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7.5 Correlation on the Space of Feature Fields L2(Rd, bH)

A typical CNN consists of layers, starting with a lifting
layer followed by group correlation layers (often called
group convolution layers).

The last layer is typically a projection layer involving
some pooling process.

This is a simpler process that we will not discuss here.
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The lifting layer takes as input a function fin 2 L2(Rd)
and produces an output function fout 2 L2(Rd

oH) given
by a lifted correlation, with

fout(x, h) = (k e? fin)(x, h),

where

(k e? fin)(x, h) =
Z

Rd
fin(t)k(h

�1
·(t�x)) dt, (x, h) 2 R

d
⇥H.
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Computing (k e? fin)(x, h) requires discretizing the group
H , which is not possible in practice if d > 2.

If the kernel k can be expressed in terms of anH-steerable
family Y of L functions in L2(Rd) and a representation
⌃ : H ! U(L), then fout(x, h) can be computed a lot
cheaply in terms of a feature field bfout : Rd

! ML(C)
defined from fin and Y as

fout(x, h) = (k e? fin)(x, h) = tr
⇣
bfout(x)⌃(h)>

⌘
,

where bfout(x) is a matrix of Fourier coe�cients.



762 CHAPTER 7. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

A group correlation layer takes as input a function
fin 2 L2(Rd

o H) and produces as output a function
fout 2 L2(Rd

oH) using a group correlation

fout(s) = (k ? fin)(s)

=

Z

G
fin(t)k(s

�1t) d�G(t), s 2 G = R
d
oH.

We saw in the previous section that a G-feature map
f 2 L2(Rd

o H) yields a family bf = ( bf⇢)⇢2R(H) of fea-

ture fields bf⇢ 2 L2(Rd, bH)⇢ and that f can be recovered
pointwise by Fourier inversion, namely

f (x, h) =
X

⇢2R(H)

n⇢ tr
⇣
bf⇢(x)M⇢(h)

⌘
.

We know how to transform G-feature maps using group
correlation.
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This defines a transform � on L2(G) (whereG = R
d
oH)

given by fout = �(fin) = k ? fin.

We can summarize the situation by the following diagram:

L2(G) �
//

F
⌧

✏✏

L2(G)

F
⌧

✏✏

L2(Rd, bH)

F⌧

OO

?

//L2(Rd, bH).

F⌧

OO

Since it is too expensive to compute �(fin) = k ? fin,
it would be nice if we could define the missing map, a
notion of correlation

b� : L2(Rd, bH) ! L2(Rd, bH)

on feature fields, and then we would recover k ? fin by
Fourier inversion.
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In theory this is possible; we simply define b� as

b� = F
⌧
� � � F ⌧ ,

using F
⌧ and F ⌧ .

We can push this approach further using the fact that
the Fourier transform F

⌧
⇢ is continuous and that � is a

continuous linear map.

The following proposition is needed.
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Proposition 7.5. If E and F are two normed vector
spaces and if � : E ! F is a continuous linear map,
then the following properties hold:

(1) For any convergent series
P

1

n=1
un (with un 2 E),

the series
P

1

n=1
�(un) converges in F and

�

✓ 1X

n=1

un

◆
=

1X

n=1

�(un).

(2) For any countable index set ⇤, for any summable
series

P
`2⇤ u` (with u` 2 E), the series

P
`2⇤�(u`)

is summable in F and

�

✓X

`2⇤

u`

◆
=
X

`2⇤

�(u`).

See Vol I, Definition @@@D.6, for the definition
of a summable series.
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Then for any family ( bf⇢1)⇢12R(H) of feature fields in L
2(Rd, bH),

we have

b�(( bf⇢1)⇢12R(H)) = F
⌧

✓
�

✓ X

⇢12R(H)

F ⌧
⇢1(

bf⇢1)
◆◆

by (F ⌧)

= F
⌧

✓ X

⇢12R(H)

�(F ⌧
⇢1(

bf⇢1))
◆

by Proposition 7.5 for �

=

✓
F

⌧
⇢2

✓ X

⇢12R(H)

�(F ⌧
⇢1(

bf⇢1)
◆◆

⇢22R(H)

by definition of F ⌧

=

✓ X

⇢12R(H)

F
⌧
⇢2
(�(F ⌧

⇢1(
bf⇢1)))

◆

⇢22R(H)

by Proposition 7.5 for F ⌧
⇢2
.
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Define b�⇢1 and
b�⇢2,⇢1 as

b�⇢2,⇢1(
bf⇢1) = F

⌧
⇢2
(�(F ⌧

⇢1(
bf⇢1))) (b�⇢2,⇢1)

b�⇢1(
bf⇢1) =

X

⇢12R(H)

b�⇢2,⇢1(
bf⇢1), (b�⇢1)

so that

b�(( bf⇢1)⇢12R(H)) =
�b�⇢1(

bf⇢1)
�
⇢22R(H)

. (b�)

It is an interesting and useful fact that the transforms
b�⇢2,⇢1 are equivariant with respect to the representions
IndGH �⇢1 and IndGH �⇢2.
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Consider the diagram

L2(Rd, bH)⇢1
F⌧ ⇢1

//

(Ind
G
H �⇢1)(x,h)

✏✏

L2(G)

R(x,h)

✏✏

�
//L2(G)

R(x,h)

✏✏

F
⌧
⇢2
//L2(Rd, bH)⇢2

(Ind
G
H �⇢2)(x,h)

✏✏

L2(Rd, bH)⇢1F⌧ ⇢1

//L2(G)
�

//L2(G)
F
⌧
⇢2

//L2(Rd, bH)⇢2.

