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Abstract. In this paper, we give a simple method for drawing a closed rational curve
specified in terms of control points as two Bézier segments. The main result is the following:

For every affine frame (r, s) (where r < s), for every rational curve F (t) specified over [r, s]
by some control polygon (β0, . . . , βm) (where the βi are weighted control points or control
vectors), the control points (θ0, . . . , θm) (w.r.t. [r, s]) of the rational curve G(t) = F (ϕ(t))
are given by

θi = (−1)i βi,

where ϕ : RP(1) → RP(1) is the projectivity mapping [r, s] onto RP(1)− ]r, s[ . Thus, in
order to draw the entire trace of the curve F over [−∞,+∞], we simply draw the curve
segments F ([r, s]) and G([r, s]).

The correctness of the method is established using a simple geometric argument about
ways of partitioning the real projective line into two disjoint segments. Other known methods
for drawing rational curves can be justified using similar geometric arguments.
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1 Introduction

In this paper, we give a simple method for drawing a closed rational curve specified in terms
of control points as two Bézier segments. In order to explain the basic intuition behind our
method as clearly as possible, we first consider rational curves specified in terms of rational
functions. For example, consider the following rational curve of degree 8 (a rose, see Section
4) specified by the fractions

x =
t(7− 35t2 + 21t4 − t6)

(t2 + 1)4
,

y =
t2(7− 35t2 + 21t4 − t6)

(t2 + 1)4
.

The problem is that no matter how large the interval [r, s] is, the trace F ([r, s]) of F over [r, s]
is not the trace of the entire curve. In this particular example we could take advantage of
symmetries, but in general, this may not be possible. There are rational bijections between
]− 1, 1[ and R, for example, the map

t 7→
t

1− t2
,

but they are at least quadratic, and cause the degree of the curve to be doubled, leading to
inefficiency.

Nevertheless, one might rightly ask why this is not a trivial problem! There are at least
two reasons. Firstly, it is not obvious how to do draw a closed rational curve very efficiently,
and secondly, in most CAGD applications, the curve is given in terms of control points
rather than parametrically. When the curve is specified in terms of control points, it is
rather complicated and expensive to compute the control points of the curve obtained after
the change of variable.

A nice way to get around these problems is to observe that the function t 7→
1

t
maps ]0, 1]

bijectively onto [1,+∞[, and maps [−1, 0[ bijectively over ] −∞,−1]. Thus, if we perform
the change of variable t = 1/u, we get the curve G defined by the fractions

x =
u(7u6 − 35u4 + 21u2 − 1)

(u2 + 1)4
,

y =
7u6 − 35u4 + 21u2 − 1

(u2 + 1)4
,

whose trace is identical to the trace of the curve F , but whose trace over [−1, 1] is the
complement of the trace of F over [−1, 1]. In particular, note that G(0) corresponds to
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F (∞) = (0,−1). The method is general: given the fractions Q1(t) and Q2(t) defining
F , we obtain the curve G by substituting 1/t for t in Q1 and Q2, getting the fractions
R1(t) = Q1(1/t) and R2(t) = Q2(1/t), and we render F and G over [−1, 1] to render the
entire trace of the curve F .

However, the above method assumes that the fractions defining the curve F are given
explicitly. If the rational curve F is given by control points, it is necessary to first compute
the fractions defining F , perform the substitution of 1/t for t, and compute the control points
of G. This is obviously a lot of work, and it may be computationally rather expensive.

The main contribution of this paper is that there is a very simple (and cheap) method
for getting the control points of G from the control points of F . Indeed, if (β0, . . . , βm) are
the control points (really, weighted control points or control vectors, see section 2) of the
curve F w.r.t. the affine frame (−1, 1), the control points (θ0, . . . , θm) of the curve G w.r.t.
(−1, 1) are given by the equations

θi = (−1)i βi.

Actually, it turns out that the above formula is valid for every affine frame (r, s)!

The upshot is that in order to render the entire trace of the curve F (over [−∞,+∞]),
we just have to render both F and G over [r, s]. The frame (−1, 1) is just a special case (and
so is (0, 1), a frame often used).

We will prove the correctness of the above formula using a simple geometric argument
about ways of partitioning the real projective line into two disjoint segments. We will also
show that other known methods for drawing rational curves can be justified using the above
geometric argument. An implementation of our method in Mathematica using a subdivision
version of the de Casteljau algorithm can be found in Gallier [9]).

