
Chapter 6

Induced Representations

If G is a locally compact group and if H is a closed sub-
group of G, under certain conditions, it is possible to
construct a Hilbert space H and a unitary representation
⇧ : G ! U(H) of G in H from a unitary representation
U : H ! U(E) of H in a (separable) Hilbert space E.

The representation ⇧ is called an induced representation
and it is often denoted by IndGH U .

There are two approaches for the construction of the
Hilbert space H:
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1. The Hilbert space H is a set of functions from
X = G/H to E.

2. The Hilbert space H is a set of functions from G to
E.

In the first approach we will construct unitary represen-
tations of G in H using certain functions
↵ : G⇥ (G/H) ! GL(E) called cocycles .

In the second approach the construction of the Hilbert
space H is more complicated, but the definition of the
operator ⇧s is simpler.
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The general construction (in the first approach) consists
of seven steps, where the first four are purely algebraic
and do not deal with continuous unitary representations,
but instead linear representations (group homomorphisms
U : G ! GL(E), where G is a group not equipped with
any topology and E is just a vector space with no addi-
tional structure):
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(1) Let G be a group acting (on the left) on a set X ,
say (s, x) 7! s · x (s 2 G, x 2 X), and let E be a
vector space. In Section 6.1 we define the notion of
equilinear action of G on X ⇥E, which is an action
of the form

s · (x, z) = (s ·x,↵(s, x)(z)), s 2 G, x 2 X, z 2 E,

where ↵(s, x) is a linear automorphism of E satisfying
the conditions

(a) For all x 2 X

↵(e, x) = idE.

(b) For all x 2 X and all s, t 2 G,

↵(st, x) = ↵(s, t · x) � ↵(t, x).
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A map ↵ : G ⇥ X ! GL(E) satisfying Conditions
(a) and (b) is called a cocycle of G with values in
GL(E).

Conversely, an action of G on X and a cocycle
↵ : G⇥X ! GL(E) determines an equilinear action
of G on X ⇥ E.

Then we show that an equilinear action ofG onX⇥E
induces a homomorphism ⇧ : G ! GL(EX), where
EX is the vector space of all functions from X to E.

More precisely, for every function f : X ! E, for
every s 2 G, ⇧s(f ) : X ! E is function given by

(⇧s(f ))(x) = ↵(s, s�1
· x)(f (s�1

· x)),

for every x 2 X.
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(2) In Section 6.2 we specialize the construction to the
homogeneous space X = G/H of left cosets.

Then G acts on G/H on the left by

s · (gH) = sgH.

By choosing a set of representatives (rx)x2G/H in the
cosets of X = G/H (with x0 = H and rx0 = e), a
cocycle ↵ : G⇥X ! GL(E) determines a homomor-
phism � : H ! GL(E) given by �(h) = ↵(h, x0) and
a map � : X ! GL(E) given by �(x) = ↵(rx, x0).

If ⇡ : G ! G/H denotes the projection map then
picking a set of coset representatives (rx)x2G/H is equiv-
alent to picking a section of ⇡ : G ! G/H , namely
a function r : G/H ! G such that

⇡ � r = idG/H.
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Conversely, a homomorphism � : H ! GL(E) and a
map � : X ! GL(E) determine a cocycle
↵ : G⇥X ! GL(E).

In fact, we may restrict ourselves to the map � given
by �(x) = idE, and if we define u : G⇥X ! H by

u(s, x) = r�1

s·xsrx,

the map ↵ : G⇥X ! GL(E) given by

↵(s, x) = �(u(s, x))

is a cocycle.
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The induced representation associated with
� : H ! GL(E) is given by

(⇧s(f ))(x) = �(u(s, s�1
· x))(f (s�1

· x)),

f 2 EX, x 2 X.

The induced representation ⇧ : G ! GL(EX) is usu-
ally denoted by

IndGH � : G ! GL(EX).
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This step is the most important application of Step 1,
and E is an arbitrary vector space.

(3) For a given homomorphism � : H ! GL(E), the ho-
momorphisms ⇧ : G ! GL(EX) corresponding to
cocycles associated with di↵erent maps � are equiva-
lent.

(4) In Section 6.3 we show that a cocycle ↵ : G ⇥ X !

GL(E) determines a bijection betweenEX and a sub-
space L↵ of the set EG of maps from G to E defined
by

L↵ = {f 2 EG
| f (sh) = �(h�1)(f (s)),

s 2 G, h 2 H}.

Remark: The functions in L↵ may be called
Frobenius functions , but they are often incorrectly
called Mackey functions .
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As a consequence, the representation⇧ : G ! GL(EX)
corresponding to a cocycle ↵ is equivalent to the rep-
resentation ⇧L↵ : G ! GL(L↵) given by

((⇧L↵)s(g))(t) = g(s�1t)

for all g 2 L↵ and all s, t 2 G.

Observe that this is simply the left regular repre-
sentation of L↵.

The issue of choosing between representations in the
space EX or representations in the space L↵ comes
up in Chapter 7.

This completes the purely algebraic construction.
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The next steps use topology and analysis to construct
unitary representations.

(5) In Section 6.4 we assume that G is a locally compact
group and H is a closed subgroup of G, in which case
G/H is also locally compact.

Let µ be a positive measure on X = G/H , and as-
sume that E is a separable Hilbert space. We then
define a Hilbert space L2

µ(X ;E) consisting of measur-
able functions from X to E.
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(6) In Section 6.5, given a unitary representation U of H
in E, we assume that the measure µ on X = G/H is
G-invariant and that the cocycle ↵ satisfies the con-
ditions:

(i) The linear automorphisms ↵(s, x) of E are unitary
operators of E for all s 2 G and all x 2 G/H , and
↵(h, x0) = U(h) for all h 2 H (where x0 denotes
the coset H).

(ii) For every s 2 G, for every f 2 L
2

µ(X ;E), the map
x 7! ↵(s, x)(f (x)) from X to E is µ-measurable.

(iii) For every f 2 L
2

µ(X ;E), the map s 7! [⇧s(f )]
from G to L2

µ(X ;E) is continuous.

Then the homomorphism s 7! ⇧s([f ]) = [⇧s(f )] is a
unitary representation of G in L2

µ(X ;E) = H.
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(7) In Sections 6.6 and 6.7 we generalize the previous con-
struction to certain measure called quasi-invariant .
If the measure µ on G/H is quasi-invariant and an-
other technical condition is satisfied, then the homo-
morphism s 7! ⇧s([f ]) = [⇧s(f )] is a unitary repre-
sentation of G in L2

µ(X ;E).

Quasi-invariant measures on G/H always exist and
can be constructed using rho-functions.

In Section 6.8 we illustrate the method of Section 6.7
by showing how to construct unitary representations of
SL(2,R) using induced representations. One example
involves the action of SL(2,R) on the projective lineRP1,
and the other example involves the action of SL(2,R) on
the upper half plane.
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In Section 6.9 we consider a compact (metrizable) group
G and a closed subgroup H of G, and our goal is to
determine the canonical (unitary) representation of G in
L2

µ(G/H ;C) induced by the trivial representation ofH in
E = C (see Definition 6.11), where µ is the G-invariant
measure on G/H induced by a Haar measure � on G.

For simplicity of notation we write L2

µ(G/H) instead of
L2

µ(G/H ;C).

To do this it is necessary to understand what is the re-
striction of the representation M⇢ : G ! U(Cn⇢) to H ,
with ⇢ 2 R(G).

In Proposition 6.10 we show that the space L2

µ(G/H) is
the Hilbert sum of subspaces L⇢ ✓ a⇢.
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If the trivial representation �0 of H is contained d =
(⇢ : �0) � 1 times in the restriction of M⇢ to H , then
L⇢ is the direct sum of the first d columns of the matrix

M (H)

⇢ = P ⇤M⇢P , where P is a suitable change of basis
matrix, namely,

L⇢ =
dM

j=1

l(⇢,H)

j and l(⇢,H)

j =

n⇢M

k=1

Cm(⇢,H)

kj .

If d = 0, then L⇢ = (0).
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6.1 Cocycles and Induced Representations

As a warm up and as an example of the second approach,
we consider the case where G is compact, H is a closed
subgroup of G, and U is a linear representation of H in
a finite-dimensional vector space E.

This means that U is a homomorphism U : H ! GL(E)
and that

Condition (C) of Definition 2.1 is dropped.

Consider the Hilbert space L2(G;E) consisting of all func-
tions f : G ! E such that for any orthonormal basis
(e1, . . . , en) of E, f = f1e1+ · · ·+ fnen, where the fi are
functions in L2(G).
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Equivalently, L2(G;E) is the finite Hilbert sum
L2(G;E) =

Ln
i=1

L2(G)ei.

The inner product of two functions f =
P

i=1
fiei and

g =
P

i=1
giei is

hf, gi =
nX

i=1

Z

G
fi(s)gi(s) d�(s),

where � is a Haar measure on G. This construction will
be generalized in Section 6.4 to an infinite-dimensional
Hilbert space.
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Consider the subspace H of L2(G;E) consisting of all
functions f such that

f (sh) = U(h�1)(f (s)), for all s 2 G and all h 2 H.
(⇤)

It is easy to check that H is closed in L2(G;E), so it is a
Hilbert space.
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For any f 2 H, as before, let �sf be the function given
by

(�sf )(t) = f (s�1t), s, t 2 G.

If we define the map ⇧ : G ! GL(H) by

⇧s(f ) = �sf, s 2 G, f 2 H,

equivalently

(⇧s(f ))(t) = f (s�1t), s, t 2 G, f 2 H,

then we see that ⇧ is a linear representation of G in
H (Condition (C) of Definition 2.1 may fail, but here we
are not considering continuous representations).
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Since the Haar measure is left and right invariant, the
maps �tf are unitary (f 2 H), so ⇧ : G ! GL(H) is a
unitary representation of G in H, called the representa-
tion induced by U : H ! GL(E).

Let us now consider a more general situation.

Our first construction is purely algebraic and does not
assume that the group G or the vector space E have
any topology.

As a consequence, until Section 6.4 we consider linear rep-
resentations of G in E; these are simply homomorphisms
U : G ! GL(E), with no continuity requirement.
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Definition 6.1. Let G be a left action of a group G on
a set X , and let E be a vector space. Let
↵ : G⇥X ! GL(E) be a function and assume that the
following conditions hold:

(a) For all x 2 X

↵(e, x) = idE.

(b) For all x 2 X and all s, t 2 G,

↵(st, x) = ↵(s, t · x) � ↵(t, x).

A map ↵ : G ⇥ X ! GL(E) satisfying Conditions (a)
and (b) is called a cocycle of G with values in GL(E).

The point of cocycles is that they yield homomorphisms
⇧ : G ! GL(EX), that is, linear representations of G
in the vector space [X ! E] = EX .
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Definition 6.2. Let G be a left action of a group G on
a set X , and let E be a vector space. For every cocycle
↵ : G⇥X ! GL(E), for every function f : X ! E, for
every s 2 G, let ⇧↵

s (f ) : X ! E be the function given
by

(⇧↵
s (f ))(x) = ↵(s, s�1

·x)(f (s�1
·x)), for every x 2 X.

(⇧↵
s )

The above equation defines a map ⇧↵
s : E

X
! EX . The

map ⇧↵ : G ! GL(EX) given by s 7! ⇧↵
s is the (linear)

representation of G in EX induced by the cocycle ↵.

For simplicity of notation, we write ⇧ instead of ⇧↵.

The following proposition confirms that the map ⇧ is a
linear representation of G in the vector space EX .
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Proposition 6.1. Let G be a left action of a group G
on a set X, and let E be a vector space. For every
cocycle ↵ : G ⇥ X ! GL(E), for every s 2 G, the
map ⇧s : EX

! EX is a linear isomorphism, and the
map ⇧ : G ! GL(EX) given by s 7! ⇧s is a homo-
morphism, that is, a linear representation of G in the
vector space EX.