Since the three squares commute, the outer square also
commutes, so we have the following commutative diagram

L2(Rd, bH)⇢1

(Ind
G
H �⇢1)(x,h)

✏✏

b�⇢2,⇢1
//L2(Rd, bH)⇢2

(Ind
G
H �⇢2)(x,h)

✏✏

L2(Rd, bH)⇢1 b�⇢2,⇢1

//L2(Rd, bH)⇢2,

which shows that b�⇢2,⇢1 is equivariant with respect to the
representations IndGH �⇢1 and IndGH �⇢2.
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Suppose the group correlation � : L2(G) ! L2(G) is
given by a kernel k as

�(f )(x, h) =

Z

RdoH
k(h�1

· (x1 � x), h�1h1)

f (x1, h1) d�H(h1) dx1.

Since

[F ⌧
⇢1(

bf⇢1)](x1, h1) = n⇢1tr
⇣
bf⇢1(x1)M⇢1(h1)

⌘
,

we have

�(F ⌧
⇢1(

bf⇢1))(x, h) =
Z

RdoH
k(h�1

· (x1 � x), h�1h1)

n⇢1tr
⇣
bf⇢1(x1)M⇢1(h1)

⌘
d�H(h1) dx1,

and then using Fubini we have
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F
⌧
⇢2
[�(F ⌧

⇢1(
bf⇢1))](x)

=

Z

H

Z

RdoH
k(h�1

· (x1 � x), h�1h1)

n⇢1tr
⇣
bf⇢1(x1)M⇢1(h1)

⌘
d�H(h1) dx1M⇢2(h)

⇤ d�H(h)

=

Z

Rd

Z

H

Z

H
n⇢1tr

⇣
bf⇢1(x1)M⇢1(h1)

⌘

k(h�1
· (x1 � x), h�1h1)M⇢2(h)

⇤ d�H(h) d�H(h1) dx1.

This suggests defining

�⇢2,⇢1 : R
d
⇥Mn⇢1

(C) ! Mn⇢2
(C) by

�⇢2,⇢1(x1 � x,A)

=

Z

H

Z

H
n⇢1tr

⇣
AM⇢1(h1)

⌘
k(h�1

· (x1 � x), h�1h1)

M⇢2(h)
⇤ d�H(h) d�H(h1), (�⇢2,⇢1)

where A 2 Mn⇢1
(C), so that
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[b�⇢2,⇢1(
bf⇢1)](x) = F

⌧
⇢2
[�(F ⌧

⇢1(
bf⇢1))](x)

=

Z

Rd
�⇢2,⇢1(x1 � x, bf⇢1(x1)) dx1.

(b�bis

⇢2,⇢1
)

In order to go further we need to express the kernel
�⇢2,⇢1(x,A) in terms of H-steerable functions on
L2(Rd

oH).

Next we show how to proceed with H = SO(d).
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By (f ⇢) and (str17) in Example 7.6, the Hilbert space
L2(SE(d)) has a Hilbert basis consisting of functions of
the form

⇣
m(⇢)

k⇢`⇢
(h1)w⇢,k⇢,`⇢(h

�1

1
x)
⌘

1k⇢,`⇢n⇢, ⇢2R(SO(d))
, (str20)

with h1 2 SO(d) and x 2 R
d, where w⇢,k⇢,`⇢ is the sum

of a series in the functions

e�
kxk2

2 Hk1(x1) · · ·Hkn(xd). (str21)

Thus the kernel k(x1, h1) can be expressed as the sum of
a series

k(x1, h1) =
X

1k⇢,`⇢n⇢, ⇢2R(SO(d))

m(⇢)
k⇢`⇢

(h1)w⇢,k⇢,`⇢(h
�1

1
x1).

(k(x1, h1))
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The result to be presented next makes use of the n⇢2⇥n⇢2
matrix W⇢2(x1) whose (k⇢2, `⇢2) entry is w⇢2,k⇢2,`⇢2

(x1).

We need to find an expession for k(h�1(x1 � x), h�1h1).

After some computations(!) we get

�⇢2,⇢1(x1 � x,A) =
X

1k⇢,`⇢,j⇢n⇢
⇢2R(SO(d))

Z

H

Z

H
n⇢1 tr

⇣
AM⇢1(h1)

⌘
(1/n⇢)m

(⇢)
j⇢`⇢

(h1)

w⇢,k⇢,`⇢(h
�1

1
(x1 � x))m(⇢)

j⇢k⇢
(h)M⇢2(h)

⇤ d�H(h) d�H(h1).
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Since the functions m(⇢)
j⇢k⇢

and m(⇢2)
j⇢2k⇢2

are orthogonal for

⇢ 6= ⇢2 by Theorem 4.4(1), only the terms for which
⇢ = ⇢2 survive, so we get

�⇢2,⇢1(x1 � x,A) =
X

1k⇢2,`⇢2,j⇢2n⇢2

Z

H
n⇢1 tr

⇣
AM⇢1(h1)

⌘
m(⇢2)

j⇢2`⇢2
(h1)

w⇢2,k⇢2,`⇢2
(h�1

1
(x1 � x))Z

H
(1/n⇢2)m

(⇢2)
j⇢2k⇢2

(h)M⇢2(h)
⇤ d�H(h) d�H(h1).
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Now the (k0⇢2, j
0

⇢2
)-entry in the matrix M⇢2(h)

