Spring, 2024 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 4

March 20, 2024; Due April 42024

Problem B1 (30 pts). Let E be a real vector space of finite dimension, $n \geq 1$. Say that two bases, $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, of E have the same orientation $\operatorname{iff} \operatorname{det}(P)>0$, where P the change of basis matrix from $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, namely, the matrix whose j th columns consist of the coordinates of v_{j} over the basis $\left(u_{1}, \ldots, u_{n}\right)$.
(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say $\left(e_{1}, \ldots, e_{n}\right)$, of E. Any other basis, $\left(v_{1}, \ldots, v_{n}\right)$, has the same orientation as $\left(e_{1}, \ldots, e_{n}\right)$ (and is said to be positive or direct) iff $\operatorname{det}(P)>0$, else it is said to have the opposite orientation of $\left(e_{1}, \ldots, e_{n}\right)$ (or to be negative or indirect), where P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(v_{1}, \ldots, v_{n}\right)$. An oriented vector space is a vector space with some chosen orientation (a positive basis).
(b) Let $B_{1}=\left(u_{1}, \ldots, u_{n}\right)$ and $B_{2}=\left(v_{1}, \ldots, v_{n}\right)$ be two orthonormal bases. For any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, let $\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)$ be the determinant of the matrix whose columns are the coordinates of the w_{j} 's over the basis B_{1} and similarly for $\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right)$.

Prove that if B_{1} and B_{2} have the same orientation, then

$$
\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)=\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right) .
$$

Given any oriented vector space, E, for any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, the common value, $\operatorname{det}_{B}\left(w_{1}, \ldots, w_{n}\right)$, for all positive orthonormal bases, B, of E is denoted

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n}\right)
$$

and called a volume form of $\left(w_{1}, \ldots, w_{n}\right)$.
(c) Given any Euclidean oriented vector space, E, of dimension n for any $n-1$ vectors, w_{1}, \ldots, w_{n-1}, in E, check that the map

$$
x \mapsto \lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)
$$

is a linear form. Then, prove that there is a unique vector, denoted $w_{1} \times \cdots \times w_{n-1}$, such that

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)=\left(w_{1} \times \cdots \times w_{n-1}\right) \cdot x,
$$

for all $x \in E$. The vector $w_{1} \times \cdots \times w_{n-1}$ is called the cross-product of $\left(w_{1}, \ldots, w_{n-1}\right)$. It is a generalization of the cross-product in \mathbb{R}^{3} (when $n=3$).

Problem B2 (50 pts). Given p vectors $\left(u_{1}, \ldots, u_{p}\right)$ in a Euclidean space E of dimension $n \geq p$, the Gram determinant (or Gramian) of the vectors $\left(u_{1}, \ldots, u_{p}\right)$ is the determinant

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{p}\right)=\left|\begin{array}{cccc}
\left\|u_{1}\right\|^{2} & \left\langle u_{1}, u_{2}\right\rangle & \ldots & \left\langle u_{1}, u_{p}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\|u_{2}\right\|^{2} & \ldots & \left\langle u_{2}, u_{p}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle u_{p}, u_{1}\right\rangle & \left\langle u_{p}, u_{2}\right\rangle & \ldots & \left\|u_{p}\right\|^{2}
\end{array}\right| .
$$

(1) Prove that

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{n}\right)=\lambda_{E}\left(u_{1}, \ldots, u_{n}\right)^{2} .
$$

Hint. If $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis and A is the matrix of the vectors $\left(u_{1}, \ldots, u_{n}\right)$ over this basis,

$$
\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{\top} A\right)=\operatorname{det}\left(A^{i} \cdot A^{j}\right)
$$

where A^{i} denotes the i th column of the matrix A, and $\left(A^{i} \cdot A^{j}\right)$ denotes the $n \times n$ matrix with entries $A^{i} \cdot A^{j}$.
(2) Prove that

$$
\left\|u_{1} \times \cdots \times u_{n-1}\right\|^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right)
$$

Hint. Letting $w=u_{1} \times \cdots \times u_{n-1}$, observe that

$$
\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)=\langle w, w\rangle=\|w\|^{2}
$$

and show that

$$
\begin{aligned}
\|w\|^{4} & =\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}, w\right) \\
& =\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right)\|w\|^{2}
\end{aligned}
$$

Problem B3 (20 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, let $A=\left(a_{i j}\right)$ be the matrix defined such that

$$
a_{i j}=\varphi\left(e_{i}, e_{j}\right),
$$

$1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$.
(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$, prove that

$$
\varphi(x, y)=X^{\top} A Y
$$

(b) Recall that A is a symmetric matrix if $A=A^{\top}$. Prove that φ is symmetric if A is a symmetric matrix.
(c) If $\left(f_{1}, \ldots, f_{n}\right)$ is another basis of E and P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(f_{1}, \ldots, f_{n}\right)$, prove that the matrix of φ w.r.t. the basis $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
P^{\top} A P
$$

