section 13.5.1). First assume
that λ1 6= 0.

We have
lim
k 7→∞

∥∥Axk∥∥ = |λ1|.

If A is a complex matrix which has a unique complex eigenvalue λ1 of largest modulus,
then

v = lim
k 7→∞

(
λ1

|λ1|

)k
xk
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is a unit eigenvector of A associated with λ1. If λ1 is real, then

v = lim
k 7→∞

xk

is a unit eigenvector of A associated with λ1. Actually some condition on x0 is needed: x0

must have a nonzero component in the eigenspace E associated with λ1 (in any direct sum
of Cm in which E is a summand).

The eigenvalue λ1 is found as follows. If λ1 is complex, and if vj 6= 0 is any nonzero
coordinate of v, then

λ1 = lim
k 7→∞

(Axk)j
xkj

.

If λ1 is real, then we can define the sequence (λ(k)) by

λ(k+1) = (xk+1)∗Axk+1, k ≥ 0,

and we have

λ1 = lim
k 7→∞

λ(k).

Indeed, in this case, since v = limk 7→∞ xk and v is a unit eigenvector for λ1, we have

lim
k 7→∞

λ(k) = lim
k 7→∞

(xk+1)∗Axk+1 = v∗Av = λ1v
∗v = λ1.

Note that since xk+1 is a unit vector, (xk+1)∗Axk+1 is a Rayleigh ratio.

If A is a Hermitian matrix, then the eigenvalues are real and we can say more about the
rate of convergence, which is not great (only linear). For details, see Trefethen and Bau [68]
(Lecture 27).

If λ1 = 0, then there is some power ` < m such that Ax` = 0.

The inverse iteration method is designed to find an eigenvector associated with an eigen-
value λ of A for which we know a good approximation µ.

Pick some initial unit vector x0 and compute the following sequences (wk) and (xk),
where wk+1 is the solution of the system

(A− µI)wk+1 = xk equivalently wk+1 = (A− µI)−1xk, k ≥ 0,

and

xk+1 =
wk+1

‖wk+1‖ , k ≥ 0.

The following result is proven in Ciarlet [14] (Theorem 6.4.1).
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Proposition 17.7. Let A be an m×m diagonalizable (complex or real) matrix with eigen-
values λ1, . . . , λm, and let λ = λ` be an arbitrary eigenvalue of A (not necessary simple).
For any µ such that

µ 6= λ and |µ− λ| < |µ− λj| for all j 6= `,

if x0 does not belong to the subspace spanned by the eigenvectors associated with the eigen-
values λj with j 6= `, then

lim
k 7→∞

(
(λ− µ)k

|λ− µ|k
)
xk = v,

where v is an eigenvector associated with λ. Furthermore, if both λ and µ are real, we have

lim
k 7→∞

xk = v if µ < λ,

lim
k 7→∞

(−1)kxk = v if µ > λ.

Also, if we define the sequence (λ(k)) by

λ(k+1) = (xk+1)∗Axk+1,

then
lim
k 7→∞

λ(k+1) = λ.

The condition of x0 may seem quite stringent, but in practice, a vector x0 chosen at
random usually satisfies it.

If A is a Hermitian matrix, then we can say more. In particular, the inverse iteration
algorithm can be modified to make use of the newly computed λ(k+1) instead of µ, and an even
faster convergence is achieved. Such a method is called the Rayleigh quotient iteration. When
it converges (which is for almost all x0), this method eventually achieves cubic convergence,
which is remarkable. Essentially, this means that the number of correct digits is tripled at
every iteration. For more details, see Trefethen and Bau [68] (Lecture 27) and Demmel [16]
(Section 5.3.2).

17.8 Summary

The main concepts and results of this chapter are listed below:

• QR iteration, QR algorithm.

• Upper Hessenberg matrices.

• Householder matrix.
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• Unreduced and reduced Hessenberg matrices.

• Deflation.

• Shift.

• Wilkinson shift.

• Double shift.

• Francis shift.

• Implicit shifting.

• Implicit Q-theorem.

• Arnoldi iteration.

• Breakdown of Arnoldi iteration.

• Krylov subspace.

• Rayleigh–Ritz method.

• Ritz values, Arnoldi estimates.

• Residual.

• GMRES

• Lanczos iteration.

• Power iteration.

• Inverse power iteration.

• Rayleigh ratio.

17.9 Problems

Problem 17.1. Prove Theorem 17.2; see Problem 12.7.

Problem 17.2. Prove that if a matrix A is Hermitian (or real symmetric), then any Hes-
senberg matrix H similar to A is Hermitian tridiagonal (real symmetric tridiagonal).

Problem 17.3. For any matrix (real or complex) A, if A = QR is a QR-decomposition of
A using Householder reflections, prove that if A is upper Hessenberg then so is Q.
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Problem 17.4. Prove that if A is upper Hessenberg, then the matrices Ak obtained by
applying the QR-algorithm are also upper Hessenberg.

Problem 17.5. Prove the implicit Q theorem. This theorem says that if A is reduced to
upper Hessenberg form as A = UHU∗ and if H is unreduced (hi+1i 6= 0 for i = 1, . . . , n− 1),
then the columns of index 2, . . . , n of U are determined by the first column of U up to sign;

Problem 17.6. Read Section 7.5 of Golub and Van Loan [29] and implement their version
of the QR-algorithm with shifts.

Problem 17.7. If an Arnoldi iteration has a breakdown at stage n, that is, hn+1 = 0, then
we found the first unreduced block of the Hessenberg matrix H. Prove that the eigenvalues
of Hn are eigenvalues of A.

Problem 17.8. Prove Theorem 17.6.

Problem 17.9. Implement GRMES and test it on some linear systems.

Problem 17.10. State and prove versions of Proposition 17.5 and Theorem 17.6 for the
Lanczos iteration.

Problem 17.11. Prove the results about the power iteration method stated in Section 17.7.

Problem 17.12. Prove the results about the inverse power iteration method stated in
Section 17.7.

Problem 17.13. Implement and test the power iteration method and the inverse power
iteration method.

Problem 17.14. Read Lecture 27 in Trefethen and Bau [68] and implement and test the
Rayleigh quotient iteration method.



Chapter 18

Graphs and Graph Laplacians; Basic
Facts

In this chapter and the next we present some applications of linear algebra to graph theory.
Graphs (undirected and directed) can be defined in terms of various matrices (incidence and
adjacency matrices), and various connectivity properties of graphs are captured by properties
of these matrices. Another very important matrix is associated with a (undirected) graph:
the graph Laplacian. The graph Laplacian is symmetric positive definite, and its eigenvalues
capture some of the properties of the underlying graph. This is a key fact that is exploited
in graph clustering methods, the most powerful being the method of normalized cuts due to
Shi and Malik [58]. This chapter and the next constitute an introduction to algebraic and
spectral graph theory. We do not discuss normalized cuts, but we discuss graph drawings.
Thorough presentations of algebraic graph theory can be found in Godsil and Royle [27] and
Chung [13].

We begin with a review of basic notions of graph theory. Even though the graph Laplacian
is fundamentally associated with an undirected graph, we review the definition of both
directed and undirected graphs. For both directed and undirected graphs, we define the
degree matrix D, the incidence matrix B, and the adjacency matrix A. Then we define a
weighted graph. This is a pair (V,W ), where V is a finite set of nodes and W is a m ×m
symmetric matrix with nonnegative entries and zero diagonal entries (where m = |V |).

For every node vi ∈ V , the degree d(vi) (or di) of vi is the sum of the weights of the edges
adjacent to vi:

di = d(vi) =
m∑
j=1

wi j.

The degree matrix is the diagonal matrix

D = diag(d1, . . . , dm).

The notion of degree is illustrated in Figure 18.1. Then we introduce the (unnormalized)

645
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18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Figure 18.1: Degree of a node.

graph Laplacian L of a directed graph G in an “old-fashion” way, by showing that for any
orientation of a graph G,

BB> = D − A = L

is an invariant. We also define the (unnormalized) graph Laplacian L of a weighted graph
G = (V,W ) as L = D−W . We show that the notion of incidence matrix can be generalized
to weighted graphs in a simple way. For any graph Gσ obtained by orienting the underlying
graph of a weighted graph G = (V,W ), there is an incidence matrix Bσ such that

Bσ(Bσ)> = D −W = L.

We also prove that

x>Lx =
1

2

m∑
i,j=1

wi j(xi − xj)2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if wi j ≥ 0 for all
i, j ∈ {1, . . . ,m}, then L is positive semidefinite. Then if W consists of nonnegative entries,
the eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and nonnegative, and there is an
orthonormal basis of eigenvectors of L. We show that the number of connected components
of the graph G = (V,W ) is equal to the dimension of the kernel of L, which is also equal to
the dimension of the kernel of the transpose (Bσ)> of any incidence matrix Bσ obtained by
orienting the underlying graph of G.

We also define the normalized graph Laplacians Lsym and Lrw, given by

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W,

and prove some simple properties relating the eigenvalues and the eigenvectors of L, Lsym

and Lrw. These normalized graph Laplacians show up when dealing with normalized cuts.
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Next, we turn to graph drawings (Chapter 19). Graph drawing is a very attractive appli-
cation of so-called spectral techniques, which is a fancy way of saying that that eigenvalues
and eigenvectors of the graph Laplacian are used. Furthermore, it turns out that graph
clustering using normalized cuts can be cast as a certain type of graph drawing.

Given an undirected graph G = (V,E), with |V | = m, we would like to draw G in Rn for
n (much) smaller than m. The idea is to assign a point ρ(vi) in Rn to the vertex vi ∈ V , for
every vi ∈ V , and to draw a line segment between the points ρ(vi) and ρ(vj). Thus, a graph
drawing is a function ρ : V → Rn.

We define the matrix of a graph drawing ρ (in Rn) as a m× n matrix R whose ith row
consists of the row vector ρ(vi) corresponding to the point representing vi in Rn. Typically,
we want n < m; in fact n should be much smaller than m.

Since there are infinitely many graph drawings, it is desirable to have some criterion to
decide which graph is better than another. Inspired by a physical model in which the edges
are springs, it is natural to consider a representation to be better if it requires the springs
to be less extended. We can formalize this by defining the energy of a drawing R by

E(R) =
∑

{vi,vj}∈E
‖ρ(vi)− ρ(vj)‖2 ,

where ρ(vi) is the ith row of R and ‖ρ(vi)− ρ(vj)‖2 is the square of the Euclidean length of
the line segment joining ρ(vi) and ρ(vj).

Then “good drawings” are drawings that minimize the energy function E . Of course, the
trivial representation corresponding to the zero matrix is optimum, so we need to impose
extra constraints to rule out the trivial solution.

We can consider the more general situation where the springs are not necessarily identical.
This can be modeled by a symmetric weight (or stiffness) matrix W = (wij), with wij ≥ 0.
In this case, our energy function becomes

E(R) =
∑

{vi,vj}∈E
wij ‖ρ(vi)− ρ(vj)‖2 .

Following Godsil and Royle [27], we prove that

E(R) = tr(R>LR),

where
L = D −W,

is the familiar unnormalized Laplacian matrix associated with W , and where D is the degree
matrix associated with W .

It can be shown that there is no loss in generality in assuming that the columns of R
are pairwise orthogonal and that they have unit length. Such a matrix satisfies the equation
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R>R = I and the corresponding drawing is called an orthogonal drawing . This condition
also rules out trivial drawings.

Then we prove the main theorem about graph drawings (Theorem 19.2), which essentially
says that the matrix R of the desired graph drawing is constituted by the n eigenvectors of
L associated with the smallest nonzero n eigenvalues of L. We give a number examples of
graph drawings, many of which are borrowed or adapted from Spielman [60].

18.1 Directed Graphs, Undirected Graphs, Incidence

Matrices, Adjacency Matrices, Weighted Graphs

Definition 18.1. A directed graph is a pair G = (V,E), where V = {v1, . . . , vm} is a set of
nodes or vertices , and E ⊆ V × V is a set of ordered pairs of distinct nodes (that is, pairs
(u, v) ∈ V × V with u 6= v), called edges . Given any edge e = (u, v), we let s(e) = u be the
source of e and t(e) = v be the target of e.

Remark: Since an edge is a pair (u, v) with u 6= v, self-loops are not allowed. Also, there
is at most one edge from a node u to a node v. Such graphs are sometimes called simple
graphs .

An example of a directed graph is shown in Figure 18.2.

1

v4

v5

v1 v2

v3

e1

e7

e2 e3 e4

e5

e6

Figure 18.2: Graph G1.

Definition 18.2. For every node v ∈ V , the degree d(v) of v is the number of edges leaving
or entering v:

d(v) = |{u ∈ V | (v, u) ∈ E or (u, v) ∈ E}|.
We abbreviate d(vi) as di. The degree matrix , D(G), is the diagonal matrix

D(G) = diag(d1, . . . , dm).
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For example, for graph G1, we have

D(G1) =


2 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2

 .

Unless confusion arises, we write D instead of D(G).

Definition 18.3. Given a directed graph G = (V,E), for any two nodes u, v ∈ V , a path
from u to v is a sequence of nodes (v0, v1, . . . , vk) such that v0 = u, vk = v, and (vi, vi+1) is
an edge in E for all i with 0 ≤ i ≤ k − 1. The integer k is the length of the path. A path
is closed if u = v. The graph G is strongly connected if for any two distinct nodes u, v ∈ V ,
there is a path from u to v and there is a path from v to u.

Remark: The terminology walk is often used instead of path, the word path being reserved
to the case where the nodes vi are all distinct, except that v0 = vk when the path is closed.

The binary relation on V × V defined so that u and v are related iff there is a path from
u to v and there is a path from v to u is an equivalence relation whose equivalence classes
are called the strongly connected components of G.

Definition 18.4. Given a directed graph G = (V,E), with V = {v1, . . . , vm}, if E =
{e1, . . . , en}, then the incidence matrix B(G) of G is the m× n matrix whose entries bi j are
given by

bi j =


+1 if s(ej) = vi

−1 if t(ej) = vi

0 otherwise.

Here is the incidence matrix of the graph G1:

B =


1 1 0 0 0 0 0
−1 0 −1 −1 1 0 0
0 −1 1 0 0 0 1
0 0 0 1 0 −1 −1
0 0 0 0 −1 1 0

 .

Observe that every column of an incidence matrix contains exactly two nonzero entries,
+1 and −1. Again, unless confusion arises, we write B instead of B(G).

When a directed graph has m nodes v1, . . . , vm and n edges e1, . . . , en, a vector x ∈ Rm

can be viewed as a function x : V → R assigning the value xi to the node vi. Under this
interpretation, Rm is viewed as RV . Similarly, a vector y ∈ Rn can be viewed as a function
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1

v4

v5

v1 v2

v3

a

g

b c d

e

f

Figure 18.3: The undirected graph G2.

in RE. This point of view is often useful. For example, the incidence matrix B can be
interpreted as a linear map from RE to RV , the boundary map, and B> can be interpreted
as a linear map from RV to RE, the coboundary map.

Remark: Some authors adopt the opposite convention of sign in defining the incidence
matrix, which means that their incidence matrix is −B.

Undirected graphs are obtained from directed graphs by forgetting the orientation of the
edges.

Definition 18.5. A graph (or undirected graph) is a pairG = (V,E), where V = {v1, . . . , vm}
is a set of nodes or vertices , and E is a set of two-element subsets of V (that is, subsets
{u, v}, with u, v ∈ V and u 6= v), called edges .

Remark: Since an edge is a set {u, v}, we have u 6= v, so self-loops are not allowed. Also,
for every set of nodes {u, v}, there is at most one edge between u and v. As in the case of
directed graphs, such graphs are sometimes called simple graphs .

An example of a graph is shown in Figure 18.3.

Definition 18.6. For every node v ∈ V , the degree d(v) of v is the number of edges incident
to v:

d(v) = |{u ∈ V | {u, v} ∈ E}|.
The degree matrix D(G) (or simply, D) is defined as in Definition 18.2.

Definition 18.7. Given a (undirected) graph G = (V,E), for any two nodes u, v ∈ V , a path
from u to v is a sequence of nodes (v0, v1, . . . , vk) such that v0 = u, vk = v, and {vi, vi+1} is
an edge in E for all i with 0 ≤ i ≤ k − 1. The integer k is the length of the path. A path is
closed if u = v. The graph G is connected if for any two distinct nodes u, v ∈ V , there is a
path from u to v.
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Remark: The terminology walk or chain is often used instead of path, the word path being
reserved to the case where the nodes vi are all distinct, except that v0 = vk when the path
is closed.

The binary relation on V ×V defined so that u and v are related iff there is a path from u
to v is an equivalence relation whose equivalence classes are called the connected components
of G.

The notion of incidence matrix for an undirected graph is not as useful as in the case of
directed graphs

Definition 18.8. Given a graph G = (V,E), with V = {v1, . . . , vm}, if E = {e1, . . . , en},
then the incidence matrix B(G) of G is the m× n matrix whose entries bi j are given by

bi j =

{
+1 if ej = {vi, vk} for some k

0 otherwise.

Unlike the case of directed graphs, the entries in the incidence matrix of a graph (undi-
rected) are nonnegative. We usually write B instead of B(G).

Definition 18.9. If G = (V,E) is a directed or an undirected graph, given a node u ∈ V , any
node v ∈ V such that there is an edge (u, v) in the directed case or {u, v} in the undirected
case is called adjacent to u, and we often use the notation

u ∼ v.

Observe that the binary relation ∼ is symmetric when G is an undirected graph, but in
general it is not symmetric when G is a directed graph.

The notion of adjacency matrix is basically the same for directed or undirected graphs.

Definition 18.10. Given a directed or undirected graph G = (V,E), with V = {v1, . . . , vm},
the adjacency matrix A(G) of G is the symmetric m×m matrix (ai j) such that

(1) If G is directed, then

ai j =

{
1 if there is some edge (vi, vj) ∈ E or some edge (vj, vi) ∈ E
0 otherwise.

(2) Else if G is undirected, then

ai j =

{
1 if there is some edge {vi, vj} ∈ E
0 otherwise.



652 CHAPTER 18. GRAPHS AND GRAPH LAPLACIANS; BASIC FACTS

As usual, unless confusion arises, we write A instead of A(G). Here is the adjacency
matrix of both graphs G1 and G2:

A =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

 .

If G = (V,E) is an undirected graph, the adjacency matrix A of G can be viewed as a
linear map from RV to RV , such that for all x ∈ Rm, we have

(Ax)i =
∑
j∼i

xj;

that is, the value of Ax at vi is the sum of the values of x at the nodes vj adjacent to vi. The
adjacency matrix can be viewed as a diffusion operator . This observation yields a geometric
interpretation of what it means for a vector x ∈ Rm to be an eigenvector of A associated
with some eigenvalue λ; we must have

λxi =
∑
j∼i

xj, i = 1, . . . ,m,

which means that the the sum of the values of x assigned to the nodes vj adjacent to vi is
equal to λ times the value of x at vi.

Definition 18.11. Given any undirected graph G = (V,E), an orientation of G is a function
σ : E → V × V assigning a source and a target to every edge in E, which means that for
every edge {u, v} ∈ E, either σ({u, v}) = (u, v) or σ({u, v}) = (v, u). The oriented graph
Gσ obtained from G by applying the orientation σ is the directed graph Gσ = (V,Eσ), with
Eσ = σ(E).

The following result shows how the number of connected components of an undirected
graph is related to the rank of the incidence matrix of any oriented graph obtained from G.

Proposition 18.1. Let G = (V,E) be any undirected graph with m vertices, n edges, and
c connected components. For any orientation σ of G, if B is the incidence matrix of the
oriented graph Gσ, then c = dim(Ker (B>)), and B has rank m − c. Furthermore, the
nullspace of B> has a basis consisting of indicator vectors of the connected components of
G; that is, vectors (z1, . . . , zm) such that zj = 1 iff vj is in the ith component Ki of G, and
zj = 0 otherwise.

Proof. (After Godsil and Royle [27], Section 8.3). The fact that rank(B) = m − c will be
proved last.

Let us prove that the kernel of B> has dimension c. A vector z ∈ Rm belongs to the
kernel of B> iff B>z = 0 iff z>B = 0. In view of the definition of B, for every edge {vi, vj}



18.1. DIRECTED GRAPHS, UNDIRECTED GRAPHS, WEIGHTED GRAPHS 653

of G, the column of B corresponding to the oriented edge σ({vi, vj}) has zero entries except
for a +1 and a −1 in position i and position j or vice-versa, so we have

zi = zj.

An easy induction on the length of the path shows that if there is a path from vi to vj in G
(unoriented), then zi = zj. Therefore, z has a constant value on any connected component of
G. It follows that every vector z ∈ Ker (B>) can be written uniquely as a linear combination

z = λ1z
1 + · · ·+ λcz

c,

where the vector zi corresponds to the ith connected component Ki of G and is defined such
that

zij =

{
1 iff vj ∈ Ki

0 otherwise.

This shows that dim(Ker (B>)) = c, and that Ker (B>) has a basis consisting of indicator
vectors.

Since B> is a n×m matrix, we have

m = dim(Ker (B>)) + rank(B>),

and since we just proved that dim(Ker (B>)) = c, we obtain rank(B>) = m − c. Since B
and B> have the same rank, rank(B) = m− c, as claimed.

Definition 18.12. Following common practice, we denote by 1 the (column) vector (of
dimension m) whose components are all equal to 1.

Since every column of B contains a single +1 and a single −1, the rows of B> sum to
zero, which can be expressed as

B>1 = 0.

According to Proposition 18.1, the graph G is connected iff B has rank m−1 iff the nullspace
of B> is the one-dimensional space spanned by 1.

In many applications, the notion of graph needs to be generalized to capture the intuitive
idea that two nodes u and v are linked with a degree of certainty (or strength). Thus, we
assign a nonnegative weight wi j to an edge {vi, vj}; the smaller wi j is, the weaker is the
link (or similarity) between vi and vj, and the greater wi j is, the stronger is the link (or
similarity) between vi and vj.

Definition 18.13. A weighted graph is a pair G = (V,W ), where V = {v1, . . . , vm} is a
set of nodes or vertices , and W is a symmetric matrix called the weight matrix , such that
wi j ≥ 0 for all i, j ∈ {1, . . . ,m}, and wi i = 0 for i = 1, . . . ,m. We say that a set {vi, vj} is an
edge iff wi j > 0. The corresponding (undirected) graph (V,E) with E = {{vi, vj} | wi j > 0},
is called the underlying graph of G.
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Remark: Since wi i = 0, these graphs have no self-loops. We can think of the matrix W as
a generalized adjacency matrix. The case where wi j ∈ {0, 1} is equivalent to the notion of a
graph as in Definition 18.5.

We can think of the weight wi j of an edge {vi, vj} as a degree of similarity (or affinity) in
an image, or a cost in a network. An example of a weighted graph is shown in Figure 18.4.
The thickness of an edge corresponds to the magnitude of its weight.

15

Encode Pairwise Relationships as a Weighted Graph

Figure 18.4: A weighted graph.

Definition 18.14. Given a weighted graph G = (V,W ), for every node vi ∈ V , the degree
d(vi) of vi is the sum of the weights of the edges adjacent to vi:

d(vi) =
m∑
j=1

wi j.

Note that in the above sum, only nodes vj such that there is an edge {vi, vj} have a nonzero
contribution. Such nodes are said to be adjacent to vi, and we write vi ∼ vj. The degree
matrix D(G) (or simply, D) is defined as before, namely by D(G) = diag(d(v1), . . . , d(vm)).

The weight matrix W can be viewed as a linear map from RV to itself. For all x ∈ Rm,
we have

(Wx)i =
∑
j∼i

wijxj;

that is, the value of Wx at vi is the weighted sum of the values of x at the nodes vj adjacent
to vi.

Observe that W1 is the (column) vector (d(v1), . . . , d(vm)) consisting of the degrees of
the nodes of the graph.

We now define the most important concept of this chapter: the Laplacian matrix of a
graph. Actually, as we will see, it comes in several flavors.
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18.2 Laplacian Matrices of Graphs

Let us begin with directed graphs, although as we will see, graph Laplacians are funda-
mentally associated with undirected graph. The key proposition below shows how given an
undirected graph G, for any orientation σ of G, Bσ(Bσ)> relates to the adjacency matrix
A (where Bσ is the incidence matrix of the directed graph Gσ). We reproduce the proof in
Gallier [23] (see also Godsil and Royle [27]).

Proposition 18.2. Given any undirected graph G, for any orientation σ of G, if Bσis the
incidence matrix of the directed graph Gσ, A is the adjacency matrix of Gσ, and D is the
degree matrix such that Di i = d(vi), then

Bσ(Bσ)> = D − A.

Consequently, L = Bσ(Bσ)> is independent of the orientation σ of G, and D−A is symmetric
and positive semidefinite; that is, the eigenvalues of D − A are real and nonnegative.

Proof. The entry Bσ(Bσ)>i j is the inner product of the ith row bσi , and the jth row bσj of Bσ.
If i = j, then as

bσi k =


+1 if s(ek) = vi

−1 if t(ek) = vi

0 otherwise

we see that bσi · bσi = d(vi). If i 6= j, then bσi · bσj 6= 0 iff there is some edge ek with s(ek) = vi
and t(ek) = vj or vice-versa (which are mutually exclusive cases, since Gσ arises by orienting
an undirected graph), in which case, bσi · bσj = −1. Therefore,

Bσ(Bσ)> = D − A,

as claimed.

For every x ∈ Rm, we have

x>Lx = x>Bσ(Bσ)>x = ((Bσ)>x)>(Bσ)>x =
∥∥(Bσ)>x

∥∥2

2
≥ 0,

since the Euclidean norm ‖ ‖2 is positive (definite). Therefore, L = Bσ(Bσ)> is positive
semidefinite. It is well-known that a real symmetric matrix is positive semidefinite iff its
eigenvalues are nonnegative.

Definition 18.15. The matrix L = Bσ(Bσ)> = D − A is called the (unnormalized) graph
Laplacian of the graph Gσ. The (unnormalized) graph Laplacian of an undirected graph
G = (V,E) is defined by

L = D − A.
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For example, the graph Laplacian of graph G1 is

L =


2 −1 −1 0 0
−1 4 −1 −1 −1
−1 −1 3 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2

 .

Observe that each row of L sums to zero (because (Bσ)>1 = 0). Consequently, the vector
1 is in the nullspace of L.

Remarks:

1. With the unoriented version of the incidence matrix (see Definition 18.8), it can be
shown that

BB> = D + A.

2. As pointed out by Evangelos Chatzipantazis, Proposition 18.2 in which the incidence
matrix Bσ is replaced by the incidence matrix B of any arbitrary directed graph G
does not hold. The problem is that such graphs may have both edges (vi, vj) and
(vj, vi) between two distinct nodes vi and vj, and as a consequence, the inner product
bi · bj = −2 instead of −1. A simple counterexample is given by the directed graph
with three vertices and four edges whose incidence matrix is given by

B =

 1 −1 0 −1
−1 1 −1 0
0 0 1 1

 .

We have

BB> =

 3 −2 −1
−2 3 −1
−1 −1 2

 6=
3 0 0

0 3 0
0 0 2

−
0 1 1

1 0 1
1 1 0

 = D − A.

The natural generalization of the notion of graph Laplacian to weighted graphs is this:

Definition 18.16. Given any weighted graph G = (V,W ) with V = {v1, . . . , vm}, the
(unnormalized) graph Laplacian L(G) of G is defined by

L(G) = D(G)−W,

where D(G) = diag(d1, . . . , dm) is the degree matrix of G (a diagonal matrix), with

di =
m∑
j=1

wi j.

As usual, unless confusion arises, we write D instead of D(G) and L instead of L(G).
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The graph Laplacian can be interpreted as a linear map from RV to itself. For all x ∈ RV ,
we have

(Lx)i =
∑
j∼i

wij(xi − xj).

It is clear from the equation L = D −W that each row of L sums to 0, so the vector 1
is the nullspace of L, but it is less obvious that L is positive semidefinite. One way to prove
it is to generalize slightly the notion of incidence matrix.

Definition 18.17. Given a weighted graph G = (V,W ), with V = {v1, . . . , vm}, if {e1, . . .,
en} are the edges of the underlying graph of G (recall that {vi, vj} is an edge of this graph
iff wij > 0), for any oriented graph Gσ obtained by giving an orientation to the underlying
graph of G, the incidence matrix Bσ of Gσ is the m× n matrix whose entries bi j are given
by

bi j =


+
√
wij if s(ej) = vi

−√wij if t(ej) = vi

0 otherwise.

For example, given the weight matrix

W =


0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

 ,

the incidence matrix B corresponding to the orientation of the underlying graph of W where
an edge (i, j) is oriented positively iff i < j is

B =


1.7321 2.4495 1.7321 0 0
−1.7321 0 0 1.7321 0

0 −2.4495 0 0 1.7321
0 0 −1.7321 −1.7321 −1.7321

 .

The reader should verify that BB> = D −W . This is true in general, see Proposition 18.3.

It is easy to see that Proposition 18.1 applies to the underlying graph of G. For any
oriented graph Gσ obtained from the underlying graph of G, the rank of the incidence matrix
Bσ is equal to m−c, where c is the number of connected components of the underlying graph
of G, and we have (Bσ)>1 = 0. We also have the following version of Proposition 18.2 whose
proof is immediately adapted.

Proposition 18.3. Given any weighted graph G = (V,W ) with V = {v1, . . . , vm}, if Bσ is
the incidence matrix of any oriented graph Gσ obtained from the underlying graph of G and
D is the degree matrix of G, then

Bσ(Bσ)> = D −W = L.
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Consequently, Bσ(Bσ)> is independent of the orientation of the underlying graph of G and
L = D −W is symmetric and positive semidefinite; that is, the eigenvalues of L = D −W
are real and nonnegative.