⇤ is

m(⇢2)
j0⇢2k

0
⇢2
(h), and since by Theorem 4.4(1,3) the functions

m(⇢2)
j0⇢2k

0
⇢2
and m(⇢2)

j⇢2k⇢2
are orthogonal unless k0⇢2 = k⇢2 and

j0⇢2 = j⇢2, in which case hm
(⇢2)
j⇢2k⇢2

,m(⇢2)
j⇢2k⇢2

i = n⇢2, the inner
integral evaluates to

Z

H
(1/n⇢2)m

(⇢2)
j⇢2k⇢2

(h)M⇢2(h)
⇤ d�H(h) = Ek⇢2j⇢2

,

the matrix with 1 in the (k⇢2, j⇢2) entry and 0 otherwise,
so (after some computation!) we get
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�⇢2,⇢1(x1 � x,A) =

Z

H
n⇢1 tr

⇣
AM⇢1(h1)

⌘

W⇢2(h
�1

1
(x1 � x))M ⇤

⇢2
(h1) d�H(h1),

(⇤�⇢2,⇢1
)

and

[b�⇢2,⇢1(
bf⇢1)](x) = F

⌧
⇢2
[�(F ⌧

⇢1(
bf⇢1))](x)

=

Z

Rd
�⇢2,⇢1(x1 � x, bf⇢1(x1)) dx1,

(⇤b�⇢2,⇢1
)

where W⇢2(x1) is the n⇢2 ⇥ n⇢2 matrix whose (k⇢2, `⇢2)
entry is w⇢2,k⇢2,`⇢2

(x1) introduced just after (k(x1, h1)).
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It is not hard to show that the above results can be gen-
eralized to the situation where H is a compact matrix
group acting on R

d by multiplication.

In the special case where d = 2 and H = SO(2) (har-
monic nets) we can use polar coordinates and view the
functions in L2(SE(2)) as functions f ((kxk ,↵), ✓). In
this case, by (str14) from Example 7.4, a Hilbert basis
consists of the functions of the form

e�im✓eik(✓�↵x)wm,k(kxk), m, k 2 Z.
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In this special case `⇢ = ⇢ 2 Z, there is no index k⇢

since n⇢ = 1, h1 = ei✓
0

, m(⇢)
k⇢`⇢

(h1) = e�i⇢✓0, M⇢(✓0) =

ei⇢✓
0

, m = ⇢2, and by (str20) and (str21) the matrix
W⇢2(kx1 � xk ,↵x1�x � ✓0) consists of the series

1X

k=1

e�ik(✓0�↵x1�x)w⇢2,k(kx1 � xk).

It follows that we need to evaluate the integral (⇤�⇢2,⇢1
);

1X

k=1

Z

SO(2)

ei⇢1✓
0

e�ik(✓0�↵x1�x)w⇢2,k(kx1 � xk)e�i⇢2✓
0

d✓0

=
1X

k=1

eik↵x1�xw⇢2,k(kx1 � xk)

Z

SO(2)

ei(⇢1�⇢2�k)✓0 d✓0

= e�i(⇢2�⇢1)↵x1�xw⇢2,⇢1�⇢2(kx1 � xk).
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In conclusion we obtain the kernel

�⇢2,⇢1(x1 � x,A) = Ae�i(⇢2�⇢1)↵x1�xw⇢2,⇢1�⇢2(kx1 � xk).

Since this is a scalar kernel that simply multiplies by A,
we can express it as

�⇢2,⇢1(x1 � x) = e�i(⇢2�⇢1)↵x1�xw⇢2,⇢1�⇢2(kx1 � xk).

We derive this formula in full detail in the next section
on harmonic nets.

The second index ⇢1 � ⇢2 is di↵erent from what we get
in the next section because the computation makes use
of polar coordinates early on.

If we index wm,k as wm,k+m we find the same term
w⇢2,⇢1(kx1 � xk).
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7.6 Equivariant Correlation G-Kernels When
G = R

d
oH

In Section 7.5 we solved the problem of finding a notion
of equivariant group correlation for feature fields
bf⇢ 2 L2(Rd, bH), which are functions bf⇢ : Rd

! Mn⇢(C)
that transform under the representation
�⇢ : H ! U(Mn⇢(C)), with �⇢ = Hom(M⇢, id) (see Propo-
sition 7.3).

For this we used the Fourier transformF
⌧ and the Fourier

cotransform F ⌧ defined in Section 7.4.

Recall that given a correlation kernel k on L2(G) we have
the group correlation � on L2(G) (where G = R

d
oH)

given by fout = �(fin) = k ? fin.
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The correlation b� on feature fields in L2(Rd, bH) is the
map that makes the following diagram commute:

L2(G) �
//

F
⌧

✏✏

L2(G)

F
⌧

✏✏

L2(Rd, bH)

F⌧

OO

b�
//L2(Rd, bH).

F⌧

OO

In Section 7.5 we showed how to construct b� by express-
ing the kernel k in terms of a basis of steerable functions
in L2(G).
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Because the group correlation � is equivariant with re-
spect to the left regular representation R (on L2(G)), the
components b�⇢2,⇢1 of b� are equivariant with respect to
the representations IndGH �⇢1 and IndGH �⇢2, namely the
following diagram commutes.

L2(Rd, bH)⇢1

(Ind
G
H �⇢1)(x,h)

✏✏

b�⇢2,⇢1
//L2(Rd, bH)⇢2

(Ind
G
H �⇢2)(x,h)

✏✏

L2(Rd, bH)⇢1 b�⇢2,⇢1

//L2(Rd, bH)⇢2.

Practice shows that it is desirable to design more general
group correlations that are equivariant with respect to
other representations besides the left regular representa-
tion and to consider feature fields that transform under
representations other than the representations Hom(M⇢, id).
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A first generalization is to have two feature fields spaces
FF(Rd,H, �in : H ! U(Hin)) and
FF(Rd,H, �out : H ! U(Hout)) associated with an in-
put representation �in and an output representation �out,
where Hin and Hout are two finite-dimensional vector
spaces equipped with a hermitian inner product, and
what we are seeking is a linear G-equivariant map b� be-
tween these spaces.

