
Chapter 10

Dirichlet–Voronoi Diagrams and Delaunay
Triangulations

10.1 Dirichlet–Voronoi Diagrams

In this chapter we present the concepts of a Voronoi diagram and of a Delaunay
triangulation. These are important tools in computational geometry, and Delaunay
triangulations are important in problems where it is necessary to fit 3D data using
surface splines. It is usually useful to compute a good mesh for the projection of this
set of data points onto the xy-plane, and a Delaunay triangulation is a good candi-
date. Our presentation will be rather sketchy. We are primarily interested in defining
these concepts and stating their most important properties without proofs. For a
comprehensive exposition of Voronoi diagrams, Delaunay triangulations, and more
topics in computational geometry, our readers may consult O’Rourke [10], Preparata
and Shamos [11], Boissonnat and Yvinec [2], de Berg, Van Kreveld, Overmars, and
Schwarzkopf [1], or Risler [12]. The survey by Graham and Yao [7] contains a
very gentle and lucid introduction to computational geometry. Some practical ap-
plications of Voronoi diagrams and Delaunay triangulations are briefly discussed in
Section 10.5.

Let E be a Euclidean space of finite dimension, that is, an affine space E whose

underlying vector space
−→
E is equipped with an inner product (and has finite dimen-

sion). For concreteness, one may safely assume that E =Em, although what follows
applies to any Euclidean space of finite dimension. Given a set P = {p1, . . . , pn} of
n points in E , it is often useful to find a partition of the space E into regions each
containing a single point of P and having some nice properties. It is also often useful
to find triangulations of the convex hull of P having some nice properties. We shall
see that this can be done and that the two problems are closely related. In order to
solve the first problem, we need to introduce bisector lines and bisector planes.

For simplicity, let us first assume that E is a plane i.e., has dimension 2. Given
any two distinct points a,b ∈ E , the line orthogonal to the line segment (a,b) and
passing through the midpoint of this segment is the locus of all points having equal
distance to a and b. It is called the bisector line of a and b. The bisector line of two
points is illustrated in Figure 10.1.
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Fig. 10.1 The bisector line L of a and b.

If h= 1
2 a+ 1

2 b is the midpoint of the line segment (a,b), letting m be an arbitrary
point on the bisector line, the equation of this line can be found by writing that
−→
hm is orthogonal to

−→
ab. In any orthogonal frame, letting m = (x,y), a = (a1,a2),

b = (b1,b2), the equation of this line is

(b1− a1)(x− (a1 + b1)/2)+ (b2− a2)(y− (a2 + b2)/2) = 0,

which can also be written as

(b1− a1)x+(b2− a2)y = (b2
1 + b2

2)/2− (a2
1+ a2

2)/2.

The closed half-plane H(a,b) containing a and with boundary the bisector line is
the locus of all points such that

(b1− a1)x+(b2− a2)y≤ (b2
1 + b2

2)/2− (a2
1+ a2

2)/2,

and the closed half-plane H(b,a) containing b and with boundary the bisector line
is the locus of all points such that

(b1− a1)x+(b2− a2)y≥ (b2
1 + b2

2)/2− (a2
1+ a2

2)/2.

The closed half-plane H(a,b) is the set of all points whose distance to a is less that
or equal to the distance to b, and vice versa for H(b,a). Thus, points in the closed
half-plane H(a,b) are closer to a than they are to b.

We now consider a problem called the post office problem by Graham and Yao
[7]. Given any set P = {p1, . . . , pn} of n points in the plane (considered as post

offices or sites), for any arbitrary point x, find out which post office is closest to x.
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Since x can be arbitrary, it seems desirable to precompute the sets V (pi) consisting
of all points that are closer to pi than to any other point p j ̸= pi. Indeed, if the
sets V (pi) are known, the answer is any post office pi such that x ∈ V (pi). Thus,
it remains to compute the sets V (pi). For this, if x is closer to pi than to any other
point p j ̸= pi, then x is on the same side as pi with respect to the bisector line of pi

and p j for every j ̸= i, and thus

V (pi) =
⋂

j ̸=i

H(pi, p j).

If E has dimension 3, the locus of all points having equal distance to a and b is
a plane. It is called the bisector plane of a and b. The equation of this plane is also

found by writing that
−→
hm is orthogonal to

−→
ab. The equation of this plane is

(b1− a1)(x− (a1 + b1)/2)+ (b2− a2)(y− (a2 + b2)/2)

+ (b3− a3)(z− (a3 + b3)/2) = 0,

which can also be written as

(b1− a1)x+(b2− a2)y+(b3− a3)z = (b2
1 + b2

2 + b2
3)/2− (a2

1+ a2
2 + a2

3)/2.