The fact that the “complementary part” of a conic specified by three control points
((b0, w0), (b1, w1), (b2, w2)) is defined by the control points ((b0, w0), (b1,−w1), (b2, w2)) where
the sign of the middle weight is flipped, has been shown by Lee [14] and Patterson [15].
Our result is a natural generalization to rational curves of arbitrary degree. Other methods
for drawing closed rational curves have been investigated by Bajaj and Royappa [1], and
by DeRose [4], who credits Patterson [15] for the original idea behind the method. We will
compare these methods with ours in section 3.

For the sake of brevity, we do not review how polynomial curves are defined in terms of
control points. The deep reason why polynomial curves can be effectively handled in terms
of control points is that polynomials arise from multiaffine symmetric maps (see de Casteljau
[3], Ramshaw [16], Farin [6, 5], Hoschek and Lasser [13], or Gallier [9]). However, we briefly
review how to handle rational curves in terms of control points.
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2 Rational Curves and Control Points

A rational curve F : R → R
n of degree m is specified by n fractions

x1(t) =
F1(t)

Fn+1(t)
,

. . . = . . .

xn(t) =
Fn(t)

Fn+1(t)
,

where F1(t), . . . , Fn+1(t) are polynomials of degree at most m. In order to deal with the case
where the denominator Fn+1(X) is null, we view the rational curve F : R → R

n as the projec-
tion of the polynomial curve G : R → R

n+1 defined by the polynomials F1(X), . . . , Fn+1(X)
onto the affine hyperplane of equation xn+1 = 1. Furthermore, in order to handle rigor-
ously the situation where t = ±∞, we can view the curve G : R → R

n+1 as a rational map
F̃ : RP(1) → RP(n), where RP(n) is the real projective space associated with the vector
space R

n+1 (and thus, RP(1) is the real projective line). For this, we homogenize the poly-
nomials F1(X), . . . , Fn+1(X) as polynomials of the same total degree m (replacing X by
X/Z). Now, the projective space RP(n) has a well known model (for instance, see Berger
[2], Samuel [17], or Stolfi [18]) in which points at infinity correspond to the lines through
the origin contained in the hyperplane of equation xn+1 = 0, and other points correspond to
points in the affine hyperplane of equation xn+1 = 1 (since these points correspond to lines
through the origin and not contained in the hyperplane of equation xn+1 = 0, and such lines
intersect the affine hyperplane of equation xn+1 = 1 in a single point). Thus, the original

rational curve F : R → R
n is the projection of the curve F̃ : RP(1) → RP(n) onto the affine

hyperplane xn+1 = 1, under the projection map Π: RP(n) → R
n defined such that

Π(x1, . . . , xn, xn+1) =

(
x1

xn+1

, . . . ,
xn

xn+1

)
,

provided that xn+1 6= 0. If xn+1 = 0 and xi 6= 0 for some i, 1 ≤ i ≤ n, Π(x1, . . . , xn, xn+1) is
a point at infinity, while Π(0, . . . , 0) is undefined.

For example, a circle C can be defined by the following rational functions:

x(t) =
1− t2

1 + t2
,

y(t) =
2t

1 + t2
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After homogenizing, we get the following curve C̃ : RP(1) → RP(2):

x(X,Z) = Z2 −X2

y(X,Z) = 2XZ

w(X,Z) = Z2 +X2.

Now, it is well known that the control points of a polynomial curve F : R → R
n are

obtained from the polar form (also called blossom) of the curve w.r.t. to some affine frame
(see de Casteljau [3], Ramshaw [16], Farin [6, 5], Hoschek and Lasser [13], or Gallier [9]).
The only small difference between the classical situation and the present situation is that
points are represented by homogeneous coordinates, and that the polar form of homogeneous
polynomials are multilinear maps (as opposed to the classical case in which polar forms are
only multiaffine). Thus, given some affine frame ((r1, r2), (s1, s2)), if f : (R

2)m → R
n+1 is the

polar form of the curve F̃ : RP(1) → RP(n), the m+1 control points (θ0, . . . , θm) specifying

F̃ are given by the formulae

θi = f((r1, r2), . . . , (r1, r2)︸ ︷︷ ︸
m−i

, (s1, s2), . . . , (s1, s2)︸ ︷︷ ︸
i

).

