Fall, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier

Homework 6

December 2, 2024; Due December 11, 2024

Problem B1 (50 pts). Linear programming with box constraints is the following opti-
mization problem:
minimize ¢’
subject to Axr =10
[ <x<u,

where A is an m X n matrix, ¢, u,l,x € R" and b € R™, with [ < u (which means that [; < u;,
fori=1,...,n).

(1) (20 points) Prove that the dual of the above program is the following program:
maximize —v'b— A u+ A\l

subject to ATv+ A —Xa+¢=0
A >0, A >0.

(2) (10 points) The primal problem in (1) can be reformulated by incorporating the con-
straints [ < x < u into the objective function by defining

fo(z) =

{CTJ: fl<z<u

+o00 otherwise.
The primal is reformulated as
minimize fo(z)

subject to Ax = b.

Prove that the new dual function is given by

G(v) = inf (c'z+v'(Az —b)).

I<z<u



(3) (20 points) Given any real number s € R, let
st = max{s,0}, s = max{—s,0}.
Prove that for any fixed reals s, A\, u € R with A < p,

inf sy = As™ — s~
Ay AT pis

Hint. Consider the cases s > 0 and s < 0.

We extend the above operators to vectors z € R” componentwise by

Nt + - (o -
2T =2, ..z)), 2T =(2,....2,).
For any w € R", prove that
inf 2'w=101"w"—u"w".
I<zx<u

Use the above to prove that

Gw)=—vo+1"ATv+o)t —u " (ATv +e)”

and deduce that the dual program is the unconstrained problem
maximize —v'b+1T(ATv+e)t —u'(ATv+c)”
with respect to v.

Problem B2 (120 pts). (1) Consider the determinant map, f: M, (R) — R, given by
f(A) =det(A), Ae M,(R).

For any matrix B € M, (R) (not necessarily invertible), let v: R — GL(n,R) be the
function given by
y(t) =eB, teR.

Obviously, v(0) = I. Geometrically, v defines a curve in the group GL(n, R) passing through
I at time ¢ = 0. The function v is differentiable, and by using the power series defining e'”
it is easily shown that

¥ (1) = Be®,

so 7'(0) = B. In other words, the curve « passes through I with velocity B. You don’t
have to prove this fact (Recall that when the domain space has dimension 1, we write
v (t) = dyi(t), the velocity vector at t.)



Let g: R — R be the function given by
g(t) = det(y(t)) = det(e'?), te€R.
(1) Use the chain rule to prove that
ddet;(B) = (det ov)'(0),
where d det; is the derivative of the determinant function det: M,,(R) — R at I (the identity

matrix).

(2) Prove that
ddet;(B) = tr(B),

the trace of B, for any matrix B € M, (R).
Hint. Use the fact that det(e™) = e™™) for any matrix M € M, (R).

(3) Prove that
ddeta(B) = det(A)tr(A™'B),
for any A € GL(n,R) and any matrix B € M, (R).

Hint. Find a curve v: R — GL(n,R) such that 4(0) = A and +/(0) = B and use the chain
rule.

(4) Proposition 3.5 (Vol II) shows that for any continuous bilinear map f: Ey x Ey — F,
for every (a,b) € Ey x E,, the derivative D f(, ;) exists and is given by

Df(a,,b)<u7 ?}) = f<u7 b) + f(a’a U),
for all (u,v) € Ey X Es.

It can be shown (and you need not prove it, unless you decide to solve the extra credit
problem) that for any continuous multilinear map f: Fyx---x E,, — F, for any (ay,...,a,) €
Ey, x --- x E,, the derivative Df,,, . q,) exists and is given by

77777

Dfar,an) U1, .. un) = f(ur,a2,as,...,a,) + far,ug,as,...,a,) + -

+ f(a17a27a37 SR a’n—laun)

n
= Zf(al, e A1, Uy Aty - - - Gy )
k=1

for all (uy,...,u,) € Ey X -+ X E,.

By definition, for every a = (ay,...,a,) € E1x---x E,, the map D f, is a continuous linear
map from F; x---xX FE, to F', namely, Df, € L(E1x---xE,, F). ThemapDf: Fyx---xE, —
L(Ey X ---x E,, F) given by a — Df, is linear and continuous for n = 2, but it is not linear
for n > 3. It is also not multilinear for n > 2, but it can still be shown that it is continuous
(you need not prove it, unless you decide to solve the extra credit problem).
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Using the above facts, prove (quickly, this is easy) that for any matrix A € M, (R) and
any matrix B € M,,(R), the derivative d det 4 exists and is given by

ddet4(B) = det(B', A%, A% ..., A") +det(A', B* A% ... A™) + .
tdet(AL, A%, A3, .. A"L B

= det(A',... AFT BR A AT,
k=1

where A, ..., A" are the columns of A and B!, ..., B" are the columns of B. Furthermore,
the map ddet: M,,(R) — £(M,(R),R) given by A — ddety is continuous.

Therefore, ddet, exists even if A is not invertible, but we would like to find a more
“friendly” and more explicit expression for it. There such an explicit formula involving the
adjugate matrix A of A from Section 6.4, Definition 6.9.

(5) (Extra Credit 40 pts) Prove that for any continuous multilinear map f: E; X - -+ X
E, — F, for any a = (a1,...,a,) € By x --- x E,, the derivative Df(,, . 4,) exists and is
given by

-----

Df(a1 77777 an)(ul, e ,U,n) = f(ul,aQ,ag, e ,CLn> + f(al,u2,a3, .. ,an) + -

+ f(al>a2>a37 S 7an—17un)

n
= Zf(ala e Q1 Uy Aot 1, -, ),
k=1

for all u = (uy,...,u,) € By X -+ X E,.
Hint. Generalize the proof of Proposition 3.5 (Vol II).
Prove that Df (a map from E; X --- X E,, to L(F; X --- x E,, F)) is continuous.

