Chapter 7

Equivariant Convolutional Neural
Networks

7.1 Steerable Families

Since it is not practical to use the definition of cross-
correlation involving integration over the group
G = R%x H we go back to the notion of lifted correlation.

[t is more convenient to assume that the semi-direct prod-
uct G = R? x H is defined by an action of H on R? by
automorphisms so that elements of GG are denoted as pairs
(z,h) € R x H.
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Then for any function f € L?(R%) and any correlation
kernel k € LY(R?) with compact support, the lifted cor-
relation kx f is defined by (*;¢), namely

(k% f)(x, h) = 5 FO)k(h™ - (t—x))dt, (x,h) € RIxH.

Observe that k% f is a function with domain R¢ x H.

Computing (k* f)(z, h) requires sampling the group H,
which is too expensive if d > 3.

A way around this problem is to express the kernels k in
terms of a basis of “steerable functions.” Intuitively this
means using some kind of generalized harmonic functions.

In our case we need to find bases of functions in L%(RY)
that are H-steerable.
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In applications H is a compact group so as we will see
shortly, we can use the Peter—-Weyl theorem, actually Ver-
sion II, namely Theorem 4.4, to find steerable bases.

The problem is the presence of the term k(h™! - (t — z))
in the integral defining &k * f.

The key point is that if we can express the kernel £ as
a linear combination of linearly independent functions
Yy, ..., Yy in L2(RY) that are “nice,” which means that
for every h € H and every z € R? cach Y;(h™! - x) can
be expressed as a linear combination of Yi(x), ..., Yz (),
then it is possible to express (kx f)(x, h) in a linear fash-
ion in terms of the vector

frz) = g fY(t—z)dt,

where Y (x) denotes the column vector
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So let us assume that for every h € H, there is an invert-

ible matrix ¥(h) € GL(L, C), such that

Yi(h™!-x) N(h)n X(h)zq -
Yo(h™t-a) | _ | 2(h)z B(h)ag -+
YL<h;1 I‘) E(h)lL 2<h)2L

or more concisely,

Y(h ' 2)=%(h)"Y(x), zcR%

X(h)\ [Yi(z)

Z(@)m Yz@

Z(h.>LL Yka)
(steerl)

If Equation (steerl) holds we say that (Y7,...,Y7) is an
H-steerable family (or H-steerable basis). For short,

we often drop H.

In fact, we will see later that the map >: H — U(L) is

a representation of H.
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The reason for using X(h)' instead of ¥(h) is technical
and will become clear later when we explain how to create
steerable families.

The notion of steerability occured first in the seminal pa-
per of Freeman and Adelson [20)].

Next assume that the kernel k£ can be expressed as a linear
combination of the Y; using some coefficients w; € C that

we call weights.

Let us write

where w € C" is the column vector consisting of the w;.
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The reason for using conjugate weights will become ap-
parent in the computation below.

Let us compute k(h™! - z;w). Since Y is a steerable
family, we have

k(h' zw) = uﬂh_l ) = w*E(f&/(aj)

= (B(h)w)"Y(x) = k(z; B(h)w),
namely
k(h™' - ziw) = k(2 S(h)w). (kw?2)

So the new kernel is obtained by simply modifying the
weights using the matrix X(h).
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And now let us compute the lifted correlation k* f given
by

(K3 ). ) = [ FORAT - (¢ =z dt,

with (z,h) € R? x H.

Using the fact that k is a steerable family we have

(kx f)(x, h) = g FOk(R - (t — 2);w) dt
— df(t)w*Z(h)TY(t—x) dt

— w*S(h)" d f)Y(t — ) dt.
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Let f¥ be the function f¥: R?Y — C* given by

Jra f( Y1 t —x)dt
(@) = = [ fO)Y(t—a)dt.
e YL t—x)dt R
(f")

Then using the trick that for any two column vectors
u,v € C", we have

w'v = tr(vu'),

we obtain

(k% f) (@, h) = / FOR (¢ 2 w) de

— w*S(h)" d fRY(t —a)dt

= w'S(h)" f () = te(f* (2)w" B(h) "),
where we use the identity
w'v = tr(vu

with w = (w*S(h)") " and v = ¥ (2).

")
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Observe that

is an L X L matrix that can be thought of as some kind
of Fourier coefficients of f.