Going back to the example of the circle, we get the following polar forms:

f1((X1, Z1), (X2, Z2)) = Z1Z2 −X1X2,

f2((X1, Z1), (X2, Z2)) = X1Z2 +X2Z1,

f3((X1, Z1), (X2, Z2)) = Z1Z2 +X1X2.

If (r1, r2) = (0, 1) and (s1, s2) = (1, 1), we get the following control points (in R
3):

θ1 = (1, 0, 1),

θ2 = (1, 1, 1),

θ3 = (0, 2, 2).

The third control point θ3 corresponds to the weighted point ((0, 1), 2), where (0, 1) is a
point in R

2.

Remark : To be perfectly rigorous, the curve F̃ : RP(1) → RP(n) is defined by the multi-
projective map P(f) : (RP(1))m → RP(n) induced by the multilinear map f : (R2)m → R

n+1.
Furthermore, the control points θi specified in homogeneous coordinates are really control
points for the polynomial curve G : R → R

n+1. Thus, the θi really live in a certain vector
space R̂n (isomorphic to R

n+1). They are weighted points when xn+1 6= 0, and control vec-
tors when when xn+1 = 0. There are some subtleties that we are glossing over in this paper.
A rigorous account of this approach is given in Fiorot and Jeannin [7, 8] and Gallier [9].
However, going into such matters would distract us from the main goal of this paper.

For the sake of notational simplicity, from now on, we will identify F and F̃ , thus writing
F : RP(1) → RP(n) instead of F̃ : RP(1) → RP(n).
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3 Proof of the Main Result

Since a rational curve F : RP(1) → RP(n) is a map with domain the real projective line
RP(1), to draw the entire trace of the curve F over RP(1), we can partition RP(1) into closed
intervals I0, . . . , Ip (intersecting only at boundary points) and find some simple projectivities
ϕ1, . . . , ϕp of RP(1) such that ϕi(I0) = Ii (1 ≤ i ≤ p). The simplest case arises when
p = 2, and in Section 1, we described a way of partitioning RP(1) where I0 = [−1, 1],
I1 = RP(1)−]− 1, 1[, and the projectivity ϕ1 : RP(1) → RP(1)

ϕ1 : t 7→
1

t

is induced by the linear map (u, v) 7→ (v, u).

Besides the hyperplane model of the projective space RP(n) reviewed in Section 2, there
is another well known model in terms of the n-sphere, the sphere model . (see Berger [2],
Samuel [17], or Stolfi [18]). Indeed, RP(n) is the quotient space obtained by identifying
antipodal points on Sn (recall that Sn = {(x1, . . . , xn+1) ∈ R

n+1 | x21 + · · ·+ x2n+1 = 1}, and
the antipodal point of (x1, . . . , xn+1) is (−x1, . . . ,−xn+1)). In particular, the real projective
line RP(1) is obtained by identifying antipodal points on the circle S1. However, up to
homeomorphism, we can view RP(1) as the result of identifying antipodal points on any
closed convex polygon with central symmetry inscribed in the circle. Requiring central
symmetry is not indispensible, but makes life easier since pairs of antipodal vertices are
identified. The simplest convex polygons of this type are rectangles and squares. Thus,
we obtain all the partitions of RP(1) into two disjoint segments by projecting an inscribed
rectangle (or square) onto some line not passing through the center, from the center of the
circle. For instance, the case where I0 = [−1, 1] corresponds to a square, as illustrated in
figure 1.

Case 1: I0 = [−1, 1].

a b

−a−b

O

H

Figure 1: Model of the projective line, Case 1: I0 = [−1, 1]
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In this case, the line of projection H (of equation y = 1) contains an edge of the square
(here (a, b)). Actually, this case applies to any affine frame (−s, s), where s 6= 0. Letting
a = (−s, 1) and b = (s, 1), it is trivial to verify that the linear map

(u, v) 7→
(
sv,

u

s

)

inducing the projectivity ϕ1 is the unique linear map such that

ϕ1(a) = −a, ϕ1(b) = b.

The points (a, b,−a,−b) are the vertices of the inscribed square, and ϕ1 maps the top edge
(a, b) of the square onto the right edge (−a, b). When a line L through the origin and passing
through a point of the edge (−a, b) varies, the intersection of L with the line H varies in
ϕ1([−s, s]).