The closed half-space H(a,b) containing a and with boundary the bisector plane is
the locus of all points such that

(b1− a1)x+(b2− a2)y+(b3− a3)z≤ (b2
1 + b2

2 + b2
3)/2− (a2

1+ a2
2 + a2

3)/2,

and the closed half-space H(b,a) containing b and with boundary the bisector plane
is the locus of all points such that

(b1− a1)x+(b2− a2)y+(b3− a3)z≥ (b2
1 + b2

2 + b2
3)/2− (a2

1+ a2
2 + a2

3)/2.

The closed half-space H(a,b) is the set of all points whose distance to a is less that
or equal to the distance to b, and vice versa for H(b,a). Again, points in the closed
half-space H(a,b) are closer to a than they are to b.

Given any set P = {p1, . . . , pn} of n points in E (of dimension m = 2,3), it is
often useful to find for every point pi the region consisting of all points that are
closer to pi than to any other point p j ̸= pi, that is, the set

V (pi) = {x ∈ E | d(x, pi)≤ d(x, p j), for all j ̸= i},

where d(x,y) = (−→xy ·−→xy)1/2, the Euclidean distance associated with the inner product
· on E . From the definition of the bisector line (or plane), it is immediate that

V (pi) =
⋂

j ̸=i

H(pi, p j).
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Families of sets of the form V (pi) were investigated by Dirichlet [4] (1850) and
Voronoi [13] (1908). Voronoi diagrams also arise in crystallography (Gilbert [6]).
Other applications, including facility location and path planning, are discussed in
O’Rourke [10]. For simplicity, we also denote the set V (pi) by Vi, and we introduce
the following definition.

Definition 10.1. Let E be a Euclidean space of dimension m = 2,3. Given any set
P = {p1, . . ., pn} of n points in E , the Dirichlet–Voronoi diagram V (P) of P =
{p1, . . . , pn} is the family of subsets of E consisting of the sets Vi =

⋂
j ̸=i H(pi, p j)

and of all of their intersections.

Dirichlet–Voronoi diagrams are also called Voronoi diagrams, Voronoi tessella-

tions, or Thiessen polygons. Following common usage, we will use the terminology
Voronoi diagram. As intersections of convex sets (closed half-planes or closed half-
spaces), the Voronoi regions V (pi) are convex sets. In dimension two, the bound-
aries of these regions are convex polygons, and in dimension three, the boundaries
are convex polyhedra.

Whether a region V (pi) is bounded or not depends on the location of pi. If pi

belongs to the boundary of the convex hull of the set P, then V (pi) is unbounded,
and otherwise bounded. In dimension two, the convex hull is a convex polygon, and
in dimension three, the convex hull is a convex polyhedron. As we will see later,
there is an intimate relationship between convex hulls and Voronoi diagrams.

Generally, if E is a Euclidean space of dimension m, given any two distinct points
a,b ∈ E , the locus of all points having equal distance to a and b is a hyperplane. It
is called the bisector hyperplane of a and b. The equation of this hyperplane is still

found by writing that
−→
hm is orthogonal to

−→
ab. The equation of this hyperplane is

(b1− a1)(x1− (a1 + b1)/2)+ · · ·+(bm− am)(xm− (am + bm)/2) = 0,

which can also be written as

(b1− a1)x1 + · · ·+(bm− am)xm = (b2
1 + · · ·+ b2

m)/2− (a2
1+ · · ·+ a2

m)/2.

The closed half-space H(a,b) containing a and with boundary the bisector hyper-
plane is the locus of all points such that

(b1− a1)x1 + · · ·+(bm− am)xm ≤ (b2
1 + · · ·+ b2

m)/2− (a2
1+ · · ·+ a2

m)/2,

and the closed half-space H(b,a) containing b and with boundary the bisector hy-
perplane is the locus of all points such that

(b1− a1)x1 + · · ·+(bm− am)xm ≥ (b2
1 + · · ·+ b2

m)/2− (a2
1+ · · ·+ a2

m)/2.

The closed half-space H(a,b) is the set of all points whose distance to a is less than
or equal to the distance to b, and vice versa for H(b,a).

Figure 10.2 shows the Voronoi diagram of a set of twelve points. In the general
case where E has dimension m, the definition of the Voronoi diagram V (P) of P is
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Fig. 10.2 A Voronoi diagram.

the same as Definition 10.1, except that H(pi, p j) is the closed half-space containing
pi and having the bisector hyperplane of a and b as boundary. Also, observe that the
convex hull of P is a convex polytope.