If we let t = s�1 in (b) of Definition 6.1, we obtain

↵(s�1, x) = (↵(s, s�1
· x))�1,

so ⇧s(f ) can also be written as

(⇧s(f ))(x) = (↵(s�1, x))�1(f (s�1
· x)). (⇧s)
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6.2 Cocycles on a Homogeneous Space X = G/H

We now consider the special case where X = G/H is the
homogeneous space of left cosets for some subgroup H of
G, and the left action of G acts on G/H given by

s · (gH) = sgH.

Definition 6.3. Given a group G and a subgroup H
of G, a set of representatives (rx)x2G/H for the cosets
of G/H is the choice for every coset x 2 G/H of some
element rx 2 G so that x = rxH .

Then every element g of x = rxH is written uniquely as
g = rxh, with h 2 H .

We denote the coset H by x0 and pick rx0 = e.

For any s 2 G, the representative of s · x = s · rxH =
srxH is denoted by rs·x.
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If we denote the quotient map by ⇡ : G ! G/H , then
picking a set of representatives (rx)x2G/H in the cosets of
G/H is equivalent to picking a section of ⇡, that is, a
map r : G/H ! G such that ⇡ � r = idG/H .

Definition 6.4. Given ↵ : G⇥X ! GL(E) as in Defi-
nition 6.1, for all s 2 G, all h 2 H , and all x 2 X , define
↵0(s), �(h), �(x) and u(s, x) by

↵0(s) = ↵(s, x0)

�(h) = ↵(h, x0) = ↵0(h)

�(x) = ↵(rx, x0) = ↵0(rx)

u(s, x) = r�1

s·xsrx 2 H. (u)
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Proposition 6.2. Let G be a group, H be a subgroup
of G, and E be a vector space. Choose a set (rx)x2G/H

of representatives for the cosets of X = G/H as ex-
plained above, with x0 = H and rx0 = e. Every cocy-
cle ↵ : G⇥X ! GL(E) determines a homomorphism
� : H ! GL(E) with �(h) = ↵(h, x0) for all h 2 H,
a map � : X ! GL(E) given by �(x) = ↵(rx, x0) for
all x 2 X, and a map u : G ⇥ G/H ! H given by
u(s, x) = r�1

s·xsrx 2 H, such that

↵(s, x) = �(s · x) � �(u(s, x)) � (�(x))�1.

Conversely, given a homomorphism � : H ! GL(E)
and a map � : X ! GL(E), if we set

u(s, x) = r�1

s·xsrx (u)

and

↵(s, x) = �(s · x) � �(u(s, x)) � (�(x))�1, (↵)

then ↵ : G⇥X ! GL(E) is a cocycle.
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Remark: Kirillov [29] (Appendix V, Section 2.1) calls
(u) theMaster equation. See also Proposition 5, Lemma
2, and Lemma 3.

This material is also discussed in Kririllov [28] (Sections
13.1 and 13.2).

In view of Proposition 6.2 we make the following defini-
tion.

Definition 6.5.Given a homomorphism � : H ! GL(E)
and a map � : X ! GL(E), if ↵ is the cocycle associ-
ated with � and �, we say that the representation ⇧↵ of
G in EX defined by ↵ is the representation induced by
� and �.
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Remarkably, for a given homomorphism � : H ! GL(E),
the representations ⇧1 : G ! GL(EX) and
⇧2 : G ! GL(EX) corresponding to the cocycles ↵1 and
↵2 associated with two maps �1 and �2 are equivalent, in
the sense that there is an automorphism � of EX such
that

⇧2 = � � ⇧1 � �
�1.

This is proven as follows.



6.2. COCYCLES ON A HOMOGENEOUS SPACE X = G/H 515

Proposition 6.3. Let G be a group, H be a subgroup
of G, and E be a vector space. Choose a set (rx)x2G/H

of representatives for the cosets of X = G/H as ex-
plained above, with x0 = H and rx0 = e. Let
� : H ! GL(E) be a homomorphism, let
� : X ! GL(E) be a map, and let ↵ be the cocy-
cle determined by � and � as in Proposition 6.2, and
let ⇧ : G ! GL(EX) be the corresponding representa-
tion. If c(x) = �(x)�1 for all x 2 X, then define the
automorphism � of EX by

(�(f ))(x) = c(x)(f (x)), f 2 EX, x 2 X.

Then the representation

⇧0 = � � ⇧ � ��1

is associated with the cocycle ↵0 given by

↵0(s, x) = �(u(s, x)), (↵0)

with

u(s, x) = r�1

s·xsrx. (u)
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Thus, the representation ⇧ induced by � and � is
equivalent to the representation induced by � and �0,
with �0(x) = idE for all x 2 X.

The induced representation ⇧0 associated with ↵0 is
given by

(⇧0

s(f ))(x) = �(u(s�1, x)�1)(f (s�1
· x))

= �(u(s, s�1
· x))(f (s�1

· x)),

f 2 EX, x 2 X. (⇧0)

It is also easy to check that if � is replaced by an equiva-
lent representation �0 ofH in EX , then the corresponding
representations ⇧ and ⇧0 of G in EX are equivalent.
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Therefore, the process for making a representation ⇧ ofG
in EX from a representation � of H in E and a function
� : X ! GL(E) defines a class of representations of G
in EX .

Furthermore, there is a special representation asso-
ciated with � and the constant function � given by
�(x) = idE, for all x 2 X .

In summary, the method is: find a set (rx)x2G/H of rep-
resentatives for the cosets of G/H , then to construct u
given by u(s, x) = r�1

s·xsrx as in Equation (u), and then
to define ↵ by ↵(s, x) = �(u(s, x)).

The induced representation is given by

(⇧s(f ))(x) = �(u(s, s�1
· x))(f (s�1

· x)),

f 2 EX, x 2 X. (⇤)
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Vilenkin [39] (Chapter 1, Section 7) calls such a represen-
tation representation with operator factor .

From a theoretical point of view, a cocycle ↵ is equivalent
to a pair (�, �) as in Proposition 6.2, but from a practical
point of view, it may be very hard (if not impossible) to
find constructively a set (rx)x2G/H of representatives for
the cosets of G/H .

Thus we use cocycles ↵ that agree with a given representa-
tion � : H ! GL(E), in the sense that ↵(h, x0) = �(h)
for all h 2 H .

A case of practical case interest in equivariant machine
learning is the case where G = SE(3) and H = SO(3).
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Example 6.1. Let G = SE(3) and H = SO(3). The
group SE(3) is the group of a�ne rigid motions of R3

consisting of rotations and translations.

Here we view SE(3) as the group of matrices

s =

✓
Q a
0 1

◆
, Q 2 SO(3), a 2 R

3

under multiplication.

For short we denote the above matrix by (a,Q).

The group SE(3) acts on R
3 by

(a,Q) · x = Qx + a, x 2 R
3.
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Multiplication in SE(n) is given by

(a,Q)(b, R) = (a +Qb,QR),

and the inverse of (a,Q) is

(a,Q)�1 = (�Q>a,Q>).

It is easy to see that the homogeneous space SE(3)/SO(3)
is R3.

Indeed SE(3) acts on R
3, and the stabilizer of the origin

03 is SO(3) viewed as the set of matrices
✓
Q 0
0 1

◆
, Q 2 SO(3).
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We now use the method based on Proposition 6.2 and
Proposition 6.3 to construct an induced representation
of SE(3) from a representation � : SO(3) ! GL(E) of
SO(3).

For this we need to find a set of representative for the
cosets of R3 = SE(3)/SO(3) in order to define u, and
then ↵(s, x) is given by ↵(s, x) = �(u(s, x)) and the
induced representation ⇧ is given by (⇤).

This is a case where it is easy to pick a set of coset rep-
resentatives, namely for each x 2 R

3, rx 2 SE(3) is the
matrix

rx =

✓
I3 x
0 1

◆
,

the translation by x.
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The coset xSO(3) consists of the matrices
✓
Q x
0 1

◆
=

✓
I3 x
0 1

◆✓
Q 0
0 1

◆

with x fixed.

Let us compute u(s, x) = r�1

s·xsrx.

First s · x = (a,Q) · x = Qx + a, so

rs·x =

✓
I3 Qx + a,
0 1

◆
, r�1

s·x =

✓
I3 �Qx� a,
0 1

◆
,

and finally

u(s, x) = r�1

s·xsrx =

✓
I3 �Qx� a,
0 1

◆✓
Q a
0 1

◆✓
I3 x
0 1

◆

=

✓
Q �Qx
0 1

◆✓
I3 x
0 1

◆
=

✓
Q 0
0 1

◆
.
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Consequently, if � : SO(3) ! GL(E) is any representa-
tion of SO(3) is a finite-dimensional (nontrivial) vector
space E, the above shows that u(s, x) is independent of
x and given by

u(s, x) = u((a,Q), x) = Q

and so ↵((a,Q), x) is given by

↵((a,Q), x) = �(u((a,Q), x)) = �(Q).
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Then by (⇤) we obtain the representation
⇧ : SE(3) ! GL(ER

3

) of SE(3) in ER
3

given by

(⇧(a,Q)(f ))(x) = �(u(s, s�1
· x))(f (s�1

· x))

= �(Q)(f ((a,Q)�1
· x))

= �(Q)(f (Q>(x� a))),

that is,

(⇧(a,Q)(f ))(x) = �(Q)(f (Q>(x� a))), f 2 ER
3

, x 2 R
3.

This representation is reducible because the subspace of
constant functions from R

3 to E is invariant.
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6.3 Converting Induced Representations of G From EX

to EG

We can also show that a cocycle ↵ : G ⇥ X ! GL(E)
defines an isomorphism ⌧ between the space EX and a
subspace L↵ of the space EG.

Definition 6.6. Let G be a group, H be a subgroup of
G, E be a vector space, and write X = G/H . Given any
cocycle ↵ : G⇥X ! GL(E), for any function
f : X ! E, the function f↵ : G ! E is given by

f↵(s) = ↵(s�1, s · x0)(f (s · x0))

= (↵(s, x0))
�1(f (s · x0)), for all s 2 G, (⇤↵1)

with x0 = H .

Recall from Definition 6.4 that �(h) = ↵(h, x0) for all
h 2 H .
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Proposition 6.4. With the hypotheses of Definition
6.6, the function f↵ satisfies the equation

f↵(sh) = �(h�1)(f↵(s)),

for all h 2 H and all s 2 G. (⇤↵2)

Definition 6.7. Let G be a group, H be a subgroup of
G, E be a vector space, and write X = G/H . Given any
cocycle ↵ : G⇥X ! GL(E), let L↵ be the subspace of
EG consisting of all functions g : G ! E such that

g(sh) = �(h�1)(g(s)),

for all s 2 G and all h 2 H, (⇤↵3)

where �(h) = ↵(h, x0), for all h 2 H (with x0 = H).
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Proposition 6.5. With the hypotheses of Definition
6.6, for every g 2 L↵, there is a unique function
f : E ! X such that g = f↵. Therefore, the map
⌧ : EX

! L↵ given by ⌧ (f ) = f↵ is an isomorphism.

