Fall 2024 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 3

February 28, 2024; Due March 21, 2024

Problem B1 (10 pts). Let $f: E \rightarrow F$ be a linear map which is also a bijection (it is injective and surjective). Prove that the inverse function $f^{-1}: F \rightarrow E$ is linear.

Problem B2 (10 pts). Given two vectors spaces E and F, let $\left(u_{i}\right)_{i \in I}$ be any basis of E and let $\left(v_{i}\right)_{i \in I}$ be any family of vectors in F. Prove that the unique linear map $f: E \rightarrow F$ such that $f\left(u_{i}\right)=v_{i}$ for all $i \in I$ is surjective iff $\left(v_{i}\right)_{i \in I}$ spans F.

Problem B3 (40 pts). (1) Let $f: E \rightarrow F$ be a linear map with $\operatorname{dim}(E)=n$ and $\operatorname{dim}(F)=$ m. Prove that f has rank 1 iff f is represented by an $m \times n$ matrix of the form

$$
A=u v^{\top}
$$

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension n.

In the rest of this problem we assume that $m=n \geq 1$.
(2) Prove that if $v^{\top} u \neq 1$, then $M=I-u v^{\top}$ is invertible and that its inverse is given by

$$
M^{-1}=I+\left(1-v^{\top} u\right)^{-1} u v^{\top}
$$

(3) Consider the $(n+1) \times(n+1)$ matrix

$$
H=\left(\begin{array}{cc}
I & u \\
v^{\top} & 1
\end{array}\right)
$$

Prove that

$$
\left(\begin{array}{cc}
I & 0 \\
-v^{\top} & 1
\end{array}\right) H=\left(\begin{array}{cc}
I & u \\
0 & 1-v^{\top} u
\end{array}\right)
$$

Then prove that

$$
\left(\begin{array}{cc}
I & u \\
0 & 1-v^{\top} u
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & -u\left(1-v^{\top} u\right)^{-1} \\
0 & \left(1-v^{\top} u\right)^{-1}
\end{array}\right)
$$

and that

$$
H^{-1}=\left(\begin{array}{cc}
I+u\left(1-v^{\top} u\right)^{-1} v^{\top} & -u\left(1-v^{\top} u\right)^{-1} \\
-\left(1-v^{\top} u\right)^{-1} v^{\top} & \left(1-v^{\top} u\right)^{-1}
\end{array}\right) .
$$

(4) Prove that

$$
\left(\begin{array}{cc}
I & -u \\
0 & 1
\end{array}\right) H=\left(\begin{array}{cc}
I-u v^{\top} & 0 \\
v^{\top} & 1
\end{array}\right)
$$

Then prove that

$$
\left(\begin{array}{cc}
I-u v^{\top} & 0 \\
v^{\top} & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(I-u v^{\top}\right)^{-1} & 0 \\
-v^{\top}\left(I-u v^{\top}\right)^{-1} & 1
\end{array}\right)
$$

and that

$$
H^{-1}=\left(\begin{array}{cc}
M^{-1} & -M^{-1} u \\
-v^{\top} M^{-1} & 1+v^{\top} M^{-1} u
\end{array}\right)
$$

where $M=I-u v^{\top}$ is the matrix form Part (2).
From the two expressions for H^{-1}, deduce again that

$$
M^{-1}=I+\left(1-v^{\top} u\right)^{-1} u v^{\top}
$$

Problem B4 (60 pts). (1) Let U and V be $n \times k$ matrices, with $k \leq n$. We know from HW1, Problem B5, that $I_{n}-U V^{\top}$ is invertible iff $I_{k}-V^{\top} U$ is invertible. If $I_{k}-V^{\top} U$ is invertible, then prove that

$$
\left(I_{n}-U V^{\top}\right)^{-1}=I_{n}+U\left(I_{k}-V^{\top} U\right)^{-1} V^{\top}
$$

If k is a lot smaller than n, this formula provides a much cheaper way of computing $\left(I_{n}-U V^{\top}\right)^{-1}$.
(2) Let A be an invertible $n \times n$ matrix. Again, show that HW1, Problem B5, implies that $A-U V^{\top}$ is invertible iff $I_{k}-V^{\top} A^{-1} U$ is invertible. If $A-U V^{\top}$ is invertible, prove that

$$
\left(A-U V^{\top}\right)^{-1}=A^{-1}+A^{-1} U\left(I_{k}-V^{\top} A^{-1} U\right)^{-1} V^{\top} A^{-1}
$$

