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Jean Gallier

Homework 4

October 21, 2024; Due November 11 2024

Problem B1 (50 pts). The goal of this problem is to find an orthogonal basis of the
hyperplane H in Kn defined by the equation

c1x1 + c2x2 + · · ·+ cnxn = 0. (†)

More precisely, if u∗(x1, . . . , xn) is the linear form in (Kn)∗ given by u∗(x1, . . . , xn) = c1x1 +
· · · + cnxn, then the hyperplane H is the kernel of u∗. Of course we assume that some cj is
nonzero, in which case the linear form u∗ spans a one-dimensional subspace U of (Kn)∗, and
U0 = H has dimension n− 1. To rule out the trivial case, we assume that n ≥ 2.

Since u∗ is not the linear form which is identically zero, there is a smallest positive index
j ≤ n such that cj 6= 0, so our linear form is really u∗(x1, . . . , xn) = cjxj + · · ·+ cnxn. It was
shown in class that the following n− 1 vectors (in Kn) form a basis of H:

1 2 . . . j − 1 j j + 1 . . . n− 1

1
2
...

j − 1
j

j + 1
j + 2

...
n



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 −cj+1/cj −cj+2/cj . . . −cn/cj
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


.

Observe that the (n−1)×(n−1) matrix obtained by deleting row j is the identity matrix, so
the columns of the above matrix are linearly independent. A simple calculation also shows
that the linear form u∗(x1, . . . , xn) = cjxj + · · ·+cnxn vanishes on every column of the above
matrix.

The above discussion shows that we may assume that c1 6= 0. Define ai (1 ≤ i ≤ n− 1)
by

ai = −ci+1

c1
,
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so that the following system of n− 1 equations obtained from (†) holds:

c1a1 + c2 = 0

c1a2 + c3 = 0

...
...

c1an−1 + cn = 0.

(1) When n = 2, show that an orthogonal basis of H is given by the column of the matrix(
a1
1

)
.

(2) When n = 3, show that an orthogonal basis of H is given by the columns of the
matrix a1 a2

1 −a1a2
0 1 + a21

 .

(3) When n = 4, show that an orthogonal basis of H is given by the columns of the
matrix 

a1 a2 a3
1 −a1a2 −a1a3
0 1 + a21 −a2a3
0 0 1 + a21 + a22

 .

A pattern is finally emerging!
(4) Show that in general, an orthogonal basis of H is given by the columns of the n×(n−1)

matrix 

a1 a2 a3 a4 . . . an−1
1 −a1a2 −a1a3 −a1a4 . . . −a1an−1
0 1 + a21 −a2a3 −a2a4 . . . −a2an−1
0 0 1 + a21 + a22 −a3a4 . . . −a3an−1
0 0 0 1 + a21 + a22 + a33 . . . −a4an−1
...

...
...

...
...

...
0 0 0 0 . . . −an−2an−1
0 0 0 0 . . . 1 +

∑n−2
j=1 a

2
j


.

Hint . Use induction.
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Prove that the equation

c1an−1 − c2a1an−1 − c3a2an−1 + · · ·+−cn−1an−2an−1 + cn

(
1 +

n−2∑
j=1

a2j

)
= 0

is obtained as a linear combination of the equations

c1a1 + c2 = 0

c1a2 + c3 = 0

...
...

c1an−2 + cn−1 = 0

c1an−1 + cn = 0.

(5) Write the matrix in the case where the equation is

x1 + x2 + · · ·+ xn = 0,

that is, c1 = c2 = · · · = cn = 1.

Problem B2 (30 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)
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and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)

is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,

for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).

Problem B3 (120 pts). The purpose of this problem is to prove that the characteristic
polynomial of the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n− 1


is

PA(λ) = λn−2
(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.

(1) Prove that the characteristic polynomial PA(λ) is given by

PA(λ) = λn−2P (λ),

with

P (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n

−λ− 1 λ− 1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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(2) Prove that the sum of the roots λ1, λ2 of the (degree two) polynomial P (λ) is

λ1 + λ2 = n2.

