7.3 Feature Fields

We begin with the definition of feature fields involving a semi-direct product group $G=\mathbb{R}^{d} \rtimes H$.

This definition will be generalized later to a G-bundle on a homogenous space X (see Section 6.13).

To help intuition, suppose that $G=\mathbb{R}^{2} \rtimes \mathbf{S O}(2)$.

A scalar-valued function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (more generally $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$) can be viewed as a gray-scale image, or temperature field, or pressure field.

The group $G=\mathbb{R}^{2} \rtimes \mathbf{S O}(2)$ acts on such an image by moving each pixel at t to the new position $R t+x$, since $f \mapsto \mathbf{R}_{(x, R)} f$, with $\left(\mathbf{R}_{(x, R)} f\right)(t)=f\left((x, R)^{-1} \cdot t\right)=$ $f\left(R^{-1}(t-x)\right)$, where $g=(x, R) \in \mathbb{R}^{2} \rtimes \mathbf{S O}(2)$, so

$$
\left(\mathbf{R}_{(x, R)} f\right)(R t+x)=f\left(R^{-1}(R t+x-x)\right)=f(t)
$$

see Figure 7.1.

Figure 7.1: The image of $f(t)$ is the gray-scaled smiley face. The action of $G=\mathbb{R}^{2} \rtimes \mathbf{S O}(2)$ on this image moves each pixel to $R t+x$, where R is a rotation by 45 degrees counter-clockwise and x is a translation by $\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$.

On the other hand, a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defines a vector field, such as a velocity field, an optical flow, or a gradient image.

This time such a vector field transforms under the action of $G=\mathbb{R}^{2} \rtimes \mathbf{S O}(2)$ as follows: the vector $v=f(t)$ originally located at t is moved to the location $R t+x$, and then rotated by R, so that the overall action results in the vector

$R v$ in location $R t+x$.

See Figure 7.2.

Figure 7.2: The image of $f(t)$ is the vectorized triangular smiley face. The action of $G=$ $\mathbb{R}^{2} \rtimes \mathbf{S O}(2)$ on this image moves each pixel to $R t+x$, (where R is a rotation by 45 degrees counter-clockwise and x is a translation by $\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$), and then rotates the vector by 45 degrees counter-clockwise.

Given a more general vector field $f: \mathbb{R}^{2} \rightarrow E$, where E is some finite-dimensional hermitian vector space, it is useful to generalize the action on a vector $v=f(t)$ so that it is specified by a representation $\sigma: \mathbf{S O}(2) \rightarrow \mathbf{U}(E)$ as

$$
\sigma(R)(v) \text { in location } R t+x
$$

The preceding discussion suggests the following definition.

Definition 7.3. Let $G=\mathbb{R}^{d} \rtimes H$ be a semi-direct product with H a compact group and let $\sigma: H \rightarrow \mathbf{G L}(\mathcal{H})$ be a representation, where \mathcal{H} is any complex vector space (possibly infinite dimensional). If \mathcal{H} is finite dimensional or a separable Hilbert space we assume that $\sigma: H \rightarrow \mathbf{U}(\mathcal{H})$ is a unitary representation.
A feature field is any function $f: \mathbb{R}^{d} \rightarrow \mathcal{H}$.
The space of such feature fields is denoted by $\mathbf{F F}\left(\mathbb{R}^{d}, H, \sigma: H \rightarrow \mathbf{G L}(\mathcal{H})\right)$.

The representation σ is called the type of the feature field.
The group G acts on feature fields via the induced representation $\operatorname{Ind}_{H}^{G} \sigma$, namely

$$
\left.\begin{array}{rl}
{\left[\left(\operatorname{Ind}_{H}^{G} \sigma\right)_{(x, h)} f\right](t)=\sigma(h)} & \left(f\left(h^{-1} \cdot(t-x)\right)\right), \\
& (x, h) \tag{2}
\end{array}\right) \mathbb{R}^{d} \rtimes H, t \in \mathbb{R}^{d} .
$$

Note that $\left(\dagger_{2}\right)$ is the immediate generalization of the formula obtained in Example 6.1. for the induced representation $\left[\left(\operatorname{Ind}_{H}^{G} \sigma\right)_{(x, Q)}\right](f)=\Pi_{(x, Q)}(f)$.

Most authors use ρ instead of σ. This clashes with our notation used for indexing the irreducible representations of the group H so we use σ instead.

A scalar field, namely a function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ in $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$, is the special case corresponding to $\mathcal{H}=\mathbb{C}$ and representation $\sigma: H \rightarrow \mathbf{U}(1)$ given by $\sigma(h)=\operatorname{id}_{\mathbb{C}}$ for all $h \in H$.

In this case, $\operatorname{Ind}_{H}^{G} \sigma=\mathbf{R}^{G \rightarrow \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right)}$, the left regular representation of G.

A vector field $f: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ corrresponds to the case where H is a closed subgroup of $\mathbf{G L}(d, \mathbb{C})$ and the representation $\sigma: H \rightarrow \mathbf{G L}(d, \mathbb{C})$ is the standard representation given by $\sigma(h)=h$, namely $\sigma(h)(x)=h x$ for any $x \in \mathbb{C}^{d}$, where h is a matrix in H.

Example 7.7. Let us show how G-feature maps $f: \mathbb{R}^{d} \times H \rightarrow \mathbb{C}$ in $L^{2}\left(\mathbb{R}^{d} \rtimes H\right)$ can be viewed as feature fields $f^{H}: \mathbb{R}^{d} \rightarrow \mathrm{~L}^{2}(H)\left(\right.$ with $\left.G=\mathbb{R}^{d} \rtimes H\right)$.

The left regular representation $\mathbf{R}^{G \rightarrow \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)}$ acts on G feature maps via

$$
\begin{aligned}
& \quad\left(\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)} f\right)\left(x_{1}, h_{1}\right)=f\left(h^{-1} \cdot\left(x_{1}-x\right), h^{-1} h_{1}\right), \\
& x,
\end{aligned} x_{1} \in \mathbb{R}^{d}, h, h_{1} \in H \text {, }
$$

A G-feature map can be converted into a feature field as follows.

Given $f: \mathbb{R}^{d} \times H \rightarrow \mathbb{C}$ in $\mathrm{L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$, let $f^{H}: \mathbb{R}^{d} \rightarrow \mathrm{~L}^{2}(H)$, where

$$
\left(f^{H}(x)\right)(h)=f(x, h), \quad x \in \mathbb{R}^{d}, h \in H
$$

From an intuitive point of view, for $h \in H$ fixed, the map $x \mapsto f(x, h)$ can be viewed as a sort of image based on \mathbb{R}^{d}, where the value $f(x, h)$ is the color at the location $x \in \mathbb{R}^{d}$. see Figure 7.3.

