Spring 2024 CIS 5150

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 2

February 01, 2024; Due February 27, 2024

Problem B1 (30 pts). A rotation R_{θ} in the plane \mathbb{R}^{2} is given by the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(1) Use Matlab to show the action of a rotation R_{θ} on a simple figure such as a triangle or a rectangle, for various values of θ, including $\theta=\pi / 6, \pi / 4, \pi / 3, \pi / 2$.
(2) Prove that R_{θ} is invertible and that its inverse is $R_{-\theta}$.
(3) For any two rotations R_{α} and R_{β}, prove that

$$
R_{\beta} \circ R_{\alpha}=R_{\alpha} \circ R_{\beta}=R_{\alpha+\beta} .
$$

Use (2)-(3) to prove that the rotations in the plane form a commutative group denoted SO(2).

Problem B2 (100 pts). Consider the affine map $R_{\theta,\left(a_{1}, a_{2}\right)}$ in \mathbb{R}^{2} given by

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{a_{1}}{a_{2}} .
$$

(1) Prove that if $\theta \neq k 2 \pi$, with $k \in \mathbb{Z}$, then $R_{\theta,\left(a_{1}, a_{2}\right)}$ has a unique fixed point $\left(c_{1}, c_{2}\right)$, that is, there is a unique point $\left(c_{1}, c_{2}\right)$ such that

$$
\binom{c_{1}}{c_{2}}=R_{\theta,\left(a_{1}, a_{2}\right)}\binom{c_{1}}{c_{2}},
$$

and this fixed point is given by

$$
\binom{c_{1}}{c_{2}}=\frac{1}{2 \sin (\theta / 2)}\left(\begin{array}{cc}
\cos (\pi / 2-\theta / 2) & -\sin (\pi / 2-\theta / 2) \\
\sin (\pi / 2-\theta / 2) & \cos (\pi / 2-\theta / 2)
\end{array}\right)\binom{a_{1}}{a_{2}} .
$$

(2) In this question, we still assume that $\theta \neq k 2 \pi$, with $k \in \mathbb{Z}$. By translating the coordinate system with origin $(0,0)$ to the new coordinate system with origin $\left(c_{1}, c_{2}\right)$, which means that if $\left(x_{1}, x_{2}\right)$ are the coordinates with respect to the standard origin $(0,0)$ and if $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ are the coordinates with respect to the new origin $\left(c_{1}, c_{2}\right)$, we have

$$
\begin{aligned}
& x_{1}=x_{1}^{\prime}+c_{1} \\
& x_{2}=x_{2}^{\prime}+c_{2}
\end{aligned}
$$

and similarly for $\left(y_{1}, y_{2}\right)$ and $\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$, then show that

$$
\binom{y_{1}}{y_{2}}=R_{\theta,\left(a_{1}, a_{2}\right)}\binom{x_{1}}{x_{2}}
$$

becomes

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=R_{\theta}\binom{x_{1}^{\prime}}{x_{2}^{\prime}} .
$$

Conclude that with respect to the new origin $\left(c_{1}, c_{2}\right)$, the affine map $R_{\theta,\left(a_{1}, a_{2}\right)}$ becomes the rotation R_{θ}. We say that $R_{\theta,\left(a_{1}, a_{2}\right)}$ is a rotation of center $\left(c_{1}, c_{2}\right)$.
(3) Use Matlab to show the action of the affine map $R_{\theta,\left(a_{1}, a_{2}\right)}$ on a simple figure such as a triangle or a rectangle, for $\theta=\pi / 3$ and various values of (a_{1}, a_{2}). Display the center $\left(c_{1}, c_{2}\right)$ of the rotation.

