
Chapter 7

Equivariant Convolutional Neural
Networks

7.1 Steerable Families

Since it is not practical to use the definition of cross-
correlation involving integration over the group
G = R

d
oH we go back to the notion of lifted correlation.

It is more convenient to assume that the semi-direct prod-
uct G = R

d
oH is defined by an action of H on R

d by
automorphisms so that elements ofG are denoted as pairs
(x, h) 2 R

d
⇥H .
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Then for any function f 2 L2(Rd) and any correlation
kernel k 2 L1(Rd) with compact support, the lifted cor-
relation k e? f is defined by (⇤100), namely

(k e? f )(x, h) =
Z

Rd
f (t)k(h�1

·(t�x)) dt, (x, h) 2 R
d
⇥H.

Observe that k e? f is a function with domain R
d
⇥H .

Computing (k e? f )(x, h) requires sampling the group H ,
which is too expensive if d � 3.

A way around this problem is to express the kernels k in
terms of a basis of “steerable functions.” Intuitively this
means using some kind of generalized harmonic functions.

In our case we need to find bases of functions in L2(Rd)
that are H-steerable.
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In applications H is a compact group so as we will see
shortly, we can use the Peter–Weyl theorem, actually Ver-
sion II, namely Theorem 4.4, to find steerable bases.

The problem is the presence of the term k(h�1
· (t� x))

in the integral defining k e? f .

The key point is that if we can express the kernel k as
a linear combination of linearly independent functions
Y1, . . . , YL in L2(Rd) that are “nice,” which means that
for every h 2 H and every x 2 R

d, each Yj(h�1
· x) can

be expressed as a linear combination of Y1(x), . . . , YL(x),
then it is possible to express (k e? f )(x, h) in a linear fash-
ion in terms of the vector

fY (x) =

Z

Rd
f (t)Y (t� x) dt,

where Y (x) denotes the column vector

Y (x) =

0

@
Y1(x)
...

YL(x)

1

A 2 C
L.
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So let us assume that for every h 2 H , there is an invert-
ible matrix ⌃(h) 2 GL(L,C), such that

0

BB@

Y1(h�1
· x)

Y2(h�1
· x)

...
YL(h�1

· x)

1

CCA =

0

BB@

⌃(h)11 ⌃(h)2,1 · · · ⌃(h)L1
⌃(h)12 ⌃(h)2,2 · · · ⌃(h)L2

... ... . . . ...
⌃(h)1L ⌃(h)2,L · · · ⌃(h)LL

1

CCA

0

BB@

Y1(x)
Y2(x)
...

YL(x)

1

CCA ,

or more concisely,

Y (h�1
· x) = ⌃(h)>Y (x), x 2 R

d. (steer1)

If Equation (steer1) holds we say that (Y1, . . . , YL) is an
H-steerable family (or H-steerable basis). For short,
we often drop H .

In fact, we will see later that the map ⌃ : H ! U(L) is
a representation of H .
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The reason for using ⌃(h)> instead of ⌃(h) is technical
and will become clear later when we explain how to create
steerable families.

The notion of steerability occured first in the seminal pa-
per of Freeman and Adelson [20].

Next assume that the kernel k can be expressed as a linear
combination of the Yi using some coe�cients wi 2 C that
we call weights .

Let us write

k(x;w) =
LX

i=1

wi Yi(x) = w⇤Y (x), x 2 X, (kw1)

where w 2 C
L is the column vector consisting of the wi.
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The reason for using conjugate weights will become ap-
parent in the computation below.

Let us compute k(h�1
· x;w). Since Y is a steerable

family, we have

k(h�1
· x;w) = w⇤Y (h�1

· x) = w⇤⌃(h)>Y (x)

= (⌃(h)w)⇤Y (x) = k(x;⌃(h)w),

namely

k(h�1
· x;w) = k(x;⌃(h)w). (kw2)

So the new kernel is obtained by simply modifying the
weights using the matrix ⌃(h).
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And now let us compute the lifted correlation k e? f given
by

(k e? f )(x, h) =
Z

Rd
f (t)k(h�1

· (t� x);w) dt,

with (x, h) 2 R
d
oH .

Using the fact that k is a steerable family we have

(k e? f )(x, h) =
Z

Rd
f (t)k(h�1

· (t� x);w) dt

=

Z

Rd
f (t)w⇤⌃(h)>Y (t� x) dt

= w⇤⌃(h)>
Z

Rd
f (t)Y (t� x) dt.
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Let fY be the function fY : Rd
! C

L given by

fY (x) =

0

@

R
Rd f (t)Y1(t� x) dt

...R
Rd f (t)YL(t� x) dt

1

A =

Z

Rd
f (t)Y (t�x) dt.

