## Fall, 2024 CIS 515

## Fundamentals of Linear Algebra and Optimization Jean Gallier

## Homework 4

October 21, 2024; Due November 11 2024

**Problem B1 (50 pts)**. The goal of this problem is to find an orthogonal basis of the hyperplane H in  $K^n$  defined by the equation

$$c_1 x_1 + c_2 x_2 + \dots + c_n x_n = 0. \tag{(\dagger)}$$

More precisely, if  $u^*(x_1, \ldots, x_n)$  is the linear form in  $(K^n)^*$  given by  $u^*(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$ , then the hyperplane H is the kernel of  $u^*$ . Of course we assume that some  $c_j$  is nonzero, in which case the linear form  $u^*$  spans a one-dimensional subspace U of  $(K^n)^*$ , and  $U^0 = H$  has dimension n - 1. To rule out the trivial case, we assume that  $n \ge 2$ .

Since  $u^*$  is not the linear form which is identically zero, there is a smallest positive index  $j \leq n$  such that  $c_j \neq 0$ , so our linear form is really  $u^*(x_1, \ldots, x_n) = c_j x_j + \cdots + c_n x_n$ . It was shown in class that the following n-1 vectors (in  $K^n$ ) form a basis of H:

Observe that the  $(n-1) \times (n-1)$  matrix obtained by deleting row j is the identity matrix, so the columns of the above matrix are linearly independent. A simple calculation also shows that the linear form  $u^*(x_1, \ldots, x_n) = c_j x_j + \cdots + c_n x_n$  vanishes on every column of the above matrix.

The above discussion shows that we may assume that  $c_1 \neq 0$ . Define  $a_i \ (1 \leq i \leq n-1)$  by

$$a_i = -\frac{c_{i+1}}{c_1},$$

so that the following system of n-1 equations obtained from (†) holds:

$$c_1a_1 + c_2 = 0$$
  

$$c_1a_2 + c_3 = 0$$
  

$$\vdots \qquad \vdots$$
  

$$c_1a_{n-1} + c_n = 0.$$

(1) When n = 2, show that an orthogonal basis of H is given by the column of the matrix

$$\begin{pmatrix} a_1\\ 1 \end{pmatrix}$$
.

(2) When n = 3, show that an orthogonal basis of H is given by the columns of the matrix

$$\begin{pmatrix} a_1 & a_2 \\ 1 & -a_1 a_2 \\ 0 & 1 + a_1^2 \end{pmatrix}.$$

(3) When n = 4, show that an orthogonal basis of H is given by the columns of the matrix

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ 1 & -a_1a_2 & -a_1a_3 \\ 0 & 1+a_1^2 & -a_2a_3 \\ 0 & 0 & 1+a_1^2+a_2^2 \end{pmatrix}.$$

A pattern is finally emerging!

(4) Show that in general, an orthogonal basis of H is given by the columns of the  $n \times (n-1)$  matrix

$$\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & \dots & a_{n-1} \\ 1 & -a_1a_2 & -a_1a_3 & -a_1a_4 & \dots & -a_1a_{n-1} \\ 0 & 1+a_1^2 & -a_2a_3 & -a_2a_4 & \dots & -a_2a_{n-1} \\ 0 & 0 & 1+a_1^2+a_2^2 & -a_3a_4 & \dots & -a_3a_{n-1} \\ 0 & 0 & 0 & 1+a_1^2+a_2^2+a_3^3 & \dots & -a_4a_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -a_{n-2}a_{n-1} \\ 0 & 0 & 0 & 0 & \dots & 1+\sum_{j=1}^{n-2}a_j^2 \end{pmatrix}.$$

*Hint*. Use induction.

Prove that the equation

$$c_1 a_{n-1} - c_2 a_1 a_{n-1} - c_3 a_2 a_{n-1} + \dots + -c_{n-1} a_{n-2} a_{n-1} + c_n \left( 1 + \sum_{j=1}^{n-2} a_j^2 \right) = 0$$

is obtained as a linear combination of the equations

 $c_{1}a_{1} + c_{2} = 0$   $c_{1}a_{2} + c_{3} = 0$   $\vdots \quad \vdots$   $c_{1}a_{n-2} + c_{n-1} = 0$   $c_{1}a_{n-1} + c_{n} = 0.$ 

(5) Write the matrix in the case where the equation is

$$x_1 + x_2 + \dots + x_n = 0$$

that is,  $c_1 = c_2 = \cdots = c_n = 1$ .