We will now state a lemma listing the main properties of Voronoi diagrams. It
turns out that certain degenerate situations can be avoided if we assume that if P is a
set of points in an affine space of dimension m, then no m+ 2 points from P belong
to the same (m−1)-sphere. We will say that the points of P are in general position.
Thus when m = 2, no 4 points in P are cocyclic, and when m = 3, no 5 points in P

are on the same sphere.

Lemma 10.1. Given a set P= {p1, . . . , pn} of n points in some Euclidean space E of

dimension m (say Em), if the points in P are in general position and not in a common
hyperplane then the Voronoi diagram of P satisfies the following conditions:

(1) Each region Vi is convex and contains pi in its interior.
(2) Each vertex of Vi belongs to m+ 1 regions Vj and to m+ 1 edges.

(3) The region Vi is unbounded iff pi belongs to the boundary of the convex hull of

P.
(4) If p is a vertex that belongs to the regions V1, . . . ,Vm+1, then p is the center of

the (m−1)-sphere S(p) determined by p1, . . . , pm+1. Furthermore, no point in P

is inside the sphere S(p) (i.e., in the open ball associated with the sphere S(p)).
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(5) If p j is a nearest neighbor of pi, then one of the faces of Vi is contained in the

bisector hyperplane of (pi, p j).
(6)

n⋃

i=1

Vi = E , and
◦
V i ∩

◦
V j= /0, for all i, j, with i ̸= j,

where
◦
V i denotes the interior of Vi.

Proof. We prove only some of the statements, leaving the others as an exercise (or
see Risler [12]).

(1) Since Vi =
⋂

j ̸=i H(pi, p j) and each half-space H(pi, p j) is convex, as an in-
tersection of convex sets, Vi is convex. Also, since pi belongs to the interior of each
H(pi, p j), the point pi belongs to the interior of Vi.

(2) Let Fi, j denote Vi∩Vj. Any vertex p of the Vononoi diagram of P must belong
to r faces Fi, j. Now, given a vector space E and any two subspaces M and N of E ,
recall that we have the Grassmann relation (see Lemma 2.14)

dim(M)+ dim(N) = dim(M +N)+ dim(M∩N).

Then since p belongs to the intersection of the hyperplanes that form the bound-
aries of the Vi, and since a hyperplane has dimension m− 1, by the Grassmann
relation, we must have r ≥ m. For simplicity of notation, let us denote these faces
by F1,2,F2,3, . . . ,Fr,r+1. Since Fi, j =Vi∩Vj, we have

Fi, j = {p | d(p, pi) = d(p, p j)≤ d(p, pk), for all k ̸= i, j},

and since p ∈ F1,2∩F2,3∩ · · ·∩Fr,r+1, we have

d(p, p1) = · · ·= d(p, pr+1)< d(p, pk) for all k /∈ {1, . . . ,r+ 1}.

This means that p is the center of a sphere passing through p1, . . . , pr+1 and contain-
ing no other point in P. By the assumption that points in P are in general position,
we must have r ≤ m, and thus r = m. Thus, p belongs to V1∩ · · ·∩Vm+1, but to no
other Vj with j /∈ {1, . . . ,m+ 1}. Furthermore, every edge of the Voronoi diagram
containing p is the intersection of m of the regions V1, . . . ,Vm+1, and so there are
m+ 1 of them. ⊓*

For simplicity, let us again consider the case where E is a plane. It should be
noted that certain Voronoi regions, although closed, may extend very far. Figure
10.3 shows such an example.

It is also possible for certain unbounded regions to have parallel edges.
There are a number of methods for computing Voronoi diagrams. A fairly simple

(although not very efficient) method is to compute each Voronoi region V (pi) by
intersecting the half-planes H(pi, p j). One way to do this is to construct successive
convex polygons that converge to the boundary of the region. At every step we
intersect the current convex polygon with the bisector line of pi and p j. There are at
most two intersection points. We also need a starting polygon, and for this we can
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Fig. 10.3 Another Voronoi diagram.

pick a square containing all the points. A naive implementation will run in O(n3).
However, the intersection of half-planes can be done in O(n logn), using the fact
that the vertices of a convex polygon can be sorted. Thus, the above method runs
in O(n2 logn). Actually, there are faster methods (see Preparata and Shamos [11] or
O’Rourke [10]), and it is possible to design algorithms running in O(n logn). The
most direct method to obtain fast algorithms is to use the “lifting method” discussed
in Section 10.4, whereby the original set of points is lifted onto a paraboloid, and to
use fast algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained from the Voronoi diagram
as follows: The vertices of this graph are the points pi (each corresponding to a
unique region of V (P)), and there is an edge between pi and p j iff the regions
Vi and Vj share an edge. The resulting graph is called a Delaunay triangulation
of the convex hull of P, after Delaunay, who invented this concept in 1934. Such
triangulations have remarkable properties.