The common rank of all matrices representing φ is called the rank of φ.
Problem B4 (60 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal w.r.t. φ if $\varphi(x, y)=0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.
(a) Prove that if $\varphi(x, x)=0$ for all $x \in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$.
Use induction to prove that there is a basis of vectors $\left(u_{1}, \ldots, u_{n}\right)$ that are pairwise conjugate w.r.t. φ.
Hint. For the induction step, proceed as follows. Let $\left(u_{1}, e_{2}, \ldots, e_{n}\right)$ be a basis of E, with $\varphi\left(u_{1}, u_{1}\right) \neq 0$. Prove that there are scalars $\lambda_{2}, \ldots, \lambda_{n}$ such that each of the vectors

$$
v_{i}=e_{i}+\lambda_{i} u_{1}
$$

is conjugate to u_{1} w.r.t. φ, where $2 \leq i \leq n$, and that $\left(u_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis.
(b) Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of vectors that are pairwise conjugate w.r.t. φ, and assume that they are ordered such that

$$
\varphi\left(e_{i}, e_{i}\right)= \begin{cases}\theta_{i} \neq 0 & \text { if } 1 \leq i \leq r \\ 0 & \text { if } r+1 \leq i \leq n\end{cases}
$$

where r is the rank of φ. Show that the matrix of φ w.r.t. $\left(e_{1}, \ldots, e_{n}\right)$ is a diagonal matrix, and that

$$
\varphi(x, y)=\sum_{i=1}^{r} \theta_{i} x_{i} y_{i}
$$

where $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{i=1}^{n} y_{i} e_{i}$.
Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$
P^{\top} A P=D,
$$

where D is a diagonal matrix.
(c) Prove that there is an integer $p, 0 \leq p \leq r$ (where r is the rank of φ), such that $\varphi\left(u_{i}, u_{i}\right)>0$ for exactly p vectors of every basis $\left(u_{1}, \ldots, u_{n}\right)$ of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis $\left(u_{1}, \ldots, u_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{p} x_{p}^{2}-\alpha_{p+1} x_{p+1}^{2}-\cdots-\alpha_{r} x_{r}^{2},
$$

where $x=\sum_{i=1}^{n} x_{i} u_{i}$, and that in the basis $\left(v_{1}, \ldots, v_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\beta_{1} y_{1}^{2}+\cdots+\beta_{q} y_{q}^{2}-\beta_{q+1} y_{q+1}^{2}-\cdots-\beta_{r} y_{r}^{2},
$$

where $x=\sum_{i=1}^{n} y_{i} v_{i}$, with $\alpha_{i}>0, \beta_{i}>0,1 \leq i \leq r$.
Assume that $p>q$ and derive a contradiction. First, consider x in the subspace F spanned by

$$
\left(u_{1}, \ldots, u_{p}, u_{r+1}, \ldots, u_{n}\right)
$$

and observe that $\varphi(x, x) \geq 0$ if $x \neq 0$. Next, consider x in the subspace G spanned by

$$
\left(v_{q+1}, \ldots, v_{r}\right)
$$

and observe that $\varphi(x, x)<0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair $(p, r-p)$ is called the signature of φ.
(d) A symmetric bilinear form φ is definite if for every $x \in E$, if $\varphi(x, x)=0$, then $x=0$.

Prove that a symmetric bilinear form is definite iff its signature is either $(n, 0)$ or $(0, n)$. In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B5 (90 pts). (The space of closed polygons in \mathbb{R}^{2}, after Hausmann and Knutson)
An open polygon P in the plane is a sequence $P=\left(v_{1}, \ldots, v_{n+1}\right)$ of point $v_{i} \in \mathbb{R}^{2}$ called vertices (with $n \geq 1$). A closed polygon, for short a polygon, is an open polygon $P=\left(v_{1}, \ldots, v_{n+1}\right)$ such that $v_{n+1}=v_{1}$. The sequence of edge vectors $\left(e_{1}, \ldots, e_{n}\right)$ associated with the open (or closed) polygon $P=\left(v_{1}, \ldots, v_{n+1}\right)$ is defined by

$$
e_{i}=v_{i+1}-v_{i}, \quad i=1, \ldots, n
$$

Thus, a closed or open polygon is also defined by a pair $\left(v_{1},\left(e_{1}, \ldots, e_{n}\right)\right)$, with the vertices given by

$$
v_{i+1}=v_{i}+e_{i}, \quad i=1, \ldots, n .
$$

Observe that a polygon $\left(v_{1},\left(e_{1}, \ldots, e_{n}\right)\right)$ is closed iff

$$
e_{1}+\cdots+e_{n}=0 .
$$

Since every polygon $\left(v_{1},\left(e_{1}, \ldots, e_{n}\right)\right)$ can be translated by $-v_{1}$, so that $v_{1}=(0,0)$, we may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane \mathbb{R}^{2} is isomorphic to \mathbb{C}, via the isomorphism

