Fall, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier

Homework 4

October 21, 2024; Due November 11 2024

Problem B1 (50 pts). The goal of this problem is to find an orthogonal basis of the
hyperplane H in K" defined by the equation

C1T1 + CoTy + -+ + cpxn = 0. (1)

More precisely, if u*(z1, ..., x,) is the linear form in (K™)* given by u*(z1,...,2,) = 121 +
-+ + cpxy, then the hyperplane H is the kernel of u*. Of course we assume that some c; is
nonzero, in which case the linear form u* spans a one-dimensional subspace U of (K™)*, and
U° = H has dimension n — 1. To rule out the trivial case, we assume that n > 2.

Since u* is not the linear form which is identically zero, there is a smallest positive index
J < nsuch that ¢; # 0, so our linear form is really u*(x1,...,x,) = ¢jz; + -+ x,. It was
shown in class that the following n — 1 vectors (in K™) form a basis of H:

1 2 ... =1 3 j+1 ... n-1
1 1 0 ... 0 0 0 0
2 o 1 ... 0 0 0 0

j—110 0 1 0 0 0
j 0 0 0 —Cj+1/Cj —Cj+2/Cj —Cn/Cj

J+110 0 0 1 0 0

J+210 0 0 0 1 0
n 0o 0 ... 0 0 0 1

Observe that the (n—1) x (n— 1) matrix obtained by deleting row j is the identity matrix, so
the columns of the above matrix are linearly independent. A simple calculation also shows

that the linear form u*(z4,...,z,) = ¢;z;+- - - + ¢, 2, vanishes on every column of the above
matrix.

The above discussion shows that we may assume that ¢; # 0. Define a; (1 <i<n—1)
by
Cit+1
a; = — )
C1




so that the following system of n — 1 equations obtained from (1) holds:

c1a1 + cg = 0

109 + C3 = 0

c1Qp-1 + ¢, = 0.
(1) When n = 2, show that an orthogonal basis of H is given by the column of the matrix
a1
E

(2) When n = 3, show that an orthogonal basis of H is given by the columns of the
matrix

3] a2
1 —ajay
0 1+a?

(3) When n = 4, show that an orthogonal basis of H is given by the columns of the
matrix

ay ) as
1 —Qa10a9 —ayas
0 1+a? —a9a3

0 0 1+af+d

A pattern is finally emerging!
(4) Show that in general, an orthogonal basis of H is given by the columns of the nx (n—1)
matrix

aq a9 as ay e Ap—1

1 —Qa10a9 —aias — Q104 e —Aa1Qp—1

0 1+a? —asyas —ayay cee —Q9G,—q

0 0 14 a% + CL% —Qa3ay Ce —a3Qp—1

0 0 0 l+a2+ai+ad ... —asa,

0 0 0 0 oo —Qp—2An_—1
n—2 9

0 0 0 0 T R S

Hint. Use induction.



Prove that the equation

n—2
2
C1ln—1 = C2010n—1 — C300n_1 + ** + —Cn10n20n-1 + Cp <1 + aj) =0
=1

<

is obtained as a linear combination of the equations

Cc1a1 + Ccy = 0

C1Gg + Cc3 = 0

C1p—2 + 1 =10

C10y,-1 + ¢, = 0.

(5) Write the matrix in the case where the equation is
1+ T+ x, =0,

thatis, c; = =---=¢, = 1.

Problem B2 (30 pts). Let E be a real vector space of finite dimension, n > 1. Say that
two bases, (uy,...,u,) and (v1,...,v,), of E have the same orientation iff det(P) > 0, where
P the change of basis matrix from (uq,...,u,) and (vy,...,v,), namely, the matrix whose
jth columns consist of the coordinates of v; over the basis (u1, ..., u,).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, F, is the choice of any fixed basis, say (ej,...,e,), of
E. Any other basis, (vy,...,v,), has the same orientation as (ey, ..., e,) (and is said to be
positive or direct) iff det(P) > 0, else it is said to have the opposite orientation of (e, ..., e,)
(or to be negative or indirect), where P is the change of basis matrix from (eq,...,e,) to
(v1,...,v,). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let By = (u1,...,u,) and By = (vy,...,v,) be two orthonormal bases. For any
sequence of vectors, (wy,...,w,), in E, let detp, (wy,...,w,) be the determinant of the
matrix whose columns are the coordinates of the w;’s over the basis By and similarly for
detp, (wy, ..., wy,).