What kind of transformations correspond to $\theta=k 2 \pi$, with $k \in \mathbb{Z}$?
(4) Prove that the inverse of $R_{\theta,\left(a_{1}, a_{2}\right)}$ is of the form $R_{-\theta,\left(b_{1}, b_{2}\right)}$, and find $\left(b_{1}, b_{2}\right)$ in terms of θ and $\left(a_{1}, a_{2}\right)$.
(5) Given two affine maps $R_{\alpha,\left(a_{1}, a_{2}\right)}$ and $R_{\beta,\left(b_{1}, b_{2}\right)}$, prove that

$$
R_{\beta,\left(b_{1}, b_{2}\right)} \circ R_{\alpha,\left(a_{1}, a_{2}\right)}=R_{\alpha+\beta,\left(t_{1}, t_{2}\right)}
$$

for some $\left(t_{1}, t_{2}\right)$, and find $\left(t_{1}, t_{2}\right)$ in terms of $\beta,\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$.
Even in the case where $\left(a_{1}, a_{2}\right)=(0,0)$, prove that in general

$$
R_{\beta,\left(b_{1}, b_{2}\right)} \circ R_{\alpha} \neq R_{\alpha} \circ R_{\beta,\left(b_{1}, b_{2}\right)} .
$$

Use (4)-(5) to show that the affine maps of the plane defined in this problem form a nonabelian group denoted $\mathbf{S E}(2)$.

Prove that $R_{\beta,\left(b_{1}, b_{2}\right)} \circ R_{\alpha,\left(a_{1}, a_{2}\right)}$ is not a translation (possibly the identity) iff $\alpha+\beta \neq k 2 \pi$, for all $k \in \mathbb{Z}$. Find its center of rotation when $\left(a_{1}, a_{2}\right)=(0,0)$.

If $\alpha+\beta=k 2 \pi$, then $R_{\beta,\left(b_{1}, b_{2}\right)} \circ R_{\alpha,\left(a_{1}, a_{2}\right)}$ is a pure translation. Find the translation vector of $R_{\beta,\left(b_{1}, b_{2}\right)} \circ R_{\alpha,\left(a_{1}, a_{2}\right)}$.

Problem B3 (80 pts). A subset \mathcal{A} of \mathbb{R}^{n} is called an affine subspace if either $\mathcal{A}=\emptyset$, or there is some vector $a \in \mathbb{R}^{n}$ and some subspace U of \mathbb{R}^{n} such that

$$
\mathcal{A}=a+U=\{a+u \mid u \in U\}
$$

We define the dimension $\operatorname{dim}(\mathcal{A})$ of \mathcal{A} as the $\operatorname{dimension} \operatorname{dim}(U)$ of U.
(1) If $\mathcal{A}=a+U$, why is $a \in \mathcal{A}$?

What are affine subspaces of dimension 0 ? What are affine subspaces of dimension 1 (begin with \mathbb{R}^{2})? What are affine subspaces of dimension 2 (begin with \mathbb{R}^{3})?

Prove that any nonempty affine subspace is closed under affine combinations.
(2) Prove that if $\mathcal{A}=a+U$ is any nonempty affine subspace, then $\mathcal{A}=b+U$ for any $b \in \mathcal{A}$.
(3) Let \mathcal{A} be any nonempty subset of \mathbb{R}^{n} closed under affine combinations. For any $a \in \mathcal{A}$, prove that

$$
U_{a}=\left\{x-a \in \mathbb{R}^{n} \mid x \in \mathcal{A}\right\}
$$

is a (linear) subspace of \mathbb{R}^{n} such that

$$
\mathcal{A}=a+U_{a} .
$$

Prove that U_{a} does not depend on the choice of $a \in \mathcal{A}$; that is, $U_{a}=U_{b}$ for all $a, b \in \mathcal{A}$. In fact, prove that

$$
U_{a}=U=\left\{y-x \in \mathbb{R}^{n} \mid x, y \in \mathcal{A}\right\}, \quad \text { for all } a \in \mathcal{A},
$$

and so

$$
\mathcal{A}=a+U, \quad \text { for any } a \in \mathcal{A}
$$

Remark: The subspace U is called the direction of \mathcal{A}.
(4) Two nonempty affine subspaces \mathcal{A} and \mathcal{B} are said to be parallel iff they have the same direction. Prove that that if $\mathcal{A} \neq \mathcal{B}$ and \mathcal{A} and \mathcal{B} are parallel, then $\mathcal{A} \cap \mathcal{B}=\emptyset$.

