
Spring, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 4

March 20, 2024; Due April 4 2024

Problem B1 (30 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)
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is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,

for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).

Problem B2 (50 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣ .

(1) Prove that
Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

Problem B3 (20 pts). Let ϕ : E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined
such that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).
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(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B4 (60 pts). Let ϕ : E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u1, . . . , un) that are pairwise
conjugate w.r.t. ϕ.

Hint . For the induction step, proceed as follows. Let (u1, e2, . . . , en) be a basis of E, with
ϕ(u1, u1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λiu1

is conjugate to u1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (u1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑
i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,
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where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx2r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2r ,

where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B5 (90 pts). (The space of closed polygons in R2, after Hausmann and Knutson)

An open polygon P in the plane is a sequence P = (v1, . . . , vn+1) of point vi ∈ R2

called vertices (with n ≥ 1). A closed polygon, for short a polygon, is an open polygon
P = (v1, . . . , vn+1) such that vn+1 = v1. The sequence of edge vectors (e1, . . . , en) associated
with the open (or closed) polygon P = (v1, . . . , vn+1) is defined by

ei = vi+1 − vi, i = 1, . . . , n.

Thus, a closed or open polygon is also defined by a pair (v1, (e1, . . . , en)), with the vertices
given by

vi+1 = vi + ei, i = 1, . . . , n.

Observe that a polygon (v1, (e1, . . . , en)) is closed iff

e1 + · · ·+ en = 0.
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Since every polygon (v1, (e1, . . . , en)) can be translated by −v1, so that v1 = (0, 0), we
may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane R2 is isomorphic to C, via the isomorphism

(x, y) 7→ x+ iy.

We will represent each edge vector ek by the square of a complex number wk = ak+ibk. Thus,
every sequence of complex numbers (w1, . . . , wn) defines a polygon (namely, (w2

1, . . . , w
2
n)).

This representation is many-to-one: the sequences (±w1, . . . ,±wn) describe the same poly-
gon. To every sequence of complex numbers (w1, . . . , wn), we associate the pair of vectors
(a, b), with a, b ∈ Rn, such that if wk = ak + ibk, then

a = (a1, . . . , an), b = (b1, . . . , bn).

The mapping
(w1, . . . , wn) 7→ (a, b)

is clearly a bijection, so we can also represent polygons by pairs of vectors (a, b) ∈ Rn ×Rn.

(a) Prove that a polygon P represented by a pair of vectors (a, b) ∈ Rn ×Rn is closed iff
a · b = 0 and ‖a‖2 = ‖b‖2.

(b) Given a polygon P represented by a pair of vectors (a, b) ∈ Rn×Rn, the length l(P )
of the polygon P is defined by l(P ) = |w1|2 + · · ·+ |wn|2, with wk = ak + ibk. Prove that

l(P ) = ‖a‖22 + ‖b‖22 .

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented
by a n× 2 matrix A such that A>A = I.

Remark: The space of all a n× 2 real matrices A such that A>A = I is a space known as
the Stiefel manifold S(2, n).

(c) Recall that in R2, the rotation of angle θ specified by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is expressed in terms of complex numbers by the map

z 7→ zeiθ.

Let P be a polygon represented by a pair of vectors (a, b) ∈ Rn × Rn. Prove that the
polygon Rθ(P ) obtained by applying the rotation Rθ to every edge w2

k = (ak + ibk)
2 of P is

specified by the pair of vectors

(cos(θ/2)a− sin(θ/2)b, sin(θ/2)a+ cos(θ/2)b) =


a1 b1
a2 b2
...

...
an bn


(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.
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(d) The reflection ρx about the x-axis corresponds to the map

z 7→ z,

whose matrix is, (
1 0
0 −1

)
.

Prove that the polygon ρx(P ) obtained by applying the reflection ρx to every edge w2
k =

(ak + ibk)
2 of P is specified by the pair of vectors

(a,−b) =


a1 b1
a2 b2
...

...
an bn


(

1 0
0 −1

)
.

(e) Let Q ∈ O(2) be any isometry such that det(Q) = −1 (a reflection). Prove that there
is a rotation R−θ ∈ SO(2) such that

Q = ρx ◦R−θ.

Prove that the isometry Q, which is given by the matrix

Q =

(
cos θ sin θ
sin θ − cos θ

)
,

is the reflection about the line corresponding to the angle θ/2 (the line of equation y =
tan(θ/2)x).

Prove that the polygon Q(P ) obtained by applying the reflection Q = ρx ◦R−θ to every
edge w2

k = (ak + ibk)
2 of P , is specified by the pair of vectors

(cos(θ/2)a+ sin(θ/2)b, sin(θ/2)a− cos(θ/2)b) =


a1 b1
a2 b2
...

...
an bn


(

cos(θ/2) sin(θ/2)
sin(θ/2) − cos(θ/2)

)
.

(f) Define an equivalence relation ∼ on S(2, n) such that if A1, A2 ∈ S(2, n) are any n×2
matrices such that A>1 A1 = A>2 A2 = I, then

A1 ∼ A2 iff A2 = A1Q for some Q ∈ O(2).

Prove that the quotient G(2, n) = S(2, n)/ ∼ is in bijection with the set of all 2-dimensional
subspaces (the planes) of Rn. The space G(2, n) is called a Grassmannian manifold .

Prove that up to translations and isometries in O(2) (rotations and reflections), the
n-sided closed polygons of length 2 are represented by planes in G(2, n).

TOTAL: 250 points.
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