Figure 7.3: A schematic illustration of $f^{H}(x)=f(x, h)$, where $H=\mathbf{S O}(2)$. For each fixed $h \in H$, the image of $f(x, h)$ is the horizontal colored layer.

These images can be thought of as parallel layers, and for x fixed, as h varies the color $f(x, h)$ moves along a sort of fibre that passes through each of the layers "above x."

For $d=2$ and $H=\mathbf{S O}(2)$, it is possible to visualize these fibres.

They are circles, but it is simpler to view them as line segments of height 2π with both endpoints identified. See Figure 7.4.

Figure 7.4: Two illustrations of the fibre $\mathbf{S O}(2)$ above a fixed $x \in \mathbb{R}^{2}$.

The left regular representation $\mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}$ acts on $\mathrm{L}^{2}(H)$ in the usual way, namely

$$
\left(\mathbf{R}_{h}^{H \rightarrow \mathrm{~L}^{2}(H)} g\right)\left(h_{1}\right)=g\left(h^{-1} h_{1}\right), \quad g \in \mathbb{C}^{H}, h, h_{1} \in H
$$

Then the induced representation $\operatorname{Ind}_{H}^{G} \mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}$ (here $\left.\sigma=\mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}\right)$ acts on the feature fields $f^{H}: \mathbb{R}^{d} \rightarrow \mathrm{~L}^{2}(H)$ by

$$
\begin{aligned}
& {\left[\left(\operatorname{Ind}_{H}^{G} \mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}\right)_{(x, h)} f^{H}\right]\left(x_{1}\right)} \\
& =\mathbf{R}_{h}^{H \rightarrow \mathrm{~L}^{2}(H)}\left(f^{H}\left(h^{-1} \cdot\left(x_{1}-x\right)\right)\right)
\end{aligned}
$$

By definition of $\mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}$ we get

$$
\begin{aligned}
& \left(\mathbf{R}_{h}^{H \rightarrow \mathrm{~L}^{2}(H)}\left(f^{H}\left(h^{-1} \cdot\left(x_{1}-x\right)\right)\right)\left(h_{1}\right)\right. \\
& =\left(f^{H}\left(h^{-1} \cdot\left(x_{1}-x\right)\right)\right)\left(h^{-1} h_{1}\right) \\
& =f\left(h^{-1} \cdot\left(x_{1}-x\right), h^{-1} h_{1}\right)=\left(\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)} f\right)\left(x_{1}, h_{1}\right) .
\end{aligned}
$$

Therefore,

$$
\left(\operatorname{Ind}_{H}^{G} \mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}\right)_{(x, h)} f^{H}=\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)} f
$$

which shows that G-feature maps $f: \mathbb{R}^{d} \times H \rightarrow \mathbb{C}$ can be viewed as feature fields $f^{H}: \mathbb{R}^{d} \rightarrow \mathrm{~L}^{2}(H)$, using the left regular representations $\mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}$.

In this case, $\mathcal{H}=\mathrm{L}^{2}(H)$ and $\sigma=\mathbf{R}^{H \rightarrow \mathrm{~L}^{2}(H)}$.

Definition 7.4. Let $\sigma: H \rightarrow \mathbf{G L}(F)$ be a representation with F finite-dimensional. Define the function $\operatorname{Hom}(\sigma, \mathrm{id})$ by

$$
\operatorname{Hom}(\sigma, \mathrm{id})_{h} f=f \circ \sigma_{h^{-1}}, \quad f \in \operatorname{Hom}(F, F), h \in H
$$

Actually, the representation $\operatorname{Hom}(\sigma, i d)$ is a special case of the Hom representation in Definition 4.18 with $\sigma_{1}: H \rightarrow \mathbf{G L}(F)$ the representation $\sigma_{1}=\sigma$ and σ_{2} the trivial representation given by $\sigma_{2}(h)=\mathrm{id}_{F}$ for all $h \in H$.

If $F=\mathbb{C}^{n}$, then $\operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$ is isomorphic to the space $\mathrm{M}_{n}(\mathbb{C})$ of $n \times n$ matrices, and if H is a closed subgroup of $\mathbf{G L}(n, \mathbb{C})$, then $\operatorname{Hom}(\sigma, i d)$ acts on $\mathrm{M}_{n}(\mathbb{C})$ by multiplication on the right by the matrix σ_{h}^{-1}, namely

$$
\begin{equation*}
\operatorname{Hom}(\sigma, \mathrm{id})_{h}(A)=A \sigma_{h}^{-1}, \quad A \in \mathrm{M}_{n}(\mathbb{C}) \tag{22}
\end{equation*}
$$

This is the situation that occurs in practice.
If \mathbb{C}^{n} is equipped with its standard hermitian inner product and if $\sigma: H \rightarrow \mathbf{U}(n)$ is a unitary representation, so that σ_{h} is a unitary matrix, if we give $\mathrm{M}_{n}(\mathbb{C})$ the hermitian inner product $\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)$, then the representation $\operatorname{Hom}(\sigma$, id $)$ is unitary because using the fact that $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$ we have

$$
\begin{aligned}
\left\langle A \sigma_{h}^{-1}, B \sigma_{h}^{-1}\right\rangle & =\left\langle A \sigma_{h}^{*}, B \sigma_{h}^{*}\right\rangle \\
& =\operatorname{tr}\left(\left(B \sigma_{h}^{*}\right)^{*}\left(A \sigma_{h}^{*}\right)\right) \\
& =\operatorname{tr}\left(\sigma_{h} B^{*} A \sigma_{h}^{*}\right) \\
& =\operatorname{tr}\left(\sigma_{h}^{*} \sigma_{h} B^{*} A\right)=\operatorname{tr}\left(B^{*} A\right)=\langle A, B\rangle .
\end{aligned}
$$

In the next section we show how to construct a Fourier transform on a semi-direct product $G=\mathbb{R}^{d} \rtimes H$ where H is compact in terms of the Fourier transform \mathcal{F} on H.
7.4 Promoting the Fourier Transform from H to $\mathbb{R}^{d} \rtimes H$

If we view a function defined on $G=\mathbb{R}^{d} \rtimes H$ as a function $f: \mathbb{R}^{d} \rtimes H \rightarrow \mathbb{C}$, the new twist is that the Fourier coefficients of f are now tuples $\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)}$ of functions $\widehat{f}_{\rho}: \mathbb{R}^{d} \rightarrow \mathrm{M}_{n_{\rho}}(\mathbb{C})$.