Another way to prove that L is positive semidefinite is to evaluate the quadratic form
x>Lx.

Proposition 18.4. For any m × m symmetric matrix W = (wij), if we let L = D −W
where D is the degree matrix associated with W (that is, di =

∑m
j=1wij), then we have

x>Lx =
1

2

m∑
i,j=1

wi j(xi − xj)2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if wi j ≥ 0 for all
i, j ∈ {1, . . . ,m}, then L is positive semidefinite.

Proof. We have

x>Lx = x>Dx− x>Wx

=
m∑
i=1

dix
2
i −

m∑
i,j=1

wi jxixj

=
1

2

(
m∑
i=1

dix
2
i − 2

m∑
i,j=1

wi jxixj +
m∑
i=1

dix
2
i

)

=
1

2

m∑
i,j=1

wi j(xi − xj)2.

Obviously, the quantity on the right-hand side does not depend on the diagonal entries in
W , and if wi j ≥ 0 for all i, j, then this quantity is nonnegative.

Proposition 18.4 immediately implies the following facts: For any weighted graph G =
(V,W ),

1. The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and nonnegative, and there is
an orthonormal basis of eigenvectors of L.

2. The smallest eigenvalue λ1 of L is equal to 0, and 1 is a corresponding eigenvector.

It turns out that the dimension of the nullspace of L (the eigenspace of 0) is equal to the
number of connected components of the underlying graph of G.
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Proposition 18.5. Let G = (V,W ) be a weighted graph. The number c of connected com-
ponents K1, . . . , Kc of the underlying graph of G is equal to the dimension of the nullspace
of L, which is equal to the multiplicity of the eigenvalue 0. Furthermore, the nullspace of L
has a basis consisting of indicator vectors of the connected components of G, that is, vectors
(f1, . . . , fm) such that fj = 1 iff vj ∈ Ki and fj = 0 otherwise.

Proof. Since L = BB> for the incidence matrix B associated with any oriented graph
obtained from G, and since L and B> have the same nullspace, by Proposition 18.1, the
dimension of the nullspace of L is equal to the number c of connected components of G and
the indicator vectors of the connected components of G form a basis of Ker (L).

Proposition 18.5 implies that if the underlying graph of G is connected, then the second
eigenvalue λ2 of L is strictly positive.

Remarkably, the eigenvalue λ2 contains a lot of information about the graph G (assuming
that G = (V,E) is an undirected graph). This was first discovered by Fiedler in 1973, and for
this reason, λ2 is often referred to as the Fiedler number . For more on the properties of the
Fiedler number, see Godsil and Royle [27] (Chapter 13) and Chung [13]. More generally, the
spectrum (0, λ2, . . . , λm) of L contains a lot of information about the combinatorial structure
of the graph G. Leverage of this information is the object of spectral graph theory .

18.3 Normalized Laplacian Matrices of Graphs

It turns out that normalized variants of the graph Laplacian are needed, especially in appli-
cations to graph clustering. These variants make sense only if G has no isolated vertices.

Definition 18.18. Given a weighted graph G = (V,W ), a vertex u ∈ V is isolated if it is
not incident to any other vertex. This means that every row of W contains some strictly
positive entry.

If G has no isolated vertices, then the degree matrix D contains positive entries, so it is
invertible and D−1/2 makes sense; namely

D−1/2 = diag(d
−1/2
1 , . . . , d−1/2

m ),

and similarly for any real exponent α.

Definition 18.19. Given any weighted directed graph G = (V,W ) with no isolated vertex
and with V = {v1, . . . , vm}, the (normalized) graph Laplacians Lsym and Lrw of G are defined
by

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W.
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Observe that the Laplacian Lsym = D−1/2LD−1/2 is a symmetric matrix (because L and
D−1/2 are symmetric) and that

Lrw = D−1/2LsymD
1/2.

The reason for the notation Lrw is that this matrix is closely related to a random walk on
the graph G.

Example 18.1. As an example, the matrices Lsym and Lrw associated with the graph G1

are

Lsym =


1.0000 −0.3536 −0.4082 0 0
−0.3536 1.0000 −0.2887 −0.2887 −0.3536
−0.4082 −0.2887 1.0000 −0.3333 0

0 −0.2887 −0.3333 1.0000 −0.4082
0 −0.3536 0 −0.4082 1.0000


and

Lrw =


1.0000 −0.5000 −0.5000 0 0
−0.2500 1.0000 −0.2500 −0.2500 −0.2500
−0.3333 −0.3333 1.0000 −0.3333 0

0 −0.3333 −0.3333 1.0000 −0.3333
0 −0.5000 0 −0.5000 1.0000

 .

Since the unnormalized Laplacian L can be written as L = BB>, where B is the incidence
matrix of any oriented graph obtained from the underlying graph of G = (V,W ), if we let

Bsym = D−1/2B,

we get

Lsym = BsymB
>
sym.

In particular, for any singular decomposition Bsym = UΣV > of Bsym (with U an m × m
orthogonal matrix, Σ a “diagonal” m×n matrix of singular values, and V an n×n orthogonal
matrix), the eigenvalues of Lsym are the squares of the top m singular values of Bsym, and
the vectors in U are orthonormal eigenvectors of Lsym with respect to these eigenvalues (the
squares of the top m diagonal entries of Σ). Computing the SVD of Bsym generally yields
more accurate results than diagonalizing Lsym, especially when Lsym has eigenvalues with
high multiplicity.

There are simple relationships between the eigenvalues and the eigenvectors of Lsym, and
Lrw. There is also a simple relationship with the generalized eigenvalue problem Lx = λDx.

Proposition 18.6. Let G = (V,W ) be a weighted graph without isolated vertices. The graph
Laplacians, L,Lsym, and Lrw satisfy the following properties:
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(1) The matrix Lsym is symmetric and positive semidefinite. In fact,

x>Lsymx =
1

2

m∑
i,j=1

wi j

(
xi√
di
− xj√

dj

)2

for all x ∈ Rm.

(2) The normalized graph Laplacians Lsym and Lrw have the same spectrum
(0 = ν1 ≤ ν2 ≤ . . . ≤ νm), and a vector u 6= 0 is an eigenvector of Lrw for λ iff D1/2u
is an eigenvector of Lsym for λ.

(3) The graph Laplacians L and Lsym are symmetric and positive semidefinite.

(4) A vector u 6= 0 is a solution of the generalized eigenvalue problem Lu = λDu iff D1/2u
is an eigenvector of Lsym for the eigenvalue λ iff u is an eigenvector of Lrw for the
eigenvalue λ.

(5) The graph Laplacians, L and Lrw have the same nullspace. For any vector u, we have
u ∈ Ker (L) iff D1/2u ∈ Ker (Lsym).

(6) The vector 1 is in the nullspace of Lrw, and D1/21 is in the nullspace of Lsym.

(7) For every eigenvalue νi of the normalized graph Laplacian Lsym, we have 0 ≤ νi ≤ 2.
Furthermore, νm = 2 iff the underlying graph of G contains a nontrivial connected
bipartite component.

(8) If m ≥ 2 and if the underlying graph of G is not a complete graph,1 then ν2 ≤ 1.
Furthermore the underlying graph of G is a complete graph iff ν2 = m

m−1
.

(9) If m ≥ 2 and if the underlying graph of G is connected, then ν2 > 0.

(10) If m ≥ 2 and if the underlying graph of G has no isolated vertices, then νm ≥ m
m−1

.

Proof. (1) We have Lsym = D−1/2LD−1/2, and D−1/2 is a symmetric invertible matrix (since
it is an invertible diagonal matrix). It is a well-known fact of linear algebra that if B is an
invertible matrix, then a matrix S is symmetric, positive semidefinite iff BSB> is symmetric,
positive semidefinite. Since L is symmetric, positive semidefinite, so is Lsym = D−1/2LD−1/2.
The formula

x>Lsymx =
1

2

m∑
i,j=1

wi j

(
xi√
di
− xj√

dj

)2

for all x ∈ Rm

follows immediately from Proposition 18.4 by replacing x by D−1/2x, and also shows that
Lsym is positive semidefinite.

(2) Since
Lrw = D−1/2LsymD

1/2,

1Recall that an undirected graph is complete if for any two distinct nodes u, v, there is an edge {u, v}.
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the matrices Lsym and Lrw are similar, which implies that they have the same spectrum. In
fact, since D1/2 is invertible,

Lrwu = D−1Lu = λu

iff
D−1/2Lu = λD1/2u

iff
D−1/2LD−1/2D1/2u = LsymD

1/2u = λD1/2u,

which shows that a vector u 6= 0 is an eigenvector of Lrw for λ iff D1/2u is an eigenvector of
Lsym for λ.

(3) We already know that L and Lsym are positive semidefinite.

(4) Since D−1/2 is invertible, we have

Lu = λDu

iff
D−1/2Lu = λD1/2u

iff
D−1/2LD−1/2D1/2u = LsymD

1/2u = λD1/2u,

which shows that a vector u 6= 0 is a solution of the generalized eigenvalue problem Lu = λDu
iff D1/2u is an eigenvector of Lsym for the eigenvalue λ. The second part of the statement
follows from (2).

(5) Since D−1 is invertible, we have Lu = 0 iff D−1Lu = Lrwu = 0. Similarly, since D−1/2

is invertible, we have Lu = 0 iff D−1/2LD−1/2D1/2u = 0 iff D1/2u ∈ Ker (Lsym).

(6) Since L1 = 0, we get Lrw1 = D−1L1 = 0. That D1/21 is in the nullspace of Lsym

follows from (2). Properties (7)–(10) are proven in Chung [13] (Chapter 1).

The eigenvalues the matrices Lsym and Lrw from Example 18.1 are

0, 7257, 1.1667, 1.5, 1.6076.

On the other hand, the eigenvalues of the unnormalized Laplacian for G1 are

0, 1.5858, 3, 4.4142, 5.

Remark: Observe that although the matrices Lsym and Lrw have the same spectrum, the
matrix Lrw is generally not symmetric, whereas Lsym is symmetric.

A version of Proposition 18.5 also holds for the graph Laplacians Lsym and Lrw. This fol-
lows easily from the fact that Proposition 18.1 applies to the underlying graph of a weighted
graph. The proof is left as an exercise.
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Proposition 18.7. Let G = (V,W ) be a weighted graph. The number c of connected com-
ponents K1, . . . , Kc of the underlying graph of G is equal to the dimension of the nullspace
of both Lsym and Lrw, which is equal to the multiplicity of the eigenvalue 0. Furthermore, the
nullspace of Lrw has a basis consisting of indicator vectors of the connected components of
G, that is, vectors (f1, . . . , fm) such that fj = 1 iff vj ∈ Ki and fj = 0 otherwise. For Lsym,
a basis of the nullpace is obtained by multiplying the above basis of the nullspace of Lrw by
D1/2.

A particularly interesting application of graph Laplacians is graph clustering.

18.4 Graph Clustering Using Normalized Cuts

In order to explain this problem we need some definitions.

Definition 18.20. Given any subset of nodes A ⊆ V , we define the volume vol(A) of A as
the sum of the weights of all edges adjacent to nodes in A:

vol(A) =
∑
vi∈A

m∑
j=1

wi j.

Given any two subsets A,B ⊆ V (not necessarily distinct), we define links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B
wi j.

The quantity links(A,A) = links(A,A) (where A = V − A denotes the complement of A in
V ) measures how many links escape from A (and A). We define the cut of A as

cut(A) = links(A,A).

The notion of volume is illustrated in Figure 18.5 and the notions of cut is illustrated in
Figure 18.6.

Figure 18.5: Volume of a set of nodes.
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Figure 18.6: A cut involving the set of nodes in the center and the nodes on the perimeter.

The above concepts play a crucial role in the theory of normalized cuts. This beautiful
and deeply original method first published in Shi and Malik [58], has now come to be a
“textbook chapter” of computer vision and machine learning. It was invented by Jianbo Shi
and Jitendra Malik and was the main topic of Shi’s dissertation. This method was extended
to K ≥ 3 clusters by Stella Yu in her dissertation [75] and is also the subject of Yu and Shi
[76].

Given a set of data, the goal of clustering is to partition the data into different groups
according to their similarities. When the data is given in terms of a similarity graph G,
where the weight wi j between two nodes vi and vj is a measure of similarity of vi and vj, the
problem can be stated as follows: Find a partition (A1, . . . , AK) of the set of nodes V into
different groups such that the edges between different groups have very low weight (which
indicates that the points in different clusters are dissimilar), and the edges within a group
have high weight (which indicates that points within the same cluster are similar).

The above graph clustering problem can be formalized as an optimization problem, using
the notion of cut mentioned earlier. If we want to partition V into K clusters, we can do so
by finding a partition (A1, . . . , AK) that minimizes the quantity

cut(A1, . . . , AK) =
1

2

K∑
i=1

cut(Ai) =
1

2

K∑
i=1

links(Ai, Ai).

For K = 2, the mincut problem is a classical problem that can be solved efficiently, but in
practice, it does not yield satisfactory partitions. Indeed, in many cases, the mincut solution
separates one vertex from the rest of the graph. What we need is to design our cost function
in such a way that it keeps the subsets Ai “reasonably large” (reasonably balanced).

An example of a weighted graph and a partition of its nodes into two clusters is shown
in Figure 18.7.
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15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 18.7: A weighted graph and its partition into two clusters.

A way to get around this problem is to normalize the cuts by dividing by some measure
of each subset Ai. A solution using the volume vol(Ai) of Ai (for K = 2) was proposed and
investigated in a seminal paper of Shi and Malik [58]. Subsequently, Yu (in her dissertation
[75]) and Yu and Shi [76] extended the method to K > 2 clusters. The idea is to minimize
the cost function

Ncut(A1, . . . , AK) =
K∑
i=1

links(Ai, Ai)

vol(Ai)
=

K∑
i=1

cut(Ai)

vol(Ai)
.

The next step is to express our optimization problem in matrix form, and this can be
done in terms of Rayleigh ratios involving the graph Laplacian in the numerators. This
theory is very beautiful, but we do not have the space to present it here. The interested
reader is referred to Gallier [25].

18.5 Summary

The main concepts and results of this chapter are listed below:

• Directed graphs, undirected graphs.

• Incidence matrices, adjacency matrices.

• Weighted graphs.

• Degree matrix.

• Graph Laplacian (unnormalized).
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• Normalized graph Laplacian.

• Spectral graph theory.

• Graph clustering using normalized cuts.

18.6 Problems

Problem 18.1. Find the unnormalized Laplacian of the graph representing a triangle and
of the graph representing a square.

Problem 18.2. Consider the complete graph Km on m ≥ 2 nodes.

(1) Prove that the normalized Laplacian Lsym of K is

Lsym =


1 −1/(m− 1) . . . −1/(m− 1) −1/(m− 1)

−1/(m− 1) 1 . . . −1/(m− 1) −1/(m− 1)
...

. . . . . . . . .
...

−1/(m− 1) −1/(m− 1) . . . 1 −1/(m− 1)
−1/(m− 1) −1/(m− 1) . . . −1/(m− 1) 1

 .

(2) Prove that the characteristic polynomial of Lsym is∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1/(m− 1) . . . 1/(m− 1) 1/(m− 1)
1/(m− 1) λ− 1 . . . 1/(m− 1) 1/(m− 1)

...
. . . . . . . . .

...
1/(m− 1) 1/(m− 1) . . . λ− 1 1/(m− 1)
1/(m− 1) 1/(m− 1) . . . 1/(m− 1) λ− 1

∣∣∣∣∣∣∣∣∣∣∣
= λ

(
λ− m

m− 1

)m−1

.

Hint . First subtract the second column from the first, factor λ−m/(m− 1), and then add
the first row to the second. Repeat this process. You will end up with the determinant∣∣∣∣λ− 1/(m− 1) 1

1/(m− 1) λ− 1

∣∣∣∣ .
Problem 18.3. Consider the complete bipartite graph Km,n on m + n ≥ 3 nodes, with
edges between each of the first m ≥ 1 nodes to each of the last n ≥ 1 nodes. Prove that the
eigenvalues of the normalized Laplacian Lsym of Km,n are 0, 1 with multiplicity m + n − 2,
and 2.

Problem 18.4. Let G be a graph with a set of nodes V with m ≥ 2 elements, without
isolated nodes, and let Lsym = D−1/2LD−1/2 be its normalized Laplacian (with L its unnor-
malized Laplacian).
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(1) For any y ∈ RV , consider the Rayleigh ratio

R =
y>Lsym y

y>y
.

Prove that if x = D−1/2y, then

R =
x>Lx

(D1/2x)>D1/2x
=

∑
u∼v

(x(u)− x(v))2

∑
v

dvx(v)2
.

(2) Prove that the second eigenvalue ν2 of Lsym is given by

ν2 = min
1>Dx=0,x 6=0

∑
u∼v

(x(u)− x(v))2

∑
v

dvx(v)2
.

(3) Prove that the largest eigenvalue νm of Lsym is given by

νm = max
x 6=0

∑
u∼v

(x(u)− x(v))2

∑
v

dvx(v)2
.

Problem 18.5. Let G be a graph with a set of nodes V with m ≥ 2 elements, without
isolated nodes. If 0 = ν1 ≤ ν1 ≤ . . . ≤ νm are the eigenvalues of Lsym, prove the following
properties:

(1) We have ν1 + ν2 + · · ·+ νm = m.

(2) We have ν2 ≤ m/(m− 1), with equality holding iff G = Km, the complete graph on m
nodes.

(3) We have νm ≥ m/(m− 1).

(4) If G is not a complete graph, then ν2 ≤ 1

Hint . If a and b are nonadjacent nodes, consider the function x given by

x(v) =


db if v = a

−da if v = b

0 if v 6= a, b,

and use Problem 18.4(2).
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(5) Prove that νm ≤ 2. Prove that νm = 2 iff the underlying graph of G contains a
nontrivial connected bipartite component.

Hint . Use Problem 18.4(3).

(6) Prove that if G is connected, then ν2 > 0.

Problem 18.6. Let G be a graph with a set of nodes V with m ≥ 2 elements, without
isolated nodes. Let vol(G) =

∑
v∈V dv and let

x =

∑
v dvx(v)

vol(G)
.

Prove that

ν2 = min
x 6=0

∑
u∼v

(x(u)− x(v))2

∑
v

dv(x(v)− x)2
.

Problem 18.7. Let G be a connected bipartite graph. Prove that if ν is an eigenvalue of
Lsym, then 2− ν is also an eigenvalue of Lsym.

Problem 18.8. Prove Proposition 18.7.



Chapter 19

Spectral Graph Drawing

19.1 Graph Drawing and Energy Minimization

Let G = (V,E) be some undirected graph. It is often desirable to draw a graph, usually
in the plane but possibly in 3D, and it turns out that the graph Laplacian can be used to
design surprisingly good methods. Say |V | = m. The idea is to assign a point ρ(vi) in Rn

to the vertex vi ∈ V , for every vi ∈ V , and to draw a line segment between the points ρ(vi)
and ρ(vj) iff there is an edge {vi, vj}.

Definition 19.1. Let G = (V,E) be some undirected graph with m vertices. A graph
drawing is a function ρ : V → Rn, for some n ≥ 1. The matrix of a graph drawing ρ (in Rn)
is a m × n matrix R whose ith row consists of the row vector ρ(vi) corresponding to the
point representing vi in Rn.

For a graph drawing to be useful we want n ≤ m; in fact n should be much smaller than
m, typically n = 2 or n = 3.

Definition 19.2. A graph drawing is balanced iff the sum of the entries of every column of
the matrix of the graph drawing is zero, that is,

1>R = 0.

If a graph drawing is not balanced, it can be made balanced by a suitable translation.
We may also assume that the columns of R are linearly independent, since any basis of the
column space also determines the drawing. Thus, from now on, we may assume that n ≤ m.

Remark: A graph drawing ρ : V → Rn is not required to be injective, which may result in
degenerate drawings where distinct vertices are drawn as the same point. For this reason,
we prefer not to use the terminology graph embedding , which is often used in the literature.
This is because in differential geometry, an embedding always refers to an injective map.
The term graph immersion would be more appropriate.

669
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As explained in Godsil and Royle [27], we can imagine building a physical model of G
by connecting adjacent vertices (in Rn) by identical springs. Then it is natural to consider
a representation to be better if it requires the springs to be less extended. We can formalize
this by defining the energy of a drawing R by

E(R) =
∑

{vi,vj}∈E
‖ρ(vi)− ρ(vj)‖2 ,

where ρ(vi) is the ith row of R and ‖ρ(vi)− ρ(vj)‖2 is the square of the Euclidean length of
the line segment joining ρ(vi) and ρ(vj).

Then, “good drawings” are drawings that minimize the energy function E . Of course, the
trivial representation corresponding to the zero matrix is optimum, so we need to impose
extra constraints to rule out the trivial solution.

We can consider the more general situation where the springs are not necessarily identical.
This can be modeled by a symmetric weight (or stiffness) matrix W = (wij), with wij ≥ 0.
Then our energy function becomes

E(R) =
∑

{vi,vj}∈E
wij ‖ρ(vi)− ρ(vj)‖2 .

It turns out that this function can be expressed in terms of the Laplacian L = D−W . The
following proposition is shown in Godsil and Royle [27]. We give a slightly more direct proof.

Proposition 19.1. Let G = (V,W ) be a weighted graph, with |V | = m and W an m ×m
symmetric matrix, and let R be the matrix of a graph drawing ρ of G in Rn (a m×n matrix).
If L = D −W is the unnormalized Laplacian matrix associated with W , then

E(R) = tr(R>LR).

Proof. Since ρ(vi) is the ith row of R (and ρ(vj) is the jth row of R), if we denote the kth
column of R by Rk, using Proposition 18.4, we have

E(R) =
∑

{vi,vj}∈E
wij ‖ρ(vi)− ρ(vj)‖2

=
n∑
k=1

∑
{vi,vj}∈E

wij(Rik −Rjk)
2

=
n∑
k=1

1

2

m∑
i,j=1

wij(Rik −Rjk)
2

=
n∑
k=1

(Rk)>LRk = tr(R>LR),

as claimed.
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Since the matrix R>LR is symmetric, it has real eigenvalues. Actually, since L is positive
semidefinite, so is R>LR. Then the trace of R>LR is equal to the sum of its positive
eigenvalues, and this is the energy E(R) of the graph drawing.

If R is the matrix of a graph drawing in Rn, then for any n× n invertible matrix M , the
map that assigns ρ(vi)M to vi is another graph drawing of G, and these two drawings convey
the same amount of information. From this point of view, a graph drawing is determined
by the column space of R. Therefore, it is reasonable to assume that the columns of R are
pairwise orthogonal and that they have unit length. Such a matrix satisfies the equation
R>R = I.

Definition 19.3. If the matrix R of a graph drawing satisfies the equation R>R = I, then
the corresponding drawing is called an orthogonal graph drawing .

This above condition also rules out trivial drawings. The following result tells us how to
find minimum energy orthogonal balanced graph drawings, provided the graph is connected.
Recall that

L1 = 0,

as we already observed.

Theorem 19.2. Let G = (V,W ) be a weighted graph with |V | = m. If L = D −W is the
(unnormalized) Laplacian of G, and if the eigenvalues of L are 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λm,
then the minimal energy of any balanced orthogonal graph drawing of G in Rn is equal to
λ2 +· · ·+λn+1 (in particular, this implies that n < m). The m×n matrix R consisting of any
unit eigenvectors u2, . . . , un+1 associated with λ2 ≤ . . . ≤ λn+1 yields a balanced orthogonal
graph drawing of minimal energy; it satisfies the condition R>R = I.

Proof. We present the proof given in Godsil and Royle [27] (Section 13.4, Theorem 13.4.1).
The key point is that the sum of the n smallest eigenvalues of L is a lower bound for
tr(R>LR). This can be shown using a Rayleigh ratio argument; see Proposition 16.25
(the Poincaré separation theorem). Then any n eigenvectors (u1, . . . , un) associated with
λ1, . . . , λn achieve this bound. Because the first eigenvalue of L is λ1 = 0 and because
we are assuming that λ2 > 0, we have u1 = 1/

√
m. Since the uj are pairwise orthogonal

for i = 2, . . . , n and since ui is orthogonal to u1 = 1/
√
m, the entries in ui add up to 0.

Consequently, for any ` with 2 ≤ ` ≤ n, by deleting u1 and using (u2, . . . , u`), we obtain a
balanced orthogonal graph drawing in R`−1 with the same energy as the orthogonal graph
drawing in R` using (u1, u2, . . . , u`). Conversely, from any balanced orthogonal drawing in
R`−1 using (u2, . . . , u`), we obtain an orthogonal graph drawing in R` using (u1, u2, . . . , u`)
with the same energy. Therefore, the minimum energy of a balanced orthogonal graph
drawing in Rn is equal to the minimum energy of an orthogonal graph drawing in Rn+1, and
this minimum is λ2 + · · ·+ λn+1.

Since 1 spans the nullspace of L, using u1 (which belongs to KerL) as one of the vectors
in R would have the effect that all points representing vertices of G would have the same
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first coordinate. This would mean that the drawing lives in a hyperplane in Rn, which is
undesirable, especially when n = 2, where all vertices would be collinear. This is why we
omit the first eigenvector u1.

Observe that for any orthogonal n× n matrix Q, since

tr(R>LR) = tr(Q>R>LRQ),

the matrix RQ also yields a minimum orthogonal graph drawing. This amounts to applying
the rigid motion Q> to the rows of R.

In summary, if λ2 > 0, an automatic method for drawing a graph in R2 is this:

1. Compute the two smallest nonzero eigenvalues λ2 ≤ λ3 of the graph Laplacian L (it is
possible that λ3 = λ2 if λ2 is a multiple eigenvalue);

2. Compute two unit eigenvectors u2, u3 associated with λ2 and λ3, and let R = [u2 u3]
be the m× 2 matrix having u2 and u3 as columns.

3. Place vertex vi at the point whose coordinates is the ith row of R, that is, (Ri1, Ri2).

This method generally gives pleasing results, but beware that there is no guarantee that
distinct nodes are assigned distinct images since R can have identical rows. This does not
seem to happen often in practice.

19.2 Examples of Graph Drawings

We now give a number of examples using Matlab. Some of these are borrowed or adapted
from Spielman [60].

Example 1. Consider the graph with four nodes whose adjacency matrix is

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .

We use the following program to compute u2 and u3:

A = [0 1 1 0; 1 0 0 1; 1 0 0 1; 0 1 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L);

gplot(A, v(:,[3 2]))

hold on;

gplot(A, v(:,[3 2]),’o’)
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Figure 19.1: Drawing of the graph from Example 1.

The graph of Example 1 is shown in Figure 19.1. The function eigs(L) computes the
six largest eigenvalues of L in decreasing order, and corresponding eigenvectors. It turns out
that λ2 = λ3 = 2 is a double eigenvalue.

Example 2. Consider the graph G2 shown in Figure 18.3 given by the adjacency matrix

A =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

 .

We use the following program to compute u2 and u3:

A = [0 1 1 0 0; 1 0 1 1 1; 1 1 0 1 0; 0 1 1 0 1; 0 1 0 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)

The function eig(L) (with no s at the end) computes the eigenvalues of L in increasing
order. The result of drawing the graph is shown in Figure 19.2. Note that node v2 is assigned
to the point (0, 0), so the difference between this drawing and the drawing in Figure 18.3 is
that the drawing of Figure 19.2 is not convex.

Example 3. Consider the ring graph defined by the adjacency matrix A given in the Matlab

program shown below:
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Figure 19.2: Drawing of the graph from Example 2.

A = diag(ones(1, 11),1);

A = A + A’;

A(1, 12) = 1; A(12, 1) = 1;

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 19.3: Drawing of the graph from Example 3.

Observe that we get a very nice ring; see Figure 19.3. Again λ2 = 0.2679 is a double
eigenvalue (and so are the next pairs of eigenvalues, except the last, λ12 = 4).
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Example 4. In this example adapted from Spielman, we generate 20 randomly chosen points
in the unit square, compute their Delaunay triangulation, then the adjacency matrix of the
corresponding graph, and finally draw the graph using the second and third eigenvalues of
the Laplacian.

A = zeros(20,20);

xy = rand(20, 2);

trigs = delaunay(xy(:,1), xy(:,2));

elemtrig = ones(3) - eye(3);

for i = 1:length(trigs),

A(trigs(i,:),trigs(i,:)) = elemtrig;

end

A = double(A >0);

gplot(A,xy)

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L, 3, ’sm’);

figure(2)

gplot(A, v(:, [2 1]))

hold on

gplot(A, v(:, [2 1]),’o’)

The Delaunay triangulation of the set of 20 points and the drawing of the corresponding
graph are shown in Figure 19.4. The graph drawing on the right looks nicer than the graph
on the left but is is no longer planar.
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Figure 19.4: Delaunay triangulation (left) and drawing of the graph from Example 4 (right).

Example 5. Our last example, also borrowed from Spielman [60], corresponds to the skele-
ton of the “Buckyball,” a geodesic dome invented by the architect Richard Buckminster
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Fuller (1895–1983). The Montréal Biosphère is an example of a geodesic dome designed by
Buckminster Fuller.

