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Homework 4

March 20, 2024; Due April 4 2024

Problem B1 (30 pts). Let E be a real vector space of finite dimension, n > 1. Say that
two bases, (uy,...,u,) and (v1,...,v,), of E have the same orientation iff det(P) > 0, where
P the change of basis matrix from (ui,...,u,) and (vy,...,v,), namely, the matrix whose
Jjth columns consist of the coordinates of v; over the basis (u1,. .., u,).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, F, is the choice of any fixed basis, say (ej,...,e,), of
E. Any other basis, (vy,...,v,), has the same orientation as (ey, ..., e,) (and is said to be
positive or direct) iff det(P) > 0, else it is said to have the opposite orientation of (e, ..., ey)
(or to be negative or indirect), where P is the change of basis matrix from (eq,...,e,) to
(v1,...,v,). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let By = (u1,...,u,) and By = (vy,...,v,) be two orthonormal bases. For any
sequence of vectors, (wy,...,w,), in E, let detp, (wy,...,w,) be the determinant of the
matrix whose columns are the coordinates of the w;’s over the basis By and similarly for
detp, (w1, ..., wy,).

Prove that if By and B have the same orientation, then

detpg, (wq,...,w,) = detp,(wq,...,w,).
Given any oriented vector space, E, for any sequence of vectors, (wy,...,w,), in E, the
common value, detg(wy, ..., w,), for all positive orthonormal bases, B, of E is denoted
AE(wl, ce ,wn)
and called a volume form of (wyq, ..., wy,).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n — 1 vectors,
wi, ..., W,_1, in F, check that the map

x = Ag(wy, ..., wy_1,7)



is a linear form. Then, prove that there is a unique vector, denoted w; X - -+ X w,_1, such
that
Ap(wy, ... w1, ) = (W X -+ X wy_1) - @,

for all z € E. The vector wy X - -+ X w,_1 is called the cross-product of (w1, ..., w,_1). It is
a generalization of the cross-product in R? (when n = 3).

Problem B2 (50 pts). Given p vectors (uq,...,u,) in a Euclidean space E of dimension
n > p, the Gram determinant (or Gramian) of the vectors (uq,...,u,) is the determinant
[ | <U17U§> (u1, up)
U, U u U, U
Gram(uy, ..., u,) = (g, ur) | 2” (12, up)
: . ;
(up, ur)  (up,uz) .. [l

(1) Prove that

Gram(uy, ..., up) = Ag(ug, ..., u,)>

Hint. If (eq,...,e,) is an orthonormal basis and A is the matrix of the vectors (uy, ..., u,)

over this basis, -
det(A)? = det(ATA) = det(A" - A7),

where A* denotes the ith column of the matrix A, and (A’ - A’) denotes the n x n matrix
with entries A’ - A7,

(2) Prove that
|y X -+ Xty ||* = Gram(uy, .. ., Up_1).

Hint. Letting w = uy X --- X u,_1, observe that

)\E(ula <o 7un717w> = <w7w> = HwH27
and show that
H'U}”4 = )‘E(ula cee 7un*17w>2 = Gram(u17 ceoy Un—1, U})
= Gram(uy, ..., up_1)|lwl?.

Problem B3 (20 pts). Let ¢: £ X E — R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (ey,...,e,) of E, let A = (a;;) be the matrix defined
such that

ai; = (e, ej),

1<1,7 <n. We call A the matriz of ¢ w.r.t. the basis (eq,...,ey,).



(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (eq,...,e,), prove that

p(r,y) = XTAY.

(b) Recall that A is a symmetric matrix if A = AT. Prove that ¢ is symmetric if A is a
symmetric matrix.

(¢)If (f1,..., fn)is another basis of E' and P is the change of basis matrix from (ey, ..., e,)
to (fi,..., fu), prove that the matrix of ¢ w.r.t. the basis (f1,..., fn) is

PTAP

The common rank of all matrices representing ¢ is called the rank of .

Problem B4 (60 pts). Let ¢: £ x E — R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ¢ if p(x,y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ¢.

(a) Prove that if p(z,z) =0 for all x € E, then ¢ is identically null on FE.
Otherwise, we can assume that there is some vector € E such that ¢(x,x) # 0.

Use induction to prove that there is a basis of vectors (uy,...,u,) that are pairwise
conjugate w.r.t. .

Hint. For the induction step, proceed as follows. Let (uq,es,...,e,) be a basis of E, with
o(uy,u1) # 0. Prove that there are scalars Ay, ..., \, such that each of the vectors

Vi = €; + )\iul

is conjugate to u; w.r.t. ¢, where 2 <14 < n, and that (u,vs,...,v,) is a basis.

(b) Let (eq,...,e,) be a basis of vectors that are pairwise conjugate w.r.t. ¢, and assume
that they are ordered such that

(o= [H#0 f1<i<r,
LASZE N ifr+1<i<n,

where r is the rank of . Show that the matrix of ¢ w.r.t. (e1,...,e,) is a diagonal matrix,
and that

p(r,y) =Y iy,
=1

where x = )" wie; and y = Y1 yie;.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

PTAP =D,



where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 < p < r (where r is the rank of ¢), such that
o(u;, u;) > 0 for exactly p vectors of every basis (ug,...,u,) of vectors that are pairwise
conjugate w.r.t. ¢ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1,...,u,), for any = € E, we have
(x, @) = qaf 4+ + pah — Qp T — - — T,
where x = " | z;u;, and that in the basis (vy,...,v,), for any z € E, we have
a2 2 2 2
p(r,x) = Piy; +--- + 5qu - 5q+1yq+1 — =By,

where x = 3" | y;v;, with o >0, 3, > 0,1 <7 <r.