The problem is thus to compute the product λ1λ2 of these roots. Prove that

λ1λ2 = P (0).

(3) The problem is now to evaluate dn = P (0), where

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n

−1 −1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding a

suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1. Expand
the determinant according to the first column.

You will notice that the first two entries on row 1 and the first two entries on row 2
change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries uk, vk, xk, yk in the determinant

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk xk −3 −4 · · · −n+ k − 3 −n+ k − 2 −n+ k − 1 −n+ k

vk yk −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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starting with k = 0, with

u0 = −1, v0 = −1, x0 = −2, y0 = −1,

and ending with k = n− 2, so that

dn = Dn−2 =

∣∣∣∣∣∣
un−3 xn−3 −3
vn−3 yn−3 −1

1 −2 1

∣∣∣∣∣∣ =

∣∣∣∣un−2 xn−2
vn−2 yn−2

∣∣∣∣ .
Prove that we have the recurrence relations

uk+1

vk+1

xk+1

yk+1

 =


2 −2 1 −1
0 2 0 1
−1 1 0 0
0 −1 0 0



uk
vk
xk
yk

+


0
0
−2
−1

 .

These appear to be nasty affine recurrence relations, so we will use the trick to convert
this affine map to a linear map.

(4) Consider the linear map given by
uk+1

vk+1

xk+1

yk+1

1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1



uk
vk
xk
yk
1

 ,

and show that its action on uk, vk, xk, yk is the same as the affine action of part (3).

Use Matlab to find the eigenvalues of the matrix

T =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1

 .

You will be stunned!

Let N be the matrix given by
N = T − I.

Prove that
N4 = 0.
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Use this to prove that

T k = I + kN +
1

2
k(k − 1)N2 +

1

6
k(k − 1)(k − 2)N3,

for all k ≥ 0.

(5) Prove that
uk
vk
xk
yk
1

 = T k


−1
−1
−2
−1
1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1


k
−1
−1
−2
−1
1

 ,

for k ≥ 0.

Prove that

T k =



k + 1 −k(k + 1) k −k2 1
6
(k − 1)k(2k − 7)

0 k + 1 0 k −1
2
(k − 1)k

−k k2 1− k (k − 1)k −1
3
k((k − 6)k + 11)

0 −k 0 1− k 1
2
(k − 3)k

0 0 0 0 1


,

and thus, that 
uk

vk

xk

yk

 =


1
6
(2k3 + 3k2 − 5k − 6)

−1
2
(k2 + 3k + 2)

1
3
(−k3 + k − 6)

1
2
(k2 + k − 2)

 ,

and that ∣∣∣∣uk xk
vk yk

∣∣∣∣ = −1− 7

3
k − 23

12
k2 − 2

3
k3 − 1

12
k4.

As a consequence, prove that amazingly,

dn = Dn−2 = − 1

12
n2(n2 − 1).

(6) Prove that the characteristic polynomial of A is indeed

PA(λ) = λn−2
(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.
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Use the above to show that the two nonzero eigenvalues of A are

λ =
n

2

(
n±
√

3

3

√
4n2 − 1

)
.

The negative eigenvalue λ1 can also be expressed as

λ1 = n2 (3− 2
√

3)

6

√
1− 1

4n2
.

Use this expression to explain the following phenomenon: if we add any number greater than
or equal to (2/25)n2 to every diagonal entry of A, we get an invertible matrix. Verify this
fact by applying the rref function of Matlab for n = 10, . . . , 20. What about 0.077351n2?
Try it!

Problem B4 (20 pts). Let ϕ : E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined
such that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B5 (60 pts). Let ϕ : E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u1, . . . , un) that are pairwise
conjugate w.r.t. ϕ.
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Hint . For the induction step, proceed as follows. Let (u1, e2, . . . , en) be a basis of E, with
ϕ(u1, u1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λiu1

is conjugate to u1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (u1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑

i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx

2
r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2r ,

where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.
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The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

TOTAL: 280 points.
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