A = full(bucky);

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on;

gplot(A,v(:, [2 3]), ’o’)

Figure 19.5 shows a graph drawing of the Buckyball. This picture seems a bit squashed
for two reasons. First, it is really a 3-dimensional graph; second, λ2 = 0.2434 is a triple
eigenvalue. (Actually, the Laplacian of L has many multiple eigenvalues.) What we should
really do is to plot this graph in R3 using three orthonormal eigenvectors associated with λ2.
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Figure 19.5: Drawing of the graph of the Buckyball.

A 3D picture of the graph of the Buckyball is produced by the following Matlab program,
and its image is shown in Figure 19.6. It looks better!

[x, y] = gplot(A, v(:, [2 3]));

[x, z] = gplot(A, v(:, [2 4]));

plot3(x,y,z)

19.3 Summary

The main concepts and results of this chapter are listed below:

• Graph drawing.
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Figure 19.6: Drawing of the graph of the Buckyball in R3.

• Matrix of a graph drawing.

• Balanced graph drawing.

• Energy E(R) of a graph drawing.

• Orthogonal graph drawing.

• Delaunay triangulation.

• Buckyball.
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Chapter 20

Singular Value Decomposition and
Polar Form

20.1 Properties of f ∗ ◦ f
In this section we assume that we are dealing with real Euclidean spaces. Let f : E → E
be any linear map. In general, it may not be possible to diagonalize f . We show that every
linear map can be diagonalized if we are willing to use two orthonormal bases. This is the
celebrated singular value decomposition (SVD). A close cousin of the SVD is the polar form
of a linear map, which shows how a linear map can be decomposed into its purely rotational
component (perhaps with a flip) and its purely stretching part.

The key observation is that f ∗ ◦ f is self-adjoint since

〈(f ∗ ◦ f)(u), v〉 = 〈f(u), f(v)〉 = 〈u, (f ∗ ◦ f)(v)〉.
Similarly, f ◦ f ∗ is self-adjoint.

The fact that f ∗ ◦ f and f ◦ f ∗ are self-adjoint is very important, because by Theorem
16.8, it implies that f ∗ ◦f and f ◦f ∗ can be diagonalized and that they have real eigenvalues.
In fact, these eigenvalues are all nonnegative as shown in the following proposition.

Proposition 20.1. The eigenvalues of f ∗ ◦ f and f ◦ f ∗ are nonnegative.

Proof. If u is an eigenvector of f ∗ ◦ f for the eigenvalue λ, then

〈(f ∗ ◦ f)(u), u〉 = 〈f(u), f(u)〉
and

〈(f ∗ ◦ f)(u), u〉 = λ〈u, u〉,
and thus

λ〈u, u〉 = 〈f(u), f(u)〉,
which implies that λ ≥ 0, since 〈−,−〉 is positive definite. A similar proof applies to
f ◦ f ∗.

679
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Thus, the eigenvalues of f ∗ ◦f are of the form σ2
1, . . . , σ

2
r or 0, where σi > 0, and similarly

for f ◦ f ∗.
The above considerations also apply to any linear map f : E → F between two Euclidean

spaces (E, 〈−,−〉1) and (F, 〈−,−〉2). Recall that the adjoint f ∗ : F → E of f is the unique
linear map f ∗ such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1, for all u ∈ E and all v ∈ F .

Then f ∗ ◦ f and f ◦ f ∗ are self-adjoint (the proof is the same as in the previous case),
and the eigenvalues of f ∗ ◦ f and f ◦ f ∗ are nonnegative.

Proof. If λ is an eigenvalue of f ∗ ◦ f and u (6= 0) is a corresponding eigenvector, we have

〈(f ∗ ◦ f)(u), u〉1 = 〈f(u), f(u)〉2,

and also
〈(f ∗ ◦ f)(u), u〉1 = λ〈u, u〉1,

so
λ〈u, u〉1,= 〈f(u), f(u)〉2,

which implies that λ ≥ 0. A similar proof applies to f ◦ f ∗.
The situation is even better, since we will show shortly that f ∗ ◦ f and f ◦ f ∗ have the

same nonzero eigenvalues.

Remark: Given any two linear maps f : E → F and g : F → E, where dim(E) = n and
dim(F ) = m, it can be shown that

λm det(λ In − g ◦ f) = λn det(λ Im − f ◦ g),

and thus g ◦ f and f ◦ g always have the same nonzero eigenvalues; see Problem 14.14.

Definition 20.1. Given any linear map f : E → F , the square roots σi > 0 of the positive
eigenvalues of f ∗ ◦ f (and f ◦ f ∗) are called the singular values of f .

Definition 20.2. A self-adjoint linear map f : E → E whose eigenvalues are nonnegative is
called positive semidefinite (or positive), and if f is also invertible, f is said to be positive
definite. In the latter case, every eigenvalue of f is strictly positive.

The following proposition shows that the conditions on the eigenvalues of a self-adjoint
linear map used to define the notion of a positive definite linear map is equivalent to the
condition used in Definition 7.4. A similar but weaker condition is equivalent to the notion
of self-adjoint positive semidefinite linear map.

Proposition 20.2. Let f : E → E be a self-adjoint linear map, where E is a Euclidean
space of finite dimension with inner product 〈−.−〉.
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(1) The eigenvalues of f are strictly positive iff

〈f(u), u〉 > 0 for all u 6= 0.

(2) The eigenvalues of f are nonnegative iff

〈f(u), u〉 ≥ 0 for all u 6= 0.

Proof. Since f is self-adjoint, by the spectral theorem (Theorem 16.8), f has real eigenvalues
λ1, . . . , λn, and there is some orthonormal basis (e1, . . . , en), where ei is an eigenvector for
λi. With respect to this basis, every vector u ∈ E can be written in a unique way as
u =

∑n
i=1 xiui for some xi ∈ R. Since each ei is eigenvector associated with λi ∈ R, we have

f

( n∑
i=1

xiei

)
=

n∑
i=1

xif(ei) =
n∑
i=1

λixiei,

and using the bilinearity of the inner product, we have

〈f(u), u〉 =

〈
f

( n∑
i=1

xiei

)
,

n∑
j=1

xjej

〉

=

〈
n∑
i=1

λixiei,
n∑
j=1

xjej

〉

=
n∑
i=1

n∑
j=1

λixixj〈ei, ej〉,

and since (e1, . . . , en), is an orthonormal basis, we obtain

〈f(u), u〉 =
n∑
i=1

λix
2
i . (†)

(1) If λi > 0 for i = 1, . . . , n, for any u 6= 0, we have xi 6= 0 for some i, so 〈f(u), u〉 =∑n
i=1 λix

2
i > 0.

Conversely, if 〈f(u), u〉 > 0 for all u 6= 0, by picking u = ei, we get

〈f(ei), ei〉 = 〈λiei, ei〉 = λi〈ei, ei〉 = λi,

so λi > 0 for i = 1, . . . , n.

(2) If λi ≥ 0 for i = 1, . . . , n, for any u 6= 0, then 〈f(u), u〉 =
∑n

i=1 λix
2
i ≥ 0.

Conversely, if 〈f(u), u〉 ≥ 0 for all u 6= 0, by picking u = ei, we get

〈f(ei), ei〉 = 〈λiei, ei〉 = λi〈ei, ei〉 = λi,

so λi ≥ 0 for i = 1, . . . , n.
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Proposition 20.2 also holds for self-adjoint linear maps on a complex vector space with a
Hermitian inner product. The proof is essentially the same and is left as an exercise to the
reader.

The version of Proposition 20.2 for matrices follows immediately.

Proposition 20.3. Let A be a real n× n symmetric matrix.

(1) The eigenvalues of A are strictly positive iff

u>Au > 0 for all u 6= 0.

(2) The eigenvalues of A are nonnegative iff

u>Au ≥ 0 for all u 6= 0.

It is important to note that Proposition 20.3 is false for nonsymmetric matrices.

Example 20.1. The matrix

A =

(
1 4
0 1

)
has the positive eigenvalues (1, 1), but(

1 −1
)(1 4

0 1

)(
1
−1

)
=
(
1 −1

)(−3
−1

)
= −2.

Example 20.2. The matrix

A =

(
1 −2
2 1

)
has the complex eigenvalues 1 + 2i, 1− 2i, and yet(

x y
)(1 −2

2 1

)(
x
y

)
=
(
x y

)(x− 2y
2x+ y

)
= x2 + y2,

so u>Au > 0 for all u 6= 0.

Since u>Au is a scalar, if A is a skew symmetric matrix (A> = −A), then we see that

u>Au = 0 for all u ∈ R.

Therefore, if A is a real n× n matrix then

u>Au = u>H(A)u for all u ∈ R,

where H(A) = (1/2)(A + A>) is the symmetric part of A. This explains why the notion
of a positive definite matrix is only interesting for symmetric matrices. But but one should
also be aware that even if a nonsymmetric matrix A has “well-behaved” eigenvalues, its
symmetric part H(A) may not be positive definite.
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Example 20.3. The matrix

A =

(
1 4
0 1

)
of Example 20.1 has positive eigenvalues (1, 1), but its symmetric part

H(A) =

(
1 2
2 1

)
is not positive definite, since its eigenvalues are −1, 3.

Beware that if A is a complex skew-Hermitian matrix, which means that A∗ = −A, then

(u∗Au)∗ = −u∗Au,

but this only implies that the real part of u∗Au is zero. So for any arbitrary complex square
matrix A, in general,

u∗Au 6= u∗H(A)u,

where H(A) = (1/2)(A+ A∗).

If f : E → F is any linear map, we just showed that f ∗ ◦ f and f ◦ f ∗ are positive
semidefinite self-adjoint linear maps. This fact has the remarkable consequence that every
linear map has two important decompositions:

1. The polar form.

2. The singular value decomposition (SVD).

The wonderful thing about the singular value decomposition is that there exist two or-
thonormal bases (u1, . . . , un) and (v1, . . . , vm) such that, with respect to these bases, f is a
diagonal matrix consisting of the singular values of f or 0. Thus, in some sense, f can always
be diagonalized with respect to two orthonormal bases. The SVD is also a useful tool for
solving overdetermined linear systems in the least squares sense and for data analysis, as we
show later on.

First we show some useful relationships between the kernels and the images of f , f ∗,
f ∗ ◦ f , and f ◦ f ∗. Recall that if f : E → F is a linear map, the image Im f of f is the
subspace f(E) of F , and the rank of f is the dimension dim(Im f) of its image. Also recall
that (Theorem 5.11)

dim (Ker f) + dim (Im f) = dim (E),

and that (Propositions 11.11 and 13.13) for every subspace W of E,

dim (W ) + dim (W⊥) = dim (E).
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Proposition 20.4. Given any two Euclidean spaces E and F , where E has dimension n
and F has dimension m, for any linear map f : E → F , we have

Ker f = Ker (f ∗ ◦ f),

Ker f ∗ = Ker (f ◦ f ∗),
Ker f = (Im f ∗)⊥,

Ker f ∗ = (Im f)⊥,

dim(Im f) = dim(Im f ∗),

and f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.

Proof. To simplify the notation, we will denote the inner products on E and F by the same
symbol 〈−,−〉 (to avoid subscripts). If f(u) = 0, then (f ∗ ◦ f)(u) = f ∗(f(u)) = f ∗(0) = 0,
and so Ker f ⊆ Ker (f ∗ ◦ f). By definition of f ∗, we have

〈f(u), f(u)〉 = 〈(f ∗ ◦ f)(u), u〉

for all u ∈ E. If (f ∗ ◦ f)(u) = 0, since 〈−,−〉 is positive definite, we must have f(u) = 0,
and so Ker (f ∗ ◦ f) ⊆ Ker f . Therefore,

Ker f = Ker (f ∗ ◦ f).

The proof that Ker f ∗ = Ker (f ◦ f ∗) is similar.

By definition of f ∗, we have

〈f(u), v〉 = 〈u, f ∗(v)〉 for all u ∈ E and all v ∈ F . (∗)

This immediately implies that

Ker f = (Im f ∗)⊥ and Ker f ∗ = (Im f)⊥.

Let us explain why Ker f = (Im f ∗)⊥, the proof of the other equation being similar.

Because the inner product is positive definite, for every u ∈ E, we have

• u ∈ Ker f

• iff f(u) = 0

• iff 〈f(u), v〉 = 0 for all v,

• by (∗) iff 〈u, f ∗(v)〉 = 0 for all v,

• iff u ∈ (Im f ∗)⊥.
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Since
dim(Im f) = n− dim(Ker f)

and
dim(Im f ∗) = n− dim((Im f ∗)⊥),

from
Ker f = (Im f ∗)⊥

we also have
dim(Ker f) = dim((Im f ∗)⊥),

from which we obtain
dim(Im f) = dim(Im f ∗).

Since
dim(Ker (f ∗ ◦ f)) + dim(Im (f ∗ ◦ f)) = dim(E),

Ker (f ∗ ◦ f) = Ker f and Ker f = (Im f ∗)⊥, we get

dim((Im f ∗)⊥) + dim(Im (f ∗ ◦ f)) = dim(E).

Since
dim((Im f ∗)⊥) + dim(Im f ∗) = dim(E),

we deduce that
dim(Im f ∗) = dim(Im (f ∗ ◦ f)).

A similar proof shows that

dim(Im f) = dim(Im (f ◦ f ∗)).

Consequently, f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.

20.2 Singular Value Decomposition for

Square Matrices

We will now prove that every square matrix has an SVD. Stronger results can be obtained
if we first consider the polar form and then derive the SVD from it (there are uniqueness
properties of the polar decomposition). For our purposes, uniqueness results are not as
important so we content ourselves with existence results, whose proofs are simpler. Readers
interested in a more general treatment are referred to Gallier [24].

The early history of the singular value decomposition is described in a fascinating paper
by Stewart [61]. The SVD is due to Beltrami and Camille Jordan independently (1873,
1874). Gauss is the grandfather of all this, for his work on least squares (1809, 1823)
(but Legendre also published a paper on least squares!). Then come Sylvester, Schmidt, and
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Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a computational method
to find an SVD. Schmidt’s work really has to do with integral equations and symmetric and
asymmetric kernels (1907). Weyl’s work has to do with perturbation theory (1912). Autonne
came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to
rectangular matrices (1936, 1939).

Theorem 20.5. (Singular value decomposition) For every real n×n matrix A there are two
orthogonal matrices U and V and a diagonal matrix D such that A = V DU>, where D is of
the form

D =


σ1 . . .

σ2 . . .
...

...
. . .

...
. . . σn

 ,

where σ1, . . . , σr are the singular values of A, i.e., the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = · · · = σn = 0. The columns of U are eigenvectors
of A>A, and the columns of V are eigenvectors of AA>.

Proof. Since A>A is a symmetric matrix, in fact, a positive semidefinite matrix, there exists
an orthogonal matrix U such that

A>A = UD2U>,

with D = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A; that is, σ1, . . . , σr are the singular values of A. It follows that

U>A>AU = (AU)>AU = D2,

and if we let fj be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and

fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by

vj = σ−1
j fj, 1 ≤ j ≤ r,

then we have

〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vn) (for example,
using Gram–Schmidt). Now since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ r
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and since fj = 0 for j = r + 1, . . . , n,

〈vi, fj〉 = 0 1 ≤ i ≤ n, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vn, then V is orthogonal and the above equations
prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD2U>, AA> = V D2V >,

which shows that A>A and AA> have the same eigenvalues, that the columns of U are
eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

Example 20.4. Here is a simple example of how to use the proof of Theorem 20.5 to obtain

an SVD decomposition. Let A =

(
1 1
0 0

)
. Then A> =

(
1 0
1 0

)
, A>A =

(
1 1
1 1

)
, and

AA> =

(
2 0
0 0

)
. A simple calculation shows that the eigenvalues of A>A are 2 and 0, and

for the eigenvalue 2, a unit eigenvector is

(
1/
√

2

1/
√

2

)
, while a unit eigenvector for the eigenvalue

0 is

(
1/
√

2

−1/
√

2

)
. Observe that the singular values are σ1 =

√
2 and σ2 = 0. Furthermore,

U =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
= U>. To determine V , the proof of Theorem 20.5 tells us to first

calculate

AU =

(√
2 0

0 0

)
,

and then set

v1 = (1/
√

2)

(√
2

0

)
=

(
1
0

)
.

Once v1 is determined, since σ2 = 0, we have the freedom to choose v2 such that (v1, v2)

forms an orthonormal basis for R2. Naturally, we chose v2 =

(
0
1

)
and set V =

(
1 0
0 1

)
. The

columns of V are unit eigenvectors of AA>, but finding V by computing unit eigenvectors of
AA> does not guarantee that these vectors are consistent with U so that A = V ΣU>. Thus
one has to use AU instead. We leave it to the reader to check that

A = V

(√
2 0

0 0

)
U>.

Theorem 20.5 suggests the following definition.
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Definition 20.3. A triple (U,D, V ) such that A = V DU>, where U and V are orthogonal
and D is a diagonal matrix whose entries are nonnegative (it is positive semidefinite) is
called a singular value decomposition (SVD) of A. If D = diag(σ1, . . . , σn), it is customary
to assume that σ1 ≥ σ2 ≥ · · · ≥ σn.

The Matlab command for computing an SVD A = V DU> of a matrix A is
[V, D, U] = svd(A).

The proof of Theorem 20.5 shows that there are two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), where (u1, . . . , un) are eigenvectors of A>A and (v1, . . . , vn) are eigenvectors
of AA>. Furthermore, (u1, . . . , ur) is an orthonormal basis of ImA>, (ur+1, . . . , un) is an
orthonormal basis of KerA, (v1, . . . , vr) is an orthonormal basis of ImA, and (vr+1, . . . , vn)
is an orthonormal basis of KerA>.

Using a remark made in Chapter 3, if we denote the columns of U by u1, . . . , un and the
columns of V by v1, . . . , vn, then we can write

A = V DU> = σ1v1u
>
1 + · · ·+ σrvru

>
r ,

with σ1 ≥ σ2 ≥ · · · ≥ σr. As a consequence, if r is a lot smaller than n (we write r � n), we
see that A can be reconstructed from U and V using a much smaller number of elements.
This idea will be used to provide “low-rank” approximations of a matrix. The idea is to keep
only the k top singular values for some suitable k � r for which σk+1, . . . , σr are very small.

Remarks:

(1) In Strang [64] the matrices U, V,D are denoted by U = Q2, V = Q1, and D = Σ, and
an SVD is written as A = Q1ΣQ>2 . This has the advantage that Q1 comes before Q2 in
A = Q1ΣQ>2 . This has the disadvantage that A maps the columns of Q2 (eigenvectors
of A>A) to multiples of the columns of Q1 (eigenvectors of AA>).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub and
Van Loan [29], Demmel [16], and Trefethen and Bau [68], where the SVD and its
applications are also discussed quite extensively.

(3) If A is a symmetric matrix, then in general, there is no SVD V ΣU> of A with V = U .
However, if A is positive semidefinite, then the eigenvalues of A are nonnegative, and
so the nonzero eigenvalues of A are equal to the singular values of A and SVDs of A
are of the form

A = V ΣV >.

(4) The SVD also applies to complex matrices. In this case, for every complex n×n matrix
A, there are two unitary matrices U and V and a diagonal matrix D such that

A = V DU∗,

where D is a diagonal matrix consisting of real entries σ1, . . . , σn, where σ1 ≥ · · · ≥ σr
are the singular values of A, i.e., the positive square roots of the nonzero eigenvalues
of A∗A and AA∗, and σr+1 = . . . = σn = 0.
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20.3 Polar Form for Square Matrices

A notion closely related to the SVD is the polar form of a matrix.

Definition 20.4. A pair (R, S) such that A = RS with R orthogonal and S symmetric
positive semidefinite is called a polar decomposition of A.

Theorem 20.5 implies that for every real n×n matrix A, there is some orthogonal matrix
R and some positive semidefinite symmetric matrix S such that

A = RS.

This is easy to show and we will prove it below. Furthermore, R, S are unique if A is
invertible, but this is harder to prove; see Problem 20.9.

For example, the matrix

A =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies that
some of the eigenvalues of A are negative.

Remark: In the complex case, the polar decomposition states that for every complex n×n
matrix A, there is some unitary matrix U and some positive semidefinite Hermitian matrix
H such that

A = UH.

It is easy to go from the polar form to the SVD, and conversely.

Given an SVD decomposition A = V DU>, let R = V U> and S = UDU>. It is clear
that R is orthogonal and that S is positive semidefinite symmetric, and

RS = V U>UDU> = V DU> = A.

Example 20.5. Recall from Example 20.4 that A = V DU> where V = I2 and

A =

(
1 1
0 0

)
, U =

(
1√
2

1√
2

1√
2
− 1√

2

)
, D =

(√
2 0

0 0

)
.

Set R = V U> = U and

S = UDU> =

(
1√
2

1√
2

1√
2

1√
2

)
.

Since S = 1√
2
A>A, S has eigenvalues

√
2 and 0. We leave it to the reader to check that

A = RS.
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Going the other way, given a polar decomposition A = R1S, where R1 is orthogonal
and S is positive semidefinite symmetric, there is an orthogonal matrix R2 and a positive
semidefinite diagonal matrix D such that S = R2DR>2 , and thus

A = R1R2DR>2 = V DU>,

where V = R1R2 and U = R2 are orthogonal.

Example 20.6. Let A =

(
1 1
0 0

)
and A = R1S, where R1 =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
and S =(

1/
√

2 1/
√

2

1/
√

2 1/
√

2

)
. This is the polar decomposition of Example 20.5. Observe that

S =

(
1√
2

1√
2

1√
2
− 1√

2

)(√
2 0

0 0

)( 1√
2

1√
2

1√
2
− 1√

2

)
= R2DR

>
2 .

Set U = R2 and V = R1R2 =

(
1 0
0 1

)
to obtain the SVD decomposition of Example 20.4.

The eigenvalues and the singular values of a matrix are typically not related in any
obvious way. For example, the n× n matrix

A =



1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1


has the eigenvalue 1 with multiplicity n, but its singular values, σ1 ≥ · · · ≥ σn, which are
the positive square roots of the eigenvalues of the matrix B = A>A with

B =



1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5


have a wide spread, since

σ1

σn
= cond2(A) ≥ 2n−1.
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If A is a complex n× n matrix, the eigenvalues λ1, . . . , λn and the singular values
σ1 ≥ σ2 ≥ · · · ≥ σn of A are not unrelated, since

σ2
1 · · ·σ2

n = det(A∗A) = | det(A)|2

and
|λ1| · · · |λn| = | det(A)|,

so we have
|λ1| · · · |λn| = σ1 · · · σn.

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 20.6. (Weyl’s inequalities, 1949 ) For any complex n×n matrix, A, if λ1, . . . , λn ∈
C are the eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular values of A, listed so that
|λ1| ≥ · · · ≥ |λn| and σ1 ≥ · · · ≥ σn ≥ 0, then

|λ1| · · · |λn| = σ1 · · ·σn and

|λ1| · · · |λk| ≤ σ1 · · · σk, for k = 1, . . . , n− 1.

A proof of Theorem 20.6 can be found in Horn and Johnson [37], Chapter 3, Section
3.3, where more inequalities relating the eigenvalues and the singular values of a matrix are
given.

Theorem 20.5 can be easily extended to rectangular m × n matrices, as we show in the
next section. For various versions of the SVD for rectangular matrices, see Strang [64] Golub
and Van Loan [29], Demmel [16], and Trefethen and Bau [68].

20.4 Singular Value Decomposition for

Rectangular Matrices

Here is the generalization of Theorem 20.5 to rectangular matrices.

Theorem 20.7. (Singular value decomposition) For every real m × n matrix A, there are
two orthogonal matrices U (n×n) and V (m×m) and a diagonal m×n matrix D such that
A = V DU>, where D is of the form

D =



σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0


or D =


σ1 . . . 0 . . . 0

σ2 . . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . σm 0 . . . 0

 ,
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where σ1, . . . , σr are the singular values of A, i.e. the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = . . . = σp = 0, where p = min(m,n). The columns
of U are eigenvectors of A>A, and the columns of V are eigenvectors of AA>.

Proof. As in the proof of Theorem 20.5, since A>A is symmetric positive semidefinite, there
exists an n× n orthogonal matrix U such that

A>A = UΣ2U>,

with Σ = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A. Observe that r ≤ min{m,n}, and AU is an m× n matrix. It
follows that

U>A>AU = (AU)>AU = Σ2,

and if we let fj ∈ Rm be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and
fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by
vj = σ−1

j fj, 1 ≤ j ≤ r,

then we have
〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vm) (for example,
using Gram–Schmidt).

Now since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n, we have

〈vi, fj〉 = 0 1 ≤ i ≤ m, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vm, then V is an m×m orthogonal matrix and
if m ≥ n, we let

D =

(
Σ

0m−n

)
=



σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0


,
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else if n ≥ m, then we let

D =


σ1 . . . 0 . . . 0

σ2 . . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . σm 0 . . . 0

 .

In either case, the above equations prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD>DU> = Udiag(σ2
1, . . . , σ

2
r , 0, . . . , 0︸ ︷︷ ︸

n−r

)U>

and
AA> = V DD>V > = V diag(σ2

1, . . . , σ
2
r , 0, . . . , 0︸ ︷︷ ︸

m−r

)V >,

which shows that A>A and AA> have the same nonzero eigenvalues, that the columns of U
are eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

A triple (U,D, V ) such that A = V DU> is called a singular value decomposition (SVD)
of A. If D = diag(σ1, . . . , σp) (with p = min(m,n)), it is customary to assume that σ1 ≥
σ2 ≥ · · · ≥ σp.

Example 20.7. Let A =

1 1
0 0
0 0

. Then A> =

(
1 0 0
1 0 0

)
A>A =

(
1 1
1 1

)
, and AA> =2 0 0

0 0 0
0 0 0

. The reader should verify that A>A = UΣ2U> where Σ2 =

(
2 0
0 0

)
and

U = U> =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
. Since AU =

√2 0
0 0
0 0

 , set v1 = 1√
2

√2
0
0

 =

1
0
0

 ,

and complete an orthonormal basis for R3 by assigning v2 =

0
1
0

, and v3 =

0
0
1

. Thus

V = I3, and the reader should verify that A = V DU>, where D =

√2 0
0 0
0 0

.
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Even though the matrix D is an m×n rectangular matrix, since its only nonzero entries
are on the descending diagonal, we still say that D is a diagonal matrix.

The Matlab command for computing an SVD A = V DU> of a matrix A is
[V, D, U] = svd(A). Beware that Matlab uses the convention that the SVD of a matrix
A is written as A = UDV >, and so the call for this version of the SVD is [U, D, V] =

svd(A).

If we view A as the representation of a linear map f : E → F , where dim(E) = n and
dim(F ) = m, the proof of Theorem 20.7 shows that there are two orthonormal bases (u1, . . .,
un) and (v1, . . . , vm) for E and F , respectively, where (u1, . . . , un) are eigenvectors of f ∗ ◦ f
and (v1, . . . , vm) are eigenvectors of f ◦f ∗. Furthermore, (u1, . . . , ur) is an orthonormal basis
of Im f ∗, (ur+1, . . . , un) is an orthonormal basis of Ker f , (v1, . . . , vr) is an orthonormal basis
of Im f , and (vr+1, . . . , vm) is an orthonormal basis of Ker f ∗.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular matrix; we
will do so in Chapter 21. The reader may also consult Strang [64], Demmel [16], Trefethen
and Bau [68], and Golub and Van Loan [29].

One of the spectral theorems states that a symmetric matrix can be diagonalized by
an orthogonal matrix. There are several numerical methods to compute the eigenvalues
of a symmetric matrix A. One method consists in tridiagonalizing A, which means that
there exists some orthogonal matrix P and some symmetric tridiagonal matrix T such that
A = PTP>. In fact, this can be done using Householder transformations; see Theorem
17.2. It is then possible to compute the eigenvalues of T using a bisection method based on
Sturm sequences. One can also use Jacobi’s method. For details, see Golub and Van Loan
[29], Chapter 8, Demmel [16], Trefethen and Bau [68], Lecture 26, Ciarlet [14], and Chapter
17. Computing the SVD of a matrix A is more involved. Most methods begin by finding
orthogonal matrices U and V and a bidiagonal matrix B such that A = V BU>; see Problem
12.8 and Problem 20.3. This can also be done using Householder transformations. Observe
that B>B is symmetric tridiagonal. Thus, in principle, the previous method to diagonalize
a symmetric tridiagonal matrix can be applied. However, it is unwise to compute B>B
explicitly, and more subtle methods are used for this last step; the matrix of Problem 20.1
can be used, and see Problem 20.3. Again, see Golub and Van Loan [29], Chapter 8, Demmel
[16], and Trefethen and Bau [68], Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any deformation it
is important to separate stretching from rotation. This is exactly what QS achieves. The
orthogonal part Q corresponds to rotation (perhaps with an additional reflection), and the
symmetric matrix S to stretching (or compression). The real eigenvalues σ1, . . . , σr of S are
the stretch factors (or compression factors) (see Marsden and Hughes [47]). The fact that
S can be diagonalized by an orthogonal matrix corresponds to a natural choice of axes, the
principal axes.

The SVD has applications to data compression, for instance in image processing. The
idea is to retain only singular values whose magnitudes are significant enough. The SVD
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can also be used to determine the rank of a matrix when other methods such as Gaussian
elimination produce very small pivots. One of the main applications of the SVD is the
computation of the pseudo-inverse. Pseudo-inverses are the key to the solution of various
optimization problems, in particular the method of least squares. This topic is discussed in
the next chapter (Chapter 21). Applications of the material of this chapter can be found in
Strang [64, 63]; Ciarlet [14]; Golub and Van Loan [29], which contains many other references;
Demmel [16]; and Trefethen and Bau [68].

