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7.3 Feature Fields

We begin with the definition of feature fields involving a
semi-direct product group G = R

d
oH .

This definition will be generalized later to a G-bundle on
a homogenous space X (see Section 6.13).

To help intuition, suppose that G = R
2
o SO(2).

A scalar-valued function f : R2
! R (more generally

f : R2
! C) can be viewed as a gray-scale image, or

temperature field, or pressure field.
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The group G = R
2
o SO(2) acts on such an image by

moving each pixel at t to the new position Rt + x, since
f 7! R(x,R)f , with (R(x,R)f )(t) = f ((x,R)�1

· t) =
f (R�1(t� x)), where g = (x,R) 2 R

2
o SO(2), so

(R(x,R)f )(Rt + x) = f (R�1(Rt + x� x)) = f (t);

see Figure 7.1.

original image Rotate 45 degrees Shift by (1,0)

Figure 7.1: The image of f(t) is the gray-scaled smiley face. The action of G = R
2
oSO(2) on

this image moves each pixel to Rt+x, where R is a rotation by 45 degrees counter-clockwise

and x is a translation by [1 0]
T
.

On the other hand, a function f : R2
! R

2 defines a
vector field, such as a velocity field, an optical flow, or a
gradient image.
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This time such a vector field transforms under the action
of G = R

2
o SO(2) as follows: the vector v = f (t)

originally located at t is moved to the location Rt + x,
and then rotated by R, so that the overall action results
in the vector

Rv in location Rt + x.

See Figure 7.2.

Move underlying triangle (tails of the vectors) to Rt + x

Then each vector is rotated 45 degreesoriginal image

Figure 7.2: The image of f(t) is the vectorized triangular smiley face. The action of G =

R
2
o SO(2) on this image moves each pixel to Rt+ x, (where R is a rotation by 45 degrees

counter-clockwise and x is a translation by [1 0]
T
), and then rotates the vector by 45 degrees

counter-clockwise.
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Given a more general vector field f : R2
! E, where

E is some finite-dimensional hermitian vector space, it is
useful to generalize the action on a vector v = f (t) so that
it is specified by a representation � : SO(2) ! U(E) as

�(R)(v) in location Rt + x.

The preceding discussion suggests the following definition.
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Definition 7.3. Let G = R
d
oH be a semi-direct prod-

uct with H a compact group and let � : H ! GL(H)
be a representation, whereH is any complex vector space
(possibly infinite dimensional). If H is finite dimensional
or a separable Hilbert space we assume that
� : H ! U(H) is a unitary representation.
A feature field is any function f : Rd

! H.

The space of such feature fields is denoted by
FF(Rd,H, � : H ! GL(H)).

The representation � is called the type of the feature field.

The group G acts on feature fields via the induced rep-
resentation IndGH �, namely

[(IndGH �)(x,h)f ](t) = �(h)(f (h�1
· (t� x))),

(x, h) 2 R
d
oH, t 2 R

d. (†2)
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Note that (†2) is the immediate generalization of the for-
mula obtained in Example 6.1. for the induced represen-
tation [(IndGH �)(x,Q)](f ) = ⇧(x,Q)(f ).

Most authors use ⇢ instead of �. This clashes with our
notation used for indexing the irreducible representations
of the group H so we use � instead.

A scalar field, namely a function f : Rd
! C in L2(Rd),

is the special case corresponding to H = C and represen-
tation � : H ! U(1) given by �(h) = idC for all h 2 H .

In this case, IndGH � = RG!L
2
(R

d
), the left regular repre-

sentation of G.
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A vector field f : Rd
! C

d corrresponds to the case where
H is a closed subgroup of GL(d,C) and the representa-
tion � : H ! GL(d,C) is the standard representation
given by �(h) = h, namely �(h)(x) = hx for any x 2 C

d,
where h is a matrix in H .

Example 7.7. Let us show how G-feature maps
f : Rd

⇥H ! C in L2(Rd
oH) can be viewed as feature

fields fH : Rd
! L2(H) (with G = R

d
oH).