We assume that feature fields f : Rd
! Hin are functions

in L2(Rd,Hin), and similarly for feature fields
f : Rd

! Hout (see Definition 6.20).
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To say that b� is G-equivariant means that the following
diagrams commute

FF(Rd,H, �in)
b�

//

(Ind
G
H �in)(x,h)

✏✏

FF(Rd,H, �out)

(Ind
G
H �out)(x,h)

✏✏

FF(Rd,H, �in) b�
//FF(Rd,H, �out)

for all (x, h) 2 G = R
d
oH , with

[(IndGH �in)(x,h)fin](t) = �in(h)(fin(h
�1

· (t� x))),

t 2 R
d, fin : R

d
! Hin

[(IndGH �out)(x,h)fout](t) = �out(h)(fout(h
�1

· (t� x))),

t 2 R
d, fout : R

d
! Hout,

as in (†2).
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A complete solution to this problem was given in a se-
quence of remarkable papers by Weiler, Geiger, Weilling,
Boomsma and Cohen [41] (for SE(3)), Weiler and Cesa
[40] (for E(2)), Lang and Weiler [31] (for a homogeneous
space X induced by a transitive action of a compact
group H), Cesa, Lang and Weiler [7] (for E(3)), and Co-
hen, Geiger and Weiler [8] (feature fields on homogeneous
spaces).
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It is shown by Weiler, Geiger, Weilling, Boomsma and
Cohen [41] that in the case where H = SO(d), such a
map is given by a kernel

K : Rd
! Hom(Hin,Hout)

via

b�(f )(t) =
Z

Rd
K(y�t)(f (y)) dy, f : Rd

! Hin, t 2 R
d,

(K1)

and the kernel K satisfies the equivariance constraint

K(h · t) = �out(h)�K(t)��in(h)
�1, h 2 SO(d), t 2 R

d.
(EC1)
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FunctionsK : Rd
! Hom(Hin,Hout) satisfying the equiv-

ariance constraint (EC1) are called equivariant convolu-
tion kernels or G-steerable kernels .

The above result is often referred to by the slogan
“correlation is all you need.”

It is instructive to give the proof since it is prototypical
of this kind of argument.



788 CHAPTER 7. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

Proof. The first step is to make use of a result of func-
tional analysis that says that any continuous linear map
(actually, a Hilbert–Schmidt operator)
b� : L2(Rd,Hin) ! L2(Rd,Hout) can be expressed in terms
of a so-called kernel K : Rd

⇥ R
d
! Hom(Hin,Hout), as

b�(f )(t) =
Z

Rd
K(t, y)(f (y)) dy,

f 2 L2(Rd,Hin), t, y 2 R
d, (⇤K1

)

where K is L1-integrable.
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The next step is to find the conditions for a linear con-
tinuous map b� as above to be equivariant, which means
that

(IndGH �out)(x,h) � b� = b� � (IndGH �in)(x,h),

for all g = (x, h) 2 R
d
oH (with H = SO(d)).

Since H = SO(d) and SO(d) acts on R
d by multiplica-

tion we simply write hy for h · y, where h 2 SO(d) and
y 2 R

d.

The action of G = R
d
o SO(d) on R

d is given by
g · y = hy + x, where g = (x, h) 2 R

d
o SO(d) and

y 2 R
d.



790 CHAPTER 7. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

Using (⇤K1
) we have

b�[(IndGH �in)(x,h)f ](t)

=

Z

Rd
K(t, y)(�in(h)(f (h

�1(y � x)))) dy,

and since g�1 = (x, h)�1 = (�h�1x, h�1), if we make
the change of variable y 7! hy + x = g · y, since the
determinant of the Jacobian matrix of this a�ne map is
+1, by the change of variable formula, we get

Z

Rd
K(t, y)(�in(h)(f (h

�1(y � x)))) dy

=

Z

Rd
K(t, g · y)(�in(h)(f (y))) dy.
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Since �out(h) is linear, by Vol I, Proposition @@@5.24(7),
we also have

[(IndGH �out)(x,h)b�](t)
= �out(h)(b�(h�1(t� x)))

= �out(h)

✓Z

Rd
K(h�1(t� x), y)(f (y)) dy

◆

=

Z

Rd
�out(h)

�
K(g�1

· t, y)(f (y))
�
dy.
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Consequently, we must have

K(t, g · y) � �in(h) = �out(h) �K(g�1
· t, y)

for all g 2 G = R
d
o H and all t, y 2 R

d, which by
replacing t by g · t is equivalent to

K(g · t, g · y) = �out(h) �K(t, y) � �in(h)
�1,

g 2 G, h 2 H, t, y 2 R
d. (K1)
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In particular, for g = �t and h = e, we get

K(0, y � t) = K(t, y), (K0

1
)

so we define K such that

K(y) = K(0, y),

and sinceK(t, y) = K(0, y�t) = K(y�t), (⇤K1
) becomes

b�(f )(t) =
Z

Rd
K(y � t)(f (y)) dy,

as claimed.
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By setting t = 0 in (K1), we see that K satisfies the
condition

K(g · y) = �out(h) �K(y) � �in(h)
�1,

g 2 G, h 2 H, y 2 R
d.

Since the expression given by (K1) is already translation
invariant, it su�ces to require the above condition for
g 2 H = SO(d), which is (EC1).

Observe that a crucial point of the proof is that we are
using the Lebesgue measure on R

d and that the deter-
minant of the Jacobian of the change of variable is +1,
because we are considering transformations in the a�ne
group of rigid motions SE(d).
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Earlier, Bekkers [1] considered a situation which is less
general in a way, because no representations are in-
volved, but more general in another way, because he
is dealing with two homogeneous spaces Xin = G/Hin

and Xout = G/Hout, where G is a locally compact group
which is not necessarily a semi-direct product.