Observe that in the proof of Proposition 6.5, Equation
(⇤f) and the fact that ⌧ (f ) = f↵ = g show that if g 2 L↵,
then

(⌧�1(g))(s · x0) = ↵(s, x0)(g(s)). (⇤⌧�1(g))

For any cocycle ↵ : G ⇥ X ! GL(E), we can use the
isomorphism ⌧ : EX

! L↵ to convert the representation
⇧ : G ! GL(EX) defined by ↵ into the equivalent rep-
resentation ⇧L↵ given by ⇧L↵(s) = ⌧ � ⇧(s) � ⌧�1.
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Proposition 6.6. For every cocycle
↵ : G⇥X ! GL(E), if ⇧ : G ! GL(EX) is the rep-
resentation defined by ↵, then the equivalent represen-
tation ⇧L↵ : G ! GL(L↵) defined by
⇧L↵(s) = ⌧ � ⇧(s) � ⌧�1 is given by

((⇧L↵)s(g))(t) = g(s�1t)

for all g 2 L↵ and all s, t 2 G.
(⇧L↵)

Remark: Observe that L↵ only depends on �, so we
may write L� instead of L↵, and ⇧L↵ depends only on �,
so we may also write ⇧L� instead of ⇧L↵.

The representation ⇧L�, which is simply the left regular
representation of G on L↵, is more intrinsic than the
representations ⇧↵ acting on the space of functions in
EX .
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The representations ⇧↵ acting on the space of functions
in EX require for their construction the choice of a set
of coset representatives (rx)x2G/H in addition to the rep-
resentation � : H ! GL(E) in order to define a cocycle
↵.

However, ifX = G/H is a lot “smaller” than G, then the
space of functions in L↵ (a space of functions from G to
E) is very redundant and from a practical point of view,
it might be better to use the representations defined on
the smaller space of functions from X to E.

This issue will come up in Chapter 7.

We have concluded our discussion of algebraic methods
for constructing representations ofG from representations
of a subgroup H of G.
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6.4 Construction of the Hilbert Space L2

µ(X ;E)

We now assume that G is a locally compact group and
that H is a closed subgroup of G.

By Vol I, Proposition @@@8.6(1), the spaceX = G/H is
also locally compact. If G is separable, then so is G/H ,
and if G is metrizable, then so G/H ; see Dieudonné [13]
(Chapter XII, Sections 10 and 11).

Given a unitary representation U : H ! U(E) of H we
would like to construct a unitary representation
⇧ : G ! U(H) of G.

This is possible under certain conditions on H and G and
on measures on X = G/H .

Note that unlike in the previous sections we are now con-
sidering continuous unitary representations.
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The first step is to construct a Hilbert space H that will
be the representation space of a unitary representation of
G. There are two approaches:

1. The Hilbert space H is a set of functions from
X = G/H to E.

2. The Hilbert space H is a set of functions from G to
E, analogous to the space L↵ of Section 6.3.

The second step is to define the operators ⇧s (for s 2 G)
so that they are unitary operators of H.

This involves defining an inner product in H that makes
the operators ⇧s unitary.
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In the first approach that makes use of cocycles, the def-
inition of the inner product on H is straightforward.

To ensure that the operators ⇧s are unitary, a Borel mea-
sure µ onX = G/H is needed, and the cocycles must sat-
isfy some additional conditions with respect to the mea-
sure µ.

The case where the measure µ is G-invariant is simpler
than the case where µ is only quasi-invariant.

In the second approach, the definition of the Hilbert space
H is more complicated and requires a completion.
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A good candidate for the first approach is a subspace
L2

µ(X ;E) of the vector space EX , where µ is positive
Borel measure on G/H .

In the special case where H is compact, given a cocycle ↵
on G⇥X satisfying some suitable conditions, the space
L↵ will be a subspace of L2

�(G;E) ✓ EG, where � is a
left-invariant Haar measure on G.

Whether µ is G-invariant is an issue that will come up
later, but for the time being we can ignore it.

Let E be a separable Hilbert space, and let (an) be a
Hilbert basis of E.
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Every function f : X ! E can be written uniquely as
f =

P
n fnan, where fn : X ! C, and such that the

series
P

n |fn(x)|
2 converges for all x 2 X .

By definition, we let

kf (x)k2E =
X

n

|fn(x)|
2.

It can be shown that a function f : X ! E is µ-measurable
i↵ all the fn are µ-measurable.

Definition 6.8. Let G be a locally compact group, let
H be a closed subgroup of G, let µ be a positive Borel
measure on X = G/H , and let E be a separable Hilbert
space. For any Hilbert basis (an) of E, let L2

µ(X ;E) be
the space of all µ-measurable functions f : X ! E with
f =

P
n fnan, such that the function

x 7!
P

n |fn(x)|
2 = kf (x)k2E is µ-integrable.
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It is easy to see that if f =
P

n fnan, then fn 2 L
2

µ(X ;C),
and

Z

G/H
kfk2E dµ =

X

n

Z

G/H
|fn|

2 dµ =
X

n

kfnk
2

2
;

see Dieudonné [13] (Chapter XIII, Sections 8 and 9).

As a consequence, given two functions f =
P

n fnan
and g =

P
n gnan in L

2

µ(X ;E), by Vol I, Proposition
@@@5.41, the function x 7! hf (x), g(x)i is integrable
and

Z

G/H
hf (x), g(x)i dµ(x) =

X

n

Z

G/H
fn(x)gn(x) dµ(x).



536 CHAPTER 6. INDUCED REPRESENTATIONS

Definition 6.9.We say that a function f 2 L
2

µ(X ;E)

is negligeable if the function x 7! kf (x)k2E is zero almost
everywhere.

The quotient of the space L
2

µ(X ;E) by the subspace of
negligeable functions is denoted by L2

µ(X ;E).

It is a hermitian space under the inner product

h[f ], [g]i =

Z

G/H
hf (x), g(x)i dµ(x),

and we have the norm N2
1 given by

N2([f ]) =
p
h[f ], [f ]i.

1We are using the notation N2 for the norm on L2
µ(X;E) to avoid a confusion with the norm k k2 on

L2
µ(X;C).
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If [f ] is represented by f =
P

n fnan, then

N2([f ])
2 =

Z

G/H
kfk2E dµ =

X

n

kfnk
2

2
.

Actually, it turns out that the hermitian space L2

µ(X ;E)
is complete, that is, it is a Hilbert space.

In fact, it is a separable Hilbert space.

Proposition 6.7. Let G be a locally compact group,
let H be a closed subgroup of G, let µ be a positive
Borel measure on X = G/H, and let E be a separa-
ble Hilbert space. The space L2

µ(X ;E) is a separable
Hilbert space.
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6.5 Induced Representations, I; G/H has a
G-Invariant Measure

In the rest of this chapter, by unitary representation, we
mean continuous unitary representation.

We will now assume that the positive Borel measure µ on
X = G/H is G-invariant.

Recall from Voll I, Section @@@8.10 (Definition @@@8.18)
that

(�s(µ))(A) = µ(s�1
· A),

for every Borel subset A of X , so µ is G-invariant if for
every Borel subset A of X ,

µ(s�1
· A) = µ(A) for all s 2 G.
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In this case,

Z

G/H
f (s·x) dµ(x) =

Z

G/H
f (x) dµ(x), for all s 2 G.

Let E be a separable Hilbert space, and let
U : H ! U(E) be a unitary representation of H .
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Theorem 6.8. Let G be a locally compact group, H
be a closed subgroup of G, E be a separable Hilbert
space, and U : H ! U(E) be a unitary representation
of H. If X = G/H admits a G-invariant �-Radon
measure µ, and for any cocycle ↵ : G⇥X ! U(E), if
the following conditions hold

(1) We have ↵(h, x0) = U(h) for all h 2 H;

(2) For every s 2 G, for every f 2 L2

µ(X ;E), the map
x 7! ↵(s, x)(f (x)) from X to E is µ-measurable;

(3) For every f 2 L2

µ(X ;E), the map s 7! ⇧s(f ) is a
continuous map from G to L2

µ(X ;E), where ⇧ is
the homomorphism ⇧ : G ! GL(EX) induced by
the cocycle ↵;

then the homomorphism ⇧ : G ! U(L2

µ(X ;E)) in-
duced by the cocycle ↵ given by

(⇧s(f ))(x) = (↵(s�1, x))�1(f (s�1
· x)),

f 2 L2

µ(X ;E), x 2 X,

(see Definition 6.2) is a unitary representation of G.
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Definition 6.10. The unitary representation
⇧ : G ! U(L2

µ(X ;E)) induced by the cocycle ↵ (and
the unitary representation U : H ! U(E)) is denoted
IndGH ↵, or by abuse of notation even IndGH U .

Remark: To be very precise, the representing space
L2

µ(X ;E) of this representation should be specified, for

example as in IndGH,L2µ(X;E)
↵, because there are variants

of this construction that use a di↵erent representation
space.

If U is the trivial representation of H in E, and if we
choose ↵(s, x) = idE for all (s, x) 2 G ⇥ (G/H), then
it can be verified that the hypotheses of Theorem 6.8 are
satisfied.

In this case, the subspace L↵ corresponding to L2

µ(X ;E)
consists of all functions of the form f � ⇡ with
f 2 L

2

µ(X ;E), where ⇡ : G ! G/H is the projection
map.
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If H is a (closed) compact subgroup of G, then by Vo
I, Proposition @@@8.43, the space G/H has G-invariant
measures (unique up to a scalar).

This is a special case of particular interest. A good illus-
tration of this situation is provided by Example 6.1 that
we now revisit.

Example 6.2. As in Example 6.1 consider the groups
G = SE(3) and H ⇡ SO(3), where G is locally compact
and H is compact and closed in G.

Consequently X = G/H ⇡ R
3 has an SE(3)-invariant

Radon measure µ.

Consider any unitary representation � : SO(3) ! U(E)
of SO(3) in a separable Hilbert space E.
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We showed in Example 6.1 that we have a cocycle
↵ : SE(3)⇥ R

3
! U(E) given by

↵((a,Q), x) = �(Q), a, x 2 R
3, Q 2 SO(3),

and the homomorphism ⇧ : SE(3) ! GL(ER
3

) induced
by ↵ is given by

(⇧(a,Q)(f ))(x) = �(Q)f (Q>(x�a)), f 2 ER
3

, x 2 R
3.

We leave it as an exercise to check that Conditions (1)-
(3) of Theorem 6.8 are satisfied, and so ⇧ is a unitary
representation ⇧ : SE(3) ! U(L2

µ(R
3;E)) of SE(3) in

the Hilbert space L2

µ(R
3;E).
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If E is finite-dimensional, say of dimension n � 1, then
the Hilbert space L2

µ(R
3;E) is isomorphic to the direct

sum of n copies of L2

µ(R
3;C).

Then every function f 2 L2

µ(R
3;E) is identified with the

n-tuple f = (f1, . . . , fn) where fi 2 L2

µ(R
3;C), with the

inner product of
f = (f1, . . . , fn) and g = (g1, . . . , gn) given by

hf, gi =
nX

i=1

Z

R3

fn(x)g(x) dµ(x).

Another example of induced representations ofG = SE(n)
arises from the normal abelian subgroup H = R

n.

In this case we make use of the characters of Rn. Such
repesentations of SE(n) are discussed in Vilenkin [39]
(Chapter XI, Section 2).
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Under some mild additional conditions, induced unitary
representations ofG in L2

µ(X ;E) can be converted to uni-
tary representations ofG in a closed subspace of L2

�(G;E)
(where � is a left Haar measure on G).

Suppose that the unitary cocycle ↵ has the property that
the map

s 7! f↵(s) = ↵(s�1, s · x0)(f (s · x0))

from G to E is �-measurable for every f 2 L
2

µ(X ;E).

If so, it can be shown that f↵ 2 L
2

�(G;E).
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Conversely, if g 2 L
2

�(G;E) satisfies the property

g(sh) = U(h�1)(g(s)) for all s 2 G and all h 2 H,
(⇤U)

and if the map s 7! ↵(s, x0)(g(s)) from G to E is �-
measurable, then as in Proposition 6.5 we can write this
map as f�⇡ for some f 2 L2

µ(X ;E), and we have g = f↵.