The left regular representation RG!L
2
(R

d
oH) acts on G-

feature maps via

(RG!L
2
(R

d
oH)

(x,h) f )(x1, h1) = f (h�1
· (x1 � x), h�1h1),

x, x1 2 R
d, h, h1 2 H



7.3. FEATURE FIELDS 715

A G-feature map can be converted into a feature field as
follows.

Given f : Rd
⇥H ! C in L2(Rd

oH), let
fH : Rd

! L2(H), where

(fH(x))(h) = f (x, h), x 2 R
d, h 2 H.

From an intuitive point of view, for h 2 H fixed, the map
x 7! f (x, h) can be viewed as a sort of image based on
R

d, where the value f (x, h) is the color at the location
x 2 R

d. see Figure 7.3.

H

R
d

f(x,h) for h fixed

f(x,h) for h fixed

f(x,h) for h fixed

Figure 7.3: A schematic illustration of fH
(x) = f(x, h), where H = SO(2). For each fixed

h 2 H, the image of f(x, h) is the horizontal colored layer.
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These images can be thought of as parallel layers , and
for x fixed, as h varies the color f (x, h) moves along a
sort of fibre that passes through each of the layers “above
x.”

For d = 2 and H = SO(2), it is possible to visualize
these fibres.

They are circles, but it is simpler to view them as line
segments of height 2⇡ with both endpoints identified. See
Figure 7.4.

R
d

2π

x fixed

fibre SO(2)

identify endpoints
R

d

x fixed

fibre SO(2)

Figure 7.4: Two illustrations of the fibre SO(2) above a fixed x 2 R
2
.
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The left regular representation RH!L
2
(H) acts on L2(H)

in the usual way, namely

(RH!L
2
(H)

h g)(h1) = g(h�1h1), g 2 C
H, h, h1 2 H.

Then the induced representation IndGH RH!L
2
(H) (here

� = RH!L
2
(H)) acts on the feature fields

fH : Rd
! L2(H) by

[(IndGH RH!L
2
(H))(x,h)f

H ](x1)

= RH!L
2
(H)

h (fH(h�1
· (x1 � x))).
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By definition of RH!L
2
(H) we get

(RH!L
2
(H)

h (fH(h�1
· (x1 � x))))(h1)

= (fH(h�1
· (x1 � x)))(h�1h1)

= f (h�1
· (x1 � x), h�1h1) = (RG!L

2
(R

d
oH)

(x,h) f )(x1, h1).

Therefore,

(IndGH RH!L
2
(H))(x,h)f

H = RG!L
2
(R

d
oH)

(x,h) f,

which shows that G-feature maps f : Rd
⇥ H ! C can

be viewed as feature fields fH : Rd
! L2(H), using the

left regular representations RH!L
2
(H).

In this case, H = L2(H) and � = RH!L
2
(H).
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Definition 7.4. Let � : H ! GL(F ) be a represen-
tation with F finite-dimensional. Define the function
Hom(�, id) by

Hom(�, id)hf = f � �h�1, f 2 Hom(F, F ), h 2 H.

Actually, the representation Hom(�, id) is a special case
of the Hom representation in Definition 4.18 with
�1 : H ! GL(F ) the representation �1 = � and �2 the
trivial representation given by �2(h) = idF for all h 2 H .

If F = C
n, then Hom(Cn,Cn) is isomorphic to the space

Mn(C) of n⇥ n matrices, and if H is a closed subgroup
of GL(n,C), then Hom(�, id) acts on Mn(C) by multi-
plication on the right by the matrix ��1

h , namely

Hom(�, id)h(A) = A��1

h , A 2 Mn(C). (⇤22)
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This is the situation that occurs in practice.

If Cn is equipped with its standard hermitian inner prod-
uct and if � : H ! U(n) is a unitary representation, so
that �h is a unitary matrix, if we give Mn(C) the hermi-
tian inner product hA,Bi = tr(B⇤A), then the represen-
tation Hom(�, id) is unitary because using the fact that
tr(XY ) = tr(Y X) we have

hA��1

h , B��1

h i = hA�⇤

h, B�⇤

hi

= tr((B�⇤

h)
⇤(A�⇤

h))

= tr(�hB
⇤A�⇤

h)

= tr(�⇤

h�hB
⇤A) = tr(B⇤A) = hA,Bi.