Prove that if By and B have the same orientation, then

detpg, (w,...,w,) = detg,(w,...,w,).
Given any oriented vector space, E, for any sequence of vectors, (wy,...,w,), in E, the
common value, detg(wy, ..., w,), for all positive orthonormal bases, B, of E is denoted
Ap(wy, ..., wy)



and called a volume form of (wy, ..., wy,).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n — 1 vectors,
Wi, ..., W,_1, in E, check that the map

x = Ag(wy, ..., Wy_1,T)
is a linear form. Then, prove that there is a unique vector, denoted w; X - -+ X w,_1, such
that
Ap(wy, ... w1, 2) = (W X -+ X Wy_1) -,
for all z € E. The vector w; X - -+ X w,_; is called the cross-product of (wy,...,w,_1). It is

a generalization of the cross-product in R?* (when n = 3).

Problem B3 (120 pts). The purpose of this problem is to prove that the characteristic
polynomial of the matrix

1 2 3 4 n

2 3 4 5 v on+1
A=13 4 5 6 R

n n+l n+2 n+3 -+ 2n-—1

is
1
Py(X) = A2 <>\2 —n?\— Enz(nz - 1)).
(1) Prove that the characteristic polynomial P4 () is given by

Pa(A) = X"P(N),

with
A-1 -2 -3 -4 -+ —n+3 —n+2 —n+1l —n
—-A—-1 A-1 -1 -1 -1 -1 -1 -1
1 -2 1 0 0 0 0 0
0 1 -2 1 0 0 0 0
P(\) =
0 0 0 0 1 0 0 0
0 0 0 0 -2 1 0 0
0 0 0 0 1 -2 1 0
0 0 0 0 0 1 -2 1




(2) Prove that the sum of the roots Aj, Ay of the (degree two) polynomial P()) is

)\1 +)\2 :n2.

The problem is thus to compute the product A\; Ay of these roots. Prove that

Ahs = P(0).

(3) The problem is now to evaluate d,, = P(0), where

0
0
0

—2
—1

0
0
0

-3
—1

0
0
0

—4
—1

0
0
0

—-n+3 —n+2
—1 -1
0 0
0 0
1 0
-2 1
1 -2
0 1

—n+1

—-n

0
0
1

I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding a
suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1. Expand
the determinant according to the first column.

You will notice that the first two entries on row 1 and the first two entries on row 2
change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries u, vy, Tx, yr in the determinant

Dy =

Uk

Vg

Tk

Yk

-3
—1

—4

—1

-n+k—-—3 —n+k-2
—1 —1
0 0
0 0
1 0
-2 1
1 —2
0 1

-n+k-—1

-n+k




starting with £ = 0, with
u0:_17 00:_17 SC(]:—Q, 3/0:_17
and ending with £ = n — 2, so that

Up—3 Tn—3 -3

dn =Dy 2= |vp3 Yn—3 —1| = ZlniQ n-2 .
Prove that we have the recurrence relations
Ugt1 2 -2 1 -1 Uy, 0
Uk:+1 o O 2 O 1 Vi + O
Th+1 o -1 1 0 0 T —2
Yk+1 0 -1.0 0 Y -1

These appear to be nasty affine recurrence relations, so we will use the trick to convert
this affine map to a linear map.

(4) Consider the linear map given by

Upoir 2 -2 1 -1 0 m
Vi1 0 2 0 1 0 Vk
Th+1 = -1 1 0 0 —2 T y
Yk+1 0O -1 0 0 -1 Yk

1 0 0 0 0 1 1

and show that its action on ug, vg, T, Y is the same as the affine action of part (3).

Use Matlab to find the eigenvalues of the matrix

2 -2 1 -1 0
0 2 0 1 0
T=|-1 1 0 0 =2
0O -1 0 0 -1
0O 0 0 O 1
You will be stunned!
Let N be the matrix given by
N=T-1

Prove that



Use this to prove that
k 1 2 1 3
T :]+kN+§k(k—1)N +6k3(k:—1)(k—2)N ,

for all £ > 0.
(5) Prove that

Uy -1 2 -2 1 -1 0 -1
Uk -1 0 2 0 1 0 —1
o | =T -2=]1-1 1 0 0 -2 -2,
i -1 0 -1 0 0 -1 —1
1 1 0 0 0 0 1 1
for £ > 0.
Prove that
E+1 —k(k+1) k —k? Lk —1Dk(2k —7)
0 k+1 0 k —3(k—=1)k
™ =1 —k k> 1—k (k—1k —k((k—6)k+11) ],
0 —k 0 1—k (k= 3)k
0 0 0 0 1

and thus, that

up 1(2k® + 3k% — 5k — 6)
Uk —2(k* + 3k + 2)
o | Lk + k — 6) ’
Yk (k24 k—2)
and that
U Tk :—1—zk—§k2—gk3—ik4
U Yk 3 12 3 12

