Spring 2024 CIS 5150

Fundamentals of Linear Algebra and Optimization Jean Gallier

Homework 2

February 01, 2024; Due February 27, 2024

Problem B1 (30 pts). A rotation R_{θ} in the plane \mathbb{R}^2 is given by the matrix

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- (1) Use Matlab to show the action of a rotation R_{θ} on a simple figure such as a triangle or a rectangle, for various values of θ , including $\theta = \pi/6, \pi/4, \pi/3, \pi/2$.
 - (2) Prove that R_{θ} is invertible and that its inverse is $R_{-\theta}$.
 - (3) For any two rotations R_{α} and R_{β} , prove that

$$R_{\beta} \circ R_{\alpha} = R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta}.$$

Use (2)-(3) to prove that the rotations in the plane form a commutative group denoted SO(2).

Problem B2 (100 pts). Consider the affine map $R_{\theta,(a_1,a_2)}$ in \mathbb{R}^2 given by

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

(1) Prove that if $\theta \neq k2\pi$, with $k \in \mathbb{Z}$, then $R_{\theta,(a_1,a_2)}$ has a unique fixed point (c_1,c_2) , that is, there is a unique point (c_1,c_2) such that

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = R_{\theta,(a_1,a_2)} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix},$$

and this fixed point is given by

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \frac{1}{2\sin(\theta/2)} \begin{pmatrix} \cos(\pi/2 - \theta/2) & -\sin(\pi/2 - \theta/2) \\ \sin(\pi/2 - \theta/2) & \cos(\pi/2 - \theta/2) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

(2) In this question, we still assume that $\theta \neq k2\pi$, with $k \in \mathbb{Z}$. By translating the coordinate system with origin (0,0) to the new coordinate system with origin (c_1,c_2) , which means that if (x_1,x_2) are the coordinates with respect to the standard origin (0,0) and if (x'_1,x'_2) are the coordinates with respect to the new origin (c_1,c_2) , we have

$$x_1 = x_1' + c_1$$
$$x_2 = x_2' + c_2$$

and similarly for (y_1, y_2) and (y'_1, y'_2) , then show that

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = R_{\theta,(a_1,a_2)} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

becomes

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = R_\theta \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}.$$

Conclude that with respect to the new origin (c_1, c_2) , the affine map $R_{\theta,(a_1,a_2)}$ becomes the rotation R_{θ} . We say that $R_{\theta,(a_1,a_2)}$ is a rotation of center (c_1, c_2) .

(3) Use Matlab to show the action of the affine map $R_{\theta,(a_1,a_2)}$ on a simple figure such as a triangle or a rectangle, for $\theta = \pi/3$ and various values of (a_1,a_2) . Display the center (c_1,c_2) of the rotation.

What kind of transformations correspond to $\theta = k2\pi$, with $k \in \mathbb{Z}$?

- (4) Prove that the inverse of $R_{\theta,(a_1,a_2)}$ is of the form $R_{-\theta,(b_1,b_2)}$, and find (b_1,b_2) in terms of θ and (a_1,a_2) .
 - (5) Given two affine maps $R_{\alpha,(a_1,a_2)}$ and $R_{\beta,(b_1,b_2)}$, prove that

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)} = R_{\alpha+\beta,(t_1,t_2)}$$

for some (t_1, t_2) , and find (t_1, t_2) in terms of β , (a_1, a_2) and (b_1, b_2) .

Even in the case where $(a_1, a_2) = (0, 0)$, prove that in general

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha} \neq R_{\alpha} \circ R_{\beta,(b_1,b_2)}.$$

Use (4)-(5) to show that the affine maps of the plane defined in this problem form a nonabelian group denoted $\mathbf{SE}(2)$.

Prove that $R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)}$ is not a translation (possibly the identity) iff $\alpha + \beta \neq k2\pi$, for all $k \in \mathbb{Z}$. Find its center of rotation when $(a_1, a_2) = (0, 0)$.

If $\alpha + \beta = k2\pi$, then $R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)}$ is a pure translation. Find the translation vector of $R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)}$.