In this case, we would like to know when a continuous
linear map � from L2(Xin) to L2(Xout) is equivariant
with respect to the regular representations RG!L

2
(Xin)

and RG!L
2
(Xout) induced by G on L2(Xin) and L2(Xout).

A new di�culty that now comes up is that Xin may not
have a G-invariant measure.
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Although Bekkers [1] does not make use of quasi-invariant
measures, he proves a result in terms of Radon-Nikodym
derivatives of measures which can be translated as follows
using %-functions. Let xout

0
be a chosen point in

Xout = G/Hout, so that Hout is the stabilizer of xout0
.

Suppose that % defines a quasi-invariant measure µ on
Xin = G/Hin.

First we have the fact that every equivariant continuous
linear map � from L2(Xin) to L2(Xout) is given by

�(f )(y) =

Z

Xin

K(x, y)f (x) dµ(x),

y 2 Xout, f 2 L2(Xin), (⇤K2
)

for some kernel K 2 L1(Xin ⇥Xout).
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To say that � is G-equivariant means that the following
diagrams commute

L2(Xin)
�

//

R
G!L

2
(Xin)

g

✏✏

L2(Xout)

R
G!L

2
(Xout)

g

✏✏

L2(Xin) �

//L2(Xout)

for all g 2 G. For any f 2 L2(Xin) and any y 2 Xout we
have

[(� �RG!L
2
(Xin)

g )(f )](y) =

Z

Xin

K(x, y)f (g�1
· x) dµ(x)

and

[(RG!L
2
(Xout)

g � �)(f )](y) =

Z

Xin

K(x, g�1
· y)f (x) dµ(x)

=

Z

Xin

%(g�1, x)K(g�1
· x, g�1

· y)f (g�1
· x) dµ(x).
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The equation

[(� �RG!L
2
(Xin)

g )(f )](y) = [(RG!L
2
(Xout)

g � �)(f )](y)

asserting the commutativity of the above diagram implies
that K satisfies the equation

K(x, y) = %(g�1, x)K(g�1
· x, g�1

· y),

g 2 G, x 2 Xin, y 2 Xout. (K2)
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If we define K : Xin ! C by

K(x) = K(x, xout
0

),

then for any gy 2 G such that y = gy · xout0
,

K(x, y) = K(x, gy · x
out

0
) = %(g�1

y , x)K(g�1

y · x, g�1

y · y)

= %(g�1

y , x)K(g�1

y · x, xout
0

)

= %(g�1

y , x)K(g�1

y · x).
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Consequently, every equivariant continuous linear map �
from L2(Xin) to L2(Xout) is given by

�(f )(y) =

Z

Xin

%(g�1

y , x)K(g�1

y · x)f (x) dµ(x),

y 2 Xout, f 2 L2(Xin), (K2)

where gy 2 G is any element such that y = gy · xout0
.

Since h · xout
0

= xout
0

for all h 2 Hout, by setting
g = h 2 Hout and y = xout

0
in (K2), we deduce that the

map K : Xin ! C satisfies the condition

K(x) = %(h�1, x)K(h�1
· x), h 2 Hout, x 2 Xin.

(K3)
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The factor involving % disappears or is replaced by a more
tractable term in many practical cases.

This is the case when G is unimodular. If Xin = R
d and

G = R
d
o Hout with Hout a closed subgroup of GL(d),

then if g = (x, h) 2 G, the condition on K becomes

K(x) =
1

| det(h)|
K(h�1

·x), h 2 Hout, x 2 Xin, (K4)

where det(h) is the determinant of the matrix represent-
ing h. For more details, see Bekkers [1].
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7.7 Equivariant Correlation G-Kernels; General Case

Until now we have been assuming that we are dealing
with feature fields defined on X = R

d and that the group
G is a semi-direct productG = R

d
oH withH = SO(d),

and more generally a compact group.

It is possible to deal with the more general situation
where X is a homogeneous space of the form X = G/H
with G locally compact and unimodular and H compact
equipped with a unitary representation � : H ! U(H�).

The main problem is to define the “right” notion of fea-
ture field.
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Cohen, Geiger and Weiler [8] propose to use theG-bundle
E = G⇥H H� introduced in Section 6.13; see Definition
6.12.

But then we might as well use the hermitian G-bundles
of finite rank of Definition 6.18 (see Section 6.13) and
the natural choice for the space of feature fields is the
subspace L2(X ;E) of the space of sections of the her-
mitian G-bundle p : E ! X , with X = G/H (see Def-
inition 6.20).

Recall that the restriction of the action of G to H on the
fibre E0 is a unitary representation � : H ! U(E0), and
that for every fibre Ex, there is a representation
�x : H ! U(Ex) equivalent to the representation
� : H ! U(E0).
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For the time being we will assume that there exists a sec-
tion r : X ! G such that the maps
L : L2(X ;E) ! L� and S : L�

! L2(X ;E) define iso-
morphisms between L2(X ;E) and L�.

Recall from Equation (†4) of Definition 6.19 that L� is the
set consisting of all functions f 2 L2(G;E0) such that

f (gh) = �(h�1)(f (g)) = h�1
· f (g),

for all g 2 G and all h 2 H.

We will assume that the representations � : H ! U(E0)
are irreducible.
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Then the feature fields with values in the fibre Ex trans-
form according to the induced representation
IndGH �x = ⇧; see Equation (†7) in Section 6.13.