(fY )

Then using the trick that for any two column vectors
u, v 2 C

n, we have

u>v = tr(vu>),

we obtain

(k e? f )(x, h) =
Z

Rd
f (t)k(h�1

· (t� x);w) dt

= w⇤⌃(h)>
Z

Rd
f (t)Y (t� x) dt

= w⇤⌃(h)>fY (x) = tr(fY (x)w⇤⌃(h)>),

where we use the identity

u>v = tr(vu>)

with u = (w⇤⌃(h)>)> and v = fY (x).
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Observe that

bf (x) = fY (x)w⇤

is an L⇥ L matrix that can be thought of as some kind
of Fourier coe�cients of f .

The formula

(k e? f )(x, h) = tr
�
fY (x)w⇤⌃(h)>

�
= tr

⇣
bf (x)⌃(h)>

⌘
,

shows that (k e? f )(x, h) is similar to a Fourier cotrans-
form with respect to the representation ⌃>, where bf (x)/L
plays the role of F(f )(⇢) and ⌃> plays the role ofM⇢ (see
Formula (FI) in Section 4.7 and Theorem 4.26), except
that ⌃> is not necessarily irreducible.
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The function bf : Rd
! ML(C) given by bf (x) = fY (x)w⇤

is a matrix-valued function.

What we have gained is that when we compute the inte-
gral

fY (x) =

Z

Rd
f (t)Y (t� x) dt,

we incorporate all the information about the action of H
on R

d into fY without having to sample the group H .

The functions (Y1, . . . , YL) package all the information
about the group H needed to compute the essential
part of (k e? f )(x, h).

The outer product bf (x) = fY (x)w⇤ incorporates all the
information in the kernel k using the weight vector w.
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Computing

(k e? f )(x, h) = tr
⇣
bf (x)⌃(h)>

⌘
= tr

⇣
⌃(h) bf (x)>

⌘

is then very cheap, since it is a linear operation only in-
volving the matrix ⌃(h).

Another important observation is that starting with an
input function f 2 L2(Rd), the lifted correlation k e? f is
a scalar-valued function (with codomain C) defined on
the augmented domain R

d
⇥H , but bf is a vector-valued

function from R
d to the augmented codomain ML(C).

The group R
d
⇥H acts on the domain R

d of bf , and the
group H acts on its codomain ML(C) in terms of the
representation ⌃ by multiplication on the left by ⌃(h).
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This is one of the motivations for introducing certain
vector-valued functions called feature fields , discussed in
the Section 7.3.

The notion of steerability is easily generalized to any mea-
sure space X such that L2(X) is separable and H acts
continuously on X .

For example, any locally compact, metrizable, separable
space X equipped with a �-regular, locally finite, Borel
measure µ will do; see Vol I, Theorem @@@7.11.
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Definition 7.1. Let X be any measure space such that
L2(X) is separable and H acts continuously on X . Some
linerarly independent functions (Y1, . . . , YL) in L2(X) form
an H-steerable family (or H-steerable basis) if there is
a representation ⌃ : H ! U(L) such that

Y (h�1
· x) = ⌃(h)>Y (x), h 2 H, x 2 X, (steer2)

where Y (x) denotes the column vector

Y (x) =

0

@
Y1(x)
...

YL(x)

1

A 2 C
L.

This more general notion will be needed in Section ?? to
construct equivariant kernels.
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The simplest example (simpler thatX = R
2) is the circle,

X = S1, with H = SO(2), the group of rotations in the
plane.

Example 7.1. Let H = SO(2) and X = S1
⇡ SO(2).

For any L-tuple of integers (n1, . . . , nL), we claim that

Y (↵) = (e�in1↵, . . . , e�inL↵)

is a steerable family (where the expression on the right-
hand side denotes a column vector).
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As we saw in Proposition 2.12, every unitary represen-
tation ⌃ : SO(2) ! U(L) is given by a matrix of the
form

⌃(↵) =

0

BB@

eik1↵ 0 . . . 0
0 eik2↵ . . . 0
... ... . . . ...
0 . . . . . . eikL↵

1

CCA

with k1, . . . , kL 2 Z, so if we pick kj = nj, for j =
1, . . . , L and

Yj(↵) = e�inj↵,

since

Yj(↵� ✓) = e�inj(↵�✓) = einj✓e�inj↵ = einj✓Yj(↵),



662 CHAPTER 7. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

we see that

0

@
Y1(↵� ✓)

...
YL(↵� ✓)

1

A =

0

BB@

ein1✓ 0 . . . 0
0 ein2✓ . . . 0
... ... . . . ...
0 . . . . . . einL✓

1

CCA

0

@
Y1(↵)

...
YL(↵)

1

A ,

which confirms that (Y1(↵) = e�in1↵, . . . , YL(↵) = e�inL↵)
is a steerable family (again, the expression on the right-
hand side denotes a column vector).
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7.2 Construction of H-Steerable Families

We now present a method for finding steerable families
on a space X as above equipped with a continuous action
of a compact group H .