The formula
(6% )z h) = tr (@) S0)T) = tr (Fla) D(R)T)

shows that (k* f)(x, h) is similar to a Fourier cotrans-
form with respect to the representation 3, where f(:z:) /L
plays the role of F(f)(p) and 3" plays the role of M, (see
Formula (FI) in Section 4.7 and Theorem 4.26), except

that ¥ ' is not necessarily irreducible.
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The function f: R? — M (C) given by J?(a:) = f¥(2)w*
is a matriz-valued function.

What we have gained is that when we compute the inte-
gral

M (z) = g FOY (- z)dt,

we incorporate all the information about the action of H
on R% into f¥ without having to sample the group H.

The functions (Y1, ..., Yr) package all the information
about the group H needed to compute the essential

part of (kx f)(x,h).

The outer product f(az) = f¥(z)w* incorporates all the
information in the kernel £ using the weight vector w.
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Computing
(k% f)(, h) = tr ( Fla) ()T = tr () fl2)T)

is then very cheap, since it is a linear operation only in-
volving the matrix ¥(h).

Another important observation is that starting with an
input function f € L?(IR%), the lifted correlation k% f is
a scalar-valued function (with codomain C) defined on
the augmented domain RYx H, but fis a vector-valued
function from R? to the augmented codomain Mp(C).

The group R? x H acts on the domain R? of ]?, and the
group H acts on its codomain My (C) in terms of the
representation > by multiplication on the left by ¥(h).
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This is one of the motivations for introducing certain
vector-valued functions called feature fields, discussed in
the Section 7.3.

The notion of steerability is easily generalized to any mea-
sure space X such that L?(X) is separable and H acts
continuously on X.

For example, any locally compact, metrizable, separable
space X equipped with a o-regular, locally finite, Borel

measure ¢ will do; see Vol I, Theorem Q@Q@7.11.
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Definition 7.1. Let X be any measure space such that
L2(X) is separable and H acts continuously on X. Some
linerarly independent functions (Y7, ..., Y7) in L*(X) form
an H-steerable family (or H-steerable basis) if there is
a representation >.: H — U(L) such that

YRt -2)=%(h)'Y(z), he H v X, (steer2)

where Y (x) denotes the column vector

Yi(z)
Y(z) = : c C*.
YL<JJ>

This more general notion will be needed in Section 77 to
construct equivariant kernels.
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The simplest example (simpler that X = R?) is the circle,
X = S! with H = SO(2), the group of rotations in the
plane.

Example 7.1. Let H = SO(2) and X = S* =~ SO(2).
For any L-tuple of integers (nqy,...,ny), we claim that

Y(a)=(e7™", ... e ")

is a steerable family (where the expression on the right-
hand side denotes a column vector).
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As we saw in Proposition 2.12, every unitary represen-
tation X: SO(2) — U(L) is given by a matrix of the

form

o L ) I |
1koc
Z(a) _ 0 e . O
0 L. L. ethra

with ki,...,kr € Z, so if we pick k; = ny, for j
1,...,L and

}/]' (CY) — e_mjaa
since

Y}(CK B 8) _ e—inj(oz—e) _ einj(?e—injoz _ einﬁx/j(a%
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we see that
elin 0 0 0
}/i<a o (9) 0 62’7229 0 Yi((){)
Yi(a =) 0 ) \Yil@)

which confirms that (Y;(a) = e~ ... Y, (a) = e ")
is a steerable family (again, the expression on the right-
hand side denotes a column vector).
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7.2 Construction of H-Steerable Families

We now present a method for finding steerable families
on a space X as above equipped with a continuous action
of a compact group H.

The trick is to consider the unitary representation
V: H — U(L*( X)) given by

(VR f)(z)=f(h™'-z), heH, fel?X), zeX.
(V)
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According to the Peter—Weyl theorem, Version II, the
space L#(X) is the Hilbert sum of closed subspaces F,
with p € R(H) (which may be reduced to zero), where
E, is the projection of L?(X) under the projection 7}
given by

(f)=n, /H GV (R)f) dA(h),

where f € L?(X) and \ is a left Haar measure on H.
First we need to take care of a technicality.

As stated the theorem involves the projection 7 (f) of a

function f € L?(X) and it is defined as a weak integral.

For our purposes we need a formula definining (7 (f))(z)
for every x € H.
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This can be achieved as follows.