This is the Sherman-Morrison-Woodburry formula.
(3) Prove that the $(n+k) \times(n+k)$ matrix

$$
H=\left(\begin{array}{cc}
A & U \\
V^{\top} & I_{k}
\end{array}\right)
$$

is invertible iff the matrix $A-U V^{\top}$ is invertible.
Hint. Examine the nullspaces of these two matrices.
(4) Check that

$$
\left(\begin{array}{cc}
I_{n} & 0 \\
-V^{\top} A^{-1} & I_{k}
\end{array}\right) H=\left(\begin{array}{cc}
A & U \\
0 & I_{k}-V^{\top} A^{-1} U
\end{array}\right) .
$$

Also check that

$$
\left(\begin{array}{cc}
I_{n} & -U \\
0 & I_{k}
\end{array}\right) H=\left(\begin{array}{cc}
A-U V^{\top} & 0 \\
V^{\top} & I_{k}
\end{array}\right) .
$$

Let $C=I_{k}-V^{\top} A^{-1} U$ and $M=A-U V^{\top}$. Check that

$$
\left(\begin{array}{cc}
A & U \\
0 & C
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & -A^{-1} U C^{-1} \\
0 & C^{-1}
\end{array}\right)
$$

and that

$$
\left(\begin{array}{cc}
M & 0 \\
V^{\top} & I_{k}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
M^{-1} & 0 \\
-V^{\top} M^{-1} & I_{k}
\end{array}\right)
$$

Deduce from the above equations that

$$
H^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} U C^{-1} V^{\top} A^{-1} & -A^{-1} U C^{-1} \\
-C^{-1} V^{\top} A^{-1} & C^{-1}
\end{array}\right)=\left(\begin{array}{cc}
M^{-1} & -M^{-1} U \\
-V^{\top} M^{-1} & I_{k}+V^{\top} M^{-1} U
\end{array}\right) .
$$

Use the above to derive again the formula in (2).
(5) Prove that $U V^{\top}$ has rank at most k. Prove that $U V^{\top}$ has rank k iff both U and V have rank k.
(6) Suppose $M=A-U V^{\top}$ is invertible. Here is a method to solve the linear system $M y=b$ (where $b \in \mathbb{R}^{n}$) without actually using M, but instead using $I_{k}-V^{\top} A^{-1} U$, which is a much smaller matrix than M if $k \ll n$.
(1) Let Z be an $n \times k$ matrix with columns Z^{1}, \ldots, Z^{k}. Solve the system $A x=b\left(x \in \mathbb{R}^{n}\right)$ and the k linear systems $A Z^{i}=U^{i}$, where U^{i} is the i th column of U for $i=1, \ldots, k$, which is equivalent to solving $A Z=U$.
(2) Let $C=I_{k}-V^{\top} Z$, and solve the system $C w=V^{\top} x\left(w \in \mathbb{R}^{k}\right)$.

Note that no matrix inversion is necessary, only Gaussian elimination is needed.
We claim that the solution $y\left(y \in \mathbb{R}^{n}\right)$ to the system $M y=b$ is

$$
y=x+Z w
$$

Prove the above claim by using the equation of Part (2).
Problem B5 (20 pts). Prove that for every vector space E, if $f: E \rightarrow E$ is an idempotent linear map, i.e., $f \circ f=f$, then we have a direct sum

$$
E=\operatorname{Ker} f \oplus \operatorname{Im} f
$$

so that f is the projection onto its image $\operatorname{Im} f$.
Problem B6 (40 pts). Given any vector space E, a linear map $f: E \rightarrow E$ is an involution if $f \circ f=\mathrm{id}$.
(1) Prove that an involution f is invertible. What is its inverse?
(2) Let E_{1} and E_{-1} be the subspaces of E defined as follows:

$$
\begin{aligned}
E_{1} & =\{u \in E \mid f(u)=u\} \\
E_{-1} & =\{u \in E \mid f(u)=-u\} .
\end{aligned}
$$