Remark: The above shows that affine subspaces behave quite differently from linear subspaces.

Problem B4 (120 pts). (Affine frames and affine maps) For any vector $v=\left(v_{1}, \ldots, v_{n}\right) \in$ \mathbb{R}^{n}, let $\widehat{v} \in \mathbb{R}^{n+1}$ be the vector $\widehat{v}=\left(v_{1}, \ldots, v_{n}, 1\right)$. Equivalently, $\widehat{v}=\left(\widehat{v}_{1}, \ldots, \widehat{v}_{n+1}\right) \in \mathbb{R}^{n+1}$ is the vector defined by

$$
\widehat{v}_{i}= \begin{cases}v_{i} & \text { if } 1 \leq i \leq n \\ 1 & \text { if } i=n+1\end{cases}
$$

(1) For any $m+1$ vectors $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ with $u_{i} \in \mathbb{R}^{n}$ and $m \leq n$, prove that if the m vectors $\left(u_{1}-u_{0}, \ldots, u_{m}-u_{0}\right)$ are linearly independent, then the $m+1$ vectors $\left(\widehat{u}_{0}, \ldots, \widehat{u}_{m}\right)$ are linearly independent.
(2) Prove that if the $m+1$ vectors $\left(\widehat{u}_{0}, \ldots, \widehat{u}_{m}\right)$ are linearly independent, then for any choice of i, with $0 \leq i \leq m$, the m vectors $u_{j}-u_{i}$ for $j \in\{0, \ldots, m\}$ with $j-i \neq 0$ are linearly independent.

Any $m+1$ vectors $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ such that the $m+1$ vectors $\left(\widehat{u}_{0}, \ldots, \widehat{u}_{m}\right)$ are linearly independent are said to be affinely independent.

From (1) and (2), the vectors $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ are affinely independent iff for any any choice of i, with $0 \leq i \leq m$, the m vectors $u_{j}-u_{i}$ for $j \in\{0, \ldots, m\}$ with $j-i \neq 0$ are linearly independent. If $m=n$, we say that $n+1$ affinely independent vectors ($u_{0}, u_{1}, \ldots, u_{n}$) form an affine frame of \mathbb{R}^{n}.
(3) if $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ is an affine frame of \mathbb{R}^{n}, then prove that for every vector $v \in \mathbb{R}^{n}$, there is a unique $(n+1)$-tuple $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n+1}$, with $\lambda_{0}+\lambda_{1}+\cdots+\lambda_{n}=1$, such that

$$
v=\lambda_{0} u_{0}+\lambda_{1} u_{1}+\cdots+\lambda_{n} u_{n}
$$

The scalars $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ are called the barycentric (or affine) coordinates of v w.r.t. the affine frame $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$.

If we write $e_{i}=u_{i}-u_{0}$, for $i=1, \ldots, n$, then prove that we have

$$
v=u_{0}+\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n},
$$

and since $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of \mathbb{R}^{n} (by (1) \& (2)), the n-tuple $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ consists of the standard coordinates of $v-u_{0}$ over the basis $\left(e_{1}, \ldots, e_{n}\right)$.

Conversely, for any vector $u_{0} \in \mathbb{R}^{n}$ and for any basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n}, let $u_{i}=u_{0}+e_{i}$ for $i=1, \ldots, n$. Prove that $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ is an affine frame of \mathbb{R}^{n}, and for any $v \in \mathbb{R}^{n}$, if

$$
v=u_{0}+x_{1} e_{1}+\cdots+x_{n} e_{n},
$$

with $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ (unique), then

$$
v=\left(1-\left(x_{1}+\cdots+x_{n}\right)\right) u_{0}+x_{1} u_{1}+\cdots+x_{n} u_{n}
$$

so that $\left.\left(1-\left(x_{1}+\cdots+x_{n}\right)\right), x_{1}, \cdots, x_{n}\right)$, are the barycentric coordinates of v w.r.t. the affine frame $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$.