In this case, up to equivalence, we can consider the uni-
tary representation IndGH,F ↵ induced by ↵ as a unitary
representation of G in the closed subspace F of L2

�(G;E)
spanned by the functions g 2 L

2

�(G;E) satisfying prop-
erty (⇤U).
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Then for all s 2 G,

(IndGH,F ↵)s(g) = �sg, for all g 2 F , (IndG)

equivalently, for all s, t 2 G,

((IndGH,F ↵)s(g))(t) = g(s�1t), for all g 2 F .

Notice the analogy with Proposition 6.6.

Note that IndGH,F ↵ depends only on U , so we usually

write IndGH,F U instead of IndGH,F ↵.

If E = C, then IndGH,F U is a subrepresentation of the
regular representation of G in L2(G).
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Definition 6.11. If we choose U to be the trivial rep-
resentation of H in E, then the functions g 2 L2

�(G;E)
satisfying Condition (⇤U) are constant on the classes sH ,
so we can identify F with L2

µ(X ;E). In this case we say

that the induced representation IndGH U of G in L2

µ(X ;E)
is the canonical representation of G corresponding to
the compact subgroup H and to its trivial representation
in E.

If H = (e) and E = C, then the induced representation
is the regular representation of G in L2(G).
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Going back to the case where H is an arbitrary closed
subgroup of G, and where there is a G-invariant measure
on G/H , there is another method, not using cocyles, for
defining a unitary induced representation of G from a
unitary representation U : H ! U(E).

We can define a Hilbert spaceH such that formula (IndG)
defines a unitary induced representation IndGH,HU of G
in H.

This method is described in Folland [19] (Chapter 6, Sec-
tion 1), and we briefly describe it.
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Given a unitary representation U : H ! U(E), let H0

be the following set of functions:

H0 = {f 2 C(G,E) | ⇡(supp(f )) is compact and

f (sh) = U(h�1)(f (s))

for all s 2 G and all h 2 H}.

The problem is that it is not obvious thatH0 is nonempty!

However, the following result proven in Folland [19] (Chap-
ter 6, Proposition 6.1) shows that this is not the case.
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Proposition 6.9. If ' : G ! E is a continuous func-
tion with compact support, then the function f' from
G to E given by

f'(s) =

Z

H
U(h)('(hs)) d�H(h)

belongs to H0 and is uniformly continuous on G. More-
over, every element of H0 is of the form f' for some
' 2 K(G,E).

The group G acts on the left on H0 by f 7! �sf .

In order to act by unitary maps, we need to define an inner
product on H0 with respect to which these left transla-
tions are isometries.

Since G/H has G-invariant measures, this is easy to
achieve.
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If f, g 2 H0, then the map s 7! hf (s), g(s)iE depends
only on the coset sH , so we can define the inner product
hf, gi by

hf, gi =

Z

G/H
hf (s), g(s)iE dµ(sH).

This is clearly a positive hermitian form, and it is positive
definite because µ(A) > 0 for every nonempty open set
A.

This inner product is is nvariant under the left transla-
tions �s because µ is G-invariant.

Therefore, with respect to this inner product, the maps
f 7! �sf are unitary.

If H is the Hilbert space which is the completion of H0,
then the maps f 7! �sf extend to unitary operators on
H.
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It follows from Proposition 6.9 that the map s 7! �sf
from G to H are continuous for every f 2 H0.

Therefore, they define a unitary representation of G in H

given by

(IndGH,HU)s(f ) = �s(f ), f 2 H.

This unitary representation has the advantage that it de-
pends only on U , but one should not neglect the fact that
the construction involving cocycles allows more flexibility.

The Hilbert space H is also more complicated than the
Hilbert space L2

µ(X ;E).

WhenG/H admits noG-invariant measure, then we need
to use a weaker notion of invariance. It turns out that
the notion of (strong) quasi-invariance does the job.
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6.6 Quasi-Invariant Measures on G/H
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6.7 Induced Representations, II; G/H has a
Quasi-Invariant Measure
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6.8 Examples of Induced Representations Via
Method II
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6.9 Induced Representations of Compact Groups

In this section we consider a compact (metrizable) group
G and a closed subgroup H of G, and our goal is to
determine the canonical (unitary) representation of G in
L2

µ(G/H ;C) induced by the trivial representation ofH in
E = C (see Definition 6.11), where µ is the G-invariant
measure on G/H induced by a Haar measure � on G.

For simplicity of notation we write L2

µ(G/H) instead of
L2

µ(G/H ;C).

To do this it is necessary to understand what is the
restriction of the representation M⇢ : G ! U(Cn⇢) to
H , with ⇢ 2 R(G).
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We will denote the complete set of the irreducible repre-
sentations of G given by the Peter-Weyl theorem I (Theo-
rem 4.3) by ⇢ 2 R(G), the corresponding representations
by M⇢ : G ! U(Cn⇢), and the identity element of a⇢ by
u⇢ =

1

n⇢
�⇢, where �⇢ is the character associated with ⇢.

Similarly, we will denote the complete set of irreducible
representations of H given by the Peter-Weyl theorem
I by � 2 R(H), the corresponding representations by
M� : H ! U(Cn�), and the identity element of a� by
u� =

1

n�
��, where �� is the character associated with �.

The Haar measure on G is denoted by �G, and the Haar
measure on H is denoted by �H .
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Consider the restriction V : H ! U(Cn⇢) of the repre-
sentation M⇢ : G ! U(Cn⇢) to H .

Recall that for any function f 2 L2(H) and any
x 2 C

n⇢, Vext(f )(x) is the weak integral of the function
t 7! V (t)(x) with respect to fd�H (t 2 H).

We will write M⇢(f ) for Vext(f ).

By the Peter–Weyl theorem II (Theorem 4.8), for every

� 2 R(H), the map ⇡
M⇢
� = M⇢(u�) given by

⇡
M⇢
� (x) =

1

n�

Z

H
��(t)M⇢(t)(x) d�H(t), x 2 C

n⇢,

is the orthogonal projection of Cn⇢ onto a closed subspace
E� of Cn⇢, and we have a Hilbert sum

C
n⇢ =

M

�2R(H)

E�.
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Recall from Section 4.7 that the integral defining ⇡
M⇢
� (x)

can be computed by integrating the matrix ��(t)M⇢(t)(x)
term by term.

Furthermore, for each subspace E� 6= (0), each irre-
ducible representation M� of H is contained a certain
number of times in the restriction of M⇢ to H , which we
denote d� = (⇢ : �), so E� is a finite Hilbert sum

E� =
d�M

k=1

F �
k ,

of subspaces F �
1
, F �

2
, . . . , F �

d�
of dimension n�, invariant

underM⇢(t) for every t 2 H , and such that the restriction
ofM⇢ toH and to each F �

k is equivalent to the irreducible
representation M�.

Thus E� has dimension p� = d�n�.
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We can pick an orthonormal basis of Cn⇢ consisting of
the union of orthonormal bases of each of the F �

j and of
a basis of the orthogonal complement F 0 of E� in C

n⇢.

Let P be the change of basis matrix, which is unitary.

For the basis of E� consisting of the first p� = d�n�
vectors of this basis, the matrix M⇢,�(t) of the restriction
of P ⇤M⇢(t)P to E� is a block diagonal matrix (consisting
of d� blocks) of the form

M⇢,�(t) =

0

BB@

M�(t) 0 · · · 0
0 M�(t) · · · 0
... ... . . . ...
0 0 · · · M�(t)

1

CCA

for every t 2 H .
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Since G and H are compact, G/H has a G-invariant
measure µ induced by a Haar measure on G.

We now try to understand what the canonical unitary
representation of G in L2

µ(G/H) induced by the trivial
representation of H in E = C looks like.

With the notations as above, we have n�0 = 1, and
p�0 = d.

First, let us observe that a function g 2 L
2

µ(G/H) can
be viewed as a function g 2 L

2(G) such that

g(st) = g(s) for all t 2 H and all s 2 G. (⇤G/H)
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Since (g⇤�t)(s) = g(st), the above condition is equivalent
to

g ⇤ �t = g for all t 2 H, (⇤0G/H)

and thus for any measure ⌫ 2 M
1(G), the function

⌫ ⇤ g 2 L
2

µ(G/H) also satisfies the equation

(⌫ ⇤ g) ⇤ �t = ⌫ ⇤ g,

so we deduce that L2

µ(G/H) is a closed left ideal inM1(G),
which implies that L2

µ(G/H) is a closed left ideal in L2(G).

In particular, for every ⇢ 2 R(G), the projection
g 7! u⇢⇤g of L2(G) onto the ideal a⇢ maps L2

µ(G/H) onto
itself, so L2

µ(G/H) is the Hilbert sum of the subspaces

L⇢ = L2

µ(G/H) \ a⇢.
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It remains to determine what the L⇢ are.

We explained that by applying Peter–Weyl II (Theorem
4.8) to the restriction of the representation
M⇢ : G ! U(Cn⇢) to H we obtain a decomposition of
C

n⇢ as a finite Hilbert sum

C
n⇢ = E�1 � · · ·� E�q,

with each E�i a direct sum

E�i =

d�iM

k=1

F �i
k

of subspaces F �i
1
, F �i

2
, . . . , F �i

d�i
of dimension n�i, invariant

under M⇢(t) for every t 2 H , and such that the restric-
tion of M⇢ to each F �i

k is equivalent to the irreducible
representation M�i.
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Let us pick for an orthonormal basis of Cn⇢ the union of
orthonormal bases of the F �i

k , and let P be the change of
basis matrix, which is unitary.

Then for any t 2 H we have

P ⇤M⇢(t)P =

0

BB@

M⇢,�1(t) 0 · · · 0
0 M⇢,�2(t) · · · 0
... ... . . . ...
0 0 · · · M⇢,�q(t)

1

CCA ,

where M⇢,�i(t) is the block matrix

M⇢,�i(t) =

0

BB@

M�i(t) 0 · · · 0
0 M�i(t) · · · 0
... ... . . . ...
0 0 · · · M�i(t)

1

CCA

(consisting of d�i blocks) defined earlier.
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Thus the matrix M (H)

⇢ (t) = P ⇤M⇢(t)P (with t 2 H) is
the block matrix consisting of the blocksM�i(t), each one
repeated d�i times.

We also define the matrices M (H)

⇢ (s) = (m(⇢,H)

ij (s)) for
all s 2 G by

M (H)

⇢ (s) = P ⇤M⇢(s)P, s 2 G.

Beware that if s 2 G but s /2 H , then the matrix
M (H)

⇢ (s) does not have the nice block structure enjoyed

by the matrices M (H)

⇢ (t) when t 2 H .

The representations of G in C
n⇢ defined by the matrices

M⇢(s) and M (H)

⇢ (s) (s 2 G) are equivalent.
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The matrix M (H)

⇢ denotes the matrix of n2

⇢ functions

m(⇢,H)

ij given by s 7! m(⇢,H)

ij (s) and we also write

M (H)

⇢ = P ⇤M⇢P .

By Proposition 4.5, the matrix M (H)

⇢ defines n2

⇢ functions

m(⇢,H)

ij that form an orthonormal basis of a⇢ and satisfy

the same properties as the functions m(⇢)
i,j defined by the

matrix M⇢.
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Proposition 6.10. The space L2

µ(G/H) is the Hilbert
sum of subspaces L⇢ ✓ a⇢. If the trivial representation
�0 of H is contained d = (⇢ : �0) � 1 times in the
restriction of M⇢ to H, then L⇢ is the direct sum of

the first d columns of M (H)

⇢ = P ⇤M⇢P ,

L⇢ =
dM

j=1

l(⇢,H)

j and l(⇢,H)

j =

n⇢M

k=1

Cm(⇢,H)

kj .

