
Fall, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 6

December 2, 2024; Due December 11, 2024

Problem B1 (50 pts). Linear programming with box constraints is the following opti-
mization problem:

minimize c>x

subject to Ax = b

l ≤ x ≤ u,

where A is an m×n matrix, c, u, l, x ∈ Rn and b ∈ Rm, with l ≤ u (which means that li ≤ ui,
for i = 1, . . . , n).

(1) (20 points) Prove that the dual of the above program is the following program:

maximize − ν>b− λ>1 u+ λ>2 l

subject to A>ν + λ1 − λ2 + c = 0

λ1 ≥ 0, λ2 ≥ 0.

(2) (10 points) The primal problem in (1) can be reformulated by incorporating the con-
straints l ≤ x ≤ u into the objective function by defining

f0(x) =

{
c>x if l ≤ x ≤ u

+∞ otherwise.

The primal is reformulated as

minimize f0(x)

subject to Ax = b.

Prove that the new dual function is given by

G(ν) = inf
l≤x≤u

(c>x+ ν>(Ax− b)).
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(3) (20 points) Given any real number s ∈ R, let

s+ = max{s, 0}, s− = max{−s, 0}.

Prove that for any fixed reals s, λ, µ ∈ R with λ ≤ µ,

inf
λ≤y≤µ

sy = λs+ − µs−.

Hint . Consider the cases s ≥ 0 and s ≤ 0.

We extend the above operators to vectors z ∈ Rn componentwise by

z+ = (z+1 , . . . .z
+
n ), z− = (z−1 , . . . .z

−
n ).

For any w ∈ Rn, prove that

inf
l≤x≤u

x>w = l>w+ − u>w−.

Use the above to prove that

G(ν) = −ν>b+ l>(A>ν + c)+ − u>(A>ν + c)−

and deduce that the dual program is the unconstrained problem

maximize − ν>b+ l>(A>ν + c)+ − u>(A>ν + c)−

with respect to ν.

Problem B2 (120 pts). (1) Consider the determinant map, f : Mn(R)→ R, given by

f(A) = det(A), A ∈Mn(R).

For any matrix B ∈ Mn(R) (not necessarily invertible), let γ : R → GL(n,R) be the
function given by

γ(t) = etB, t ∈ R.

Obviously, γ(0) = I. Geometrically, γ defines a curve in the group GL(n,R) passing through
I at time t = 0. The function γ is differentiable, and by using the power series defining etB

it is easily shown that
γ′(t) = BetB,

so γ′(0) = B. In other words, the curve γ passes through I with velocity B. You don’t
have to prove this fact (Recall that when the domain space has dimension 1, we write
γ′(t) = dγ1(t), the velocity vector at t.)
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Let g : R→ R be the function given by

g(t) = det(γ(t)) = det(etB), t ∈ R.

(1) Use the chain rule to prove that

d detI(B) = (det ◦ γ)′(0),

where d detI is the derivative of the determinant function det : Mn(R)→ R at I (the identity
matrix).

(2) Prove that
d detI(B) = tr(B),

the trace of B, for any matrix B ∈ Mn(R).

Hint . Use the fact that det(eM) = etr(M) for any matrix M ∈ Mn(R).

(3) Prove that
d detA(B) = det(A)tr(A−1B),

for any A ∈ GL(n,R) and any matrix B ∈ Mn(R).

Hint . Find a curve γ : R→ GL(n,R) such that γ(0) = A and γ′(0) = B and use the chain
rule.

(4) Proposition 3.5 (Vol II) shows that for any continuous bilinear map f : E1×E2 → F ,
for every (a, b) ∈ E1 × E2, the derivative Df(a,b) exists and is given by

Df(a,b)(u, v) = f(u, b) + f(a, v),

for all (u, v) ∈ E1 × E2.

It can be shown (and you need not prove it, unless you decide to solve the extra credit
problem) that for any continuous multilinear map f : E1×· · ·×En → F , for any (a1, . . . , an) ∈
E1 × · · · × En, the derivative Df(a1,...,an) exists and is given by

Df(a1,...,an)(u1, . . . , un) = f(u1, a2, a3, . . . , an) + f(a1, u2, a3, . . . , an) + · · ·
+ f(a1, a2, a3, . . . , an−1, un)

=
n∑
k=1

f(a1, . . . , ak−1, uk, ak+1, . . . , an),

for all (u1, . . . , un) ∈ E1 × · · · × En.