20.5 Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define various norms on matrices which
have found recent applications in quantum information theory and in spectral graph theory.
Following Horn and Johnson [37] (Section 3.4) we can make the following definitions:

Definition 20.5. For any matrix A ∈ Mm,n(C), let q = min{m,n}, and if σ1 ≥ · · · ≥ σq are
the singular values of A, for any k with 1 ≤ k ≤ q, let

Nk(A) = σ1 + · · ·+ σk,

called the Ky Fan k-norm of A.

More generally, for any p ≥ 1 and any k with 1 ≤ k ≤ q, let

Nk;p(A) = (σp1 + · · ·+ σpk)
1/p,

called the Ky Fan p-k-norm of A. When k = q, Nq;p is also called the Schatten p-norm.

Observe that when k = 1, N1(A) = σ1, and the Ky Fan norm N1 is simply the spectral
norm from Chapter 8, which is the subordinate matrix norm associated with the Euclidean
norm. When k = q, the Ky Fan norm Nq is given by

Nq(A) = σ1 + · · ·+ σq = tr((A∗A)1/2)

and is called the trace norm or nuclear norm. When p = 2 and k = q, the Ky Fan Nq;2 norm
is given by

Nk;2(A) = (σ2
1 + · · ·+ σ2

q )
1/2 =

√
tr(A∗A) = ‖A‖F ,

which is the Frobenius norm of A.

It can be shown that Nk and Nk;p are unitarily invariant norms, and that when m = n,
they are matrix norms; see Horn and Johnson [37] (Section 3.4, Corollary 3.4.4 and Problem
3).
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20.6 Summary

The main concepts and results of this chapter are listed below:

• For any linear map f : E → E on a Euclidean space E, the maps f ∗ ◦ f and f ◦ f ∗ are
self-adjoint and positive semidefinite.

• The singular values of a linear map.

• Positive semidefinite and positive definite self-adjoint maps.

• Relationships between Im f , Ker f , Im f ∗, and Ker f ∗.

• The singular value decomposition theorem for square matrices (Theorem 20.5).

• The SVD of matrix.

• The polar decomposition of a matrix.

• The Weyl inequalities .

• The singular value decomposition theorem for m× n matrices (Theorem 20.7).

• Ky Fan k-norms, Ky Fan p-k-norms, Schatten p-norms.

20.7 Problems

Problem 20.1. (1) Let A be a real n×n matrix and consider the (2n)×(2n) real symmetric
matrix

S =

(
0 A
A> 0

)
.

Suppose that A has rank r. If A = V ΣU> is an SVD for A, with Σ = diag(σ1, . . . , σn) and
σ1 ≥ · · · ≥ σr > 0, denoting the columns of U by uk and the columns of V by vk, prove that

σk is an eigenvalue of S with corresponding eigenvector

(
vk
uk

)
for k = 1, . . . , n, and that −σk

is an eigenvalue of S with corresponding eigenvector

(
vk
−uk

)
for k = 1, . . . , n.

Hint . We have Auk = σkvk for k = 1, . . . , n. Show that A>vk = σkuk for k = 1, . . . , n.

(2) Prove that the 2n eigenvectors of S in (1) are pairwise orthogonal. Check that if A
has rank r, then S has rank 2r.

(3) Now assume that A is a real m× n matrix and consider the (m+ n)× (m+ n) real
symmetric matrix

S =

(
0 A
A> 0

)
.



20.7. PROBLEMS 697

Suppose that A has rank r. If A = V ΣU> is an SVD for A, prove that σk is an eigenvalue

of S with corresponding eigenvector

(
vk
uk

)
for k = 1, . . . , r, and that −σk is an eigenvalue of

S with corresponding eigenvector

(
vk
−uk

)
for k = 1, . . . , r.

Find the remaining m+ n− 2r eigenvectors of S associated with the eigenvalue 0.

(4) Prove that these m+ n eigenvectors of S are pairwise orthogonal.

Problem 20.2. Let A be a real m× n matrix of rank r.

(1) Consider the (m+ n)× (m+ n) real symmetric matrix

S =

(
0 A
A> 0

)
and prove that (

Im z−1A
0 In

)(
zIm −A
−A> zIn

)
=

(
zIm − z−1AA> 0

−A> zIn

)
. (∗)

Use the Equation (∗) to prove that if if n ≥ m, then

det(zIm+n − S) = zn−m det(z2Im − AA>).

Permute the two matrices on the lefthand side of Equation (∗) to obtain another equation
and use this equation to prove that if m ≥ n, then

det(zIm+n − S) = zm−n det(z2In − A>A).

(2) Prove that the eigenvalues of S are ±σ1, . . . ,±σr, with m+ n− 2r additional zeros.

Problem 20.3. Let B be a real bidiagonal matrix of the form

B =


a1 b1 0 · · · 0

0 a2 b2
. . . 0

...
. . . . . . . . .

...
0 · · · 0 an−1 bn−1

0 0 · · · 0 an

 .

Let A be the (2n)× (2n) symmetric matrix

A =

(
0 B>

B 0

)
,

and let P be the permutation matrix given by P = [e1, en+1, e2, en+2, · · · , en, e2n].
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(1) Prove that T = P>AP is a symmetric tridiagonal (2n)× (2n) matrix with zero main
diagonal of the form

T =



0 a1 0 0 0 0 · · · 0
a1 0 b1 0 0 0 · · · 0
0 b1 0 a2 0 0 · · · 0
0 0 a2 0 b2 0 · · · 0
...

...
...

. . . . . . . . . . . .
...

0 0 0 · · · an−1 0 bn−1 0
0 0 0 · · · 0 bn−1 0 an
0 0 0 · · · 0 0 an 0


.

(2) Prove that if xi is a unit eigenvector for an eigenvalue λi of T , then λi = ±σi where
σi is a singular value of B, and that

Pxi =
1√
2

(
ui
±vi

)
,

where the ui are unit eigenvectors of B>B and the vi are unit eigenvectors of BB>.

Problem 20.4. Find the SVD of the matrix

A =

0 2 0
0 0 3
0 0 0

 .

Problem 20.5. Let u, v ∈ Rn be two nonzero vectors, and let A = uv> be the corresponding
rank 1 matrix. Prove that the nonzero singular value of A is ‖u‖2 ‖v‖2.

Problem 20.6. Let A be a n×n real matrix. Prove that if σ1, . . . , σn are the singular values
of A, then σ3

1, . . . , σ
3
n are the singular values of AA>A.

Problem 20.7. Let A be a real n× n matrix.

(1) Prove that the largest singular value σ1 of A is given by

σ1 = sup
x 6=0

‖Ax‖2

‖x‖2

,

and that this supremum is achieved at x = u1, the first column in U in an SVD A = V ΣU>.

(2) Extend the above result to real m× n matrices.

Problem 20.8. Let A be a real m × n matrix. Prove that if B is any submatrix of A (by
keeping M ≤ m rows and N ≤ n columns of A), then (σ1)B ≤ (σ1)A (where (σ1)A is the
largest singular value of A and similarly for (σ1)B).
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Problem 20.9. Let A be a real n× n matrix.

(1) Assume A is invertible. Prove that if A = Q1S1 = Q2S2 are two polar decompositions
of A, then Q1 = Q2 and S1 = S2.

Hint . A>A = S2
1 = S2

2 , with S1 and S2 symmetric positive definite. Then use Problem 16.7.

(2) Now assume that A is singular. Prove that if A = Q1S1 = Q2S2 are two polar
decompositions of A, then S1 = S2, but Q1 may not be equal to Q2.

Problem 20.10. (1) Let A be any invertible (real) n × n matrix. Prove that for every
SVD, A = V DU> of A, the product V U> is the same (i.e., if V1DU

>
1 = V2DU

>
2 , then

V1U
>
1 = V2U

>
2 ). What does V U> have to do with the polar form of A?

(2) Given any invertible (real) n× n matrix, A, prove that there is a unique orthogonal
matrix, Q ∈ O(n), such that ‖A−Q‖F is minimal (under the Frobenius norm). In fact,
prove that Q = V U>, where A = V DU> is an SVD of A. Moreover, if det(A) > 0, show
that Q ∈ SO(n).

What can you say if A is singular (i.e., non-invertible)?

Problem 20.11. (1) Prove that for any n× n matrix A and any orthogonal matrix Q, we
have

max{tr(QA) | Q ∈ O(n)} = σ1 + · · ·+ σn,

where σ1 ≥ · · · ≥ σn are the singular values of A. Furthermore, this maximum is achieved
by Q = UV >, where A = V ΣU> is any SVD for A.

(2) By applying the above result with A = X>Z and Q = R, deduce the following result:
for any two fixed n× k matrices X and Z, the minimum of the set

{‖X − ZR‖F | R ∈ O(k)}

is achieved by R = UV > for any SVD decomposition V ΣU> = X>Z of X>Z.

Remark: The problem of finding an orthogonal matrix R such that ZR comes as close as
possible to X is called the orthogonal Procrustes problem; see Strang [65] (Section IV.9) for
the history of this problem.
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Chapter 21

Applications of SVD and
Pseudo-Inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de
plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons
fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme
des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre
qui, empêchant les extrêmes de prévaloir, est très propre às faire connaitre l’état du
système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des
Comètes

21.1 Least Squares Problems and the Pseudo-Inverse

This chapter presents several applications of SVD. The first one is the pseudo-inverse, which
plays a crucial role in solving linear systems by the method of least squares. The second ap-
plication is data compression. The third application is principal component analysis (PCA),
whose purpose is to identify patterns in data and understand the variance–covariance struc-
ture of the data. The fourth application is the best affine approximation of a set of data, a
problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined system of linear
equations

Ax = b,

i.e., a system in which A is a rectangular m×n matrix with more equations than unknowns
(when m > n). Historically, the method of least squares was used by Gauss and Legendre
to solve problems in astronomy and geodesy. The method was first published by Legendre
in 1805 in a paper on methods for determining the orbits of comets. However, Gauss had
already used the method of least squares as early as 1801 to determine the orbit of the asteroid

701
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Ceres, and he published a paper about it in 1810 after the discovery of the asteroid Pallas.
Incidentally, it is in that same paper that Gaussian elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems is that repeated
measurements are taken to minimize errors. This produces an overdetermined and often in-
consistent system of linear equations. For example, Gauss solved a system of eleven equations
in six unknowns to determine the orbit of the asteroid Pallas.

Example 21.1. As a concrete illustration, suppose that we observe the motion of a small
object, assimilated to a point, in the plane. From our observations, we suspect that this
point moves along a straight line, say of equation y = cx+ d. Suppose that we observed the
moving point at three different locations (x1, y1), (x2, y2), and (x3, y3). Then we should have

d+ cx1 = y1,

d+ cx2 = y2,

d+ cx3 = y3.

If there were no errors in our measurements, these equations would be compatible, and c
and d would be determined by only two of the equations. However, in the presence of errors,
the system may be inconsistent. Yet we would like to find c and d!

The idea of the method of least squares is to determine (c, d) such that it minimizes the
sum of the squares of the errors, namely,

(d+ cx1 − y1)2 + (d+ cx2 − y2)2 + (d+ cx3 − y3)2.

See Figure 21.1.

y = cx + d

(x , y )1 1

(x , y )2 2

(x , y )3 3

1(x , cx +d )1

(x , cx +d )
(x , cx +d )2 2

3 3

(x , y )1 1

(x , y )2 2

(x , y )3 3

Figure 21.1: Given three points (x1, y1), (x2, y2), (x3, y3), we want to determine the line
y = cx+ d which minimizes the lengths of the dashed vertical lines.



21.1. LEAST SQUARES PROBLEMS AND THE PSEUDO-INVERSE 703

In general, for an overdetermined m × n system Ax = b, what Gauss and Legendre
discovered is that there are solutions x minimizing

‖Ax− b‖2
2

(where ‖u‖2
2 = u2

1 +· · ·+u2
n, the square of the Euclidean norm of the vector u = (u1, . . . , un)),

and that these solutions are given by the square n× n system

A>Ax = A>b,

called the normal equations . Furthermore, when the columns of A are linearly independent,
it turns out that A>A is invertible, and so x is unique and given by

x = (A>A)−1A>b.

Note that A>A is a symmetric matrix, one of the nice features of the normal equations of a
least squares problem. For instance, since the above problem in matrix form is represented
as 1 x1

1 x2

1 x3

(d
c

)
=

y1

y2

y3

 ,

the normal equations are(
3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

)(
d
c

)
=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.

In fact, given any real m × n matrix A, there is always a unique x+ of minimum norm
that minimizes ‖Ax− b‖2

2, even when the columns of A are linearly dependent. How do we
prove this, and how do we find x+?

Theorem 21.1. Every linear system Ax = b, where A is an m × n matrix, has a unique
least squares solution x+ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x+. Indeed, we can
interpret b as a point in the Euclidean (affine) space Rm, and the image subspace of A (also
called the column space of A) as a subspace U of Rm (passing through the origin). Then it
is clear that

inf
x∈Rn
‖Ax− b‖2

2 = inf
y∈U
‖y − b‖2

2,

with U = ImA, and we claim that x minimizes ‖Ax− b‖2
2 iff Ax = p, where p the orthogonal

projection of b onto the subspace U .

Recall from Section 12.1 that the orthogonal projection pU : U ⊕ U⊥ → U is the linear
map given by

pU(u+ v) = u,
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with u ∈ U and v ∈ U⊥. If we let p = pU(b) ∈ U , then for any point y ∈ U , the vectors
−→py = y − p ∈ U and

−→
bp = p− b ∈ U⊥ are orthogonal, which implies that

‖−→by‖2
2 = ‖−→bp‖2

2 + ‖−→py‖2
2,

where
−→
by = y− b. Thus, p is indeed the unique point in U that minimizes the distance from

b to any point in U . See Figure 21.2.

Im A = U

b

p

Im A = U

b

p

y

Figure 21.2: Given a 3 × 2 matrix A, U = ImA is the peach plane in R3 and p is the
orthogonal projection of b onto U . Furthermore, given y ∈ U , the points b, y, and p are the
vertices of a right triangle.

Thus the problem has been reduced to proving that there is a unique x+ of minimum
norm such that Ax+ = p, with p = pU(b) ∈ U , the orthogonal projection of b onto U . We
use the fact that

Rn = KerA⊕ (KerA)⊥.

Consequently, every x ∈ Rn can be written uniquely as x = u + v, where u ∈ KerA and
v ∈ (KerA)⊥, and since u and v are orthogonal,

‖x‖2
2 = ‖u‖2

2 + ‖v‖2
2.

Furthermore, since u ∈ KerA, we have Au = 0, and thus Ax = p iff Av = p, which shows
that the solutions of Ax = p for which x has minimum norm must belong to (KerA)⊥.
However, the restriction of A to (KerA)⊥ is injective. This is because if Av1 = Av2, where
v1, v2 ∈ (KerA)⊥, then A(v2 − v1) = 0, which implies v2 − v1 ∈ KerA, and since v1, v2 ∈
(KerA)⊥, we also have v2 − v1 ∈ (KerA)⊥, and consequently, v2 − v1 = 0. This shows that
there is a unique x+ of minimum norm such that Ax+ = p, and that x+ must belong to
(KerA)⊥. By our previous reasoning, x+ is the unique vector of minimum norm minimizing
‖Ax− b‖2

2.
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The proof also shows that x minimizes ‖Ax − b‖2
2 iff

−→
pb = b − Ax is orthogonal to U ,

which can be expressed by saying that b−Ax is orthogonal to every column of A. However,
this is equivalent to

A>(b− Ax) = 0, i.e., A>Ax = A>b.

Finally, it turns out that the minimum norm least squares solution x+ can be found in terms
of the pseudo-inverse A+ of A, which is itself obtained from any SVD of A.

Definition 21.1. Given any nonzero m × n matrix A of rank r, if A = V DU> is an SVD
of A such that

D =

(
Λ 0r,n−r

0m−r,r 0m−r,n−r

)
,

with
Λ = diag(λ1, . . . , λr)

an r× r diagonal matrix consisting of the nonzero singular values of A, then if we let D+ be
the n×m matrix

D+ =

(
Λ−1 0r,m−r

0n−r,r 0n−r,m−r

)
,

with
Λ−1 = diag(1/λ1, . . . , 1/λr),

the pseudo-inverse of A is defined by

A+ = UD+V >.

If A = 0m,n is the zero matrix, we set A+ = 0n,m. Observe that D+ is obtained from D by
inverting the nonzero diagonal entries of D, leaving all zeros in place, and then transposing
the matrix. For example, given the matrix

D =


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 0 0

 ,

its pseudo-inverse is

D+ =


1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 0
0 0 0 0

 .

The pseudo-inverse of a matrix is also known as the Moore–Penrose pseudo-inverse.

Actually, it seems that A+ depends on the specific choice of U and V in an SVD (U,D, V )
for A, but the next theorem shows that this is not so.
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Theorem 21.2. The least squares solution of smallest norm of the linear system Ax = b,
where A is an m× n matrix, is given by

x+ = A+b = UD+V >b.

Proof. First assume that A is a (rectangular) diagonal matrix D, as above. Then since x
minimizes ‖Dx− b‖2

2 iff Dx is the projection of b onto the image subspace F of D, it is fairly
obvious that x+ = D+b. Otherwise, we can write

A = V DU>,

where U and V are orthogonal. However, since V is an isometry,

‖Ax− b‖2 = ‖V DU>x− b‖2 = ‖DU>x− V >b‖2.

Letting y = U>x, we have ‖x‖2 = ‖y‖2, since U is an isometry, and since U is surjective,
‖Ax − b‖2 is minimized iff ‖Dy − V >b‖2 is minimized, and we have shown that the least
solution is

y+ = D+V >b.

Since y = U>x, with ‖x‖2 = ‖y‖2, we get

x+ = UD+V >b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.

By Theorem 21.2 and Theorem 21.1, A+b is uniquely defined by every b, and thus A+

depends only on A.

The Matlab command for computing the pseudo-inverse B of the matrix A is
B = pinv(A).

Example 21.2. If A is the rank 2 matrix

A =


1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7


whose eigenvalues are −1.1652, 0, 0, 17.1652, using Matlab we obtain the SVD A = V DU>

with

U =


−0.3147 0.7752 0.2630 −0.4805
−0.4275 0.3424 0.0075 0.8366
−0.5402 −0.0903 −0.8039 −0.2319
−0.6530 −0.5231 0.5334 −0.1243

 ,

V =


−0.3147 −0.7752 0.5452 0.0520
−0.4275 −0.3424 −0.7658 0.3371
−0.5402 0.0903 −0.1042 −0.8301
−0.6530 0.5231 0.3247 0.4411

 , D =


17.1652 0 0 0

0 1.1652 0 0
0 0 0 0
0 0 0 0

 .
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Then

D+ =


0.0583 0 0 0

0 0.8583 0 0
0 0 0 0
0 0 0 0

 ,

and

A+ = UD+V > =


−0.5100 −0.2200 0.0700 0.3600
−0.2200 −0.0900 0.0400 0.1700
0.0700 0.0400 0.0100 −0.0200
0.3600 0.1700 −0.0200 −0.2100

 ,

which is also the result obtained by calling pinv(A).

If A is an m × n matrix of rank n (and so m ≥ n), it is immediately shown that the
QR-decomposition in terms of Householder transformations applies as follows:

There are n m × m matrices H1, . . . , Hn, Householder matrices or the identity, and an
upper triangular m× n matrix R of rank n such that

A = H1 · · ·HnR.

Then because each Hi is an isometry,

‖Ax− b‖2 = ‖Rx−Hn · · ·H1b‖2,

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H1b.

Now the system
Rx = Hn · · ·H1b

is of the form (
R1

0m−n

)
x =

(
c
d

)
,

where R1 is an invertible n× n matrix (since A has rank n), c ∈ Rn, and d ∈ Rm−n, and the
least squares solution of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert R1.

The method of least squares is one of the most effective tools of the mathematical sciences.
There are entire books devoted to it. Readers are advised to consult Strang [64], Golub and
Van Loan [29], Demmel [16], and Trefethen and Bau [68], where extensions and applications
of least squares (such as weighted least squares and recursive least squares) are described.
Golub and Van Loan [29] also contains a very extensive bibliography, including a list of
books on least squares.
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21.2 Properties of the Pseudo-Inverse

We begin this section with a proposition which provides a way to calculate the pseudo-inverse
of an m× n matrix A without first determining an SVD factorization.

Proposition 21.3. When A has full rank, the pseudo-inverse A+ can be expressed as A+ =
(A>A)−1A> when m ≥ n, and as A+ = A>(AA>)−1 when n ≥ m. In the first case (m ≥ n),
observe that A+A = I, so A+ is a left inverse of A; in the second case (n ≥ m), we have
AA+ = I, so A+ is a right inverse of A.

Proof. If m ≥ n and A has full rank n, we have

A = V

(
Λ

0m−n,n

)
U>

with Λ an n× n diagonal invertible matrix (with positive entries), so

A+ = U
(
Λ−1 0n,m−n

)
V >.

We find that

A>A = U
(
Λ 0n,m−n

)
V >V

(
Λ

0m−n,n

)
U> = UΛ2U>,

which yields

(A>A)−1A> = UΛ−2U>U
(
Λ 0n,m−n

)
V > = U

(
Λ−1 0n,m−n

)
V > = A+.

Therefore, if m ≥ n and A has full rank n, then

A+ = (A>A)−1A>.

If n ≥ m and A has full rank m, then

A = V
(
Λ 0m,n−m

)
U>

with Λ an m×m diagonal invertible matrix (with positive entries), so

A+ = U

(
Λ−1

0n−m,m

)
V >.

We find that

AA> = V
(
Λ 0m,n−m

)
U>U

(
Λ

0n−m,m

)
V > = V Λ2V >,

which yields

A>(AA>)−1 = U

(
Λ

0n−m,m

)
V >V Λ−2V > = U

(
Λ−1

0n−m,m

)
V > = A+.

Therefore, if n ≥ m and A has full rank m, then A+ = A>(AA>)−1.
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For example, if A =

1 2
2 3
0 1

, then A has rank 2 and since m ≥ n, A+ = (A>A)−1A>

where

A+ =

(
5 8
8 14

)−1

A> =

(
7/3 −4/3
4/3 5/6

)(
1 2 0
2 3 1

)
=

(
−1/3 2/3 −4/3
1/3 −1/6 5/6

)
.

If A =

(
1 2 3 0
0 1 1 −1

)
, since A has rank 2 and n ≥ m, then A+ = A>(AA>)−1 where

A+ = A>
(

14 5
5 3

)−1

=


1 0
2 1
3 1
0 −1

( 3/17 −5/17
−5/17 14/17

)
=


3/17 −5/17
1/17 4/17
4/17 −1/17
5/17 −14/17

 .

Let A = V ΣU> be an SVD for any m× n matrix A. It is easy to check that both AA+

and A+A are symmetric matrices. In fact,

AA+ = V ΣU>UΣ+V > = V ΣΣ+V > = V

(
Ir 0
0 0m−r

)
V >

and

A+A = UΣ+V >V ΣU> = UΣ+ΣU> = U

(
Ir 0
0 0n−r

)
U>.

From the above expressions we immediately deduce that

AA+A = A,

A+AA+ = A+,

and that

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since they are both symmetric).

Proposition 21.4. The matrix AA+ is the orthogonal projection onto the range of A and
A+A is the orthogonal projection onto Ker(A)⊥ = Im(A>), the range of A>.

Proof. Obviously, we have range(AA+) ⊆ range(A), and for any y = Ax ∈ range(A), since
AA+A = A, we have

AA+y = AA+Ax = Ax = y,
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so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ⊆ Ker(A+A), and
since AA+A = A, we also have Ker(A+A) ⊆ Ker(A), and so

Ker(A+A) = Ker(A).

Since A+A is symmetric, range(A+A) = range((A+A)>) = Ker(A+A)⊥ = Ker(A)⊥, as
claimed.

Proposition 21.5. The set range(A) = range(AA+) consists of all vectors y ∈ Rm such
that

V >y =

(
z
0

)
,

with z ∈ Rr.

Proof. Indeed, if y = Ax, then

V >y = V >Ax = V >V ΣU>x = ΣU>x =

(
Σr 0
0 0m−r

)
U>x =

(
z
0

)
,

where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if V >y = ( z0 ), then
y = V ( z0 ), and

AA+y = V

(
Ir 0
0 0m−r

)
V >y

= V

(
Ir 0
0 0m−r

)
V >V

(
z
0

)
= V

(
Ir 0
0 0m−r

)(
z
0

)
= V

(
z
0

)
= y,

which shows that y belongs to the range of A.

Similarly, we have the following result.

Proposition 21.6. The set range(A+A) = Ker(A)⊥ consists of all vectors y ∈ Rn such that

U>y =

(
z
0

)
,

with z ∈ Rr.
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Proof. If y = A+Au, then

y = A+Au = U

(
Ir 0
0 0n−r

)
U>u = U

(
z
0

)
,

for some z ∈ Rr. Conversely, if U>y = ( z0 ), then y = U ( z0 ), and so

A+AU

(
z
0

)
= U

(
Ir 0
0 0n−r

)
U>U

(
z
0

)
= U

(
Ir 0
0 0n−r

)(
z
0

)
= U

(
z
0

)
= y,

which shows that y ∈ range(A+A).

Analogous results hold for complex matrices, but in this case, V and U are unitary
matrices and AA+ and A+A are Hermitian orthogonal projections.

If A is a normal matrix, which means that AA> = A>A, then there is an intimate
relationship between SVD’s of A and block diagonalizations of A. As a consequence, the
pseudo-inverse of a normal matrix A can be obtained directly from a block diagonalization
of A.

If A is a (real) normal matrix, then we know from Theorem 16.18 that A can be block
diagonalized with respect to an orthogonal matrix U as

A = UΛU>,

where Λ is the (real) block diagonal matrix

Λ = diag(B1, . . . , Bn),

consisting either of 2× 2 blocks of the form

Bj =

(
λj −µj
µj λj

)
with µj 6= 0, or of one-dimensional blocks Bk = (λk). Then we have the following proposition:

Proposition 21.7. For any (real) normal matrix A and any block diagonalization A =
UΛU> of A as above, the pseudo-inverse of A is given by

A+ = UΛ+U>,

where Λ+ is the pseudo-inverse of Λ. Furthermore, if

Λ =

(
Λr 0
0 0

)
,
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where Λr has rank r, then

Λ+ =

(
Λ−1
r 0
0 0

)
.

Proof. Assume that B1, . . . , Bp are 2× 2 blocks and that λ2p+1, . . . , λn are the scalar entries.
We know that the numbers λj ± iµj, and the λ2p+k are the eigenvalues of A. Let ρ2j−1 =

ρ2j =
√
λ2
j + µ2

j =
√

det(Bi) for j = 1, . . . , p, ρj = |λj| for j = 2p+ 1, . . . , r. Multiplying U

by a suitable permutation matrix, we may assume that the blocks of Λ are ordered so that
ρ1 ≥ ρ2 ≥ · · · ≥ ρr > 0. Then it is easy to see that

AA> = A>A = UΛU>UΛ>U> = UΛΛ>U>,

with
ΛΛ> = diag(ρ2

1, . . . , ρ
2
r, 0, . . . , 0),

so ρ1 ≥ ρ2 ≥ · · · ≥ ρr > 0 are the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0 of A. Define the
diagonal matrix

Σ = diag(σ1, . . . , σr, 0, . . . , 0),

where r = rank(A), σ1 ≥ · · · ≥ σr > 0 and the block diagonal matrix Θ defined such that
the block Bi in Λ is replaced by the block σ−1Bi where σ =

√
det(Bi), the nonzero scalar

λj is replaced λj/|λj|, and a diagonal zero is replaced by 1. Observe that Θ is an orthogonal
matrix and

Λ = ΘΣ.

But then we can write
A = UΛU> = UΘΣU>,

and we if let V = UΘ, since U is orthogonal and Θ is also orthogonal, V is also orthogonal
and A = V ΣU> is an SVD for A. Now we get

A+ = UΣ+V > = UΣ+Θ>U>.

However, since Θ is an orthogonal matrix, Θ> = Θ−1, and a simple calculation shows that

Σ+Θ> = Σ+Θ−1 = Λ+,

which yields the formula
A+ = UΛ+U>.

Also observe that Λr is invertible and

Λ+ =

(
Λ−1
r 0
0 0

)
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block
diagonalization of A, as claimed.
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Example 21.3. Consider the following real diagonal form of the normal matrix

A =


−2.7500 2.1651 −0.8660 0.5000
2.1651 −0.2500 −1.5000 0.8660
0.8660 1.5000 0.7500 −0.4330
−0.5000 −0.8660 −0.4330 0.2500

 = UΛU>,

with

U =


cos(π/3) 0 sin(π/3) 0
sin(π/3) 0 − cos(π/3) 0

0 cos(π/6) 0 sin(π/6)
0 − cos(π/6) 0 sin(π/6)

 , Λ =


1 −2 0 0
2 1 0 0
0 0 −4 0
0 0 0 0

 .

We obtain

Λ+ =


1/5 2/5 0 0
−2/5 1/5 0 0

0 0 −1/4 0
0 0 0 0

 ,

and the pseudo-inverse of A is

A+ = UΛ+U> =


−0.1375 0.1949 0.1732 −0.1000
0.1949 0.0875 0.3000 −0.1732
−0.1732 −0.3000 0.1500 −0.0866
0.1000 0.1732 −0.0866 0.0500

 ,

which agrees with pinv(A).

The following properties, due to Penrose, characterize the pseudo-inverse of a matrix.
We have already proved that the pseudo-inverse satisfies these equations. For a proof of the
converse, see Kincaid and Cheney [39].