In view of the isomorphism between L2(X ;E) and L�

given by the map L : L2(X ;E) ! L� (see Definition
6.17, Equation (L3)), with

L(s)(g) = g�1
· s(g · x0), s 2 L2(X ;E), g 2 G,

the induced representation IndGH �x = ⇧ is equivalent to
the left regular representation of G in L�.

We also assume that the section r : X ! G makes the
representation ⇧ continuous.
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Inspired by Cohen, Geiger and Weiler [8] we consider the
more general situation in which we have two hermitian
G-bundles of finite rank pin : Ein ! Xin and
pout : Eout ! Xout, where Xin = G/Hin and
Xout = G/Hout for the same group G, input and output
representations �in and �out, and determine what are the
linear maps � : L�in ! L�out that are equivariant with
respect to the representations IndGHin

�in and IndGHout
�out,

which means that the following diagram commutes

L�in �
//

(Ind
G
Hin

�in)(g)

✏✏

L�out

(Ind
G
Hout

�out)(g)

✏✏

L�in
�

//L�out

for all g 2 G, where
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[(IndGHin
�in)(g)](fin)(g1) = fin(g

�1g1),

g, g1 2 G, fin 2 L�in

[(IndGHout
�out)(g)](fout)(g1) = fout(g

�1g1),

g, g1 2 G, fout 2 L�out.

To reduce the amount of subscripts we will denote the
fibre (Ein)0 above xin0 = Hin by E in

0
and the fibre (Eout)0

above xout
0

= Hout by Eout

0
.

Then our representations �in and �out are
�in : Hin ! U(E in

0
) and �out : Hout ! U(Eout

0
).

The following proposition generalizes results proven in
Cohen, Geiger and Weiler [8] (see Theorem 3.1 and The-
orem 3.2).

In the sequel we assume that all hermitian G-bundles
have finite rank .
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Proposition 7.6. Let pin : Ein ! Xin and
pout : Eout ! Xout be two hermitian G-bundles where
Xin = G/Hin and Xout = G/Hout for the same lo-
cally compact and unimodular group G. If the space
of equivariant G-kernels is defined as

HomHin,Hout
(G,Hom(E in

0
, Eout

0
))

= {K : G ! Hom(E in

0
, Eout

0
) |

K(h2gh1) = �out(h2) �K(g) � �in(h1), (EC2)

g 2 G, h1 2 Hin, h2 2 Hout},

then every equivariant linear map
� 2 HomHin,Hout

(IndGHin
�in, Ind

G
Hout

�out) is of the form

(�(fin))(g) =

Z

G
K(g�1t)(fin(t)) d�G(t) = (K ? fin)(g),

fin 2 L�in, g 2 G (�)

for a unique K 2 HomHin,Hout
(G,Hom(E in

0
, Eout

0
)).
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Observe that if G is not unimodular, in which case the
Haar measure �G is only left-invariant, the modular term
�(h1) needs to be added, namely we have the equation

K(gh1) = �(h1)K(g) � �in(h1),

g 2 G, h1 2 Hin. (K0

6
)

Observe that �(fin) is a generalization of group correla-
tion as defined in Definition ?? to vector valued-functions.

Since we are dealing with finite-dimensional vector spaces,
we don’t need the notion of weak integral and in (�) we
use component-wise integration.
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Recall that IndGHin
�in : G ! U(L�in) and

IndGHout
�out : G ! U(L�out) and that L�in is a space of

functions from G to E in

0
and that L�out is a space of func-

tions from G to Eout

0
.

The equivariance Condition (EC2) is a bit awkward since
it involves the two-sided term h2gh1, with h1 2 Hin and
h2 2 Hout.

Lang and Weiler [31] showed that by considering the
group H = Hout ⇥Hin, Condition (EC2) can be reduced
to the familiar condition

K(h · g) = �out(h) �K(g) � �in(h)
�1, h 2 H, g 2 G.

(EC)



7.7. EQUIVARIANT CORRELATION G-KERNELS; GENERAL CASE 811

The key observation is that as subgroups of G, Hin and
Hout act on G, but we can consider the more general
situation where a compact group H acts on G and seek
kernels K : G ! Hom(E in

0
, Eout

0
) satisfying the condition

(EC).

Indeed if we let H = Hout⇥Hin and define the left action
of H = Hout ⇥Hin on G by

(h2, h1) · g = h2gh
�1

1
, h1 2 Hin, h2 2 Hout

and the representations �H
in
: H ! U(E in

0
) and

�H
out

: H ! U(Eout

0
) by

�H
in
(h2, h1) = �in(h1)

�H
out

(h2, h1) = �out(h2),
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then the condition (EC), namely

K(h · g) = �H
out

(h) �K(g) � (�H
in
(h))�1,

h = (h2, h1) 2 H, g 2 G

is equivalent to

K(h2gh
�1

1
) = �out(h2) �K(g) � �in(h1)

�1,

h1 2 Hin, h2 2 Hout, g 2 H,

which is equivalent to

K(h2gh1) = �out(h2) �K(g) � �in(h1),

h1 2 Hin, h2 2 Hout, g 2 H (EC2)

since in the quantification over h1 2 Hin we can replace
h�1

1
by h1.
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Unlike the previous cases, the kernels K are defined on
the group G and the formula (�) expressing K ? fin as
an integral requires integration over G.

This is more expensive that the previous cases that only
required integration over Rd or more generally over Xin.

The technical reason is that the definition of the induced
representations IndGHin

�in and IndGHout
�out is a lot simpler

when they are acting on the spaces L�in and L�out, since
they are simply the regular representations.