The trick is to consider the unitary representation
V : H ! U(L2(X)) given by

(V (h)f )(x) = f (h�1
· x), h 2 H, f 2 L2(X), x 2 X.

(V )
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According to the Peter–Weyl theorem, Version II, the
space L2(X) is the Hilbert sum of closed subspaces E⇢

with ⇢ 2 R(H) (which may be reduced to zero), where
E⇢ is the projection of L2(X) under the projection ⇡V⇢
given by

⇡V⇢ (f ) = n⇢

Z

H
�⇢(h)(V (h)f ) d�(h),

where f 2 L2(X) and � is a left Haar measure on H .

First we need to take care of a technicality.

As stated the theorem involves the projection ⇡V⇢ (f ) of a
function f 2 L2(X) and it is defined as a weak integral.

For our purposes we need a formula definining (⇡V⇢ (f ))(x)
for every x 2 H .
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This can be achieved as follows.

By definition of ⇡V⇢ (f ) as a weak integral it is the unique
function (given by the Riesz representation theorem, The-
orem 4.7(2)) such that

h⇡V⇢ (f ), gi = n⇢

Z

H
�⇢(h)hV (h)f, gi d�(h)

for all g 2 L2(X), and using the definition of the inner
product on L2(X) and Fubini the above is expressed as

Z

X
(⇡V⇢ (f ))(x)g(x) dµX(x)

= n⇢

Z

H
�⇢(h)

Z

X
(V (h)f )(x)g(x) dµX(x) d�(h)

= n⇢

Z

X

✓Z

H
�⇢(h)(V (h)f )(x) d�(h)

◆
g(x) dµX(x),

and since it holds for all g 2 L2(X), we must have
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(⇡V⇢ (f ))(x) = n⇢

Z

H
�⇢(h)(V (h)f )(x) d�(h)

= n⇢

Z

H
�⇢(h)f (h

�1
· x) d�(h). (⇡V⇢ )

So the projection ⇡V⇢ (f ) of the function f 2 L2(X) can be
defined pointwise by (⇡V⇢ ), but it is not obvious a priori
that this yields a function in L2(X), which is guaranteed
by the weak integral argument.

Going back to Peter–Weyl II, each subspace E⇢ is a finite
or countably infinite Hilbert sum of d⇢ (where d⇢ = 1

is possible) closed finite-dimensional subspaces E
k⇢
⇢ (1 

k⇢  d⇢) such that for every ⇢ and every k⇢,

each subrepresentation V
k⇢
⇢ : H ! U(E

k⇢
⇢ ) is equiva-

lent to the irreducible representation M⇢ : H ! U(Cn⇢).
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Thus there are linear isomorphisms ✓
k⇢
⇢ : E

k⇢
⇢ ! C

n⇢ such
that the following diagrams commute

E
k⇢
⇢

✓
k⇢
⇢

//

V
k⇢
⇢ (h)

✏✏

C
n⇢

M⇢(h)

✏✏

E
k⇢
⇢

✓
k⇢
⇢

//C
n⇢

for all h 2 H .

Since (V (h)f )(x) = f (h�1
· x), we have

f (h�1
· x) = (V

k⇢
⇢ (h)f )(x), h 2 H, f 2 E

k⇢
⇢ , x 2 X,

(steer3)

for all ⇢ 2 R(H) and all k⇢.
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If we pick an orthonormal basis (orthogonal works too)

(Y 1

⇢,k⇢
, . . . , Y

n⇢
⇢,k⇢

) in each E
k⇢
⇢ so that the family

(Y j
⇢,k⇢

)⇢2R(H),1k⇢d⇢,1jn⇢ is a Hilbert basis of L2(X),

then there is an n⇢ ⇥ n⇢ unitary matrix M⇢,k⇢(h) repre-

senting the linear map V
k⇢
⇢ (h) with respect to the basis

(Y 1

⇢,k⇢
, . . . , Y

n⇢
⇢,k⇢

) defined by

Y j
⇢,k⇢

(h�1
· x) =

n⇢X

i=1

M
⇢,k⇢
ij (h)Y i

⇢,k⇢(x).

If we stack the Y i
⇢,k⇢

(x) into a column vector Y⇢,k⇢(x) and

the Y j
⇢,k⇢

(h�1
· x) into a column vector Y⇢,k⇢(h

�1
· x), we

can write

Y⇢,k⇢(h
�1

· x) = (M⇢,k⇢(h))>Y⇢,k⇢(x). (steer4)
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Remark: The presence of the transposition is the fa-
miliar artifact of linear algebra caused by the fact that
Y⇢,k⇢(x) is a column vector.