Proposition 21.8. Given any m× n matrix A (real or complex), the pseudo-inverse A+ of
A is the unique n×m matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)> = AA+,

(A+A)> = A+A.

21.3 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, notably for
images. In order to make precise the notion of closeness of matrices, we use the notion of
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matrix norm. This concept is defined in Chapter 8, and the reader may want to review it
before reading any further.

Given an m× n matrix of rank r, we would like to find a best approximation of A by a
matrix B of rank k ≤ r (actually, k < r) such that ‖A−B‖2 (or ‖A−B‖F ) is minimized.
The following proposition is known as the Eckart–Young theorem.

Proposition 21.9. Let A be an m× n matrix of rank r and let V DU> = A be an SVD for
A. Write ui for the columns of U , vi for the columns of V , and σ1 ≥ σ2 ≥ · · · ≥ σp for the
singular values of A (p = min(m,n)). Then a matrix of rank k < r closest to A (in the ‖ ‖2

norm) is given by

Ak =
k∑
i=1

σiviu
>
i = V diag(σ1, . . . , σk, 0, . . . , 0)U>

and ‖A− Ak‖2 = σk+1.

Proof. By construction, Ak has rank k, and we have

‖A− Ak‖2 =
∥∥∥ p∑
i=k+1

σiviu
>
i

∥∥∥
2

=
∥∥V diag(0, . . . , 0, σk+1, . . . , σp)U

>∥∥
2

= σk+1.

It remains to show that ‖A−B‖2 ≥ σk+1 for all rank k matrices B. Let B be any rank k
matrix, so its kernel has dimension n− k. The subspace Uk+1 spanned by (u1, . . . , uk+1) has
dimension k + 1, and because the sum of the dimensions of the kernel of B and of Uk+1 is
(n − k) + k + 1 = n + 1, these two subspaces must intersect in a subspace of dimension at
least 1. Pick any unit vector h in Ker(B) ∩ Uk+1. Then since Bh = 0, and since U and V
are isometries, we have

‖A−B‖2
2 ≥ ‖(A−B)h‖2

2 = ‖Ah‖2
2 =

∥∥V DU>h∥∥2

2
=
∥∥DU>h∥∥2

2
≥ σ2

k+1

∥∥U>h∥∥2

2
= σ2

k+1,

which proves our claim.

Note that Ak can be stored using (m + n)k entries, as opposed to mn entries. When
k � m, this is a substantial gain.

Example 21.4. Consider the badly conditioned symmetric matrix

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10


from Section 8.5. Since A is SPD, we have the SVD

A = UDU>,
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with

U =


−0.5286 −0.6149 0.3017 −0.5016
−0.3803 −0.3963 −0.0933 0.8304
−0.5520 0.2716 −0.7603 −0.2086
−0.5209 0.6254 0.5676 0.1237

 , D =


30.2887 0 0 0

0 3.8581 0 0
0 0 0.8431 0
0 0 0 0.0102

 .

If we set σ3 = σ4 = 0, we obtain the best rank 2 approximation

A2 = U(:, 1 : 2) ∗D(:, 1 : 2) ∗ U(:, 1 : 2)′ =


9.9207 7.0280 8.1923 6.8563
7.0280 4.9857 5.9419 5.0436
8.1923 5.9419 9.5122 9.3641
6.8563 5.0436 9.3641 9.7282

 .

A nice example of the use of Proposition 21.9 in image compression is given in Demmel
[16], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo.

Proposition 21.9 also holds for the Frobenius norm; see Problem 21.4.

An interesting topic that we have not addressed is the actual computation of an SVD.
This is a very interesting but tricky subject. Most methods reduce the computation of
an SVD to the diagonalization of a well-chosen symmetric matrix which is not A>A; see
Problem 20.1 and Problem 20.3. Interested readers should read Section 5.4 of Demmel’s
excellent book [16], which contains an overview of most known methods and an extensive
list of references.

21.4 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X1, . . . , Xn, with each Xi ∈ Rd viewed
as a row vector . Think of the Xi’s as persons, and if Xi = (xi 1, . . . , xi d), each xi j is the
value of some feature (or attribute) of that person.

Example 21.5. For example, the Xi’s could be mathematicians, d = 2, and the first com-
ponent, xi 1, of Xi could be the year that Xi was born, and the second component, xi 2, the
length of the beard of Xi in centimeters. Here is a small data set.
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Name year length
Carl Friedrich Gauss 1777 0
Camille Jordan 1838 12
Adrien-Marie Legendre 1752 0
Bernhard Riemann 1826 15
David Hilbert 1862 2
Henri Poincaré 1854 5
Emmy Noether 1882 0
Karl Weierstrass 1815 0
Eugenio Beltrami 1835 2
Hermann Schwarz 1843 20

We usually form the n × d matrix X whose ith row is Xi, with 1 ≤ i ≤ n. Then the
jth column is denoted by Cj (1 ≤ j ≤ d). It is sometimes called a feature vector , but this
terminology is far from being universally accepted. In fact, many people in computer vision
call the data points Xi feature vectors!

The purpose of principal components analysis , for short PCA, is to identify patterns in
data and understand the variance–covariance structure of the data. This is useful for the
following tasks:

1. Data reduction: Often much of the variability of the data can be accounted for by a
smaller number of principal components .

2. Interpretation: PCA can show relationships that were not previously suspected.

Given a vector (a sample of measurements) x = (x1, . . . , xn) ∈ Rn, recall that the mean
(or average) x of x is given by

x =

∑n
i=1 xi
n

.

We let x− x denote the centered data point

x− x = (x1 − x, . . . , xn − x).

In order to measure the spread of the xi’s around the mean, we define the sample variance
(for short, variance) var(x) (or s2) of the sample x by

var(x) =

∑n
i=1(xi − x)2

n− 1
.

Example 21.6. If x = (1, 3,−1), x = 1+3−1
3

= 1, x − x = (0, 2,−2), and var(x) =
02+22+(−2)2

2
= 4. If y = (1, 2, 3), y = 1+2+3

3
= 2, y−y = (−1, 0, 1), and var(y) = (−1)2+02+12

2
=

2.
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There is a reason for using n − 1 instead of n. The above definition makes var(x) an
unbiased estimator of the variance of the random variable being sampled. However, we
don’t need to worry about this. Curious readers will find an explanation of these peculiar
definitions in Epstein [20] (Chapter 14, Section 14.5) or in any decent statistics book.

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), the sample covariance (for short,
covariance) of x and y is given by

cov(x, y) =

∑n
i=1(xi − x)(yi − y)

n− 1
.

Example 21.7. If we take x = (1, 3,−1) and y = (0, 2,−2), we know from Example 21.6

that x− x = (0, 2,−2) and y − y = (−1, 0, 1). Thus, cov(x, y) = 0(−1)+2(0)+(−2)(1)
2

= −1.

The covariance of x and y measures how x and y vary from the mean with respect to each
other . Obviously, cov(x, y) = cov(y, x) and cov(x, x) = var(x).

Note that

cov(x, y) =
(x− x)>(y − y)

n− 1
.

We say that x and y are uncorrelated iff cov(x, y) = 0.

Finally, given an n × d matrix X of n points Xi, for PCA to be meaningful, it will be
necessary to translate the origin to the centroid (or center of gravity) µ of the Xi’s, defined
by

µ =
1

n
(X1 + · · ·+Xn).

Observe that if µ = (µ1, . . . , µd), then µj is the mean of the vector Cj (the jth column of
X).

We let X − µ denote the matrix whose ith row is the centered data point Xi − µ (1 ≤
i ≤ n). Then the sample covariance matrix (for short, covariance matrix ) of X is the d× d
symmetric matrix

Σ =
1

n− 1
(X − µ)>(X − µ) = (cov(Ci, Cj)).

Example 21.8. Let X =

 1 1
3 2
−1 3

, the 3× 2 matrix whose columns are the vector x and

y of Example 21.6. Then

µ =
1

3
[(1, 1) + (3, 2) + (−1, 3)] = (1, 2),
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X − µ =

 0 −1
2 0
−2 1

 ,

and

Σ =
1

2

(
0 2 −2
−1 0 1

) 0 −1
2 0
−2 1

 =

(
4 −1
−1 1

)
.

Remark: The factor 1
n−1

is irrelevant for our purposes and can be ignored.

Example 21.9. Here is the matrix X −µ in the case of our bearded mathematicians: since

µ1 = 1828.4, µ2 = 5.6,

we get the following centered data set.

Name year length
Carl Friedrich Gauss −51.4 −5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre −76.4 −5.6
Bernhard Riemann −2.4 9.4
David Hilbert 33.6 −3.6
Henri Poincaré 25.6 −0.6
Emmy Noether 53.6 −5.6
Karl Weierstrass 13.4 −5.6
Eugenio Beltrami 6.6 −3.6
Hermann Schwarz 14.6 14.4

See Figure 21.3.

We can think of the vector Cj as representing the features of X in the direction ej (the
jth canonical basis vector in Rd, namely ej = (0, . . . , 1, . . . 0), with a 1 in the jth position).

If v ∈ Rd is a unit vector, we wish to consider the projection of the data points X1, . . . , Xn

onto the line spanned by v. Recall from Euclidean geometry that if x ∈ Rd is any vector
and v ∈ Rd is a unit vector, the projection of x onto the line spanned by v is

〈x, v〉v.

Thus, with respect to the basis v, the projection of x has coordinate 〈x, v〉. If x is represented
by a row vector and v by a column vector, then

〈x, v〉 = xv.
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Figure 21.3: The centered data points of Example 21.9.

Therefore, the vector Y ∈ Rn consisting of the coordinates of the projections of X1, . . . , Xn

onto the line spanned by v is given by Y = Xv, and this is the linear combination

Xv = v1C1 + · · ·+ vdCd

of the columns of X (with v = (v1, . . . , vd)).

Observe that because µj is the mean of the vector Cj (the jth column of X), we get

Y = Xv = v1µ1 + · · ·+ vdµd,

and so the centered point Y − Y is given by

Y − Y = v1(C1 − µ1) + · · ·+ vd(Cd − µd) = (X − µ)v.

Furthermore, if Y = Xv and Z = Xw, then

cov(Y, Z) =
((X − µ)v)>(X − µ)w

n− 1

= v>
1

n− 1
(X − µ)>(X − µ)w

= v>Σw,

where Σ is the covariance matrix of X. Since Y − Y has zero mean, we have

var(Y ) = var(Y − Y ) = v>
1

n− 1
(X − µ)>(X − µ)v.
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The above suggests that we should move the origin to the centroid µ of the Xi’s and consider
the matrix X − µ of the centered data points Xi − µ.

From now on beware that we denote the columns of X − µ by C1, . . . , Cd and that Y
denotes the centered point Y = (X − µ)v =

∑d
j=1 vjCj, where v is a unit vector.

Basic idea of PCA: The principal components of X are uncorrelated projections Y of the
data points X1, . . ., Xn onto some directions v (where the v’s are unit vectors) such that
var(Y ) is maximal.

This suggests the following definition:

Definition 21.2. Given an n×d matrix X of data points X1, . . . , Xn, if µ is the centroid of
the Xi’s, then a first principal component of X (first PC) is a centered point Y1 = (X−µ)v1,
the projection of X1, . . . , Xn onto a direction v1 such that var(Y1) is maximized, where v1 is
a unit vector (recall that Y1 = (X − µ)v1 is a linear combination of the Cj’s, the columns of
X − µ).

More generally, if Y1, . . . , Yk are k principal components of X along some unit vectors
v1, . . . , vk, where 1 ≤ k < d, a (k+1)th principal component of X ((k+1)th PC) is a centered
point Yk+1 = (X − µ)vk+1, the projection of X1, . . . , Xn onto some direction vk+1 such that
var(Yk+1) is maximized, subject to cov(Yh, Yk+1) = 0 for all h with 1 ≤ h ≤ k, and where
vk+1 is a unit vector (recall that Yh = (X − µ)vh is a linear combination of the Cj’s). The
vh are called principal directions .

The following proposition is the key to the main result about PCA. This result was
already proven in Proposition 16.23 except that the eigenvalues were listed in increasing
order. For the reader’s convenience we prove it again.

Proposition 21.10. If A is a symmetric d × d matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λd and if (u1, . . . , ud) is any orthonormal basis of eigenvectors of A, where ui is a unit
eigenvector associated with λi, then

max
x 6=0

x>Ax

x>x
= λ1

(with the maximum attained for x = u1) and

max
x 6=0,x∈{u1,...,uk}⊥

x>Ax

x>x
= λk+1

(with the maximum attained for x = uk+1), where 1 ≤ k ≤ d− 1.

Proof. First observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},
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and similarly,

max
x 6=0,x∈{u1,...,uk}⊥

x>Ax

x>x
= max

x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect
to an orthonormal basis of eigenvectors, so let (u1, . . . , ud) be such a basis. If we write

x =
d∑
i=1

xiui,

a simple computation shows that

x>Ax =
d∑
i=1

λix
2
i .

If x>x = 1, then
∑d

i=1 x
2
i = 1, and since we assumed that λ1 ≥ λ2 ≥ · · · ≥ λd, we get

x>Ax =
d∑
i=1

λix
2
i ≤ λ1

( d∑
i=1

x2
i

)
= λ1.

Thus,
max
x

{
x>Ax | x>x = 1

}
≤ λ1,

and since this maximum is achieved for e1 = (1, 0, . . . , 0), we conclude that

max
x

{
x>Ax | x>x = 1

}
= λ1.

Next observe that x ∈ {u1, . . . , uk}⊥ and x>x = 1 iff x1 = · · · = xk = 0 and
∑d

i=1 xi = 1.
Consequently, for such an x, we have

x>Ax =
d∑

i=k+1

λix
2
i ≤ λk+1

( d∑
i=k+1

x2
i

)
= λk+1.

Thus,
max
x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
≤ λk+1,

and since this maximum is achieved for ek+1 = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position k+1,
we conclude that

max
x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
= λk+1,

as claimed.
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The quantity
x>Ax

x>x

is known as the Rayleigh ratio or Rayleigh–Ritz ratio (see Section 16.6 ) and Proposition
21.10 is often known as part of the Rayleigh–Ritz theorem.

Proposition 21.10 also holds if A is a Hermitian matrix and if we replace x>Ax by x∗Ax
and x>x by x∗x. The proof is unchanged, since a Hermitian matrix has real eigenvalues
and is diagonalized with respect to an orthonormal basis of eigenvectors (with respect to the
Hermitian inner product).

We then have the following fundamental result showing how the SVD of X yields the
PCs :

Theorem 21.11. (SVD yields PCA) Let X be an n × d matrix of data points X1, . . . , Xn,
and let µ be the centroid of the Xi’s. If X − µ = V DU> is an SVD decomposition of X − µ
and if the main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then the
centered points Y1, . . . , Yd, where

Yk = (X − µ)uk = kth column of V D

and uk is the kth column of U , are d principal components of X. Furthermore,

var(Yk) =
σ2
k

n− 1

and cov(Yh, Yk) = 0, whenever h 6= k and 1 ≤ k, h ≤ d.

Proof. Recall that for any unit vector v, the centered projection of the points X1, . . . , Xn

onto the line of direction v is Y = (X − µ)v and that the variance of Y is given by

var(Y ) = v>
1

n− 1
(X − µ)>(X − µ)v.

Since X − µ = V DU>, we get

var(Y ) = v>
1

(n− 1)
(X − µ)>(X − µ)v

= v>
1

(n− 1)
UDV >V DU>v

= v>U
1

(n− 1)
D2U>v.

Similarly, if Y = (X − µ)v and Z = (X − µ)w, then the covariance of Y and Z is given by

cov(Y, Z) = v>U
1

(n− 1)
D2U>w.
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Obviously, U 1
(n−1)

D2U> is a symmetric matrix whose eigenvalues are
σ2
1

n−1
≥ · · · ≥ σ2

d

n−1
, and

the columns of U form an orthonormal basis of unit eigenvectors.

We proceed by induction on k. For the base case, k = 1, maximizing var(Y ) is equivalent
to maximizing

v>U
1

(n− 1)
D2U>v,

where v is a unit vector. By Proposition 21.10, the maximum of the above quantity is the

largest eigenvalue of U 1
(n−1)

D2U>, namely
σ2
1

n−1
, and it is achieved for u1, the first columnn

of U . Now we get
Y1 = (X − µ)u1 = V DU>u1,

and since the columns of U form an orthonormal basis, U>u1 = e1 = (1, 0, . . . , 0), and so Y1

is indeed the first column of V D.

By the induction hypothesis, the centered points Y1, . . . , Yk, where Yh = (X − µ)uh and
u1, . . . , uk are the first k columns of U , are k principal components of X. Because

cov(Y, Z) = v>U
1

(n− 1)
D2U>w,

where Y = (X − µ)v and Z = (X − µ)w, the condition cov(Yh, Z) = 0 for h = 1, . . . , k
is equivalent to the fact that w belongs to the orthogonal complement of the subspace
spanned by {u1, . . . , uk}, and maximizing var(Z) subject to cov(Yh, Z) = 0 for h = 1, . . . , k
is equivalent to maximizing

w>U
1

(n− 1)
D2U>w,

where w is a unit vector orthogonal to the subspace spanned by {u1, . . . , uk}. By Proposition
21.10, the maximum of the above quantity is the (k+1)th eigenvalue of U 1

(n−1)
D2U>, namely

σ2
k+1

n−1
, and it is achieved for uk+1, the (k + 1)th columnn of U . Now we get

Yk+1 = (X − µ)uk+1 = V DU>uk+1,

and since the columns of U form an orthonormal basis, U>uk+1 = ek+1, and Yk+1 is indeed
the (k + 1)th column of V D, which completes the proof of the induction step.

The d columns u1, . . . , ud of U are usually called the principal directions of X − µ (and
X). We note that not only do we have cov(Yh, Yk) = 0 whenever h 6= k, but the directions
u1, . . . , ud along which the data are projected are mutually orthogonal.

Example 21.10. For the centered data set of our bearded mathematicians (Example 21.9)
we have X − µ = V ΣU>, where Σ has two nonzero singular values, σ1 = 116.9803, σ2 =
21.7812, and with

U =

(
0.9995 0.0325
0.0325 −0.9995

)
,
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so the principal directions are u1 = (0.9995, 0.0325) and u2 = (0.0325,−0.9995). Observe
that u1 is almost the direction of the x-axis, and u2 is almost the opposite direction of the
y-axis. We also find that the projections Y1 and Y2 along the principal directions are

V D =



−51.5550 3.9249
9.8031 −6.0843
−76.5417 3.1116
−2.0929 −9.4731
33.4651 4.6912
25.5669 1.4325
53.3894 7.3408
13.2107 6.0330
6.4794 3.8128
15.0607 −13.9174


, with X − µ =



−51.4000 −5.6000
9.6000 6.4000
−76.4000 −5.6000
−2.4000 9.4000
33.6000 −3.6000
25.6000 −0.6000
53.6000 −5.6000
13.4000 −5.6000
6.6000 −3.6000
14.6000 14.4000


.

See Figures 21.4, 21.5, and 21.6.

u1

u2

GaussLegendre

Riemann

Jordan

Schwarz

Noether
Weierstrass

Hilbert

Poincaire

Beltrami

Figure 21.4: The centered data points of Example 21.9 and the two principal directions of
Example 21.10.

We know from our study of SVD that σ2
1, . . . , σ

2
d are the eigenvalues of the symmetric

positive semidefinite matrix (X − µ)>(X − µ) and that u1, . . . , ud are corresponding eigen-
vectors. Numerically, it is preferable to use SVD on X−µ rather than to compute explicitly
(X − µ)>(X − µ) and then diagonalize it. Indeed, the explicit computation of A>A from
a matrix A can be numerically quite unstable, and good SVD algorithms avoid computing
A>A explicitly.



21.4. PRINCIPAL COMPONENTS ANALYSIS (PCA) 725

Gauss

Jordan

Schwarz

Poincaire

Legendre

Beltrami

Riemann

Hilbert

Noether

Weierstrass

u1

Figure 21.5: The first principal components of Example 21.10, i.e. the projection of the
centered data points onto the u1 line.

Legendre Gauss

Riemann
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Figure 21.6: The second principal components of Example 21.10, i.e. the projection of the
centered data points onto the u2 line.
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In general, since an SVD of X is not unique, the principal directions u1, . . . , ud are not
unique. This can happen when a data set has some rotational symmetries , and in such a
case, PCA is not a very good method for analyzing the data set.

21.5 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a data
set of n points X1, . . . , Xn, with Xi ∈ Rd, by a p-dimensional affine subspace A of Rd, with
1 ≤ p ≤ d− 1 (the terminology rank d− p is also used).

First consider p = d− 1. Then A = A1 is an affine hyperplane (in Rd), and it is given by
an equation of the form

a1x1 + · · ·+ adxd + c = 0.

By best approximation, we mean that (a1, . . . , ad, c) solves the homogeneous linear systemx1 1 · · · x1 d 1
...

...
...

...
xn 1 · · · xnd 1



a1
...
ad
c

 =


0
...
0
0


in the least squares sense, subject to the condition that a = (a1, . . . , ad) is a unit vector , that
is, a>a = 1, where Xi = (xi 1, · · · , xi d).

If we form the symmetric matrixx1 1 · · · x1 d 1
...

...
...

...
xn 1 · · · xnd 1


>x1 1 · · · x1 d 1

...
...

...
...

xn 1 · · · xnd 1


involved in the normal equations, we see that the bottom row (and last column) of that
matrix is

nµ1 · · · nµd n,

where nµj =
∑n

i=1 xi j is n times the mean of the column Cj of X.

Therefore, if (a1, . . . , ad, c) is a least squares solution, that is, a solution of the normal
equations, we must have

nµ1a1 + · · ·+ nµdad + nc = 0,

that is,
a1µ1 + · · ·+ adµd + c = 0,

which means that the hyperplane A1 must pass through the centroid µ of the data points
X1, . . . , Xn. Then we can rewrite the original system with respect to the centered data
Xi − µ, find that the variable c drops out, get the system

(X − µ)a = 0,
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where a = (a1, . . . , ad).

Thus, we are looking for a unit vector a solving (X − µ)a = 0 in the least squares sense,
that is, some a such that a>a = 1 minimizing

a>(X − µ)>(X − µ)a.

Compute some SVD V DU> of X−µ, where the main diagonal of D consists of the singular
values σ1 ≥ σ2 ≥ · · · ≥ σd of X − µ arranged in descending order. Then

a>(X − µ)>(X − µ)a = a>UD2U>a,

where D2 = diag(σ2
1, . . . , σ

2
d) is a diagonal matrix, so pick a to be the last column in U

(corresponding to the smallest eigenvalue σ2
d of (X − µ)>(X − µ)). This is a solution to our

best fit problem.

Therefore, if Ud−1 is the linear hyperplane defined by a, that is,

Ud−1 = {u ∈ Rd | 〈u, a〉 = 0},

where a is the last column in U for some SVD V DU> of X − µ, we have shown that the
affine hyperplane A1 = µ + Ud−1 is a best approximation of the data set X1, . . . , Xn in the
least squares sense.

It is easy to show that this hyperplane A1 = µ + Ud−1 minimizes the sum of the square
distances of each Xi to its orthogonal projection onto A1. Also, since Ud−1 is the orthogonal
complement of a, the last column of U , we see that Ud−1 is spanned by the first d−1 columns
of U , that is, the first d− 1 principal directions of X − µ.

All this can be generalized to a best (d−k)-dimensional affine subspace Ak approximating
X1, . . . , Xn in the least squares sense (1 ≤ k ≤ d− 1). Such an affine subspace Ak is cut out
by k independent hyperplanes Hi (with 1 ≤ i ≤ k), each given by some equation

ai 1x1 + · · ·+ ai dxd + ci = 0.

If we write ai = (ai 1, · · · , ai d), to say that the Hi are independent means that a1, . . . , ak are
linearly independent. In fact, we may assume that a1, . . . , ak form an orthonormal system.

Then finding a best (d − k)-dimensional affine subspace Ak amounts to solving the ho-
mogeneous linear system

X 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 X 1



a1

c1
...
ak
ck

 =

0
...
0

 ,
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in the least squares sense, subject to the conditions a>i aj = δi j, for all i, j with 1 ≤ i, j ≤ k,
where the matrix of the system is a block diagonal matrix consisting of k diagonal blocks
(X,1), where 1 denotes the column vector (1, . . . , 1) ∈ Rn.

Again it is easy to see that each hyperplane Hi must pass through the centroid µ of
X1, . . . , Xn, and by switching to the centered data Xi − µ we get the systemX − µ 0 · · · 0

...
...

. . .
...

0 0 · · · X − µ


a1

...
ak

 =

0
...
0

 ,

with a>i aj = δi j for all i, j with 1 ≤ i, j ≤ k.

If V DU> = X−µ is an SVD decomposition, it is easy to see that a least squares solution
of this system is given by the last k columns of U , assuming that the main diagonal of D
consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd of X−µ arranged in descending order. But
now the (d− k)-dimensional subspace Ud−k cut out by the hyperplanes defined by a1, . . . , ak
is simply the orthogonal complement of (a1, . . . , ak), which is the subspace spanned by the
first d− k columns of U .

So the best (d−k)-dimensional affine subpsace Ak approximating X1, . . . , Xn in the least
squares sense is

Ak = µ+ Ud−k,

where Ud−k is the linear subspace spanned by the first d−k principal directions of X−µ, that
is, the first d−k columns of U . Consequently, we get the following interesting interpretation
of PCA (actually, principal directions):

Theorem 21.12. Let X be an n × d matrix of data points X1, . . . , Xn, and let µ be the
centroid of the Xi’s. If X − µ = V DU> is an SVD decomposition of X − µ and if the
main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then a best (d− k)-
dimensional affine approximation Ak of X1, . . . , Xn in the least squares sense is given by

Ak = µ+ Ud−k,

where Ud−k is the linear subspace spanned by the first d − k columns of U , the first d − k
principal directions of X − µ (1 ≤ k ≤ d− 1).

Example 21.11. Going back to Example 21.10, a best 1-dimensional affine approximation
A1 is the affine line passing through (µ1, µ2) = (1824.4, 5.6) of direction u1 = (0.9995, 0.0325).

Example 21.12. Suppose in the data set of Example 21.5 that we add the month of birth
of every mathematician as a feature. We obtain the following data set.
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Name month year length
Carl Friedrich Gauss 4 1777 0
Camille Jordan 1 1838 12
Adrien-Marie Legendre 9 1752 0
Bernhard Riemann 9 1826 15
David Hilbert 1 1862 2
Henri Poincaré 4 1854 5
Emmy Noether 3 1882 0
Karl Weierstrass 10 1815 0
Eugenio Beltrami 10 1835 2
Hermann Schwarz 1 1843 20

The mean of the first column is 5.2, and the centered data set is given below.

Name month year length
Carl Friedrich Gauss −1.2 −51.4 −5.6
Camille Jordan −4.2 9.6 6.4
Adrien-Marie Legendre 3.8 −76.4 −5.6
Bernhard Riemann 3.8 −2.4 9.4
David Hilbert −4.2 33.6 −3.6
Henri Poincaré −1.2 25.6 −0.6
Emmy Noether −2.2 53.6 −5.6
Karl Weierstrass 4.8 13.4 −5.6
Eugenio Beltrami 4.8 6.6 −3.6
Hermann Schwarz −4.2 14.6 14.4

Running SVD on this data set we get

U =

 0.0394 0.1717 0.9844
−0.9987 0.0390 0.0332
−0.0327 −0.9844 0.1730

 , D =



117.0706 0 0
0 22.0390 0
0 0 10.1571
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


,
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and

V D =



51.4683 3.3013 −3.8569
−9.9623 −6.6467 −2.7082
76.6327 3.1845 0.2348
2.2393 −8.6943 5.2872
−33.6038 4.1334 −3.6415
−25.5941 1.3833 −0.4350
−53.4333 7.2258 −1.3547
−13.0100 6.8594 4.2010
−6.2843 4.6254 4.3212
−15.2173 −14.3266 −1.1581


, X − µ =



−1.2000 −51.4000 −5.6000
−4.2000 9.6000 6.4000
3.8000 −76.4000 −5.6000
3.8000 −2.4000 9.4000
−4.2000 33.6000 −3.6000
−1.2000 25.6000 −0.6000
−2.2000 53.6000 −5.6000
4.8000 13.4000 −5.6000
4.8000 6.6000 −3.6000
−4.2000 14.6000 14.4000


.

The first principal direction u1 = (0.0394,−0.9987,−0.0327) is basically the opposite
of the y-axis, and the most significant feature is the year of birth. The second principal
direction u2 = (0.1717, 0.0390,−0.9844) is close to the opposite of the z-axis, and the second
most significant feature is the lenght of beards. A best affine plane is spanned by the vectors
u1 and u2.

There are many applications of PCA to data compression, dimension reduction, and
pattern analysis. The basic idea is that in many cases, given a data set X1, . . . , Xn, with
Xi ∈ Rd, only a “small” subset of m < d of the features is needed to describe the data set
accurately.

If u1, . . . , ud are the principal directions of X−µ, then the first m projections of the data
(the first m principal components, i.e., the first m columns of V D) onto the first m principal
directions represent the data without much loss of information. Thus, instead of using the
original data points X1, . . . , Xn, with Xi ∈ Rd, we can use their projections onto the first m
principal directions Y1, . . . , Ym, where Yi ∈ Rm and m < d, obtaining a compressed version
of the original data set.