The above shows that there is a one-to-one correspondence between affine frames (u_{0}, \ldots, $\left.u_{n}\right)$ and pairs $\left(u_{0},\left(e_{1}, \ldots, e_{n}\right)\right)$, with $\left(e_{1}, \ldots, e_{n}\right)$ a basis. Given an affine frame $\left(u_{0}, \ldots, u_{n}\right)$, we obtain the basis $\left(e_{1}, \ldots, e_{n}\right)$ with $e_{i}=u_{i}-u_{0}$, for $i=1, \ldots, n$; given the pair ($u_{0},\left(e_{1}, \ldots\right.$, $\left.e_{n}\right)$) where $\left(e_{1}, \ldots, e_{n}\right)$ is a basis, we obtain the affine frame $\left(u_{0}, \ldots, u_{n}\right)$, with $u_{i}=u_{0}+e_{i}$, for $i=1, \ldots, n$. There is also a one-to-one correspondence between barycentric coordinates
w.r.t. the affine frame $\left(u_{0}, \ldots, u_{n}\right)$ and standard coordinates w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$. The barycentric cordinates $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ of v (with $\lambda_{0}+\lambda_{1}+\cdots+\lambda_{n}=1$) yield the standard coordinates $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of $v-u_{0}$; the standard coordinates $\left(x_{1}, \ldots, x_{n}\right)$ of $v-u_{0}$ yield the barycentric coordinates $\left(1-\left(x_{1}+\cdots+x_{n}\right), x_{1}, \ldots, x_{n}\right)$ of v.
(4) Let $\left(u_{0}, \ldots, u_{n}\right)$ be any affine frame in \mathbb{R}^{n} and let $\left(v_{0}, \ldots, v_{n}\right)$ be any vectors in \mathbb{R}^{m}. Prove that there is a unique affine map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
f\left(u_{i}\right)=v_{i}, \quad i=0, \ldots, n
$$

(5) Let $\left(a_{0}, \ldots, a_{n}\right)$ be any affine frame in \mathbb{R}^{n} and let $\left(b_{0}, \ldots, b_{n}\right)$ be any $n+1$ points in \mathbb{R}^{n}. From Part (4), we know that there is a unique affine map f such that

$$
f\left(a_{i}\right)=b_{i}, \quad i=0, \ldots, n
$$

From Parts (1) and (2), since $\left(a_{0}, \ldots, a_{n}\right)$ is an affine frame of $\mathbb{R}^{n},\left(\widehat{a}_{0}, \widehat{a}_{1}, \cdots, \widehat{a}_{n}\right)$ is a basis of \mathbb{R}^{n+1}, so the affine map f corresponds to the unique linear map $\widehat{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ such that

$$
\widehat{f}\left(\widehat{a}_{i}\right)=\widehat{b}_{i}, \quad i=0, \ldots, n .
$$

Let A be the $(n+1) \times(n+1)$ matrix representing \widehat{f}. Prove that A is given by

$$
A=\left(\begin{array}{llll}
\widehat{b}_{0} & \widehat{b}_{1} & \cdots & \widehat{b}_{n}
\end{array}\right)\left(\begin{array}{llll}
\widehat{a}_{0} & \widehat{a}_{1} & \cdots & \widehat{a}_{n}
\end{array}\right)^{-1} .
$$

In the special case where $\left(a_{0}, \ldots, a_{n}\right)$ is the canonical affine frame with $a_{i}=e_{i+1}$ for $i=0, \ldots, n-1$ and $a_{n}=(0, \ldots, 0)$ (where e_{i} is the i th canonical basis vector), show that

$$
\left(\begin{array}{llll}
\widehat{a}_{0} & \widehat{a}_{1} & \cdots & \widehat{a}_{n}
\end{array}\right)=\mathcal{E}_{n}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{llll}
\widehat{a}_{0} & \widehat{a}_{1} & \cdots & \widehat{a}_{n}
\end{array}\right)^{-1}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0 \\
-1 & -1 & \cdots & -1 & 1
\end{array}\right) .
$$