Prove that we have a direct sum

$$
E=E_{1} \oplus E_{-1} .
$$

Hint. For every $u \in E$, write

$$
u=\frac{u+f(u)}{2}+\frac{u-f(u)}{2}
$$

(3) If E is finite-dimensional and f is an involution, prove that there is some basis of E with respect to which the matrix of f is of the form

$$
I_{k, n-k}=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right)
$$

where I_{k} is the $k \times k$ identity matrix (similarly for I_{n-k}) and $k=\operatorname{dim}\left(E_{1}\right)$. Can you give a geometric interpretation of the action of f (especially when $k=n-1$)?

Problem B7 (60 pts). Let E be a real vector space of dimension $n \geq 2$ and let F be any real vector space. Pick any basis $\left(u_{1}, \ldots, u_{n}\right)$ in E.
(1) Prove that for any bilinear alternating map $f: E \times E \rightarrow F$, for any two vectors $x=x_{1} u_{1}+\cdots+x_{n} u_{n}$ and $y=y_{1} u_{1}+\cdots+y_{n} u_{n}$, we have

$$
f(x, y)=\sum_{1 \leq i<j \leq n}\left(x_{i} y_{j}-x_{j} y_{i}\right) f\left(u_{i}, u_{j}\right) .
$$

Observe that

$$
x_{i} y_{j}-x_{j} y_{i}=\left|\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right|
$$

is the determinant obtained from the $2 \times n$ matrix

$$
X=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right)
$$

by choosing two columns of index $i<j$ among the n columns.
Hint. Let $v=x_{2} u_{2}+\cdots+x_{n} u_{n}$ and $w=y_{2} u_{2}+\cdots+y_{n} u_{n}$. First prove that

$$
\begin{aligned}
f(x, y)= & \left(x_{1} y_{2}-x_{2} y_{1}\right) f\left(u_{1}, u_{2}\right)+\left(x_{1} y_{3}-x_{3} y_{1}\right) f\left(u_{1}, u_{3}\right)+\cdots+\left(x_{1} y_{n}-x_{n} y_{1}\right) f\left(u_{1}, u_{n}\right) \\
& +f(v, w) .
\end{aligned}
$$

Then use induction.
(2) Prove that for any sequence $\left(w_{i j}\right)_{1 \leq i<j \leq n}$ of $\binom{n}{2}=n(n-1) / 2$ vectors $w_{i j} \in F$, there is a unique bilinear alternating map $f: E \times E \rightarrow F$ such that

$$
f\left(u_{i}, u_{j}\right)=w_{i j}, \quad 1 \leq i<j \leq n,
$$

and in fact,

$$
f(x, y)=\sum_{1 \leq i<j \leq n}\left(x_{i} y_{j}-x_{j} y_{i}\right) w_{i j}
$$

Conclude that there is a bijection φ between the set $\operatorname{Alt}^{2}(E ; F)$ of bilinear alternating maps $f: E \times E \rightarrow F$ and the product vector space $F^{n(n-1) / 2}$ given by

$$
\varphi(f)=\left(f\left(u_{i}, u_{j}\right)\right)_{1 \leq i<j \leq n}
$$

Remark. Observe that when $F=\mathbb{R}$, if we let A be the $n \times n$ matrix given by $A=\left(f\left(e_{i}, e_{j}\right)\right)$ and if we let X be the column vector with entries $\left(x_{1}, \ldots, x_{n}\right)$ and Y be the column vector with entries $\left(y_{1}, \ldots, y_{n}\right)$, then $A^{\top}=-A$ and $f(x, y)=X^{\top} A Y$.
(3) We define addition and scalar multiplication on the set of bilinear alternating maps as follows. For any two bilinear alternating maps $f: E \times E \rightarrow F$ and $g: E \times E \rightarrow F$, for all $x, y \in E$ and all $\lambda \in \mathbb{R}$,

$$
(f+g)(x, y)=f(x, y)+g(x, y)
$$

and

$$
(\lambda f)(x, y)=\lambda f(x, y)
$$

Check (quickly) that $f+g$ and λf are bilinear and alternating, and that the set $\operatorname{Alt}^{2}(E ; F)$ of bilinear alternating maps with the above addition and scalar multiplication is a real vector space.
(4) Prove that the bijection $\varphi: \operatorname{Alt}^{2}(E ; F) \rightarrow F^{n(n-1) / 2}$ in (2) given by

$$
\varphi(f)=\left(f\left(u_{i}, u_{j}\right)\right)_{1 \leq i<j \leq n}
$$

is linear. Conclude that φ is an isomorphism of vector spaces, and that if F has dimension m, then $\operatorname{Alt}^{2}(E ; F)$ has dimension $m n(n-1) / 2$.

