Spring, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Homework 4

March 20, 2024; Due April 4 2024

Problem B1 (30 pts). Let *E* be a real vector space of finite dimension, $n \ge 1$. Say that two bases, (u_1, \ldots, u_n) and (v_1, \ldots, v_n) , of *E* have the same orientation iff det(P) > 0, where *P* the change of basis matrix from (u_1, \ldots, u_n) and (v_1, \ldots, v_n) , namely, the matrix whose *j*th columns consist of the coordinates of v_j over the basis (u_1, \ldots, u_n) .

(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e_1, \ldots, e_n) , of E. Any other basis, (v_1, \ldots, v_n) , has the same orientation as (e_1, \ldots, e_n) (and is said to be positive or direct) iff det(P) > 0, else it is said to have the opposite orientation of (e_1, \ldots, e_n) (or to be negative or indirect), where P is the change of basis matrix from (e_1, \ldots, e_n) to (v_1, \ldots, v_n) . An oriented vector space is a vector space with some chosen orientation (a positive basis).

(b) Let $B_1 = (u_1, \ldots, u_n)$ and $B_2 = (v_1, \ldots, v_n)$ be two orthonormal bases. For any sequence of vectors, (w_1, \ldots, w_n) , in E, let $\det_{B_1}(w_1, \ldots, w_n)$ be the determinant of the matrix whose columns are the coordinates of the w_j 's over the basis B_1 and similarly for $\det_{B_2}(w_1, \ldots, w_n)$.

Prove that if B_1 and B_2 have the same orientation, then

$$\det_{B_1}(w_1,\ldots,w_n)=\det_{B_2}(w_1,\ldots,w_n).$$

Given any oriented vector space, E, for any sequence of vectors, (w_1, \ldots, w_n) , in E, the common value, $\det_B(w_1, \ldots, w_n)$, for all positive orthonormal bases, B, of E is denoted

$$\lambda_E(w_1,\ldots,w_n)$$

and called a *volume form* of (w_1, \ldots, w_n) .

(c) Given any Euclidean oriented vector space, E, of dimension n for any n-1 vectors, w_1, \ldots, w_{n-1} , in E, check that the map

$$x \mapsto \lambda_E(w_1, \ldots, w_{n-1}, x)$$

is a linear form. Then, prove that there is a unique vector, denoted $w_1 \times \cdots \times w_{n-1}$, such that

 $\lambda_E(w_1,\ldots,w_{n-1},x) = (w_1 \times \cdots \times w_{n-1}) \cdot x,$

for all $x \in E$. The vector $w_1 \times \cdots \times w_{n-1}$ is called the *cross-product* of (w_1, \ldots, w_{n-1}) . It is a generalization of the cross-product in \mathbb{R}^3 (when n = 3).

Problem B2 (50 pts). Given p vectors (u_1, \ldots, u_p) in a Euclidean space E of dimension $n \ge p$, the *Gram determinant (or Gramian)* of the vectors (u_1, \ldots, u_p) is the determinant

$$\operatorname{Gram}(u_1,\ldots,u_p) = \begin{vmatrix} \|u_1\|^2 & \langle u_1, u_2 \rangle & \ldots & \langle u_1, u_p \rangle \\ \langle u_2, u_1 \rangle & \|u_2\|^2 & \ldots & \langle u_2, u_p \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle u_p, u_1 \rangle & \langle u_p, u_2 \rangle & \ldots & \|u_p\|^2 \end{vmatrix}.$$

(1) Prove that

$$\operatorname{Gram}(u_1,\ldots,u_n) = \lambda_E(u_1,\ldots,u_n)^2.$$

Hint. If (e_1, \ldots, e_n) is an orthonormal basis and A is the matrix of the vectors (u_1, \ldots, u_n) over this basis,

$$\det(A)^2 = \det(A^{\top}A) = \det(A^i \cdot A^j),$$

where A^i denotes the *i*th column of the matrix A, and $(A^i \cdot A^j)$ denotes the $n \times n$ matrix with entries $A^i \cdot A^j$.

(2) Prove that

$$||u_1 \times \cdots \times u_{n-1}||^2 = \operatorname{Gram}(u_1, \dots, u_{n-1}).$$

Hint. Letting $w = u_1 \times \cdots \times u_{n-1}$, observe that

$$\lambda_E(u_1,\ldots,u_{n-1},w) = \langle w,w\rangle = ||w||^2,$$

and show that

$$||w||^4 = \lambda_E(u_1, \dots, u_{n-1}, w)^2 = \operatorname{Gram}(u_1, \dots, u_{n-1}, w)$$

= $\operatorname{Gram}(u_1, \dots, u_{n-1}) ||w||^2.$

Problem B3 (20 pts). Let $\varphi : E \times E \to \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis (e_1, \ldots, e_n) of E, let $A = (a_{ij})$ be the matrix defined such that

$$a_{ij} = \varphi(e_i, e_j)$$

 $1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis (e_1, \ldots, e_n) .