Replacing h by h�1 in (steer4) we get

Y⇢,k⇢(h · x) = (M⇢,k⇢(h�1))>Y⇢,k⇢(x)

= ((M⇢,k⇢(h))⇤)>Y⇢,k⇢(x)

= M⇢,k⇢(h)Y⇢,k⇢(x),

so conjugating on both sides we get

Y⇢,k⇢(h · x) = M⇢,k⇢(h)Y⇢,k⇢(x). (steer5)

Observe that the unitary representation
V

k⇢
⇢ : H ! U(E

k⇢
⇢ ) define a representation in matrix form

M⇢,k⇢ : H ! U(Cn⇢) equivalent to the irreducible repre-
sentation M⇢. The equations (steer4) express the fact
that the basis functions (Y 1

⇢,k⇢
, . . . , Y

n⇢
⇢,k⇢

) are steerable.
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Definition 7.2. If H is a compact group and X is a lo-
cally compact, metrizable, separable space equipped with
a �-regular, locally finite, Borel measure µ, given any
continuous action of H on X , some linerarly indepen-
dent functions (Y1, . . . , YL) in L2(X) form anH-steerable
family (or H-steerable basis) if there is a representation
⌃ : H ! U(L) such that

Y (h�1
· x) = ⌃(h)>Y (x), h 2 H, x 2 X, (steer6)

or equivalently

Y (h · x) = ⌃(h)Y (x), h 2 H, x 2 X, (steer7)

where Y (x) denotes the column vector

Y (x) =

0

@
Y1(x)
...

YL(x)

1

A 2 C
L.
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Remark: Steerability as defined above is equivalent to
the notion of steerability as defined in Lang and Weiler
[31].

In Cesa, Lang and Weiler [7] as well as Bekkers [1], the
notion of steerability is defined using Y (h · x) instead of
Y (h�1

· x).

We pass from one version to the other by conjugation of
the functions. In the papers mentioned above, steerable
families are also called harmonic basis functions .

Due to its importance, the preceding discussion is sum-
marized in the following theorem.
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Theorem 7.1. Let X be a locally compact, metriz-
able, separable space equipped with a �-regular, locally
finite, Borel measure µ. If H is a compact group act-
ing continuously on X (not necessarily in a transitive
fashion), consider the unitary representation
V : H ! U(L2(X)) given by

(V (h)f )(x) = f (h�1
· x), h 2 H, f 2 L2(X), x 2 X.

According to the Peter–Weyl theorem, Version II, the
space L2(X) is the Hilbert sum of closed subspaces E⇢

with ⇢ 2 R(H) (which may be reduced to zero), where
E⇢ is the projection of L2(X) under the projection ⇡V⇢
given by

(⇡V⇢ (f ))(x) = n⇢

Z

H
�⇢(h)f (h

�1
· x) d�(h),

where f 2 L2(X), x 2 X, and � is a left Haar measure
on H.
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Each subspace E⇢ is a finite or countably infinite Hilbert
sum of d⇢ (where d⇢ = 1 is possible) closed finite-

dimensional subspaces E
k⇢
⇢ (1  k⇢  d⇢) such that

for every ⇢ and every k⇢, each subrepresentation

V
k⇢
⇢ : H ! U(E

k⇢
⇢ ) is equivalent to the irreducible rep-

resentation M⇢ : H ! U(Cn⇢).

Furthermore, each space E
k⇢
⇢ has an H-steerable or-

thonormal basis with respect to an irreducible repre-
sentation equivalent to M⇢ (the functions specified by
the column vectors Y⇢,k⇢).

The union of these H-steerable families for all
⇢ 2 R(h) and all k⇢ is an H-steerable Hilbert basis of
L2(X).

As similar result is presented in Lang and Weiler [31] and
in Cesa Lang and Weiler [7].

We now consider several examples.
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Example 7.2. Let H = SO(2) and X = S1
⇡ SO(2).

In this case R = Z, all irreducible representations are
one-dimensional and of the form z 7! ein✓z, and the char-
acters are given by �n(ei✓) = ein✓.

Given a function f 2 L2(S1) we have (with ' = ↵� ✓)

⇡n(f )(e
i↵) =

Z

H
�n(ei✓)f ((e

i✓)�1ei↵) d�(h)

=

Z ⇡

�⇡
e�in✓f (e�i✓ei↵)

d✓

2⇡

=
1

2⇡
e�in↵

Z ⇡

�⇡
ein'f (ei') d'

=
1

2⇡
ei(�n)↵

Z ⇡

�⇡
e�i(�n)'f (ei') d' = e�in↵c�n,

where

cn =
1

2⇡

Z ⇡

�⇡
e�in'f (ei') d'

is the nth Fourier coe�cient of f .
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Thus

⇡n(f )(e
i↵) = e�in↵c�n. (str1)

The index n is flipped to �n due to the fact that the
projection operator uses �⇢(h).

The space En is one-dimensional and has the function

Yn(e
i↵) = e�in↵ (str2)

as a basis. It is steerable since

Yn(e
i(↵�✓)) = e�in(↵�✓) = ein✓e�in↵ = ein✓Yn(e

i↵),

and �n(ei✓) = ein✓ is a character.
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Example 7.3. Let H = SO(2) and X = R
2. In this

case, again R = Z, all irreducible representations are one-
dimensional and the characters are of the form �n(ei✓) =
ein✓.