In the next section we show how to construct a Fourier
transform on a semi-direct product G = R

d
o H where

H is compact in terms of the Fourier transform F on H .
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7.4 Promoting the Fourier Transform from H to R
d
oH

If we view a function defined on G = R
d
oH as a func-

tion f : Rd
o H ! C, the new twist is that the Fourier

coe�cients of f are now tuples ( bf⇢)⇢2R(H) of functions
bf⇢ : Rd

! Mn⇢(C).

This causes new problems to reconstruct a function from
its Fourier coe�cients because even if the functions bf⇢
belong to L2(Rd,Mn⇢(C)), there is no guarantee that the
function obtained from the inverse Fourier transform
belongs to L2(G).

Some additional condition is required on the functions bf⇢.
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We provide a solution to this problem below by con-
structing a Hilbert space L2(Rd, bH) such that the new
Fourier transform F

⌧ : L2(G) ! L2(Rd, bH) and the
Fourier cotransform F ⌧ : L2(Rd, bH) ! L2(G) are mu-
tual inverses.

We found the key idea in a paper by Mensah and Awussi
[33] who investigate the situation of a semi-direct product
H o R

d, where Rd acts on H by automorphisms.

The first crucial observation is that for any function
f 2 L2(Rd

o H), by Fubini, for any fixed x 2 R
d we

have fH(x) 2 L2(H), where fH is the function defined
in Example 7.7.

SinceH is a compact group, the Fourier transformF(fH(x))
is well-defined.
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For every ⇢ 2 R(H) and every fixed x 2 R
d, recall that

F(fH(x))(⇢) is the n⇢ ⇥ n⇢ matrix given by

F(fH(x))(⇢) =

Z

H
(fH(x))(h)M⇢(h)

⇤ d�(h)

=

Z

H
f (x, h)M⇢(h)

⇤ d�(h),

where M⇢ is an irreducible representation of H in C
n⇢.

To reduce the amount of superscripts we also denote
fH(x) as f (x,�).



724 CHAPTER 7. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

Technically F : L2(H) ! L2( bH) is defined for functions
with domain H , with

L2( bH) =

⇢
F 2

Y

⇢2R(H)

Mn⇢(C) | kFk
L2( bH)

< 1

�
,

and

kFk
L2( bH)

=

✓ X

⇢2R(H)

n⇢ kF (⇢)k2
HS

◆1/2

=

✓ X

⇢2R(H)

n⇢ tr
⇣
F (⇢)⇤F (⇢)

⌘◆1/2

;

see Definition 4.22 and Definition 4.23.
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The vector space L2( bH) is a Hilbert space under the inner
product

hF1, F2iL2( bH)
=

X

⇢2R(H)

n⇢hF1(⇢), F2(⇢)iHS

=
X

⇢2R(H)

n⇢ tr
⇣
F2(⇢)

⇤F1(⇢)
⌘
;

see Theorem 4.19.

We would like to define a notion of Fourier transform on
functions in L2(Rd

oH) that makes use of the Fourier
transform F defined on H , so to avoid confusion we will
denote this new Fourier transform by F

⌧ .

The motivation is that ⌧ : H ! GL(n) is the action of
H on R

d, with ⌧ (h)(x) = hxh�1.
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Definition 7.5. For any fixed x 2 R
d and anyG-feature

map f 2 L2(Rd
oH), we define

F(f (x,�)) = (F(f (x,�))⇢)⇢2R(H) 2 L2( bH),

also denoted bf (x), by

F(f (x,�))⇢ = bf (x)⇢ =
Z

H
f (x, h)M⇢(h)

⇤ d�(h),

( bf (x))
with ⇢ 2 R(H).

Then if we let x vary in R
d, for any fixed ⇢ we obtain a

function bf⇢ : Rd
! Mn⇢(C) given by

bf⇢(x) = bf (x)⇢ =
Z

H
f (x, h)M⇢(h)

⇤ d�(h), x 2 R
d.