The representations �in and �out are hidden in the defini-
tion of the spaces L�in and L�out.
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To define these representations on functions defined on
Xin or Xout is more complicated because this requires
picking some sets of coset representatives (rinx )x2G/Hin

and
(routx )x2G/Hout

but then, there is no guarantee that the
corresponding sections are continuous.

We will assume in the sequel that the maps Lin and Sin

are continuous, and similarly for the maps Lout and Sout
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7.8 Equivariant Correlation Xin-Kernels

Cohen, Geiger and Weiler [8] give other characterizations
of the space HomHin,Hout

(IndGHin
�in, Ind

G
Hout

�out); one in
terms of kernels defined on Xin = G/Hin, and the other
in terms of kernels on the space Hout\G/Hin of double
cosets.

We discuss the solution in terms of kernels on
Xin = G/Hin and refer the reader to Cohen, Geiger and
Weiler [8] for the third solution (see Theorem 3.4).

The key is to pick a set of coset representatives (rinx )x2G/Hin
.

Here xin
0
= Hin, and as usual rin

xin
0

= e.
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As we said earlier we assume that maps Lin and Sin are
continuous.

Then recall from Definition 6.4 that for every coset
x 2 Xin = G/Hin and every g 2 G we set

uin(g, x) = (ring·x)
�1grinx 2 Hin, (u)

and that by Equation (s), if x = gHin = g · xin
0
, we have

g = rinx u
in(g, xin

0
).
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Then for any g 2 G, if x = gHin = g · xin
0
, by setting

h2 = e in (EC2), we have K(g1h1) = K(g1) � �in(h1) for
all g1 2 G and all h1 2 Hin, so we can write

K(g) = K(rinx u
in(g, xin

0
)) = K(rinx ) � �in(u

in(g, xin
0
)).

This suggests defining  : Xin ! Hom(E in

0
, Eout

0
) by

(x) = K(rinx ), x 2 Xin = G/Hin. ()

The following proposition which generalizes a result orig-
inally proven in Cohen, Geiger and Weiler [8] (Theorem
3.3) is obtained.
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Proposition 7.7. Let pin : E in

0
! Xin and

pout : Eout

0
! Xout be two hermitian G-bundles where

Xin = G/Hin and Xout = G/Hout for the same lo-
cally compact and unimodular group G. If the space
of equivariant G-kernels is defined as

HomHin,Hout
(G,Hom(E in

0
, Eout

0
))

= {K : G ! Hom(E in

0
, Eout

0
) |

K(h2gh1) = �out(h2) �K(g) � �in(h1),

g 2 G, h1 2 Hin, h2 2 Hout}

and the space of equivariant Xin-kernels is defined as

HomHout
(Xin,Hom(E in

0
, Eout

0
))

= { : Xin ! Hom(E in

0
, Eout

0
) |

(h2 · x) = �out(h2) � (x) � �in(u
in(h2, x)

�1),

x 2 Xin, h2 2 Hout}, (EC3)
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then the map that assigns to every Xin-kernel  the
G-kernel K defined such that for every g 2 G, if
x = gHin then

K(g) = (x) � �in(u
in(g, xin

0
)),

is a bijection.

The dependency on x of the term �in(uin(h2, x)�1) is a
problem.

It would be nice ifHin had the property that we could find
a section (a set of coset representatives) rin : G/Hin ! G
satisfying the property

rinh2·x = h2r
in

x h
�1

2
, x 2 Xin = G/Hin, h2 2 Hout. (†3)
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Indeed, in this case, from (u) rewritten as

rinh2·xu
in(h2, x) = h2r

in

x ,

we get

h2r
in

x h
�1

2
uin(h2, x) = h2r

in

x ,

that is,

uin(h2, x) = h2. (†4)
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It follows that

�in(u
in(h2, x)

�1) = �in(h2)
�1,

and (EC3) is then the more friendly condition

(h2 · x) = �out(h2) � (x) � �in(h2)
�1,

h2 2 Hout, x 2 Xin. (EC4)

It is not hard to show that Equation (†3) holds in the case
where H = Hin = Hout and G is a semi-direct product.
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In general there does not appear to be a simple way to
find conditions for which the term �in(uin(h2, x)�1) goes
away.

Cohen, Geiger and Weiler [8] (Theorem 3.4) show that
by considering kernels defined on the double coset space
Hout\G/Hin, Condition (EC3) almost becomes Condition
(EC5), but the analog of the representation �in depends
on x, so this is not a reduction to (EC5).



7.9. PASSING FROM L�in AND L�out TO L
2
(Xin, Ein) AND L

2
(Xout, Eout) 823

7.9 Passing from L�in and L�out to L2(Xin, Ein) and
L2(Xout, Eout)

The G-equivariant maps in
HomHin,Hout

(IndGHin
�in, Ind

G
Hout

�out) are functions fromL�in

to L�out and still require integration over G to be com-
puted using equivariant kernels in the space
HomHin,Hout

(G,Hom(E in

0
, Eout

0
)).

It would be nice if we could transform the integration over
G to a more practically computable integration over Xin.

This can be achieved by using the maps
Sout : L�out ! L2(Xout, Eout) and
Lin : L2(Xin, Ein) ! L�in given by (S 00

3
) and (L0

3
) of Sec-

tion 6.13.
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When these maps are well-defined, which is our assump-
tion, they can be used to define maps from L2(X,Ein) to
L2(X,Eout) from functions from L�in to L�out.

Recall that (L0

3
) is given by

L(s)(g) = �(u(g, x0)
�1)(r�1

x · s(x)),

x = gH = g · x0, g 2 G, s 2 L2(X,E),

and (S 00

3
) is given by

S(f )(gH) = S(f )(g · x0) = g · f (g),

g 2 G, f 2 L�.
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Pick a set of coset representatives (rinx )x2G/Hin
for

Xin = G/Hin and a set of coset representatives (routx )x2G/Hout

for Xout = G/Hout.