Given any function f 2 L2(R2) we have

⇡n(f )(x) =

Z

H
�n(ei✓)f (R

�1

✓ x) d�(h)

=

Z ⇡

�⇡
e�in✓f ((R�✓)x)

d✓

2⇡
,

where R✓ is the rotation matrix

R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

This time En is the Hilbert sum of countably many sub-
spaces of dimension 1.

Let us compute fn(R'x) where fn(x) = ⇡n(f )(x).
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We have

fn(R'x) =

Z ⇡

�⇡
e�in✓f (R�✓R'x)

d✓

2⇡

=

Z ⇡

�⇡
e�in✓f (R�(✓�')x)

d✓

2⇡

=

Z ⇡

�⇡
e�in( +')f ((R� )x)

d 

2⇡

= e�in'

Z ⇡

�⇡
e�in f ((R� )x)

d 

2⇡
= e�in'fn(x).

In summary,

fn(R'x) = e�in'fn(x). (str3)
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For x = re1, r 2 R+, where e1 = (1, 0), we get

fn(rR'e1) = e�in'f rad

n (r),

with

f rad

n (r) = fn(re1) =

Z ⇡

�⇡
e�in✓f (r(R�✓)e1)

d✓

2⇡
. (str4)

The function f rad

n is called a radial function . It is a
function defined on R+.

We see that in polar coordinates (r,'),

fn(r,') = e�in'f rad

n (r). (str5)

Thus we are reduced to finding a Hilbert basis of L2(R+).
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There are many candidates but the Hilbert basis involving
the Hermite functions is particularly elegant.

These are the functions

 m(x) = e�
x2
2 Hm(x), (str6)

where the Hm(x) are Hermite polynomials.

The functions  m are also a Hilbert basis of L2(R); see
Sansone [36], Chapter IV, Section 7 and Folland [18],
Chapter 6, Section 6.4.

The Hermite polynomials are real polynomials given by
the equations

Hm(x) = (�1)mex
2 dm

dxm
e�x2. (str7)
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They are also defined by the recurrence relations

Hn+2(x) = 2xHn+1(x)� 2(n + 1)Hn(x)

H1(x) = 2x

H0(x) = 1.

From these equations the following explicit formula can
be derived:

Hm(x)

=

b
m
2
cX

k=0

(�1)k
m(m� 1) · · · (m� 2k + 1)

k!
(2x)m�2k;

see Sansone [36], Chapter IV, Section 2 and Folland [18],
Chapter 6, Section 6.4.
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The first six Hermite polynomials are

H0(x) = 1 H1(x) = 2x

H2(x) = 4x2 � 2 H3(x) = 8x2 � 12x

H4(x) = 16x4 � 48x2 + 12 H5(x) = 32x5 � 160x3 + 120x.

The Hermite polynomials are orthogonal with respect to
the inner product

hf, gi =

Z

R

e�x2f (x)g(x) dx

and so the functions  m are orthogonal with respect to
the usual inner product on L2(R).
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They are not orthonormal because
Z

1

�1

H2

m(x)e
�x2 dx =

p
⇡ 2mm!.

See Sansone [36], Chapter IV, Section 2.

The purpose of the term e�
x2
2 is to insure that the func-

tions  m are square integrable over R.

The Hermite polynomials are discussed quite extensively
in Sansone [36], Chapter IV, Sections 2-5 and 7 and in
Folland [18], Chapter 6, Section 6.4.
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Then the functions

Ym,n(r,') = e�in'e�
r2
2 Hm(r), m � 0, (str8)

form a steerable Hilbert basis of En (n 2 Z).

Indeed, we see immediately that

Ym,n(r,'� ✓) = ein✓Ym,n(r,').

This case was also investigated by Weiler and Cesa [31]
in a more informal fashion.
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Example 7.4. Let H = SO(2) and X = L2(SE(2)).

The action of SO(2) on L2(SE(2)) is the left regular ac-
tion RSO(2)!L

2
(SE(2)) given by

RSO(2)!L
2
(SE(2))

R'
(f )(x, ) = f (R�'x, � '),

f 2 L2(SE(2)), x 2 R
2, R' 2 SO(2).

In this case, again R = Z, all irreducible representations
are one-dimensional and the characters are of the form
�n(ei') = ein'.

Given any function f 2 L2(SE(2)) we have

⇡n(f )(x, ) =

Z ⇡

�⇡
e�in'f (R�'x, � ')

d'

2⇡
,

where R' is the rotation matrix

R' =

✓
cos' � sin'
sin' cos'

◆
.
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The space En is the Hilbert sum of countably many sub-
spaces of dimension 1.

Write fn(x, ) = ⇡n(f )(x, ).