Problem B3 (80 pts). A subset \mathcal{A} of \mathbb{R}^n is called an *affine subspace* if either $\mathcal{A} = \emptyset$, or there is some vector $a \in \mathbb{R}^n$ and some subspace U of \mathbb{R}^n such that

$$\mathcal{A} = a + U = \{a + u \mid u \in U\}.$$

We define the dimension $\dim(\mathcal{A})$ of \mathcal{A} as the dimension $\dim(U)$ of U.

(1) If
$$A = a + U$$
, why is $a \in A$?

What are affine subspaces of dimension 0? What are affine subspaces of dimension 1 (begin with \mathbb{R}^2)? What are affine subspaces of dimension 2 (begin with \mathbb{R}^3)?

Prove that any nonempty affine subspace is closed under affine combinations.

- (2) Prove that if A = a + U is any nonempty affine subspace, then A = b + U for any $b \in A$.
- (3) Let \mathcal{A} be any nonempty subset of \mathbb{R}^n closed under affine combinations. For any $a \in \mathcal{A}$, prove that

$$U_a = \{x - a \in \mathbb{R}^n \mid x \in \mathcal{A}\}$$

is a (linear) subspace of \mathbb{R}^n such that

$$\mathcal{A} = a + U_a$$
.

Prove that U_a does not depend on the choice of $a \in \mathcal{A}$; that is, $U_a = U_b$ for all $a, b \in \mathcal{A}$. In fact, prove that

$$U_a = U = \{ y - x \in \mathbb{R}^n \mid x, y \in \mathcal{A} \}, \text{ for all } a \in \mathcal{A},$$

and so

$$\mathcal{A} = a + U$$
, for any $a \in \mathcal{A}$.

Remark: The subspace U is called the *direction* of A.

(4) Two nonempty affine subspaces \mathcal{A} and \mathcal{B} are said to be *parallel* iff they have the same direction. Prove that that if $\mathcal{A} \neq \mathcal{B}$ and \mathcal{A} and \mathcal{B} are parallel, then $\mathcal{A} \cap \mathcal{B} = \emptyset$.

Remark: The above shows that affine subspaces behave quite differently from linear subspaces.

Problem B4 (120 pts). (Affine frames and affine maps) For any vector $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$, let $\widehat{v} \in \mathbb{R}^{n+1}$ be the vector $\widehat{v} = (v_1, \ldots, v_n, 1)$. Equivalently, $\widehat{v} = (\widehat{v}_1, \ldots, \widehat{v}_{n+1}) \in \mathbb{R}^{n+1}$ is the vector defined by

$$\widehat{v}_i = \begin{cases} v_i & \text{if } 1 \le i \le n, \\ 1 & \text{if } i = n + 1. \end{cases}$$

- (1) For any m+1 vectors (u_0, u_1, \ldots, u_m) with $u_i \in \mathbb{R}^n$ and $m \leq n$, prove that if the m vectors $(u_1 u_0, \ldots, u_m u_0)$ are linearly independent, then the m+1 vectors $(\widehat{u}_0, \ldots, \widehat{u}_m)$ are linearly independent.
- (2) Prove that if the m+1 vectors $(\widehat{u}_0,\ldots,\widehat{u}_m)$ are linearly independent, then for any choice of i, with $0 \le i \le m$, the m vectors $u_j u_i$ for $j \in \{0,\ldots,m\}$ with $j-i \ne 0$ are linearly independent.

Any m+1 vectors (u_0, u_1, \ldots, u_m) such that the m+1 vectors $(\widehat{u}_0, \ldots, \widehat{u}_m)$ are linearly independent are said to be *affinely independent*.