By definition, for every a = (a1, . . . , an) ∈ E1×· · ·×En, the map Dfa is a continuous linear
map from E1×· · ·×En to F , namely, Dfa ∈ L(E1×· · ·×En, F ). The map Df : E1×· · ·×En →
L(E1× · · ·×En, F ) given by a 7→ Dfa is linear and continuous for n = 2, but it is not linear
for n ≥ 3. It is also not multilinear for n ≥ 2, but it can still be shown that it is continuous
(you need not prove it, unless you decide to solve the extra credit problem).
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Using the above facts, prove (quickly, this is easy) that for any matrix A ∈ Mn(R) and
any matrix B ∈ Mn(R), the derivative d detA exists and is given by

d detA(B) = det(B1, A2, A3, . . . , An) + det(A1, B2, A3, . . . , An) + · · ·
+ det(A1, A2, A3, . . . , An−1, Bn)

=
n∑
k=1

det(A1, . . . , Ak−1, Bk, Ak+1, . . . , An),

where A1, . . . , An are the columns of A and B1, . . . , Bn are the columns of B. Furthermore,
the map d det : Mn(R)→ L(Mn(R),R) given by A 7→ d detA is continuous.

Therefore, d detA exists even if A is not invertible, but we would like to find a more
“friendly” and more explicit expression for it. There such an explicit formula involving the
adjugate matrix Ã of A from Section 6.4, Definition 6.9.

(5) (Extra Credit 40 pts) Prove that for any continuous multilinear map f : E1×· · ·×
En → F , for any a = (a1, . . . , an) ∈ E1 × · · · × En, the derivative Df(a1,...,an) exists and is
given by

Df(a1,...,an)(u1, . . . , un) = f(u1, a2, a3, . . . , an) + f(a1, u2, a3, . . . , an) + · · ·
+ f(a1, a2, a3, . . . , an−1, un)

=
n∑
k=1

f(a1, . . . , ak−1, uk, ak+1, . . . , an),

for all u = (u1, . . . , un) ∈ E1 × · · · × En.

Hint . Generalize the proof of Proposition 3.5 (Vol II).

Prove that Df (a map from E1 × · · · × En to L(E1 × · · · × En, F )) is continuous.

Hint . To prove that Df is continuous, first observe that Df is the sum of the n functions
(Df)1, . . . , (Df)n, with (Df)k from E1 × · · · × En to L(E1 × · · · × En, F ) given by

(Df)k(a1,...,an)(u1, . . . , un) = f(a1, . . . , ak−1, uk, ak+1, . . . , an).

The function (Df)k is independent of the variable ak, so it is not multilinear, but its restric-
tion to E1 × · · · ×Ek−1 ×Ek+1 × · · · ×En is (n− 1)-multilinear, so if we can show that this
restriction is continuous, then (Df)k itself will be continuous. To simplify notation, write
Ek = E1 × · · · × Ek−1 × Ek+1 × · · · × En. We also use the notation (Df)k to denote the
restriction of (Df)k to Ek.

Show that the operator norm
∥∥(Df)k

∥∥ of the restriction of (Df)k to Ek satisfies the
inequality ∥∥(Df)k

∥∥ ≤ ‖f‖ ,
where ‖f‖ is the norm of the multilinear map f (for norms of linear and multilinear maps,
see Section 2.6, Vol. II).
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(6) Prove that for any matrix A ∈ Mn(R), not necessarily invertible, there is a convergent
sequence (Ak)k≥1 of invertible matrices Ak ∈ GL(n,R) whose limit is A. To prove this, it
is convenient to use the Frobenius norm or the operator 2-norm (the spectral norm). You
need to construct a sequence of invertible matrices Ak such that

lim
k 7→∞
‖A− Ak‖ = 0.

Hint . Use a convenient factorization of A.

(7) Recall the definition of the adjugate matrix Ã of an n×n matrix A and the fact that
if A is invertible, then by Proposition 6.7 (see Vol I),

A−1 = (det(A))−1Ã.