If we let ' =  + '1, so that  � ' = �'1, we obtain

fn(x, ) =

Z ⇡

�⇡
e�in'f (R�'x, � ')

d'

2⇡

=

Z ⇡

�⇡
e�in( +'1)f (R�( +'1)x,�'1)

d'1

2⇡

= e�in 

Z ⇡

�⇡
e�in'1f (R�'1R� x,�'1)

d'1

2⇡

= e�in 

Z ⇡

�⇡
ein'1f (R'1R� x,'1)

d'1

2⇡
.
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In summary, we proved that

fn(x, ) = e�in 

Z ⇡

�⇡
ein'1f (R'1R� x,'1)

d'1

2⇡
. (str9)

As a consequence, we have

fn(R↵x, + ↵) = e�in↵fn(x, ). (str10)

For x = re1, r 2 R+, with e1 = (1, 0), from (str9) we get

fn(rR↵e1, ✓) = e�in✓f rad

n (r, ✓ � ↵), (str11)

with

f rad

n (r, ) = fn(re1, ) =

Z ⇡

�⇡
ein'f (rR'R� e1,')

d'

2⇡
.

(str12)
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In polar coordinates (r,↵),

fn((r,↵), ✓) = e�in✓f rad

n (r, ✓ � ↵). (str13)

Observe that since in polar coordinates the e↵ect of a
rotation R�' is to transform (r,↵) to (r,↵�'), we have

fn((r,↵� '), ✓ � ') = e�in(✓�')f rad

n (r, ✓ � '� (↵� '))

= ein'e�in✓f rad

n (r, ✓ � ↵)

= ein'fn((r,↵), ✓),

confirming that the functions fn are steerable.

The functions f rad

n belong to L2(R+ ⇥ SO(2)).
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Since the functions e�
r2
2 Hm(r) form a Hilbert basis of

L2(R+) and the functions e�ik form a Hilbert basis of
L2(SO(2)), it can be shown that the family of functions

e�
r2
2 Hm(r)e

�ik 

form a Hilbert basis of L2(R+ ⇥ SO(2)); see Lang [32],
Chapter XVII, Problem 9.

At first glance it is not obvious that the functions f rad

n (r, )
yield all the functions in the Hilbert basis
of L2(R+ ⇥ SO(2)).

In fact they do.



7.2. CONSTRUCTION OF H-STEERABLE FAMILIES 689

By (str13) and the above reasoning, the functions

e�in✓eik(✓�↵)e�
r2
2 Hm(r)

for n fixed form a Hilbert basis of En, and thus the func-
tions

Yk,m,n((r,↵), ✓) = e�in✓eik(✓�↵)e�
r2
2 Hm(r)

= e�i(n�k)✓e�ik↵e�
r2
2 Hm(r) (str14)

form a steerable basis of L2(SE(2)), with n, k 2 Z and
m � 0.
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In Section ?? it will be more convenient to change the
index k to n � k, in which case the term e�i(n�k)✓e�ik↵

becomes

e�ik✓e�i(n�k)↵ = e�in↵e�ik(✓�↵),

and so we also have the steerable basis of functions

e�in↵e�ik(✓�↵)e�
r2
2 Hm(r), n, k 2 Z, m � 0. (str15)
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Example 7.5. Let H be any compact group and let
X = G with G acting on itself by left multiplication.

Since the M⇢ are (irreducible) representations of H we
have M⇢(s�1t) = M⇢(s�1)M⇢(t) = M⇢(s)⇤M⇢(t), so the

jth column (1/n⇢)m
(⇢)
⇤j (s

�1t) of the matrixM⇢(s�1t) can
be expressed as

(1/n⇢)m
(⇢)
⇤j (s

�1t) = M⇢(s)
⇤(1/n⇢)m

(⇢)
⇤j (t)

= (M⇢(s))
>(1/n⇢)m

(⇢)
⇤j (t),

and so

m(⇢)
⇤j (s

�1t) = (M⇢(s))
>m(⇢)

⇤j (t). (str16)



692 CHAPTER 7. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

Since the family of functions
✓

1
p
n⇢

m(⇢)
ij

◆

1i,jn⇢, ⇢2R(H)

is a Hilbert basis of L2(G), it follows that according to
Definition 7.2,

(m1j, . . . ,mn⇢,j)

forms a steerable basis of l(⇢)j for j = 1, . . . , n⇢, using the
notation of Section 4.2.

Note that in terms of the notation used in Theorem 7.1,
d⇢ = n⇢.
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Recall that by Peter–Weyl I, L2(H) is the Hilbert sum
of minimal two-sided ideals a⇢ isomorphic to the matrix
algebra Mn⇢(C), and a⇢ is expressed as the finite Hilbert

sum of n⇢ minimal left ideals l(⇢)j .

Observe that we can also obtain the above result by con-
sidering the left regular representation V = R of G.