If d = 0, then L⇢ = (0). The subrepresentation
⇧ : G ! U(L⇢) in L⇢ of the canonical representation
⇧ : G ! U(L2

µ(G/H)) of G in L2

µ(G/H) induced by the
trivial representation of H in C is the Hilbert sum of
d = (⇢ : �0) irreducible representations equivalent to
M⇢.
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We can also consider the space H\G of right cosets Hs
of G (s 2 G). If ⇡ : G ! H\G is the quotient map
⇡(s) = Hs, the fact that the Haar measure � on a com-
pact group is left and right invariant implies immediately
that there is a G-invariant measure µ0 on H\G such that

Z

G/H
g(x) dµ0(x) =

Z

G
(g � ⇡) d�,

and

Z

G/H
g(x·s) dµ0(x) =

Z

G/H
g(x) dµ0(x) for all s 2 G,

with

(Ht) · s = Hts, s, t 2 G.
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Every function g 2 L
2

µ0(H\G) can be viewed as a func-
tion g 2 L

2(G) such that

g(ts) = g(s) for all t 2 H and all s 2 G. (⇤H\G)

Since (�t ⇤ g)(s) = g(t�1s), the above condition is equiv-
alent to

�t ⇤ g = g for all t 2 H. (⇤0H\G)

The space L2

µ0(H\G) is the image of the space L2

µ(G/H)

under the isomorphism g 7! ǧ (here we use the fact that
G is unimodular).
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Therefore L2

µ0(H\G) is a closed right ideal in L2(G), and

it is the Hilbert sum of the images Ľ⇢ of the L⇢;

since by Theorem 4.4(2) we have mji = m̌ij, we deduce

that Ľ⇢ is the direct sum of the first d rows ofM (H)

⇢ (with
d = (⇢ : �0)).

Let us record this fact.
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Proposition 6.11.The space L2

µ0(H\G) is the Hilbert

sum of subspaces Ľ⇢ ✓ a⇢. If the trivial representation
�0 of H is contained d = (⇢ : �0) � 1 times in the

restriction of M⇢ to H, then Ľ⇢ is the direct sum of

the first d rows of M (H)

⇢ ; that is,

Ľ⇢ =
dM

i=1

n⇢M

j=1

Cm(⇢,H)

ij .

Let us now consider the intersection
L2

µ(G/H) \ L2

µ0(H\G).

This is a closed involutive subalgebra of L2(G), thus a
complete Hilbert algebra.
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We can view a function g 2 L2

µ(G/H) \ L2

µ0(H\G) as a
function g 2 L2(G) such that

g(tst0) = g(s) for all t, t0 2 H and all s 2 G,
(⇤H\G/H)

or equivalently

�t ⇤ g ⇤ �t0 = g for all t, t0 2 H. (⇤0H\G/H)

We can also think of the functions
g 2 L2

µ(G/H) \ L2

µ0(H\G) as functions defined on the
double classes (or double cosets) HsH of G with re-
spect to H .
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In this case, if ⇡ : G ! H\G/H is the quotient map
⇡(s) = HsH , the fact that the Haar measure � on a com-
pact group is left and right invariant implies that there is
a G-invariant measure µ on H\G/H such that

Z

H\G/H
g(x) dµ(x) =

Z

G
(g � ⇡) d�.

We denote the algebra of functions in L2(G) satisfying
(⇤H\G/H) as L

2

µ(H\G/H), or simply as L2(H\G/H).

The following proposition follows immediately from the
previous two propositions.
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Proposition 6.12. The algebra L2(H\G/H) is the
Hilbert sum of the minimal two-sided ideals

a⇢,�0 = L⇢ \ Ľ⇢ =
dM

i=1

dM

j=1

Cm(⇢,H)

ij .

Each a⇢,�0 is a matrix algebra of dimension d2 having

the family (m(⇢,H)

ij )1i,jd as a basis. The center of
a⇢,�0 is the one-dimensional subspace

C(m(⇢,H)

11
+ · · · +m(⇢,H)

dd ) = Cn⇢✓⇢,�0,

and u⇢,�0 = m(⇢,H)

11
+ · · · + m(⇢,H)

dd is the unit of a⇢,�0.
The map g 7! u⇢,�0 ⇤ g = g ⇤ u⇢,�0 is the orthogonal
projection of L2(H\G/H) onto a⇢,�0.
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Proposition 6.13. The algebra L2(H\G/H) is com-
mutative if and only if (⇢ : �0)  1 for all ⇢ 2 R(G).
If so, then for every ⇢ 2 R(G) such that (⇢ : �0) = 1,
the ideal a⇢,�0 is one-dimensional and is spanned by
the function

!⇢(s) = ✓⇢,�0 =
1

n⇢
m(⇢,H)

11
(s),

which is continuous and of positive type. Thus

L2(H\G/H) =
M

⇢|(⇢:�0)=1

C!⇢.

The orthogonal projection of L2(H\G/H) onto C!⇢ is
given by

g 7! !⇢ ⇤ g = g ⇤ !⇢.
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The function !⇢ also satisfies the following equations:

!⇢(tst
0) = !⇢(s), for all s 2 G and all t, t0 2 H

!⇢(e) = 1.

The function !⇢ is called a (zonal) spherical function .

Since (⇢ : �0) = 1, the left ideal L⇢ is equal to the ideal

l(⇢,H)

1
, which by Proposition 4.5(5) is a minimal ideal in

a⇢, and by Proposition ??, it is spanned by the elements
of the form �s!⇢ = �s ⇤ !⇢, for all s 2 G.
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6.10 Spherical Harmonics on Sn and L2(Sn)

A nice example of the above situation arises if
G = SO(n + 1) and H = SO(n).

In this case, G/H = SO(n + 1)/SO(n) ' Sn.

By Proposition 6.10, the space
L2(SO(n + 1)/SO(n)) ' L2(Sn) is the Hilbert sum of
the subspaces L⇢ ✓ a⇢ for which (⇢ : �0) � 1, where

L2(SO(n + 1)) =
M

⇢

a⇢

is the Hilbert sum given by Peter–Weyl I and where d =
(⇢ : �0) � 1 is the number of times that the trivial
representation �0 of SO(n) is contained in the restriction
of M⇢ to SO(n).
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Then L⇢ is the direct sum of the first d columns of M (H)

⇢ ,

L⇢ =
dM

j=1

l(⇢,H)

j and l(⇢,H)

j =

n⇢M

k=1

Cm(⇢,H)

kj .

The subrepresentation ⇧ : SO(n + 1) ! U(L⇢) of the
canonical representation (see Definition 6.11)
⇧ : SO(n + 1) ! U(L2(Sn)) of SO(n + 1) in L2(Sn)
induced by the trivial representation of SO(n) in C is the
Hilbert sum of d = (⇢ : �0) irreducible representations
equivalent to M⇢.

Recall (see (IndG) before Definition 6.11) that

(⇧Q(f ))(x) = f (Q�1x) = f (Q>x),

Q 2 SO(n + 1), f 2 L2(Sn), x 2 Sn.
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However, (SO(n + 1),SO(n)) is one of examples of a
Gelfand pair given in Section ??, Case 1, so L2(H\G/H)
is commutative.

We need to exhibit SO(n) as a subgroup of the fixed
points of an involution � of SO(n + 1).

To do this, let s : Rn+1
! R

n+1 be the reflection about
the hyperplane x1 = 0, which is given by

s(x1, x2, . . . , xn+1) = (�x1, x2, . . . , xn+1).

Obviously s�1 = s. Then let � : SO(n+1) ! SO(n+1)
be the automorphism given by

�(Q) = sQs, Q 2 SO(n + 1).

Since s2 = I , we also have �2 = id.
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In matrix form

�(Q) =

✓
�1 0
0 In

◆
Q

✓
�1 0
0 In

◆
.

The groups SO(n+ 1)� of fixed points of � are the rota-
tions Q 2 SO(n + 1) such that

Q =

✓
�1 0
0 In

◆
Q

✓
�1 0
0 In

◆
,

and if we write

Q =

✓
q11 u
v Q1

◆
,

we must have

✓
q11 u
v Q1

◆
=

✓
�1 0
0 In

◆✓
q11 u
v Q1

◆✓
�1 0
0 In

◆

=

✓
q11 �u
�v Q1

◆
,

and so u = v = 0.
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Consequently, SO(n + 1)� = S(O(1)⇥O(n)), with

S(O(1)⇥O(n)) =

⇢✓
� 0
0 Q1

◆ ���� � = ±1,

Q1 2 O(n), � det(Q1) = 1

�
.

The stabilizer of e1 = (1, 0, . . . , 0) corresponds to
� = +1, and it is indeed isomorphic to SO(n).

Since (SO(n+1),SO(n)) is a Gelfand pair, L2(H\G/H)
is commutative (with G = SO(n + 1), H = SO(n)), so
by Proposition 6.13, we have d = (⇢ : �0)  1 for all ⇢.
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It can be shown that the L⇢ for which (⇢ : �0) = 1 are
exactly the spaces H

C

k (S
n) of spherical harmonics on

Sn; see Definition 5.1.

Thus we have a Hilbert sum

L2(Sn) =
M

k�0

H
C

k (S
n).

We also obtain a decomposition of the regular representa-
tion R : SO(n + 1) ! U(L2(Sn)) into irreducible repre-
sentations Rk : SO(n + 1) ! U(HC

k (S
n)) of SO(n + 1)

in the spaces HC

k (S
n) of spherical harmonics on Sn.
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The above facts are proven in Dieudonné [12] (Chapter
XXIII, Section 38).

A di↵erent proof is given in Gallier and Quaintance [23]
(Chapter 7).

One of the technical results used in these proofs is that

P
C

k (n) = H
C

k (n)� kxk2HC

k�2
(n)� · · ·�

kxk2j HC

k�2j(n)� · · ·� kxk2[k/2]HC

[k/2](n),

with the understanding that only the first term occurs on
the right-hand side when k < 2 (the spaces PC

k (n) and
H

C

k (n) are described in Definition 5.1).
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It is shown in Vilenkin [39] (Chapter IX, Sections 2.10,
2.11) that the irreducible representations
Rk : SO(n + 1) ! U(HC

k (S
n)) are irreducible represen-

tations of class 1 relative to SO(n) (see Definition ??)
and that they form a complete set of representations of
class 1 of SO(n + 1) relative to the subgroup SO(n);

For n = 2, these are actually all the irreducible represen-
tations of SO(3) (see Proposition 5.3).

The space H
C

k (S
n) is also the eigenspace associated to

the eigenvalue �k(n+ k� 1) of the Laplacian �Sn on
Sn.

The unique zonal spherical function !⇢ = 1

n⇢
m(⇢,H)

11
in

H
C

k (S
n) is given in terms of Gegenbaur polynomials; see

Gallier and Quaintance [23] (Chapter 7, Sections 3, 5, 6,
7).
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6.11 Induced Representations, III; Blattner’s Method
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6.12 The Borel Construction from a Representation

In this section we explain how the spaces of functions L↵

(from Definition 6.7), and the spaces H0 and H
0 from

Section 6.5 and Section 6.11 can be viewed as sections
of spaces that are similar to vector bundles but have less
structure.

More precisely, such structures have no trivialization maps.

We begin with the simplest situation where we have a
group G without any topology on it, a subgroup H of G,
a vector space H�, and a linear representation
� : H ! GL(H�).

As usual, write X = G/H and ⇡ : G ! G/H for the
quotient map.
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Let L� be the subspace of (H�)G consisting of all func-
tions f : G ! H� such that

f (gh) = �(h�1)(f (g)), for all g 2 G and all h 2 H.

The key point is to construct a space E = G ⇥H H�

together with a surjective map p : E ! X , such that for
every x 2 X = G/H , the fibre Ex = p�1(x) is isomor-
phic to the vector space H�, and the space of sections
from X to E is in bijection with L�.