Hint. To prove that Df is continuous, first observe that Df is the sum of the n functions
(DAL, ..., (Df)", with (Df)* from E; x --- x E, to L(E} x --- x E,, F) given by

(Df)](“a1 o) (UL ) = fan, ooy @, Uk, Qg - G).

.....

The function (D f)* is independent of the variable ag, so it is not multilinear, but its restric-
tion to By X -+« X Ex_1 X Egy1 X -+ X E, is (n — 1)-multilinear, so if we can show that this
restriction is continuous, then (Df)* itself will be continuous. To simplify notation, write
E = Ey x -+ X By X Egyq X -+ X E,. We also use the notation (Df)* to denote the
restriction of (Df)* to &;.

Show that the operator norm H(Df)k” of the restriction of (Df)* to & satisfies the
inequality

[N <111,

where || f]| is the norm of the multilinear map f (for norms of linear and multilinear maps,
see Section 2.6, Vol. II).



(6) Prove that for any matrix A € M,,(R), not necessarily invertible, there is a convergent
sequence (Ay)g>1 of invertible matrices Ay, € GL(n,R) whose limit is A. To prove this, it
is convenient to use the Frobenius norm or the operator 2-norm (the spectral norm). You
need to construct a sequence of invertible matrices Ay such that

lim ||A — Al = 0.
k—oo

Hint. Use a convenient factorization of A.
(7) Recall the definition of the adjugate matriz A of an n x n matrix A and the fact that
if A is invertible, then by Proposition 6.7 (see Vol 1),
A7' = (det(A)) 1A
Using the above, (3) is rewritten as
ddet(B) = tr(AB),
for any A € GL(n,R) and any matrix B € M,,(R). Use (6) to prove that
ddet4(B) = tr(AB),

for any matrix A € M,,(R) (not necessarily invertible) and any matrix B € M, (R).

(8) Let GL*(n,R) be the subgroup of GL(n,R) consisting of all matrices A such that
det(A) > 0. It can be shown that this subgroup is open in M, (R). Consider the function
(: GL"(n,R) — R given by

((A) =logdet(A).

Prove that
dls(B) = tr(A_lB)

for all A € GL"(n,R) and all B € M,,(R).

Remark: The function logdet is a barrier function used in convex optimization.

Problem B3 (20). Let A be an n x n real symmetric matrix, B an n X n symmetric positive
definite matrix, and let b € R™.

Prove that a necessary condition for the function J given by

1
J(v) = §UTAU — b

to have an extremum in u € U, with U defined by

U={veR"|v' Bv=1},



is that there is some A € R such that
Au— b= \Bu.
Hint. Express the definition of U as
U={veR"[pv) =0}

with L1
o(v) = 5 §UTBU.

Extra credit (20 points). Prove that there is a symmetric positive definite matrix S such
that B = S2. Prove that if b = 0, then ) is an eigenvalue of the symmetric matrix S~ AS™L.

Remark: If b # 0, solving for A is a lot harder.

Problem B4 (10 pts). Verify the formula
(XTX+KL)' X" =X"(XXT +KI,)™ ",
where X is a real m x n matrix and K > 0. You may assume without proof that both

XTX +KI, and XX + K1, are invertible (because they are symmetric positive definite).

Problem B5 (40 pts). Consider the method of ridge regression to learn an affine function
f(x) = 2Tw+b instead of a linear function f(x) = x"w, where b € R. We have the following
optimization program

Program (RR3):
minimize ¢'¢é4+ Kw'w
subject to
y—Xw—5bl=¢,
with y,£,1 € R™ and w € R". Note that in Program (RR3) minimization is performed over
&, w and b, but b is not penalized in the objective function.

(1) This problem can be solved directly by computing the quadratic functional J(w,b) =
£7¢ + Kw'w in terms of w and b. Prove that

XTX+KI, XT1,) (w XTy
J(w,b) = (w" b) ( 1T X - ) (b) —2(w" b) (1719 +y'y.

(2) Prove that the matrix

L (XTX+ KL X1,
- 1) X m
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is symmetric positive definite. You can either use an argument involving a Schur complement
(Chapter 7 of Vol 11, linalg-IT), or proceed as follows.

Let g be the function given by

X'X+KI, X'1,,\ (w
=7 0 %) )

=w' (X' X+ KL)w+2w' X 1,,b+ 1] 1,,6%

Then A is symmetric positive definite iff (w,b) # 0 implies that g(w,b) > 0. Prove that if
w # 0 and b = 0, then g(w,0) > 0. If b # 0, for b fixed the function w +— g(w,b) is strictly
convex because X' X + K1, is SPD, so it has a unique minimum obtained by setting the
gradient V¢ to 0. Find the value w* for which V,g = 0, and compute the corresponding
minimum value g(w*,b). Prove that g(w*,b) is of the form Th? and compute T (T happens
to be the Schur complement of X "X + K1, in A). Prove that T' > 0, so that if b # 0, then
g(w*,b) > 0. Deduce that A is symmetric positive definite.

(3) Prove that the function J(w, b) has a unique minimum obtained by setting its gradient
to zero, which yields the system

X'X+KI, X'1,\ (v _[(XTy (41)
1) X m b)) \1ly)" !

Prove that the solution (w, b) of the above system agrees with the solutions given by the
system associated with the dual, namely

(XXTliT: KI, 16,1) (g) _ (g) | (2)

w=X"a.

with

TOTAL: 240 points + 60 extra credit.