- From (1) and (2), the vectors (u_0, u_1, \ldots, u_m) are affinely independent iff for any any choice of i, with $0 \le i \le m$, the m vectors $u_j u_i$ for $j \in \{0, \ldots, m\}$ with $j i \ne 0$ are linearly independent. If m = n, we say that n+1 affinely independent vectors (u_0, u_1, \ldots, u_n) form an affine frame of \mathbb{R}^n .
- (3) if (u_0, u_1, \ldots, u_n) is an affine frame of \mathbb{R}^n , then prove that for every vector $v \in \mathbb{R}^n$, there is a unique (n+1)-tuple $(\lambda_0, \lambda_1, \ldots, \lambda_n) \in \mathbb{R}^{n+1}$, with $\lambda_0 + \lambda_1 + \cdots + \lambda_n = 1$, such that

$$v = \lambda_0 u_0 + \lambda_1 u_1 + \dots + \lambda_n u_n.$$

The scalars $(\lambda_0, \lambda_1, \dots, \lambda_n)$ are called the *barycentric* (or *affine*) coordinates of v w.r.t. the affine frame (u_0, u_1, \dots, u_n) .

If we write $e_i = u_i - u_0$, for i = 1, ..., n, then prove that we have

$$v = u_0 + \lambda_1 e_1 + \dots + \lambda_n e_n,$$

and since (e_1, \ldots, e_n) is a basis of \mathbb{R}^n (by (1) & (2)), the *n*-tuple $(\lambda_1, \ldots, \lambda_n)$ consists of the standard coordinates of $v - u_0$ over the basis (e_1, \ldots, e_n) .

Conversely, for any vector $u_0 \in \mathbb{R}^n$ and for any basis (e_1, \ldots, e_n) of \mathbb{R}^n , let $u_i = u_0 + e_i$ for $i = 1, \ldots, n$. Prove that (u_0, u_1, \ldots, u_n) is an affine frame of \mathbb{R}^n , and for any $v \in \mathbb{R}^n$, if

$$v = u_0 + x_1 e_1 + \dots + x_n e_n,$$

with $(x_1, \ldots, x_n) \in \mathbb{R}^n$ (unique), then

$$v = (1 - (x_1 + \dots + x_n))u_0 + x_1u_1 + \dots + x_nu_n,$$

so that $(1-(x_1+\cdots+x_n)), x_1, \cdots, x_n)$, are the barycentric coordinates of v w.r.t. the affine frame (u_0, u_1, \ldots, u_n) .

The above shows that there is a one-to-one correspondence between affine frames (u_0, \ldots, u_n) and pairs $(u_0, (e_1, \ldots, e_n))$, with (e_1, \ldots, e_n) a basis. Given an affine frame (u_0, \ldots, u_n) , we obtain the basis (e_1, \ldots, e_n) with $e_i = u_i - u_0$, for $i = 1, \ldots, n$; given the pair $(u_0, (e_1, \ldots, e_n))$ where (e_1, \ldots, e_n) is a basis, we obtain the affine frame (u_0, \ldots, u_n) , with $u_i = u_0 + e_i$, for $i = 1, \ldots, n$. There is also a one-to-one correspondence between barycentric coordinates

- w.r.t. the affine frame (u_0, \ldots, u_n) and standard coordinates w.r.t. the basis (e_1, \ldots, e_n) . The barycentric coordinates $(\lambda_0, \lambda_1, \ldots, \lambda_n)$ of v (with $\lambda_0 + \lambda_1 + \cdots + \lambda_n = 1$) yield the standard coordinates $(\lambda_1, \ldots, \lambda_n)$ of $v u_0$; the standard coordinates (x_1, \ldots, x_n) of $v u_0$ yield the barycentric coordinates $(1 (x_1 + \cdots + x_n), x_1, \ldots, x_n)$ of v.
- (4) Let (u_0, \ldots, u_n) be any affine frame in \mathbb{R}^n and let (v_0, \ldots, v_n) be any vectors in \mathbb{R}^m . Prove that there is a *unique* affine map $f: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$f(u_i) = v_i, \quad i = 0, \dots, n.$$