For example, when $n=2$, if we write $b_{i}=\left(x_{i}, y_{i}\right)$, then we have

$$
A=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
x_{1}-x_{3} & x_{2}-x_{3} & x_{3} \\
y_{1}-y_{3} & y_{2}-y_{3} & y_{3} \\
0 & 0 & 1
\end{array}\right) .
$$

Going back to the general case, prove that A represents the affine map f, that is,

$$
A \widehat{a_{i}}=\widehat{b_{i}}, \quad 0 \leq i \leq n,
$$

and A is of the form

$$
A=\left(\begin{array}{cc}
C & w \\
0 & 1
\end{array}\right)
$$

namely, make sure to prove that the bottom row of A is $(0, \ldots, 0,1)$.
Hint. Write

$$
\widehat{A}=\left(\begin{array}{llll}
\widehat{a_{0}} & \widehat{a_{1}} & \cdots & \widehat{a_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0} & a_{1} & & a_{n} \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

and

$$
\widehat{B}=\left(\begin{array}{llll}
\widehat{b_{0}} & \widehat{b_{1}} & \cdots & \widehat{b_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
b_{0} & b_{1} & & b_{n} \\
1 & 1 & \cdots & 1
\end{array}\right) .
$$

We can write

$$
A=\widehat{B} \widehat{A}^{-1}=\widehat{B} \mathcal{E}_{n}^{-1} \mathcal{E}_{n} \widehat{A}^{-1}=\left(\widehat{B} \mathcal{E}_{n}^{-1}\right)\left(\widehat{A} \mathcal{E}_{n}^{-1}\right)^{-1}
$$

The idea is to factor the unique affine map f that sends the affine frame $\left(a_{0}, \ldots, a_{n}\right)$ to $\left(b_{0}, \ldots, b_{n}\right)$ as the composition $f=f_{2} \circ f_{1}$ of two unique affine maps f_{1} and f_{2}, where f_{1} maps the affine frame $\left(a_{0}, \ldots, a_{n}\right)$ to the canonical affine frame $\left(e_{1}, \ldots, e_{n}, e_{0}\right)$, and f_{2} maps the the canonical affine frame $\left(e_{1}, \ldots, e_{n}, e_{0}\right)$ to $\left(b_{0}, \ldots, b_{n}\right)$. The inverse f_{1}^{-1} of f_{1} is the unique affine map that sends the canonical affine frame $\left(e_{1}, \ldots, e_{n}, e_{0}\right)$ to the affine frame $\left(a_{0}, \ldots, a_{n}\right)$.

Prove that the set of $(n \times 1) \times(n+1)$ matrices of the form

$$
\left(\begin{array}{ll}
P & u \\
0 & 1
\end{array}\right),
$$

where P is an invertible $n \times n$ matrix and $u \in \mathbb{R}^{n}$, is a group under matrix multiplication.
Deduce from the above facts that the last row of

$$
A=\widehat{B} \widehat{A}^{-1}=\left(\begin{array}{llll}
\widehat{b}_{0} & \widehat{b}_{1} & \cdots & \widehat{b}_{n}
\end{array}\right)\left(\begin{array}{llll}
\widehat{a}_{0} & \widehat{a}_{1} & \cdots & \widehat{a}_{n}
\end{array}\right)^{-1} .
$$

is $(0, \ldots, 0,1)$ (with n zeros).
A second method is the following. Prove that there is a unique matrix A of the form

$$
A=\left(\begin{array}{ll}
C & b \\
0 & 1
\end{array}\right)
$$

such that

$$
A \widehat{a}_{i}=\widehat{b}_{i}, \quad i=0, \ldots, n
$$

that is,

$$
\left(\begin{array}{cc}
C & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-1} & a_{n} \\
1 & 1 & \cdots & 1 & 1
\end{array}\right)=\left(\begin{array}{ccccc}
b_{0} & b_{1} & \cdots & b_{n-1} & b_{n} \\
1 & 1 & \cdots & 1 & 1
\end{array}\right) .
$$