Assume that p > ¢ and derive a contradiction. First, consider x in the subspace F'
spanned by

(Wiy ey Uy Upg1y ey U,

and observe that ¢(z,x) > 0 if x # 0. Next, consider z in the subspace G spanned by

(Uq—f—h s avr)7

and observe that ¢(x,z) < 0 if z # 0. Prove that F' N G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p < ¢. Finish the proof.

The pair (p,r — p) is called the signature of .
(d) A symmetric bilinear form ¢ is definite if for every x € E, if p(x,z) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n,0) or (0,n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B5 (90 pts). (The space of closed polygons in R?, after Hausmann and Knutson)

An open polygon P in the plane is a sequence P = (vy,...,v,41) of point v; € R?
called wvertices (with n > 1). A closed polygon, for short a polygon, is an open polygon
P = (v1,...,0,41) such that v,,1 = v;. The sequence of edge vectors (ey, ..., e,) associated
with the open (or closed) polygon P = (vy,...,v,41) is defined by

€;, = Vi1 — Uy, 2:1,,n
Thus, a closed or open polygon is also defined by a pair (vy, (e1,...,e,)), with the vertices
given by

’lJiJrl:Ui—l-@i, Z:L,Tl

Observe that a polygon (v, (e1,...,e,)) is closed iff
e +---+e,=0.
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Since every polygon (vy, (e1,...,€,)) can be translated by —wvy, so that v; = (0,0), we
may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane R? is isomorphic to C, via the isomorphism
(x,y) — = +iy.
We will represent each edge vector e by the square of a complex number wy = ap+1b,. Thus,

every sequence of complex numbers (wy,...,w,) defines a polygon (namely, (w?, ..., w?)).

This representation is many-to-one: the sequences (fwy, ..., w,) describe the same poly-
gon. To every sequence of complex numbers (wy,...,w,), we associate the pair of vectors
(a,b), with a,b € R", such that if wy = ay + by, then

a=(ay,...,a,), b=(b1,...,b,).

The mapping
(w1, ..., wy,) — (a,b)

is clearly a bijection, so we can also represent polygons by pairs of vectors (a,b) € R" x R™.

(a) Prove that a polygon P represented by a pair of vectors (a,b) € R™ x R" is closed iff
a-b=0and [lall, = [|b]],-

(b) Given a polygon P represented by a pair of vectors (a,b) € R™ x R", the length [(P)
of the polygon P is defined by [(P) = |w;]* + -+ - + |w,|?, with wy = aj + ibs. Prove that

U(P) = llall; + [1Bll5 -

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented
by a n x 2 matrix A such that AT A = 1.

Remark: The space of all a n x 2 real matrices A such that AT A = I is a space known as
the Stiefel manifold S(2,n).

(c) Recall that in R?, the rotation of angle  specified by the matrix
cos) —sind
Fy = (sin9 cos 6 )
is expressed in terms of complex numbers by the map

2 ze',

Let P be a polygon represented by a pair of vectors (a,b) € R™ x R™. Prove that the
polygon Ry(P) obtained by applying the rotation Ry to every edge w? = (ay + iby)? of P is
specified by the pair of vectors

a; by

az b cos sin
(cos(6/2)a — sin(6/2)b, sin(6/2)a + cos(0/2h) = | T <_Sh§%2) COSEZ@))

Qp bn



(d) The reflection p, about the z-axis corresponds to the map

Z =z,

b %)

Prove that the polygon p,(P) obtained by applying the reflection p, to every edge w? =
(ag + 1by)? of P is specified by the pair of vectors

whose matrix is,

aq bl

az by | /1 0
(a,=b)= | . | 0 1)

a“fl bn

(e) Let @ € O(2) be any isometry such that det(Q)) = —1 (a reflection). Prove that there
is a rotation R_g € SO(2) such that

Q = pz o Ry
Prove that the isometry @), which is given by the matrix
Q= cosf) sinf
~ \sinf —cosf)’
is the reflection about the line corresponding to the angle 6/2 (the line of equation y =
tan(0/2)x).

Prove that the polygon Q(P) obtained by applying the reflection Q = p, o R_4 to every
edge wi = (ay, + iby)? of P, is specified by the pair of vectors

ap by

az by cos sin
(cos(0/2)a + sin(0/2)b, sin(6/2)a — cos(0/2)b) = Do (sm((g;;)) — co(se(g)?)) '

an, b,
(f) Define an equivalence relation ~ on S(2,n) such that if A;, Ay € S(2,n) are any n x 2
matrices such that A] A} = A Ay = I, then
Al ~ A2 iff A2 = AlQ for some Q S 0(2)

Prove that the quotient G(2,n) = S(2,n)/ ~ is in bijection with the set of all 2-dimensional
subspaces (the planes) of R". The space G(2,n) is called a Grassmannian manifold.

Prove that up to translations and isometries in O(2) (rotations and reflections), the
n-sided closed polygons of length 2 are represented by planes in G(2,n).

TOTAL: 250 points.