(5) Let (a_0, \ldots, a_n) be any affine frame in \mathbb{R}^n and let (b_0, \ldots, b_n) be any n+1 points in \mathbb{R}^n . From Part (4), we know that there is a unique affine map f such that

$$f(a_i) = b_i, \quad i = 0, \dots, n.$$

From Parts (1) and (2), since (a_0, \ldots, a_n) is an affine frame of \mathbb{R}^n , $(\widehat{a}_0, \widehat{a}_1, \cdots, \widehat{a}_n)$ is a basis of \mathbb{R}^{n+1} , so the affine map f corresponds to the unique linear map $\widehat{f} : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ such that

$$\widehat{f}(\widehat{a}_i) = \widehat{b}_i, \quad i = 0, \dots, n.$$

Let A be the $(n+1) \times (n+1)$ matrix representing \widehat{f} . Prove that A is given by

$$A = \left(\widehat{b}_0 \quad \widehat{b}_1 \quad \cdots \quad \widehat{b}_n\right) \left(\widehat{a}_0 \quad \widehat{a}_1 \quad \cdots \quad \widehat{a}_n\right)^{-1}.$$

In the special case where (a_0, \ldots, a_n) is the canonical affine frame with $a_i = e_{i+1}$ for $i = 0, \ldots, n-1$ and $a_n = (0, \ldots, 0)$ (where e_i is the *i*th canonical basis vector), show that

$$(\widehat{a}_0 \ \widehat{a}_1 \ \cdots \ \widehat{a}_n) = \mathcal{E}_n = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

and

$$(\widehat{a}_0 \quad \widehat{a}_1 \quad \cdots \quad \widehat{a}_n)^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ -1 & -1 & \cdots & -1 & 1 \end{pmatrix}.$$

For example, when n = 2, if we write $b_i = (x_i, y_i)$, then we have

$$A = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} x_1 - x_3 & x_2 - x_3 & x_3 \\ y_1 - y_3 & y_2 - y_3 & y_3 \\ 0 & 0 & 1 \end{pmatrix}.$$

Going back to the general case, prove that A represents the affine map f, that is,

$$A\widehat{a}_i = \widehat{b}_i, \quad 0 \le i \le n,$$

and A is of the form

$$A = \begin{pmatrix} C & w \\ 0 & 1 \end{pmatrix},$$

namely, make sure to prove that the bottom row of A is $(0, \ldots, 0, 1)$.

Hint. Write

$$\widehat{A} = (\widehat{a_0} \quad \widehat{a_1} \quad \cdots \quad \widehat{a_n}) = \begin{pmatrix} a_0 & a_1 & \dots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

and

$$\widehat{B} = (\widehat{b_0} \ \widehat{b_1} \ \cdots \ \widehat{b_n}) = \begin{pmatrix} b_0 \ b_1 \ 1 \ 1 \ \cdots \ 1 \end{pmatrix}.$$

We can write

$$A = \widehat{B}\widehat{A}^{-1} = \widehat{B}\mathcal{E}_n^{-1}\mathcal{E}_n\widehat{A}^{-1} = (\widehat{B}\mathcal{E}_n^{-1})(\widehat{A}\mathcal{E}_n^{-1})^{-1}$$

The idea is to factor the unique affine map f that sends the affine frame (a_0, \ldots, a_n) to (b_0, \ldots, b_n) as the composition $f = f_2 \circ f_1$ of two unique affine maps f_1 and f_2 , where f_1 maps the affine frame (a_0, \ldots, a_n) to the canonical affine frame (e_1, \ldots, e_n, e_0) , and f_2 maps the the canonical affine frame (e_1, \ldots, e_n, e_0) to (b_0, \ldots, b_n) . The inverse f_1^{-1} of f_1 is the unique affine map that sends the canonical affine frame (e_1, \ldots, e_n, e_0) to the affine frame (a_0, \ldots, a_n) .

Prove that the set of $(n \times 1) \times (n+1)$ matrices of the form

$$\begin{pmatrix} P & u \\ 0 & 1 \end{pmatrix}$$
,

where P is an invertible $n \times n$ matrix and $u \in \mathbb{R}^n$, is a group under matrix multiplication.