Extra Credit (50 pts).

(5) Let p be an integer such that $1 \leq p \leq n$. Consider the set $\operatorname{Alt}^{p}(E ; F)$ of multilinear alternating maps $f: E^{p} \rightarrow F$. Prove that for any vectors $x_{1}, \ldots, x_{p} \in E$, if

$$
x_{i}=x_{i 1} u_{1}+\cdots+x_{i n} u_{n}, \quad i=1, \ldots, p,
$$

then

$$
f\left(x_{1}, \ldots, x_{p}\right)=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{p} \leq n} \Delta_{j_{1}, j_{2}, \ldots, j_{p}}\left(x_{1}, \ldots, x_{p}\right) f\left(u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{p}}\right),
$$

where $\Delta_{j_{1}, j_{2}, \ldots, j_{p}}\left(x_{1}, \ldots, x_{p}\right)$ is the determinant (of a $p \times p$ matrix)

$$
\Delta_{j_{1}, j_{2}, \ldots, j_{p}}\left(x_{1}, \ldots, x_{p}\right)=\left|\begin{array}{cccc}
x_{1 j_{1}} & x_{1 j_{2}} & \cdots & x_{1 j_{p}} \\
x_{2 j_{1}} & x_{2 j_{2}} & \cdots & x_{2 j_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{p j_{1}} & x_{p j_{2}} & \cdots & x_{p j_{p}}
\end{array}\right| .
$$

Observe that the above determinant is obtained from the $p \times n$ matrix

$$
X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{p 1} & x_{p 2} & \cdots & x_{p n}
\end{array}\right),
$$

by choosing the columns of index $j_{1}, j_{2}, \ldots, j_{p}$ among the n columns.
Hint. First observe that

$$
f\left(x_{1}, \ldots, x_{p}\right)=\sum_{\left(j_{1}, \ldots, j_{p}\right) \in\{1, \ldots, n\}\{1, \ldots, p\}} x_{1 j_{1}} \cdots x_{p j_{p}} f\left(u_{j_{1}}, \ldots, u_{j_{p}}\right),
$$

where the sum extends over all sequences $\left(j_{1}, \ldots, j_{p}\right)$ of length p of elements from $\{1, \ldots, n\}$.
You will also need the fact that the notion of signature of a permutation, which was defined for permutations of the set $\{1, \ldots, n\}$, is defined in a similar way for permutations of the set $\left\{j_{1}, \ldots, j_{p}\right\}$, with $1 \leq j_{1}<\cdots<j_{p} \leq n$.
(6) Give $\operatorname{Alt}^{p}(E ; F)$ the structure of a vector space as in (3). Prove that the map $\varphi: \operatorname{Alt}^{p}(E ; F) \rightarrow F^{\binom{n}{p}}$ given by

$$
\varphi(f)=\left(f\left(u_{j_{1}}, u_{j_{2}}, \ldots, u_{j_{p}}\right)\right)_{1 \leq j_{1}<j_{2}<\cdots<j_{p} \leq n}
$$

is an isomorphism of vector spaces.
What more can you say when $p=n$? What is the dimension of $\operatorname{Alt}^{n}(E ; F)$?
Suppose $F=\mathbb{R}$. Prove that the dimension of $\operatorname{Alt}^{p}(E ; \mathbb{R})$ is $\binom{n}{p}$ (recall that $\left.1 \leq p \leq n\right)$. What is the dimension of $\operatorname{Alt}^{n}(E ; \mathbb{R})$?
(7) Prove that for $p>n$, every multilinear alternating map $f: E^{p} \rightarrow F$ is the zero map.

TOTAL: $240+50$ points.