**Problem B2 (30 pts).** Let *E* be a real vector space of finite dimension,  $n \ge 1$ . Say that two bases,  $(u_1, \ldots, u_n)$  and  $(v_1, \ldots, v_n)$ , of *E* have the same orientation iff det(P) > 0, where *P* the change of basis matrix from  $(u_1, \ldots, u_n)$  and  $(v_1, \ldots, v_n)$ , namely, the matrix whose *j*th columns consist of the coordinates of  $v_j$  over the basis  $(u_1, \ldots, u_n)$ .

(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say  $(e_1, \ldots, e_n)$ , of E. Any other basis,  $(v_1, \ldots, v_n)$ , has the same orientation as  $(e_1, \ldots, e_n)$  (and is said to be positive or direct) iff det(P) > 0, else it is said to have the opposite orientation of  $(e_1, \ldots, e_n)$  (or to be negative or indirect), where P is the change of basis matrix from  $(e_1, \ldots, e_n)$  to  $(v_1, \ldots, v_n)$ . An oriented vector space is a vector space with some chosen orientation (a positive basis).

(b) Let  $B_1 = (u_1, \ldots, u_n)$  and  $B_2 = (v_1, \ldots, v_n)$  be two orthonormal bases. For any sequence of vectors,  $(w_1, \ldots, w_n)$ , in E, let  $\det_{B_1}(w_1, \ldots, w_n)$  be the determinant of the matrix whose columns are the coordinates of the  $w_j$ 's over the basis  $B_1$  and similarly for  $\det_{B_2}(w_1, \ldots, w_n)$ .

Prove that if  $B_1$  and  $B_2$  have the same orientation, then

$$\det_{B_1}(w_1,\ldots,w_n) = \det_{B_2}(w_1,\ldots,w_n).$$

Given any oriented vector space, E, for any sequence of vectors,  $(w_1, \ldots, w_n)$ , in E, the common value,  $\det_B(w_1, \ldots, w_n)$ , for all positive orthonormal bases, B, of E is denoted

$$\lambda_E(w_1,\ldots,w_n)$$

and called a *volume form* of  $(w_1, \ldots, w_n)$ .

(c) Given any Euclidean oriented vector space, E, of dimension n for any n-1 vectors,  $w_1, \ldots, w_{n-1}$ , in E, check that the map

$$x \mapsto \lambda_E(w_1, \ldots, w_{n-1}, x)$$

is a linear form. Then, prove that there is a unique vector, denoted  $w_1 \times \cdots \times w_{n-1}$ , such that

$$\lambda_E(w_1,\ldots,w_{n-1},x) = (w_1 \times \cdots \times w_{n-1}) \cdot x_2$$

for all  $x \in E$ . The vector  $w_1 \times \cdots \times w_{n-1}$  is called the *cross-product* of  $(w_1, \ldots, w_{n-1})$ . It is a generalization of the cross-product in  $\mathbb{R}^3$  (when n = 3).

**Problem B3 (120 pts).** The purpose of this problem is to prove that the characteristic polynomial of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 3 & 4 & 5 & \cdots & n+1 \\ 3 & 4 & 5 & 6 & \cdots & n+2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n+1 & n+2 & n+3 & \cdots & 2n-1 \end{pmatrix}$$

is

$$P_A(\lambda) = \lambda^{n-2} \left( \lambda^2 - n^2 \lambda - \frac{1}{12} n^2 (n^2 - 1) \right)$$

(1) Prove that the characteristic polynomial  $P_A(\lambda)$  is given by

$$P_A(\lambda) = \lambda^{n-2} P(\lambda),$$

with

$$P(\lambda) = \begin{vmatrix} \lambda - 1 & -2 & -3 & -4 & \cdots & -n+3 & -n+2 & -n+1 & -n \\ -\lambda - 1 & \lambda - 1 & -1 & -1 & \cdots & -1 & -1 & -1 & -1 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \ddots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \end{vmatrix}$$