Deduce from the above facts that the last row of

$$A = \widehat{B}\widehat{A}^{-1} = \begin{pmatrix} \widehat{b}_0 & \widehat{b}_1 & \cdots & \widehat{b}_n \end{pmatrix} \begin{pmatrix} \widehat{a}_0 & \widehat{a}_1 & \cdots & \widehat{a}_n \end{pmatrix}^{-1}.$$

is $(0,\ldots,0,1)$ (with n zeros).

A second method is the following. Prove that there is a unique matrix A of the form

$$A = \begin{pmatrix} C & b \\ 0 & 1 \end{pmatrix}$$

such that

$$A\widehat{a}_i = \widehat{b}_i, \quad i = 0, \dots, n,$$

that is,

$$\begin{pmatrix} C & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} & a_n \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} = \begin{pmatrix} b_0 & b_1 & \cdots & b_{n-1} & b_n \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}.$$

We can view the $(n+1) \times (n+1)$ matrices with columns \hat{a}_i and \hat{b}_i are block matrices with the same block structure as A, so using block multiplication, we obtain a system of equations which can be used to derive the equation

$$C(a_0 - a_n \ a_1 - a_n \ \cdots \ a_{n-1} - a_n) = (b_0 - b_n \ b_1 - b_n \ \cdots \ b_{n-1} - b_n).$$

A third method goes as follows. Let \mathcal{H}_{n+1} be the subset of \mathbb{R}^{n+1} defined by

$$\mathcal{H}_{n+1} = \{ \widehat{v} \mid v \in \mathbb{R}^n \} = \left\{ \begin{pmatrix} v \\ 1 \end{pmatrix} \mid v \in \mathbb{R}^n \right\}$$

called the hyperplane of equation $x_{n+1} = 1$.

An affine hyperplane is an affine subspace whose direction is a (linear) hyperplane. Check that \mathcal{H}_{n+1} is an affine hyperplane with direction

$$\mathbb{R}^n \times \{0\} = \left\{ \begin{pmatrix} v \\ 0 \end{pmatrix} \mid v \in \mathbb{R}^n \right\}.$$

Prove that if an $(n+1) \times (n+1)$ matrix A represents the linear map $\widehat{f} \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ such that

$$\widehat{f}(\widehat{a}_i) = \widehat{b}_i, \quad i = 0, \dots, n,$$

then

$$A = \left(\widehat{b}_0 \quad \widehat{b}_1 \quad \cdots \quad \widehat{b}_n\right) \left(\widehat{a}_0 \quad \widehat{a}_1 \quad \cdots \quad \widehat{a}_n\right)^{-1} = \widehat{B}\widehat{A}^{-1},$$

and the following two facts hold:

- (1) The linear map \hat{f} that maps the hyperplane $x_{n+1} = 1$ into the hyperplane $x_{n+1} = 1$.
- (2) If A is a matrix representing a linear map \widehat{f} from \mathbb{R}^{n+1} to \mathbb{R}^{n+1} and if \widehat{f} maps the hyperplane $x_{n+1} = 1$ into the hyperplane $x_{n+1} = 1$, then the (n+1)th row of A is $(0,\ldots,0,1)$ (a row vector with n zeros).

Conclude from (1) and (2) that the last row of

$$A = \widehat{B}\widehat{A}^{-1} = \begin{pmatrix} \widehat{b}_0 & \widehat{b}_1 & \cdots & \widehat{b}_n \end{pmatrix} \begin{pmatrix} \widehat{a}_0 & \widehat{a}_1 & \cdots & \widehat{a}_n \end{pmatrix}^{-1}.$$

is $(0,\ldots,0,1)$ (with n zeros).

(6) Recall that a nonempty affine subspace \mathcal{A} of \mathbb{R}^n is any nonempty subset of \mathbb{R}^n closed under affine combinations. For any affine map $f: \mathbb{R}^n \to \mathbb{R}^m$, for any affine subspace \mathcal{A} of \mathbb{R}^n , and any affine subspace \mathcal{B} of \mathbb{R}^m , prove that $f(\mathcal{A})$ is an affine subspace of \mathbb{R}^m , and that $f^{-1}(\mathcal{B})$ is an affine subspace of \mathbb{R}^n .

TOTAL: 330 points.