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Chapter 1

Learning a Function

Suppose we are interested in predicting the price of a wine
from various regions of France.

A given wine has the following features:

(1) Wine “color”: red, rosé, white.

(2) Denomination (region): Pommard, Volnay,
Clos Vougeot, Chablis, Sancerre.

(3) Year of production.

Suppose we record the prices (in Euros) of some bottles
of wines purchased in 2013–2022 (over 10 years).
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Wines x1, . . . , x10 purchased in 2013-2022:

2013 2014 2015 2016 2017

red red white rosé red
Pommard Volnay Chablis Sancerre Clos Vougeot
1985 1995 2010 2016 2003

2018 2019 2020 2021 2022

red red white red red
Pommard Volnay Chablis Sancerre Clos Vougeot
1980 2000 2016 2017 2005

Prices y1, . . . , y10 of the wines listed in the above table in
Euros:

200
100
40
25
150
250
135
40
20
300
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Question: given a bottle of wine x specified by three at-
tributes

color
denomination
year of production

predict its price y.

To solve the problem, first we need to encode the features
as numbers:

Say

red = 1, rosé = 2, white = 3;

Pommard = 1, Volnay = 2, Clos Vougeot = 3,
Chablis = 4, Sancerre = 5.

Our data set of 10 wines becomes a matrix.
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As we will later, it is more convenient to use its transpose:

X =



1 1 1985
1 2 1995
3 4 2010
2 5 2016
1 3 2003
1 1 1980
1 2 2000
3 4 2016
1 5 2017
1 3 2005


.

We view our set of data, (10 wines), and their prices, as
defining a partial function specified by the sequence of
input/output pairs

((x1, y1), (x2, y2), . . . , (x10, y10)),

where x1, . . . , x10 are encoded as the rows of the matrix
X (technically, each row of X is the transpose of the
column vectors xi).
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We would like to find a real-valued function f such that

f (xi) = yi, i = 1, . . . , 10,

to predict the price y = f (x) of a new wine x.

For example, what is an estimate for the price of the wine

red
Clos Vougeot
2000

that is

x =

 1
3

2000

 .

The big question: what kind of function is f?

Before deep learning, an affine function.
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After deep learning,
a composition of (vector-valued) affine functions in-
terleaved with some non-linear function such as RELU .

Such compositions can be represented as certain kinds of
nets.

Deep learning provides a much larger supply of functions
to be learned.

We still have the problem that it usually impossible to
find a function f that fits exactly the data, in the sense
that f (xi) = yi for i = 1, . . . , 10, so we do the best we
can, which means that we introduce an error function,
also known as a loss function , and we try to minimize
this error function.
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A pretty good error function is

10∑
i=1

(f (xi)− yi)2.

The function f is defined by some parameters that need
be inferred from the data set

((x1, y1), (x2, y2), . . . , (x10, y10)),

known as training data.
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Typically to minimize the error function we need to find
its gradient and set it to zero. This process will (hope-
fully!) determine the parameters defining the function
f .

The simplest case is to find an affine function, of the
form

f (z1, z2, z3) = w1z1 + w2z2 + w3z3 + b,

where z1, z2, z3, b ∈ R. The number w1, w2, w3 are called
weights , and they constitute the weight vector w.
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We need to “solve” the system

1 1 1985
1 2 1995
3 4 2010
2 5 2016
1 3 2003
1 1 1980
1 2 2000
3 4 2016
1 5 2017
1 3 2005



w1

w2

w3

 + b



1
1
1
1
1
1
1
1
1
1


=



200
100
40
25
150
250
135
40
20
300


with respect to the unknown w1, w2, w3, b.

For example, the second equation is

w1 + 2w2 + 1995w3 + b = 100.

This is generally impossible so instead we try to minimize
an error function. In the case of least squares, we wish to
minimize

‖Xw + b1− y‖22

with respect to w.
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Here we use the 2-norm given by

‖(z1, . . . , zn)‖22 =

n∑
i=1

z2i .

Typically it is preferable to penalize (regularize) w so
instead we minimize

‖Xw + b1− y‖22 + K ‖w‖22 ,

where K > 0 controls the influence of the penalty.

This is ridge regression.