Figure 10.4 shows the Delaunay triangulation associated with the earlier Voronoi
diagram of a set of twelve points.

One has to be careful to make sure that all the Voronoi vertices have been
computed before computing a Delaunay triangulation, since otherwise, some edges
could be missed. In Figure 10.5 illustrating such a situation, if the lowest Voronoi
vertex had not been computed (not shown on the diagram!), the lowest edge of the
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Fig. 10.4 Delaunay triangulation associated with a Voronoi diagram.

Delaunay triangulation would be missing. The concept of a triangulation can be gen-
eralized to dimension 3, or even to any dimension m. But first, we need to define a
triangulation precisely, and for this, we need to review what is a simplicial complex.

10.2 Simplicial Complexes and Triangulations

A simplex is just the convex hull of a finite number of affinely independent points,
but we also need to define faces, the boundary, and the interior of a simplex.

Definition 10.2. Let E be any normed affine space, say E = Em with its usual
Euclidean norm. Given any n+ 1 affinely independent points a0, . . . ,an in E , the
n-simplex (or simplex) σ defined by a0, . . . ,an is the convex hull of the points
a0, . . . ,an, that is, the set of all convex combinations λ0a0 + · · ·+ λnan, where
λ0 + · · ·+ λn = 1 and λi ≥ 0 for all i, 0 ≤ i ≤ n. We call n the dimension of
the n-simplex σ , and the points a0, . . . ,an are the vertices of σ . Given any sub-
set {ai0 , . . . ,aik} of {a0, . . . ,an} (where 0 ≤ k ≤ n), the k-simplex generated by
ai0 , . . . ,aik is called a face of σ . A face s of σ is a proper face if s ̸= σ (we agree
that the empty set is a face of any simplex). For any vertex ai, the face generated by
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Fig. 10.5 Another Delaunay triangulation associated with a Voronoi diagram.

a0, . . . ,ai−1,ai+1, . . . ,an (i.e., omitting ai) is called the face opposite ai. Every face
that is an (n−1)-simplex is called a boundary face. The union of the boundary faces
is the boundary of σ , denoted by ∂σ , and the complement of ∂σ in σ is the interior
Int σ = σ − ∂σ of σ . The interior Int σ of σ is sometimes called an open simplex.

It should be noted that for a 0-simplex consisting of a single point {a0}, ∂{a0}=
/0, and Int{a0} = {a0}. Of course, a 0-simplex is a single point, a 1-simplex is the
line segment (a0,a1), a 2-simplex is a triangle (a0,a1,a2) (with its interior), and a
3-simplex is a tetrahedron (a0,a1,a2,a3) (with its interior); see Figure 10.6.

We now state a number of properties of simplices, whose proofs are left as an
exercise. Clearly, a point x belongs to the boundary ∂σ of σ iff at least one of its
barycentric coordinates (λ0, . . . ,λn) is zero, and a point x belongs to the interior
Int σ of σ iff all of its barycentric coordinates (λ0, . . . ,λn) are positive, i.e., λi > 0
for all i, 0≤ i≤ n. Then, for every x ∈ σ , there is a unique face s such that x ∈ Int s,
the face generated by those points ai for which λi > 0, where (λ0, . . . ,λn) are the
barycentric coordinates of x.

A simplex σ is convex, arcwise connected, compact, and closed. The interior
Intσ of a complex is convex, arcwise connected, open, and σ is the closure of Intσ .

We now need to put simplices together to form more complex shapes, following
Munkres [9].

Definition 10.3. A simplicial complex in Em (for short, a complex in Em) is a set
K consisting of a (finite or infinite) set of simplices in Em satisfying the following
conditions:
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Fig. 10.6 Examples of simplices.

(1) Every face of a simplex in K also belongs to K.
(2) For any two simplices σ1 and σ2 in K, if σ1∩σ2 ̸= /0, then σ1∩σ2 is a common

face of both σ1 and σ2.

If σ ∈ K is a simplex of n+ 1 elements, then its dimension is n, and it is called
an n-simplex. A 0-simplex {x} is called a vertex. The dimension of the simplicial
complex K is the maximum of the dimensions of simplices in K.