$$
(x, y) \mapsto x+i y
$$

We will represent each edge vector e_{k} by the square of a complex number $w_{k}=a_{k}+i b_{k}$. Thus, every sequence of complex numbers $\left(w_{1}, \ldots, w_{n}\right)$ defines a polygon (namely, $\left(w_{1}^{2}, \ldots, w_{n}^{2}\right)$). This representation is many-to-one: the sequences $\left(\pm w_{1}, \ldots, \pm w_{n}\right)$ describe the same polygon. To every sequence of complex numbers $\left(w_{1}, \ldots, w_{n}\right)$, we associate the pair of vectors (a, b), with $a, b \in \mathbb{R}^{n}$, such that if $w_{k}=a_{k}+i b_{k}$, then

$$
a=\left(a_{1}, \ldots, a_{n}\right), \quad b=\left(b_{1}, \ldots, b_{n}\right) .
$$

The mapping

$$
\left(w_{1}, \ldots, w_{n}\right) \mapsto(a, b)
$$

is clearly a bijection, so we can also represent polygons by pairs of vectors $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$.
(a) Prove that a polygon P represented by a pair of vectors $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ is closed iff $a \cdot b=0$ and $\|a\|_{2}=\|b\|_{2}$.
(b) Given a polygon P represented by a pair of vectors $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, the length $l(P)$ of the polygon P is defined by $l(P)=\left|w_{1}\right|^{2}+\cdots+\left|w_{n}\right|^{2}$, with $w_{k}=a_{k}+i b_{k}$. Prove that

$$
l(P)=\|a\|_{2}^{2}+\|b\|_{2}^{2}
$$

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented by a $n \times 2$ matrix A such that $A^{\top} A=I$.

Remark: The space of all a $n \times 2$ real matrices A such that $A^{\top} A=I$ is a space known as the Stiefel manifold $S(2, n)$.
(c) Recall that in \mathbb{R}^{2}, the rotation of angle θ specified by the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

is expressed in terms of complex numbers by the map

$$
z \mapsto z e^{i \theta} .
$$

Let P be a polygon represented by a pair of vectors $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Prove that the polygon $R_{\theta}(P)$ obtained by applying the rotation R_{θ} to every edge $w_{k}^{2}=\left(a_{k}+i b_{k}\right)^{2}$ of P is specified by the pair of vectors

$$
(\cos (\theta / 2) a-\sin (\theta / 2) b, \sin (\theta / 2) a+\cos (\theta / 2) b)=\left(\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{cc}
\cos (\theta / 2) & \sin (\theta / 2) \\
-\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right)
$$

(d) The reflection ρ_{x} about the x-axis corresponds to the map

$$
z \mapsto \bar{z},
$$

whose matrix is,

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Prove that the polygon $\rho_{x}(P)$ obtained by applying the reflection ρ_{x} to every edge $w_{k}^{2}=$ $\left(a_{k}+i b_{k}\right)^{2}$ of P is specified by the pair of vectors

$$
(a,-b)=\left(\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(e) Let $Q \in \mathbf{O}(2)$ be any isometry such that $\operatorname{det}(Q)=-1$ (a reflection). Prove that there is a rotation $R_{-\theta} \in \mathbf{S O}(2)$ such that

$$
Q=\rho_{x} \circ R_{-\theta}
$$

Prove that the isometry Q, which is given by the matrix

$$
Q=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right),
$$

is the reflection about the line corresponding to the angle $\theta / 2$ (the line of equation $y=$ $\tan (\theta / 2) x)$.

Prove that the polygon $Q(P)$ obtained by applying the reflection $Q=\rho_{x} \circ R_{-\theta}$ to every edge $w_{k}^{2}=\left(a_{k}+i b_{k}\right)^{2}$ of P, is specified by the pair of vectors

$$
(\cos (\theta / 2) a+\sin (\theta / 2) b, \sin (\theta / 2) a-\cos (\theta / 2) b)=\left(\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{cc}
\cos (\theta / 2) & \sin (\theta / 2) \\
\sin (\theta / 2) & -\cos (\theta / 2)
\end{array}\right)
$$

(f) Define an equivalence relation \sim on $S(2, n)$ such that if $A_{1}, A_{2} \in S(2, n)$ are any $n \times 2$ matrices such that $A_{1}^{\top} A_{1}=A_{2}^{\top} A_{2}=I$, then

$$
A_{1} \sim A_{2} \quad \text { iff } \quad A_{2}=A_{1} Q \quad \text { for some } Q \in \mathbf{O}(2)
$$

Prove that the quotient $G(2, n)=S(2, n) / \sim$ is in bijection with the set of all 2-dimensional subspaces (the planes) of \mathbb{R}^{n}. The space $G(2, n)$ is called a Grassmannian manifold.

Prove that up to translations and isometries in $\mathbf{O}(2)$ (rotations and reflections), the n-sided closed polygons of length 2 are represented by planes in $G(2, n)$.

TOTAL: 250 points.