We are now ready to tackle the general case.

Case 2: I0 = [r, s].

Given any affine frame (r, s) (where r < s), we let the line H of equation y = 1 be the
line of projection, we let a = (r, 1) and b = (s, 1) (points on H), and we define a rectangle
(c, b,−c,−b) inscribed in the circle C of center O = (0, 0) and of radius R =

√
s2 + 1 (so

that b is on C), and a projectivity ϕ : RP(1) → RP(1), as follows: c is the point on the upper
half-circle defined as the intersection of the line (O, a) with C, and ϕ is the projectivity
induced by the unique linear map such that

ϕ(a) = −a, ϕ(b) = b.

Figure 2 illustrates the case where a is inside the circle.

c

−c

b

−b

a

−a
O

H

Figure 2: Model of the projective line, Case 2: I0 = [r, s]

The rational curve G whose trace over [r, s] is equal to the trace of F over ϕ([r, s]) is
defined as follows.
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Definition 3.1 For every affine frame (r, s) (r < s) and every rational curve F : RP(1) →
RP(n) of degree m specified by some symmetric multilinear map f : (R2)m → R

n+1, the
rational curve G is specified by the symmetric multilinear map g : (R2)m → R

n+1 such that

g((t1, z1), . . . , (tm, zm)) = f(ϕ(t1, z1), . . . , ϕ(tm, zm)),

where ϕ is the projectivity defined earlier.

Note that the point F (∞) corresponding to the point at infinity in RP(1), is given by
G((0, 1)). It should also be noted that it is quite possible that

f((t, z), . . . , (t, z)︸ ︷︷ ︸
m

) =
−→
0

for some (t, z) 6= (0, 0). In such a case, we have what is called a base point . This corresponds
to the situation where the polynomials F1(t), . . . , Fn+1(t) vanish simultaneously. Such sit-
uations arise in practice, for example after degree-raising. Another more devious situation
where base points arise is when computing control nets of curves on rational surfaces, for
example, a torus. We discovered this situation in drawing a torus in terms of u-curves and
v-curves. Fortunately, in the case of curves, there is a simple remedy. Indeed, it is easy to
justify using continuity and the fact that if polynomials in one variable vanish simultane-
ously, then they have a greatest common divisor, that bad points of the form

−→
0 = (0, . . . , 0︸ ︷︷ ︸

n+1

)

can simply be discarded. The price to pay is that it may be necessary to subdivide more in
order to retain a proper level of visual smoothness.

Lemma 3.2 For every affine frame (r, s) (r < s) and every rational curve F : RP(1) →
RP(n) of degree m specified by some symmetric multilinear map f : (R2)m → R

n+1, if
g : (R2)m → R

n+1 is the symmetric multilinear map of definition 3.1, except for base points,
F and G have the same trace. In particular, the trace G([r, s]) is the union of the traces
F ([−∞, r]) and F ([s,+∞]). Furthermore, if (β0, . . . , βm) are the control points (in R

n+1)
of F w.r.t. the affine frame (r, s), the control points (θ0, . . . , θm) (in R

n+1) of the curve G
w.r.t. (r, s) are given by the equations

θi = (−1)i βi.

Proof . We have

g((t1, z1), . . . , (tm, zm)) = f(ϕ(t1, z1), . . . , ϕ(tm, zm)),

and thus
P(g)([t1, z1], . . . , [tm, zm]) = P(f)([ϕ(t1, z1)], . . . , [ϕ(tm, zm)]).
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Now, since ϕ is a bijection from [r, s] to RP(1)− ]r, s[ , F and G have the same trace, and
the trace G([r, s]) is the union of the traces F ([−∞, r]) and F ([s,+∞]). Finally, the control
points θi of G w.r.t. (r, s) are given by

θi = g(a, . . . , a︸ ︷︷ ︸
m−i

, b, . . . , b︸ ︷︷ ︸
i

),

and since
g((t1, z1), . . . , (tm, zm)) = f(ϕ(t1, z1), . . . , ϕ(tm, zm)),

ϕ(a) = −a, and ϕ(b) = b, we get θi = f(−a, . . . ,−a︸ ︷︷ ︸
m−i

, b, . . . , b︸ ︷︷ ︸
i

), that is

θi = (−1)m−if(a, . . . , a︸ ︷︷ ︸
m−i

, b, . . . , b︸ ︷︷ ︸
i

) = (−1)m−i βi.