By definition of WX( f) as a weak integral it is the unique
function (given by the Riesz representation theorem, The-
orem 4.7(2)) such that

° <

(7

(F).9) = n, /H UV (1), g) dAR)

for all ¢ € L*(X), and using the definition of the inner
product on L?(X) and Fubini the above is expressed as

(V(h)f)(x)g(x) dux(x) dA(h)

—n, [ ([ GV @) d>\<h))md/ix($),

|

S

e
_—

>

>

=
T

and since it holds for all g € L*(X), we must have
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7 (F)x) = n, /H TRV () f) (@) dA(h)
n, /H Xo(h)f(R™ - ) d\(h). (pr)

<

So the projection wy (f) of the function f € L*(X) can be
defined pointwise by (WX), but it is not obvious a priori
that this yields a function in L*(X), which is guaranteed

by the weak integral argument.

Going back to Peter—-Weyl 11, each subspace I, is a finite
or countably infinite Hilbert sum of d, (where d, = oo

is possible) closed finite-dimensional subspaces Eﬁp (1<
k, < d,) such that for every p and every k,,

each subrepresentation Vpkp: H — U(Egp) IS equiva-
lent to the irreducible representation M,: H — U(C").
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Thus there are linear isomorphisms H];p ; Eﬁp — C" such
that the following diagrams commute

k, e

Bl

Mp(h)

n
Ep —kp>(C p
0

for all h € H.

Since (V(h)f)(z) = f(h™1 - x), we have

f(7 )= (VP (W f)@), heH, feE veX
(steer3)

for all p € R(H) and all k.
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If we pick an orthonormal basis (orthogonal works too)

(Ypl’k,p, . ,Y;,’;p) in each E;Jp so that the family
(ij,kp>p€R(H)’1§kp§dp71§j§np is a Hilbert basis of L?(X),

then there is an n, X n, unitary matrix M?*»(h) repre-

senting the linear map Vpkp (h) with respect to the basis
(Ypl’kp, . ,Yp,,’f’p) defined by

— * Z_
ij,kp(h L) = Z Mz'pj p(h>Yp,kp(37>-

If we stack the Ypi,kp(:z:) into a column vector Y, ;. (z) and

the ij;kp(h_l - ) into a column vector Y, ;. (h™" - x), we

can write

)

Yor, (Bt a) = (MPY(R)'Y, ) (). (steerd)
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Remark: The presence of the transposition is the fa-
miliar artifact of linear algebra caused by the fact that
Y, x,(z) is a column vector.

Replacing h by h™! in (steerd) we get

Yo, (b 2) = (M (h™1) 'Y, (2)
= ((M"*0(h))") Yy, (2)
— Mp’kp<h)}/07kp <£E),

so conjugating on both sides we get

Y, i, (h-x)= Mp’kp(h)Yp,kp(x). (steerd)

Observe that the unitary representation

Vpkp  H — U(Eg’) ) define a representation in matrix form
M#ke: H — U(C™) equivalent to the irreducible repre-
sentation M,. The equations (steerd) express the fact
that the basis functions (Ypl,kp, . ,Y:gp) are steerable.
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Definition 7.2. If H is a compact group and X is a lo-
cally compact, metrizable, separable space equipped with
a o-regular, locally finite, Borel measure p, given any
continuous action of H on X, some linerarly indepen-
dent functions (Y1, ..., Yz)in L*(X) form an H -steerable
family (or H-steerable basis) if there is a representation
>;: H — U(L) such that

YRt 2)=%M)'Y(x), heH ze€X, (steert)
or equivalently
Y(h-2)=%(h)Y(x), he H xe€X, (steer?)

where Y (x) denotes the column vector

Yi(z)
Y(x) = : c C~.
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Remark: Steerability as defined above is equivalent to

the notion of steerability as defined in Lang and Weiler
31].

In Cesa, Lang and Weiler [7] as well as Bekkers [1], the
notion of steerability is defined using Y (h - x) instead of
Y(h™t )

We pass from one version to the other by conjugation of
the functions. In the papers mentioned above, steerable
families are also called harmonic basis functions.