For example, PCA is used in computer vision for face recognition. Sirovitch and Kirby
(1987) seem to be the first to have had the idea of using PCA to compress facial images.
They introduced the term eigenpicture to refer to the principal directions, ui. However, an
explicit face recognition algorithm was given only later by Turk and Pentland (1991). They
renamed eigenpictures as eigenfaces .

For details on the topic of eigenfaces, see Forsyth and Ponce [21] (Chapter 22, Section
22.3.2), where you will also find exact references to Turk and Pentland’s papers.

Another interesting application of PCA is to the recognition of handwritten digits . Such
an application is described in Hastie, Tibshirani, and Friedman, [33] (Chapter 14, Section
14.5.1).

21.6 Summary

The main concepts and results of this chapter are listed below:
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• Least squares problems .

• Existence of a least squares solution of smallest norm (Theorem 21.1).

• The pseudo-inverse A+ of a matrix A.

• The least squares solution of smallest norm is given by the pseudo-inverse (Theorem
21.2)

• Projection properties of the pseudo-inverse.

• The pseudo-inverse of a normal matrix.

• The Penrose characterization of the pseudo-inverse.

• Data compression and SVD.

• Best approximation of rank < r of a matrix.

• Principal component analysis .

• Review of basic statistical concepts: mean, variance, covariance, covariance matrix .

• Centered data, centroid .

• The principal components (PCA).

• The Rayleigh–Ritz theorem (Theorem 21.10).

• The main theorem: SVD yields PCA (Theorem 21.11).

• Best affine approximation.

• SVD yields a best affine approximation (Theorem 21.12).

• Face recognition, eigenfaces.

21.7 Problems

Problem 21.1. Consider the overdetermined system in the single variable x:

a1x = b1, . . . , amx = bm,

with a2
1 + · · ·+ a2

m 6= 0. Prove that the least squares solution of smallest norm is given by

x+ =
a1b1 + · · ·+ ambm
a2

1 + · · ·+ a2
m

.
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Problem 21.2. Let X be an m× n real matrix. For any strictly positive constant K > 0,
the matrix X>X +KIn is invertible. Prove that the limit of the matrix (X>X +KIn)−1X>

when K goes to zero is equal to the pseudo-inverse X+ of X.

Problem 21.3. Use Matlab to find the pseudo-inverse of the 8× 6 matrix

A =



64 2 3 61 60 6
9 55 54 12 13 51
17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62


.

Observe that the sums of the columns are all equal to to 256. Let b be the vector of
dimension 8 whose coordinates are all equal to 256. Find the solution x+ of the system
Ax = b.

Problem 21.4. The purpose of this problem is to show that Proposition 21.9 (the Eckart–
Young theorem) also holds for the Frobenius norm. This problem is adapted from Strang
[65], Section I.9.

Suppose the m×n matrix B of rank at most k minimizes ‖A−B‖F . Start with an SVD
of B,

B = V

(
D 0
0 0

)
U>,

where D is a diagonal k × k matrix. We can write

A = V

(
L+ E +R F

G H

)
U>,

where L is strictly lower triangular in the first k rows, E is diagonal, and R is strictly upper
triangular, and let

C = V

(
L+D +R F

0 0

)
U>,

which clearly has rank ≤ k.

(1) Prove that

‖A−B‖2
F = ‖A− C‖2

F + ‖L‖2
F + ‖R‖2

F + ‖F‖2
F .

Since ‖A−B‖F is minimal, show that L = R = F = 0.

Similarly, show that G = 0.
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(2) We have

V >AU =

(
E 0
0 H

)
, V >BU =

(
D 0
0 0

)
,

where E is diagonal, so deduce that

1. D = diag(σ1, . . . , σk).

2. The singular values of H must be the smallest n− k singular values of A.

3. The minimum of ‖A−B‖F must be ‖H‖F = (σ2
k+1 + · · ·+ σ2

r)
1/2.

Problem 21.5. Prove that the closest rank 1 approximation (in ‖ ‖2) of the matrix

A =

(
3 0
4 5

)
is

A1 =
3

2

(
1 1
3 3

)
.

Show that the Eckart–Young theorem fails for the operator norm ‖ ‖∞ by finding a rank
1 matrix B such that ‖A−B‖∞ < ‖A− A1‖∞.

Problem 21.6. Find a closest rank 1 approximation (in ‖ ‖2) for the matrices

A =

3 0 0
0 2 0
0 0 1

 , A =

(
0 3
2 0

)
, A =

(
2 1
1 2

)
.

Problem 21.7. Find a closest rank 1 approximation (in ‖ ‖2) for the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
.

Problem 21.8. Let S be a real symmetric positive definite matrix and let S = UΣU> be a
diagonalization of S. Prove that the closest rank 1 matrix (in the L2-norm) to S is u1σ1u

>
1 ,

where u1 is the first column of U .
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Chapter 22

Annihilating Polynomials and the
Primary Decomposition

In this chapter all vector spaces are defined over an arbitrary field K.

In Section 6.7 we explained that if f : E → E is a linear map on a K-vector space E,
then for any polynomial p(X) = a0X

d + a1X
d−1 + · · · + ad with coefficients in the field K,

we can define the linear map p(f) : E → E by

p(f) = a0f
d + a1f

d−1 + · · ·+ adid,

where fk = f ◦ · · · ◦ f , the k-fold composition of f with itself. Note that

p(f)(u) = a0f
d(u) + a1f

d−1(u) + · · ·+ adu,

for every vector u ∈ E. Then we showed that if E is finite-dimensional and if χf (X) =
det(XI−f) is the characteristic polynomial of f , by the Cayley–Hamilton theorem, we have

χf (f) = 0.

This fact suggests looking at the set of all polynomials p(X) such that

p(f) = 0.

Such polynomials are called annihilating polynomials of f , the set of all these polynomials,
denoted Ann(f), is called the annihilator of f , and the Cayley-Hamilton theorem shows that
it is nontrivial since it contains a polynomial of positive degree. It turns out that Ann(f)
contains a polynomial mf of smallest degree that generates Ann(f), and this polynomial
divides the characteristic polynomial. Furthermore, the polynomial mf encapsulates a lot of
information about f , in particular whether f can be diagonalized. One of the main reasons
for this is that a scalar λ ∈ K is a zero of the minimal polynomial mf if and only if λ is an
eigenvalue of f .

735
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The first main result is Theorem 22.12 which states that if f : E → E is a linear map on
a finite-dimensional space E, then f is diagonalizable iff its minimal polynomial m is of the
form

m = (X − λ1) · · · (X − λk),
where λ1, . . . , λk are distinct elements of K.

One of the technical tools used to prove this result is the notion of f -conductor ; see
Definition 22.7. As a corollary of Theorem 22.12 we obtain results about finite commuting
families of diagonalizable or triangulable linear maps.

If f : E → E is a linear map and λ ∈ K is an eigenvalue of f , recall that the eigenspace
Eλ associated with λ is the kernel of the linear map λid− f . If all the eigenvalues λ1 . . . , λk
of f are in K and if f is diagonalizable, then

E = Eλ1 ⊕ · · · ⊕ Eλk ,
but in general there are not enough eigenvectors to span E. A remedy is to generalize the
notion of eigenvector and look for (nonzero) vectors u (called generalized eigenvectors) such
that

(λid− f)r(u) = 0, for some r ≥ 1.

Then it turns out that if the minimal polynomial of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,
then r = ri does the job for λi; that is, if we let

Wi = Ker (λiid− f)ri ,

then
E = W1 ⊕ · · · ⊕Wk.

The above facts are parts of the primary decomposition theorem (Theorem 22.17). It is a
special case of a more general result involving the factorization of the minimal polynomial
m into its irreducible monic factors; see Theorem 22.16.

Theorem 22.17 implies that every linear map f that has all its eigenvalues in K can be
written as f = D + N , where D is diagonalizable and N is nilpotent (which means that
N r = 0 for some positive integer r). Furthermore D and N commute and are unique. This
is the Jordan decomposition, Theorem 22.18.

The Jordan decomposition suggests taking a closer look at nilpotent maps. We prove that
for any nilpotent linear map f : E → E on a finite-dimensional vector space E of dimension
n over a field K, there is a basis of E such that the matrix N of f is of the form

N =


0 ν1 0 · · · 0 0
0 0 ν2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 νn
0 0 0 · · · 0 0

 ,
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where νi = 1 or νi = 0; see Theorem 22.22. As a corollary we obtain the Jordan form; which
involves matrices of the form

Jr(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · λ

 ,

called Jordan blocks; see Theorem 22.23.

22.1 Basic Properties of Polynomials; Ideals, GCD’s

In order to understand the structure of Ann(f), we need to review three basic properties of
polynomials. We refer the reader to Hoffman and Kunze, [35], Artin [3], Dummit and Foote
[19], and Godement [26] for comprehensive discussions of polynomials and their properties.

We begin by recalling some basic nomenclature. Given a field K, any nonzero polynomial
p(X) ∈ K[X] has some monomial of highest degree a0X

n with a0 6= 0, and the integer
n = deg(p) ≥ 0 is called the degree of p. It is convenient to set the degree of the zero
polynomial (denoted by 0) to be

deg(0) = −∞.
A polynomial p(X) such that the coefficient a0 of its monomial of highest degree is 1 is called
a monic polynomial. For example, letK = R. The polynomial p(X) = 4X7+2X5 is of degree
7 but is not monic since a0 = 4. On the other hand, the polynomial p(X) = X3 − 3X + 1 is
a monic polynomial of degree 3.

We now discuss three key concepts of polynomial algebra:

1. Ideals

2. Greatest common divisors and the Bezout identity.

3. Irreducible polynomials and prime factorization.

Recall the definition a of ring (see Definition 2.2).

Definition 22.1. A ring is a set A equipped with two operations +: A × A → A (called
addition) and ∗ : A× A→ A (called multiplication) having the following properties:

(R1) A is an abelian group w.r.t. +;

(R2) ∗ is associative and has an identity element 1 ∈ A;

(R3) ∗ is distributive w.r.t. +.
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The identity element for addition is denoted 0, and the additive inverse of a ∈ A is
denoted by −a. More explicitly, the axioms of a ring are the following equations which hold
for all a, b, c ∈ A:

a+ (b+ c) = (a+ b) + c (associativity of +) (22.1)

a+ b = b+ a (commutativity of +) (22.2)

a+ 0 = 0 + a = a (zero) (22.3)

a+ (−a) = (−a) + a = 0 (additive inverse) (22.4)

a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity of ∗) (22.5)

a ∗ 1 = 1 ∗ a = a (identity for ∗) (22.6)

(a+ b) ∗ c = (a ∗ c) + (b ∗ c) (distributivity) (22.7)

a ∗ (b+ c) = (a ∗ b) + (a ∗ c) (distributivity) (22.8)

The ring A is commutative if

a ∗ b = b ∗ a for all a, b ∈ A.

From (22.7) and (22.8), we easily obtain

a ∗ 0 = 0 ∗ a = 0 (22.9)

a ∗ (−b) = (−a) ∗ b = −(a ∗ b). (22.10)

The first crucial notion is that of an ideal.

Definition 22.2. Given a commutative ring A with unit 1, an ideal of A is a nonempty
subset I of A satisfying the following properties:

(ID1) If a, b ∈ I, then b− a ∈ I.

(ID2) If a ∈ I, then ax ∈ I for all x ∈ A.

An ideal I is a principal ideal if there is some a ∈ I, called a generator , such that

I = {ax | x ∈ A}.

In this case we usually write I = aA or I = (a). The ideal I = (0) = {0} is called the null
ideal (or zero ideal).

The following proposition is a fundamental result about polynomials over a field.

Proposition 22.1. If K is a field, then every polynomial ideal I ⊆ K[X] is a principal
ideal. As a consequence, if I is not the zero ideal, then there is a unique monic polynomial

p(X) = Xn + a1X
n−1 + · · ·+ an−1X + an

in I such that I = (p).
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Proof. This result is not hard to prove if we recall that polynomials can divided. Given any
two nonzero polynomials f, g ∈ K[X], there are unique polynomials q, r such that

f = qg + r, and deg(r) < deg(g). (*)

If I is not the zero ideal, there is some polynomial of smallest degree in I, and since K is a
field, by suitable multiplication by a scalar, we can make sure that this polynomial is monic.
Thus, let f be a monic polynomial of smallest degree in I. By (ID2), it is clear that (f) ⊆ I.
Now let g ∈ I. Using (∗), there exist unique q, r ∈ K[X] such that

g = qf + r and deg(r) < deg(f).

If r 6= 0, there is some λ 6= 0 in K such that λr is a monic polynomial, and since λr =
λg − λqf , with f, g ∈ I, by (ID1) and (ID2), we have λr ∈ I, where deg(λr) < deg(f) and
λr is a monic polynomial, contradicting the minimality of the degree of f . Thus, r = 0, and
g ∈ (f). The uniqueness of the monic polynomial f is left as an exercise.

We will also need to know that the greatest common divisor of polynomials exist. Given
any two nonzero polynomials f, g ∈ K[X], recall that f divides g if g = qf for some q ∈ K[X].

Definition 22.3. Given any two nonzero polynomials f, g ∈ K[X], a polynomial d ∈ K[X]
is a greatest common divisor of f and g (for short, a gcd of f and g) if d divides f and g and
whenever h ∈ K[X] divides f and g, then h divides d. We say that f and g are relatively
prime if 1 is a gcd of f and g.

Note that f and g are relatively prime iff all of their gcd’s are constants (scalars in K),
or equivalently, if f, g have no common divisor q of degree deg(q) ≥ 1. For example, over R,
gcd(X2− 1, X3 +X2−X − 1) = (X − 1)(X + 1) since X3 +X2−X − 1 = (X − 1)(X + 1)2,
while gcd(X3 + 1, X − 1) = 1.

We can characterize gcd’s of polynomials as follows.

Proposition 22.2. Let K be a field and let f, g ∈ K[X] be any two nonzero polynomials.
For every polynomial d ∈ K[X], the following properties are equivalent:

(1) The polynomial d is a gcd of f and g.

(2) The polynomial d divides f and g and there exist u, v ∈ K[X] such that

d = uf + vg.

(3) The ideals (f), (g), and (d) satisfy the equation

(d) = (f) + (g).

In addition, d 6= 0, and d is unique up to multiplication by a nonzero scalar in K.
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As a consequence of Proposition 22.2, two nonzero polynomials f, g ∈ K[X] are relatively
prime iff there exist u, v ∈ K[X] such that

uf + vg = 1.

The identity
d = uf + vg

of Part (2) of Proposition 22.2 is often called the Bezout identity . For an example of Bezout’s
identity, take K = R. Since X3 + 1 and X − 1 are relatively prime, we have
1 = 1/2(X3 + 1)− 1/2(X2 +X + 1)(X − 1).

An important consequence of the Bezout identity is the following result.

Proposition 22.3. (Euclid’s proposition) Let K be a field and let f, g, h ∈ K[X] be any
nonzero polynomials. If f divides gh and f is relatively prime to g, then f divides h.

Proposition 22.3 can be generalized to any number of polynomials.

Proposition 22.4. Let K be a field and let f, g1, . . . , gm ∈ K[X] be some nonzero polyno-
mials. If f and gi are relatively prime for all i, 1 ≤ i ≤ m, then f and g1 · · · gm are relatively
prime.

Definition 22.3 is generalized to any finite number of polynomials as follows.

Definition 22.4. Given any nonzero polynomials f1, . . . , fn ∈ K[X], where n ≥ 2, a poly-
nomial d ∈ K[X] is a greatest common divisor of f1, . . . , fn (for short, a gcd of f1, . . . , fn) if
d divides each fi and whenever h ∈ K[X] divides each fi, then h divides d. We say that
f1, . . . , fn are relatively prime if 1 is a gcd of f1, . . . , fn.

It is easily shown that Proposition 22.2 can be generalized to any finite number of poly-
nomials.

Proposition 22.5. Let K be a field and let f1, . . . , fn ∈ K[X] be any n ≥ 2 nonzero
polynomials. For every polynomial d ∈ K[X], the following properties are equivalent:

(1) The polynomial d is a gcd of f1, . . . , fn.

(2) The polynomial d divides each fi and there exist u1, . . . , un ∈ K[X] such that

d = u1f1 + · · ·+ unfn.

(3) The ideals (fi), and (d) satisfy the equation

(d) = (f1) + · · ·+ (fn).

In addition, d 6= 0, and d is unique up to multiplication by a nonzero scalar in K.
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As a consequence of Proposition 22.5, any n ≥ 2 nonzero polynomials f1, . . . , fn ∈ K[X]
are relatively prime iff there exist u1, . . . , un ∈ K[X] such that

u1f1 + · · ·+ unfn = 1,

the Bezout identity .

We will also need to know that every nonzero polynomial (over a field) can be factored into
irreducible polynomials, which is the generalization of the prime numbers to polynomials.

Definition 22.5. Given a field K, a polynomial p ∈ K[X] is irreducible or indecomposable
or prime if deg(p) ≥ 1 and if p is not divisible by any polynomial q ∈ K[X] such that
1 ≤ deg(q) < deg(p). Equivalently, p is irreducible if deg(p) ≥ 1 and if p = q1q2, then either
q1 ∈ K or q2 ∈ K (and of course, q1 6= 0, q2 6= 0).

Every polynomial aX + b of degree 1 is irreducible. Over the field R, the polynomial
X2 + 1 is irreducible (why?), but X3 + 1 is not irreducible, since

X3 + 1 = (X + 1)(X2 −X + 1).

The polynomial X2 − X + 1 is irreducible over R (why?). It would seem that X4 + 1 is
irreducible over R, but in fact,

X4 + 1 = (X2 −
√

2X + 1)(X2 +
√

2X + 1).

However, in view of the above factorization, X4 + 1 is irreducible over Q.

It can be shown that the irreducible polynomials over R are the polynomials of degree 1
or the polynomials of degree 2 of the form aX2 + bX + c, for which b2 − 4ac < 0 (i.e., those
having no real roots). This is not easy to prove! Over the complex numbers C, the only
irreducible polynomials are those of degree 1. This is a version of a fact often referred to as
the “Fundamental Theorem of Algebra.”

Observe that the definition of irreducibilty implies that any finite number of distinct
irreducible polynomials are relatively prime.

The following fundamental result can be shown

Theorem 22.6. Given any field K, for every nonzero polynomial

f = adX
d + ad−1X

d−1 + · · ·+ a0

of degree d = deg(f) ≥ 1 in K[X], there exists a unique set {〈p1, k1〉, . . . , 〈pm, km〉} such that

f = adp
k1
1 · · · pkmm ,

where the pi ∈ K[X] are distinct irreducible monic polynomials, the ki are (not necessarily
distinct) integers, and with m ≥ 1, ki ≥ 1.

We can now return to minimal polynomials.
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22.2 Annihilating Polynomials and the Minimal Poly-

nomial

Given a linear map f : E → E, it is easy to check that the set Ann(f) of polynomials that
annihilate f is an ideal. Furthermore, when E is finite-dimensional, the Cayley–Hamilton
theorem implies that Ann(f) is not the zero ideal. Therefore, by Proposition 22.1, there is
a unique monic polynomial mf that generates Ann(f).

Definition 22.6. If f : E → E is a linear map on a finite-dimensional vector space E,
the unique monic polynomial mf (X) that generates the ideal Ann(f) of polynomials which
annihilate f (the annihilator of f) is called the minimal polynomial of f .

The minimal polynomial mf of f is the monic polynomial of smallest degree that an-
nihilates f . Thus, the minimal polynomial divides the characteristic polynomial χf , and
deg(mf ) ≥ 1. For simplicity of notation, we often write m instead of mf .

If A is any n × n matrix, the set Ann(A) of polynomials that annihilate A is the set of
polynomials

p(X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad

such that
a0A

d + a1A
d−1 + · · ·+ ad−1A+ adI = 0.

It is clear that Ann(A) is a nonzero ideal and its unique monic generator is called the minimal
polynomial of A. We check immediately that if Q is an invertible matrix, then A and Q−1AQ
have the same minimal polynomial. Also, if A is the matrix of f with respect to some basis,
then f and A have the same minimal polynomial.

The zeros (in K) of the minimal polynomial of f and the eigenvalues of f (in K) are
intimately related.

Proposition 22.7. Let f : E → E be a linear map on some finite-dimensional vector space
E. Then λ ∈ K is a zero of the minimal polynomial mf (X) of f iff λ is an eigenvalue of f
iff λ is a zero of χf (X). Therefore, the minimal and the characteristic polynomials have the
same zeros (in K), except for multiplicities.

Proof. First assume that m(λ) = 0 (with λ ∈ K, and writing m instead of mf ). If so, using
polynomial division, m can be factored as

m = (X − λ)q,

with deg(q) < deg(m). Since m is the minimal polynomial, q(f) 6= 0, so there is some
nonzero vector v ∈ E such that u = q(f)(v) 6= 0. But then, because m is the minimal
polynomial,

0 = m(f)(v)

= (f − λid)(q(f)(v))

= (f − λid)(u),
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which shows that λ is an eigenvalue of f .

Conversely, assume that λ ∈ K is an eigenvalue of f . This means that for some u 6= 0,
we have f(u) = λu. Now it is easy to show that

m(f)(u) = m(λ)u,

and since m is the minimal polynomial of f , we have m(f)(u) = 0, so m(λ)u = 0, and since
u 6= 0, we must have m(λ) = 0.

Proposition 22.8. Let f : E → E be a linear map on some finite-dimensional vector space
E. If f diagonalizable, then its minimal polynomial is a product of distinct factors of degree
1.

Proof. If we assume that f is diagonalizable, then its eigenvalues are all inK, and if λ1, . . . , λk
are the distinct eigenvalues of f , and then by Proposition 22.7, the minimal polynomial m
of f must be a product of powers of the polynomials (X − λi). Actually, we claim that

m = (X − λ1) · · · (X − λk).

For this we just have to show that m annihilates f . However, for any eigenvector u of f , one
of the linear maps f − λiid sends u to 0, so

m(f)(u) = (f − λ1id) ◦ · · · ◦ (f − λkid)(u) = 0.

Since E is spanned by the eigenvectors of f , we conclude that

m(f) = 0.

It turns out that the converse of Proposition 22.8 is true, but this will take a little work
to establish it.

22.3 Minimal Polynomials of Diagonalizable

Linear Maps

In this section we prove that if the minimal polynomial mf of a linear map f is of the form

mf = (X − λ1) · · · (X − λk)

for distinct scalars λ1, . . . , λk ∈ K, then f is diagonalizable. This is a powerful result that
has a number of implications. But first we need of few properties of invariant subspaces.

Given a linear map f : E → E, recall that a subspace W of E is invariant under f if
f(u) ∈ W for all u ∈ W . For example, if f : R2 → R2 is f(x, y) = (−x, y), the y-axis is
invariant under f .
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Proposition 22.9. Let W be a subspace of E invariant under the linear map f : E → E
(where E is finite-dimensional). Then the minimal polynomial of the restriction f | W of
f to W divides the minimal polynomial of f , and the characteristic polynomial of f | W
divides the characteristic polynomial of f .

Sketch of proof. The key ingredient is that we can pick a basis (e1, . . . , en) of E in which
(e1, . . . , ek) is a basis of W . The matrix of f over this basis is a block matrix of the form

A =

(
B C
0 D

)
,

where B is a k× k matrix, D is an (n− k)× (n− k) matrix, and C is a k× (n− k) matrix.
Then

det(XI − A) = det(XI −B) det(XI −D),

which implies the statement about the characteristic polynomials. Furthermore,

Ai =

(
Bi Ci
0 Di

)
,

for some k × (n − k) matrix Ci. It follows that any polynomial which annihilates A also
annihilates B and D. So the minimal polynomial of B divides the minimal polynomial of
A.

For the next step, there are at least two ways to proceed. We can use an old-fashion
argument using Lagrange interpolants, or we can use a slight generalization of the notion of
annihilator. We pick the second method because it illustrates nicely the power of principal
ideals.

What we need is the notion of conductor (also called transporter).

Definition 22.7. Let f : E → E be a linear map on a finite-dimensional vector space E, let
W be an invariant subspace of f , and let u be any vector in E. The set Sf (u,W ) consisting
of all polynomials q ∈ K[X] such that q(f)(u) ∈ W is called the f -conductor of u into W .

Observe that the minimal polynomial mf of f always belongs to Sf (u,W ), so this is a
nontrivial set. Also, if W = (0), then Sf (u, (0)) is just the annihilator of f . The crucial
property of Sf (u,W ) is that it is an ideal.

Proposition 22.10. If W is an invariant subspace for f , then for each u ∈ E, the f -
conductor Sf (u,W ) is an ideal in K[X].

We leave the proof as a simple exercise, using the fact that if W invariant under f , then
W is invariant under every polynomial q(f) in Sf (u,W ).

Since Sf (u,W ) is an ideal, it is generated by a unique monic polynomial q of smallest
degree, and because the minimal polynomial mf of f is in Sf (u,W ), the polynomial q divides
m.
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Definition 22.8. The unique monic polynomial which generates Sf (u,W ) is called the
conductor of u into W .

Example 22.1. For example, suppose f : R2 → R2 where f(x, y) = (x, 0). Observe that

W = {(x, 0) ∈ R2} is invariant under f . By representing f as

(
1 0
0 0

)
, we see that mf (X) =

χf (X) = X2 −X. Let u = (0, y). Then Sf (u,W ) = (X), and we say X is the conductor of
u into W .

Proposition 22.11. Let f : E → E be a linear map on a finite-dimensional space E and
assume that the minimal polynomial m of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

where the eigenvalues λ1, . . . , λk of f belong to K. If W is a proper subspace of E which is
invariant under f , then there is a vector u ∈ E with the following properties:

(a) u /∈ W ;

(b) (f − λid)(u) ∈ W , for some eigenvalue λ of f .

Proof. Observe that (a) and (b) together assert that the conductor of u into W is a polyno-
mial of the form X − λi. Pick any vector v ∈ E not in W , and let g be the conductor of v
into W , i.e. g(f)(v) ∈ W . Since g divides m and v /∈ W , the polynomial g is not a constant,
and thus it is of the form

g = (X − λ1)s1 · · · (X − λk)sk ,
with at least some si > 0. Choose some index j such that sj > 0. Then X − λj is a factor
of g, so we can write

g = (X − λj)q. (*)

By definition of g, the vector u = q(f)(v) cannot be in W , since otherwise g would not be
of minimal degree. However, (∗) implies that

(f − λjid)(u) = (f − λjid)(q(f)(v))

= g(f)(v)

is in W , which concludes the proof.

We can now prove the main result of this section.

Theorem 22.12. Let f : E → E be a linear map on a finite-dimensional space E. Then f
is diagonalizable iff its minimal polynomial m is of the form

m = (X − λ1) · · · (X − λk),

where λ1, . . . , λk are distinct elements of K.
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Proof. We already showed in Proposition 22.8 that if f is diagonalizable, then its minimal
polynomial is of the above form (where λ1, . . . , λk are the distinct eigenvalues of f).

For the converse, let W be the subspace spanned by all the eigenvectors of f . If W 6= E,
since W is invariant under f , by Proposition 22.11, there is some vector u /∈ W such that
for some λj, we have

(f − λjid)(u) ∈ W.
Let v = (f − λjid)(u) ∈ W . Since v ∈ W , we can write

v = w1 + · · ·+ wk

where f(wi) = λiwi (either wi = 0 or wi is an eigenvector for λi), and so for every polynomial
h, we have

h(f)(v) = h(λ1)w1 + · · ·+ h(λk)wk,

which shows that h(f)(v) ∈ W for every polynomial h. We can write

m = (X − λj)q

for some polynomial q, and also

q − q(λj) = p(X − λj)

for some polynomial p. We know that p(f)(v) ∈ W , and since m is the minimal polynomial
of f , we have

0 = m(f)(u) = (f − λjid)(q(f)(u)),

which implies that q(f)(u) ∈ W (either q(f)(u) = 0, or it is an eigenvector associated with
λj). However,

q(f)(u)− q(λj)u = p(f)((f − λjid)(u)) = p(f)(v),

and since p(f)(v) ∈ W and q(f)(u) ∈ W , we conclude that q(λj)u ∈ W . But, u /∈ W , which
implies that q(λj) = 0, so λj is a double root of m, a contradiction. Therefore, we must have
W = E.

Remark: Proposition 22.11 can be used to give a quick proof of Theorem 14.5.

22.4 Commuting Families of Diagonalizable and Trian-

gulable Maps

Using Theorem 22.12, we can give a short proof about commuting diagonalizable linear
maps.

Definition 22.9. If F is a family of linear maps on a vector space E, we say that F is a
commuting family iff f ◦ g = g ◦ f for all f, g ∈ F .
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Proposition 22.13. Let F be a commuting family of diagonalizable linear maps on a vector
space E. There exists a basis of E such that every linear map in F is represented in that
basis by a diagonal matrix.

Proof. We proceed by induction on n = dim(E). If n = 1, there is nothing to prove. If
n > 1, there are two cases. If all linear maps in F are of the form λid for some λ ∈
K, then the proposition holds trivially. In the second case, let f ∈ F be some linear
map in F which is not a scalar multiple of the identity. In this case, f has at least two
distinct eigenvalues λ1, . . . , λk, and because f is diagonalizable, E is the direct sum of the
corresponding eigenspaces Eλ1 , . . . , Eλk . For every index i, the eigenspace Eλi is invariant
under f and under every other linear map g in F , since for any g ∈ F and any u ∈ Eλi ,
because f and g commute, we have

f(g(u)) = g(f(u)) = g(λiu) = λig(u)

so g(u) ∈ Eλi . Let Fi be the family obtained by restricting each f ∈ F to Eλi . By
Proposition 22.9, the minimal polynomial of every linear map f | Eλi in Fi divides the
minimal polynomial mf of f , and since f is diagonalizable, mf is a product of distinct
linear factors, so the minimal polynomial of f | Eλi is also a product of distinct linear
factors. By Theorem 22.12, the linear map f | Eλi is diagonalizable. Since k > 1, we have
dim(Eλi) < dim(E) for i = 1, . . . , k, and by the induction hypothesis, for each i there is
a basis of Eλi over which f | Eλi is represented by a diagonal matrix. Since the above
argument holds for all i, by combining the bases of the Eλi , we obtain a basis of E such that
the matrix of every linear map f ∈ F is represented by a diagonal matrix.