As a consequence, prove that amazingly,

1
dn = Dn,Q = —ﬁn2(n2 - 1)

(6) Prove that the characteristic polynomial of A is indeed

1
Pa(A) = A2 <)\2 — 2\ — EnQ(n2 - 1))



Use the above to show that the two nonzero eigenvalues of A are

Az%(nj:?\/éln?—l).

The negative eigenvalue \; can also be expressed as

3—2v3 1
)\1 = n2ﬂ 11— —.

6 4n?
Use this expression to explain the following phenomenon: if we add any number greater than
or equal to (2/25)n? to every diagonal entry of A, we get an invertible matrix. Verify this
fact by applying the rref function of Matlab for n = 10,...,20. What about 0.077351n2?

Try it!

Problem B4 (20 pts). Let ¢: E x E — R be a bilinear form on a real vector space F of
finite dimension n. Given any basis (eq,...,e,) of E, let A = (a;;) be the matrix defined
such that

a;; = p(ei €5),
1 <i,7 <n. We call A the matriz of ¢ w.r.t. the basis (eq,...,ey).

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (eq,...,e,), prove that

p(z,y) = XTAY.

(b) Recall that A is a symmetric matrix if A = AT. Prove that ¢ is symmetric if A is a
symmetric matrix.

(¢)If (f1,..., fn)is another basis of E' and P is the change of basis matrix from (ey, ..., e,)
to (f1,--., fa), prove that the matrix of ¢ w.r.t. the basis (f1,..., f,) is

PTAP.

The common rank of all matrices representing ¢ is called the rank of .

Problem B5 (60 pts). Let ¢: E x E — R be a symmetric bilinear form on a real vector
space F of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ¢ if p(x,y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. .

(a) Prove that if p(z,z) = 0 for all x € E, then ¢ is identically null on E.
Otherwise, we can assume that there is some vector € E such that ¢(x,x) # 0.

Use induction to prove that there is a basis of vectors (ug,...,u,) that are pairwise
conjugate w.r.t. .



Hint. For the induction step, proceed as follows. Let (ui,eq,...,e,) be a basis of E, with
o(ug,uq) # 0. Prove that there are scalars Ag, ..., A\, such that each of the vectors

Vi = €; + >\Z‘U1

is conjugate to u; w.r.t. o, where 2 < i < n, and that (uq,vs,...,v,) is a basis.

(b) Let (eq, ..., e,) be a basis of vectors that are pairwise conjugate w.r.t. ¢, and assume
that they are ordered such that

(o= [B#0 f1<i<r,
LASEZE N ifr+1<i<n,

where r is the rank of . Show that the matrix of ¢ w.r.t. (e1,...,e,) is a diagonal matrix,
and that

p(r,y) =Y iy,
=1

where x =Y " xie; and y = Y1 yie;.

Prove that for every symmetric matrix A, there is an invertible matrix P such that
PT"AP =D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 < p < r (where r is the rank of ¢), such that
o(u;,u;) > 0 for exactly p vectors of every basis (uy,...,u,) of vectors that are pairwise
conjugate w.r.t. ¢ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (uy,...,u,), for any z € E, we have
(@) = qaf 4+ -+ + pal — Qp T — - — o,
where x = " | z;u;, and that in the basis (vy,...,v,), for any z € E, we have
a2 2 2 2
o(r,x) = Piy; + -+ By — Berr¥ypr — = — By,

where x =Y " | yv;, with o >0, 3, > 0,1 <7 <r.

Assume that p > ¢ and derive a contradiction. First, consider x in the subspace F
spanned by

(ula ceey Upy Upg1, - - 7un)7
and observe that ¢(z,x) > 0 if x # 0. Next, consider z in the subspace G spanned by

(Uq+1, N 7Ur)7

and observe that ¢(x,z) < 0 if z # 0. Prove that F' N G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p < ¢. Finish the proof.

9



The pair (p,r — p) is called the signature of .
(d) A symmetric bilinear form ¢ is definite if for every x € E, if ¢(x,x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n,0) or (0,n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

TOTAL: 280 points.
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