Due to its importance, the preceding discussion is sum-
marized in the following theorem.
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Theorem 7.1. Let X be a locally compact, metriz-
able, separable space equipped with a o-reqular, locally
finite, Borel measure p. If H 1s a compact group act-
ing continuously on X (not necessarily in a transitive
fashion), consider the unitary representation

V:H — U(L*X)) given by
(VR f)(z)=f(h'-2), heH, fel’X), zeX.

According to the Peter—Weyl theorem, Version II, the
space L*(X) is the Hilbert sum of closed subspaces E,
with p € R(H) (which may be reduced to zero), where
E, is the projection of L*(X) under the projection 7TX
given by

(xV (F)(e) = n, /H QU - ) dA(R),

where f € L*(X), x € X, and )\ is a left Haar measure
on H.
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Each subspace E, is a finite or countably infinite Hilbert
sum of d, (where d, = 00 is possible) closed finite-

dimensional subspaces ES” (1 <k, <d,) such that
for every p and every k,, each subrepresentation
Vpkp: H — U(El;p) is equivalent to the irreducible rep-

resentation M,: H — U(C™).

Furthermore, each space Eﬁp has an H-steerable or-
thonormal basis with respect to an irreducible repre-
sentation equivalent to M, (the functions specified by
the column vectors Y,y ).

The union of these H-steerable famailies for all

p € R(h) and all k, is an H-steerable Hilbert basis of
L2(X).

As similar result is presented in Lang and Weiler [31] and

in Cesa Lang and Weiler [7].

We now consider several examples.
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Example 7.2. Let H = SO(2) and X = S* =~ SO(2).
In this case R = 7, all irreducible representations are

one-dimensional and of the form z — ™z, and the char-
b

acters are given by x,(e?) = ™.
Given a function f € L*(S') we have (with ¢ = a — 6)

ol f)(e) = / @ F(() 1) dA(h)

- 0
T : o d
_ / e—me(e—z@ezoz) had
- 21
_ ie—ina /7T 6in¢f<6ig0> dg&
2T -
_ iez’(—n)a / e—i(—n)¢f<€icp> dg& _ e—inozc_m
2T o
where
1 L :
Cn e " f(e)dy

:% B

is the nth Fourier coefficient of f.
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Thus
To(f)(e®) = e e, (strl)

The index n is flipped to —n due to the fact that the
projection operator uses x,(h).

The space F), is one-dimensional and has the function
Y, (e) = e " (str2)
as a basis. It is steerable since
Yn(ei(a—e)) _ —inla=0) _ inf,~ina _ ey (&),

and x,(e?) = e is a character.
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Example 7.3. Let H = SO(2) and X = R In this
case, again R = 7, all irreducible representations are one-

dimensional and the characters are of the form x,(e”) =
einﬁ.

Given any function f € L*(R?*) we have

ol () = /H (@) f(R; 1) dA(h)
— [ e S

—T
where Ry is the rotation matrix
cosf) —sind
Fy = (sin@ cos 6 ) '

This time FE,, is the Hilbert sum of countably many sub-
spaces of dimension 1.

Let us compute f,(R,z) where f,(x) = m,(f)(x).
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We have

7 ' 0
FlBoa) = [ (R R )5

" —n d9
_ / e ef(R_(g_@)az)%

= [ R0 3

o d
e [ (R 5 -

677

e " ().

(str3)
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For z = rej, r € R, where e; = (1,0), we get

fulrRger) = e fr(r),
with

) = ftre) = [ e fr(Rg)en 3 (e

—T

The function f is called a radial function. It is a
function defined on R, .

We see that in polar coordinates (7, ¢),
folr, o) = e f14(r). (str5)

Thus we are reduced to finding a Hilbert basis of L*(R ).
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There are many candidates but the Hilbert basis involving
the Hermite functions is particularly elegant.

These are the functions

V() = €2 Hy (1), (str6)
where the H,,(x) are Hermite polynomials.
The functions 1), are also a Hilbert basis of L*(R); see
Sansone [36], Chapter IV, Section 7 and Folland [18],

Chapter 6, Section 6.4.

The Hermite polynomials are real polynomials given by
the equations

Hy(z) = (=1)"e" —e". (str7)
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They are also defined by the recurrence relations

Hyo(x) =2xH, 1(x) —2(n+ 1)H,(x)
Hi(x) =2z

From these equations the following explicit formula can

be derived:

see Sansone [36], Chapter IV, Section 2 and Folland [18],
Chapter 6, Section 6.4.
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The first six Hermite polynomials are

Hy(z) =1 Hy(x) =2z

Hy(x) = 42 — 2 Hj(x) = 8z* — 122

Hy(x) = 162" — 482 + 12 Hj(x) = 322° — 1602° + 120z.