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis (e_1, \ldots, e_n) , prove that

$$\varphi(x, y) = X^{\top} A Y.$$

(b) Recall that A is a symmetric matrix if $A = A^{\top}$. Prove that φ is symmetric if A is a symmetric matrix.

(c) If (f_1, \ldots, f_n) is another basis of E and P is the change of basis matrix from (e_1, \ldots, e_n) to (f_1, \ldots, f_n) , prove that the matrix of φ w.r.t. the basis (f_1, \ldots, f_n) is

$$P^{\top}AP$$

The common rank of all matrices representing φ is called the *rank* of φ .

Problem B4 (60 pts). Let $\varphi \colon E \times E \to \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be *conjugate or orthogonal* $w.r.t. \varphi$ if $\varphi(x, y) = 0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ .

(a) Prove that if $\varphi(x, x) = 0$ for all $x \in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$.

Use induction to prove that there is a basis of vectors (u_1, \ldots, u_n) that are pairwise conjugate w.r.t. φ .

Hint. For the induction step, proceed as follows. Let (u_1, e_2, \ldots, e_n) be a basis of E, with $\varphi(u_1, u_1) \neq 0$. Prove that there are scalars $\lambda_2, \ldots, \lambda_n$ such that each of the vectors

$$v_i = e_i + \lambda_i u_1$$

is conjugate to u_1 w.r.t. φ , where $2 \leq i \leq n$, and that (u_1, v_2, \ldots, v_n) is a basis.

(b) Let (e_1, \ldots, e_n) be a basis of vectors that are pairwise conjugate w.r.t. φ , and assume that they are ordered such that

$$\varphi(e_i, e_i) = \begin{cases} \theta_i \neq 0 & \text{if } 1 \le i \le r, \\ 0 & \text{if } r+1 \le i \le n \end{cases}$$

where r is the rank of φ . Show that the matrix of φ w.r.t. (e_1, \ldots, e_n) is a diagonal matrix, and that

$$\varphi(x,y) = \sum_{i=1}^{r} \theta_i x_i y_i,$$

where $x = \sum_{i=1}^{n} x_i e_i$ and $y = \sum_{i=1}^{n} y_i e_i$.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$P^{\top}AP = D,$$

where D is a diagonal matrix.

(c) Prove that there is an integer $p, 0 \le p \le r$ (where r is the rank of φ), such that $\varphi(u_i, u_i) > 0$ for exactly p vectors of every basis (u_1, \ldots, u_n) of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis (u_1, \ldots, u_n) , for any $x \in E$, we have

$$\varphi(x,x) = \alpha_1 x_1^2 + \dots + \alpha_p x_p^2 - \alpha_{p+1} x_{p+1}^2 - \dots - \alpha_r x_r^2,$$

where $x = \sum_{i=1}^{n} x_i u_i$, and that in the basis (v_1, \ldots, v_n) , for any $x \in E$, we have

$$\varphi(x,x) = \beta_1 y_1^2 + \dots + \beta_q y_q^2 - \beta_{q+1} y_{q+1}^2 - \dots - \beta_r y_r^2,$$

where $x = \sum_{i=1}^{n} y_i v_i$, with $\alpha_i > 0$, $\beta_i > 0$, $1 \le i \le r$.

Assume that p > q and derive a contradiction. First, consider x in the subspace F spanned by

$$(u_1,\ldots,u_p,u_{r+1},\ldots,u_n),$$

and observe that $\varphi(x, x) \ge 0$ if $x \ne 0$. Next, consider x in the subspace G spanned by

$$(v_{q+1},\ldots,v_r),$$

and observe that $\varphi(x, x) < 0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair (p, r - p) is called the *signature* of φ .

(d) A symmetric bilinear form φ is *definite* if for every $x \in E$, if $\varphi(x, x) = 0$, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B5 (90 pts). (The space of closed polygons in \mathbb{R}^2 , after Hausmann and Knutson)

An open polygon P in the plane is a sequence $P = (v_1, \ldots, v_{n+1})$ of point $v_i \in \mathbb{R}^2$ called vertices (with $n \geq 1$). A closed polygon, for short a polygon, is an open polygon $P = (v_1, \ldots, v_{n+1})$ such that $v_{n+1} = v_1$. The sequence of edge vectors (e_1, \ldots, e_n) associated with the open (or closed) polygon $P = (v_1, \ldots, v_{n+1})$ is defined by

$$e_i = v_{i+1} - v_i, \quad i = 1, \dots, n$$

Thus, a closed or open polygon is also defined by a pair $(v_1, (e_1, \ldots, e_n))$, with the vertices given by