Condition (2) guarantees that the various simplices forming a complex are glued
nicely. It can be shown that the following condition is equivalent to condition (2):

(2′) For any two distinct simplices σ1,σ2, Int σ1∩ Int σ2 = /0.

The union Kg of all the simplices in K is a subset of Em. We can define a topology on
Kg by defining a subset F of Kg to be closed iff F∩σ is closed in σ for every simplex
σ ∈ K. It is immediately verified that the axioms of a topological space are indeed
satisfied. The resulting topological space Kg is called the geometric realization of
K. A polytope is the geometric realization of some simplicial complex. A polytope
of dimension 1 is usually called a polygon, and a polytope of dimension 2 is usually
called a polyhedron. It can be checked that each region Vi of a Voronoi diagram is a
(convex) polytope.

In the sequel, we will consider only finite simplicial complexes, that is, com-
plexes K consisting of a finite number of simplices. In this case, the topology of
Kg defined above is identical to the topology induced from Em. In this case, for any
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simplex σ in K, Intσ coincides with the interior
◦
σ of σ in the topological sense, and

∂σ coincides with the boundary of σ in the topological sense. We can now define
triangulations.

First, assume that E = E2. Given a subset S of E2, a triangulation of S is a
finite complex K of dimension 2 such that S is the union of the 2-simplices in K.
Equivalently, S is the union of the (closed) triangles in K. Thus, a triangulation of S

specifies a way of cutting up S into a collection of (closed) triangles that intersect
nicely. Next, if E =E3, given a subset S ofE3, a triangulation of S is a finite complex
K of dimension 3 such that S is the union of the 3-simplices in K. Equivalently, S

is the union of the (closed) tetrahedra in K. Thus, a triangulation of S specifies a
way of cutting up S into a collection of (closed) tetrahedra that intersect nicely. In
general, we have the following definition.

Definition 10.4. Given a subset S of Em (where m ≥ 2), a d-triangulation of S

(where d ≤m) is a finite complex K such that

S =
⋃

σ∈K
dim(σ)=d

σ ,

i.e., such that S is the union of all d-simplices in K.

Given a finite set P of n points in the plane, and given a triangulation of the
convex hull of P having P as its set of vertices, observe that the boundary of P is
a convex polygon. Similarly, given a finite set P of points in 3-space, and given a
triangulation of the convex hull of P having P as its set of vertices, observe that the
boundary of P is a convex polyhedron. It is interesting to know how many triangu-
lations exist for a set of n points (in the plane or in 3-space), and it is also interesting
to know the number of edges and faces in terms of the number of vertices in P.
These questions can be settled using the Euler–Poincaré characteristic. We say that
a polygon in the plane is a simple polygon iff it is a connected closed polygon such
that no two edges intersect (except at a common vertex).

Lemma 10.2.

(1) For any triangulation of a region of the plane whose boundary is a simple poly-

gon, letting v be the number of vertices, e the number of edges, and f the number

of triangles, we have the “Euler formula”

v− e+ f = 1.

(2) For any polytope S homeomorphic to a closed ball in E3 and any triangulation
of S, letting v be the number of vertices, e the number of edges, f the number of

triangles, and t the number of tetrahedra, we have the “Euler formula”

v− e+ f − t = 1.
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(3) Furthermore, for any triangulation of the polyhedron B(S) that is the boundary

of S, letting v′ be the number of vertices, e′ the number of edges, and f ′ the

number of triangles, we have the “Euler formula”

v′ − e′+ f ′ = 2.

Proof. We only sketch the proof. More details can be found in O’Rourke [10], Risler
[12], or books on algebraic topology, such as Massey [8] or Munkres [9]. The proof
of (1) is by induction on the number f of triangles. The proof of (2) is by induction
on the number t of tetrahedra. The proof of (3) consists in first flattening the poly-
hedron into a planar graph in the plane. This can be done by removing some face
and then by deformation. The boundary of this planar graph is a simple polygon,
and the region outside this boundary corresponds to the removed face. Then by (1)
we get the formula, remembering that there is one more face (this is why we get 2
instead of 1). ⊓*

It is now easy to see that in case (1), the number of edges and faces is a linear
function of the number of vertices and boundary edges, and that in case (3), the
number of edges and faces is a linear function of the number of vertices. Indeed, in
the case of a planar triangulation, each face has 3 edges, and if there are eb edges in
the boundary and ei edges not in the boundary, each nonboundary edge is shared by
two faces, and thus 3 f = eb + 2ei. Since v− eb− ei + f = 1, we get

v− eb− ei + eb/3+ 2ei/3 = 1,

2eb/3+ ei/3 = v− 1,

and thus ei = 3v− 3− 2eb. Since f = eb/3+ 2ei/3, we have f = 2v− 2− eb.
Similarly, since v′ − e′ + f ′ = 2 and 3 f ′ = 2e′, we easily get e = 3v− 6 and

f = 2v− 4. Thus, given a set P of n points, the number of triangles (and edges) for
any triangulation of the convex hull of P using the n points in P for its vertices is
fixed.