The Hermite polynomials are orthogonal with respect to
the inner product

(fg) = / e f(2)g(c) da

and so the functions v, are orthogonal with respect to
the usual inner product on L*(R).
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They are not orthonormal because
> 2
/ H?(z)e ™™ dx = /7 2™m).
—00

See Sansone [36], Chapter IV, Section 2.

22
The purpose of the term e~ 2 is to insure that the func-

tions v, are square integrable over RR.

The Hermite polynomials are discussed quite extensively
in Sansone [36], Chapter IV, Sections 2-5 and 7 and in
Folland [18], Chapter 6, Section 6.4.
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Then the functions

2

Yn(r, @) = e ™e T H,(r), m >0, (str8)

form a steerable Hilbert basis of F, (n € Z).

Indeed, we see immediately that
Yun(r, o —0) = ™Y, . (r, @)

This case was also investigated by Weiler and Cesa [31]
in a more informal fashion.
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Example 7.4. Let H = SO(2) and X = L*(SE(2)).

The action of SO(2) on L*(SE(2)) is the left regular ac-
tion RSO(2)—L*(SE(2)) given by

RECLEER) ) ) = (R, — ),
f € L*SE(2), » € R*, R, € SO(2).

In this case, again R = Z, all irreducible representations
are one-dimensional and the characters are of the form
Xn(eigo) — eingo.

Given any function f € L*(SE(2)) we have

mDled) = [ R - o) 5

Y
. 2T

where R, 1s the rotation matrix

po_ [Cosy — sIn
7 \sinp cosp )’
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The space E,, is the Hilbert sum of countably many sub-
spaces of dimension 1.

Write fi (7, 1) = m(f) (2, ).

If we let o = 1 + 1, so that ¢ — ¢ = —y, we obtain

" —imn d(p
fla) = [ e p(R b~ o) 5
™ ‘ d
B T
-
o d
:ezmb/ e " f(R_, R_yz, —gpl)%

| T d
= e—mlD/ e f(R, R_yx, 1) ﬂ

. 2m
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In summary, we proved that

Y d
) = e [ (R Renp) P (09

As a consequence, we have
fu(Rozx, ) 4+ o) = e " fo(x, 7). (str10)
For x = re;, r € Ry, with e; = (1,0), from (str9) we get
fu(rRyer,0) = e ™0 frad(r g — ), (strll)
with
g d

frl;ad(r7 ¢> — fn(reb ¢) — / ein90f<7nR¢R_¢el7 @) %
B (str12)
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In polar coordinates (r, «),
fl(r,a),0) = e 4,0 ). (str13)

Observe that since in polar coordinates the effect of a
rotation R_,, is to transform (r, a) to (r, @ — ¢), we have

fallrya = ¢),0 = @) = eI f24(r, 0 — o — (2 — @)
_ eingoe—inﬁf?l;ad(n H — Oé)

— emgpfn«ra O‘)? 9)?

confirming that the functions f,, are steerable.

The functions £ belong to L2(R, x SO(2)).
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r2
Since the functions e~ 2 H,,,(r) form a Hilbert basis of
L%(R,) and the functions e~*% form a Hilbert basis of
L2(SO(2)), it can be shown that the family of functions

r2 :
e_THm(’r)e_ZW

form a Hilbert basis of L*(R, x SO(2)); see Lang [32],
Chapter XVII, Problem 9.

At first glance it is not obvious that the functions f24(r, 1)
yield all the functions in the Hilbert basis
of L2 (R, x SO(2)).

In fact they do.
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By (str13) and the above reasoning, the functions

2
—7 ; — _r_
e m@ezk(ﬁ oz)e 5 F[m<7n>

for n fixed form a Hilbert basis of E,,, and thus the func-
tions

L 2
Yimn((r,a),0) = e_meem(e_o‘)e_THm(r)
2

— g in=Rlfg=ikae= (1) (strl4)

form a steerable basis of L2(SE(2)), with n, k € Z and
m > 0.
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In Section 77 it will be more convenient to change the
index k to n — k, in which case the term e~ i(n—k)0 o—ika

becomes

—ik@e—i(n—kz)a __—ina,_—ik(0—a)

€ =e e :

and so we also have the steerable basis of functions

2

e~ e k0= (1), n,ke€Z,m>0. (strld)
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Example 7.5. Let H be any compact group and let
X = G with G acting on itself by left multiplication.