There is also an analogous result for commuting families of linear maps represented by
upper triangular matrices. To prove this we need the following proposition.

Proposition 22.14. Let F be a nonempty commuting family of triangulable linear maps on
a finite-dimensional vector space E. Let W be a proper subspace of E which is invariant
under F . Then there exists a vector u ∈ E such that:

1. u /∈ W .

2. For every f ∈ F , the vector f(u) belongs to the subspace W ⊕Ku spanned by W and
u.

Proof. By renaming the elements of F if necessary, we may assume that (f1, . . . , fr) is a
basis of the subspace of End(E) spanned by F . We prove by induction on r that there exists
some vector u ∈ E such that

1. u /∈ W .

2. (fi − αiid)(u) ∈ W for i = 1, . . . , r, for some scalars αi ∈ K.
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Consider the base case r = 1. Since f1 is triangulable, its eigenvalues all belong to K
since they are the diagonal entries of the triangular matrix associated with f1 (this is the
easy direction of Theorem 14.5), so the minimal polynomial of f1 is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

where the eigenvalues λ1, . . . , λk of f1 belong to K. We conclude by applying Proposition
22.11.

Next assume that r ≥ 2 and that the induction hypothesis holds for f1, . . . , fr−1. Thus,
there is a vector ur−1 ∈ E such that

1. ur−1 /∈ W .

2. (fi − αiid)(ur−1) ∈ W for i = 1, . . . , r − 1, for some scalars αi ∈ K.

Let

Vr−1 = {w ∈ E | (fi − αiid)(w) ∈ W, i = 1, . . . , r − 1}.
Clearly, W ⊆ Vr−1 and ur−1 ∈ Vr−1. We claim that Vr−1 is invariant under F . This is
because, for any v ∈ Vr−1 and any f ∈ F , since f and fi commute, we have

(fi − αiid)(f(v)) = f((fi − αiid)(v)), 1 ≤ i ≤ r − 1.

Now (fi−αiid)(v) ∈ W because v ∈ Vr−1, and W is invariant under F , so f(fi−αiid)(v)) ∈
W , that is, (fi − αiid)(f(v)) ∈ W .

Consider the restriction gr of fr to Vr−1. The minimal polynomial of gr divides the
minimal polynomial of fr, and since fr is triangulable, just as we saw for f1, the minimal
polynomial of fr is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

where the eigenvalues λ1, . . . , λk of fr belong to K, so the minimal polynomial of gr is of the
same form. By Proposition 22.11, there is some vector ur ∈ Vr−1 such that

1. ur /∈ W .

2. (gr − αrid)(ur) ∈ W for some scalars αr ∈ K.

Now since ur ∈ Vr−1, we have (fi−αiid)(ur) ∈ W for i = 1, . . . , r−1, so (fi−αiid)(ur) ∈ W
for i = 1, . . . , r (since gr is the restriction of fr), which concludes the proof of the induction
step. Finally, since every f ∈ F is the linear combination of (f1, . . . , fr), Condition (2) of
the inductive claim implies Condition (2) of the proposition.

We can now prove the following result.
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Proposition 22.15. Let F be a nonempty commuting family of triangulable linear maps on
a finite-dimensional vector space E. There exists a basis of E such that every linear map in
F is represented in that basis by an upper triangular matrix.

Proof. Let n = dim(E). We construct inductively a basis (u1, . . . , un) of E such that if Wi

is the subspace spanned by (u1 . . . , ui), then for every f ∈ F ,

f(ui) = af1iu1 + · · ·+ afiiui,

for some afij ∈ K; that is, f(ui) belongs to the subspace Wi.

We begin by applying Proposition 22.14 to the subspace W0 = (0) to get u1 so that for
all f ∈ F ,

f(u1) = αf1u1.

For the induction step, since Wi invariant under F , we apply Proposition 22.14 to the
subspace Wi, to get ui+1 ∈ E such that

1. ui+1 /∈ Wi.

2. For every f ∈ F , the vector f(ui+1) belong to the subspace spanned by Wi and ui+1.

Condition (1) implies that (u1, . . . , ui, ui+1) is linearly independent, and Condition (2) means
that for every f ∈ F ,

f(ui+1) = af1i+1u1 + · · ·+ afi+1i+1ui+1,

for some afi+1j ∈ K, establishing the induction step. After n steps, each f ∈ F is represented
by an upper triangular matrix.

Observe that if F consists of a single linear map f and if the minimal polynomial of f is
of the form

m = (X − λ1)r1 · · · (X − λk)rk ,
with all λi ∈ K, using Proposition 22.11 instead of Proposition 22.14, the proof of Proposition
22.15 yields another proof of Theorem 14.5.

22.5 The Primary Decomposition Theorem

If f : E → E is a linear map and λ ∈ K is an eigenvalue of f , recall that the eigenspace Eλ
associated with λ is the kernel of the linear map λid− f . If all the eigenvalues λ1 . . . , λk of
f are in K, it may happen that

E = Eλ1 ⊕ · · · ⊕ Eλk ,

but in general there are not enough eigenvectors to span E. What if we generalize the notion
of eigenvector and look for (nonzero) vectors u such that

(λid− f)r(u) = 0, for some r ≥ 1?
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It turns out that if the minimal polynomial of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

then r = ri does the job for λi; that is, if we let

Wi = Ker (λiid− f)ri ,

then

E = W1 ⊕ · · · ⊕Wk.

This result is very nice but seems to require that the eigenvalues of f all belong to K.
Actually, it is a special case of a more general result involving the factorization of the
minimal polynomial m into its irreducible monic factors (see Theorem 22.6),

m = pr11 · · · prkk ,

where the pi are distinct irreducible monic polynomials over K.

Theorem 22.16. (Primary Decomposition Theorem) Let f : E → E be a linear map on
the finite-dimensional vector space E over the field K. Write the minimal polynomial m of
f as

m = pr11 · · · prkk ,
where the pi are distinct irreducible monic polynomials over K, and the ri are positive inte-
gers. Let

Wi = Ker (prii (f)), i = 1, . . . , k.

Then

(a) E = W1 ⊕ · · · ⊕Wk.

(b) Each Wi is invariant under f .

(c) The minimal polynomial of the restriction f | Wi of f to Wi is prii .

Proof. The trick is to construct projections πi using the polynomials p
rj
j so that the range

of πi is equal to Wi. Let

gi = m/prii =
∏
j 6=i

p
rj
j .

Note that

prii gi = m.

Since p1, . . . , pk are irreducible and distinct, they are relatively prime. Then using Proposi-
tion 22.4, it is easy to show that g1, . . . , gk are relatively prime. Otherwise, some irreducible
polynomial p would divide all of g1, . . . , gk, so by Proposition 22.4 it would be equal to one
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of the irreducible factors pi. But that pi is missing from gi, a contradiction. Therefore, by
Proposition 22.5, there exist some polynomials h1, . . . , hk such that

g1h1 + · · ·+ gkhk = 1.

Let qi = gihi and let πi = qi(f) = gi(f)hi(f). We have

q1 + · · ·+ qk = 1,

and since m divides qiqj for i 6= j, we get

π1 + · · ·+ πk = id

πiπj = 0, i 6= j.

(We implicitly used the fact that if p, q are two polynomials, the linear maps p(f) ◦ q(f)
and q(f) ◦ p(f) are the same since p(f) and q(f) are polynomials in the powers of f , which
commute.) Composing the first equation with πi and using the second equation, we get

π2
i = πi.

Therefore, the πi are projections, and E is the direct sum of the images of the πi. Indeed,
every u ∈ E can be expressed as

u = π1(u) + · · ·+ πk(u).

Also, if
π1(u) + · · ·+ πk(u) = 0,

then by applying πi we get

0 = π2
i (u) = πi(u), i = 1, . . . k.

To finish proving (a), we need to show that

Wi = Ker (prii (f)) = πi(E).

If v ∈ πi(E), then v = πi(u) for some u ∈ E, so

prii (f)(v) = prii (f)(πi(u))

= prii (f)gi(f)hi(f)(u)

= hi(f)prii (f)gi(f)(u)

= hi(f)m(f)(u) = 0,

because m is the minimal polynomial of f . Therefore, v ∈ Wi.

Conversely, assume that v ∈ Wi = Ker (prii (f)). If j 6= i, then gjhj is divisible by prii , so

gj(f)hj(f)(v) = πj(v) = 0, j 6= i.
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Then since π1 + · · · + πk = id, we have v = πiv, which shows that v is in the range of πi.
Therefore, Wi = Im(πi), and this finishes the proof of (a).

If prii (f)(u) = 0, then prii (f)(f(u)) = f(prii (f)(u)) = 0, so (b) holds.

If we write fi = f | Wi, then prii (fi) = 0, because prii (f) = 0 on Wi (its kernel). Therefore,
the minimal polynomial of fi divides prii . Conversely, let q be any polynomial such that
q(fi) = 0 (on Wi). Since m = prii gi, the fact that m(f)(u) = 0 for all u ∈ E shows that

prii (f)(gi(f)(u)) = 0, u ∈ E,

and thus Im(gi(f)) ⊆ Ker (prii (f)) = Wi. Consequently, since q(f) is zero on Wi,

q(f)gi(f) = 0 for all u ∈ E.

But then qgi is divisible by the minimal polynomial m = prii gi of f , and since prii and gi are
relatively prime, by Euclid’s proposition, prii must divide q. This finishes the proof that the
minimal polynomial of fi is prii , which is (c).

To best understand the projection constructions of Theorem 22.16, we provide the fol-
lowing two explicit examples of the primary decomposition theorem.

Example 22.2. First let f : R3 → R3 be defined as f(x, y, z) = (y,−x, z). In terms of the

standard basis f is represented by the 3 × 3 matrix Xf :=

0 −1 0
1 0 0
0 0 1

. Then a simple

calculation shows that mf (x) = χf (x) = (x2 +1)(x−1). Using the notation of the preceding
proof set

m = p1p2, p1 = x2 + 1, p2 = x− 1.

Then

g1 =
m

p1

= x− 1, g2 =
m

p2

= x2 + 1.

We must find h1, h2 ∈ R[x] such that g1h1 + g2h2 = 1. In general this is the hard part
of the projection construction. But since we are only working with two relatively prime
polynomials g1, g2, we may apply the Euclidean algorithm to discover that

−x+ 1

2
(x− 1) +

1

2
(x2 + 1) = 1,

where h1 = −x+1
2

while h2 = 1
2
. By definition

π1 = g1(f)h1(f) = −1

2
(Xf − id)(Xf + id) = −1

2
(X2

f − id) =

1 0 0
0 1 0
0 0 0

 ,
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and

π2 = g2(f)h2(f) =
1

2
(X2

f + id) =

0 0 0
0 0 0
0 0 1

 .

Then R3 = W1 ⊕W2, where

W1 = π1(R3) = Ker (p1(Xf )) = Ker (X2
f + id) = Ker

0 0 0
0 0 0
0 0 1

 = {(x, y, 0) ∈ R3},

W2 = π2(R3) = Ker (p2(Xf )) = Ker (Xf − id) = Ker

−1 −1 0
1 −1 0
0 0 0

 = {(0, 0, z) ∈ R3}.

Example 22.3. For our second example of the primary decomposition theorem let f : R3 →
R3 be defined as f(x, y, z) = (y,−x + z,−y), with standard matrix representation Xf =0 −1 0

1 0 −1
0 1 0

. A simple calculation shows that mf (x) = χf (x) = x(x2 + 2). Set

p1 = x2 + 2, p2 = x, g1 =
mf

p1

= x, g2 =
mf

p2

= x2 + 2.

Since gcd(g1, g2) = 1, we use the Euclidean algorithm to find

h1 = −1

2
x, h2 =

1

2
,

such that g1h1 + g2h2 = 1. Then

π1 = g1(f)h1(f) = −1

2
X2
f =

 1
2

0 −1
2

0 1 0
−1

2
0 1

2

 ,

while

π2 = g2(f)h2(f) =
1

2
(X2

f + 2id) =

1
2

0 1
2

0 0 0
1
2

0 1
2

 .

Although it is not entirely obvious, π1 and π2 are indeed projections since

π2
1 =

 1
2

0 −1
2

0 1 0
−1

2
0 1

2

 1
2

0 −1
2

0 1 0
−1

2
0 1

2

 =

 1
2

0 −1
2

0 1 0
−1

2
0 1

2

 = π1,
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and

π2
2 =

1
2

0 1
2

0 0 0
1
2

0 1
2

1
2

0 1
2

0 0 0
1
2

0 1
2

 =

1
2

0 1
2

0 0 0
1
2

0 1
2

 = π2.

Furthermore observe that π1 + π2 = id. The primary decomposition theorem implies that
R3 = W1 ⊕W2 where

W1 = π1(R3) = Ker (p1(f)) = Ker (X2 + 2) = Ker

1 0 1
0 0 0
1 0 1

 = span{(0, 1, 0), (1, 0,−1)},

W2 = π2(R3) = Ker (p2(f)) = Ker (X) = span{(1, 0, 1)}.

See Figure 22.1.

Figure 22.1: The direct sum decomposition of R3 = W1⊕W2 where W1 is the plane x+z = 0
and W2 is line t(1, 0, 1). The spanning vectors of W1 are in blue.

If all the eigenvalues of f belong to the field K, we obtain the following result.

Theorem 22.17. (Primary Decomposition Theorem, Version 2) Let f : E → E be a lin-
ear map on the finite-dimensional vector space E over the field K. If all the eigenvalues
λ1, . . . , λk of f belong to K, write

m = (X − λ1)r1 · · · (X − λk)rk
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for the minimal polynomial of f ,

χf = (X − λ1)n1 · · · (X − λk)nk

for the characteristic polynomial of f , with 1 ≤ ri ≤ ni, and let

Wi = Ker (λiid− f)ri , i = 1, . . . , k.

Then

(a) E = W1 ⊕ · · · ⊕Wk.

(b) Each Wi is invariant under f .

(c) dim(Wi) = ni.

(d) The minimal polynomial of the restriction f | Wi of f to Wi is (X − λi)ri.

Proof. Parts (a), (b) and (d) have already been proven in Theorem 22.16, so it remains to
prove (c). Since Wi is invariant under f , let fi be the restriction of f to Wi. The characteristic
polynomial χfi of fi divides χ(f), and since χ(f) has all its roots in K, so does χi(f). By
Theorem 14.5, there is a basis of Wi in which fi is represented by an upper triangular matrix,
and since (λiid− f)ri = 0, the diagonal entries of this matrix are equal to λi. Consequently,

χfi = (X − λi)dim(Wi),

and since χfi divides χ(f), we conclude hat

dim(Wi) ≤ ni, i = 1, . . . , k.

Because E is the direct sum of the Wi, we have dim(W1) + · · · + dim(Wk) = n, and since
n1 + · · ·+ nk = n, we must have

dim(Wi) = ni, i = 1, . . . , k,

proving (c).

Definition 22.10. If λ ∈ K is an eigenvalue of f , we define a generalized eigenvector of f
as a nonzero vector u ∈ E such that

(λid− f)r(u) = 0, for some r ≥ 1.

The index of λ is defined as the smallest r ≥ 1 such that

Ker (λid− f)r = Ker (λid− f)r+1.

It is clear that Ker (λid − f)i ⊆ Ker (λid − f)i+1 for all i ≥ 1. By Theorem 22.17(d), if
λ = λi, the index of λi is equal to ri.
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22.6 Jordan Decomposition

Recall that a linear map g : E → E is said to be nilpotent if there is some positive integer r
such that gr = 0. Another important consequence of Theorem 22.17 is that f can be written
as the sum of a diagonalizable and a nilpotent linear map (which commute). For example
f : R2 → R2 be the R-linear map f(x, y) = (x, x + y) with standard matrix representation

Xf =

(
1 1
0 1

)
. A basic calculation shows that mf (x) = χf (x) = (x − 1)2. By Theorem

22.12 we know that f is not diagonalizable over R. But since the eigenvalue λ1 = 1 of f
does belong to R, we may use the projection construction inherent within Theorem 22.17 to
write f = D + N , where D is a diagonalizable linear map and N is a nilpotent linear map.
The proof of Theorem 22.16 implies that

pr11 = (x− 1)2, g1 = 1 = h1, π1 = g1(f)h1(f) = id.

Then

D = λ1π1 = id, N = f −D = f(x, y)− id(x, y) = (x, x+ y)− (x, y) = (0, y),

which is equivalent to the matrix decomposition

Xf =

(
1 1
0 1

)
=

(
1 0
0 1

)
+

(
0 1
0 0

)
.

This example suggests that the diagonal summand of f is related to the projection
constructions associated with the proof of the primary decomposition theorem. If we write

D = λ1π1 + · · ·+ λkπk,

where πi is the projection from E onto the subspace Wi defined in the proof of Theorem
22.16, since

π1 + · · ·+ πk = id,

we have
f = fπ1 + · · ·+ fπk,

and so we get
N = f −D = (f − λ1id)π1 + · · ·+ (f − λkid)πk.

We claim that N = f −D is a nilpotent operator. Since by construction the πi are polyno-
mials in f , they commute with f , using the properties of the πi, we get

N r = (f − λ1id)rπ1 + · · ·+ (f − λkid)rπk.

Therefore, if r = max{ri}, we have (f − λkid)r = 0 for i = 1, . . . , k, which implies that

N r = 0.
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It remains to show that D is diagonalizable. Since N is a polynomial in f , it commutes
with f , and thus with D. From

D = λ1π1 + · · ·+ λkπk,

and
π1 + · · ·+ πk = id,

we see that

D − λiid = λ1π1 + · · ·+ λkπk − λi(π1 + · · ·+ πk)

= (λ1 − λi)π1 + · · ·+ (λi−1 − λi)πi−1 + (λi+1 − λi)πi+1 + · · ·+ (λk − λi)πk.

Since the projections πj with j 6= i vanish on Wi, the above equation implies that D − λiid
vanishes on Wi and that (D − λjid)(Wi) ⊆ Wi, and thus that the minimal polynomial of D
is

(X − λ1) · · · (X − λk).
Since the λi are distinct, by Theorem 22.12, the linear map D is diagonalizable.

In summary we have shown that when all the eigenvalues of f belong to K, there exist
a diagonalizable linear map D and a nilpotent linear map N such that

f = D +N

DN = ND,

and N and D are polynomials in f .

Definition 22.11. A decomposition of f as f = D +N as above is called a Jordan decom-
position.

In fact, we can prove more: the maps D and N are uniquely determined by f .

Theorem 22.18. (Jordan Decomposition) Let f : E → E be a linear map on the finite-
dimensional vector space E over the field K. If all the eigenvalues λ1, . . . , λk of f belong to
K, then there exist a diagonalizable linear map D and a nilpotent linear map N such that

f = D +N

DN = ND.

Furthermore, D and N are uniquely determined by the above equations and they are polyno-
mials in f .

Proof. We already proved the existence part. Suppose we also have f = D′ + N ′, with
D′N ′ = N ′D′, where D′ is diagonalizable, N ′ is nilpotent, and both are polynomials in f .
We need to prove that D = D′ and N = N ′.
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Since D′ and N ′ commute with one another and f = D′ + N ′, we see that D′ and N ′

commute with f . Then D′ and N ′ commute with any polynomial in f ; hence they commute
with D and N . From

D +N = D′ +N ′,

we get
D −D′ = N ′ −N,

and D,D′, N,N ′ commute with one another. Since D and D′ are both diagonalizable and
commute, by Proposition 22.13, they are simultaneousy diagonalizable, so D −D′ is diago-
nalizable. Since N and N ′ commute, by the binomial formula, for any r ≥ 1,

(N ′ −N)r =
r∑
j=0

(−1)j
(
r

j

)
(N ′)r−jN j.

Since both N and N ′ are nilpotent, we have N r1 = 0 and (N ′)r2 = 0, for some r1, r2 > 0, so
for r ≥ r1 + r2, the right-hand side of the above expression is zero, which shows that N ′−N
is nilpotent. (In fact, it is easy that r1 = r2 = n works). It follows that D −D′ = N ′ − N
is both diagonalizable and nilpotent. Clearly, the minimal polynomial of a nilpotent linear
map is of the form Xr for some r > 0 (and r ≤ dim(E)). But D −D′ is diagonalizable, so
its minimal polynomial has simple roots, which means that r = 1. Therefore, the minimal
polynomial of D −D′ is X, which says that D −D′ = 0, and then N = N ′.

If K is an algebraically closed field, then Theorem 22.18 holds. This is the case when
K = C. This theorem reduces the study of linear maps (from E to itself) to the study of
nilpotent operators. There is a special normal form for such operators which is discussed in
the next section.

22.7 Nilpotent Linear Maps and Jordan Form

This section is devoted to a normal form for nilpotent maps. We follow Godement’s expo-
sition [26]. Let f : E → E be a nilpotent linear map on a finite-dimensional vector space
over a field K, and assume that f is not the zero map. There is a smallest positive integer
r ≥ 1 such f r 6= 0 and f r+1 = 0. Clearly, the polynomial Xr+1 annihilates f , and it is the
minimal polynomial of f since f r 6= 0. It follows that r + 1 ≤ n = dim(E). Let us define
the subspaces Ni by

Ni = Ker (f i), i ≥ 0.

Note that N0 = (0), N1 = Ker (f), and Nr+1 = E. Also, it is obvious that

Ni ⊆ Ni+1, i ≥ 0.

Proposition 22.19. Given a nilpotent linear map f with f r 6= 0 and f r+1 = 0 as above, the
inclusions in the following sequence are strict:

(0) = N0 ⊂ N1 ⊂ · · · ⊂ Nr ⊂ Nr+1 = E.
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Proof. We proceed by contradiction. Assume that Ni = Ni+1 for some i with 0 ≤ i ≤ r.
Since f r+1 = 0, for every u ∈ E, we have

0 = f r+1(u) = f i+1(f r−i(u)),

which shows that f r−i(u) ∈ Ni+1. Since Ni = Ni+1, we get f r−i(u) ∈ Ni, and thus f r(u) = 0.
Since this holds for all u ∈ E, we see that f r = 0, a contradiction.

Proposition 22.20. Given a nilpotent linear map f with f r 6= 0 and f r+1 = 0, for any
integer i with 1 ≤ i ≤ r, for any subspace U of E, if U ∩Ni = (0), then f(U) ∩Ni−1 = (0),
and the restriction of f to U is an isomorphism onto f(U).

Proof. Pick v ∈ f(U) ∩ Ni−1. We have v = f(u) for some u ∈ U and f i−1(v) = 0, which
means that f i(u) = 0. Then u ∈ U ∩ Ni, so u = 0 since U ∩ Ni = (0), and v = f(u) = 0.
Therefore, f(U) ∩ Ni−1 = (0). The restriction of f to U is obviously surjective on f(U).
Suppose that f(u) = 0 for some u ∈ U . Then u ∈ U ∩N1 ⊆ U ∩Ni = (0) (since i ≥ 1), so
u = 0, which proves that f is also injective on U .

Proposition 22.21. Given a nilpotent linear map f with f r 6= 0 and f r+1 = 0, there exists
a sequence of subspace U1, . . . , Ur+1 of E with the following properties:

(1) Ni = Ni−1 ⊕ Ui, for i = 1, . . . , r + 1.

(2) We have f(Ui) ⊆ Ui−1, and the restriction of f to Ui is an injection, for i = 2, . . . , r+1.

See Figure 22.2.

Proof. We proceed inductively, by defining the sequence Ur+1, Ur, . . . , U1. We pick Ur+1 to
be any supplement of Nr in Nr+1 = E, so that

E = Nr+1 = Nr ⊕ Ur+1.

Since f r+1 = 0 and Nr = Ker (f r), we have f(Ur+1) ⊆ Nr, and by Proposition 22.20, as
Ur+1∩Nr = (0), we have f(Ur+1)∩Nr−1 = (0). As a consequence, we can pick a supplement
Ur of Nr−1 in Nr so that f(Ur+1) ⊆ Ur. We have

Nr = Nr−1 ⊕ Ur and f(Ur+1) ⊆ Ur.

By Proposition 22.20, f is an injection from Ur+1 to Ur. Assume inductively that Ur+1, . . . , Ui
have been defined for i ≥ 2 and that they satisfy (1) and (2). Since

Ni = Ni−1 ⊕ Ui,
we have Ui ⊆ Ni, so f i−1(f(Ui)) = f i(Ui) = (0), which implies that f(Ui) ⊆ Ni−1. Also,
since Ui∩Ni−1 = (0), by Proposition 22.20, we have f(Ui)∩Ni−2 = (0). It follows that there
is a supplement Ui−1 of Ni−2 in Ni−1 that contains f(Ui). We have

Ni−1 = Ni−2 ⊕ Ui−1 and f(Ui) ⊆ Ui−1.

The fact that f is an injection from Ui into Ui−1 follows from Proposition 22.20. Therefore,
the induction step is proven. The construction stops when i = 1.
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N r U r+1

f( U r+1 )

f

0

E = 

4

4N r U r+1

Nr-1 Ur

f(U     )r+1f(U   )r

f

0

Nr-1=N r Ur

f(U   )r

Nr-2 Ur-1

Nr-1 Ur-1Nr-2= 4Ur-1f( )

f

0

Figure 22.2: A schematic illustration of Ni = Ni−1⊕Ui with f(Ui) ⊆ Ui−1 for i = r+1, r, r−1.

Because N0 = (0) and Nr+1 = E, we see that E is the direct sum of the Ui:

E = U1 ⊕ · · · ⊕ Ur+1,

with f(Ui) ⊆ Ui−1, and f an injection from Ui to Ui−1, for i = r + 1, . . . , 2. By a clever
choice of bases in the Ui, we obtain the following nice theorem.

Theorem 22.22. For any nilpotent linear map f : E → E on a finite-dimensional vector
space E of dimension n over a field K, there is a basis of E such that the matrix N of f is
of the form

N =


0 ν1 0 · · · 0 0
0 0 ν2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 νn
0 0 0 · · · 0 0

 ,
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where νi = 1 or νi = 0.

Proof. First apply Proposition 22.21 to obtain a direct sum E =
⊕r+1

i=1 Ui. Then we define
a basis of E inductively as follows. First we choose a basis

er+1
1 , . . . , er+1

nr+1

of Ur+1. Next, for i = r + 1, . . . , 2, given the basis

ei1, . . . , e
i
ni

of Ui, since f is injective on Ui and f(Ui) ⊆ Ui−1, the vectors f(ei1), . . . , f(eini) are linearly
independent, so we define a basis of Ui−1 by completing f(ei1), . . . , f(eini) to a basis in Ui−1:

ei−1
1 , . . . , ei−1

ni
, ei−1
ni+1, . . . , e

i−1
ni−1

with
ei−1
j = f(eij), j = 1 . . . , ni.

Since U1 = N1 = Ker (f), we have

f(e1
j) = 0, j = 1, . . . , n1.

These basis vectors can be arranged as the rows of the following matrix:

er+1
1 · · · er+1

nr+1

...
...

er1 · · · ernr+1
ernr+1+1 · · · ernr

...
...

...
...

er−1
1 · · · er−1

nr+1
er−1
nr+1+1 · · · er−1

nr er−1
nr+1 · · · er−1

nr−1

...
...

...
...

...
...

...
...

...
...

...
...

e1
1 · · · e1

nr+1
e1
nr+1+1 · · · e1

nr e1
nr+1 · · · e1

nr−1
· · · · · · e1

n1


Finally, we define the basis (e1, . . . , en) by listing each column of the above matrix from

the bottom-up, starting with column one, then column two, etc. This means that we list
the vectors eij in the following order:

For j = 1, . . . , nr+1, list e1
j , . . . , e

r+1
j ;

In general, for i = r, . . . , 1,

for j = ni+1 + 1, . . . , ni, list e1
j , . . . , e

i
j.

Then because f(e1
j) = 0 and ei−1

j = f(eij) for i ≥ 2, either

f(ei) = 0 or f(ei) = ei−1,

which proves the theorem.
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As an application of Theorem 22.22, we obtain the Jordan form of a linear map.

Definition 22.12. A Jordan block is an r × r matrix Jr(λ), of the form

Jr(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · λ

 ,

where λ ∈ K, with J1(λ) = (λ) if r = 1. A Jordan matrix , J , is an n × n block diagonal
matrix of the form

J =

Jr1(λ1) · · · 0
...

. . .
...

0 · · · Jrm(λm)

 ,

where each Jrk(λk) is a Jordan block associated with some λk ∈ K, and with r1+· · ·+rm = n.

To simplify notation, we often write J(λ) for Jr(λ). Here is an example of a Jordan
matrix with four blocks:

J =



λ 1 0 0 0 0 0 0
0 λ 1 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 λ 1 0 0 0
0 0 0 0 λ 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 µ 1
0 0 0 0 0 0 0 µ


.

Theorem 22.23. (Jordan form) Let E be a vector space of dimension n over a field K and
let f : E → E be a linear map. The following properties are equivalent:

(1) The eigenvalues of f all belong to K (i.e. the roots of the characteristic polynomial χf
all belong to K).