( bf⇢)
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By Fubini, since f 2 L2(Rd
oH), we have

bf⇢ 2 L2(Rd,Mn⇢(C)). This step requires a justification
that we postpone for now.

The function bf⇢ is called a Fourier coe�cients feature
field of type ⇢ or steerable feature field of type ⇢.

The R(H)-indexed family ( bf⇢)⇢2R(H) is denoted by bf and
is called the family of Fourier coe�cients feature fields
of f or family of steerable feature fields of f .

Observe that

bf (x) = ( bf⇢(x))⇢2R(H) 2 L2( bH) for every x 2 R
d,

and consequently ( bf⇢)⇢2R(H) belongs to the space E⌧( bH)
defined next.
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Definition 7.6. The vector space E⌧( bH) is defined by

E⌧( bH) =

⇢
F 2

Y

⇢2R(H)

L2(Rd,Mn⇢(C))

| (F⇢(x))⇢2R(H) 2 L2( bH), x 2 R
d

�
. (E⌧( bH))

Note the analogy with the space E( bH) of Definition 4.23.
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Definition 7.7.We define the map F ⌧ from L2(Rd
oH)

to E⌧( bH) by setting

F
⌧(f ) = (F ⌧

⇢ (f ))⇢2R(H), f 2 L2(G), with

F
⌧
⇢ (f )(x) = bf⇢(x) = F(f (x,�))⇢

=

Z

H
f (x, h)M⇢(h)

⇤ d�(h), x 2 R
d, ⇢ 2 R(H).

(F ⌧)

Observe that by Line ( bf (x)), for every fixed x 2 R
d, we

have

F
⌧(f )(x) = (F ⌧

⇢ (f )(x))⇢2R(H) = F(f (x,�)).
(F ⌧(f )(x))
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We will see shortly that steerable feature fields of type ⇢
transform under the representation Hom(M⇢, id).

For this reason the space of steerable feature fields of type
⇢ is denoted by FF(Rd,H,Hom(M⇢, id)).

These are matrix-valued functions bf⇢ : Rd
! Mn⇢(C)

that belong to L2(Rd,Mn⇢(C)).
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Actually, we will see below (see Definition 7.8) that there
is some extra condition on the family ( bf⇢)⇢2R(H) that en-
sures that Fourier inversion yields a function in L2(G).

For every fixed x 2 R
d, the function fH(x) 2 L2(H)

can be recovered by Fourier inversion using the Fourier
cotransform F from L2( bH) to L2(H) from the family of
Fourier coe�cients feature fields
bf = ( bf⇢)⇢2R(H) 2 E⌧( bH) evaluated at x, namely the

R(H)-indexed family bf (x) = ( bf⇢(x))⇢2R(H) 2 L2( bH),
using the formula

(fH(x))(h) = [F( bf (x))](h)
=

X

⇢2R(H)

n⇢ tr
⇣
bf⇢(x)M⇢(h)

⌘
, h 2 H.
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Thus the G-feature map f : Rd
⇥ H ! C can also be

recovered pointwise, via

f (x, h) = [F( bf (x))](h) =
X

⇢2R(H)

n⇢ tr
⇣
bf⇢(x)M⇢(h)

⌘
.

(F( bf (x)))

The definition of a map F ⌧ from E⌧( bH) to L2(Rd
oH)

is more delicate.

The space E⌧( bH) is actually too big to ensure that the
resulting functions belong to L2(Rd

oH).

Inspired by Mensah and Awussi [33] we define the follow-
ing space.
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Definition 7.8. Define the vector space L2(Rd, bH) by

L2(Rd, bH) =

⇢
F 2 E⌧( bH)

��� kF (�)k
L2( bH)

2 L2(Rd)

�
,

(L2(Rd, bH))

where kF (�)k
L2( bH)

is the function defined such that if
F = (F⇢)⇢2R(H), then

kF (x)k
L2( bH)

=

✓ X

⇢2R(H)

n⇢ kF⇢(x)k
2

HS

◆1/2

.