This causes new problems to reconstruct a function from its Fourier coefficients because even if the functions \widehat{f}_{ρ} belong to $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \mathrm{M}_{n_{\rho}}(\mathbb{C})\right)$, there is no guarantee that the function obtained from the inverse Fourier transform belongs to $\mathrm{L}^{2}(G)$.

Some additional condition is required on the functions $\widehat{f_{\rho}}$.

We provide a solution to this problem below by constructing a Hilbert space $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ such that the new Fourier transform $\mathcal{F}^{\top}: \mathrm{L}^{2}(G) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ and the Fourier cotransform $\overline{\mathcal{F}^{\tau}}: \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right) \rightarrow \mathrm{L}^{2}(G)$ are mutual inverses.

We found the key idea in a paper by Mensah and Awussi [33] who investigate the situation of a semi-direct product $H \rtimes \mathbb{R}^{d}$, where \mathbb{R}^{d} acts on H by automorphisms.

The first crucial observation is that for any function $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$, by Fubini, for any fixed $x \in \mathbb{R}^{d}$ we have $f^{H}(x) \in \mathrm{L}^{2}(H)$, where f^{H} is the function defined in Example 7.7.

Since H is a compact group, the Fourier transform $\mathcal{F}\left(f^{H}(x)\right)$ is well-defined.

For every $\rho \in R(H)$ and every fixed $x \in \mathbb{R}^{d}$, recall that $\mathcal{F}\left(f^{H}(x)\right)(\rho)$ is the $n_{\rho} \times n_{\rho}$ matrix given by

$$
\begin{aligned}
\mathcal{F}\left(f^{H}(x)\right)(\rho) & =\int_{H}\left(f^{H}(x)\right)(h) M_{\rho}(h)^{*} d \lambda(h) \\
& =\int_{H} f(x, h) M_{\rho}(h)^{*} d \lambda(h),
\end{aligned}
$$

where M_{ρ} is an irreducible representation of H in $\mathbb{C}^{n^{\rho}}$.
To reduce the amount of superscripts we also denote $f^{H}(x)$ as $f(x,-)$.

Technically $\mathcal{F}: \mathrm{L}^{2}(H) \rightarrow \mathrm{L}^{2}(\widehat{H})$ is defined for functions with domain H, with

$$
\mathrm{L}^{2}(\widehat{H})=\left\{F \in \prod_{\rho \in R(H)} \mathrm{M}_{n_{\rho}}(\mathbb{C}) \mid\|F\|_{\mathrm{L}^{2}(\widehat{H})}<\infty\right\}
$$

and

$$
\begin{aligned}
\|F\|_{L^{2}(\widehat{H})} & =\left(\sum_{\rho \in R(H)} n_{\rho}\|F(\rho)\|_{\mathrm{HS}}^{2}\right)^{1 / 2} \\
& =\left(\sum_{\rho \in R(H)} n_{\rho} \operatorname{tr}\left(F(\rho)^{*} F(\rho)\right)\right)^{1 / 2} ;
\end{aligned}
$$

see Definition 4.22 and Definition 4.23.

The vector space $\mathrm{L}^{2}(\widehat{H})$ is a Hilbert space under the inner product

$$
\begin{aligned}
\left\langle F_{1}, F_{2}\right\rangle_{\mathrm{L}^{2}(\widehat{H})} & =\sum_{\rho \in R(H)} n_{\rho}\left\langle F_{1}(\rho), F_{2}(\rho)\right\rangle_{\mathrm{HS}} \\
& =\sum_{\rho \in R(H)} n_{\rho} \operatorname{tr}\left(F_{2}(\rho)^{*} F_{1}(\rho)\right)
\end{aligned}
$$

see Theorem 4.19.

We would like to define a notion of Fourier transform on functions in $\mathrm{L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$ that makes use of the Fourier transform \mathcal{F} defined on H, so to avoid confusion we will denote this new Fourier transform by \mathcal{F}^{τ}.

The motivation is that $\tau: H \rightarrow \mathbf{G L}(n)$ is the action of H on \mathbb{R}^{d}, with $\tau(h)(x)=h x h^{-1}$.

Definition 7.5. For any fixed $x \in \mathbb{R}^{d}$ and any G-feature map $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$, we define
$\mathcal{F}(f(x,-))=\left(\mathcal{F}(f(x,-))_{\rho}\right)_{\rho \in R(H)} \in \mathrm{L}^{2}(\widehat{H})$,
also denoted $\widehat{f}(x)$, by

$$
\begin{aligned}
& \qquad \mathcal{F}(f(x,-))_{\rho}=\widehat{f}(x)_{\rho}=\int_{H} f(x, h) M_{\rho}(h)^{*} d \lambda(h) \text {, } \\
& \text { with } \rho \in R(H)
\end{aligned}
$$

Then if we let x vary in \mathbb{R}^{d}, for any fixed ρ we obtain a function $\widehat{f}_{\rho}: \mathbb{R}^{d} \rightarrow \mathrm{M}_{n_{\rho}}(\mathbb{C})$ given by

$$
\widehat{f}_{\rho}(x)=\widehat{f}(x)_{\rho}=\int_{H} f(x, h) M_{\rho}(h)^{*} d \lambda(h), \quad x \in \mathbb{R}^{d}
$$

By Fubini, since $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$, we have
$\widehat{f}_{\rho} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \mathrm{M}_{n_{\rho}}(\mathbb{C})\right)$. This step requires a justification that we postpone for now.

The function \widehat{f}_{ρ} is called a Fourier coefficients feature field of type ρ or steerable feature field of type ρ.

The $R(H)$-indexed family $\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)}$ is denoted by \widehat{f} and is called the family of Fourier coefficients feature fields of f or family of steerable feature fields of f.

Observe that

$$
\widehat{f}(x)=\left(\widehat{f}_{\rho}(x)\right)_{\rho \in R(H)} \in \mathrm{L}^{2}(\widehat{H}) \quad \text { for every } x \in \mathbb{R}^{d}
$$

and consequently $\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)}$ belongs to the space $\mathfrak{E}^{\tau}(\widehat{H})$ defined next.