Then for every section s 2 L2(Xin, Ein), for every
x 2 Xout, observe that for every equivariant kernel
K 2 HomHin,Hout

(G,Hom(E in

0
, Eout

0
)), the function e� given

by

e�(s) = Sout(K ? (Lin(s))

maps L2(Xin, Ein) to L2(Xout, Eout), because
Lin(s) 2 L�in, K ? (Lin(s)) 2 L�out, and
Sout(K ? (Lin(s))) 2 L2(Xout, Eout), as illustrated in the
following diagram.

L�in �=K?�
//L�out

Sout

✏✏

L2(Xin, Ein) e�
//

Lin

OO

L2(Xout, Eout).
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We now work out several explicit formulae for
Sout(K ? (Lin(s)), the most general ones being (†8) and
(†9).

For any s 2 L2(Xin, Ein) we obtain

[Sout(K ? (Lin(s))](x)

= routx ·

Z

G
((routx )�1y)

[�in(u
in((routx )�1, y))((riny )

�1
· s(y))] d�G(t),

(†7)

with y = t · xin
0
, t 2 G, and x = routx · xout

0
2 Xout.
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By Vol I, Proposition @@@8.43, since G is a locally com-
pact group andHin is a compact subgroup ofG, the space
Xin = G/Hin admits a G-invariant �-Radon measure �
so that for any s 2 L2(Xin, Ein) and any
x = routx · xout

0
2 Xout,

[Sout(K ? (Lin(s))](x)

= routx ·

Z

Xin

((routx )�1y)

[�in(u
in((routx )�1, y))((riny )

�1
· s(y))] d�(y).

(†8)

This is the main formula of this section.

It uses a cheaper integration over Xin and the simpler
kernel .
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This formula holds in the general framework of hermitian
G-bundles of finite rank.

A similar formula is given in Cohen, Geiger and Weiler
[8] (Formula (14)), but with the term uin((routx )�1riny , x

in

0
)

instead of the term uin((routx )�1, y). In fact these terms
are equal.

This is because by (⇤h),

uin((routx )�1riny , x
in

0
) = uin((routx )�1, riny · xin

0
)uin(riny , x

in

0
)

= uin((routx )�1, y),

since uin(riny , x
in

0
) = e, which follows from Equation (u)

since

uin(riny , x
in

0
) = (rin

riny ·xin
0

)�1riny r
in

xin
0

= (riny )
�1riny e = e.

We finish this section by considering two special cases of
the main formula.
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Example 7.9. If the hermitian G-bundles Ein and Eout

arise from the Borel construction (see Section 6.12) from
the representations �in : Hin ! U(Hin) and
�out : Hout ! U(Hout), then the fibres Exin (with
xin 2 Xin) consists of equivalence classes
{[(rinxin, uin)] | uin 2 Hin}, and the fibres Exout (with
xout 2 Xout) consists of equivalence classes
{[(routxout, uout)] | uout 2 Hout}.

The fibre E in

0
above xin

0
= Hin consists of equivalence

classes of the form [(e, uin)], and the fibre Eout

0
above

xout
0

= Hout consists of equivalence classes of the form
[(e, uout)].

The fibre E in

0
is isomorphic to Hin, and the fibre Eout

0
is

isomorphic toHout; see the discussion just after Definition
6.16.
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We also explained in Section 6.13 that the definition of
the action ofG on these hermitianG-bundles implies that

(rinxin)
�1

· [(rinxin, uin)] = [(e, uin)]

and

routxout · [(e, uout)] = [(routxout, uout)],

so the above maps provide isomorphisms from Exin to E
in

0

and from Eout

0
to Exout.
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Since the sections in �(Ein) are of the form

sin(xin) = [(rinxin, uin)]

and the sections in �(Eout) are of the form

sout(xout) = [(routxout, uout)],

and since (xin) maps the fibre E in

0
to the the fibre Eout

0
,

we see that if we identify all the fibres Exin with E in

0
and

all the fibres Exout with E
out

0
, then we can view sections in

�(Ein) as functions fromXin to E in

0
⇡ Hin and sections in

�(Eout) as functions from Xout to Eout

0
⇡ Hout, so we can

drop the terms routx and (riny )
�1 and we get the formula
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[Sout(K ? (Lin(s))](x)

=

Z

Xin

((routx )�1y)[�in(u
in((routx )�1, y))(s(y))] d�(y),

(†9)

for all s 2 L2(Xin, Ein), with y 2 Xin and x 2 Xout.

The second special case deals with semi-direct products.
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Example 7.10. If H = Hin = Hout and G is a semi-
direct product G = N oH , then X = G/H ⇡ N .

By (†6), rn·y = nry when n 2 N , and from

rn·yu(n, y) = nry,

we get nryu(n, y) = nry, that is

u(n, y) = e. (†10)
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Consequently, by setting n = (rx)�1
2 N we have

u(r�1

x , y) = e, and since rx = x and ry = y, by (†10) and
(†8) we obtain

[S(K ? (L(s))](x) = x ·

Z

N
(x�1y)(y�1

· s(y)) d�(y),

x, y 2 N, (†11)

for all s 2 L2(X,E).
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If the hermitian G-bundles are constructed from repre-
sentations �in : H ! U(Hin) and �out : H ! U(Hout),
the above formula becomes

[S(K ? (L(s))](x) =

Z

N
(x�1y)(s(y)) d�(y), x, y 2 N,

(†12)

for all s 2 L2(X,E). Note the analogy of (†12) and (�)
from Proposition 7.6.

The issue of finding G-equivariant kernels still remains .
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