Since the M, are (irreducible) representations of H we
have M,(s™'t) = M,(s ) M,(t) = M,(s)*M,(t), so the
jth column (1/np)mi§-)(s_1t) of the matrix M,(s't) can
be expressed as

(1/n)m(s7't) = M,(s)"(1/n,)m (¢)
= (M,(s)) " (1/n,)m{)(#),

*]

and so

m? (s71) = (M, (s))Tm\)(t). (str16)
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Since the family of functions

()
\/7?/710 ! 1<i,j<n,, pe R(H)

is a Hilbert basis of L*(G), it follows that according to
Definition 7.2,

(mlj, c. ,mnp,j)

forms a steerable basis of [Ep ) for j=1,...,n,, using the
notation of Section 4.2.

Note that in terms of the notation used in Theorem 7.1,
d, = n,.
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Recall that by Peter-Weyl I, L?(H) is the Hilbert sum

of minimal two-sided ideals a, isomorphic to the matrix

algebra M,, (C), and a,, is expressed as the finite Hilbert
(p)

sum of n, minimal left ideals []-p .

Observe that we can also obtain the above result by con-
sidering the left regular representation V' = R of G.

As noted just after Definition 4.9, the projection 7TX maps
L*(G) onto @, so the functions (my;, ..., T, ;) are in-

(p)

deed in a, and form a basis of [jp

M,

. the jth column of

Thus Equation (steer6) holds.
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Example 7.6. In this example we describe a method
generalizing the method of Example 7.4 to decompose
L*(SE(n)) using the representation V' and the projec-
tions

(m (Fan) =y [ XTI b ) dA (R

SO(n)
_ / B F (12, by dA(R),
SO(n)

with (z,h1) € SE(n), for all f € L*(SE(n)) and all
p € R(SO(n)).
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Waite f7(x, hn) = () (/))(z, )

Since SO(n) is unimodular (because it is compact), with
h = hiho, we have

PP, hy) = /S o 70, ) AR

_ / wy(oli) f(hy e, iy ) dA(ho)
SO(n)

_ / wy(hihy ) f(hohy 'z, hy) dA(hy).
SO(n)

(*13)
(p) (p)

Recall that u, = my"+- - -+myp,, which is n, times the
trace of the matrix M, corresponding to the irreducible
representation of SO(n) indexed by p.
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Since M, = (1/n,) (mi?) and it is a representation, be-
cause (1/n,)m, (o )(h1h3> is the (i,%)-entry in the matrix

M, (hihs), it is equal to the inner product of the ith row
of Mp(hl) by the ith column of M,(h3), so

Np

(1/n)mi (hahg) =3 (1/n,)m (hy) (1 /n,)ml (hs),

j=1

and by multiplying both sides by n, we get

Uy Np
wp(hihs) = > mif (hihs) = (1/n,) Y mi? (hy)m!f (hs).
i=1 ij=1



7.2. CONSTRUCTION OF H-STEERABLE FAMILIES 697

The calculations in (x14) and (*y3) imply that

P2, ) — /S BB hahi 2, o) A )

1
/ — () f(hahi ta, ho) d(hs).
SO(n)
(*15)

Using the fact that if A and B are any two n X n matrices,
then

n

Z CLZ'ij'j = tl"(ABT>

1,7=1
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and observing that the matrix whose entries are the terms

1
A
SO(n

Ny
1s the matrix

| Myhapah e, ) G
SO(n)

N /so(n) <(Mﬂ<h2>)*)Tf<h2h1_l5’7» ha) dA(hs),

we obtain

fP(x,h1) =n,tr (Mp(hl)

/S o (Mp(hg)) “F(hohTVa, hy) dw@)) |
(*16)
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Observe that this is the generalization of (str9).

Also, (Mp(hg))* _ (Mp(hQ))T.