Definition 7.6. The vector space $\mathfrak{E}^{\tau}(\widehat{H})$ is defined by

$$
\begin{aligned}
& \mathfrak{E}^{\tau}(\widehat{H})=\left\{F \in \prod_{\rho \in R(H)} \mathrm{L}^{2}\left(\mathbb{R}^{d}, \mathrm{M}_{n_{\rho}}(\mathbb{C})\right)\right. \\
& \left.\quad \mid\left(F_{\rho}(x)\right)_{\rho \in R(H)} \in \mathrm{L}^{2}(\widehat{H}), x \in \mathbb{R}^{d}\right\} . \quad\left(\mathfrak{E}^{\tau}(\widehat{H})\right)
\end{aligned}
$$

Note the analogy with the space $\mathfrak{E}(\widehat{H})$ of Definition 4.23.

Definition 7.7. We define the map \mathcal{F}^{τ} from $\mathrm{L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$ to $\mathfrak{E}^{\tau}(\widehat{H})$ by setting

$$
\begin{aligned}
\mathcal{F}^{\tau}(f) & =\left(\mathcal{F}_{\rho}^{\tau}(f)\right)_{\rho \in R(H)}, \quad f \in \mathrm{~L}^{2}(G), \text { with } \\
\mathcal{F}_{\rho}^{\tau}(f)(x) & =\widehat{f}_{\rho}(x)=\mathcal{F}(f(x,-))_{\rho} \\
& =\int_{H} f(x, h) M_{\rho}(h)^{*} d \lambda(h), \quad x \in \mathbb{R}^{d}, \rho \in R(H) .
\end{aligned}
$$

Observe that by Line $(\widehat{f}(x))$, for every fixed $x \in \mathbb{R}^{d}$, we have

$$
\mathcal{F}^{\tau}(f)(x)=\left(\mathcal{F}_{\rho}^{\tau}(f)(x)\right)_{\rho \in R(H)}=\underset{\left(\mathcal{F}^{\tau}(f)(x)\right)}{\mathcal{F}(f(x,-))}
$$

We will see shortly that steerable feature fields of type ρ transform under the representation $\operatorname{Hom}\left(M_{\rho}, \mathrm{id}\right)$.

For this reason the space of steerable feature fields of type ρ is denoted by $\mathbf{F F}\left(\mathbb{R}^{d}, H, \operatorname{Hom}\left(M_{\rho}, \mathrm{id}\right)\right)$.

These are matrix-valued functions $\widehat{f}_{\rho}: \mathbb{R}^{d} \rightarrow \mathrm{M}_{n_{\rho}}(\mathbb{C})$ that belong to $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \mathrm{M}_{n_{\rho}}(\mathbb{C})\right)$.

Actually, we will see below (see Definition 7.8) that there is some extra condition on the family $\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)}$ that ensures that Fourier inversion yields a function in $\mathrm{L}^{2}(G)$.

For every fixed $x \in \mathbb{R}^{d}$, the function $f^{H}(x) \in \mathrm{L}^{2}(H)$ can be recovered by Fourier inversion using the Fourier cotransform $\overline{\mathcal{F}}$ from $\mathrm{L}^{2}(\widehat{H})$ to $\mathrm{L}^{2}(H)$ from the family of Fourier coefficients feature fields
$\widehat{f}=\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)} \in \mathfrak{E}^{\tau}(\widehat{H})$ evaluated at x, namely the $R(H)$-indexed family $\widehat{f}(x)=\left(\widehat{f}_{\rho}(x)\right)_{\rho \in R(H)} \in \mathrm{L}^{2}(\widehat{H})$, using the formula

$$
\begin{aligned}
\left(f^{H}(x)\right)(h) & =[\overline{\mathcal{F}}(\widehat{f}(x))](h) \\
& =\sum_{\rho \in R(H)} n_{\rho} \operatorname{tr}\left(\widehat{f}_{\rho}(x) M_{\rho}(h)\right), \quad h \in H .
\end{aligned}
$$

Thus the G-feature map $f: \mathbb{R}^{d} \times H \rightarrow \mathbb{C}$ can also be recovered pointwise, via

$$
\begin{array}{r}
f(x, h)=[\overline{\mathcal{F}}(\widehat{f}(x))](h)=\sum_{\rho \in R(H)} n_{\rho} \operatorname{tr}\left(\widehat{f}_{\rho}(x) M_{\rho}(h)\right) . \\
(\overline{\mathcal{F}}(\widehat{f}(x)))
\end{array}
$$

The definition of a map $\overline{\mathcal{F}^{\tau}}$ from $\mathfrak{E}^{\tau}(\widehat{H})$ to $\mathrm{L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$ is more delicate.

The space $\mathfrak{E} \tau(\widehat{H})$ is actually too big to ensure that the resulting functions belong to $\mathrm{L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$.

Inspired by Mensah and Awussi [33] we define the following space.

Definition 7.8. Define the vector space $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ by

$$
\begin{array}{r}
\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)=\left\{F \in \mathfrak{E}^{\tau}(\widehat{H}) \mid\|F(-)\|_{\mathrm{L}^{2}(\widehat{H})} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)\right\} \\
\left(\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)\right)
\end{array}
$$

where $\|F(-)\|_{\mathrm{L}^{2}(\widehat{H})}$ is the function defined such that if $F=\left(F_{\rho}\right)_{\rho \in R(H)}$, then

$$
\begin{aligned}
\|F(x)\|_{\mathrm{L}^{2}(\widehat{H})}=\left(\sum_{\rho \in R(H)} n_{\rho}\left\|F_{\rho}(x)\right\|_{\mathrm{HS}}^{2}\right)^{1 / 2} \\
\left(\|F(-)\|_{\mathrm{L}^{2}(\widehat{H})}\right)
\end{aligned}
$$

Note that $\|F(-)\|_{\mathrm{L}^{2}(\widehat{H})} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$ implies that

$$
\int_{\mathbb{R}^{d}}\|F(x)\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x<\infty
$$

The vector space $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ is equipped with the norm $\left\|\|_{L^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}\right.$ given by

$$
\begin{aligned}
\|F\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}^{2} & =\int_{\mathbb{R}^{d}}\|F(x)\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x \\
& =\left(\|F(-)\|_{\mathrm{L}^{2}(\widehat{H})}^{2}\right)_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}^{2} . \quad\left(\|F\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}\right)
\end{aligned}
$$

Note the analogy with the definition of the space $\mathrm{L}^{2}(\widehat{H})$ in Definition 4.23.

We also define an inner product on $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ as follows.