Case (2) is trickier, but it can be shown that

v− 3≤ t ≤ (v− 1)(v− 2)/2.

Thus, there can be different numbers of tetrahedra for different triangulations of the
convex hull of P.

Remark: The numbers of the form v− e+ f and v− e+ f − t are called Euler–

Poincaré characteristics. They are topological invariants, in the sense that they are
the same for all triangulations of a given polytope. This is a fundamental fact of
algebraic topology.

We shall now investigate triangulations induced by Voronoi diagrams.
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10.3 Delaunay Triangulations

Given a set P = {p1, . . . , pn} of n points in the plane and the Voronoi diagram V (P)
for P, we explained in Section 10.1 how to define an (undirected) graph: The vertices
of this graph are the points pi (each corresponding to a unique region of V (P)), and
there is an edge between pi and p j iff the regions Vi and Vj share an edge. The
resulting graph turns out to be a triangulation of the convex hull of P having P

as its set of vertices. Such a complex can be defined in general. For any set P =
{p1, . . . , pn} of n points in Em, we say that a triangulation of the convex hull of P is
associated with P if its set of vertices is the set P.

Definition 10.5. Let P = {p1, . . . , pn} be a set of n points in Em, and let V (P) be the
Voronoi diagram of P. We define a complex D(P) as follows. The complex D(P)
contains the k-simplex {p1, . . . , pk+1} iff V1∩ · · ·∩Vk+1 ̸= /0, where 0≤ k ≤m. The
complex D(P) is called the Delaunay triangulation of the convex hull of P.

Thus, {pi, p j} is an edge iff Vi∩Vj ̸= /0, {pi, p j, ph} is a triangle iff Vi∩Vj∩Vh ̸=
/0, {pi, p j, ph, pk} is a tetrahedron iff Vi∩Vj ∩Vh∩Vk ̸= /0, etc.

For simplicity, we often write D instead of D(P). A Delaunay triangulation for
a set of twelve points is shown in Figure 10.7.

Fig. 10.7 A Delaunay triangulation.
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Actually, it is not obvious that D(P) is a triangulation of the convex hull of P,
but this can be shown, as well as the properties listed in the following lemma.

Lemma 10.3. Let P = {p1, . . . , pn} be a set of n points in Em, and assume that they

are in general position. Then the Delaunay triangulation of the convex hull of P is

indeed a triangulation associated with P, and it satisfies the following properties:

(1) The boundary of D(P) is the convex hull of P.

(2) A triangulation T associated with P is the Delaunay triangulation D(P) iff every
(m−1)-sphere S(σ) circumscribed about an m-simplex σ of T contains no other

point from P (i.e., the open ball associated with S(σ) contains no point from P).

The proof can be found in Risler [12] and O’Rourke [10]. In the case of a planar
set P, it can also be shown that the Delaunay triangulation has the property that it
maximizes the minimum angle of the triangles involved in any triangulation of P.
However, this does not characterize the Delaunay triangulation. Given a connected
graph in the plane, it can also be shown that any minimal spanning tree is contained
in the Delaunay triangulation of the convex hull of the set of vertices of the graph
(O’Rourke [10]).

We will now explore briefly the connection between Delaunay triangulations and
convex hulls.

10.4 Delaunay Triangulations and Convex Hulls

In this section we show that there is an intimate relationship between convex hulls
and Delaunay triangulations. We will see that given a set P of points in the Euclidean
space Em of dimension m, we can “lift” these points onto a paraboloid living in
the space Em+1 of dimension m+ 1, and that the Delaunay triangulation of P is
the projection of the downward-facing faces of the convex hull of the set of lifted
points. This remarkable connection was first discovered by Brown [3], and refined
by Edelsbrunner and Seidel [5]. For simplicity, we consider the case of a set P of
points in the plane E2, and we assume that they are in general position.

Consider the paraboloid of revolution of equation z = x2 + y2. A point p = (x,y)
in the plane is lifted to the point l(p) = (X ,Y,Z) in E3, where X = x, Y = y, and
Z = x2 + y2.