We also define f1*: R? — M, (C) by

() — /S o (3,7 " f(hot, ha) dA(h)

— / Mp<h2>—|—f<h2$, h2> d)\(hQ)a (f;ad)
SO(n)

and so we have

Folws ) = my tr (M (o) £ (') (F7)
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Observe that

fP(ha, hhy) = n, tr(Mp(hhl) f;ad((hhl)—lhx))

= nyte (B0 M, () f1 (i ')
(strl7)

which expresses steerability with respect to SO(n).

Using Lang [32], Chapter XVII, Problem 9, since the fam-

2
ily of functions e~ 2 H,,(x) is a Hilbert basis of L*(R), the
family of functions

a2 2
_ _*n
e 2Hk1<$1>°--6 QHkn(ZIZn>

=13

=e 2 Hyp(z1)--- Hy, (z), ki,..., ky >0,

with o = (z1,...,2,) € R", is a Hilbert basis of L*(R").
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For f € L*(SE(n)) given by

2
fxho) = e W2 Hy () - Hy (2,) mB) (By),

we find that f;*!(x) is the n, x n,-matrix whose (¢, k)

entry is e_”“”HQ/QJL[;€1 (1) - -+ Hy, (x,), and all other entries
are 0, which implies that

o ) = m (hy) e 2 Hy (7)) - - - Hy, (B '2),)

belongs to the subspace F,, the projection of L*(SE(n))
by 7TX.
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The Hilbert space L2(SE(n)) is isomorphic to
L2(SO(n) x R™), and since by Peter-Weyl I, the Hilbert
space L*(SO(n)) is the Hilbert sum of the minimal two-

sided ideals a, which have the n?) functions m,(fé) as an

orthogonal basis, we conclude that the family of functions

ROV i _

(i () e % Hig (b 2)0) -« H (07 "2)0) )|

p € R(SO(n)), 1 < k £<np, kl,...,knzo,
(str18)

with h; € SO(n) and x € R", is an SO(n)-steerable
Hilbert basis of L?(SE(n)).
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More precisely, for any fixed p € R(SO(n)),1 < ¢ <
Ny, ki,...,k, > 0, if we write k = (k1,...,k,), by
(str16), the column vector Y/ (h1, =) of dimension n,
with

YV k(hi, ) = my) (h1) e
Hy, ((hy'2)1) - - Hy, ((hy 2)y),
1 <k <n,

satisfies the streerability equation

Yfk(h_lhla h™'x) = <Mp(h>)TYZk(h17 z). (str19)
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If n =2, then R(SO(2)) = Z, my(0) = €?, so we find
that the family

0o Tty :
(6_2 e 2 Hp(xcosf+ysinb)

Hp,(—xsin @ + y cos 6))6% o (str20)
y V1,2

is steerable basis of L*(SE(2)).
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If n =3, then R(SO3)) =N, p=1/{,n,=20+1, the

functions /20 + 1w§?(R) (R € SO(3)) of Section 5.15
(see also Section 5.10) from a Hilbert basis of L*(SO(3)),
so we find that the family

9, 2..9
_ rytastas

(\/ 20+1 wﬁ)(R) e

Hiy (R 2)1) Hyy (R 0)2) Hi(R™'2)3) )|
teN, -0 <73, k<l ki,ko ks3>0, (Stl“21>

with B € SO(3) and z € R3, is steerable basis of
L2(SE(3)).
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For fixed ¢ € N, —0 < k < £, ky.ko, k3 > 0, if we write
k = (ki, ko, k3) and if Y,fik(R, x) is the column vector
given by

2,.2,.2

ntjk,k(R? x) =V 2£ + ].w](? (R)@
Hy, (R )1 Hyy (R 2)2) Hyy (R 1)),

then we have
Ylf,k<Q_1Ra Q 'z) = (w(€)<Q>)TYIf,k<R7 r). (str22)

We can also express the matrices w!®(R) in terms of the
Euler angles and the Wigner d-matrices as in Section 5.15;
see the Remark just after Proposition 5.20.
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In Section 7.1 we noticed that the functions J?are vector-
valued functions from RY to the codomain My (C) and
that the group G = R? x H acts on their domain R
whereas the group H acts on their codomain Mz (C) in
terms of the representation >..

Experience has shown that the design of efficient convo-
lution neural networks (CNN) is greatly facilitated if they
operate on functions having the properties of the ]?Iisted
above. Such functions are known as feature fields.