Definition 7.9. For any two sequences of functions $F_{1}, F_{2} \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$, let $\left\langle F_{1}, F_{2}\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}$ be given by

$$
\begin{aligned}
& \left\langle F_{1}, F_{2}\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)} \\
& \left.=\int_{\mathbb{R}^{d}} \sum_{\rho \in R(H)} n_{\rho} \operatorname{tr}\left(\left(F_{2}\right)_{\rho}(x)\right)^{*}\left(F_{1}\right)_{\rho}(x)\right) d x . \quad(\langle-,-\rangle)
\end{aligned}
$$

Observe that

$$
\|F\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}^{2}=\langle F, F\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}
$$

but we still need to prove that the integral in $(\langle-,-\rangle)$ is well defined.

We will use the Cauchy-Schwarz inequality both in $\mathrm{L}^{2}(\widehat{H})$ and $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.

We have

$$
\begin{align*}
& \left|\left\langle F_{1}, F_{2}\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}\right| \\
& =\left|\int_{\mathbb{R}^{d}} \sum_{\rho \in R(H)} n_{\rho}\left\langle\left(F_{1}\right)_{\rho}(x),\left(F_{2}\right)_{\rho}(x)\right\rangle_{\mathrm{HS}} d x\right| \tag{1}\\
& \leq \int_{\mathbb{R}^{d}}\left|\sum_{\rho \in R(H)} n_{\rho}\left\langle\left(F_{1}\right)_{\rho}(x),\left(F_{2}\right)_{\rho}(x)\right\rangle_{\mathrm{HS}}\right| d x \tag{2}\\
& =\int_{\mathbb{R}^{d}}\left|\left\langle F_{1}(x), F_{2}(x)\right\rangle_{\mathrm{L}^{2}(\widehat{H})}\right| d x \tag{3}\\
& \leq \int_{\mathbb{R}^{d}}\left\|F_{1}(x)\right\|_{\mathrm{L}^{2}(\widehat{H})}\left\|F_{2}(x)\right\|_{\mathrm{L}^{2}(\widehat{H})} d x \tag{4}\\
& \leq\left(\int_{\mathbb{R}^{d}}\left\|F_{1}(x)\right\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}\left\|F_{2}(x)\right\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x\right)^{1 / 2} \tag{5}\\
& =\left\|F_{1}\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}\left\|F_{2}\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}, \tag{6}
\end{align*}
$$

where (1) holds by definition, (2) by a standard property of the integral, (3) by definition of the inner product in $\mathrm{L}^{2}(\widehat{H})$, (4) by the Cauchy-Schwarz inequality in $\mathrm{L}^{2}(\widehat{H})$, (5) by the Cauchy-Schwarz inequality in $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$, and (6) by definition $\left(\right.$ see $\left(\|F\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}\right)$).

We will also need the projection $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}$ of $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ on the ρ-th factor, that is,

$$
\begin{array}{r}
\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}=\left\{F_{\rho} \mid\left(F_{\rho}\right)_{\rho \in R(H)} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)\right\} . \\
\left(\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}\right)
\end{array}
$$

We have the following important version of Plancherel theorem for our Fourier transform $\mathcal{F}^{\tau}: \mathrm{L}^{2}(G) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$.

Theorem 7.2. (Generalized Plancherel) The map $\mathcal{F}^{\tau}: \mathrm{L}^{2}(G) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ (with $G=\mathbb{R}^{d} \rtimes H$) is an isometric isomorphism of Hilbert spaces. That is, it is bijective and

$$
\left\langle\mathcal{F}^{\tau}(f), \mathcal{F}^{\tau}(g)\right\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}=\langle f, g\rangle_{\mathrm{L}^{2}(G)}, \quad f, g \in \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right) .
$$

In particular, it is continuous.

Proof. First we prove that the map \mathcal{F}^{τ} is an isometry.
Since $\mathrm{L}^{2}(G)$ is a Hilbert space, this proves that $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ is also a Hilbert space.

Since the norm on $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ is induced by the inner product on $\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$, it suffices to prove that the norm is preserved.

This is a standard result of linear algebra; for example, see Gallier and Quaintance [24] (Chapter 13, Proposition 13.1).

For any $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$, we have

$$
\begin{aligned}
\left\|\mathcal{F}^{\tau}(f)\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}^{2} & =\int_{\mathbb{R}^{d}}\left\|\mathcal{F}^{\tau}(f)(x)\right\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x \quad \text { by definition } \\
& =\int_{\mathbb{R}^{d}}\|\mathcal{F}(f(x,-))\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x \quad \text { by }\left(\mathcal{F}^{\tau}(f)(x)\right) .
\end{aligned}
$$

However, for fixed $x, \mathcal{F}(f(x,-))$ is the Fourier transform of the function $f(x,-) \in \mathrm{L}^{2}(H)$.

By Plancherel Theorem (Theorem 4.23), we have

$$
\|\mathcal{F}(f(x,-))\|_{\mathrm{L}^{2}(\widehat{H})}^{2}=\|f(x,-)\|_{\mathrm{L}^{2}(H)}^{2}
$$

Since $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d} \rtimes H\right)$, by Fubini

$$
\begin{aligned}
\|f\|_{\mathrm{L}^{2}(G)}^{2} & =\int_{G}|f(x, h)|^{2} d \lambda_{G}(x, h) \\
& =\int_{\mathbb{R}^{d}} \int_{H}|f(x, h)|^{2} d \lambda_{H}(h) d x<\infty,
\end{aligned}
$$

but

$$
\int_{\mathbb{R}^{d}} \int_{H}|f(x, h)|^{2} d \lambda_{H}(h) d x=\int_{\mathbb{R}^{d}}\|f(x,-)\|_{\mathrm{L}^{2}(H)}^{2} d x
$$

which shows that the function $x \mapsto\|\mathcal{F}(f(x,-))\|_{\mathrm{L}^{2}(\widehat{H})}$ is in $L^{2}\left(\mathbb{R}^{d}\right)$.

Consequently, we have

$$
\left\|\mathcal{F}^{\tau}(f)\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}^{2}
$$

$$
=\int_{\mathbb{R}^{d}}\|\mathcal{F}(f(x,-))\|_{\mathrm{L}^{2}(\widehat{H})}^{2} d x
$$

$$
=\int_{\mathbb{R}^{d}}\|f(x,-)\|_{\mathrm{L}^{2}(H)}^{2} d x \quad \text { by Plancherel }
$$

$$
=\int_{\mathbb{R}^{d}} \int_{H}|f(x, h)|^{2} d \lambda_{H}(h) d x \text { by definition of the } \mathrm{L}^{2}(H) \text {-norm }
$$

$=\|f\|_{\mathrm{L}^{2}(G)}^{2} . \quad$ by Fubini

Since \mathcal{F}^{\top} is an isometry, it is injective. It remains to prove that it is surjective.