However, the points (−1)m−i βi and (−1)i βi have the same projection under Π, so we might
as well use the simpler expression (−1)i βi. �

Remark . The above proof has the advantage that it does not require an explicit com-
putation of the projectivity ϕ, but of course, an explicit formula for ϕ can be found. The
projectivity ϕ is induced by the linear map

(t, z) 7→
(
(s+ r)t

s− r
−

2rsz

s− r
,

2t

s− r
−

(s+ r)z

s− r

)
,

so that

ϕ(t) =
(s+ r)t− 2rs

2t− (s+ r)
.

If we recall that the Bernstein polynomials of degree m over [r, s] are given by

Bm
i [r, s](t) =

(
m

i

)(
s− t

s− r

)m−i( t− r

s− r

)i

,

it is easily shown that under the change of variable ϕ, we get

s− ϕ(t)

s− r
= −

s− t

2t− (s+ r)
, and

ϕ(t)− r

s− r
=

t− r

2t− (s+ r)
.

Noting the presence of the minus sign in the first expression, we get

Bm
i [r, s](ϕ(t)) =

(−1)m−i(s− r)m

(2t− (s+ r))m

(
m

i

)(
s− t

s− r

)m−i( t− r

s− r

)i

,

that is

Bm
i [r, s](ϕ(t)) =

(−1)m−i(s− r)m

(2t− (s+ r))m
Bm

i [r, s](t).
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From this and the fact that a rational curve F can be expressed as

F (t) =

m∑

i=0

wiB
m
i [r, s](t)

w(t)
bi,

where we assumed that the control points are of the form 〈bi, wi〉 (with wi 6= 0) and where

w(t) =

m∑

i=0

wiB
m
i [r, s](t),

we get

F (ϕ(t)) =
m∑

i=0

(−1)m−iwiB
m
i [r, s](t)

w(ϕ(t))
bi,

where

w(ϕ(t)) =
m∑

i=0

(−1)m−iwiB
m
i [r, s](t),

and we obtain another proof our result (since we can multiply both the numerator and the
denominator by (−1)m+2i = (−1)m, getting weights of the form (−1)iwi). Note that the
above proof does not account for control vectors, but this can be done too. Of course, we
prefer the geometric proof of Lemma 3.2 to this more computational proof, which, in our
opinion, obsures what’s really going on!

Lemma 3.2 shows that F and G have the same trace. It also shows that if the control
points (in R

n+1) of F w.r.t. (r, s) are (β0, . . . , βm), if βi is of the form (a, w), where a is a
point in R

n and w 6= 0 is a weight, then

θi = (a, (−1)i w),

and if βi is a control vector −→u ∈ R
n, then

θi = (−1)i −→u .

The upshot is that in order to render the entire trace of the curve F (over [−∞,+∞]), it is
enough to render both F and G over [r, s], and the computation of the control points of G
from those of F over (r, s) is very simple. For example, in the case of the ellipse F specified
by the fractions

x(t) =
4t

1 + t2
,

y(t) =
t2 − 3t+ 2

1 + t2
,
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the control points w.r.t. (−1, 1) are

β0 = ((−2, 3), 2), β1 = ((0, 1), 0), β2 = ((2, 0), 2),

where β1 is a control vector, and the control points θ0, θ1, θ2 are

θ0 = ((−2, 3), 2), θ1 = ((0,−1), 0), θ2 = ((2, 0), 2).

Bajaj and Royappa have investigated another method for drawing closed rational curves
(and more generally, rational varieties) [1]. Their method is based on the observation that

the maps ψ1 : t 7→
t

1− t
and ψ2 : t 7→

−t
1− t

map [0, 1 [ bijectively onto [0,+∞ [ and [0,−∞ [

respectively. There is a simple geometric explanation for the choice of their projectivities.
This case corresponds to a square and to the choice where the line of projection H (of
equation y = 1) passes through a vertex and is perpendicular to one of the main diagonals
of the square as shown in figure 3.

a

−a

b−b O

cH

Figure 3: Model of the projective line, Case 3

However, Bajaj and Royapa do not consider the problem of computing the control points

of the curves F

(
t

1− t

)
and F

( −t
1− t

)
. This can be done, but the resulting method is more

complicated than ours. This is because the projectivities ψ1 and ψ2 do not map c = (1, 1)
to an already existing vertex.