As noted just after Definition 4.9, the projection ⇡V⇢ maps
L2(G) onto a⇢, so the functions (m1j, . . . ,mn⇢,j) are in-

deed in a⇢ and form a basis of l(⇢)j , the jth column of

M⇢.

Thus Equation (steer6) holds.
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Example 7.6. In this example we describe a method
generalizing the method of Example 7.4 to decompose
L2(SE(n)) using the representation V and the projec-
tions

(⇡V⇢ (f ))(x, h1) = n⇢

Z

SO(n)
�⇢(h)f (h

�1x, h�1h1) d�(h)

=

Z

SO(n)
u⇢(h)f (h

�1x, h�1h1) d�(h),

with (x, h1) 2 SE(n), for all f 2 L2(SE(n)) and all
⇢ 2 R(SO(n)).
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Write f ⇢(x, h1) = (⇡V⇢ (f ))(x, h1).

Since SO(n) is unimodular (because it is compact), with
h = h1h2, we have

f ⇢(x, h1) =

Z

SO(n)
u⇢(h)f (h

�1x, h�1h1) d�(h),

=

Z

SO(n)
u⇢(h1h2)f (h

�1

2
h�1

1
x, h�1

2
) d�(h2)

=

Z

SO(n)
u⇢(h1h

�1

2
)f (h2h

�1

1
x, h2) d�(h2).

(⇤13)

Recall that u⇢ = m(⇢)
11
+ · · ·+m(⇢)

n⇢n⇢, which is n⇢ times the
trace of the matrix M⇢ corresponding to the irreducible
representation of SO(n) indexed by ⇢.
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Since M⇢ = (1/n⇢)
⇣
m(⇢)

ij

⌘
and it is a representation, be-

cause (1/n⇢)m
(⇢)
ii (h1h3) is the (i, i)-entry in the matrix

M⇢(h1h3), it is equal to the inner product of the ith row
of M⇢(h1) by the ith column of M⇢(h3), so

(1/n⇢)m
(⇢)
ii (h1h3) =

n⇢X

j=1

(1/n⇢)m
(⇢)
ij (h1)(1/n⇢)m

(⇢)
ji (h3),

and by multiplying both sides by n⇢ we get

u⇢(h1h3) =

n⇢X

i=1

m(⇢)
ii (h1h3) = (1/n⇢)

n⇢X

i,j=1

m(⇢)
ij (h1)m

(⇢)
ji (h3).

(⇤14)
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The calculations in (⇤14) and (⇤13) imply that

f ⇢(x, h1) =

Z

SO(n)
u⇢(h1h

�1

2
)f (h2h

�1

1
x, h2) d�(h2)

= n⇢

n⇢X

i,j=1

1

n⇢
m(⇢)

ij (h1)

Z

SO(n)

1

n⇢
m(⇢)

ji (h
�1

2
)f (h2h

�1

1
x, h2) d�(h2)

= n⇢

n⇢X

i,j=1

1

n⇢
m(⇢)

ij (h1)

Z

SO(n)

1

n⇢
m(⇢)

ij (h2)f (h2h
�1

1
x, h2) d�(h2).

(⇤15)

Using the fact that if A and B are any two n⇥nmatrices,
then

nX

i,j=1

aijbij = tr(AB>)
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and observing that the matrix whose entries are the terms
Z

SO(n)

1

n⇢
m(⇢)

ij (h2)f (h2h
�1

1
x, h2) d�(h2)

is the matrix

Z

SO(n)
M⇢(h2)f (h2h

�1

1
x, h2) d�(h2)

=

Z

SO(n)

⇣⇣
M⇢(h2)

⌘⇤⌘>

f (h2h
�1

1
x, h2) d�(h2),

we obtain

f ⇢(x, h1) = n⇢ tr

✓
M⇢(h1)

Z

SO(n)

⇣
M⇢(h2)

⌘⇤

f (h2h
�1

1
x, h2) d�(h2)

◆
.

(⇤16)
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Observe that this is the generalization of (str9).

Also,
⇣
M⇢(h2)

⌘⇤

=
⇣
M⇢(h2)

⌘>

.

We also define f rad

⇢ : Rd
! Mn⇢(C) by

f rad

⇢ (x) =

Z

SO(n)

⇣
M⇢(h2)

⌘⇤

f (h2x, h2) d�(h2)

=

Z

SO(n)
M⇢(h2)

>f (h2x, h2) d�(h2), (f rad

⇢ )

and so we have

f ⇢(x, h1) = n⇢ tr
⇣
M⇢(h1) f

rad

⇢ (h�1

1
x)
⌘
. (f ⇢)
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Observe that

f ⇢(hx, hh1) = n⇢ tr
⇣
M⇢(hh1) f

rad

⇢ ((hh1)
�1hx)

⌘

= n⇢tr
⇣
M⇢(h)M⇢(h1) f

rad

⇢ (h�1

1
x)
⌘
,

(str17)

which expresses steerability with respect to SO(n).