The first crucial observation is that a circle in the plane is lifted into a plane curve
(an ellipse). Indeed, if such a circle C is defined by the equation

x2 + y2 + ax+ by+ c= 0,

since X = x, Y = y, and Z = x2 + y2, by eliminating x2 + y2 we get

Z =−ax− by− c,

and thus X ,Y,Z satisfy the linear equation
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aX + bY +Z+ c = 0,

which is the equation of a plane. Thus, the intersection of the cylinder of revolution
consisting of the lines parallel to the z-axis and passing through a point of the circle
C with the paraboloid z = x2 + y2 is a planar curve (an ellipse).

We can compute the convex hull of the set of lifted points. Let us focus on
the downward-facing faces of this convex hull. Let (l(p1), l(p2), l(p3)) be such a
face. The points p1, p2, p3 belong to the set P. We claim that no other point from
P is inside the circle C. Indeed, a point p inside the circle C would lift to a point
l(p) on the paraboloid. Since no four points are cocyclic, one of the four points
p1, p2, p3, p is further from O than the others; say this point is p3. Then, the face
(l(p1), l(p2), l(p)) would be below the face (l(p1), l(p2), l(p3)), contradicting the
fact that (l(p1), l(p2), l(p3)) is one of the downward-facing faces of the convex hull
of P. But then, by property (2) of Lemma 10.3, the triangle (p1, p2, p3) would be-
long to the Delaunay triangulation of P.

Therefore, we have shown that the projection of the part of the convex hull of the

lifted set l(P) consisting of the downward-facing faces is the Delaunay triangulation
of P. Figure 10.8 shows the lifting of the Delaunay triangulation shown earlier.
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Fig. 10.8 A Delaunay triangulation and its lifting to a paraboloid.

Another example of the lifting of a Delaunay triangulation is shown in Figure
10.9. The fact that a Delaunay triangulation can be obtained by projecting a lower
convex hull can be used to find efficient algorithms for computing a Delaunay trian-
gulation. It also holds for higher dimensions.
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Fig. 10.9 Another Delaunay triangulation and its lifting to a paraboloid.

The Voronoi diagram itself can also be obtained from the lifted set l(P). However,
this time, we need to consider tangent planes to the paraboloid at the lifted points.
It is fairly obvious that the tangent plane at the lifted point (a,b,a2 + b2) is

z = 2ax+ 2by− (a2+ b2).

Given two distinct lifted points (a1,b1,a2
1+b2

1) and (a2,b2,a2
2+b2

2), the intersection
of the tangent planes at these points is a line belonging to the plane of equation

(b1− a1)x+(b2− a2)y = (b2
1 + b2

2)/2− (a2
1+ a2

2)/2.

This is precisely the equation of the bisector line of the two points (a1,b1) and
(a2,b2). Therefore, if we look at the paraboloid from z = +∞ (with the paraboloid
transparent), the projection of the tangent planes at the lifted points is the Voronoi

diagram!
It should be noted that the “duality” between the Delaunay triangulation, which is

the projection of the convex hull of the lifted set l(P) viewed from z =−∞, and the
Voronoi diagram, which is the projection of the tangent planes at the lifted set l(P)
viewed from z =+∞, is reminiscent of the polar duality with respect to a quadric.

The reader interested in algorithms for finding Voronoi diagrams and Delaunay
triangulations is referred to O’Rourke [10], Preparata and Shamos [11], Boissonnat
and Yvinec [2], de Berg, Van Kreveld, Overmars, and Schwarzkopf [1], and Risler
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[12]. We conclude our brief presentation of Voronoi diagrams and Delaunay trian-
gulations with a short section on applications.

10.5 Applications of Voronoi Diagrams and Delaunay
Triangulations

The examples below are taken from O’Rourke [10]. Other examples can be found in
Preparata and Shamos [11], Boissonnat and Yvinec [2], and de Berg, Van Kreveld,
Overmars, and Schwarzkopf [1].

The first example is the nearest neighbors problem. There are actually two sub-
problems: Nearest neighbor queries and all nearest neighbors.

The nearest neighbor queries problem is as follows. Given a set P of points
and a query point q, find the nearest neighbor(s) of q in P. This problem can be
solved by computing the Voronoi diagram of P and determining in which Voronoi
region q falls. This last problem, called point location, has been heavily studied (see
O’Rourke [10]). The all neighbors problem is as follows: Given a set P of points,
find the nearest neighbor(s) to all points in P. This problem can be solved by build-
ing a graph, the nearest neighbor graph, for short nng. The nodes of this undirected
graph are the points in P, and there is an arc from p to q iff p is a nearest neighbor
of q or vice versa. Then it can be shown that this graph is contained in the Delaunay
triangulation of P.