(2) There is a basis of E in which the matrix of f is a Jordan matrix.

Proof. Assume (1). First we apply Theorem 22.17, and we get a direct sum E =
⊕k

j=1Wk,
such that the restriction of gi = f − λjid to Wi is nilpotent. By Theorem 22.22, there is a
basis of Wi such that the matrix of the restriction of gi is of the form

Gi =


0 ν1 0 · · · 0 0
0 0 ν2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 νni
0 0 0 · · · 0 0

 ,
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where νi = 1 or νi = 0. Furthermore, over any basis, λiid is represented by the diagonal
matrix Di with λi on the diagonal. Then it is clear that we can split Di + Gi into Jordan
blocks by forming a Jordan block for every uninterrupted chain of 1s. By putting the bases
of the Wi together, we obtain a matrix in Jordan form for f .

Now assume (2). If f can be represented by a Jordan matrix, it is obvious that the
diagonal entries are the eigenvalues of f , so they all belong to K.

Observe that Theorem 22.23 applies if K = C. It turns out that there are uniqueness
properties of the Jordan blocks but more machinery is needed to prove this result.

If a complex n × n matrix A is expressed in terms of its Jordan decomposition as A =
D +N , since D and N commute, by Proposition 8.21, the exponential of A is given by

eA = eDeN ,

and since N is an n× n nilpotent matrix, Nn−1 = 0, so we obtain

eA = eD
(
I +

N

1!
+
N2

2!
+ · · ·+ Nn−1

(n− 1)!

)
.

In particular, the above applies if A is a Jordan matrix. This fact can be used to solve
(at least in theory) systems of first-order linear differential equations. Such systems are of
the form

dX

dt
= AX, (∗)

where A is an n× n matrix and X is an n-dimensional vector of functions of the parameter
t.

It can be shown that the columns of the matrix etA form a basis of the vector space
of solutions of the system of linear differential equations (∗); see Artin [3] (Chapter 4).
Furthermore, for any matrix B and any invertible matrix P , if A = PBP−1, then the system
(∗) is equivalent to

P−1dX

dt
= BP−1X,

so if we make the change of variable Y = P−1X, we obtain the system

dY

dt
= BY. (∗∗)

Consequently, if B is such that the exponential etB can be easily computed, we obtain an
explicit solution Y of (∗∗) , and X = PY is an explicit solution of (∗). This is the case when
B is a Jordan form of A. In this case, it suffices to consider the Jordan blocks of B. Then
we have

Jr(λ) = λIr +


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · 0

 = λIr +N,



764 CHAPTER 22. ANNIHILATING POLYNOMIALS; PRIMARY DECOMPOSITION

and the powers Nk are easily computed.

For example, if

B =

3 1 0
0 3 1
0 0 3

 = 3I3 +

0 1 0
0 0 1
0 0 0


we obtain

tB = t

3 1 0
0 3 1
0 0 3

 = 3tI3 +

0 t 0
0 0 t
0 0 0


and so

etB =

e3t 0 0
0 e3t 0
0 0 e3t

1 t (1/2)t2

0 1 t
0 0 1

 =

e3t te3t (1/2)t2e3t

0 e3t te3t

0 0 e3t

 .

The columns of etB form a basis of the space of solutions of the system of linear differential
equations

dY1

dt
= 3Y1 + Y2

dY2

dt
= 3Y2 + Y3

dY3

dt
= 3Y3,

in matrix form, 
dY1
dt

dY2
dt

dY3
dt

 =

3 1 0
0 3 1
0 0 3

Y1

Y2

Y3

 .

Explicitly, the general solution of the above system isY1

Y2

Y3

 = c1

e3t

0
0

+ c2

te3t

e3t

0

+ c3

(1/2)t2e3t

te3t

e3t

 ,

with c1, c2, c3 ∈ R.

Solving systems of first-order linear differential equations is discussed in Artin [3] and
more extensively in Hirsh and Smale [34].

22.8 Summary

The main concepts and results of this chapter are listed below:
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• Ideals, principal ideals, greatest common divisors.

• Monic polynomial, irreducible polynomial, relatively prime polynomials.

• Annihilator of a linear map.

• Minimal polynomial of a linear map.

• Invariant subspace.

• f -conductor of u into W ; conductor of u into W .

• Diagonalizable linear maps.

• Commuting families of linear maps.

• Primary decomposition.

• Generalized eigenvectors.

• Nilpotent linear map.

• Normal form of a nilpotent linear map.

• Jordan decomposition.

• Jordan block.

• Jordan matrix.

• Jordan normal form.

• Systems of first-order linear differential equations.

22.9 Problems

Problem 22.1. Prove that the minimal monic polynomial of Proposition 22.1 is unique.

Problem 22.2. Given a linear map f : E → E, prove that the set Ann(f) of polynomials
that annihilate f is an ideal.

Problem 22.3. Provide the details of Proposition 22.9.

Problem 22.4. Prove that the f -conductor Sf (u,W ) is an ideal in K[X] (Proposition
22.10).

Problem 22.5. Prove that the polynomials g1, . . . , gk used in the proof of Theorem 22.16
are relatively prime.
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Problem 22.6. Find the minimal polynomial of the matrix

A =

 6 −3 −2
4 −1 −2
10 −5 −3

 .

Problem 22.7. Find the Jordan decomposition of the matrix

A =

3 1 −1
2 2 −1
2 2 0

 .

Problem 22.8. Let f : E → E be a linear map on a finite-dimensional vector space. Prove
that if f has rank 1, then either f is diagonalizable or f is nilpotent but not both.

Problem 22.9. Find the Jordan form of the matrix

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Problem 22.10. Let N be a 3× 3 nilpotent matrix over C. Prove that the matrix
A = I + (1/2)N − (1/8)N2 satisfies the equation

A2 = I +N.

In other words, A is a square root of I +N .

Generalize the above fact to any n × n nilpotent matrix N over C using the binomial
series for (1 + t)1/2.

Problem 22.11. Let K be an algebraically closed field (for example, K = C). Prove that
every 4× 4 matrix is similar to a Jordan matrix of the following form:

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 ,


λ 1 0 0
0 λ 0 0
0 0 λ3 0
0 0 0 λ4

 ,


λ 1 0 0
0 λ 1 0
0 0 λ 0
0 0 0 λ4

 ,


λ 1 0 0
0 λ 0 0
0 0 µ 1
0 0 0 µ

 ,


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 .
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Problem 22.12. In this problem the field K is of characteristic 0. Consider an (r × r)
Jordan block

Jr(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · λ

 .

Prove that for any polynomial f(X), we have

f(Jr(λ)) =


f(λ) f1(λ) f2(λ) · · · fr−1(λ)

0 f(λ) f1(λ) · · · fr−2(λ)
...

...
. . . . . .

...

0 0 0
. . . f1(λ)

0 0 0 · · · f(λ)

 ,

where

fk(X) =
f (k)(X)

k!
,

and f (k)(X) is the kth derivative of f(X).
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[54] Laurent Schwartz. Analyse I. Théorie des Ensembles et Topologie. Collection Enseigne-
ment des Sciences. Hermann, 1991.

[55] Laurent Schwartz. Analyse II. Calcul Différentiel et Equations Différentielles. Collection
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(k + 1)th principal component
of X, 716

3-sphere S3, 563
C0-continuity, 217
C2-continuity, 217
I-indexed family, 37

I-sequence, 38
I-sequence, 38
K-vector space, 35
LDU -factorization, 230
LU -factorization, 227, 229
QR algorithm, 613

deflation, 626
double shift, 625, 628
Francis shift, 629
implicit Q theorem, 629
implicit shift, 625

bulge chasing, 625
shift, 625, 626
Wilkinson shift, 627

QR-decomposition, 437, 497
Hom(E,F ), 68
SO(2), 569
SU(2), 551

adjoint representation, 553
U(1), 569
so(n), 435
su(2), 553

inner product, 566
f -conductor of u into W , 740
k-plane, 56
kth elementary symmetric polynomial, 523
n-linear form, see multilinear form
n-linear map, see multilinear map
(real) projective space RP3, 563

(upper) Hessenberg matrix, 619
reduced, 622
unreduced, 622

“musical map”, 417

`2-norm, 22
I-indexed family

subfamily, 43
Gauss-Jordan factorization, 227
permanent

Van der Waerden conjecture, 206

abelian group, 30
adjacency matrix, 641, 647

diffusion operator, 648
adjoint map, 419, 491
adjoint of f , 419, 421, 491
adjoint of a matrix, 496
adjugate, 193
affine combination, 159
affine frame, 165
affine map, 162, 432

unique linear map, 162
affine space, 163

free vectors, 163
points, 163
translations, 163

algebraic varieties, 380
algebraically closed field, 530
alternating multilinear map, 180
annihilating polynomials, 731
annihilator

linear map, 738
of a polynomial, 731

applications
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of Euclidean geometry, 442
Arnoldi iteration, 631

breakdown, 631
Rayleigh–Ritz method, 633

Arnoldi estimates, 633
Ritz values, 633

attribute, 711
automorphism, 69
average, 712

Bézier curve, 215
control points, 215

Bézier spline, 217
back-substitution, 220
Banach space, 332
barycentric combination, see affine combina-

tion
basis, 50

dimension, 52, 55
Beltrami, 681
Bernstein polynomials, 50, 94, 215
best (d − k)-dimensional affine approxima-

tion, 723, 724
best affine approximation, 722
best approximation, 722
Bezout’s identity, 736, 737
bidual, 69, 371
bijection between E and its dual E∗, 416
bilinear form, see bilinear map
bilinear map, 180, 376

canonical pairing, 376
definite, 404
positive, 404
symmetric, 180

block
upper triangular matrix, 191

block diagonalization
of a normal linear map, 584
of a normal matrix, 593
of a skew-self-adjoint linear map, 588
of a skew-symmetric matrix, 593
of an orthogonal linear map, 589
of an orthogonal matrix, 593

canonical
isomorphism, 416

canonical pairing, 376
evaluation at v, 376

Cartan–Dieudonné theorem, 590
sharper version, 590

Cauchy determinant, 329
Cauchy sequence

normed vector space, 332
Cauchy–Schwarz inequality, 302, 303, 407, 485
Cayley–Hamilton theorem, 199, 202
center of gravity, 713
centered data point, 712
centroid, 713, 722, 724
chain, see graph path
change of basis matrix, 93
characteristic polynomial, 198, 309, 521
characteristic value, see eigenvalue
characteristic vector, see eigenvector
Chebyshev polynomials, 428
Cholesky factorization, 252, 253
cofactor, 185
column vector, 18, 57, 374
commutative group, see abelian group
commuting family

linear maps, 742
complete normed vector space, see Banach

space
complex number

conjugate, 479
imaginary part, 479
modulus, 479
real part, 479

complex vector space, 35
complexification

of a vector space, 578
of an inner product, 579

complexification of vector space, 578
computational geometry, 442
condition number, 323, 468
conductor, 741
conjugate
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of a complex number, 479
of a matrix, 495

continuous
function, 318
linear map, 318

contravariant, 94
Courant–Fishcer theorem, 600
covariance, 713
covariance matrix, 713
covariant, 374
covector, see linear form, see linear form
Cramer’s rules, 197
cross-product, 418
curve interpolation, 215, 217

de Boor control points, 217

data compression, 28, 690, 709
low-rank decomposition, 28

de Boor control points, 217
QR-decomposition, 424, 437, 442, 457, 462,

466, 493, 498
QR-decomposition, in terms of Householder

matrices, 462
degree matrix, 641, 644, 646, 650
degree of a vertex, 641
Delaunay triangulation, 442, 671
Demmel, 711
determinant, 183–185

Laplace expansion, 185
linear map, 198

determinant of a linear map, 434
determining orbits of asteroids, 697
diagonal matrix, 519
diagonalizable, 526
diagonalizable matrix, 519
diagonalization, 96

of a normal linear map, 585
of a normal matrix, 595
of a self-adjoint linear map, 586
of a symmetric matrix, 593

diagonalize a matrix, 442
differential equations

system of first order, 759

dilation of hyperplane, 278
direction, 278
scale factor, 278

direct graph
strongly connected components, 645

direct product
inclusion map, 134
projection map, 133
vector spaces, 133

direct sum
inclusion map, 137
projection map, 138
vector space, 134

directed graph, 644
closed, 645
path, 645

length, 645
simply connected, 645
source, 644
target, 644

discriminant, 177
dual basis, 71
dual norm, 506
dual space, 69, 371, 506

annihilator, 377
canonical pairing, 376
coordinate form, 71, 371
dual basis, 71, 371, 381, 382
Duality theorem, 381
linear form, 69, 371
orthogonal, 377

duality
in Euclidean spaces, 416

Duality theorem, 381

edge of a graph, 644, 646
eigenfaces, 726
eigenspace, 308, 521
eigenvalue, 96, 308, 309, 520, 577

algebraic multiplicity, 525
Arnoldi iteration, 632
basic QR algorithm, 613
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conditioning number, 537
extreme, 633
geometric multiplicity, 525
interlace, 597
spectrum, 309

eigenvector, 96, 308, 520, 577
generalized, 732

elementary matrix, 225, 226
endomorphism, 69
Euclid’s proposition, 736
Euclidean geometry, 403
Euclidean norm, 22, 296

induced by an inner product, 409
Euclidean space, 582

definition, 404
Euclidean structure, 404
evaluation at v, 376

face recognition, 726
family, see I-indexed family
feature, 711

vector, 712
Fiedler number, 655
field, 34
finding eigenvalues

inverse iteration method, 637
power iteration, 636
Rayleigh quotient iteration, 638
Rayleigh–Ritz method, 633, 635

finite support, 415
first principal component

of X, 716
flip

transformations, 434, 497
flip about F

definition, 458
forward-substitution, 221
Fourier analysis, 405
Fourier matrix, 497
free module, 60
free variables, 265
Frobenius norm, 310, 405, 483

from polar form to SVD, 685
from SVD to polar form, 685

Gauss, 443, 697
Gauss–Jordan factorization, 267
Gaussian elimination, 221, 222, 227

complete pivoting, 247
partial pivoting, 247
pivot, 223
pivoting, 223

gcd, see greatest common divisor
general linear group, 31

vector space, 69
generalized eigenvector, 732, 751

index, 751
geodesic dome, 671
Gershgorin disc, 531
Gershgorin domain, 531
Gershgorin–Hadamard theorem, 533
Givens rotation, 630
gradient, 418
Gram–Schmidt

orthonormalization, 436, 493
orthonormalization procedure, 423

graph
bipartite, 204
connected, 646
connected component, 647
cut, 659
degree of a vertex, 646
directed, 644
edge, 646
edges, 644
isolated vertex, 655
links between vertex subsets, 659
matching, 204
orientation, 648

relationship to directed graph, 648
oriented, 648
path, 646

closed, 646
length, 646



778 INDEX

perfect matching, 204
simple, 644, 646
vertex, 646
vertex degree, 644
vertices, 644
volume of set of vertices, 659
weighted, 649

graph clustering, 660
graph clustering method, 641

normalized cut, 641
graph drawing, 643, 665

balanced, 665
energy, 643, 666
function, 665
matrix, 643, 665
orthogonal drawing, 644, 667
relationship to graph clustering, 643
weighted energy function, 666

graph embedding, see graph drawing
graph Laplacian, 642
Grassmann’s relation, 154
greatest common divisor

polynomial, 735, 736
relatively prime, 735, 736

group, 29
abelian, 30
identity element, 29

Hölder’s inequality, 302
Haar basis, 50, 107, 110, 111
Haar matrix, 111
Haar wavelets, 107, 112
Hadamard, 404
Hadamard matrix, 125

Sylvester–Hadamard, 126
Hahn–Banach theorem, 512
Hermite polynomials, 429
Hermitian form

definition, 480
positive, 482
positive definite, 482

Hermitian geometry, 479

Hermitian norm, 487
hermitian positive definite matrix, 250
Hermitian reflection, 499
Hermitian space, 479

definition, 482
Hermitian product, 482

Hilbert matrix, 329
Hilbert space, 417, 490
Hilbert’s Nullstellensatz, 380
Hilbert-Schmidt norm, see Frobenius norm
homogenous system, 266

nontrivial solution, 266
Householder matrices, 438, 457

definition, 460
Householder matrix, 499
hyperplane, 56, 417, 490
hyperplane symmetry

definition, 458

ideal, 380, 734
null, 734
principal, 734
radical, 380
zero, 734

idempotent function, 139
identity matrix, 23, 59
image

linear map, 63
image Im f of f , 679
image compression, 711
implicit Q theorem, 629, 640
improper

isometry, 434, 497
orthogonal transformation, 434
unitary transformation, 497

incidence matrix, 641, 645, 647
boundary map, 646
coboundary map, 646
weighted graph, 653

inner product, 21, 22, 63, 403
definition, 404
Euclidean, 303
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Gram matrix, 406
Hermitian, 302
weight function, 428

invariant subspace, 739
inverse map, 67
inverse matrix, 59
isometry, 421
isomorphism, 67
isotropic

vector, 417

Jacobi polynomials, 429
Jacobian matrix, 418
Jordan, 681
Jordan block, 758
Jordan blocks, 733
Jordan decomposition, 753
Jordan form, 733, 758
Jordan matrix, 758

Kernel
linear map, 63

Kronecker product, 115
Kronecker symbol, 71
Krylov subspace, 632
Ky Fan k-norm, 691
Ky Fan p-k-norm, 691

Laguerre polynomials, 429
Lanczos iteration, 635

Rayleigh–Ritz method, 635
Laplacian

connection to energy function, 666
Fiedler number, 655
normalized Lrw, 655
normalized Lsym, 655
unnormalized, 651
unnormalized weighted graph, 652

lasso, 24
least squares, 691, 697

method, 443
problems, 440
recursive, 703

weighted, 703
least squares solution x+, 699
least-squares

error, 330
least-squares problem

generalized minimal residuals, 634
GMRES method, 634
residual, 634

Legendre, 443, 697
polynomials, 427

length of a line segment, 403
Lie algebra, 564
Lie bracket, 564
line, 56
linear combination, 18, 43
linear equation, 70
linear form, 69, 371
linear isometry, 403, 421, 429, 494

definition, 429
linear map, 62

automorphism, 69
bounded, 312, 318
continuous, 318
determinant, 198
endomorphism, 69
idempotent, 503
identity map, 62
image, 63
invariant subspace, 136
inverse, 67
involution, 503
isomorphism, 67
Jordan form, 758
Kernel, 63
matrix representation, 84
nilpotent, 732, 752
nullity, 154
projection, 503
rank, 64
retraction, 157
section, 157
transpose, 91, 389
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linear subspace, 46
linear system

condition, 323
ill-conditioned, 323

linear transformation, 21, 62
linearly dependent, 20, 43
linearly independent, 18, 43
Lorentz form, 417

magic square, 275
magic sum, 276
normal, 275

matrix, 19, 57
adjoint, 307, 594
analysis, 442
bidiagonal, 690
block diagonal, 136, 584
change of basis, 93
conjugate, 307, 594
determinant, 184, 185
diagonal, 519
Hermitian, 307, 594
hermitian positive definite, 250
HPD, 250
identity, 23, 59
inverse, 23, 59
invertible, 23
Jordan, 758
minor, 184, 193
nonsingular, 23, 59
normal, 307, 594
orthogonal, 24, 308, 592
permanent, 204
product, 58
pseudo-inverse, 24
rank, 158
rank normal form, 277
reduced row echelon, 260, 263
similar, 96
singular, 23, 59
skew-Hermitian, 594
skew-symmetric, 592

SPD, 250
square, 57
strictly column diagonally dominant, 247
strictly row diagonally dominant, 247
sum, 58
symmetric, 137, 307, 592
symmetric positive definite, 250
trace, 70, 522
transpose, 307
tridiagonal, 248, 690
unit lower-triangular, 228
unitary, 307, 594
upper triangular, 437, 520, 527

matrix addition, 58
matrix completion, 511

Netflix competition, 511
matrix exponential, 335

eigenvalue, 538
eigenvector, 538
skew symmetric matrix, 337, 539
surjectivity exp: su(2)→ SU(2), 564
surjectivity exp: so(3)→ SO(3), 436

matrix multiplication, 58
matrix norm, 307, 710

Frobenius, 310
spectral, 317
submultiplicativity, 307

matrix norms, 28
matrix of the iterative method, 348

error vector, 348
Gauss–Seidel method, 354

Gauss–Seidel matrix, 354
Jacobi’s method, 352

Jacobi’s matrix, 352
relaxation method, 356

matrix of relaxation, 356
Ostrowski-Reich theorem, 359
parameter of relaxation, 356
successive overrelaxation, 356

maximal linearly independent family, 51
mean, 712
metric map, 429
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metric notions, 403
minimal generating family, 51
minimal polynomial, 731, 738
minimizing ‖Ax− b‖2, 699
Minkowski inequality, 407, 485
Minkowski’s inequality, 303
Minkowski’s lemma, 512
minor, 184, 193

cofactor, 185
modified Gram–Schmidt method, 425
module, 60

free, 60
modulus

complex number, 295
monoid, 30
Moore–Penrose pseudo-inverse, 701
motion

planning, 442
mulitset, 38
multilinear form, 180
multilinear map, 180

symmetric, 180
multiresolution signal analysis, 116

nilpotent, 732
linear map, 752

nodes, see vertex
nondegenerate

symmetric bilinear form, 417
norm, 295, 404, 407, 409, 427, 487

1-norm, 296
`2-norm, 22
`p-norm, 296
dual, 506
equivalent, 304
Euclidean, 22, 296
Frobenius, 405
matrix, 307
nuclear, 509
parallelogram law, 410
quadratic norm, 306
subordinate, 313

sup-norm, 296
triangle inequality, 295

normal
matrix, 707

normal equations, 443, 699
definition, 699

normal linear map, 421, 575, 583, 585
definition, 576

normal matrix, 307
normalized cuts, 660
normalized Haar coefficients, 119
normalized Haar transform matrix, 119
normed vector space, 295, 487

1-norm, 296
`p-norm, 296
complete, 332
Euclidean norm, 296
norm, 295
sup-norm, 296
triangle inequality, 295

nuclear norm, 509
matrix completion, 511

nullity, 154
nullspace, see Kernel

open set, 305
operator norm, 313, see subordinate norm
L(E;F ), 318

optimization problems, 697
orthogonal, 701

basis, 434
complement, 413, 581
family, 413
linear map, 576, 589
reflection, 458
spaces, 429
symmetry, 458
transformation

definition, 429
vectors, 413, 488

orthogonal group, 432
definition, 434
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orthogonal matrix, 24, 308, 434
definition, 433

orthogonal projection, 705
orthogonal vectors, 22
orthogonal versus orthonormal, 434
orthogonality, 403, 412

and linear independence, 413
orthonormal

basis, 433, 492
family, 413

orthonormal basis
existence, 422
existence, second proof, 423

overdetermined linear system, 697

pairing
bilinear, 387
nondegenerate, 387

parallelepiped, 188
parallelogram, 188
parallelogram law, 410, 488
parallelotope, 188
partial sums, 416
Pauli spin matrices, 554
PCA, 712, 716, 718
permanent, 204
permutation, 30
permutation matrix, 293
permutation metrix, 233
permutation on n elements, 175

Cauchy two-line notation, 176
inversion, 179
one-line notation, 176
sign, 179
signature, 179
symmetric group, 176
transposition, 175

basic, 177
perpendicular

vectors, 413
piecewise linear function, 111
plane, 56

Poincaré separation theorem, 599
polar decomposition, 443

of A, 685
polar form, 675

definition, 685
of a quadratic form, 406

polynomial
degree, 733
greatest common divisor, 735, 736
indecomposable, 737
irreducible, 737
monic, 733
prime, 737
relatively prime, 735, 736

positive
self-adjoint linear map, 676

positive definite
bilinear form, 404
self-adjoint linear map, 676

positive semidefinite
self-adjoint linear map, 676

pre-Hilbert space, 482
Hermitian product, 482

pre-norm, 507
Primary Decomposition Theorem, 746, 750
principal axes, 690
principal components, 712
principal components analysis, 712
principal directions, 29, 716, 719
principal ideal, 734

generator, 734
projection

linear, 457
projection map, 133, 457
proper

isometry, 434
orthogonal transformations, 434
unitary transformations, 497

proper subspace, see eigenspace
proper value, see eigenvalue
proper vector, see eigenvector
pseudo-inverse, 24, 443, 691
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definition, 701
Penrose properties, 709

quadratic form, 481
associated with ϕ, 404

quaternions, 551
conjugate, 553
Hamilton’s identities, 552
interpolation formula, 568
multiplication of, 552
pure quaternions, 554
scalar part, 553
unit, 497
vector part, 553

rank
linear map, 64
matrix, 158, 394
of a linear map, 679

rank normal form, 277
Rank-nullity theorem, 152
ratio, 403
Rayleigh ratio, 595
Rayleigh–Ritz

ratio, 718
theorem, 718

Rayleigh–Ritz theorem, 595, 597
real eigenvalues, 420, 442
real vector space, 34
reduced QR factorization, 632
reduced row echelon form, see rref
reduced row echelon matrix, 260, 263
reflection, 403

with respect to F and parallel to G, 457
reflection about F

definition, 458
replacement lemma, 52, 54
ridge regression, 24
Riesz representation theorem, 417
rigid motion, 403, 429
ring, 33
Rodrigues, 552
Rodrigues’ formula, 435, 563

rotation, 403
definition, 434

row vector, 18, 57, 374
rref, see reduced row echelon matrix

augmented matrix, 261
pivot, 263

sample, 712
covariance, 713
covariance matrix, 713
mean, 712
variance, 712

scalar product
definition, 404

Schatten p-norm, 691
Schmidt, 682
Schur complement, 253
Schur norm, see Frobenius norm
Schur’s lemma, 528
SDR, see system of distinct representatives
self-adjoint linear map, 576, 586, 588

definition, 420
semilinear map, 480
seminorm, 296, 488
sequence, 37

normed vector space, 332
convergent, 332, 346

series
absolutely convergent

rearrangement property, 334
normed vector space, 333

absolutely convergent, 333
convergent, 333
rearrangement, 334

sesquilinear form
definition, 480

signal compression, 107
compressed signal, 108
reconstruction, 108

signed volume, 188
similar matrix, 96
simple graph, 644, 646
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singular decomposition, 24
pseudo-inverse, 24

singular value decomposition, 326, 443, 675,
689

case of a rectangular matrix, 687
definition, 684
singular value, 326
square matrices, 684
square matrix, 682

singular values, 24
Weyl’s inequalities, 687

singular values of f , 676
skew field, 553
skew-self-adjoint linear map, 576
skew-symmetric matrix, 137
SOR, see successive overrelaxation
spanning set, 50
special linear group, 31, 198, 434
special orthogonal group, 31

definition, 434
special unitary group

definition, 497
spectral graph theory, 655
spectral norm, 317

dual, 509
spectral radius, 309
spectral theorem, 581
spectrum, 309

spectral radius, 309
spline

Bézier spline, 217
spline curves, 50
splines, 215
square matrix, 57
SRHT, see subsampled randomized Hadamard

transform
subordinate matrix norm, 313
subordinate norm, 313, 506
subsampled randomized Hadamard transform,

127
subspace, see linear subspace

k-plane, 56

finitely generated, 50
generators, 50
hyperplane, 56
invariant, 739
line, 56
plane, 56
spanning set, 50

sum of vector spaces, 134
SVD, see singular decomposition, see singu-

lar value decomposition, 443, 682, 689,
718, 724

Sylvester, 682
Sylvester’s criterion, 253, 258
Sylvester–Hadamard matrix, 126

Walsh function, 126
symmetric bilinear form, 404
symmetric group, 176
symmetric matrix, 137, 420, 442
symmetric multilinear map, 180
symmetric positive definite matrix, 250
symmetry

with respect to F and parallel to G, 457
with respect to the origin, 459

system of distinct representatives, 206

tensor product of matrices, see Kronecker prod-
uct

topology, 305
total derivative, 70, 418

Jacobian matrix, 418
trace, 70, 308, 522
trace norm, see nuclear norm
translation, 159

translation vector, 160
transporter, see conductor
transpose

map, 91, 389
transpose of a matrix, 24, 59, 432, 495, 592,

594
transposition, 175

basic, 177
transposition matrix, 224
transvection of hyperplane, 280
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direction, 280
triangle inequality, 295, 409

Minkowski’s inequality, 303
triangularized matrix, 520
tridiagonal matrix, 248

uncorrelated, 713
undirected graph, 646
unit quaternions, 551
unitary

group, 495
map, 585
matrix, 495

unitary group
definition, 497

unitary matrix, 307
definition, 496

unitary space
definition, 482

unitary transformation, 493
definition, 494

unreduced Hessenberg matrix, 622
upper triangular matrix, 191, 520

Vandermonde determinant, 190
variance, 712
vector space

basis, 50
component, 56
coordinate, 56

complex, 35
complexification, 578
dimension, 52, 55
direct product, 133
direct sum, 134
field of scalars, 35
infinite dimension, 55
norm, 295
real, 34
scalar multiplication, 34
sum, 134
vector addition, 34
vectors, 34

vertex
adjacent, 647

vertex of a graph, 644, 646
degree, 644

Voronoi diagram, 442

walk, see directed graph path, see graph path
Walsh function, 126
wavelets

Haar, 107
weight matrix

isolated vertex, 655
weighted graph, 641, 649

adjacent vertex, 650
degree of vertex, 650
edge, 649
underlying graph, 649
weight matrix, 649

Weyl, 682
Weyl’s inequalities, 687

zero vector, 18