(kF (�)k
L2( bH)

)

Note that kF (�)k
L2( bH)

2 L2(Rd) implies that
Z

Rd
kF (x)k2

L2( bH)
dx < 1.
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The vector space L2(Rd, bH) is equipped with the norm
k k

L2(Rd, bH)
given by

kFk
2

L2(Rd, bH)
=

Z

Rd
kF (x)k2

L2( bH)
dx

= (kF (�)k2
L2( bH)

)2
L2(Rd)

. (kFk
L2(Rd, bH)

)

Note the analogy with the definition of the space L2( bH)
in Definition 4.23.

We also define an inner product on L2(Rd, bH) as follows.
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Definition 7.9. For any two sequences of functions
F1, F2 2 L2(Rd, bH), let hF1, F2iL2(Rd, bH)

be given by

hF1, F2iL2(Rd, bH)

=

Z

Rd

X

⇢2R(H)

n⇢ tr
⇣
(F2)⇢(x))

⇤(F1)⇢(x)
⌘
dx. (h�,�i)

Observe that

kFk
2

L2(Rd, bH)
= hF, F i

L2(Rd, bH)
,

but we still need to prove that the integral in (h�,�i) is
well defined.

We will use the Cauchy-Schwarz inequality both in L2( bH)
and L2(Rd).
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We have

|hF1, F2iL2(Rd, bH)
|

=

����
Z

Rd

X

⇢2R(H)

n⇢ h(F1)⇢(x), (F2)⇢(x)iHS dx

���� (1)



Z

Rd

����
X

⇢2R(H)

n⇢ h(F1)⇢(x), (F2)⇢(x)iHS

����dx (2)

=

Z

Rd

���hF1(x), F2(x)iL2( bH)

��� dx (3)



Z

Rd
kF1(x)kL2( bH)

kF2(x)kL2( bH)
dx (4)



✓Z

Rd
kF1(x)k

2

L2( bH)
dx

◆1/2✓Z

Rd
kF2(x)k

2

L2( bH)
dx

◆1/2

(5)

= kF1kL2(Rd, bH)
kF2kL2(Rd, bH)

, (6)

where (1) holds by definition, (2) by a standard property
of the integral, (3) by definition of the inner product in
L2( bH), (4) by the Cauchy-Schwarz inequality in L2( bH),
(5) by the Cauchy-Schwarz inequality in L2(Rd), and (6)
by definition (see (kFk

L2(Rd, bH)
)).
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We will also need the projection L2(Rd, bH)⇢ of L2(Rd, bH)
on the ⇢-th factor, that is,

L2(Rd, bH)⇢ = {F⇢ | (F⇢)⇢2R(H) 2 L2(Rd, bH)}.

(L2(Rd, bH)⇢)

We have the following important version of Plancherel
theorem for our Fourier transformF

⌧ : L2(G) ! L2(Rd, bH).
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Theorem 7.2. (Generalized Plancherel) The map
F

⌧ : L2(G) ! L2(Rd, bH) (with G = R
d
o H) is an

isometric isomorphism of Hilbert spaces. That is, it
is bijective and

hF
⌧(f ),F ⌧(g)i

L2(Rd, bH)
= hf, giL2(G), f, g 2 L2(Rd

oH).

In particular, it is continuous.
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Proof. First we prove that the map F
⌧ is an isometry.

Since L2(G) is a Hilbert space, this proves that L2(Rd, bH)
is also a Hilbert space.

Since the norm on L2(Rd, bH) is induced by the inner prod-
uct on L2(Rd, bH), it su�ces to prove that the norm is
preserved.

This is a standard result of linear algebra; for example,
see Gallier and Quaintance [24] (Chapter 13, Proposition
13.1).
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For any f 2 L2(Rd
oH), we have

kF
⌧(f )k2

L2(Rd, bH)
=

Z

Rd
kF

⌧(f )(x)k2
L2( bH)

dx by definition

=

Z

Rd
kF(f (x,�))k2

L2( bH)
dx by (F ⌧(f )(x)).