(2) Prove that the sum of the roots  $\lambda_1, \lambda_2$  of the (degree two) polynomial  $P(\lambda)$  is

$$\lambda_1 + \lambda_2 = n^2$$

The problem is thus to compute the product  $\lambda_1 \lambda_2$  of these roots. Prove that

$$\lambda_1 \lambda_2 = P(0).$$

## (3) The problem is now to evaluate $d_n = P(0)$ , where

|         | -1 | -2 | -3 | -4 | •••   | -n + 3          | -n+2 | -n+1 | -n |
|---------|----|----|----|----|-------|-----------------|------|------|----|
|         | -1 | -1 | -1 | -1 | •••   | -n+3<br>-1<br>0 | -1   | -1   | -1 |
|         | 1  | -2 | 1  | 0  | • • • | 0               | 0    | 0    | 0  |
|         | 0  | 1  | -2 | 1  | •••   | 0               | 0    | 0    |    |
| $d_n =$ | :  | ÷  | ·  | ·  | ·     | :               | :    | ÷    | :  |
|         | 0  | 0  | 0  | 0  | ·     | 1               | 0    | 0    | 0  |
|         | 0  | 0  | 0  | 0  | ۰.    | -2              | 1    | 0    |    |
|         | 0  | 0  | 0  | 0  | •••   | 1               | -2   | 1    |    |
|         | 0  | 0  | 0  | 0  |       | 0               | 1    | -2   | 1  |

I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding a suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1. Expand the determinant according to the first column.

You will notice that the first two entries on row 1 and the first two entries on row 2 change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries  $u_k, v_k, x_k, y_k$  in the determinant

|         | $ u_k $ | $x_k$ | -3 | -4 | • • • | -n + k - 3 | -n + k - 2 | -n+k-1 | -n+k |   |
|---------|---------|-------|----|----|-------|------------|------------|--------|------|---|
|         | $v_k$   | $y_k$ | -1 | -1 | •••   | -1         | -1         | -1     | -1   |   |
|         | 1       | -2    | 1  | 0  | • • • | 0          | 0          | 0      | 0    |   |
|         | 0       | 1     | -2 | 1  | •••   | 0          | 0          | 0      | 0    |   |
| $D_k =$ | :       | ÷     | ·  | ۰. | ·     | :          | ÷          | ÷      | ÷    | , |
|         | 0       | 0     | 0  | 0  | ·     | 1          | 0          | 0      | 0    |   |
|         | 0       | 0     | 0  | 0  | ·     | -2         | 1          | 0      | 0    |   |
|         | 0       | 0     | 0  | 0  | • • • | 1          | -2         | 1      | 0    |   |
|         | 0       | 0     | 0  | 0  |       | 0          | 1          | -2     | 1    |   |

starting with k = 0, with

$$u_0 = -1, \quad v_0 = -1, \quad x_0 = -2, \quad y_0 = -1,$$

and ending with k = n - 2, so that

$$d_n = D_{n-2} = \begin{vmatrix} u_{n-3} & x_{n-3} & -3 \\ v_{n-3} & y_{n-3} & -1 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} u_{n-2} & x_{n-2} \\ v_{n-2} & y_{n-2} \end{vmatrix}.$$

.

Prove that we have the recurrence relations

$$\begin{pmatrix} u_{k+1} \\ v_{k+1} \\ x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & -1 \\ 0 & 2 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -2 \\ -1 \end{pmatrix}.$$

These appear to be nasty affine recurrence relations, so we will use the trick to convert this affine map to a linear map.

(4) Consider the linear map given by

$$\begin{pmatrix} u_{k+1} \\ v_{k+1} \\ x_{k+1} \\ y_{k+1} \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \\ 1 \end{pmatrix},$$

and show that its action on  $u_k, v_k, x_k, y_k$  is the same as the affine action of part (3).