$$v_{i+1} = v_i + e_i, \quad i = 1, \dots, n$$

Observe that a polygon $(v_1, (e_1, \ldots, e_n))$ is closed iff

$$e_1 + \dots + e_n = 0.$$

Since every polygon $(v_1, (e_1, \ldots, e_n))$ can be translated by $-v_1$, so that $v_1 = (0, 0)$, we may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane \mathbb{R}^2 is isomorphic to \mathbb{C} , via the isomorphism

$$(x,y) \mapsto x + iy$$

We will represent each edge vector e_k by the square of a complex number $w_k = a_k + ib_k$. Thus, every sequence of complex numbers (w_1, \ldots, w_n) defines a polygon (namely, (w_1^2, \ldots, w_n^2)). This representation is many-to-one: the sequences $(\pm w_1, \ldots, \pm w_n)$ describe the same polygon. To every sequence of complex numbers (w_1, \ldots, w_n) , we associate the pair of vectors (a, b), with $a, b \in \mathbb{R}^n$, such that if $w_k = a_k + ib_k$, then

$$a = (a_1, \ldots, a_n), \quad b = (b_1, \ldots, b_n).$$

The mapping

$$(w_1,\ldots,w_n)\mapsto (a,b)$$

is clearly a bijection, so we can also represent polygons by pairs of vectors $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$.

(a) Prove that a polygon P represented by a pair of vectors $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$ is closed iff $a \cdot b = 0$ and $||a||_2 = ||b||_2$.

(b) Given a polygon P represented by a pair of vectors $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$, the length l(P) of the polygon P is defined by $l(P) = |w_1|^2 + \cdots + |w_n|^2$, with $w_k = a_k + ib_k$. Prove that

$$l(P) = ||a||_2^2 + ||b||_2^2.$$

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented by a $n \times 2$ matrix A such that $A^{\top}A = I$.

Remark: The space of all a $n \times 2$ real matrices A such that $A^{\top}A = I$ is a space known as the *Stiefel manifold* S(2, n).

(c) Recall that in \mathbb{R}^2 , the rotation of angle θ specified by the matrix

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

is expressed in terms of complex numbers by the map

$$z \mapsto z e^{i\theta}$$

Let P be a polygon represented by a pair of vectors $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$. Prove that the polygon $R_{\theta}(P)$ obtained by applying the rotation R_{θ} to every edge $w_k^2 = (a_k + ib_k)^2$ of P is specified by the pair of vectors

$$(\cos(\theta/2)a - \sin(\theta/2)b, \ \sin(\theta/2)a + \cos(\theta/2)b) = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix} \begin{pmatrix} \cos(\theta/2) & \sin(\theta/2) \\ -\sin(\theta/2) & \cos(\theta/2) \end{pmatrix}$$

(d) The reflection ρ_x about the x-axis corresponds to the map

$$z \mapsto \overline{z},$$

whose matrix is,

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Prove that the polygon $\rho_x(P)$ obtained by applying the reflection ρ_x to every edge $w_k^2 = (a_k + ib_k)^2$ of P is specified by the pair of vectors

$$(a, -b) = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(e) Let $Q \in \mathbf{O}(2)$ be any isometry such that $\det(Q) = -1$ (a reflection). Prove that there is a rotation $R_{-\theta} \in \mathbf{SO}(2)$ such that

$$Q = \rho_x \circ R_{-\theta}.$$

Prove that the isometry Q, which is given by the matrix

$$Q = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix},$$

is the reflection about the line corresponding to the angle $\theta/2$ (the line of equation $y = \tan(\theta/2)x$).

Prove that the polygon Q(P) obtained by applying the reflection $Q = \rho_x \circ R_{-\theta}$ to every edge $w_k^2 = (a_k + ib_k)^2$ of P, is specified by the pair of vectors

$$(\cos(\theta/2)a + \sin(\theta/2)b, \ \sin(\theta/2)a - \cos(\theta/2)b) = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix} \begin{pmatrix} \cos(\theta/2) & \sin(\theta/2) \\ \sin(\theta/2) & -\cos(\theta/2) \end{pmatrix}.$$

(f) Define an equivalence relation ~ on S(2, n) such that if $A_1, A_2 \in S(2, n)$ are any $n \times 2$ matrices such that $A_1^{\top}A_1 = A_2^{\top}A_2 = I$, then

$$A_1 \sim A_2$$
 iff $A_2 = A_1 Q$ for some $Q \in \mathbf{O}(2)$.

Prove that the quotient $G(2,n) = S(2,n)/\sim$ is in bijection with the set of all 2-dimensional subspaces (the planes) of \mathbb{R}^n . The space G(2,n) is called a *Grassmannian manifold*.

Prove that up to translations and isometries in O(2) (rotations and reflections), the *n*-sided closed polygons of length 2 are represented by planes in G(2, n).

TOTAL: 250 points.