However, for fixed x, F(f (x,�)) is the Fourier transform
of the function f (x,�) 2 L2(H).

By Plancherel Theorem (Theorem 4.23), we have

kF(f (x,�))k2
L2( bH)

= kf (x,�)k2
L2(H)

.
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Since f 2 L2(Rd
oH), by Fubini

kfk2
L2(G)

=

Z

G
|f (x, h)|2 d�G(x, h)

=

Z

Rd

Z

H
|f (x, h)|2 d�H(h) dx < 1,

but

Z

Rd

Z

H
|f (x, h)|2 d�H(h) dx =

Z

Rd
kf (x,�)k2

L2(H)
dx,

which shows that the function x 7! kF(f (x,�))k
L2( bH)

is

in L2(Rd).
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Consequently, we have

kF
⌧(f )k2

L2(Rd, bH)

=

Z

Rd
kF(f (x,�))k2

L2( bH)
dx

=

Z

Rd
kf (x,�)k2

L2(H)
dx by Plancherel

=

Z

Rd

Z

H
|f (x, h)|2 d�H(h) dx by definition of the L2(H)-norm

= kfk2
L2(G)

. by Fubini

Since F ⌧ is an isometry, it is injective. It remains to prove
that it is surjective.
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For any F = (F⇢)⇢2R(H) 2 L2(Rd, bH) and for every fixed
x 2 R

d, we have

F (x) = (F⇢(x))⇢2R(H) 2 L2( bH).

By Plancherel applied to the Fourier transform F be-
tween L2(H) and L2( bH), there is a unique function
fx 2 L2(H) such that

F(fx) = F (x) and kfxkL2(H)
= kF (x)k

L2( bH)
. (⇤23)

Define the function f : Rd
oH ! C by

f (x, h) = fx(h) x 2 R
d, h 2 H. (⇤24)
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Observe that

f (x,�) = fx, (⇤25)

so we get

kfk
L2(G)

=

Z

Rd

Z

H
|f (x, h)|2 d�H(h) dx by definition of kfk2

L2(G)

=

Z

Rd

Z

H
|fx(h)|

2 d�H(h) dx by (⇤24)

=

Z

Rd
kfxk

2

L2(H)
dx by definition of kfxk

2

L2(H)

=

Z

Rd
kF (x)k2

L2(bH) dx by (⇤23)

= kFk
2

L2(Rd, bH)
< 1, by definition of kFk

2

L2(Rd, bH)

and the last step because F 2 L2(Rd, bH).
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Therefore f 2 L2(G). Then by (F ⌧(f )(x)), (⇤25) and
(⇤23), we have

F
⌧(f )(x) = F(f (x,�)) = F(fx) = F (x), x 2 R

d,

which means that F
⌧(f ) = F , and thus F

⌧ is indeed
surjective.

Since we already know that functions in L2(G) can be
recovered pointwise using the Fourier transform on H ,
we can exhibit the inverse F ⌧ of the Fourier transform
F

⌧ .
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Definition 7.10. Define the map

F ⌧
⇢ : L2(Rd, bH)⇢ ! L2(G)

for every ⇢ 2 R(H) by

F ⌧
⇢( bf⇢)(x, h) = n⇢ tr

⇣
bf⇢(x)M⇢(h)

⌘
,

x 2 R
d, h 2 H, bf⇢ 2 L2(Rd, bH)⇢, (F ⌧

⇢)

and the map F ⌧ : L2(Rd, bH) ! L2(G) by

F ⌧(( bf⇢)⇢2R(H))(x, h) =
X

⇢2R(H)

F ⌧
⇢( bf⇢)(x, h),

x 2 R
d, h 2 H, ( bf⇢)⇢2R(H) 2 L2(R2, bH). (F ⌧)
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Then F
⌧ : L2(G) ! L2(Rd, bH) and

F ⌧ : L2(Rd, bH) ! L2(G) are mutual inverses.

We claim that the map bf⇢ 2 L2(Rd, bH)⇢ is indeed a fea-
ture field, with H = Mn⇢(C) and � = Hom(M⇢, id).