Use Matlab to find the eigenvalues of the matrix

$$T = \begin{pmatrix} 2 & -2 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

You will be stunned!

Let N be the matrix given by

$$N = T - I.$$

Prove that

$$N^4 = 0.$$

Use this to prove that

$$T^{k} = I + kN + \frac{1}{2}k(k-1)N^{2} + \frac{1}{6}k(k-1)(k-2)N^{3},$$

for all  $k \ge 0$ .

(5) Prove that

$$\begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \\ 1 \end{pmatrix} = T^k \begin{pmatrix} -1 \\ -1 \\ -2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & -1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}^k \begin{pmatrix} -1 \\ -1 \\ -2 \\ -1 \\ 1 \end{pmatrix},$$

for  $k \ge 0$ .

Prove that

$$T^{k} = \begin{pmatrix} k+1 & -k(k+1) & k & -k^{2} & \frac{1}{6}(k-1)k(2k-7) \\ 0 & k+1 & 0 & k & -\frac{1}{2}(k-1)k \\ -k & k^{2} & 1-k & (k-1)k & -\frac{1}{3}k((k-6)k+11) \\ 0 & -k & 0 & 1-k & \frac{1}{2}(k-3)k \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and thus, that

$$\begin{pmatrix} u_k \\ v_k \\ x_k \\ y_k \end{pmatrix} = \begin{pmatrix} \frac{1}{6}(2k^3 + 3k^2 - 5k - 6) \\ -\frac{1}{2}(k^2 + 3k + 2) \\ \frac{1}{3}(-k^3 + k - 6) \\ \frac{1}{2}(k^2 + k - 2) \end{pmatrix},$$

and that

$$\begin{vmatrix} u_k & x_k \\ v_k & y_k \end{vmatrix} = -1 - \frac{7}{3}k - \frac{23}{12}k^2 - \frac{2}{3}k^3 - \frac{1}{12}k^4.$$

As a consequence, prove that amazingly,

$$d_n = D_{n-2} = -\frac{1}{12}n^2(n^2 - 1).$$

(6) Prove that the characteristic polynomial of A is indeed

$$P_A(\lambda) = \lambda^{n-2} \left( \lambda^2 - n^2 \lambda - \frac{1}{12} n^2 (n^2 - 1) \right).$$

Use the above to show that the two nonzero eigenvalues of A are

$$\lambda = \frac{n}{2} \left( n \pm \frac{\sqrt{3}}{3} \sqrt{4n^2 - 1} \right).$$

The negative eigenvalue  $\lambda_1$  can also be expressed as

$$\lambda_1 = n^2 \frac{(3 - 2\sqrt{3})}{6} \sqrt{1 - \frac{1}{4n^2}}.$$

Use this expression to explain the following phenomenon: if we add any number greater than or equal to  $(2/25)n^2$  to every diagonal entry of A, we get an invertible matrix. Verify this fact by applying the **rref** function of **Matlab** for n = 10, ..., 20. What about  $0.077351n^2$ ? Try it!

**Problem B4 (20 pts)**. Let  $\varphi: E \times E \to \mathbb{R}$  be a bilinear form on a real vector space E of finite dimension n. Given any basis  $(e_1, \ldots, e_n)$  of E, let  $A = (a_{ij})$  be the matrix defined such that

$$a_{ij} = \varphi(e_i, e_j),$$

 $1 \leq i, j \leq n$ . We call A the matrix of  $\varphi$  w.r.t. the basis  $(e_1, \ldots, e_n)$ .

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis  $(e_1, \ldots, e_n)$ , prove that

$$\varphi(x, y) = X^{\top} A Y.$$

(b) Recall that A is a symmetric matrix if  $A = A^{\top}$ . Prove that  $\varphi$  is symmetric if A is a symmetric matrix.

(c) If  $(f_1, \ldots, f_n)$  is another basis of E and P is the change of basis matrix from  $(e_1, \ldots, e_n)$  to  $(f_1, \ldots, f_n)$ , prove that the matrix of  $\varphi$  w.r.t. the basis  $(f_1, \ldots, f_n)$  is

$$P^{\top}AP.$$

The common rank of all matrices representing  $\varphi$  is called the *rank* of  $\varphi$ .

