
Spring, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 6

April 23, 2024; Due 7 May, 2024

Problem B1 (30 pts). Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1,R) | A>JA = J and det(A) = 1}.

(1) Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J
(this is the special Lorentz group).

(2) Consider the function h : GL+(n+ 1)→ S(n+ 1), given by

h(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

dhA(H) = A>JH +H>JA

for any matrix H ∈ Mn+1(R).

Prove that dhA is surjective for all A ∈ SO(n, 1).

Remark: Parts (1) and (2) can be used to prove that SO(n, 1) is a smooth manifold of

dimension n(n+1)
2

.

Problem B2 (120 pts). (1) Consider the determinant map, f : Mn(R)→ R, given by

f(A) = det(A), A ∈Mn(R).

For any matrix B ∈ Mn(R) (not necessarily invertible), let γ : R → GL(n,R) be the
function given by

γ(t) = etB, t ∈ R.
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Obviously, γ(0) = I. Geometrically, γ defines a curve in the group GL(n,R) passing through
I at time t = 0. The function γ is differentiable, and by using the power series defining etB

it is easily shown that
γ′(t) = BetB,

so γ′(0) = B. In other words, the curve γ passes through I with velocity B. You don’t
have to prove this fact (Recall that when the domain space has dimension 1, we write
γ′(t) = dγ1(t), the velocity vector at t.)

Let g : R→ R be the function given by

g(t) = det(γ(t)) = det(etB), t ∈ R.

(1) Use the chain rule to prove that

d detI(B) = (det ◦ γ)′(0),

where d detI is the derivative of the determinant function det : Mn(R)→ R at I (the identity
matrix).

(2) Prove that
d detI(B) = tr(B),

the trace of B, for any matrix B ∈ Mn(R).

Hint . Use the fact that det(eM) = etr(M) for any matrix M ∈ Mn(R).

(3) Prove that
d detA(B) = det(A)tr(A−1B),

for any A ∈ GL(n,R) and any matrix B ∈ Mn(R).

Hint . Find a curve γ : R→ GL(n,R) such that γ(0) = A and γ′(0) = B and use the chain
rule.

(4) Proposition 3.5 (Vol II) shows that for any continuous bilinear map f : E1×E2 → F ,
for every (a, b) ∈ E1 × E2, the derivative Df(a,b) exists and is given by

Df(a,b)(u, v) = f(u, b) + f(a, v),

for all (u, v) ∈ E1 × E2.

It can be shown (and you need not prove it, unless you decide to solve the extra credit
problem) that for any continuous multilinear map f : E1×· · ·×En → F , for any (a1, . . . , an) ∈
E1 × · · · × En, the derivative Df(a1,...,an) exists and is given by

Df(a1,...,an)(u1, . . . , un) = f(u1, a2, a3, . . . , an) + f(a1, u2, a3, . . . , an) + · · ·
+ f(a1, a2, a3, . . . , an−1, un)

=
n∑

k=1

f(a1, . . . , ak−1, uk, ak+1, . . . , an),
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for all (u1, . . . , un) ∈ E1 × · · · × En.

By definition, for every a = (a1, . . . , an) ∈ E1×· · ·×En, the map Dfa is a continuous linear
map from E1×· · ·×En to F , namely, Dfa ∈ L(E1×· · ·×En, F ). The map Df : E1×· · ·×En →
L(E1× · · ·×En, F ) given by a 7→ Dfa is linear and continuous for n = 2, but it is not linear
for n ≥ 3. It is also not multilinear for n ≥ 2, but it can still be shown that it is continuous
(you need not prove it, unless you decide to solve the extra credit problem).

Using the above facts, prove (quickly, this is easy) that for any matrix A ∈ Mn(R) and
any matrix B ∈ Mn(R), the derivative d detA exists and is given by

d detA(B) = det(B1, A2, A3, . . . , An) + det(A1, B2, A3, . . . , An) + · · ·
+ det(A1, A2, A3, . . . , An−1, Bn)

=
n∑

k=1

det(A1, . . . , Ak−1, Bk, Ak+1, . . . , An),

where A1, . . . , An are the columns of A and B1, . . . , Bn are the columns of B. Furthermore,
the map d det : Mn(R)→ L(Mn(R),R) given by A 7→ d detA is continuous.

Therefore, d detA exists even if A is not invertible, but we would like to find a more
“friendly” and more explicit expression for it. There such an explicit formula involving the
adjugate matrix Ã of A from Section 6.4, Definition 6.9.

(5) (Extra Credit 40 pts) Prove that for any continuous multilinear map f : E1×· · ·×
En → F , for any a = (a1, . . . , an) ∈ E1 × · · · × En, the derivative Df(a1,...,an) exists and is
given by

Df(a1,...,an)(u1, . . . , un) = f(u1, a2, a3, . . . , an) + f(a1, u2, a3, . . . , an) + · · ·
+ f(a1, a2, a3, . . . , an−1, un)

=
n∑

k=1

f(a1, . . . , ak−1, uk, ak+1, . . . , an),

for all u = (u1, . . . , un) ∈ E1 × · · · × En.

Hint . Generalize the proof of Proposition 3.5 (Vol II).

Prove that Df (a map from E1 × · · · × En to L(E1 × · · · × En, F )) is continuous.

Hint . To prove that Df is continuous, first observe that Df is the sum of the n functions
(Df)1, . . . , (Df)n, with (Df)k from E1 × · · · × En to L(E1 × · · · × En, F ) given by

(Df)k(a1,...,an)(u1, . . . , un) = f(a1, . . . , ak−1, uk, ak+1, . . . , an).