This is a special case of the so-called Borel construction
used to construct a vector bundle from a principal bundle;
see Gallier and Quaintance [23] (Chapter 9, Section 9.9).
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Definition 6.12. Consider a group G, a subgroup H
of G, a vector space H�, and a linear representation
� : H ! GL(H�). As usual, write X = G/H ,
⇡ : G ! G/H for the quotient map, and denote the coset
H = eH by x0. The group H acts on G ⇥ H� on the
right by the action

(g, u) · h = (gh, �(h�1)(u)), g 2 G, u 2 H�, h 2 H.
(act1)

The space E = G ⇥H H� is the orbit space of G ⇥ H�

under the above action, namely the set of equivalence
classes

[(g, u)] = {(gh, �(h�1)(u)) | h 2 H} (g 2 G, u 2 H�)

of G⇥H� under the equivalence relation ⇠ defined such
that for all g1, g2 2 G and u1, u2 2 H�,

(g1, u1) ⇠ (g2, u2) i↵

(9h 2 H)(g2 = g1h, u2 = �(h�1)(u1)). (⇠1)
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The projection p : E ! X is defined as ⇡ � pr1, namely
for every equivalence class
z = [(g, u)] = {(gh, �(h�1)(u)) | h 2 H},

p(z) = gH = ⇡(pr1(z)).

It is immediately verified that the above definition does
not depend on the choice of g in the coset gH .

For every x = gH 2 G/H = X , the fibre Ex = p�1(x)
can be given the structure of a vector space isomorphic
to H�.



6.12. THE BOREL CONSTRUCTION FROM A REPRESENTATION 591

If we pick a section r : X ! G, namely a set of repre-
sentatives (rx)x2X (with rx 2 G) for the cosets x 2 X =
G/H , with rx0 = e,2 then we can show that the map
✓rx : H� ! Ex given by

✓rx(u) = [(rx, u)] (✓rx)

is injective.

The map ✓rx is also surjective since for any equivalence
class [(rx, u)] 2 Ex, by construction, ✓rx(u) = [(rx, u)].

Note that the above shows that the equivalence classes in
the fibre Ex are the subsets

[(rx, u)] = {(rxh, �(h
�1)(u)) | h 2 H}

and that any two such classes are disjoint for distinct
vectors u1, u2 in H�.

2We always assume that for every set of coset representatives (rx)x2X we chose rx0 = e.
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We can transfer the vector space structure on H� to Ex

using the bijection ✓rx, namely

[(rx, u1)] + [(rx, u2)] = [(rx, u1 + u2)]

�[(rx, u)] = [(rx,�u)],

for all u, u1, u2 2 H�, and � 2 C.

There is a linear isomorphism between H� and Ex (al-
though noncanonical).

Looking ahead, if H� is a (separable) Hilbert space, G
is locally compact, H is a closed subgroup of G, and
and if � : H ! U(H�) is a unitary representation, then
the map ✓rx can be used to transfer the Hilbert space
structure of H� to the fibre Ex by setting

h[(rx, u1)], [(rx, u2)]i = hu2, u2i, u1, u2 2 H�.
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The fact that the space L� in realized by the space of
sections of E is shown in the next proposition.

Definition 6.13. A section of E is any function
s : X ! E such that p�s = idX where p is the projection
p : E ! X , or equivalently a function s : X ! E such
that s(x) 2 Ex for every x 2 X = G/H . The set of
sections s : X ! E is denoted �(E).

Remark: At this stage X = G/H is just a set without
any topology so a section is just a function. Later when
G and H are locally compact groups it will make sense
to consider continuous sections.



594 CHAPTER 6. INDUCED REPRESENTATIONS

Given a set of coset representatives (rx)x2X , recall from
Definition 6.4 (Equation (u)) that we define u(g, x) as

u(g, x) = r�1

g·xgrx,

and that by Equation (s) we have

g = rxu(g, x0), s 2 G, x = gH.

Proposition 6.14. Let E = G ⇥H H�, X = G/H,
p : E ! X, and � : H ! GL(H�), as in Definition
6.12. Also let L� be the set consisting of all functions
f : G ! H� such that

f (gh) = �(h�1)(f (g)), for all g 2 G and all h 2 H.

The maps S : L� ! �(E) and L : �(E) ! L� are de-
fined as follows.
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Pick any set of representatives (rx)x2X (with rx 2 G)
for the cosets x 2 X = G/H. For every function
f : G ! H�, for any coset x = rxH, define the section
S(f ) by

S(f )(x) = [(rx, f (rx))], (S)

and for every section s : X ! E, for every coset
x = rxH, if s(x) = [(rx, u)] for some u 2 H�, define
the function L(s) on G by

L(s)(rxh) = �(h�1)(u), h 2 H (L)

or equivalently

L(s)(g) = �(u(g, x0)
�1)(u), g 2 G. (L0)
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Then S(f ) does not depend on the set of coset repre-
sentatives (rx)x2X, S(f ) 2 �(E), L(s) 2 L�, and S

and L are mutual inverses. Therefore S is a bijection
between L� and �(E).

Remark: If we use the isomorphisms ✓rx : H� ! Ex

given by

✓rx(u) = [(rx, u)], u 2 H�,

then the maps S : L� ! �(E) and L : �(E) ! L� are
defined as follows.
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For every function f : G ! H� in L� and for any coset
x = rxH ,

S(f )(x) = ✓rx(f (rx)), (S2)

and for every section s : X ! E and any g 2 G,

L(s)(g) = �(u(g, x0)
�1)(✓�1

rx (s(gH))). (L2)

The isomorphisms ✓rx are omitted by some authors but
this is not quite right.
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The last important ingredient is that G acts (on the left)
on E = G⇥H H� in an equilinear fashion.

Definition 6.14. Under the same conditions as in Defi-
nition 6.12, we define a left action of G on E = G⇥HH�

by

g1 · [(g, u)] = [(g1g, u)], g1, g 2 G, u 2 H�.

That this action is equilinear means the following.
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Proposition 6.15. Under the same conditions as in
Definition 6.14, the following facts hold:

(1) The action of G on E = G⇥H H� is equivariant,
which means that

p(g · [(g1, u)]) = g · p([(g1, u)]), g, g1 2 G, u 2 H�.

The action on the right-hand side is the action on
cosets in G/H given by g · (g2H) = (gg2)H.

(2) The restriction of the action of G to the fibre Ex

is a linear isomorphism between Ex and Eg·x

(x 2 G/H). In particular, every fibre Ex is iso-
morphic to Ex0.
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Observe that the action of H on the fibre Ex0 is a
representation �0 : H ! GL(Ex0) equivalent to the
representation � : H ! GL(H�), since Ex0 consists of
the equivalence classes of the form [(e, u)] (recall that
rx0 = e), with u 2 H�, so for every h 2 H ,

h · [(e, u)] = [(h, u)] = [(hh�1, �(h)(u))] = [(e, �(h)(u))].

The linear isomorphisms between the fibres Ex0 and Ex

induce representations �x : H ! GL(Ex) equivalent to
the representation � : H ! GL(H�).
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6.13 Induced Representations and G-Bundles

Next what we would like to do is to show how induced
representations can be recovered from certain kinds of
vector bundles (actually a more basic notion of vector
bundle) equipped with an equilinear action.

Such construction is given as an exercise in Dieudonné
[11] (Chapter XXII, Section 3, Problem 16).

It is also discussed in Kirillov [28] (Section 13) and sketched
without details in Folland [19] (Chapter 6).

Following Kirillov, we adopt the terminology ofG-bundle.

First we introduce a weaker notion that we call pre-G-
bundle (for the lack of a better name).
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Definition 6.15. Let G be a group, H be a subgroup
of G, E be some set, and let p : E ! X be a surjective
map, where as usual we write X = G/H . We say that
E (really p : E ! X) is a pre-G-bundle if there is an
equivariant left action · of G on E, which means that

p(g · z) = g · p(z), g 2 G, z 2 E.

Proposition 6.16. If p : E ! X is a pre-G-bundle,
then for every x 2 X = G/H, for every g 2 G, the
map z 7! g · z (z 2 Ex) is a bijection from Ex to Eg·x.

We finally come to the desired concept by requiring that
the fibres are vector spaces and that the bijections be-
tween fibres are linear isomorphisms.
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The key concept is the notion of equilinear action which
occurs in Dieudonné [15], Chapter XIX, Section 1.

Definition 6.16. Let G be a group, H be a subgroup
of G, E be some set, and let p : E ! X be a surjective
map, where as usual we write X = G/H . We say that
E (really p : E ! X) is a G-bundle if each fibre Ex

(x 2 X = G/H) is a vector space and if there is an
equilinear left action · of G on E, which means that:

(1) The action is equivariant, that is,

p(g · z) = g · p(z), g 2 G, z 2 E.

(2) For every x 2 X = G/H , for every g 2 G, the map
z 7! g · z (z 2 Ex) is a linear isomorphism between
Ex and Eg·x.
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Let x0 denote the coset H = eH .

Proposition 6.16 implies that every fibre is isomorphic to
Ex0.

Then the restriction of the action of G to H on the fibre
Ex0, for simplicity also denoted as E0, maps E0 to E0

(since h · x0 = x0 for all h 2 H).

Since the maps z 7! h · z (z 2 E0) are linear isomor-
phisms, we have a representation � : H ! GL(E0)
given by

�(h)(z) = h · z. (�)

Observe that E = G⇥H H� with the projection
p : E ! X is a G-bundle.
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If E is an abstract G-bundle as in Definition 6.16, then
the fibre E0 plays the role of the vector space H� which
occurs in the representation � : H ! GL(H�) and is
involved in the construction of the G-bundle G⇥H H�.

So it is natural to also refer to E0 as H�, which we will
do except when confusion arises

Let (rx)x2X be any set of coset representatives of
X = G/H .

The map �x from Ex to itself given by

�x(h)(z) = (rxhr
�1

x )·z = rx·�(h)(r
�1

x ·z), h 2 H, z 2 Ex

is a linear isomorphism of Ex, in other words, a represen-
tation �x : H ! GL(Ex).
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The representation �x : H ! GL(Ex) is equivalent to
the representation � : H ! GL(E0) via the linear iso-
morphism from E0 to Ex given by z 7! rx · z.

It is easy to see that if another set of coset representatives
(rxhx)x2X is used, then

�x(h)(z) = (rxhxhh
�1

x r�1

x ) · z;

in other words, we obtain a representation equivalent to
� : H ! GL(E0), where the linear isomorphism from E0

to Ex is given by z 7! rxhx · z.

Consequently, the sections in �(E), called feature fields
in group equivariant deep learning in computer vision, are
functions whose domain transforms under the action
of G and whose codomain transforms by representa-
tions of H equivalent to � : H ! GL(E0);
more precisely each fibre Ex transforms under the rep-
resentation �x.
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The space L� and the representation of G in L� induced
by � : H ! GL(E0) can be recovered from the G-vector
bundle as we now explain.

Definition 6.17. Let p : E ! X be a G-bundle, with
X = G/H . As before, let x0 = H , let E0 be the fibre
E0 = p�1(x0), and let � : H ! GL(E0) be the repre-
sentation given by �(h)(z) = h · z for all z 2 E0 and all
h 2 H . Also let L� be the set consisting of all functions
f : G ! E0 such that

f (gh) = �(h�1)(f (g)) = h�1
· f (g),

for all g 2 G and all h 2 H. (⇤†1)

There is an action of G on the set �(E) of section
s : X ! E given by

(g · s)(x) = g · (s(g�1
· x)), g 2 G, x 2 X. (†�)
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In the above equation, G acts on X = G/H in g�1
· x,

and G acts on E in g · (s(g�1
· x)).

Define the maps S and L as follows.