Another method due to DeRose [4] can be explained as follows. If F is a rational curve
of degree m defined by the multilinear map f : (R2)m → R

n+1, letting

Bm
i (u, v) =

(
m

i

)
uivm−i
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and assuming that the control points induced by f over [0, 1] are of the form 〈bi, wi〉 where
wi 6= 0, it is easily shown that if

∑m

i=0
wiB

m
i (t, z) 6= 0, then

F ([t, z]) =

m∑

i=0

wiB
m
i (t, z) bi

m∑

i=0

wiB
m
i (t, z)

,

for all homogeneous coordinates [t, z] ∈ R
2. Then, F (t, z) can be computed by a simple

modification of the de Casteljau algorithm: instead of computing the affine combination
(1 − u) bri + u bri+1, compute the linear combination z bri + u bri+1. Finally, consider the C0-
continuous curve in R

2 defined such that t 7→ (t, 1−|t|) over [−1, 1]. This curve is a model of
the projective line in R

2 (identifying the points (−1, 0) and (1, 0)). In fact, this corresponds
to Case 3 above! We can draw the closed rational curve F in a single piece as the trace of
F ([u, 1− |u|]).

The advantage of DeRose’s method is that it does not require a new control polygon, as
in our method (although, computing this new control polygon is very simple, as we showed).
The disadvantage is that it requires sampling some model of the projective line, and that the
subdivision version of the standard De Casteljau algorithm cannot be used. Futher computer
experimentation seems needed to compare the two methods.

Our method has been implemented in Mathematica, and the code can be found in Gallier
[9]). It can also be used to render curves on surfaces.

4 Examples

Our first example is a quartic given by the following control polygon w.r.t (0, 1):

inpol = {{0,0,1},{2,6,1},{6,8,2},{10,4,1},{10,0,1}}
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Figure 4: A Closed Quartic

Our second example is the following rational curve of degree 8:

x =
t(7− 35t2 + 21t4 − t6)

(t2 + 1)4
,

y =
t2(7− 35t2 + 21t4 − t6)

(t2 + 1)4
.

The control polygon w.r.t. (−1, 1) is

inpol2 = {{1/2, -1/2, 16}, {8, -6, 0}, {-7/4, 7/2, 16/7},

{-8, 2, 0}, {0, -35/6, 48/35}, {8, 2, 0}, {7/4, 7/2, 16/7},

{-8, -6, 0}, {-1/2, -1/2, 16}}

There are four control vectors. The curve looks like a seven-leafed rose.
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Figure 5: A seven-leafed rose, 6 iterations

Experimenting with our method, we observed that it is advantageous to compute a control
polygon w.r.t. (−1, 1). This is because the complementary curve segment specified by F (1/t)
is subdivided more evenly than the curve segment specified by F (t/(2t− 1)) over (0, 1). In
computing the new control polygon w.r.t. (−1, 1), control vectors occasionally arise. Since
we apply the de Casteljau algorithm in R

n+1 and apply the projection Π at the end (i.e.,
divide by the “weight factor” xn+1 at the end), there is absolutely no problem with control
vectors. More examples, some rather pretty, can be found in Gallier [9].

5 Conclusion

We have presented an efficient method for drawing closed rational curves, defined paramet-
rically or in terms of weighted control points. The method relies on a subdivision version
of the standard de Casteljau algorithm. One of the advantages of our method is that it is
incremental. Indeed, the algorithm produces an approximation of the curve as a sequence
of control polygons. Thus, if we wish to get better accuracy, we can subdivide each control
polygon in the list. We can also achieve a zooming effect by selectively subdividing some
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subsequences of control polygons. We can also use our method for drawing rational curves
on rational surfaces. This way, we can render surfaces in terms of u-curves and v-curves.
A weakness of the method is that it only applies to rational curves. In particular, it does
not apply to curves defined implicitly. Some methods to draw implicit curves are described
in Hoffman [12]. Sometimes, it is desirable to convert parametric rational definitions into
implicit form, and to apply methods to rasterize nonparametric curves. Some interesting
algorithms tackling theses problems are investigated in Hobby [10, 11]. On the other hand,
although restricted to rational curves, our method is very efficient.
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