The second example is the largest empty circle. Some practical applications of
this problem are to locate a new store (to avoid competition), or to locate a nuclear
plant as far as possible from a set of towns. More precisely, the problem is as follows.
Given a set P of points, find a largest empty circle whose center is in the (closed)
convex hull of P, empty in that it contains no points from P inside it, and largest
in the sense that there is no other circle with strictly larger radius. The Voronoi
diagram of P can be used to solve this problem. It can be shown that if the center p

of a largest empty circle is strictly inside the convex hull of P, then p coincides with
a Voronoi vertex. However, not every Voronoi vertex is a good candidate. It can also
be shown that if the center p of a largest empty circle lies on the boundary of the
convex hull of P, then p lies on a Voronoi edge.

The third example is the minimum spanning tree. Given a graph G, a minimum
spanning tree of G is a subgraph of G that is a tree, contains every vertex of the
graph G, and minimizes the sum of the lengths of the tree edges. It can be shown
that a minimum spanning tree is a subgraph of the Delaunay triangulation of the
vertices of the graph. This can be used to improve algorithms for finding minimum
spanning trees, for example Kruskal’s algorithm (see O’Rourke [10]).

We conclude by mentioning that Voronoi diagrams have applications to motion

planning. For example, consider the problem of moving a disk on a plane while
avoiding a set of polygonal obstacles. If we “extend” the obstacles by the diameter
of the disk, the problem reduces to finding a collision–free path between two points
in the extended obstacle space. One needs to generalize the notion of a Voronoi
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diagram. Indeed, we need to define the distance to an object, and medial curves
(consisting of points equidistant to two objects) may no longer be straight lines.
A collision–free path with maximal clearance from the obstacles can be found by
moving along the edges of the generalized Voronoi diagram. This is an active area
of research in robotics. For more on this topic, see O’Rourke [10].

10.6 Problems

10.1. Investigate the different shapes of the Voronoi diagram for a set of 3 points,
and then for a set of 4 points.

10.2. Prove (3)–(6) of Lemma 10.1.

10.3. Show that the intersection of n half-planes can be done in O(n logn), using the
fact that the vertices of a convex polygon can be sorted.

10.4. Write a computer program computing the Voronoi diagram of a set of points
in the plane. Can you do it in time O(n2 logn)?

10.5. Let σ be a simplex. (i) Prove that a point x belongs to the boundary ∂σ of
σ iff at least one of its barycentric coordinates (λ0, . . . ,λn) is zero, and a point x

belongs to the interior Int σ of σ iff all of its barycentric coordinates (λ0, . . . ,λn)
are positive, i.e., λi > 0 for all i,0 ≤ i ≤ n. Prove that for every x ∈ σ , there is a
unique face s such that x ∈ Int s, the face generated by those points ai for which
λi > 0, where (λ0, . . . ,λn) are the barycentric coordinates of x.

(ii) Prove that a simplex σ is convex, arcwise connected, compact, and closed.
The interior Int σ of a complex is convex, arcwise connected, open, and σ is the
closure of Int σ .

10.6. Prove that condition (2) of Definition 10.3 is equivalent to condition:
(2′) For any two distinct simplices σ1,σ2, Int σ1∩ Int σ2 = /0.

10.7. Complete the proof of (1) in Lemma 10.2 (use induction).

10.8. Prove that a sphere does not have any triangulation in which every vertex
belongs to six triangles. Conclude that a sphere cannot be triangulated by regular
hexagons. Look at a golf ball!

10.9. Given a connected graph in the plane, show that any minimal spanning tree is
contained in the Delaunay triangulation of the convex hull of the set of vertices of
the graph.

10.10. Write a computer program computing the Delaunay triangulation of a finite
set of points in the plane using the method of lifting to a paraboloid.

10.11. Prove Lemma 10.3.
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10.12. Let {p1, . . . , pn} be a finite set of points contained in a given square S. Con-
sider the following path-planning problem. Given an initial position s and a final
position t both on the boundary on the given square S, find a C2-continuous path
from s to t staying inside S with the property that at any given time, a point moving
on the path is as far as possible from the nearest point pi. You may think of the
points pi as radar stations and the moving particle as a flying airplane. The airplane
is trying to maximize the minimum distance from the radars.

Solve the above problem as best as you can using Voronoi diagrams and B-
splines.
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2. J.-D. Boissonnat and M. Yvinec. Géométrie Algorithmique. Ediscience International, first
edition, 1995.

3. K.Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett., 9:223–228, 1979.
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