Using Lang [32], Chapter XVII, Problem 9, since the fam-

ily of functions e�
x2
2 Hm(x) is a Hilbert basis of L2(R), the

family of functions

e�
x2
1
2 Hk1(x1) · · · e

�
x2n
2 Hkn(xn)

= e�
kxk2

2
2 Hk1(x1) · · ·Hkn(xn), k1, . . . , kn � 0,

with x = (x1, . . . , xn) 2 R
n, is a Hilbert basis of L2(Rn).
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For f 2 L2(SE(n)) given by

f (x, h2) = e�kxk2/2Hk1(x1) · · ·Hkn(xn)m
(⇢)
`k (h2),

we find that f rad

⇢ (x) is the n⇢ ⇥ n⇢-matrix whose (`, k)

entry is e�kxk2/2Hk1(x1) · · ·Hkn(xn), and all other entries
are 0, which implies that

f ⇢(x, h1) = m(⇢)
k` (h1) e

�kxk2/2Hk1((h
�1

1
x)1) · · ·Hkn((h

�1

1
x)n)

belongs to the subspace E⇢, the projection of L2(SE(n))
by ⇡V⇢ .
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The Hilbert space L2(SE(n)) is isomorphic to
L2(SO(n)⇥ R

n), and since by Peter-Weyl I, the Hilbert
space L2(SO(n)) is the Hilbert sum of the minimal two-

sided ideals a⇢ which have the n2

⇢ functions m(⇢)
k` as an

orthogonal basis, we conclude that the family of functions

⇣
m(⇢)

k` (h1) e
�

kxk2

2 Hk1((h
�1

1
x)1) · · ·Hkn((h

�1

1
x)n)

⌘ ���
⇢ 2 R(SO(n)), 1  k, `  n⇢, k1, . . . , kn � 0,

(str18)

with h1 2 SO(n) and x 2 R
n, is an SO(n)-steerable

Hilbert basis of L2(SE(n)).
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More precisely, for any fixed ⇢ 2 R(SO(n)), 1  ` 

n⇢, k1, . . . , kn � 0, if we write k = (k1, . . . , kn), by
(str16), the column vector Y ⇢

`,k(h1, x) of dimension n⇢
with

Y ⇢
k,`,k(h1, x) = m(⇢)

k` (h1) e
�

kxk2

2

Hk1((h
�1

1
x)1) · · ·Hkn((h

�1

1
x)n),

1  k  n⇢,

satisfies the streerability equation

Y ⇢
`,k(h

�1h1, h
�1x) = (M⇢(h))

>Y ⇢
`,k(h1, x). (str19)
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If n = 2, then R(SO(2)) = Z, m`(✓) = ei`✓, so we find
that the family

⇣
e�i`✓e�

x2+y2

2 Hk1(x cos ✓ + y sin ✓)

Hk2(�x sin ✓ + y cos ✓)
⌘

`2Z, k1,k2�0

(str20)

is steerable basis of L2(SE(2)).
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If n = 3, then R(SO(3)) = N, ⇢ = `, n⇢ = 2` + 1, the

functions
p
2` + 1w(`)

jk (R) (R 2 SO(3)) of Section 5.15
(see also Section 5.10) from a Hilbert basis of L2(SO(3)),
so we find that the family

⇣p
2` + 1w(`)

jk (R) e�
x2
1
+x2

2
+x2

3
2

Hk1((R
�1x)1)Hk2((R

�1x)2)Hk3((R
�1x)3)

⌘ ���
` 2 N, �`  j, k  `, k1, k2, k3 � 0, (str21)

with R 2 SO(3) and x 2 R
3, is steerable basis of

L2(SE(3)).
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For fixed ` 2 N,�`  k  `, k1.k2, k3 � 0, if we write
k = (k1, k2, k3) and if Y `

k,k(R, x) is the column vector
given by

Y `
j,k,k(R, x) =

p

2` + 1w(`)
jk (R)e�

x2
1
+x2

2
+x2

3
2

Hk1((R
�1x)1)Hk2((R

�1x)2)Hk3((R
�1x)3),

� `  j  `,

then we have

Y `
k,k(Q

�1R,Q�1x) = (w(`)(Q))>Y `
k,k(R, x). (str22)

We can also express the matrices w(`)(R) in terms of the
Euler angles and theWigner d-matrices as in Section 5.15;
see the Remark just after Proposition 5.20.
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In Section 7.1 we noticed that the functions bf are vector-
valued functions from R

d to the codomain ML(C) and
that the group G = R

d
o H acts on their domain R

d,
whereas the group H acts on their codomain ML(C) in
terms of the representation ⌃.

Experience has shown that the design of e�cient convo-
lution neural networks (CNN) is greatly facilitated if they
operate on functions having the properties of the bf listed
above. Such functions are known as feature fields .