**Problem B5 (60 pts)**. Let  $\varphi : E \times E \to \mathbb{R}$  be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be *conjugate or orthogonal*  $w.r.t. \varphi$  if  $\varphi(x, y) = 0$ . The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t.  $\varphi$ .

(a) Prove that if  $\varphi(x, x) = 0$  for all  $x \in E$ , then  $\varphi$  is identically null on E.

Otherwise, we can assume that there is some vector  $x \in E$  such that  $\varphi(x, x) \neq 0$ .

Use induction to prove that there is a basis of vectors  $(u_1, \ldots, u_n)$  that are pairwise conjugate w.r.t.  $\varphi$ .

*Hint*. For the induction step, proceed as follows. Let  $(u_1, e_2, \ldots, e_n)$  be a basis of E, with  $\varphi(u_1, u_1) \neq 0$ . Prove that there are scalars  $\lambda_2, \ldots, \lambda_n$  such that each of the vectors

$$v_i = e_i + \lambda_i u_1$$

is conjugate to  $u_1$  w.r.t.  $\varphi$ , where  $2 \leq i \leq n$ , and that  $(u_1, v_2, \ldots, v_n)$  is a basis.

(b) Let  $(e_1, \ldots, e_n)$  be a basis of vectors that are pairwise conjugate w.r.t.  $\varphi$ , and assume that they are ordered such that

$$\varphi(e_i, e_i) = \begin{cases} \theta_i \neq 0 & \text{if } 1 \le i \le r, \\ 0 & \text{if } r+1 \le i \le n, \end{cases}$$

where r is the rank of  $\varphi$ . Show that the matrix of  $\varphi$  w.r.t.  $(e_1, \ldots, e_n)$  is a diagonal matrix, and that

$$\varphi(x,y) = \sum_{i=1}^{r} \theta_i x_i y_i$$

where  $x = \sum_{i=1}^{n} x_i e_i$  and  $y = \sum_{i=1}^{n} y_i e_i$ .

Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$P^{\top}AP = D,$$

where D is a diagonal matrix.

(c) Prove that there is an integer  $p, 0 \le p \le r$  (where r is the rank of  $\varphi$ ), such that  $\varphi(u_i, u_i) > 0$  for exactly p vectors of every basis  $(u_1, \ldots, u_n)$  of vectors that are pairwise conjugate w.r.t.  $\varphi$  (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis  $(u_1, \ldots, u_n)$ , for any  $x \in E$ , we have

$$\varphi(x,x) = \alpha_1 x_1^2 + \dots + \alpha_p x_p^2 - \alpha_{p+1} x_{p+1}^2 - \dots - \alpha_r x_r^2,$$

where  $x = \sum_{i=1}^{n} x_i u_i$ , and that in the basis  $(v_1, \ldots, v_n)$ , for any  $x \in E$ , we have

$$\varphi(x,x) = \beta_1 y_1^2 + \dots + \beta_q y_q^2 - \beta_{q+1} y_{q+1}^2 - \dots - \beta_r y_r^2,$$

where  $x = \sum_{i=1}^{n} y_i v_i$ , with  $\alpha_i > 0, \ \beta_i > 0, \ 1 \le i \le r$ .

Assume that p > q and derive a contradiction. First, consider x in the subspace F spanned by

$$(u_1,\ldots,u_p,u_{r+1},\ldots,u_n),$$

and observe that  $\varphi(x, x) \ge 0$  if  $x \ne 0$ . Next, consider x in the subspace G spanned by

$$(v_{q+1},\ldots,v_r)$$

and observe that  $\varphi(x, x) < 0$  if  $x \neq 0$ . Prove that  $F \cap G$  is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that  $p \leq q$ . Finish the proof.

The pair (p, r - p) is called the *signature* of  $\varphi$ .

(d) A symmetric bilinear form  $\varphi$  is *definite* if for every  $x \in E$ , if  $\varphi(x, x) = 0$ , then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

TOTAL: 280 points.