Using the above, (3) is rewritten as

d detA(B) = tr(ÃB),

for any A ∈ GL(n,R) and any matrix B ∈ Mn(R). Use (6) to prove that

d detA(B) = tr(ÃB),

for any matrix A ∈ Mn(R) (not necessarily invertible) and any matrix B ∈ Mn(R).

(8) Let GL+(n,R) be the subgroup of GL(n,R) consisting of all matrices A such that
det(A) > 0. It can be shown that this subgroup is open in Mn(R). Consider the function
` : GL+(n,R)→ R given by

`(A) = log det(A).

Prove that
d`A(B) = tr(A−1B)

for all A ∈ GL+(n,R) and all B ∈ Mn(R).

Remark: The function log det is a barrier function used in convex optimization.

Problem B3 (20). Let A be an n×n real symmetric matrix, B an n×n symmetric positive
definite matrix, and let b ∈ Rn.

Prove that a necessary condition for the function J given by

J(v) =
1

2
v>Av − b>v

to have an extremum in u ∈ U , with U defined by

U = {v ∈ Rn | v>Bv = 1},
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is that there is some λ ∈ R such that

Au− b = λBu.

Hint . Express the definition of U as

U = {v ∈ Rn | ϕ(v) = 0},

with

ϕ(v) =
1

2
− 1

2
v>Bv.

Extra credit (20 points). Prove that there is a symmetric positive definite matrix S such
that B = S2. Prove that if b = 0, then λ is an eigenvalue of the symmetric matrix S−1AS−1.

Remark: If b 6= 0, solving for λ is a lot harder.

Problem B4 (10 pts). Verify the formula

(X>X +KIn)−1X> = X>(XX> +KIm)−1,

where X is a real m × n matrix and K > 0. You may assume without proof that both
X>X +KIn and XX>+KIm are invertible (because they are symmetric positive definite).

Problem B5 (40 pts). Consider the method of ridge regression to learn an affine function
f(x) = x>w+b instead of a linear function f(x) = x>w, where b ∈ R. We have the following
optimization program

Program (RR3):

minimize ξ>ξ +Kw>w

subject to

y −Xw − b1 = ξ,

with y, ξ,1 ∈ Rm and w ∈ Rn. Note that in Program (RR3) minimization is performed over
ξ, w and b, but b is not penalized in the objective function.

(1) This problem can be solved directly by computing the quadratic functional J(w, b) =
ξ>ξ +Kw>w in terms of w and b. Prove that

J(w, b) =
(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
− 2

(
w> b

)(X>y
1>my

)
+ y>y.

(2) Prove that the matrix

A =

(
X>X +KIn X>1m

1>mX m

)
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is symmetric positive definite. You can either use an argument involving a Schur complement
(Chapter 7 of Vol II, linalg-II), or proceed as follows.

Let g be the function given by

g(w, b) =
(
w> b

)(X>X +KIn X>1m
1>mX m

)(
w
b

)
= w>(X>X +KIn)w + 2w>X>1mb+ 1>m1mb

2.

Then A is symmetric positive definite iff (w, b) 6= 0 implies that g(w, b) > 0. Prove that if
w 6= 0 and b = 0, then g(w, 0) > 0. If b 6= 0, for b fixed the function w 7→ g(w, b) is strictly
convex because X>X + KIn is SPD, so it has a unique minimum obtained by setting the
gradient ∇wg to 0. Find the value w∗ for which ∇wg = 0, and compute the corresponding
minimum value g(w∗, b). Prove that g(w∗, b) is of the form Tb2 and compute T (T happens
to be the Schur complement of X>X +KIn in A). Prove that T > 0, so that if b 6= 0, then
g(w∗, b) > 0. Deduce that A is symmetric positive definite.

(3) Prove that the function J(w, b) has a unique minimum obtained by setting its gradient
to zero, which yields the system(

X>X +KIn X>1m
1>mX m

)(
w
b

)
=

(
X>y
1>my

)
. (∗1)

Prove that the solution (w, b) of the above system agrees with the solutions given by the
system associated with the dual, namely(

XX> +KIm 1m
1>m 0

)(
α
b

)
=

(
y
0

)
, (∗2)

with
w = X>α.

TOTAL: 240 points + 60 extra credit.
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