The smallerK is, the smaller is the 2-norm ‖Xw + b1− y‖2
of the error, and the larger is ‖w‖2.

Here are the results for x = (1, 3, 2000) (red Clos Vougeot
2000).
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For K = 0.01, we get

w = (−33.27,−40.29, 0.24), b = −192.90,

‖Xw + b1− y‖2 = 192.29, ‖w‖2 = 52.25

y = 141.97.

For K = 10, we get

w = (−10.47,−5.84,−4.35), b = 8878

‖Xw + b1− y‖2 = 202.97, ‖w‖2 = 12.75

y = 142.99.

The price of the red Clos Vougeot 2000 is predicted to be
approximately 142 Euros.

My colleagues Kostas Daniilidis and Jianbo Shi pointed
out that the conversion of strings (red, rosé, etc.) as
vectors that I used yields weight vectors of very small
dimension (3), so it is hard for an affine function to fit
the data well.
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It might be preferable to use the following encoding:

red = (1, 0, 0), rosé = (0, 1, 0), white = (0, 0, 1),

Pommard = (0, 0, 0), Volnay = (1, 0, 0), Clos Vougeot
= (0, 1, 0), Chablis = (0, 0, 1), Sancerre = (1, 0, 1).

For example, red Pommard 1985 is encoded by the vector

(1, 0, 0, 0, 0, 0, 1985).

The new matrix corresponding to the data is

X2 =



1 0 0 0 0 0 1985
1 0 0 1 0 0 1995
0 0 1 0 0 1 2010
0 1 0 1 0 1 2016
1 0 0 0 1 0 2003
1 0 0 0 0 0 1980
1 0 0 1 0 0 2003
0 0 1 0 0 1 2016
1 0 0 1 0 1 2017
1 0 0 0 1 0 2005


.
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This matrix has rank 7, which means that its columns are
linearly independent. So (X>2 )X2 is invertible.

Here are the results for x = (1, 0, 0, 0, 1, 0, 2000) (red Clos
Vougeot 2000).

For K = 0.01, we get

w = (33.76, 39.06,−72.82,−132.47,

− 33.25,−125.95, 1.61),

b = −3000.9,

‖X2w + b1− y‖2 = 112.93, ‖w‖2 = 206.12

y = 218.73.

For K = 10, we get

w = (6.86,−1.89,−4.97,−9.79,

15.99,−9.66,−4.75),

b = 9634.7,

‖X2w + b1− y‖2 = 180.73, ‖w‖2 = 23.29

y = 164.05.
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For K = 1, we get ‖X2w + b1− y‖2 = 130.08 and

y = 213.32.

This time the price of the red Clos Vougeot 2000 is pre-
dicted in a wide range.

The best fit of the data for the three cases is achieved
when K = 0.01.

One problem is that our data set is quite small. The other
problem is that our choice of attributes is rather crude.

There are other strategies: lasso, elastic net.
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In lasso we penalize the 1-norm ‖w‖1 of w, so we
minimize

‖X2w + b1− y‖22 + τ ‖w‖1 ,

where τ > 0 and

‖(z1, . . . , zn)‖1 = |z1| + · · · + |zn|.

For τ = 0.01, we get

‖X2w + b1− y‖2 = 112.652, y = 214.81.

For τ = 0.1, we get

‖X2w + b1− y‖2 = 112.655, y = 215.25.

For τ = 1, we get

‖X2w + b1− y‖2 = 113.03, y = 219.64.
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For τ = 10, we get

‖X2w + b1− y‖2 = 117.65, y = 225.08.

When τ = 10, the first two components of w are basically
zero.

For τ = 50, we get

‖X2w + b1− y‖2 = 137.29, y = 222.06.

When τ = 50, five components of w are basically zero.

In the case of deep learning, we have several affine func-
tions (typically vector-valued) interleaved with RELU, so
gradients are computed using a back-propagation pro-
cess (based on the chain rule), and because the dimen-
sion of the data is very large, we use stochastic gradient
descent methods.
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Note that our data set is very crude, because how dry
or rainy a year is has great influence on the quality and
quantity of wine produced. So our prediction function
will probably not be very good! We should also incude
the date of purchase to the data base.

This is an important modelling issue, but not so much a
mathematical issue.