For this we need to see how the function bf⇢ changes
when G = R

d
o H acts on f via the left regular ac-

tion RG!L
2
(G) given by

RG!L
2
(G)

(x,h) (f )(x1, h1) = f (h�1
· (x1 � x), h�1h1).
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Proposition 7.3. For every ⇢ 2 R(H), let
�⇢ : H ! U(Mn⇢(C)) be the representation

�⇢ = Hom(M⇢, id)

associated with the representation M⇢ : H ! U(Cn⇢)
as in Definition 7.4. For every function bf⇢ 2 L2(Rd, bH)⇢,
we have

F
⌧
⇢ [R

G!L
2
(G)

(x,h) (f )](x1) = [(IndGH (�⇢)(x,h) bf⇢](x1)
= bf⇢(h�1

· (x1 � x))M⇢(h)
⇤.
(⇤26)
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Proof. Using the fact that the Haar measure � is left (and
right) invariant and the fact that M⇢ is a representation,
we have

F
⌧
⇢ [R

G!L
2
(G)

(x,h) (f )](x1)

=

Z

H
RG!L

2
(G)

(x,h) (f )(x1, h1)M⇢(h1)
⇤ d�(h1)

=

Z

H
f (h�1

· (x1 � x), h�1h1)M⇢(h1)
⇤ d�(h1)

=

Z

H
f (h�1

· (x1 � x), h2)M⇢(hh2)
⇤ d�(h2) h1 = hh2

=

✓Z

H
f (h�1

· (x1 � x), h2)M⇢(h2)
⇤ d�(h2)

◆
M⇢(h)

⇤

= bf⇢(h�1
· (x1 � x))M⇢(h)

⇤.

The above computation shows that

F
⌧
⇢ [R

G!L
2
(G)

(x,h) (f )](x1) = bf⇢(h�1
· (x1 � x))M⇢(h)

⇤,

as claimed.
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Equation (⇤26) shows that the group G = R
d
o H acts

on the feature fields of type ⇢ via

[(IndGH (�⇢)(x,h) bf⇢](x1) = bf⇢(h�1
· (x1 � x))M⇢(h)

⇤,
(�⇢)

for all (x, h) 2 R
d
o H and all x1 2 R

d, and (⇤26) is
equivalent to the commutativity of the following diagram

L2(G)
F
⌧
⇢

//

R
G!L

2
(G)

(x,h)

✏✏

L2(Rd, bH)⇢

(Ind
G
H �⇢)(x,h)

✏✏

L2(G)
F
⌧
⇢

//L2(Rd, bH)⇢

for all (x, h) 2 G = R
d
oH .
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We also package the representations
IndGH �⇢ : G ! U(L2(Rd, bH)⇢) in the map

IndGH � : G⇥ L2(Rd, bH) ! L2(Rd, bH)

defined such that for any bf = ( bf⇢)⇢2R(H),

[(IndGH �)(x,h) bf ]⇢(x1) = [(IndGH �⇢)(x,h bf⇢](x1),
x1 2 R

d, ⇢ 2 R(H). (�)

The following result should not be too surprising.
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Proposition 7.4. The following diagram commutes

L2(Rd, bH)⇢
F⌧ ⇢

//

(Ind
G
H �⇢)(x,h)

✏✏

L2(G)

R
G!L

2
(G)

(x,h)

✏✏

L2(Rd, bH)⇢
F⌧ ⇢

//L2(G)

for all (x, h) 2 G = R
d
oH.
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Proof. For any bf⇢ 2 L2(Rd, bH)⇢ we have

F ⌧
⇢((Ind

G
H �⇢)(x,h) bf⇢)(x1, h1)

= n⇢ tr
⇣
((IndGH �⇢)(x,h) bf⇢)(x1)M⇢(h1)

⌘
by (F ⌧

⇢)

= n⇢ tr
⇣
bf⇢(h�1

· (x1 � x))M⇢(h)
⇤M⇢(h1)

⌘
by (⇤26)

= n⇢ tr
⇣
bf⇢(h�1

· (x1 � x))M⇢(h
�1h1)

⌘
.