For any $F=\left(F_{\rho}\right)_{\rho \in R(H)} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ and for every fixed $x \in \mathbb{R}^{d}$, we have

$$
F(x)=\left(F_{\rho}(x)\right)_{\rho \in R(H)} \in \mathrm{L}^{2}(\widehat{H})
$$

By Plancherel applied to the Fourier transform \mathcal{F} between $\mathrm{L}^{2}(H)$ and $\mathrm{L}^{2}(\widehat{H})$, there is a unique function $f_{x} \in \mathrm{~L}^{2}(H)$ such that

$$
\mathcal{F}\left(f_{x}\right)=F(x) \quad \text { and } \quad\left\|f_{x}\right\|_{\mathrm{L}^{2}(H)}=\|F(x)\|_{\mathrm{L}^{2}(\widehat{H})} \cdot\left(*_{23}\right)
$$

Define the function $f: \mathbb{R}^{d} \rtimes H \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
f(x, h)=f_{x}(h) \quad x \in \mathbb{R}^{d}, h \in H \tag{24}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
f(x,-)=f_{x} \tag{25}
\end{equation*}
$$

so we get

$$
\begin{array}{lr}
\|f\|_{\mathrm{L}^{2}(G)} & \\
=\int_{\mathbb{R}^{d}} \int_{H}|f(x, h)|^{2} d \lambda_{H}(h) d x & \text { by definition of }\|f\|_{\mathrm{L}^{2}(\mathrm{G})}^{2} \\
=\int_{\mathbb{R}^{d}} \int_{H}\left|f_{x}(h)\right|^{2} d \lambda_{H}(h) d x & \text { by }\left(*_{24}\right) \\
=\int_{\mathbb{R}^{d}}\left\|f_{x}\right\|_{\mathrm{L}^{2}(\mathrm{H})}^{2} d x & \text { by definition of }\left\|f_{x}\right\|_{\mathrm{L}^{2}(\mathrm{H})}^{2} \\
=\int_{\mathbb{R}^{d}}\|F(x)\|_{\mathrm{L}^{2}(\widehat{\mathrm{H}})}^{2} d x & \text { by }\left(*_{23}\right) \\
=\|F\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}^{2}<\infty, & \text { by definition of }\|F\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)}^{2}
\end{array}
$$

and the last step because $F \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$.

Therefore $f \in \mathrm{~L}^{2}(G)$. Then by $\left(\mathcal{F}^{\tau}(f)(x)\right),\left(*_{25}\right)$ and $\left(*_{23}\right)$, we have

$$
\mathcal{F}^{\tau}(f)(x)=\mathcal{F}(f(x,-))=\mathcal{F}\left(f_{x}\right)=F(x), \quad x \in \mathbb{R}^{d}
$$

which means that $\mathcal{F}^{\tau}(f)=F$, and thus \mathcal{F}^{τ} is indeed surjective.

Since we already know that functions in $\mathrm{L}^{2}(G)$ can be recovered pointwise using the Fourier transform on H, we can exhibit the inverse $\overline{\mathcal{F}^{\tau}}$ of the Fourier transform \mathcal{F}^{τ}.

Definition 7.10. Define the map
$\overline{\mathcal{F}}_{\rho}: \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho} \rightarrow \mathrm{L}^{2}(G)$
for every $\rho \in R(H)$ by

$$
\begin{aligned}
& \overline{\mathcal{F}}_{\rho}\left(\widehat{f}_{\rho}\right)(x, h)=n_{\rho} \operatorname{tr}\left(\widehat{f}_{\rho}(x) M_{\rho}(h)\right), \\
& \quad x \in \mathbb{R}^{d}, h \in H, \widehat{f}_{\rho} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}_{\rho},\right.
\end{aligned}
$$

and the map $\overline{\mathcal{F}^{\tau}}: \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right) \rightarrow \mathrm{L}^{2}(G)$ by

$$
\begin{aligned}
& \overline{\mathcal{F}^{\tau}}\left(\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)}\right)(x, h)=\sum_{\rho \in R(H)} \overline{\mathcal{F}_{\rho}}\left(\widehat{f}_{\rho}\right)(x, h), \\
& \quad x \in \mathbb{R}^{d}, h \in H,\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)} \in \mathrm{L}^{2}\left(\mathbb{R}^{2}, \widehat{H}\right) . \quad\left(\overline{\mathcal{F}^{\tau}}\right)
\end{aligned}
$$

Then $\mathcal{F}^{\tau}: \mathrm{L}^{2}(G) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)$ and $\overline{\mathcal{F}^{\tau}}: \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right) \rightarrow \mathrm{L}^{2}(G)$ are mutual inverses.

We claim that the map $\widehat{f}_{\rho} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}$ is indeed a feature field, with $\mathcal{H}=\mathrm{M}_{n_{\rho}}(\mathbb{C})$ and $\sigma=\operatorname{Hom}\left(M_{\rho}, \mathrm{id}\right)$.

For this we need to see how the function \widehat{f}_{ρ} changes when $G=\mathbb{R}^{d} \rtimes H$ acts on f via the left regular action $\mathbf{R}^{G \rightarrow \mathrm{~L}^{2}(G)}$ given by

$$
\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}(G)}(f)\left(x_{1}, h_{1}\right)=f\left(h^{-1} \cdot\left(x_{1}-x\right), h^{-1} h_{1}\right)
$$

Proposition 7.3. For every $\rho \in R(H)$, let $\sigma_{\rho}: H \rightarrow \mathbf{U}\left(\mathrm{M}_{n_{\rho}}(\mathbb{C})\right)$ be the representation

$$
\sigma_{\rho}=\operatorname{Hom}\left(M_{\rho}, \mathrm{id}\right)
$$

associated with the representation $M_{\rho}: H \rightarrow \mathbf{U}\left(\mathbb{C}^{n_{\rho}}\right)$ as in Definition 7.4. For every function $\widehat{f}_{\rho} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}$, we have

$$
\begin{align*}
\mathcal{F}_{\rho}^{\tau}\left[\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}(G)}(f)\right]\left(x_{1}\right) & =\left[\left(\operatorname{Ind}_{H}^{G}\left(\sigma_{\rho}\right)_{(x, h)} \widehat{f}_{\rho}\right]\left(x_{1}\right)\right. \\
& =\widehat{f_{\rho}}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}(h)^{*} . \tag{26}
\end{align*}
$$