The function (Df)k is independent of the variable ak, so it is not multilinear, but its restric-
tion to E1 × · · · ×Ek−1 ×Ek+1 × · · · ×En is (n− 1)-multilinear, so if we can show that this
restriction is continuous, then (Df)k itself will be continuous. To simplify notation, write
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Ek = E1 × · · · × Ek−1 × Ek+1 × · · · × En. We also use the notation (Df)k to denote the
restriction of (Df)k to Ek.

Show that the operator norm
∥∥(Df)k

∥∥ of the restriction of (Df)k to Ek satisfies the
inequality ∥∥(Df)k

∥∥ ≤ ‖f‖ ,
where ‖f‖ is the norm of the multilinear map f (for norms of linear and multilinear maps,
see Section 2.6, Vol. II).

(6) Prove that for any matrix A ∈ Mn(R), not necessarily invertible, there is a convergent
sequence (Ak)k≥1 of invertible matrices Ak ∈ GL(n,R) whose limit is A. To prove this, it
is convenient to use the Frobenius norm or the operator 2-norm (the spectral norm). You
need to construct a sequence of invertible matrices Ak such that

lim
k 7→∞
‖A− Ak‖ = 0.

Hint . Use a convenient factorization of A.

(7) Recall the definition of the adjugate matrix Ã of an n×n matrix A and the fact that
if A is invertible, then by Proposition 6.7 (see Vol I),

A−1 = (det(A))−1Ã.

Using the above, (3) is rewritten as

d detA(B) = tr(ÃB),

for any A ∈ GL(n,R) and any matrix B ∈ Mn(R). Use (6) to prove that

d detA(B) = tr(ÃB),

for any matrix A ∈ Mn(R) (not necessarily invertible) and any matrix B ∈ Mn(R).

(8) Let GL+(n,R) be the subgroup of GL(n,R) consisting of all matrices A such that
det(A) > 0. It can be shown that this subgroup is open in Mn(R). Consider the function
` : GL+(n,R)→ R given by

`(A) = log det(A).

Prove that
d`A(B) = tr(A−1B)

for all A ∈ GL+(n,R) and all B ∈ Mn(R).

Remark: The function log det is a barrier function used in convex optimization.

Problem B3 (20). Let A be an n×n real symmetric matrix, B an n×n symmetric positive
definite matrix, and let b ∈ Rn.
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Prove that a necessary condition for the function J given by

J(v) =
1

2
v>Av − b>v

to have an extremum in u ∈ U , with U defined by

U = {v ∈ Rn | v>Bv = 1},

is that there is some λ ∈ R such that

Au− b = λBu.

Hint . Express the definition of U as

U = {v ∈ Rn | ϕ(v) = 0},

with

ϕ(v) =
1

2
− 1

2
v>Bv.

Extra credit (20 points). Prove that there is a symmetric positive definite matrix S such
that B = S2. Prove that if b = 0, then λ is an eigenvalue of the symmetric matrix S−1AS−1.

Remark: If b 6= 0, solving for λ is a lot harder.

Problem B4 (10 pts). Verify the formula

(X>X +KIn)−1X> = X>(XX> +KIm)−1,

where X is a real m × n matrix and K > 0. You may assume without proof that both
X>X +KIn and XX>+KIm are invertible (because they are symmetric positive definite).

Problem B5 (40 pts). Consider the method of ridge regression to learn an affine function
f(x) = x>w+b instead of a linear function f(x) = x>w, where b ∈ R. We have the following
optimization program

Program (RR3):

minimize ξ>ξ +Kw>w

subject to

y −Xw − b1 = ξ,

with y, ξ,1 ∈ Rm and w ∈ Rn. Note that in Program (RR3) minimization is performed over
ξ, w and b, but b is not penalized in the objective function.
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(1) This problem can be solved directly by computing the quadratic functional J(w, b) =
ξ>ξ +Kw>w in terms of w and b. Prove that

J(w, b) =
(
w> b

)(X>X +KIn X>1m

1>mX m

)(
w
b

)
− 2

(
w> b

)(X>y
1>my

)
+ y>y.

(2) Prove that the matrix

A =

(
X>X +KIn X>1m

1>mX m

)
is symmetric positive definite. You can either use an argument involving a Schur complement
(Chapter 7 of Vol II, linalg-II), or proceed as follows.

Let g be the function given by

g(w, b) =
(
w> b

)(X>X +KIn X>1m

1>mX m

)(
w
b

)
= w>(X>X +KIn)w + 2w>X>1mb+ 1>m1mb

2.

Then A is symmetric positive definite iff (w, b) 6= 0 implies that g(w, b) > 0. Prove that if
w 6= 0 and b = 0, then g(w, 0) > 0. If b 6= 0, for b fixed the function w 7→ g(w, b) is strictly
convex because X>X + KIn is SPD, so it has a unique minimum obtained by setting the
gradient ∇wg to 0. Find the value w∗ for which ∇wg = 0, and compute the corresponding
minimum value g(w∗, b). Prove that g(w∗, b) is of the form Tb2 and compute T (T happens
to be the Schur complement of X>X +KIn in A). Prove that T > 0, so that if b 6= 0, then
g(w∗, b) > 0. Deduce that A is symmetric positive definite.

(3) Prove that the function J(w, b) has a unique minimum obtained by setting its gradient
to zero, which yields the system(

X>X +KIn X>1m

1>mX m

)(
w
b

)
=

(
X>y
1>my

)
. (∗1)

Prove that the solution (w, b) of the above system agrees with the solutions given by the
system associated with the dual, namely(

XX> +KIm 1m

1>m 0

)(
α
b

)
=

(
y
0

)
, (∗2)

with
w = X>α.

TOTAL: 220 points + 60 extra credit.
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