We can view the $(n+1) \times(n+1)$ matrices with columns \widehat{a}_{i} and \widehat{b}_{i} are block matrices with the same block structure as A, so using block multiplication, we obain a system of equations which can be used to derive the equation

$$
C\left(\begin{array}{llll}
a_{0}-a_{n} & a_{1}-a_{n} & \cdots & a_{n-1}-a_{n}
\end{array}\right)=\left(\begin{array}{llll}
b_{0}-b_{n} & b_{1}-b_{n} & \cdots & b_{n-1}-b_{n}
\end{array}\right) .
$$

A third method goes as follows. Let \mathcal{H}_{n+1} be the subset of \mathbb{R}^{n+1} defined by

$$
\mathcal{H}_{n+1}=\left\{\widehat{v} \mid v \in \mathbb{R}^{n}\right\}=\left\{\left.\binom{v}{1} \right\rvert\, v \in \mathbb{R}^{n}\right\}
$$

called the hyperplane of equation $x_{n+1}=1$.
An affine hyperplane is an affine subspace whose direction is a (linear) hyperplane. Check that \mathcal{H}_{n+1} is an affine hyperplane with direction

$$
\mathbb{R}^{n} \times\{0\}=\left\{\left.\binom{v}{0} \right\rvert\, v \in \mathbb{R}^{n}\right\} .
$$

Prove that if an $(n+1) \times(n+1)$ matrix A represents the linear map $\widehat{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ such that

$$
\widehat{f}\left(\widehat{a}_{i}\right)=\widehat{b}_{i}, \quad i=0, \ldots, n
$$

then

$$
A=\left(\begin{array}{llll}
\widehat{b}_{0} & \widehat{b}_{1} & \cdots & \widehat{b}_{n}
\end{array}\right)\left(\begin{array}{llll}
\widehat{a}_{0} & \widehat{a}_{1} & \cdots & \widehat{a}_{n}
\end{array}\right)^{-1}=\widehat{B} \widehat{A}^{-1}
$$

and the following two facts hold:
(1) The linear map \widehat{f} that maps the hyperplane $x_{n+1}=1$ into the hyperplane $x_{n+1}=1$.
(2) If A is a matrix representing a linear map \widehat{f} from \mathbb{R}^{n+1} to \mathbb{R}^{n+1} and if \widehat{f} maps the hyperplane $x_{n+1}=1$ into the hyperplane $x_{n+1}=1$, then the $(n+1)$ th row of A is $(0, \ldots, 0,1)$ (a row vector with n zeros).

Conclude from (1) and (2) that the last row of

$$
A=\widehat{B} \widehat{A}^{-1}=\left(\begin{array}{llll}
\widehat{b}_{0} & \widehat{b}_{1} & \cdots & \widehat{b}_{n}
\end{array}\right)\left(\begin{array}{llll}
\widehat{a}_{0} & \widehat{a}_{1} & \cdots & \widehat{a}_{n}
\end{array}\right)^{-1} .
$$

is $(0, \ldots, 0,1)$ (with n zeros).
(6) Recall that a nonempty affine subspace \mathcal{A} of \mathbb{R}^{n} is any nonempty subset of \mathbb{R}^{n} closed under affine combinations. For any affine map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, for any affine subspace \mathcal{A} of \mathbb{R}^{n}, and any affine subspace \mathcal{B} of \mathbb{R}^{m}, prove that $f(\mathcal{A})$ is an affine subspace of \mathbb{R}^{m}, and that $f^{-1}(\mathcal{B})$ is an affine subspace of \mathbb{R}^{n}.

TOTAL: 330 points.