Proof. Using the fact that the Haar measure λ is left (and right) invariant and the fact that M_{ρ} is a representation, we have

$$
\begin{aligned}
& \mathcal{F}_{\rho}^{\tau}\left[\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}(G)}(f)\right]\left(x_{1}\right) \\
& =\int_{H} \mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}(G)}(f)\left(x_{1}, h_{1}\right) M_{\rho}\left(h_{1}\right)^{*} d \lambda\left(h_{1}\right) \\
& =\int_{H} f\left(h^{-1} \cdot\left(x_{1}-x\right), h^{-1} h_{1}\right) M_{\rho}\left(h_{1}\right)^{*} d \lambda\left(h_{1}\right) \\
& =\int_{H} f\left(h^{-1} \cdot\left(x_{1}-x\right), h_{2}\right) M_{\rho}\left(h h_{2}\right)^{*} d \lambda\left(h_{2}\right) \quad h_{1}=h h_{2} \\
& =\left(\int_{H} f\left(h^{-1} \cdot\left(x_{1}-x\right), h_{2}\right) M_{\rho}\left(h_{2}\right)^{*} d \lambda\left(h_{2}\right)\right) M_{\rho}(h)^{*} \\
& =\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}(h)^{*} .
\end{aligned}
$$

The above computation shows that

$$
\mathcal{F}_{\rho}^{\tau}\left[\mathbf{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}(G)}(f)\right]\left(x_{1}\right)=\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}(h)^{*}
$$

as claimed.

Equation $\left(*_{26}\right)$ shows that the group $G=\mathbb{R}^{d} \rtimes H$ acts on the feature fields of type ρ via

$$
\left[\left(\operatorname{Ind}_{H}^{G}\left(\sigma_{\rho}\right)_{(x, h)} \widehat{f}_{\rho}\right]\left(x_{1}\right)=\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}(h)^{*}\right.
$$

for all $(x, h) \in \mathbb{R}^{d} \rtimes H$ and all $x_{1} \in \mathbb{R}^{d}$, and $\left(*_{26}\right)$ is equivalent to the commutativity of the following diagram

for all $(x, h) \in G=\mathbb{R}^{d} \rtimes H$.

We also package the representations
$\operatorname{Ind}_{H}^{G} \sigma_{\rho}: G \rightarrow \mathbf{U}\left(\mathrm{~L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}\right)$ in the map

$$
\operatorname{Ind}_{H}^{G} \sigma: G \times \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)
$$

defined such that for any $\widehat{f}=\left(\widehat{f}_{\rho}\right)_{\rho \in R(H)}$,

$$
\begin{align*}
{\left[\left(\operatorname{Ind}_{H}^{G} \sigma\right)_{(x, h)} \widehat{f}\right]_{\rho}\left(x_{1}\right)=} & {\left[\left(\operatorname{Ind}_{H}^{G} \sigma_{\rho}\right)_{(x, h} \widehat{f}_{\rho}\right]\left(x_{1}\right) } \\
& x_{1} \in \mathbb{R}^{d}, \rho \in R(H)
\end{align*}
$$

The following result should not be too surprising.

Proposition 7.4. The following diagram commutes

$$
\begin{aligned}
& \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho} \xrightarrow{\overline{\mathcal{F}}_{\rho}} \mathrm{L}^{2}(G) \\
& \mathrm{L}^{\left(\operatorname{Ind}_{H}^{G} \sigma_{\rho}\right)(x, h)} \mid \\
& \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho} \xrightarrow[\overline{\mathcal{F}}_{\rho}]{ } \mathrm{L}^{2}(G) \\
& \text { for all }(x, h) \in G=\mathbb{R}_{(x, h)}^{G \rightarrow \mathrm{~L}^{2}(G)} \rtimes H .
\end{aligned}
$$

Proof. For any $\widehat{f}_{\rho} \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, \widehat{H}\right)_{\rho}$ we have

$$
\begin{aligned}
& \overline{\mathcal{F}}_{\rho}^{\tau}\left(\left(\operatorname{Ind}_{H}^{G} \sigma_{\rho}\right)_{(x, h)} \widehat{f}_{\rho}\right)\left(x_{1}, h_{1}\right) \\
& =n_{\rho} \operatorname{tr}\left(\left(\left(\operatorname{Ind}_{H}^{G} \sigma_{\rho}\right)_{(x, h)} \widehat{f}_{\rho}\right)\left(x_{1}\right) M_{\rho}\left(h_{1}\right)\right) \quad \text { by }\left(\overline{\mathcal{F}^{\tau}}{ }_{\rho}\right) \\
& =n_{\rho} \operatorname{tr}\left(\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}(h)^{*} M_{\rho}\left(h_{1}\right)\right) \quad \text { by }\left(*_{26}\right) \\
& =n_{\rho} \operatorname{tr}\left(\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}\left(h^{-1} h_{1}\right)\right) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \mathbf{R}_{(x, h)}\left(\overline{\mathcal{F}}^{\tau}\left(\widehat{f}_{\rho}\right)\right)\left(x_{1}, h_{1}\right) \\
& \left.=\overline{\mathcal{F}}_{\rho}\left(\widehat{f}_{\rho}\right)\left(h^{-1} \cdot\left(x_{1}-x\right)\right), h^{-1} h_{1}\right) \quad \text { by definition of } \mathbf{R}_{(x, h)} \\
& =n_{\rho} \operatorname{tr}\left(\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right) M_{\rho}\left(h^{-1} h_{1}\right)\right) . \text { by }\left(\overline{\mathcal{F}}_{\rho}\right)
\end{aligned}
$$

Consequently

$$
\overline{\mathcal{F}}_{\rho}^{\tau}\left(\left(\operatorname{Ind}_{H}^{G} \sigma_{\rho}\right)_{(x, h)} \widehat{f}_{\rho}\right)\left(x_{1}, h_{1}\right)=\mathbf{R}_{(x, h)}\left(\overline{\mathcal{F}}_{\rho}\left(\widehat{f}_{\rho}\right)\right)\left(x_{1}, h_{1}\right),
$$ as claimed.

Remark: We also have the representation $\operatorname{Hom}\left(\mathrm{id}, M_{\rho}\right)$ which acts on $\mathrm{M}_{n_{\rho}}(\mathbb{C})$ by multiplication on the left by $M_{\rho}(h)$ for every $h \in H$.