For every function f : G ! E0 2 L�, for every coset
x 2 X = G/H and any coset representative rx 2 G of
x, let

S(f )(x) = rx · f (rx), (S3)

where the action is the action of G on E.

For every section s : X ! E, for every g 2 G, let

L(s)(g) = g�1
· s(gH) = g�1

· s(g · x0), (L3)

where the action is the action of G on E.
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Proposition 6.17. The following facts hold.

(1) The map S(f ) is independent of the choice of the
representative g chosen in the coset x = gH = g·x0
and S(f ) 2 �(E); that is,

S(f )(gH) = S(f )(g ·x0) = g · f (g), g 2 G. (S 00

3
)

(2) We have L(s) 2 L�.

(3) The maps S : L� ! �(E) and L : �(E) ! L� are
mutual inverses. Thus S is an isomorphism be-
tween L� and �(E).
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We can also recover the representation
IndGH � : G ! GL(L�) induced by the representation
� : H ! GL(E0).

Proposition 6.18. Define the map ⇢ : G ! GL(L�)
by

⇢(g)(f ) = S
�1(g ·S(f )) = L(g ·S(f )), g 2 G, f 2 L�.

(†2)

In the above equation, S(f ) 2 �(E) and the action of
G is the action of G on �(E) from Definition 6.17.
For all g, g1 2 G and all f 2 L�, we have

[⇢(g)(f )](g1) = f (g�1g1), (†3)

that is, ⇢ : G ! GL(L�) is the representation IndGH �
induced from the representation � : H ! GL(E0).
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6.14 Hermitian G-Bundles

The above definitions and constructions can be adapted
to deal with unitary representations.

In this case, G is a locally compact group, H is a closed
subgroup of G, and � : H ! U(H�) is a unitary repre-
sentation, where H� is a separable Hilbert space.

As we explained earlier, up to linear isomorphisms, we
can endow the fibres Ex of the G-bundle E = G⇥H H�

with a Hilbert space structure so that each fibre Ex is
isometric to H� via a unitary isomorphism.

The action of G on E has the property that each map
z 7! g · z from the fibre Ex to the fibre Eg·x is unitary .
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Definition 6.18. Let G be a locally compact group, H
a closed subgroup of G, E be some topological Hausdor↵
space, and let p : E ! X be a surjective continuous
map, where as usual we write X = G/H . We say that E
(really p : E ! X) is a hermitian G-bundle if each fibre
Ex (x 2 X = G/H) is a separable Hilbert space and if
there is an equilinear continuous left action
· : G⇥ E ! E of G on E, which means that:

(1) The action is equivariant, that is,

p(g · z) = g · p(z), g 2 G, z 2 E.

(2) For every x 2 X = G/H , for every g 2 G, the map
z 7! g ·z (z 2 Ex) is a unitary isomorphism between
Ex and Eg·x.
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Let x0 denote the coset H = eH .

Every fibre is isomorphic to Ex0 and the restriction of
the action of G to H on the fibre Ex0, for simplicity also
denoted as E0, maps E0 to E0 (since h · x0 = x0 for all
h 2 H).

Since the action ofG on E is continuous, for every z 2 E0

the map h 7! h · z is a continuous map from H to E0,
and since the maps z 7! h · z (z 2 E0) are unitary, we
have a unitary representation � : H ! U(E0) given by

�(h)(z) = h · z. (�)

If the fibres are finite-dimensional vector spaces equipped
with hermitian inner products, we say that E has finite
rank , and the common dimension of these vector spaces
is called the rank of E.
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Assume that E is a hermitian G-bundle of rank n, and
pick some orthonormal basis (e1, . . . , en) of E0.

Since the map z 7! g · z (z 2 E0, g 2 G) is a unitary
map from E0 to Eg·x0, the n-tuple (g · e1, . . . , g · en) is an
orthonormal basis of Eg·x0.

Inspired by Section 6.1 we make the following definition.

Definition 6.19. Let E be a hermitian G-bundle of
rank n and pick some orthonormal basis (e1, . . . , en) of
E0.

The Hilbert space L2(G;E0) consists of all functions
f : G ! E0 such that f = f1e1 + · · · + fnen, where the
fi are functions in L2(G); equivalently, L2(G;E0) is the
finite Hilbert sum

L2(G;E0) =
nM

i=1

L2(G)ei.
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The inner product of two functions f =
P

i=1
fiei and

g =
P

i=1
giei is

hf, gi =
nX

i=1

Z

G
fi(s)gi(s) d�G(s),

where �G is a left Haar measure on G.

Let L� be the subspace of L2(G;E0) given by

L� = {f 2 L2(G;E0) | f (gh) = �(h�1)(f (g)),

for all g 2 G and all h 2 H}. (†4)

It is easy to check that L� is closed in L2(G;E0), so it is
a Hilbert space.



616 CHAPTER 6. INDUCED REPRESENTATIONS

If A(h) is the unitary matrix representing �(h) with re-
spect to the basis (e1, . . . , en), with

�(h)(ej) =
nX

i=1

aijei,

we leave it as an exercise to prove that the condition
f (gh) = �(h�1)(f (g)) translates into

0

@
f1(gh)

...
fn(gh)

1

A = A(h)⇤

0

@
f1(g)
...

fn(g)

1

A .

Since (g ·e1, . . . , g ·en) is an orthonormal basis of Eg·x0 for
every g, every section s : X ! E is uniquely determined
by n functions si : X ! C defined by

s(g·x0) = s1(g·x0)(g·e1)+· · ·+sn(g·x0)(g·en), g 2 G.
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By analogy with the definition of L2(G;E0) we have the
following definition.

Definition 6.20. Let E be a hermitian G-bundle of
rank n and pick some orthonormal basis (e1, . . . , en) of
E0. The subspace L2(X ;E) of �(E) is defined as the
Hilbert space of sections s : X ! E that can be expressed
as

s(g ·x0) = s1(g ·x0)(g ·e1)+· · ·+sn(g ·x0)(g ·en), g 2 G

for some functions si 2 L2

µ(X), where µ is theG-invariant
measure (unique up to a scalar) on X = G/H induced
by �G.
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Then for two sections s, t 2 L2(X ;E) determined by
the n-tuples (s1, . . . , sn) and (t1, . . . , tn) of functions in
L2

µ(X), the inner product is given by

hs, ti =
nX

i=1

Z

X
si(x)ti(x) dµ(x).

Note that the induced representation ⇢ : G ! GL(L�)
of Proposition 6.18 is now a unitary representation
⇢ : G ! U(L�).
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A di�culty that arises because sections now belong to
L2(X ;E) and functions in L� now belong to L2(G;E0)
is that, in general, if r : X ! G is a section specifying
a set of coset representatives of X = G/H , the maps L
and S as defined by

L(s)(g) = (�(u(g, x0)))
�1(r�1

x ·s(g·x0)), x = gH = g·x0
(L0

3
)

and

S(f )(g · x0) = rx · �(u(g, x0))(f (g)) (S 0

3
)

may yield a function L(s) not in L� for some section
s 2 L2(X ;E), or a section S(f ) not in L2(X ;E) for
some function f 2 L�.
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If they do for all s 2 L2(X ;E) and all f 2 L�, they
are mutual inverse maps from L� to L2(X ;E) so we can
figure out what is the induced representation
⇧ : G ! U(L2(X ;E)) from the definition of the repre-
sentation ⇢ : G ! U(L�) using the fact that the following
diagram commutes

L�
⇢(g)

//L�

S

✏✏

L2(X ;E)

L

OO

⇧g
//L2(X ;E)

for every g 2 G.
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For any g 2 G, any x 2 X = G/H , and any
s 2 L2(X ;E), since ⇢(g)(f ) = L(g · S(f )) for any
f 2 L�, we have

(⇧g(s))(x) = [S(⇢(g)(L(s))](x) = [S(L(g · S(L(s))))](x)

= (g · s)(x) = g · s(g�1
· x),

which we record as

(⇧g(s))(x) = g · s(g�1
· x). (†5)
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Unravelling the definitions we get

g = rxu(g, g
�1

· x)(rg�1·x)
�1, (†6)

and substituting the right-hand side expression for the
leftmost occurrence of g in g · s(g�1

· x) we deduce that

(⇧g(s))(x) = rx · �(u(g, g
�1

· x))((rg�1·x)
�1

· s(g�1
· x)).
(†7)
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If we compare with Formula (⇧↵
s ) in Definition 6.2, namely,

(⇧↵
g (s))(x) = ↵(g, g�1

· x)(s(g�1
· x)) (⇧↵

s )

since ↵(g, y) = �(u(g, y)) is a cocycle, we have

(⇧�
g (s))(x) = �(u(g, g�1

· x))(s(g�1
· x)), (⇧�

s )

and as we explained earlier, in the case of the G-bundle
G ⇥H H�, the map z 7! rx · z sends the fibre E0 to the
fibre Ex and the map x 7! g�1

· x sends the fibre Eg·x to
the fibre E0, and since � is a representation in E0, we see
that (†7) and (⇧�

s ) are indeed equivalent.
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We still have the issue that, in general, the representation
⇧ may not be continuous.

This depends on the existence of suitable sections
r : X ! G.

A case where continuous sections exist is when
G = N o H is a semi-direct product with N abelian;
see Section ??.
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6.15 Hermitian G-Vector Bundles

A way to deal with the problem that continuous sections
r : X ! Gmay not exist is to assume that p : E ! G/H
is locally trivial, namely to assume the existence of local
trivializations.

In other words we assume that E is a vector bundle.

We will recall the definition of vector bundles and princi-
pal bundles below.

Vector bundles and principal bundles are discussed in
Gallier and Quaintance [23], Bott and Tu [3], Morita [34],
Bröcker and tom Dieck [5], Duistermaat and Kolk [17] and
Dieudonné [14].
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To avoid technical complications we assume that G is a
Lie group and that H is a closed Lie subgroup of G.

Now because G is a Lie group and H is a closed Lie sub-
group of G, the quotient space X = G/H is a smooth
manifold and ⇡ : G ! G/H is a principal H-bundle,
whose definition is recalled below; see Gallier and Quain-
tance [23] (Section 9.9, Proposition 9.2) and Duistermaat
and Kolk [17] (Appendix A).
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Definition 6.21. A principal H-bundle is a quadruple
⇠ = (E , ⇡, E/H,H), where E be a smooth manifold, H
is Lie group, and · : E ⇥H ! E is a smooth right action
of H on E satisfying the following properties:

(1) The right action of H on E is free;

(2) The orbit spaceX = E/H is a smooth manifold under
the quotient topology, and the projection
⇡ : E ! E/H is smooth;

(3) There is some open cover U = (U↵)↵2I of X = E/H
and a family  = ( ↵)↵2I of di↵eomorphisms called
(local) trivializations

 ↵ : ⇡
�1(U↵) ! U↵ ⇥H,

such that
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(a) (local triviality) the diagram

⇡�1(U↵)

⇡

##

 ↵
//U↵ ⇥H

pr1

{{

U↵

commutes.

(b) Every map  ↵ : ⇡�1(U↵) ! U↵ ⇥ H is an equiv-
ariant di↵eomorphism, which means that

 ↵(z · h) =  ↵(z) · h,

for all z 2 ⇡�1(U↵) and all h 2 H , where the right
action of H on U↵ ⇥H is (x, h1) · h = (x, h1h).

Observe that if  ↵(z) = (x, h1), then since
 ↵(z) · h = (x, h1h), we have
pr1( ↵(z) · h) = pr1( ↵(z)) = x = ⇡(z).
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Recall that the action · : E ⇥ H ! E is free if it acts
without fixed points, that is, for every h 2 H , if h 6= 1,
then x · h 6= x for all x 2 E .