We also have

R(x,h)(F ⌧
⇢( bf⇢))(x1, h1)

= F ⌧
⇢( bf⇢)(h�1

· (x1 � x)), h�1h1) by definition of R(x,h)

= n⇢ tr
⇣
bf⇢(h�1

· (x1 � x))M⇢(h
�1h1)

⌘
. by (F ⌧

⇢)
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Consequently

F ⌧
⇢((Ind

G
H �⇢)(x,h) bf⇢)(x1, h1) = R(x,h)(F ⌧

⇢( bf⇢))(x1, h1),

as claimed.

Remark: We also have the representation Hom(id,M⇢)
which acts on Mn⇢(C) by multiplication on the left by
M⇢(h) for every h 2 H .

The induced representation Hom(id,M⇢) of Rd
o H on

the feature fields of type ⇢ is then given by

[(IndGH Hom(id,M⇢))(x,h) bf⇢](x1)
= Hom(id,M⇢)(h)( bf⇢(h�1

· (x1 � x)))

= M⇢(h) bf⇢(h�1
· (x1 � x)),

for all (x, h) 2 R
d
oH and all x1 2 R

d. It is a bit more
natural than the representation induced by Hom(M⇢, id).1

1Which representation arises naturally depends on the definition of the Fourier transform. The literature
is not consistent on this matter. For exampe, Bekkers uses M⇢ instead of M⇤

⇢ .
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Example 7.8. Let H = SO(2) so that
G = R

2
o SO(2) = SE(2).

In this case, R(SO(2)) = Z and n⇢ = 1. We will denote
⇢ as `.

For any f 2 L2(SE(2)), for every x 2 R
2, the Fourier

transform F
⌧(f ) of f is the Z-indexed sequence (bf`)`2Z

of functions given by

bf`(x) = F
⌧(f (x,�))`

=

Z

S1

e�i`✓f (x, ✓) d✓, x 2 R
2, ` 2 Z.

The functions bf` are the feature fields associated with `.
Observe that this is an example of ( bf⇢).
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Given a family bf = ( bfm)m2Z of function bfm 2 L2(R2,Z)m
such that bf (x) = ( bfm(x))m2Z 2 `2(Z) for all x 2 R

2 and

✓ 1X

m=�1

| bfm(�)|2
◆1/2

2 L2(R2),

the Fourier cotransform F ⌧( bf )(x, ✓) is given by

F ⌧( bf )(x, ✓) =
1X

m=�1

bfm(x)eim✓.
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It is instructive to see in this more concrete case how the
function bf` changes when SE(2) = R

2
o SO(2) acts on

f via the left regular action RSE(2)!L
2
(SE(2)) given by

RSE(2)!L
2
(SE(2))

(x,✓) (f )(x1, ✓1) = f (R�✓(x1 � x), ✓1 � ✓).

Using the fact that the Haar measure on SO(2) is left
(and right) invariant, we have

F
⌧ [RSE(2)!L

2
(SE(2))

(x,✓) (f )(x1,�)]`

=

Z

SO(2)

RSE(2)!L
2
(SE(2))

(x,✓) (f )(x1, ✓1)e
�i`✓1 d✓1

=

Z

SO(2)

f (R�✓(x1 � x), ✓1 � ✓)e�i`✓1 d✓1

=

Z

SO(2)

f (R�✓(x1 � x), ✓2)e
�i`(✓+✓2) d✓2 ✓1 = ✓ + ✓2

= e�i`✓

Z

SO(2)

f (R�✓(x1 � x), ✓2)e
�i`✓2 d✓2

= e�i`✓ bf`(R�✓(x1 � x)).
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Thus we have

\R(x,✓)(f )`(x1) = e�i`✓ bf`(R�✓(x1 � x)),

so the representation that needs to be associated with the
feature fields corresponding to ` is e�i`✓, and not ei`✓.

Since multiplication in C is commutative, given a char-
acter �`(✓) = ei`✓, the representation Hom(�`, id) is just
multiplication by e�i`✓ and the representation Hom(id,�`)
is just multiplication by ei`✓.