The induced representation $\operatorname{Hom}\left(\mathrm{id}, M_{\rho}\right)$ of $\mathbb{R}^{d} \rtimes H$ on the feature fields of type ρ is then given by

$$
\begin{aligned}
& {\left[\left(\operatorname{Ind}_{H}^{G} \operatorname{Hom}\left(\mathrm{id}, M_{\rho}\right)\right)_{(x, h)} \widehat{f}_{\rho}\right]\left(x_{1}\right)} \\
& =\operatorname{Hom}\left(\mathrm{id}, M_{\rho}\right)(h)\left(\widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right)\right) \\
& =M_{\rho}(h) \widehat{f}_{\rho}\left(h^{-1} \cdot\left(x_{1}-x\right)\right),
\end{aligned}
$$

for all $(x, h) \in \mathbb{R}^{d} \rtimes H$ and all $x_{1} \in \mathbb{R}^{d}$. It is a bit more natural than the representation induced by $\operatorname{Hom}\left(M_{\rho}\right.$, id $) .{ }^{1}$

[^0]Example 7.8. Let $H=\mathbf{S O}(2)$ so that $G=\mathbb{R}^{2} \rtimes \mathbf{S O}(2)=\mathbf{S E}(2)$.

In this case, $R(\mathbf{S O}(2))=\mathbb{Z}$ and $n_{\rho}=1$. We will denote ρ as ℓ.

For any $f \in \mathrm{~L}^{2}(\mathbf{S E}(2))$, for every $x \in \mathbb{R}^{2}$, the Fourier transform $\mathcal{F}^{\tau}(f)$ of f is the \mathbb{Z}-indexed sequence $\left(\widehat{f}_{\ell}\right)_{\ell \in \mathbb{Z}}$ of functions given by

$$
\begin{aligned}
\widehat{f}_{\ell}(x) & =\mathcal{F}^{\tau}(f(x,-))_{\ell} \\
& =\int_{S^{1}} e^{-i \ell \theta} f(x, \theta) d \theta, \quad x \in \mathbb{R}^{2}, \ell \in \mathbb{Z}
\end{aligned}
$$

The functions $\widehat{f_{\ell}}$ are the feature fields associated with ℓ. Observe that this is an example of $\left(\widehat{f}_{\rho}\right)$.

Given a family $\widehat{f}=\left(\widehat{f}_{m}\right)_{m \in \mathbb{Z}}$ of function $\widehat{f}_{m} \in \mathrm{~L}^{2}\left(\mathbb{R}^{2}, \mathbb{Z}\right)_{m}$ such that $\widehat{f}(x)=\left(\widehat{f}_{m}(x)\right)_{m \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$ for all $x \in \mathbb{R}^{2}$ and

$$
\left(\sum_{m=-\infty}^{\infty}\left|\widehat{f}_{m}(-)\right|^{2}\right)^{1 / 2} \in \mathrm{~L}^{2}\left(\mathbb{R}^{2}\right),
$$

the Fourier cotransform $\overline{\mathcal{F}^{\tau}}(\widehat{f})(x, \theta)$ is given by

$$
\overline{\mathcal{F}^{\tau}}(\widehat{f})(x, \theta)=\sum_{m=-\infty}^{\infty} \widehat{f}_{m}(x) e^{i m \theta} .
$$

It is instructive to see in this more concrete case how the function $\widehat{f_{\ell}}$ changes when $\mathbf{S E}(2)=\mathbb{R}^{2} \rtimes \mathbf{S O}(2)$ acts on f via the left regular action $\mathbf{R}^{\mathrm{SE}(2) \rightarrow \mathrm{L}^{2}(\mathrm{SE}(2))}$ given by

$$
\mathbf{R}_{(x, \theta)}^{\mathrm{SE}(2) \rightarrow \mathrm{L}^{2}(\mathrm{SE}(2))}(f)\left(x_{1}, \theta_{1}\right)=f\left(R_{-\theta}\left(x_{1}-x\right), \theta_{1}-\theta\right)
$$

Using the fact that the Haar measure on $\mathbf{S O}(2)$ is left (and right) invariant, we have

$$
\begin{aligned}
& \mathcal{F}^{\tau}\left[\mathbf{R}_{(x, \theta)}^{\mathbf{S E}(2) \rightarrow \mathrm{L}^{2}(\mathbf{S E}(2))}(f)\left(x_{1},-\right)\right]_{\ell} \\
& =\int_{\mathbf{S O}(2)} \mathbf{R}_{(x, \theta)}^{\mathbf{S E}(2) \rightarrow \mathrm{L}^{2}(\mathbf{S E}(2))}(f)\left(x_{1}, \theta_{1}\right) e^{-i \ell \theta_{1}} d \theta_{1} \\
& =\int_{\mathbf{S O}(2)} f\left(R_{-\theta}\left(x_{1}-x\right), \theta_{1}-\theta\right) e^{-i \ell \theta_{1}} d \theta_{1} \\
& =\int_{\mathbf{S O}(2)} f\left(R_{-\theta}\left(x_{1}-x\right), \theta_{2}\right) e^{-i \ell\left(\theta+\theta_{2}\right)} d \theta_{2} \quad \theta_{1}=\theta+\theta_{2} \\
& =e^{-i \ell \theta} \int_{\mathbf{S O}(2)} f\left(R_{-\theta}\left(x_{1}-x\right), \theta_{2}\right) e^{-i \ell \theta_{2}} d \theta_{2} \\
& =e^{-i \ell \theta} \widehat{f}_{\ell}\left(R_{-\theta}\left(x_{1}-x\right)\right)
\end{aligned}
$$

Thus we have

$$
\left.\widehat{\mathbf{R}_{(x, \theta)}(f}\right)_{\ell}\left(x_{1}\right)=e^{-i \ell \theta} \widehat{f_{\ell}}\left(R_{-\theta}\left(x_{1}-x\right)\right)
$$

so the representation that needs to be associated with the feature fields corresponding to ℓ is $e^{-i \ell \theta}$, and not $e^{i \ell \theta}$.

Since multiplication in \mathbb{C} is commutative, given a character $\chi_{\ell}(\theta)=e^{i \ell \theta}$, the representation $\operatorname{Hom}\left(\chi_{\ell}, \mathrm{id}\right)$ is just multiplication by $e^{-i \ell \theta}$ and the representation $\operatorname{Hom}\left(\mathrm{id}, \chi_{\ell}\right)$ is just multiplication by $e^{i \ell \theta}$.

[^0]: ${ }^{1}$ Which representation arises naturally depends on the definition of the Fourier transform. The literature is not consistent on this matter. For exampe, Bekkers uses M_{ρ} instead of M_{ρ}^{*}.