By Conditions (a) and (b) and the definition of the right
action of H on U↵ ⇥ H , for all z 2 ⇡�1(U↵) and all
h 2 H , we have

⇡(z·h) = pr1( ↵(z·h)) = pr1( ↵(z)·h) = pr1( ↵(z)) = ⇡(z),

so for any x 2 X = E/H and any z 2 Ex = ⇡�1(x), we
have z · h 2 Ex.

In fact, for any z 2 Ex, it can be shown that

Ex = {z · h | h 2 H},

namely the orbits of the right action of H on E are the
fibres Ex, with x 2 X .
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Since the action of H on E is free, the action of H on Ex

is also free.

For all ↵, � such that U↵\U� 6= ;, for every x 2 U↵\U�,
we have a di↵eomorphism

 ↵,x �  
�1

�,x : H �! H,

which yields the map g↵� : U↵ \ U� ! Di↵(H) called a
transition map given by

g↵�(x) =  ↵,x �  
�1

�,x, x 2 U↵ \ U�.

Intuitively, the transition functions express how the fibre
Ex twists as x moves in U↵ \ U�.
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From the definition above, the isomorphism
 ↵ �  

�1

� : (U↵ \ U�)⇥H ! (U↵ \ U�)⇥H is given by

( ↵� 
�1

� )(x, h) = (x, g↵�(x)(h)), x 2 U↵\U�, h 2 H.

A priori, the map g↵�(x) is a di↵eomorphism of the Lie
group H , but because the transition maps  ↵ are equiv-
ariant, it is shown in Gallier and Quaintance [23] (Chapter
9, Proposition 9.21) that g↵�(x) is the left translation by
g↵�(x)(1) 2 H , that is,

g↵�(x)(h) = g↵�(x)(1)h, x 2 U↵ \ U�, h 2 H.

Since the group of left translations of H (the maps
Lh : H ! H given by Lh(h1) = hh1 (h, h1 2 H)) is
isomorphic to H , we usually view the map g↵�(x) as a
the element g↵�(x)(1) of H .
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Another technical issue is that Definition 6.21 is too re-
strictive because it does not allow for the addition of com-
patible local trivializations.

We can fix this problem as follows.

Definition 6.22. Let ⇠ = (E , ⇡, X,H) be principal
bundle, with X = E/H . Given a trivializing cover
{(U↵, ↵)} for ⇠, for any open U of X and any di↵eo-
morphism

' : ⇡�1(U) ! U ⇥H,

we say that (U,') is compatible with the trivializing
cover {(U↵, ↵)} i↵ whenever U \U↵ 6= ;, there is some
smooth map g↵ : U \ U↵ ! H , so that

' �  �1

↵ (x, h) = (x, g↵(x)(h)),

for all x 2 U \ U↵ and all h 2 H .
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Two trivializing covers are equivalent i↵ every local triv-
ialization of one cover is compatible with the other cover.

This is equivalent to saying that the union of two trivial-
izing covers is a trivializing cover.

Definition 6.22 yields the o�cial definition of a princi-
pal bundle ⇠ = (E , ⇡, X,H) in which {(U↵, ↵)} is an
equivalence class of trivializing covers.

As for manifolds, given a trivializing cover {(U↵, ↵)},
the set of all bundle charts compatible with {(U↵, ↵)}
is a maximal trivializing cover equivalent to {(U↵, ↵)}.

In the special case where E is equal to a Lie group G
and H is a closed Lie subgroup of G, as we said above,
(G, ⇡ : G ! X,X,H) is principal H-bundle (with X =
G/H).
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Definition 6.23. A hermitian vector bundle with fi-
bre H is a quadruple ⇠ = (E , p,X,H), where E and X
are smooth manifold, p : E ! X is a surjective smooth
map, and H is a finite-dimensional complex vector space
with a hermitian inner product, such that the following
conditions hold:

(1) Each fibre Ex (x 2 X) is a finite-dimensional space
equipped with a hermitian inner product h�,�ix.

(2) There is some open cover U = (U↵)↵2I of X and a
family ' = ('↵)↵2I of di↵eomorphisms called (local)
trivializations

'↵ : p
�1(U↵) ! U↵ ⇥H,

such that:
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(a) (local triviality) the diagram

p�1(U↵)

p

##

'↵
//U↵ ⇥H

pr1

{{

U↵

commutes.

(b) For every x 2 U↵, the map '↵,x : Ex ! H is a
unitary isomorphism.

Since the maps '↵,x are unitary, the maps

'↵,x � '
�1

�,x : H �! H,

are also unitary, so the transition maps are of the form
g↵� : U↵ \ U� ! U(H).



636 CHAPTER 6. INDUCED REPRESENTATIONS

We also need to be able to add compatible trivializations.

Definition 6.24. Let ⇠ = (E , p,X,H) be a hermitian
vector bundle. Given a trivializing cover {(U↵,'↵)} for
⇠, for any open U of X and any di↵eomorphism

' : p�1(U) ! U ⇥H,

we say that (U,') is compatible with the trivializing
cover {(U↵,'↵)} i↵ whenever U \U↵ 6= ;, there is some
smooth map g↵ : U \ U↵ ! U(H), so that

' � '�1

↵ (x, u) = (x, g↵(x)(u)),

for all x 2 U \U↵ and all u 2 H. Two trivializing covers
are equivalent i↵ every local trivialization of one cover is
compatible with the other cover.

This is equivalent to saying that the union of two trivial-
izing covers is a trivializing cover.
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The o�cial definition of a hermitian vector bundle
⇠ = (E , p,X,H) requires {(U↵,'↵)} to be an equivalence
class of trivializing covers.

As earlier, given a trivializing cover {(U↵,'↵)}, the set of
all bundle charts compatible with {(U↵,'↵)} is a maxi-
mal trivializing cover equivalent to {(U↵,'↵)}.

Technically, a hermitian vector bundle has the property
that the hermitian inner product h�,�ix on the fibre Ex
varies smoothly with x 2 X .

This is formalized as follows. For any open subset U of
X , a frame over U is an n-tuple (s1, . . . , sn) of smooth
sections si : U ! E such that (s1(x), . . . , sn(x)) is a basis
of the fibre Ex for all x 2 U (where n is the dimension of
H and all the Ex).
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The hermitian inner products h�,�ix have the property
that for every U↵, for every frame (s1, . . . , sn) over U↵,
the maps

x 7! hsi(x), sj(x)ix, 1  i, j  n, x 2 U↵,

are smooth. For details, see Gallier and Quaintance [23]
(Section 9.8) and Morita [34] (Section 5.1).
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Remark: Since X is a manifold, for any local trivial-
ization '↵ : p�1(U↵) ! U↵ ⇥ H, of ⇠, since U↵ is an
open subset of X , there is some open set V in the max-
imal atlas defining X such that V ✓ U↵ and a chart
✓ : V ! R

m (where m is the dimension of the manifold
X), so if ⇢ : H ! R

n is an isomorphism (obtained by
picking a basis on H), the map

(✓ ⇥ ⇢) � '↵ : p
�1(V ) ! R

m+n

is a chart of E viewed as a manifold.

We can now define a hermitian G-vector bundle as a her-
mitian G-bundle which is also a hermitian vector bundle
in the special case where X = G/H .
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Definition 6.25. Let G be a Lie group, H a closed sub-
group of G, E a smooth manifold, H a finite-dimensional
complex vector space equipped with a hermitian inner
product, and let p : E ! X be a surjective smooth map,
where as usual we write X = G/H . We say that E,
more precisely (E, p,X,H, G), is a hermitian G-vector
bundle with fibre H if

(1) Each fibre Ex (x 2 X = G/H) is a finite-dimensional
vector space equipped with a hermitian inner product
h�,�ix and there is an equilinear smooth left action
· of G on E.

(2) There is some open cover U = (U↵)↵2I of X = G/H
and a family ' = ('↵)↵2I of di↵eomorphisms called
(local) trivializations

'↵ : p
�1(U↵) ! U↵ ⇥H,

such that:
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(a) (local triviality) the diagram

p�1(U↵)

p

##

'↵
//U↵ ⇥H

pr1

{{

U↵

commutes.

(b) For every x 2 U↵, the map '↵,x : Ex ! H is a
unitary isomorphism.

As in the case of a hermitian vector bundle, we require
that the hermitian inner product h�,�ix varies smoothly
with x.
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If ⇠ = (E , ⇡, X,H) is a principal H-bundle (with X =
E/H) and � : H ! U(H�) is a unitary representation of
H in a finite-dimensional hermitian vector spaceH�, then
the Borel construction of Section 6.12 can be adapted to
produce a hermitian vector bundle (E, p : E ! X,X,H�),
with E = E ⇥H H� and X = E/H .

The following theorem is a special case of a construction in
whichH� is replaced by any smooth manifold F equipped
with a smooth left action of H on F (technically, an
e↵ective action);3 see Dieudonné [14] (Theorem 16.14.7).

3Recall that an action · : H ⇥ F ! F is e↵ective if for any h 2 H, if h · x = x for all x 2 F , then h = 1.
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Theorem 6.19. Let ⇠ = (E , ⇡, X,H) be a principal
H-bundle (with X = E/H) and let � : H ! U(H�) be
a unitary representation of H in a finite-dimensional
hermitian vector space H�. Consider the right action
of H on E ⇥H� given by

(z, u) · h = (z · h, �(h�1)(u)), z 2 E , u 2 H�, h 2 H.
(act2)

Here the right action of H on E is the action arising
from the fact that E is a principal H-bundle, so it is
free, and thus the action (act2) is also free. Then
the orbit space E = E ⇥H H� is a smooth manifold.
Furthermore, the following properties hold.

(1) The quadruple (E, p, E/H,H�) is a hermitian vec-
tor bundle with fibre H�, where the projection
p : E ⇥H H� ! E/H is given by p([(z, u)]) = ⇡(z),
z 2 E , u 2 H�, and with ⇡ : E ! E/H.
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(2) If U = (U↵)↵2I is an open cover of X = E/H
and  = ( ↵)↵2I is a family of local trivializations
 ↵ : ⇡�1(U↵) ! U↵⇥H for E , then for any smooth
section s : U↵ ! ⇡�1(U↵), the inverse '�1

↵ of a local
trivialization '↵ : p�1(U↵) ! U↵⇥H� of E is given
by

'�1

↵ (x, u) = [(s(x), u)], x 2 U↵, u 2 H�.

(3) For every z 2 E, the map u 7! [(z, u)] is a unitary
map from H� to the fibre E⇡(z) = p�1(⇡(z)).

(4) For any x 2 X, for any fixed x0 2 Ex = ⇡�1(x),
the map given by

h·[(x0, u)] = [(x0, h·u)] = [(x0, �h(u))], h 2 H, u 2 H�,

is a unitary representation of H on the fibre
Ex = p�1(x).
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If we pick the section s↵ : U↵ ! ⇡�1(U↵) to be the special
section given by

s↵(x) =  �1

↵ (x, 1), x 2 U↵, (†10)

then we can figure out what are the corresponding tran-
sition functions. We find hat

('↵ � '
�1

� )(x, u) = (x, g↵�(x)(1) · u),

which shows that the transition functions of the vector
bundle E are also given by the g↵�(x)(1) 2 H , except
that this time H acts on H (on the left).

Going back to the original definition of the action of H
on H given by the unitary representation �, we have

('↵ � '
�1

� )(x, u) = (x, �(g↵�(x)(1))(u)).
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Combining what we did in Section 6.12 with Theorem
6.19 we obtain the following result.

Theorem 6.20. Let G be a Lie group, H a closed
Lie subgroup of G, and � : H ! U(H�) a unitray rep-
resentation in a finite-dimensional hermitian vector
space. Then (E, p,X,H�, G) is a hermitian G-vector
bundle, with E = G⇥H H� and X = G/H.


